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ABSTRACT

Railroad ballast is a layer of uniform sized crushed aggregate particles placed

between, below and around the crossties. Railroad ballast transfers the load

from crossties to the subgrade layer, provides lateral track stability and fa-

cilitates the drainage of water. Repeated traffic loading and environmental

factors cause particle breakage, abrasion and polishing, which eventually de-

grade the ballast and result in fouling conditions. Traditional ballast foul-

ing assessment includes manual sampling and identifying particle size dis-

tributions using sieve analysis. Recently, automatic ballast sampling (ABS)

methods have been introduced to the railroad industry to obtain a sam-

ple of ballast and underlying layers using an approximately 1 m (3.28 ft.)

long heavy duty steel tube driven into the ballast layer to depths of up

to 2 m (6.56 ft.). Currently, visual-manual classification methods are used

by experts to identify fouling conditions and degradation trends in the col-

lected ballast samples. This thesis presents multiple approaches developed

for the objective classification of ballast degradation using a combination of

advanced machine vision and machine learning techniques. Initially, vari-

ous computer vision algorithms are used to generate features associated with

images of ballast cross sections at different degradation levels. Next, the gen-

erated features are used alongside a visual classification database provided

by experts to develop, train, validate, and test a feedforward artificial neural

network (ANN) using a supervised learning method. This work is further

extended by implementing convolutional neural networks (CNNs) to serve

as automatic feature generators. Finally, this approach is used on another

cross-sectional ballast dataset that more closely resembles the type of bal-

last cross sections that can be found in the field. The findings of this study

show that the proposed CNNs with an optimized topology can successfully

classify ballast fouling in an effective and repeatable fashion with reasonable

error levels. Further improvement of this technology holds the potential to
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provide a tool for consistent and automated ballast inspection and life cycle

analysis intended to improve the safety and network reliability of US railroad

transportation systems.
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CHAPTER 1

INTRODUCTION

Railway ballast fouling is a problem that has primarily been tackled in civil

engineering literature. Typically defined as the contamination of the ballast

layer as a result of particle breakage and abrasion, migration of fine-grained

soil from the subgrade, or introduction of coal dust from overloaded freight

cars, the study of ballast fouling is the analysis of how to quantify and de-

cide whether or not ballast needs maintenance. This problem is significant

because ballast serves as the structural foundation for the rail lines on which

trains run. When the ballast becomes excessively fouled it can cause major

safety concerns and interruptions to rail service. In fact, past derailments

have been directly attributed to ballast fouling and the resulting loss of track

strength and stability [1]. Fouling is inevitable over time, as regular train

operation contributes significantly to fouling (76% of fouling is directly at-

tributable to breakdown of the ballast due to stress [2]). For all of these

reasons, it is important to have the ability to rapidly and reliably identify

areas of fouled ballast.

Classically, rail ballast fouling has been quantified by a variety of different

metrics. The two most common are the Selig Fouling Index and the Percent-

age Fouling [2]. The Selig Fouling Index is the summation of percentage by

weight of ballast material passing through 4.75mm and 0.075mm sieves used

to separate rail ballast. The Percentage Fouling is the ratio of dry weight

material passing a 9.5mm sieve to the dry weight of the total sample. Other

more subjective measures of ballast fouling include visual inspection and

ballast sampling and testing. Previous work done by the Civil Engineering

Department and Beckman Computer Vision group at the University of Illi-

nois has focused on this sampling and testing by looking at individual pieces

of ballast and assessing them for various features like angularity and size

in order to determine their suitability as ballast [3]. That research spurred

investigation into other forms of automated inspection of ballast, including
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the classification techniques presented in this thesis.

Initially, the Beckman group explored techniques involving image segmen-

tation and the calculation of an image based fouling index (IBFI) from that

segmentation [4]. While the IBFI values calculated in that research corre-

sponded relatively well to the actual Selig Fouling Index values, the approach

itself suffered from a few key issues. The segmentation required the researcher

to manipulate a variety of parameters in order to achieve a good-looking

result, the segmentation encountered issues when a large amount of partic-

ularly fine ballast was present, and the segmentation took a fair amount of

time. Due to these issues, automation of this process proved fairly difficult,

as subjectively satisfactory segmentation (in a visual sense) was critical to

achieving good results.

In contrast, the main approach taken by this research is to use machine

vision and machine learning techniques to determine the level of fouling in

railroad ballast without the need for lab testing and ballast removal. To

that end, a variety of data sources have been collected and analyzed, each in

the hopes that there would be a correlation between the current analysis of

the ballast and the automated analysis. If such a correlation exists, it may

allow for machine vision and learning techniques to serve as a fast, repeat-

able, consistent metric by which to evaluate railroad ballast. It would make

sense for this connection to exist, given that many of the phenomena that

show ballast degradation are noticeable visually (factors like rock sharpness,

texture, size, and the number of discrete pieces of ballast).

The research itself is broken into three main sections, each with three

subsections based on the particular data source being examined. The three

main sections are:

• Data Acquistion and Preprocessing

• Machine Learning for Ballast Classification

• Results of Ballast Classification

Each section covers the relevant topic for three different data sources. The

data sources are:

• Ballast Laser Surface Profiling
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• Tube Ballast Images

• Ballast Cross Section Images

The initial laser work classification was performed at the behest of Dr.

Narendra Ahuja for a class, and its results led to the acquisition of other

data sources. The Tube Ballast Images and Cross-Sectional Images were

both attempts to acquire more natural and more accurate targets for the

machine learning algorithms used. Later data sources had more relevant

ground truth information for the degree of ballast fouling. The eventual hope

for this work was to create a classifier capable of accurately distinguishing

between different levels of fouling with a small degree of deviance from both

objective ground truth and subjective human visual evaluation.
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CHAPTER 2

DATA ACQUISITION AND
PREPROCESSING

The data in the experiments performed during this master’s thesis came from

three main sources. In the first experiment, the initial laser work, the ballast

being scanned was from samples that had previously been sieved to ensure no

pieces of ballast over or under certain sizes were present. This had been done

with sieves of various sizes, three of which were used. The second experiment,

that of the tube ballast imaging, used images provided by Dr. Phil Sharpe of

the AECOM engineering firm. These images were of cylindrical tube bored

into the rail ballast and then split in half. This tube typically had a depth of

around 2 meters and provided a depth sample of the ballast at the location

it was taken. The third and final experiment, the ballast cross sections,

were images of a horizontal cross section rail ballast taken from a trench dug

underneath the rail ties. These trenches were perpendicular to the ties and

extended beneath them to a depth of roughly 4 or 5 feet.

