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ABSTRACT

Residual stresses are present in the absence of external loads. All manufactured parts exhibit
some degree of residual stress, which can drastically impact fatigue life. The simulation of these
stresses has become exceedingly difficult as manufacturing processes have become more complex,
and especially important as the desire to reduce over-designing to save on material costs has grown.
As an alternative to computer simulations, a technique for measuring strains and then inferring an
optimal dislocation distribution to generate the residual stress state is presented here. A continuum
dislocation formulation is described in detail and optimization results are compared with a simpler
discrete dislocation formulation. The ability of the optimization problem to match the full strain
field is explored as regions of measurements and components of strain are withheld. The aim is
to develop a technique to reduce the number of residual strain measurements necessary to fully
characterize the residual stress in a manufactured part.
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CHAPTER 1: INTRODUCTION

1.1 Motivation

Stresses that remain in a body in the absence of applied loads are referred to as residual stresses.

Residual stresses are present in all real materials to some degree. Despite a long history of study,

residual stresses are still a challenging obstacle in manufacturing today. Any change to the temper-

ature or physical shape of a material has the ability to create residual stress [17]. Residual stresses

can have a significant impact on fatigue life, with compressive residual stresses typically increasing

fatigue life and tensile residual stresses typically reducing fatigue life [19, 21, 23]. In either case,

accurate knowledge of the residual stress state of a part is crucial when predicting its fatigue life.

Analytical solutions are known for residual stress fields in simple geometries with simple loading

conditions [16], but these solutions are limited for analyzing real engineering designs. Residual

stresses may be predicted using numerical models, such as the finite element method [12], but

numerical model accuracy becomes exceedingly unreliable for complex processing of engineering

materials. Often it is most reliable to measure residual stresses, especially if the processing history

of a part is unknown. There are both destructive, e.g. hole drilling, and non-destructive, e.g. x-ray

diffraction, techniques for measuring residual stress [25]. This work seeks to provide an extension

to non-destructive x-ray diffraction techniques. In short, a technique is presented to reduce the

number of necessary measurements to characterize the residual stress in a part. A synchrotron

x-ray source is used to measure in situ residual strains, which are then used in the inverse problem

of determining the underlying dislocation density distribution. The complete residual stress state

can then be calculated from the optimized dislocation distribution by solving two boundary value

problems.
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1.2 Residual Stress

A body that contains only residual stresses must still be in equilibrium. Thus, all residual stresses

must balance out such that the sum of forces at each point is zero, or as it is often stated, the

divergence of stress is zero at every point. Further, the residual stresses are caused by internal

crystalline defects known as dislocations [17]. Plasticity and residual stresses are inherently linked

by dislocations. Plastic flow occurs when a sufficient stress is applied to move dislocations through

a body. Movement of these dislocations creates regions of internal tension and compression that

remain even in the absence of external loads. Dislocations have an associated elastic stress field,

which can be expressed in a closed-form expression for a single dislocation in an infinite plane

in the plane strain condition [24]. The stress field from a single dislocation would be negligible

on its own, but dislocation densities can be as high as 109-1010 mm of dislocation per cubic mm

of material [7, 11], which can result in significant macro-scale stresses. The stress field resulting

from an arrangement of many dislocations in an infinite plate can be determined by superposing

the stress fields from each individual dislocation, since the stress fields are linearly elastic.

It would be impossible to take every dislocation into account when modeling a distribution

of dislocations. It is much more feasible to consider the dislocation density throughout a body.

Treating the dislocation distribution as a continuum rather than a set of discrete dislocations is

justified by the large number of dislocations present in real crystalline materials [2, 11, 13, 14].

The theory of a dislocation continuum is presented in Chapter 4 and used to solve the inverse

problem of inferring the dislocation density distribution throughout a body from residual strain

measurements. Once the dislocation density distribution is known, the elastic strain and resulting

stress can be calculated. The aim of this work is to develop a method to attain dislocation density

information with a minimal number of strain measurements. The calculated residual stresses can

then be used to better understand the expected material behavior, such as fatigue life.
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1.3 Four-Point Bending

Four-point bending is an excellent experimental representation for the development of residual

stress. A beam sufficiently loaded in four-point bending will simultaneously exhibit elastic and

plastic deformation, and will render a predictable residual stress distribution upon unloading. A

body that undergoes purely elastic deformation will return exactly to its initial configuration upon

removal of the loads that drove the deformation. After plastic deformation, the body will not re-

turn to its initial configuration after removing the loads, and thus a permanent deformation has

occurred. The deformation becomes permanent once dislocations begin to glide through a crys-

tal structure, consequently changing the local micro-structure of the material, creating residual

stresses. Drawing interpretation from Volterra dislocations, the material movement can be viewed

as a redistribution of material through a process that involves cutting out material, moving it, and

then welding it into place in a new location [11]. Some regions gain material leading to compres-

sive residual stresses, while some regions lose material leading to tensile residual stresses. The

combined effect of many dislocations moving in the same direction due to an externally applied

load can cause parts to remain visibly warped after unloading due to the internal material move-

ment. For example, if a coat hanger is bent slightly it will return to its original shape, however,

after a certain level of deformation the bending becomes noticeably permanent.

An ideal beam loaded in four-point bending from applied forces F separated by a distance a,

as pictured in Figure 1.1, has a region of uniform applied moment M = Fa which behaves as pure

bending. The normal stress distribution resulting from pure bending σb is portrayed schematically

in Figure 1.2a and given by

σb(y) =
My
I

(1.1)

where M is the applied moment, y is the distance from the neutral axis, and I is the area moment of

inertia of the cross-section [16]. This relation will not hold, however, if a large enough moment is

applied such that the maximum predicted stress exceeds the yield stress of the material. The applied

moment My that will cause yielding to first occur at the edges of the sample can be calculated by
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rearranging Equation (1.1) to

My =
σyI
ymax

(1.2)

where σy is the tensile yield strength of the material and ymax is the distance from the neutral

axis to the edge of the sample. As the applied moment increases beyond this minimum value,

the yield surface moves closer to the neutral axis as exemplified in Figure 1.2, which assumes a

perfectly plastic material. Once plastic deformation has occurred, residual stresses will remain in

the sample after the external loads are removed. The stress in the loaded state σb must be balanced

by an external moment Mext to enforce equilibrium. The magnitude of this external moment is

calculated according to

Mext = t
∫

σb(y) y dy (1.3)

where t is the sample thickness. There is an associated elastic stress distribution σext(y), which can

be calculated from Equation (1.1) using M = Mext. Removal of the applied loads will result in

elastic unloading equal to the removal of σext(y), thus the analytical solution to the residual stress

σr is attained by subtracting σext(y) from σb(y) [16], as portrayed in Figure 1.3.

1.4 Materials

Two materials were selected for this research due to their prevalence in the aerospace industry. Alu-

minum alloy 7075, which will be referred to as AA7075, was introduced by ALCOA in 1943 [5].

It has become very common in the aerospace industry due to its high strength to weight ratio and

fatigue crack resistance [5]. Its approximate composition is given in Table 1.1 [5]. AA7075 is a

desirable material choice for this study due to its relatively low Young’s modulus (71.7 GPa) and

high tensile yield strength (503 MPa) [3] compared to other structural materials. This combina-

tion of properties results in a high elastic strain at yield. Larger elastic strains can be measured

using XRD with more relative accuracy than smaller strains by virtue of increasing the signal to

noise ratio. A 9.525 mm thick plate of AA7075-T651 was purchased from McMaster Carr and

used to make bending samples for the experiments discussed in Chapters 2-3. A Young’s modulus
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of 71.7 GPa and a Poisson’s ratio of 0.33 were taken as the elastic properties of AA7075 for all

calculations in this work [3].

Titanium-6Al-4V, which will be referred to as Ti-64, is the most commonly used titanium

alloy [15]. Many aircraft engines utilize Ti-64 in the low pressure early stages. The name stems

from the alloy’s composition which features 90% titanium, 6% aluminum and 4% vanadium. Ti-

64 is a two-phase alloy consisting of an α-phase and a β-phase. The α-phase has a hexagonal

close-packed (HCP) crystal structure, while the β phase has a body-centered cubic (BCC) crystal

structure [15]. The complexity resulting from the interaction of the two phases makes Ti-64 an

interesting material to study, and causes residual stress predictions to be especially difficult. A

phase transition occurs at 882 ◦C in pure titanium, below which α-phase is present and above which

β-phase is present [15]. At room temperature the β-phase may only exist in unison with α-phase.

The properties of the α-phase are inherently anisotropic due to its HCP structure [15], however,

an isotropic assumption may be used if a sufficient amount of grains are considered. A Young’s

modulus of 113.8 GPa and a Poisson’s ratio of 0.342 are used for all α-phase stress calculations in

this work [4]. The β-phase elastic properties cannot be directly measured at room temperature due

its instability below 882 ◦C, thus only strains will be presented.

1.5 Preview

Chapter 2 outlines the experimental conditions as well as the theory and calculations used to deter-

mine residual strains. Chapter 3 discusses the experimental results and their validity. The inverse

problem of determining optimal dislocation density distributions from residual strain measure-

ments is discussed in detail in Chapter 4. The theory and formulations of the continuum disloca-

tion calculation are presented, along with the inverse problem formulation and results. Chapter 4

ends with a discussion comparing the discrete and continuum approaches to the optimization of

dislocation distributions.

5



1.6 Table

Element Weight %
Al 87.1-91.4
Si 0.40
Fe 0.50
Cu 1.2-2.0
Mn 0.30
Mg 2.1-2.9
Cr 0.18-0.28
Zn 5.1-6.1
Ti 0.20

Others 0.15

Table 1.1 AA7075 Chemical Composition

1.7 Figures

Figure 1.1 Four-Point Bending Schematic
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(a) Stress Distribution for Applied Moment M

(b) Stress Distribution for Applied Moment M2

(c) Stress Distribution for Applied Moment M3

Figure 1.2 Evolution of Yield Surface for M3 > M2 > M

Figure 1.3 Residual Stress From Bending Schematic
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CHAPTER 2: EXPERIMENTAL METHODS

2.1 X-Ray Diffraction

X-Ray diffraction (XRD) is a method used for measuring the lattice strains of a crystalline material.

There are two types of XRD experiments, namely reflection geometry experiments and transmis-

sion geometry experiments. Reflection geometry experiments provide for the measurement of

lattice strains of grains contained in a scattering volume very close to the surface of the sample.

Transmission geometry experiments are set up to detect diffraction from x-rays transmitted through

a sample, measuring lattice strains of grains throughout the body of the sample. Reflection geome-

try experiments have the benefit of requiring a much less powerful x-ray source than transmission

geometry experiments, but lack the capability of determining internal strains. As x-ray technol-

ogy has improved, transmission geometry experiments have gained the ability to non-destructively

measure internal strains throughout increasingly thick samples. All XRD experiments performed

in this work are transmission geometry experiments.

The basic principle used in XRD is Bragg’s law, which relates wavelength of a monochromatic

x-ray beam to scattering angles from a crystal lattice by

λ = 2d sin θ, (2.4)

where λ is the x-ray wavelength, d is the atomic lattice spacing, and θ is the scattering angle [10].