2.1 Ballast Laser Surface Profiling

Work on this suite of ballast degradation projects began with an experiment

performed in conjunction with ECE 544: Pattern Recognition. The goal of

the final project was to use the machine learning knowledge accrued during

the course to tackle a practical problem. Dr. Ahuja suggested that buckets of

differently-sized ballast acquired by the civil engineering department would

make for a good dataset. The Federal Railroad Administration had an inter-

est in automating remote inspection of ballast for replacement monitoring,

and previous experiments had been run on this ballast to partition it into

buckets containing differently sized pieces.

Three different collections of ballast were used for this experiment.

• Ballast passing through a 1.50 inch sieve, but retained on a 1.00 inch
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sieve

• Ballast passing through a 1.00 inch sieve, but retained on a 0.75 inch

sieve

• Ballast passing through a 0.75 inch sieve, but retained on a 0.50 inch

sieve

Figure 2.1: Sample Ballast Collection in Tray

This experiment differed from the previous work performed by members

of the Civil Engineering Department at the University of Illinois in that
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instead of sampling individual particles of ballast [3], ballast from one of the

collections was laid out on a cart tray (see figure 2.1). A line scanning laser

was then shone from above at a 45 degree angle onto the ballast and the

tray cart was moved perpendicular to the laser. This caused the laser line to

deform (note that these videos were taken in the dark, a sample deformation

line can be seen in figure 2.2). The video camera taking the images had a

resolution of 1920x1080.

The resulting images were thresholded to extract the positions of all the red

pixels in the image. The maximum positions of the laser line pixel along each

row were taken as the input features to an artificial neural network. These

positions were taken for every frame in multiple videos. Three different sizes

of ballast were used and the network was trained across six videos (2 of each

size containing roughly 200 frames each) and tested on another to see if it

could correctly identify which size group individual frames belonged to. In

addition, the experiment examined whether a plurality of frames in each

video were classified properly.

Figure 2.2: Sample Laser Line Deformation

The other features tested in this experiment include a discrete approxi-

mation of the first derivative of the laser positions (using a simple position

difference vector). The use of this feature was an exploration of whether or
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not the slope of the line might be more revealing of the ballast size than the

position of the line.

2.2 Tube Ballast Imaging

The tube ballast images in this experiment were acquired using a relatively

new technique of automatic ballast sampling pioneered by several different

companies and researchers to facilitate the process of ballast sampling. This

technique was first explored in a 2010 paper from Scott Wilson Pavement

Engineering [5] that also included a proposed classification system for the

resulting images. Tubes were driven into ballast using a hydraulic powered

pneumatic hammer. The tubes were then extracted using a hydraulic jacking

system. The tool used to do this is known as an automatic ballast sampler

and can be seen in figure 2.3. The tubes themselves contain plastic liners

which hold the samples. The liners are then extracted from the tube, split,

and stored on a sample rack for later imaging. Each sample was then imaged

with a 12 MP Nikon digital camera. These images were each captured with

a constant 300 dots per inch spatial resolution.

These samples and images were initially used by Dr. Sharpe’s company,

AECOM, to provide assessments of ballast quality and analyze the type

of ballast present in each of the samples. However, this work was done

manually and required touching the ballast and having an expert note down

a classification of each section of the tube. Motivated by a desire to simplify

this workload, Dr. Sharpe provided a large database of these tube samples to

our research group in the hopes that we could develop a method to automate

some of this decision making.
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Figure 2.3: Automatic Ballast Sampler

Initial work began by determining that a simplification of the problem

to ballast degradation detection (instead of the more general information

generated by Phil Sharpe) was appropriate and still useful. The data samples

from each database image were reclassified into five levels of degradation. A

basic overview of the process can be seen in figure 2.4 and a more detailed

textual description will follow.
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Figure 2.4: Tube Ballast Classification and Preprocessing

The initial images captured were 84 separate cross-sectional cropped im-

ages of ballast tube samples cut in half. Those images were further subdi-

vided into 18 individual sections each, for a total of 3024 images. The choice

of subdivisions was based on the quantification of class boundaries in the

training data set since each image had 18 separate sections that were each

classified.

These small segment images were used as the training data for the various

methods used in this study and the labels were a number 1-5 corresponding

with the segment class. The various methods proposed attempt to minimize

the difference between the predicted label and the actual label across all the

samples in the training set.

It should be noted that there were some issues with unequal numbers of

training samples in the different classes in the tube ballast data set. This can

become a problem when there are many more representatives of a certain class

than there are of others. The network can easily get trapped in a local error

minimum where the best policy is simply to label almost all input images

as being of a certain class. If this occurs, the network may not learn any

representation of the classes with a lower number of samples. Considering

severe cases of ballast degradation are outliers (most ballast does not need

replaced), this can be an issue.

9



A few different approaches were taken to deal with this issue when creating

the training data:

• Upsampling - Images from the training set were taken and used to

generate features. Once these features had been generated, a Gaus-

sian distribution was fitted to the features of each label. New samples

were generated by sampling at random from the Gaussian distribution

using the theorem of inverse transformation [6]. This approach has is-

sues when a Gaussian distribution does not accurately characterize the

training data.

• Downsampling - A random subset of training images equal to the num-

ber of training images in the smallest class is selected from each class.

Only these images are used to train the classifier. This is the easiest

way of normalizing the size of the training classes, but can result in a

very limited training set.

• Resampling - In this approach, features were randomly selected from

smaller training classes to be included in the training set multiple times.

This was done until the size of each class was equal to the size of the

largest class. This avoids the problem of artificial sample generation

and small training sets, but can introduce overfitting to specific samples

within some of the smaller classes.

Note that these names should not be confused with the classic signal pro-

cessing terms, but were instead techniques used to develop new features for

use in training the network and hopefully eliminating the class skew. Table

2.1 gives more specifics about the distribution of class labels across all the

images and what the assigned colors in some of the images refer to.
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Table 2.1: Guideline for Manual-Visual Ballast Classification

Ballast Condition

Clean Slightly

Dirty

Dirty Very Dirty

(Non-

Cohesive)

Very Dirty

(Slurried)

Assigned Color

Magenta Dark Blue Medium

Light

Light Blue Dark Green

Assigned Number

1 2 3 4 5

Number of Labels

624 486 1210 574 80

2.3 Ballast Cross Section Imaging

Due to issues with the artificiality of the lab samples used in previous sec-

tions, it seemed prudent to try and apply similar machine learning techniques

to images that more closely resemble those found in the field. In addition,

it was necessary to acquire ground truth data for use in the classification

of these images. The ground truth data in this case is a particle size dis-

tribution of the ballast samples, in which measurements are taken using 14

different sieves and the percentage of the sample (by weight) passing through

each sieve is measured. From this data, the typical metrics used to measure

degradation, Selig Fouling Index and Percentage Fouling, can be calculated.

As a reminder, fouling index is the sum of the percentage by weight of ballast

passing the 4.75mm sieve and the 0.075mm sieve. Percentage fouling is the

ratio of the dry weight of material passing the 9.5mm sieve to the dry weight

of the total sample. Because each of these metrics can be directly calculated

from the more comprehensive particle size distribution, it was unnecessary to

try and learn them directly, and instead the overall distribution was targeted

for prediction.

The initial data was acquired in section 3 of the High Tonnage Loop at the

Transportation Technology Center in Pueblo, Colorado. Photos were taken

in trenches perpendicular to and underneath the rails at that location. These
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trenches were created by removing the railroad ties, and digging the trench

out with a front-end loader. The images themselves were acquired by lowering

a 15.1 megapixel DLSR camera, using a positioning system supported by

rails, into the trenches and marking out 24” by 16” sections of ballast with

chalk lines and imaging them. The ballast in this marked section was then

scraped into a 5 gallon bucket and collected for later lab analysis of the

particle size distribution. The particular camera used for this work was a

EOS Rebel T1i (500D) with CMOS sensors.

There were a few difficulties present in the collection of this data. Getting

proper exposure on the photographs was a challenge given that sunlight was

not necessarily evenly distributed on the trench wall. To this end, a tarp

was used to eliminate some of the sharper shadow edge lines on the marked

areas. Additionally, photos were taken at three different levels of exposure:

one auto-calibrated by the camera, one using a longer exposure, and one

using a shorter exposure. These precautions were taken because the areas

could not be re-imaged after the trenches were again filled with ballast. It

was also desired that the images have the same spatial resolution. In addition

to the chalk size markings mentioned earlier, a white calibration ball 1” in

diameter was used to verify that the images had a rough resolution of 80

pixels/cm.

The full collection process including sample images of a trench is detailed in

figure 2.5. It should be noted that there were five of these trenches analyzed

and in all fourteen 24” by 16” images were collected.

The exact sieving process was performed according to the ASTM C136

sieve analysis protocol [7]. The various distribution curves are presented

in figure 2.6. The basic procedure behind this sieve analysis occurs in two

stages. First, coarse fractions of the sample (coarse meaning particles with

sizes above 12.7mm) are sieved using a sieve shaker. Then, the finer particles

are sieved to determine the full distribution curve.
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Figure 2.5: Full Collection Procedure

Figure 2.6: Ballast Tie Particle Distribution Size Curve
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Images of the 14 trench image samples at the longest exposure level can

be seen in figure 2.7. The associated Selig Fouling Index is also shown for

each image and they are presented in order of increasing degradation level.

Figure 2.7: Trench Images
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Preprocessing of this dataset primarily consisted of figuring out how to

generate a large number of data samples from the relatively small set of

initial images. Because the degradation information can primarily be seen

in a vertical ballast orientation (the ballast is typically more broken as the

depth increases), image strips from each sample were taken and associated

with the measured particle size distribution curves. The strip widths were

determined by the expected input sizes of the convolutional neural networks

used to classify the distribution (the architectures could have been changed

to accommodate the new strip sizes, but it would have required retraining

the networks to this new dataset and was not seen as necessary for the initial

testing). These expected sizes were typically 240x240x3, so each vertical strip

across the higher resolution image was cut with horizontal lines every 240

pixels and these chunks were placed next to one another side by side. Figure

2.8 should clarify this entire process. Each initial image resulted in roughly

300 modified strip images (exact figures vary due to slightly different input

sizes for some of the neural networks used). These modified strip images

were directly used as the training and testing data for each neural network.

Given that the vertical dimension of the target images for input to the

neural network were 240 pixels high, it was known that at least 14 strips

were needed to capture the full 3178 pixel height of a single strip from the

large image. Knowing this allowed the width of a single vertical strip to be

calculated simply by finding the largest multiple of 14 that was less than 240

(the width of the target image). In most cases, that meant each vertical strip

was 17 pixels wide. Once all 14 strips had been placed in the target image

(filling 238 of the 240 available columns in the image), the remaining 240x2

area was filled with black pixels.
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CHAPTER 3

MACHINE LEARNING FOR BALLAST
CLASSIFICATION

Like Chapter 2, this chapter is broken down into three main sections dealing

with each of the separate datasets explored in this research. The approaches

to each dataset were markedly different due to their unique labeling and

constraints. It should be noted that large portions of the section on Tube

Ballast Image classification have been submitted to and will be presented at

the 2017 ASCE Geotechnical Frontiers conference along with a paper (see

[8]). That content has been expanded upon here.

3.1 Ballast Laser Surface Profiling Machine Learning

The initial machine learning work for the classification of laser imagery was

quite basic. The focus of the pattern recognition final project was more

algorithm-oriented than result-oriented in that it focused on implementation

and understanding more than success at the chosen task. As such, a basic

artificial neural network was used (see figure 3.1).