Elastic normal strains can be measured using Bragg’s law by measuring scattering angles before

and after deformation, as illustrated schematically in Figure 2.1 [10]. Bragg’s law for a strain-free

crystal is expressed as

λ = 2d0 sin θ0, (2.5)

where d0 is the strain free lattice spacing and θ0 is the strain free scattering angle. As a crystal
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undergoes an elastic strain the lattice spacing and scattering angle will both change. Assuming x-

rays with the same wavelength were used to measure scattering angles before and after the elastic

strain took place, Equations (2.4) and (2.5) can be combined such that

λ = 2d0 sin θ0 = 2d sin θ. (2.6)

It follows that
d
d0

=
sin θ0

sin θ
. (2.7)

Substituting Equation (2.7) into the definition of a true normal strain yields

εe
n = ln

d
d0

= ln
sin θ0

sin θ
. (2.8)

Shear strains cannot be measured directly, but may be calculated from various normal strain mea-

surements. All stresses attained from XRD experiments are calculated via Hooke’s law from the

measured elastic strains [10].

An area detector consists of a 2D grid of pixels that measure scattered x-ray intensity. A

diffraction image collected from an area detector consists of diffraction spots located around rings

of varying radius. These diffraction rings may be scattered enough that individual spots can be

distinguished, or filled in enough that the spots blend together to form full rings. Each grain in a

polycrystalline material has a specific orientation of atomic planes. X-rays transmitting through

the grain will refract off of many planes, resulting in distinct diffraction spots on the detector. The

radial position r of the diffraction spot corresponds to the spacing between planes of the same

family, and the azimuthal position of the diffraction spot γ corresponds to the orientation of the

crystallographic family relative to the detector. As the grain size shrinks relative to the x-ray beam

size, a larger number of grains are illuminated and thus a larger number of diffraction spots are

present. These spots begin to overlap and at some ratio of grain size to x-ray beam size the spots

overlap so much that they are indistinguishable, forming full diffraction rings. This result is often
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desirable if the macro-scale response of a material is preferred to the granular response.

The normal strain εe
n measured by a θ shift at a point on the diffraction ring is a function of four

orientation angles; γ, ω, ψ, and φ, which are pictured in Figure 2.2 [10]. Define a right-handed

coordinate system S1, S2, and S3 centered and aligned with a sample as in Figure 2.3. Let h be a

unit vector with its three components h1, h2, and h3 given by

h1 = sin θ (sin φ sinψ sinω + cos φ cosω) + cos θ cos γ sin φ sinψ

− cos θ sin γ (sin φ sinψ cosω − cos φ sinω)

h2 = − sin θ (cos φ sinψ sinω − sin φ cosω) − cos θ cos γ cos φ cosψ

+ cos θ sin γ (cos φ sinψ cosω + sin φ sinω)

h3 = sin θ cos φ sinω − cos θ sin γ cosψ cosω − cos θ cos γ sinψ.

(2.9)

where γ is the angular position of a point on a diffraction ring, ω is the angle between the incident

x-ray beam and the sample coordinate S1, ψ is the angle that the sample is rotated about its S 1

axis, and φ is the angle that the sample is rotated about its S3 axis [10]. Each experiment in this

work was designed such that ω, ψ, and φ are held constant at π/2, 0, and 0, respectively. The

components of h can consequently be reduced to

h1 = cos θ sin γ

h2 = − cos θ cos γ

h3 = sin θ.

(2.10)

The normal strain measured by a θ shift at a point on the diffraction ring can then be related to the

strain tensor components in indicial notation by [10]

εe
n = εe

i j hi h j, (2.11)
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which expands to [10]

εe
n = h2

1 ε
e
xx + 2h1h2 ε

e
xy + h2

2 ε
e
yy + 2h1h3 ε

e
xz + 2h2h3 ε

e
yz + h2

3 ε
e
zz. (2.12)

The final three terms in Equation (2.12) can be neglected resulting in

εe
n = h2

1 ε
e
xx + 2h1h2 ε

e
xy + h2

2 ε
e
yy. (2.13)

The justification for omitting the final three terms in Equation (2.12) is two-fold. The samples

measured in this work are thin in the z-direction (3 mm) relative to the x- (80 mm) and y- (≈9 mm)

directions. The main component of stress will be the bending component, orσxx. This combination

lends itself to the plane stress condition, which says εe
xz, ε

e
yz, and εe

zz are equal to 0. In addition, the

final three terms contain sin θ. The scattering angles for the experiments in this work were in the

range of 0.05 to 0.2 radians. The final three terms contain a small shear strain component as well

as the sine of a small angle, and consequently will be negligible in the calculation of εe
xx, ε

e
yy, and

εe
xy. Finally, substituting the expressions in Equation (2.10) into Equation (2.13) results in

εe
n = cos2 θ sin2 γ εe

xx − 2 cos2 θ sin γ cos γ εe
xy + cos2 θ cos2 γ εe

yy. (2.14)

2.2 Digital Image Correlation

Digital image correlation (DIC) is a technique for measuring surface displacements on a body

by comparing digital images of the body before and after deformation. A computer algorithm is

used to track locations on the body to sub-pixel accuracy by locating small regions, referred to as

subsets, and comparing their positions between images. The subsets can be tracked effectively if

a discernible pattern is present. Random gray intensity patterns, known as speckle patterns, are

often used although other options exist [18]. The ability of the method to capture a full displace-

ment field with just a series of digital images makes DIC ideal for use in conjunction with XRD

measurements. All DIC mentioned in this work refers to 2D DIC performed with a single camera.
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The three main steps of the process include specimen preparation, image collection, and image

analysis [18].

Specimen preparation is crucial for obtaining accurate displacement results. It is important that

subsets of the speckle pattern are all somewhat different. If the subsets cannot be distinguished it

is impossible for the computer to locate and compare the position of each subset between images,

leading to reduced accuracy. A rough surface may be illuminated with white light to produce a

speckle pattern, however, this does not always work well [18]. Black and white spray paint is

a simple, yet effective method for producing the desired randomness of the pattern. A uniform

pattern can cause issues with correlation as two subsets may look extremely similar. The size of

the speckles, or regions of uniform gray intensity within the pattern, must correspond with the

subset size. Speckles that are larger than the subset size will result in many identical subsets that

are not easily tracked by the algorithm.