Figure 3.1: Laser Classification ANN

The 1080 represents the dimension of the input feature vectors being used

(in this case each dimension was the maximum x position of the laser line

at each y location in the image), the 100 represents the number of hidden
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nodes, and the 3 represents the number of output classes. The w and b labels

represent the weights and biases being trained in each node. The classifier

attempted to minimize cross entropy loss (as defined in [9]) of the form

C = − 1

n

∑
x

∑
j

[yjln(aj)] (3.1)

where n is the number of samples, x represents summation over each sam-

ple, j represents summation over each class (where classes are in a one-hot

representation [10], see figure 3.2), yj is 1 if the sample is the correct target

class, and a is the output of the neuron.

Figure 3.2: One Hot Encoding Example

The actual focus of the pattern recognition paper, an analysis of stochastic

gradient descent, is not particularly relevant to this thesis beyond being the

method of gradient descent used by the back-propagation algorithm that

minimizes the cross entropy loss across epochs. Back-propagation is how the

network is actually trained and can be thought of as repeated application

of the chain rule and gradient descent to update weights in the network to

minimize the output error.

It should be noted that a Gaussian mixture model (GMM) Classifier was

used to validate the performance of the neural network. Gaussian mix-

ture models are “a parametric probability density function represented as

a weighted sum of Gaussian component densities” [11]. This classifier was

chosen because the coursework had used it previously and because it could

provide a baseline for the artificial neural network performance. A compari-

son of the results of the GMM and ANN will be presented in a later chapter.
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3.2 Tube Ballast Image Classification

The approaches taken to classifying the individual examples of tube ballast

follow a fairly natural exploratory progression. Initially, it was thought that

using some rather well known computer vision algorithms, it was ideal to

manually generate features representative of the various classes of our data

set (this is the method referred to below as Method 1). Once generated,

these features were classified using an artificial neural network (ANN) con-

figuration. Error for this classification (and in later methods) was defined

as the percentage of samples labeled differently than the supervised label.

Each classifier attempted to minimize this error. This method requires prior

knowledge about what kind of features are representative and it also typically

requires a large amount of parameter tweaking to generate the various feature

sets. Both of these issues can make this sort of classification problematic. Un-

fortunately, it also produced results that were not very accurate (40% correct

classification on average, with a few methods peaking around 45%), which

spurred the move to different approaches that instead used convolutional

neural networks (CNN). The ballast classification approaches using CNNs

can be broken down into two distinct categories. The first (later referred

to as Method 2) was to use CNNs pre-trained on the Imagenet dataset (a

dataset of 1.4 million images of 1000 different object classes commonly used

to test CNNs efficacy) to generate a probability distribution vector. This

probability distribution vector was then used as a feature input to ANNs

and support vector machines (the SVMs are there to serve as a means of

validating the ANN accuracy) in hopes that it would be more representative

of the images underlying class than the manually generated features. Ulti-

mately though, this approach was simply a quick test to assess the differences

between various CNN architectures and to give a baseline for the third ap-

proach, an approach also involving CNNs. The second CNN-based approach

to our ballast classification problem (Method 3) was to train two of the CNN

architectures mentioned previously on the raw images in our dataset. This

method is significantly more time-consuming than the previous approaches.

As such, only a couple of CNN architectures were chosen based on a com-

bination of their size and their performance in the previous approach. It

should be noted that this kind of training requires a lot of computing power,

typically in the form of multiple high-end GPUs.
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3.2.1 Method 1: Feature Generation and Classification

This first method involved generating features based on prior knowledge of

what sorts of visual markers could be used to classify the dataset. These

features were then fed into an artificial neural network classifying samples

into five distinct classes. ANNs consist of a large number of neurons con-

nected to one another, with each neuron having a set of associated weights

(each weight can be thought of as the strength of a connection between that

neuron and another neuron). These neurons are typically arranged in layers.

The first layer is used as the input (features) and the last layer provides the

output (or classification). Typically every neuron in a single layer is con-

nected to each neuron of the next layer. The final layer typically consists

of a number of neurons equal to the number of classes that need to be dis-

tinguished. A softmax function is generally applied to the final layer. This

softmax function attempts to force the output of all but one neuron to zero,

and one special neuron to 1. The node with a value of one is the predicted

class of the sample. Essentially, the softmax layer is trying to reproduce the

one-hot encodings used in defining the classes.

Once a network is set up it can be trained by deciding upon an appropriate

error function and using an operation known as back-propagation. The cross

entropy error criterion was utilized to improve performance during training

(see equation 3.1).

It is important for this method that the features generated be the same

size (in terms of dimensionality) across all the samples. Classification can

be performed without that requirement, but it typically necessitates using

some sort of dimensionality reduction technique on the dataset, which intro-

duces additional possibilities for error. Therefore, the following features were

chosen as good test features:

• Grayscale Histogram: This is simply a histogram of intensities in a

grayscale image. The standard OpenCV grayscale conversion formula

was used (Y = 0.299R + 0.587G + 0.114B where Y is the luminance,

and R,G, and B are the pixel intensities from 0-255 of each color chan-

nel).

• Color Histogram: This is a histogram of intensities in a color image,

and consists of individual histograms in each of the three color channels.
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• Fourier Spectrum Data: First a 2D Fourier transform is applied to an

image, and then the image is downsampled and unrolled (converted

from a matrix to a vector by taking each element of the matrix colum-

nwise) in order to reduce the dimensionality of the input feature.

• Canny Edge Density: A standard Canny edge detection formula is used

on a grayscale image, and then the result is non-maximally suppressed.

After that, a sum is taken of the number of pixels remaining along

each row of the image (so essentially each edge pixel along a row).

The summed value was then divided by the total number of pixels

in the row. This resulted in a vector of the size of the height of the

image, where each dimension of the vector was an edge density along

the corresponding row.

• Raw Grayscale Image: A grayscale image was downsampled, unrolled,

and then fed into the ANN as a feature.

The criteria for selecting the image features was primarily based on our

knowledge of the human decision processes involved in visual classification

of the ballast images. The features used by experts to generate the initial

training sets were reviewed and roughly corresponding MV features were

found.

A generic example of one of the features used that also illustrates the kind

of information that feature captures can be seen in figure 3.3. This feature,

much like the others, was chosen because of its intuitive visual qualities.