A reference image must be captured before any loading takes place. All subsequent images are

compared with this image to determine the displacement of each subset. It is critical in 2D DIC

that the optical axis of the camera is normal to the measurement surface [18]. To achieve accurate

results the surface of the specimen must be flat and remain in the same plane throughout loading.

Out-of-plane displacements lead to changes in magnification and consequently cause inaccuracies

in the measurement [18]. Although it is not possible to remove completely, moving the camera

far enough away from the specimen such that out of plane motion becomes negligible helps to

improve accuracy. A combination of camera settings should be selected so that as much of the

measurement surface can be as clearly focused as possible throughout the deformation. Trade offs

between aperture size and focal length should be considered such that an appropriate “focused

imaging volume” is selected for the experiment at hand [22].

A region of interest (ROI) where displacements are measured is defined in the reference image.

The ROI is then then broken into many subsets that are tracked between images. A correlation

criterion is used to compare each subset in the reference image to subsets in the deformed images.

In this way the reference subsets are tracked between images to determine their displacements. The
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resulting displacement fields are then smoothed and differentiated to determine 2D strain fields.

Further details on DIC image analysis algorithms are left to the references [18][22].

2.3 Strain Calculation

A diffraction image from a 2D area detector consists of diffracted x-ray intensity values collected

on a grid of pixels. The experiment is designed such that the incident x-ray beam is normal to the

detector and centered both horizontally and vertically in the grid. In reality the beam alignment

will not be perfect, so diffraction images of cerium oxide powder suspended in vacuum grease were

collected prior to each experiment. A python package designed for x-ray diffraction data analysis,

HEXRD [6], was used to analyze these images to determine the sample-to-detector distance D as

well as the location of the incident x-ray beam relative to the detector. The relationship between

the diffraction ring radius r, the scattering angle θ, and the sample-to-detector distance D is given

by D = r
tan(2θ) and portrayed in Figure 2.4. Cerium oxide powder has known lattice spacings and

thus known scattering angles for a given beam energy. The powder cannot support a stress, so the

diffraction rings should be perfect circles. Measuring the radius of the rings allows the sample-to-

detector distance to be calculated, and locating the center of the rings provides the incident x-ray

beam location.

The particular detector used for this work was made of 2048 x 2048 pixels. A dark image

was taken with a beam stop in place to record the ambient pixel readings. The intensity values

recorded in the dark image were subtracted from each sample diffraction image to reduce the

ambient noise in the readings. Pixels that have been over saturated in the past may give a constant

reading regardless of the incoming x-ray intensity, but subtracting a dark image will remove these

detector flaws from the analysis. Each pixel is assigned an x-coordinate and a y-coordinate based

on a Cartesian coordinate system centered at the beam location. The Cartesian coordinates (x, y)

are used to calculate polar coordinates (r, γ) according to

r =
√

x2 + y2 (2.15)
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γ = arctan
(y

x

)
. (2.16)

An infinitesimal slice of an image corresponding to radial values along a single γ value is the result

of x-rays diffracting from atomic planes that are normal to that γ. For actual data analysis a larger

slice must be taken as an infinitesimal slice will not contain any pixels. In this work a slice consists

of all points with a γ value within 0.1◦ of the desired γ value. A section of the slice between lower

and upper radial limits is selected such that only one peak is present. The diffraction ring radius

r is determined by taking the center of a two-sided Gaussian peak that is fit to this section of the

slice. The relative error in the peak fit is given by

Rrel =
|y − ŷ|2
|y|2

(2.17)

where y is the recorded intensity values and ŷ is the peak fit values. The scattering angle θ is then

computed by θ = 1
2 arctan r

D . Scattering angles for a particular diffraction ring were determined

at 360 γ values equally spaced around the diffraction ring. The elastic normal strain εe
γ can be

calculated according to Equation (2.8) provided an unstressed scattering angle θ0 is known.

An accurate values for θ0 can be difficult to find, however, equilibrium can be leveraged to

attain it. The internal stresses must be in equilibrium once the applied load is removed from the

sample, i.e., ∫ ymax

ymin

σxx(y) dy = 0 (2.18)

along any vertical cross-section of the sample. An inverse problem was set up to determine θ0 by

selecting the value that would minimize the left side of Equation (2.18).

An initial guess for θ0 is used to calculate normal strains εe
γ corresponding to each γ value. The

normal strain are related to the 2D Cartesian elastic strain components εe
xx, ε

e
yy, and εe

xy according

to Equation (2.14). The relative errors and amplitudes of the peak fits varied with γ due to the

spottiness of the rings, and thus maximum relative error and minimum amplitude thresholds were

set to determine which εe
γ values would be considered. Relating each of the qualifying εe

γ values
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to the Cartesian strain components results in a system of up to 360 equations for 3 unknowns.

Linear least squares was used to solve the resulting overdetermined systems for εe
xx, ε

e
yy, and εe

xy.

Finally, the stress components are calculated from the strain components using Hooke’s law for

plane stress, isotropic materials given by


σxx

σyy

σxy

 =
E

1 − ν2


1 ν 0

ν 1 0

0 0 1 − ν




εe

xx

εe
yy

εe
xy

 (2.19)

where E is the Young’s modulus and ν is the Poisson’s ratio of the material. The integral in

Equation 2.18 is then evaluated to determine if the choice of θ0 satisfies equilibrium. Several

iterations of this process are performed until a θ0 is determined that minimizes the stress integral.

The optimized θ0 is taken as the unstressed scattering angle and is used to calculate the elastic strain

components as described above. A sample of code that calculates the in-plane strain components

from a single diffraction image assuming θ0 is known is given in Appendix A.