The top images in the figure are visual representations of rotated 2D si-

nusoidal functions (biased to be positive, as digital images have no negative

values). The bottom images are the corresponding Fourier transforms. The

dots represent the frequencies at which edges occur in various directions. In

more complicated images, the transform does not result in simple dots, but

a full black and white image where the pixel values represent the presence of

edge frequencies across a large number of directions.
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Figure 3.3: Example Fourier Transform Mappings

This image was not intended as a fully representative example of the image

features used in Method 1, but as an intuitive example of the logic behind

choosing features that map closely to visual phenomena. Most of the features

chosen capture that information, though they do not lend themselves to nice

visualization.

3.2.2 Method 2: Transfer Representation Learning

Method 2 was initially used as a quick method to test the viability of vari-

ous artificial neural network configurations. It relied on using convolutional

neural networks (CNNs) pre-trained on the ImageNet 2012 dataset [12] to

generate the probability distribution vectors associated with that task. These

probability vectors were 1000 dimensional vectors where each dimension rep-

resented the probability of the main subject of the image being of the class
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of object represented by that dimension. The 1000 classes contained objects

as disparate as dogs, trucks, velvet, and people. After being generated, these

vectors were then used as features to ANNs and SVMs and used to classify

the images into one of our five image classes [13]. The SVM classification

accuracies were arrived at using 10 fold cross validation, which is a technique

that splits datasets into training and validation sets 10 times and averages

the accuracies on the validation sets across all 10 trials. This method was

used in order to check the ANN performance, as it is more robust to easy

testing set outliers.

CNNs are a type of feed-forward neural network that focus on arranging

neurons so that they respond to overlapping regions of a signal in the same

way that a human visual cortex might. They are called convolutional neural

networks because the operation they perform is equivalent to the idea of

sliding a window across an image (the convolution operation) and using the

resulting tiled image as features to higher layers. This operation is able to

update based on the resulting classification error of the network in much the

same way that a more standard ANN updates. The motivations behind this

second method were threefold:

• It allows a quick assessment of the viability and speed of different neural

network configurations.

• The features generated in a CNN to distinguish between various image

classes should have at least some crossover between tasks (detectors

of low level features like corners, edges, squares, etc., are generically

useful in image recognition and not necessarily dataset specific), and

the final probability distribution vector might reflect the efficacy of

these features [14].

• This method is much quicker than training a full CNN, a task which

can take days on some of the deeper architectures, even with reasonably

high-end hardware.

The first of these motivations is rather straightforward. The overall ap-

proach that methods 2 and 3 taken together constitute is known as fine-

tuning. It typically involves taking a neural network that has been pre-

trained on a task similar to the one currently being performed and using

said networks weights and architecture to serve as a starting point for the
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new problem [14]. However, in order to fine-tune an initial starting network

has to be selected. Method 2 allows for quick assessment of these different

networks in hopes of narrowing down the possible options.

The second motivation is usually captured under the label transfer rep-

resentation learning [14]. It is the idea that similar features are useful for

distinguishing disparate categories of images. Therefore, information that is

used to classify large, but semantically unrelated datasets can also be use-

ful for other classification tasks. To some degree, this approach also helps

mitigate the size of our training set and the class size differences.

The third motivation is another practical one. This method can be per-

formed for a single architecture in under a minute, while training a full CNN

can take many hours (or days for deeper networks). This allows for a quicker

turnaround time and allows for more architectures and approaches to be

tested.

3.2.3 Method 3: CNN Training and Classification

The third methodology applied to this ballast identification problem is that

of training a deep convolutional neural network to generate image features

useful for classification of ballast. This method is an extension of the second

method (the architectures used were chosen based on their performance under

the second methodology in the hope that it would translate to success in this

third method). However, now the network will be generating its own internal

features instead of using features that are useful to generic image recognition.

These internal features will be better suited to classifying the training set and

that success should (assuming a representative training set) translate over to

the test set. The training featured in this approach uses simple softmax

layer and back-propagation to minimize the number of mislabeled samples.

Back-propagation in a CNN is very similar in how it trains the network to

the ANN implementation in that it works primarily through the calculation

of error gradients for each node in the network and then updates to minimize

that error [15]. The initial weights are the same as those in the architecture

used in the second method.

The main motivation behind this approach to ballast identification is that

features no longer need to be chosen by a human user, but are instead gener-
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ated by the algorithm in question owing to their usefulness in identification.

This often results in distinguishing features that humans recognize (things

like a nose structure for face recognition), but often generates useful dis-

tinguishing features that a human may not have thought to replicate. The

other major benefit is that this approach is systematic and independent of

any preconceived bias on the part of the user. Once properly trained, the

system can output an independent evaluation of the ballast degradation that

is consistent and replicable.

The specific architecture chosen for this approach was Alexnet (see figure

3.4 for a visual representation of the Alexnet architecture and an example of

the kind of information each layer might learn while classifying a more typical

image) due to memory limitations with the GPU used for training the test

set. As Alexnet is a reasonably shallow network (8 layers), it can be stored

in a smaller amount of memory than the other networks and also trained

quite quickly. While Alexnet performed poorly in the ANN classification in

method 2, the hope was that this method would improve the results relative

to the other Alexnet results. This could then lend support to the idea of

training a deeper, more robust network.

Figure 3.4: AlexNet Architecture and Sample Filters [16]
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3.3 Cross Sectional Image Classification

The machine learning techniques applied to this new dataset closely resemble

those applied to the tube ballast image set in methods 2 and 3. The novelty

here is that this data set has actual ground truth data to target in the form

of a particle size distribution graph associated with each image. Because

the initial data consisted of only 14 different images, leave-one-out cross

validation (defined in [17]) was also used to verify the results of the particle

size distribution training without biasing the classifier.

Figure 3.5 shows an example of how leave-one-out cross validation works

on a dataset. In this case, the dataset left out for testing corresponds to one

image, while the datasets used are the other 13 images.