The total strain in the sample was determined using DIC. Samples were first spray painted

white before applying a mist of black paint to produce a random gray intensity pattern. A digital

image was recorded before any loading, which serves as the reference image. Images taken at each

subsequent load step were compared with the reference image to obtain total displacement fields,

which were then differentiated to obtain total strain fields. A commercial 2D DIC code, Vic-2D

2009, was used to analyze the images for displacements and strains. At each spatial location where

a diffraction image was taken, the closest DIC data point is taken as the total strain. It should be

noted that there were some problems with calibrant smearing over the top part of the specimen

resulting in poor correlation during image analysis. To alleviate this issue, the DIC data from the

lower half of the sample was made negative and mirrored over the horizontal center line to create

the expected total strain fields for the top half of the sample. The plastic strain at each data point

was then calculated by subtracting the elastic strain from the total strain.
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2.4 Experiment Details

Four-point bending experiments were performed to create residual stress distributions in both

AA7075 and Ti-64 samples. Loads were applied such that the yield surface traveled a notice-

able distance into the sample. Strain measurements were performed at the Cornell High Energy

Synchrotron Source (CHESS) using x-ray diffraction techniques. Diffraction images were taken at

a series of increasing load steps and then after removing the applied loads. The resulting residual

strain measurements are used in Chapter 4 to solve the inverse problem of inferring dislocation

density distributions. Similar work has been performed using energy dispersive x-ray diffraction

to measure in situ bending strains before and after yielding in Titanium-6Al-4V samples [9].

2.4.1 Aluminum 7075 Experiment

A simple rectangular beam sample was cut from a plate of AA7075. The dimensions of the sample

were 80 mm × 9.525 mm × 3 mm. A screw load frame, which is pictured with the sample in place

in Figure 2.5, was used to load the sample in 4-point bending. Load steps were determined by

turning the actuation screw by a set amount. Diffraction images were collected at five load steps;

before loading, after 1 turn of the screw, after 2 total turns of the screw, after 3 total turns of the

screw, and after removing the applied load. At each load step a single diffraction image was taken

at 205 spatial locations, consisting of 5 locations in the x-direction with a spacing of 3 mm, and

41 locations in the y-direction with a spacing of 0.25 mm. The beam energy used for this sample

was 47 keV. The incident x-ray beam was 2 mm wide in the x-direction and 0.2 mm tall in the

y-direction. A summary of the experimental conditions is given in Table 2.1.

2.4.2 Titanium-6Al-4V Experiment

Samples of Ti-64 were machined out of a rolled plate. The base sample dimensions were 80 mm

× 7.44 mm × 3 mm. This sample was different from the AA7075 sample, however, in that it had

two semi-circle notches of radius 1.25 mm machined out of the top and bottom of the sample at

16



the horizontal midpoint. A different load frame was used for this sample, seen with the sample

in Figure 2.7, that was equipped with a torsion motor and a load cell. Diffraction images were

taken at 4 load steps; before loading, at 1000 N of applied force, at 2000 N of applied force, and

after removing the applied force. At each load step diffraction images were taken at 533 spatial

locations consisting of 13 locations in the x-direction with a spacing of 1 mm and 41 locations

in the y-direction with a spacing of 0.2 mm. The beam energy used for this sample was 42 keV.

The incident x-ray beam was 2 mm wide in the x-direction and 0.2 mm tall in the y-direction. A

summary of the experimental conditions is given in Table 2.1.

2.5 Summary

AA7075 and Ti-64 samples were loaded in four-point bending past the point of yield and then

relaxed. Residual strain measurements were performed at CHESS using a monochromatic beam

along with a 2D area detector. X-ray scattering angles were measured to determine in situ elastic

strains before and after plastic deformation took place. Diffraction images were taken at a series

of points to create a 2D map of the strain field at a series of load steps. HEXRD was used to

determine the beam position relative to the detector as well as the sample-to-detector distance.

Two-sided Gaussian peak fits were used determine diffraction ring radii r, from which scattering

angles θ were computed in conjunction with the sample to detector distance. Normal strains were

computed using the scattering angle of a diffraction ring along with a reference scattering angle

θ0. The reference scattering angle was determined by solving an inverse problem that required

stresses in the sample to be in equilibrium. The normal strains corresponding to several diffraction

vectors εe
γ were computed and related to the three 2D strain components, εe

xx, ε
e
yy, and εe

xy, via

Equation (2.14). A least squares analysis was used to solve the overdetermined system for the

strain components, which were related to the stresses by the plane stress, isotropic Hooke’s law.

The same components of total strain were determined using DIC, and the plastic strain components

were determined using the relation εp = εt − εe.
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2.6 Table

Sample AA7075 Ti-64
Number of Data Points (x, y) 205 (5, 41) 533 (13, 41)

x-spacing 3 mm 1 mm
y-spacing 0.25 mm 0.2 mm

beam energy 47 keV 42 keV
beam width (x-direction) 2 mm 2 mm
beam height (y-direction) 0.2 mm 0.2 mm

Table 2.1 Experiment Details

2.7 Figures

Figure 2.1 Schematic of Bragg’s Law [10]

Figure 2.2 Schematic of XRD Angles [10]
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Figure 2.3 Schematic of Sample Coordinate System [10]

Figure 2.4 Detector Distance Calculation Schematic
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Figure 2.5 Load Frame Used With AA7075 Samples

Figure 2.6 Ti-64 Sample
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Figure 2.7 Load Frame Used With Ti-64 Samples
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CHAPTER 3: EXPERIMENTAL RESULTS AND DISCUSSION

3.1 Aluminum Alloy 7075 Experiment

The diffraction ring corresponding to the (311) planar family was used to gauge all elastic strains

from the 4-point bending experiment detailed in Section 2.4.1. An example diffraction image from

AA7075 is displayed in Figure 3.1, and a plot of pixel intensity vs. 2θ is presented in Figure 3.2

with the (311) peak specified. The grid of measurement points on the AA7075 sample was con-

tained in the region of constant moment between the two load pins. This region is illustrated

schematically in Figure 1.2a. Due to the constant moment, strain values showed little variation

with respect to x-coordinate. Stress and strain data from this experiment will therefore be pre-

sented as line plots with each data point at a particular y-coordinate representing an average value

across all five x-positions. Elastic strains from each load step are presented in Figure 3.3. Stresses

calculated from these elastic strains via Equation 2.19 are presented in Figure 3.4. A uniaxial (xx)

stress state for each load step is observed, which is associated with pure bending.