Figure 3.5: Example of Leave One Out Cross Validation

The method 2 equivalent for classifying the cross sectional images relied

on using a CNN to generate 1000 dimensional probability vectors for all of

the strip images relying on the justifications mentioned previously. Then,

all of the probability distribution vectors associated with 13 of the initial

images were used to train another classifier (in this case an artificial neural

network) to predict the associated particle size distributions. Testing was

then performed on the remaining set of probability distribution vectors asso-

ciated with the 14th image. This was repeated 14 times, leaving a different

image out of the training each time (so in total, there were 14 neural net-

works at the end). The training was performed with the goal of minimizing
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the mean squared error across all the dimensions of all the 14 dimensional

vectors being targeted. The test error was measured in a similar way, though

for visual purposes the results were usually presented as a box chart distri-

bution (to show where the mean guesses for given dimensions across all the

strip images associated with a single initial image were). Mean percentage

remaining guesses for each sieve size across all the strip images from each ini-

tial image were also used to display the results of the particle size distribution

prediction.
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CHAPTER 4

RESULTS AND DISCUSSION

As in the previous sections, the results and discussion section has been bro-

ken down and presented by covering each of the different data sources (and

machine learning methods) separately. Most of the result presentation cen-

ters around a discussion of how well the various methods and data achieved

their desired error metrics and classification results.

4.1 Ballast Laser Surface Profiling Results

The results for this data source and method of classification are rather sim-

plistic and do not involve any targeted error metrics outside correct clas-

sification. Because the machine learning algorithm was simply seeking to

separate the laser line in each image frame into one of three different size

groups, the results are a 3x3 confusion matrix identifying how many and

what misclassifications and correct classifications occurred.

The classes in the resulting confusion matrices use these class labels:

• Class 1 - Ballast passing through a 1.50 inch sieve, but not through a

1.00 inch sieve

• Class 2 - Ballast passing through a 1.00 inch sieve, but not through a

0.75 inch sieve

• Class 3 - Ballast passing through a 0.75 inch sieve, but not through a

0.50 inch sieve

The class labels in the first row represent the predicted classes while the

class labels in the first column represent the actual class labels. A perfect

confusion matrix would have every number inside along a diagonal in the

correct location (indicating the predicted class was always matched with the
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actual class). The rate of correct guesses is defined as the number of labels

in the correct diagonal divided by the sum of labels in the row. The percent

of false positives for a class is defined as the number of labels in the correct

diagonal divided by the sum of the labels in the column.

Two confusion matrices are presented, one from a neural network and one

from a Gaussian mixture model that serves as a point of comparison.

The confusion matrix for the laser classification can be seen in table 4.1,

while the confusion matrix for the Gaussian mixture model can be seen in

table 4.2.

Table 4.1: Neural Network Confusion Matrix

Classes 1 2 3
Percent

Correct

1 43 1 5 87.8%

2 20 67 31 58.6%

3 3 0 61 95.3%

Percent

False

Positives

34.8% 1.5% 37.1 %
74% right

26% wrong

Table 4.2: Gaussian Mixture Model Confusion Matrix

Classes 1 2 3
Percent

Correct

1 66 0 0 100%

2 10 58 0 85.3%

3 78 19 0 0.0%

Percent

False

Positives

57.1% 24.6% 0.0 %
53.7% right

46.3% wrong

The other criterion to consider for each of these confusion matrices is

whether or not the consensus size pick in each video is correct. Fortunately,

the neural network outputs the correct response in all three cases. On the
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other hand, the GMM failed to accurately classify any of the videos into the

third category. This is likely due to a large artifact caused by the initial

positioning of the trolley. As the other video did not contain this artifact, it

seems the GMM was not able to accurately train on either individual video.

The neural network was able to overcome this bias, but the issue itself stems

from a lack of training data. Inspection of the covariance matrix of the lines

in each video seemed to confirm the artifact as the issue. The small video

with the artifact had low variance in the higher dimensions of the covariance

matrix (indicating little change in the position of the laser line) while the

corresponding variance in those same dimensions across all five other videos

was higher. By the time this issue was discovered it was too late to easily

acquire more video data, so an attempt was made to mix frames from the

two small rock videos to create the training and test sets.

The attempt at mixing the frames from the two smaller videos improved

the situation, but hurt classification accuracy on the class 2 samples (see

table 4.3).

Table 4.3: Mixed Small Video Frame GMM Confusion Matrix

Classes 1 2 3
Percent

Correct

1 66 0 0 100%

2 9 7 52 10.3%

3 33 0 64 66.0%

Percent

False

Positives

38.9% 0.0% 44.8 %
59.3% right

40.7% wrong

In general, while these results were not a direct indicator that levels of

ballast degradation could be accurately assessed by machine learning algo-

rithms, they did provide justification for later analysis. The classifiers seemed

clearly capable of at least distinguishing ballast size, which correlates quite

strongly with degradation levels. Therefore, it was decided that more and

better training data with actual ground truth degradation information was

needed.
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4.2 Tube Ballast Image Results

The results in this section are broken down by the method used to classify

this source of data. There are three such methods: Feature Generation and

Classification, Transfer Learning, and CNN Training and Testing.

4.2.1 Feature Generation and Classification Results

The results for method 1 are summarized in Table 4.4. The results from

method 1 were not particularly great, which is what spurred the moves to

later methods. None of the methods of generating synthetic data or balancing

the size of the classes seemed to improve the overall classification accuracy,

though the up-sampling method was promising for a few of the features.

Overall, the color histogram and Fourier spectrum features seemed to perform

better than other features.

This makes some intuitive sense, as color communicates a large amount of

information and may vary quite strongly across classes. As far as the Fourier

spectrum features go, the horizontal and vertical frequencies in the image

most likely reflect the prevalence of edges and large or small objects in the

image. It also makes some intuitive sense that these would allow for more

accurate classification.