XRD measurements revealed there was very little residual stress present before the experiment.

After 1 turn of the screw there is a linear σxx profile, which is indicative of elastic behavior. How-

ever, after 2 turns of the screw, the σxx profile is no longer linear, but reaches a maximum absolute

value around 500 MPa. This maximum value corresponds to the yield strength of the material,

above which plastic flow begins. The observed yield stress agrees with the reported yield stress of

AA7075 [5]. After 3 turns of the screw the yield surface moves toward the neutral axis, while the

maximum stress remains very close to the reported yield stress. Only the linear region between

y = −1 mm and y = 1 mm remains free of plasticity. After the load is removed there is both

compressive and tensile residual stress. Figure 3.7 serves as a validation of the experimental mea-

surements. The experimental bending stress σb = σxx is plotted first. The predicted elastic stress

change upon unloading ∆σ can be calculated from the internal moment in the sample as discussed
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in Section 1.3. The predicted residual stress σpred is then given by σpred = σb + ∆σ. The predicted

residual stress is then compared with the measured residual stress σr. The close agreement be-

tween predicted and measured residual stresses serves as further proof of a pure bending state and

further confidence in the measurement techniques.

The behavior of the residual stress can be explained by the dislocation movement underlying

the plastic flow. The top of the sample (positive y-coordinate) yielded in compression and the bot-

tom of the sample (negative y-coordinate) yielded in tension after 3 complete turns of the actuation

screw. The sample was visibly bent such that the middle of the sample (x-coordinates close to 0)

moved down while the edges of the sample (x-coordinates far from 0) moved up. Consequently,

the bottom surface of the sample elongated while the top surface shortened. The deformation of

the sample must have been due to dislocation movement rather than just atomic stretching, as ev-

idenced by the permanent nature of the deformation. Material left the top region of the sample

in order for it to permanently shorten, while material entered the bottom region of the sample in

order for it to permanently elongate. Upon unloading the sample there was compressive residual

stress at the bottom surface due to the addition of material into this region, while there was tensile

residual stress at the top surface due to removal of material from this region. In the unloaded state

internal stresses must arise in order for the sample to be in equilibrium, i.e. below the neutral axis

a tensile stress counteracts the compressive residual stress along the bottom surface of the sample,

and above the neutral axis a compressive stress counteracts the tensile residual stress along the top

surface of the sample.

All strains measured from XRD are elastic, as discussed in Section 2.1. DIC was used to

measure the total strains, since the deformations in the experiment were small. Knowledge of the

elastic and total strains allowed the plastic strains to be computed via εp = εt−εe. For the AA7075

results the DIC measurements were averaged in the x-direction to produce a one-dimensional strain

vs. y-coordinate profile. These averaged results were used in the calculation of plastic strain. For

the case of pure bending the total strain is equal to the elastic strain in the linear region of the

curve near the neutral axis where yielding has not taken place, and it can be determined outside of
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this region using a linear extrapolation. The elastic, plastic, and total strain components of εxx are

plotted in Figure 3.5. The total strain measurements in this figure agree with the bending theory in

that they match the elastic strain measurements where yielding had not taken place and they follow

an extrapolated linear fit in the regions where yielding had taken place.

Figure 3.6 compares each load step for the elastic, plastic, and total components of εxx. The

regions that contain plastic strain correspond with the regions where elastic strain reached a maxi-

mum absolute value, or where yielding occurred. The regions that contain no plastic strain corre-

spond to linear elastic strain regions, or where yielding did not occur. There was no measurable

change in plastic strain upon unloading due to the permanent nature of plastic deformation.

3.2 Titanium-6Al-4V Experiment

Elastic strains were also measured from the 4-point bending experiment detailed in Section 2.4.2.

The diffraction rings corresponding to the (100) and (200) planar families were used to measure

the strains in the α- and β-phases, respectively. An example diffraction image from Ti-64 is dis-

played in Figure 3.8, and a plot of pixel intensity vs. 2θ is presented in Figure 3.9 with the (100)

and (200) peaks specified. As in the AA7075 experiment, the grid of measurement points was

contained in the region of constant moment between the two load pins. This experiment contrasted

with the AA7075 experiment in that notches cut out of the sample created regions of stress concen-

tration leading to non-uniform strain profiles in both the x- and y-directions. Consequently, strain

measurements from this experiment will be presented as scatter plots. Bending strain (εe
xx) mea-

surements from the α-phase are plotted in Figure 3.10 and compared with β-phase strains plotted in

Figure 3.11. The highest strains were seen directly adjacent to the notches, which is also where the

largest residual strains were measured. The transverse strains (εe
yy) are plotted in Figures 3.12 and

3.13, while the shear strains (εe
xy) are plotted in Figures 3.14 and 3.15. For all strain components

the β-phase exhibited strains with larger magnitude than the α-phase.
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3.3 Figures

Figure 3.1 Diffraction Image from AA7075
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Figure 3.2 AA7075 Planar Family Spectrum
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Figure 3.3 AA7075 εe Averaged in x vs. y-position
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Figure 3.4 AA7075 σ Averaged in x vs. y-position
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Figure 3.5 AA7075 εxx Averaged in x vs. y-position
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Figure 3.8 Diffraction Image from Ti-64
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Figure 3.9 Ti-64 Planar Family Spectrum
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Figure 3.10 Ti-64 α-phase εe
xx
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Figure 3.11 Ti-64 β-phase εe
xx
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(b) 1000 N Applied Load
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(c) 2000 N Applied Load
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(d) After unloading

Figure 3.12 Ti-64 α-phase εe
yy
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(d) After unloading

Figure 3.13 Ti-64 β-phase εe
yy
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(d) After unloading

Figure 3.14 Ti-64 α-phase εe
xy

−8 −6 −4 −2 0 2 4 6 8

x-coordinate (mm)

−4
−3
−2
−1

0
1
2
3
4

y
-c

o
or

d
in

at
e

(m
m

)

-0.4
-0.3
-0.2
-0.2
-0.1
0.0
0.1
0.2
0.2
0.3
0.4

S
tr

ai
n
ε

(%
)
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(d) After unloading

Figure 3.15 Ti-64 β-phase εe
xy
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CHAPTER 4: DISLOCATION DENSITY DISTRIBUTION INVERSE PROBLEM

4.1 Theory

Dislocations are so prevalent in a real material that it would be impossible to model all of them

for the samples studied in this work. There are two approaches to modeling dislocations, namely

discrete and continuum. As its name suggests, a discrete dislocation formulation treats disloca-

tions as discrete objects with associated stress fields. Dislocation dynamics during plastic flow

are often modeled in this way. The discrete dislocations in the model can represent single atomic

dislocations in a simulation of one or a few grains, or they may represent a group of dislocations in

a simulation of a polycrystalline material. The stress field from a dislocation is linear with respect

to Burgers vector, as mentioned in Section 1.2, which allows for many atomic dislocations to be

represented by a smaller number of model dislocations with larger Burgers vectors. The alterna-

tive to treating dislocations as discrete objects is to view their distribution as a continuum with

a spatially varying density. Plasticity models based on continuously distributed dislocations have

been developed [2, 11] that provide a means for calculating strain fields from dislocation density

distributions by solving two boundary value problems (BVP).

A body that is in equilibrium in the absence of body loads will satisfy

divσ = 0, (4.20)

where σ is the second-order Cauchy stress tensor, at every point in the body. The stress tensor is

related to the strain tensor through a constitutive relation, which for small deformations is given

by

σ = � [Eε] , (4.21)

where � is the fourth-order constitutive tensor and Eε is the second-order small strain tensor. A
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distortion tensor U can be defined such that

U ≡ ∇u. (4.22)

where u is the displacement field. The distortion, analogously to strain, may be broken into elastic

and plastic parts by

U = U e +U p, (4.23)

The small strain tensor is related to the elastic distortion by

Eε = sym (U e) , (4.24)

so it follows that

σ = �
[
sym (U e)

]
. (4.25)

The constitutive tensor has inherent symmetries that will only allow it to see the symmetric part of

the second-order tensor it operates on, deeming the symmetric operator in Equation (4.25) unnec-

essary. Consequently, under the small strain assumption the constitutive relation is

σ = �
[
U e] . (4.26)

The distortion tensor can be expressed as sum of a compatible projection and an incompatible

projection, which will be noted by Uc and Ui respectively. The compatible projection lies in a

gradient, while the incompatible projection lies in a curl. These projections are orthogonal, as

displayed by the fact that curl (∇a) = 0 for any vector field a. A compatible elastic distortion is

given by

U e
c = ∇u, (4.27)

and it follows that curlU e
c = 0. If the elastic distortion is fully compatible, i.e. U e = U e

c , the
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definition of the small strain tensor given in Equation (4.24) becomes

Eε =
1
2

(
∇u + (∇u)T

)
, (4.28)

and the constitutive relation becomes

σ = � [∇u] . (4.29)

The important underlying assumption leading to these relations is that of a fully compatible U e.

While this assumption is widely used in solid mechanics to determine displacements, it cannot be

used if the effect of dislocations is considered. Dislocations introduce incompatibilities into U e,

which is exemplified by observing the lack of closure of the Burgers circuit that is created upon

introducing a dislocation into a crystal lattice. As such the curl of the elastic distortion is no longer

zero, and will be described by [11][2]

curlU e = α̃ (4.30)

where α̃ is the second-order dislocation density tensor. The components of the α̃ tensor have

idealized physical representations [2]. The first index represents the Burgers vector direction, and

the second index represents the dislocation line direction. The diagonal components (11, 22, 33)

can therefore be thought of as idealized screw dislocations, while the off-diagonal components (12,

13, 21, 23, 31, 32) can be thought of as idealized edge dislocations. As mentioned above, U e may

be expressed as a sum of its compatible and incompatible projections, or

U e = U e
c +U e

i . (4.31)

Substituting Equation (4.31) into Equation (4.30) gives

curl
(
U e

c +U e
i
)

= α̃. (4.32)
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Since U e
c lies in a gradient, its curl will always be zero reducing Equation (4.32) to

curlU e
i = α̃. (4.33)

To ease notation U e
i will be referred to as χ hereafter and thus

curlχ = α̃. (4.34)

4.1.1 Incompatible Elastic Distortion Boundary Value Problem

A BVP may be solved to determineχ if α̃ is known throughout the body [20]. Physical observation

leads to a constraint of

divχ = 0, (4.35)

which requires that dislocations do not end in the body. A boundary condition of

χn = 0, (4.36)

where n is the unit normal vector, is placed on all boundaries to complete the BVP. A least squares

finite element formulation is used to solve for χ. A residual is stated such that Equations (4.34)

and (4.35) are enforced throughout the interior of the body [1], given by

R =
1
2

∫
Ω

(curlχ − α̃) · (curlχ − α̃) dV +
1
2

∫
Ω

(divχ · divχ) dV (4.37)

Equation (4.36) is strictly enforced on the boundary elements and will not be discussed further in

this derivation. Equation (4.37) can be expanded into

R =
1
2

∫
Ω

(curlχ · curlχ − 2 curlχ · α̃ + α̃ · α̃) dV +
1
2

∫
Ω

(divχ · divχ) dV (4.38)