Unfortunately, the overall results from this classification do not initially

seem particularly promising, as the accuracy of distinguishing between the

various ballast degradation classes is quite low. One confounding factor in

this analysis is that the targets for this classification are not objective ground

truth targets (they are instead subjective human evaluations of fouling in a

given area). Given that the lines between the different fouling classes are

somewhat nebulous, near misclassifications are likely, and the human graders

(whose evaluations were used for the initial training data) may experience

some inconsistency in their classification. Additionally, while the classifier

looks at each individual image section without additional relative depth con-

text, the human graders had access to that information, which may have

altered their guesses.
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Table 4.4: Accuracy of ABS Ballast Tube Sample Evaluation Within Test
Dataset Using Feature Generation and Classification

Image

Feature

Used

Unmodified

Accu-

racy(%)

Up-

sampled

Accu-

racy

(%)

Down-

sampled

Accu-

racy

(%)

Re-

sampled

Accu-

racy

(%)

Average

(%)

Canny

Edge

Density

39.23 36.74 23.56 38.38 34.48

Gray His-

togram

35.86 40.70 28.28 33.22 34.52

Color

His-

togram

44.44 40.44 37.78 35.57 39.56

Fourier

Spectrum

45.29 37.25 38.11 34.59 38.81

Raw

Grayscale

Image

37.37 44.13 35.08 32.89 37.37

Average

(%)

40.44 39.85 32.56 34.93

In order to test this, the same grader who initially classified these degra-

dation levels was asked to reevaluate and classify fifty of the tube ballast

image sections (chosen randomly) a few months after the initial classifica-

tion. This grader was only able to achieve an exact reclassification accuracy

of 36%, though their average class error (defined as the distance between the

predicted class and the actual class across all the samples, i.e. a prediction of

class 1 when the actual class was class 5 would be an error of 4) was quite low

(only .70, where completely random classification would result in an average

error of 1.44). The classifier compares quite favorably to this result and this

result seemingly demonstrates at least some aspects of ballast fouling can be

seen.

However, these results also demonstrate that a better source of data with
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objective ground truth results is necessary to accurately train a classifier,

particularly when extraneous information about the ballast (depth, location,

etc.) is not directly known. These results and this need are what spurred

the acquisition of the cross-sectional ballast image dataset.

4.2.2 Transfer Learning Results

The results for method 2 are summarized in Table 4.5. This method yielded

quite an improvement over the first method in terms of overall classification

accuracy. It also gives some idea of which networks would have the best

overall performance if fully trained on the tube ballast dataset. There are

some strange caveats to note about these results, such as the SVM classifica-

tion accuracy being on average higher than the ANN accuracy, but this may

simply be a result of poor training trials for the ANNs since the network size

as well as topology could be further optimized using trial and error method.

It could also simply be that the test set chosen for the networks which was

kept consistent across all networks was difficult to classify.

Table 4.5: Accuracy of ABS Ballast Tube Samples Within Test Dataset
Using Transfer Learning

Network SVM Cross

Validated

Accuracy(%)

ANN Test

Accuracy (%)

Average

Network

Accuracy (%)

AlexNet 49.2 43.7 46.5

GoogleNet 48.7 46.9 47.8

Vgg16 51.0 48.9 50.0

Vgg19 51.5 51.3 51.4

VggF 50.9 49.6 50.3

VggM2048 50.1 51.6 50.9

VggM 51.5 49.6 50.6

VggS 51.0 48.0 49.5

Average

Classifier

Accuracy (%)

50.5 48.7
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4.2.3 CNN Training and Testing Results

The results for method 3 are summarized in Table 4.6. The CNN training

and testing method can also be thought of as an overall improvement, though

it could be far extended past what is presented in this thesis.

The CNN training and testing method can also be thought of as an overall

success, though it could be far extended past what has been done here.

The network that was trained, Alexnet, showed a relative improvement of

nearly 10% over its performance in the transfer learning stage (the validation

error here can be thought of as the test error in the transfer learning stage).

The training of this network only took roughly 20 minutes for 40 epochs,

and the number of epochs could easily be extended. Figure 4.1 shows the

minimization of the objective function on both the training and validation

sets over the epochs.

Table 4.6: Accuracy of ABS Ballast Tube Samples Within Test Dataset
Using CNN Training and Testing

Network End Training

Accuracy(%)

End Validation

Accuracy (%)

AlexNet 55.1 51.0

4.3 Cross Sectional Image Results

The results on the cross sectional image strips are a bit difficult to present in

an intuitive manner. Every strip associated with a given image is targeting

the same 14-dimensional particle size distribution vector (each dimension is a

percentage of ballast remaining at a given sieve size). Due to this, it seemed

best to present 14 box plots showing the distribution of guesses across all

strips compared to each true value as one of the graphs. The labels on the

x axis of the top graph are the true value being guessed (the box plots are

also plotted against this value on the y axis). The maximum and minimum

guessed percentages are labeled with a dot for each dimension. The bars

represent the range of 95% of the distribution while the blue box represents

75% of the distribution. The bottom graph on each figure is a plot of the

mean guessed percentage remaining in each dimension vs. the true measured

value for a given image.
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Figure 4.1: Minimization of Objective Function

Figure 4.2 is an example of the results gleaned from training a network

on the features from the other 13 images to predict a percentage remaining

distribution curve. The results for the rest of the 14 images can be found in

the appendix.

The plots serve as a visual means of inspecting whether or not the predicted

distribution curves match up to the actual distribution curves and highlight

the variance of the predicted values in each dimension.
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In addition, the root mean squared error and normalized root mean squared

error for all dimensions in the images have been plotted (see an example in

figure 4.3). Currently, these charts serve as a means of distinguishing between

the results on various images.

Mean squared error in these images is defined as:

MSE =
∑
x

[(~ypredicted − ~yactual)
2] (4.1)

where x represents iteration across all the samples and the y vectors represent

the actual and predicted particle size distribution values.

The normalized root mean squared error is defined in equation 4.2:

NRMSE =

√
(MSE)

~ymax − ~ymin

(4.2)

It exists to serve as a basis of comparison between the error dimensions,

which have significantly different absolute value ranges.

Figure 4.2: Example Cross Sectional Result
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Figure 4.3: Example Error Graphs

The data shown by these bar charts capture the metrics that would be used

to compare the prediction results here to the prediction results from other

techniques and can be used as an objective metric for prediction accuracy

(particularly the MSE; the NRMSE is more useful for seeing what parts of

the particle size distribution curve individual classifiers are failing to distin-

guish). Future attempts at ballast fouling prediction should most likely seek

to minimize these metrics in place of the more typical Selig Fouling Index or

Percentage Fouling (as these predictions are more general).

It should be noted that there are some issues mapping between these er-

ror results and the decision on whether or not to replace the corresponding

ballast. There is currently no hard and fast rule for when ballast needs to be

replaced. Some literature suggests that it occur when the ballast no longer

has a certain permeability to water [18], while some simply use the Selig def-

inition of fouled ballast (an index of 40+). An investigation of the degree of

resolution needed when mapping from these results to the eventual decision

criterion would be needed for use of this data in the field.

In general, the results of this classification seem to closely match the ex-

pected particle size distribution curves. However, as the particle size distri-
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bution curves tend to resemble one another, more heavily and lightly fouled

samples need to be acquired. If the classifier is equally capable of distinguish-

ing between those samples and maintains a high accuracy in distinguishing

between more similar samples, then this approach is well suited to the task

of distinguishing levels of ballast degradation.
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CHAPTER 5

CONCLUSION

A structured, consistent, repeatable method for the prediction of railway

ballast fouling is of massive value to the railroad industry. Accurate fouling

analysis can inform decisions that directly impact the safety of rail passengers

and the reliability of rail transportation. This research has walked through

a variety of datasets and machine learning methodologies that try to accom-

plish that task.

The various datasets and machine learning methods covered highlight the

way in which the scope of machine learning problems can change over time.

The acquisition of truly representative data is one of the largest barriers to

building an accurate machine learning system and this research made signifi-

cant strides towards figuring out exactly what data was needed to accurately

predict ballast degradation. It also showed that the classifiers used to quan-

tify and label ballast fouling are important to the overall accuracy of the

system. Image recognition in general is a difficult issue for machine learn-

ing algorithms, one that only recently has started to become tractable, and

ballast fouling recognition is not significantly different. As in other fields, it

appears as though deep learning networks are particularly well-suited to this

task.

The initial attempts at tackling this problem suffered from a wide variety

of issues including, but not limited to: datasets with no real ground truth

labels, classifiers unable to distinguish between various degradation classes,

and a lack of training data at certain degradation levels. However, the even-

tual method settled upon by this research, that of using a CNN to predict

a ballast fouling particle size distribution curve, shows significant promise.

In particular, the results from that methodology show a close mapping be-

tween objective reality and the predictions of the various machine learning

algorithms.

However, important caveats remain to be addressed. The cross-sectional
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image dataset is a vast improvement over previous datasets, as results on it

can be verified, but it still does not contain a representative set of images.

A wider variety of images of different fouling indices needs to be acquired.

Images of very heavily fouled sections of track that are due to be replaced

need to be used for training alongside brand new sections of ballast. Unfortu-

nately, the training set is dominated by relatively clean ballast cross-sections,

and no heavily fouled (40+ Selig Fouling Index) examples exist.

Other concerns include the eventual use of this information to make de-

cisions. The availability of ballast fouling prediction algorithms makes little

difference if there is no formal way to take those results and make decisions

based upon them. This is an issue that would require input from railway

operators themselves.

Additionally, there is still room for improvements to the process of particle

size distribution prediction. Limitations in hardware resulted in the choice of

a fairly simple CNN architecture, but more complex ones would likely result

in improvements. Custom architectures based on the eventual input data

used by the various railways could yield even more improvements, though

CNN architecture design still suffers from a lack of mathematical grounding.

What these problems boil down to at their core are some of the clas-

sic difficulties of any machine learning task: the need for huge amounts of

representative training data, and the need to properly train an appropriate

classifier or predictor on the problem at hand. Once the task and the data

are well-defined, optimization should yield huge gains.

These issues present real difficulties and many opportunities for further

research, but there is still significant value in this work. It highlights the

somewhat exploratory progression of tackling a real-world machine learning

problem, and does so in guided way. Building up from simple data, analyzing

the problems inherent in that data, and determining what is needed to sat-

isfactorily solve the stated problem (in this case, predicting railroad ballast

degradation from an image) are the principal challenges of machine learning

and automation in a nutshell.

The results in this thesis demonstrate that this task is possible, and can

hopefully offer some insight into how to construct automated ballast degra-

dation analysis tools. Specific applications of these techniques will require

trained networks and tuned datasets, but the general approach should remain

the same.
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APPENDIX A

CROSS SECTIONAL BALLAST IMAGE
RESULTS

Figure A.1: 1-1050-1 Particle Size Distribution Characteristics
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Figure A.2: 1-1050-1 Error Characteristics

Figure A.3: 1-1050-2 Particle Size Distribution Characteristics
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Figure A.4: 1-1050-2 Error Characteristics

Figure A.5: 2-1308-1 Particle Size Distribution Characteristics
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Figure A.6: 2-1308-1 Error Characteristics

Figure A.7: 2-1308-2 Particle Size Distribution Characteristics
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Figure A.8: 2-1308-2 Error Characteristics

Figure A.9: 3-1354-C1-noball Particle Size Distribution Characteristics
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Figure A.10: 3-1354-C1-noball Error Characteristics

Figure A.11: 3-1354-C1-Wall2-Panoramic Particle Size Distribution
Characteristics
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Figure A.12: 3-1354-C1-Wall2-Panoramic Error Characteristics

Figure A.13: 3-1354-C2-Wall2-Panoramic Particle Size Distribution
Characteristics
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Figure A.14: 3-1354-C2-Wall2-Panoramic Error Characteristics

Figure A.15: 3-1354-I1-noball Particle Size Distribution Characteristics
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Figure A.16: 3-1354-I1-noball Error Characteristics

Figure A.17: 3-1396-1 Particle Size Distribution Characteristics
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Figure A.18: 3-1396-1 Error Characteristics

Figure A.19: 3-1396-2 Particle Size Distribution Characteristics
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Figure A.20: 3-1396-2 Error Characteristics

Figure A.21: 4-1460-1 Particle Size Distribution Characteristics
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Figure A.22: 4-1460-1 Error Characteristics

Figure A.23: 4-1460-2 Particle Size Distribution Characteristics
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Figure A.24: 4-1460-2 Error Characteristics

Figure A.25: 5-1557-1 Particle Size Distribution Characteristics
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Figure A.26: 5-1557-1 Error Characteristics

Figure A.27: 5-1557-2 Particle Size Distribution Characteristics
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Figure A.28: 5-1557-2 Error Characteristics
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