Minimization of this residual can be achieved by equating its variation to zero. Taking the variation

of Equation (4.38) with respect to χ yields

δR =

∫
Ω

(
1
2

(δ curlχ · curlχ + curlχ · δ curlχ) − α̃ · δ curlχ +
1
2

(δ divχ · divχ + divχ · δ divχ)
)

dV (4.39)
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which can be reduced to

δR =

∫
Ω

(δ curlχ · curlχ − α̃ · δ curlχ + δ divχ · divχ) dV (4.40)

and equivalently expressed as

δR =

∫
Ω

(δ curlχ · (curlχ − α̃) + δ divχ · divχ) dV (4.41)

Equation (4.41) can be expressed in indicial notation as

δR =

∫
Ω

(
ei jk δχrk, j

(
eimn χrn,m − α̃ri

)
+ δχi j, j χim,m

)
dV (4.42)

where ei jk is the permutation operator. Since Equation (4.42) must hold over the whole domain, it

may be enforced over each element of a finite element formulation. At this point weight and shape

functions may be introduced [1] in indicial notation respectively as

δχrk = NAδχA
rk, (4.43)

and

χrn = NBχB
rn (4.44)

where A and B are the indices of the finite element nodes. The usual convention of summing over

repeated indices holds here and as such there will be as many terms as there are nodes in each

element. The weight and shape functions can be differentiated as necessary to be used with the

curl and div operators, which gives

δχrk, j =
∂NA

∂x j
δχA

rk, (4.45)
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δχi j, j =
∂NA

∂x j
δχA

i j, (4.46)

χrn,m =
∂NB

∂xm
χB

rn, (4.47)

and

χim,m =
∂NB

∂xm
χB

im (4.48)

since the nodal values of χ and δχ are constants with respect to position. Substituting Equa-

tions (4.45) - (4.48) into Equation (4.42), produces

δR =

∫
Ω

(
ei jk

∂NA

∂x j
δχA

rk

(
eimn

∂NB

∂xm
χB

rn − α̃ri

)
+
∂NA

∂x j
δχA

i j
∂NB

∂xm
χB

im

)
dV (4.49)

Setting the resulting expression for δR equal to zero in order to minimize R and factoring the

weighting function nodal values out of the integral yields

δR = δχA
rk

[∫
Ω

(
ei jk

∂NA

∂x j

(
eimn

∂NB

∂xm
χB

rn − α̃ri

)
+ δriδk j

∂NA

∂x j

∂NB

∂xm
χB

im

)
dV

]
= 0 (4.50)

The arbitrariness of the weighting functions allows δχA
rk , 0 and so Equation (4.39) is equivalently

expressed as

∫
Ω

(
ei jk

∂NA

∂x j

(
eimn

∂NB

∂xm
χB

rn − α̃ri

)
+
∂NA

∂xk
δmn

∂NB

∂xm
χB

rn

)
dV = 0. (4.51)

The nodal values of χ can be factored out of the integral resulting in

[∫
Ω

(
ei jk

∂NA

∂x j
eimn

∂NB

∂xm
+
∂NA

∂xk

∂NB

∂xn

)
dV

]
χB

rn =

∫
Ω

ei jk
∂NA

∂x j
α̃ri dV (4.52)

The expressions in brackets multiplied by χB
rn can be assembled and viewed as a global stiffness

matrix, while the right hand side of the equation can be viewed as a global load vector. Solving
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this linear system will determine the nodal values of χ. The value of χ at any point in the domain

can then be interpolated using the shape functions and these nodal values.

4.1.2 Equilibrium Boundary Value Problem

The displacement field can be determined by solving the equilibrium problem presented in Equa-

tion (4.20). The strong form of the BVP is presented as

∇ · σ = 0 in Ω

σ = �
[
U e]

σn = sp on At

u = up on Au

(4.53)

where sp is the prescribed traction over the surface At and up is the prescribed displacement over

the surface Au. In the presence of dislocations the elastic distortion is no longer compatible, and

soU e , ∇u. In factU e cannot be stated directly in terms of u, so a substitution will be made after

manipulating Equation (4.23) into U e = U −U p. The constitutive relation therefore becomes

σ = �
[
U −U p] . (4.54)

Substituting the definition ofU from Equation (4.22) and expressingU p as the sum of its compat-

ible and incompatible projections yields

σ = �
[
∇u −U p

c −U
p
i

]
. (4.55)

It is obvious from the definition of U in Equation (4.22) that Ui = 0. That is to say that the curl of

the distortion is zero, since it is defined by a gradient. This result does not mean, however, that the

elastic and plastic distortions both have zero incompatible projections. Rather their sum is zero,
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which leads to

χ = U e
i = −U p

i . (4.56)

U p
c will be assumed to have no effect on the stress field and therefore will be neglected in the

constitutive relation. The incompatible constitutive equation is finally given as

σ = � [∇u + χ] . (4.57)

After χ is determined by solving the BVP formulated in Section 4.1.1, u is the only unknown and

can therefore be determined. Equation 4.53 can alternatively be expressed in a weak form with use

of Equation (4.57) as

∫
Ω

w · (div� [∇u + χ]) dV −
∫

At
w · (� [∇u + χ]n − sp) da +

∫
Au
w · (u − up) da = 0 (4.58)

where w is an arbitrary weighting function. The displacement on Au will be prescribed a priori so

its corresponding term in the weak form may be ignored for now. A relation can be derived [8]

such that

div
(
ATb

)
= ∇b ·A + b · (divA) , (4.59)

which can be rearranged into

b · (divA) = div
(
ATb

)
− ∇b ·A. (4.60)

In this case let b = w andA = � [∇u + χ], and Equation (4.61) can be written as∫
Ω

(
div

(
(� [∇u + χ])Tw

)
− ∇w · � [∇u + χ]

)
dV −

∫
At
w ·

(
� [∇u + χ]n − sp) da = 0 (4.61)

The divergence theorem can be employed to move the first term in the body integral to a surface

integral resulting in∫
Ω

−∇w · � [∇u + χ] dV +

∫
∂Ω

(� [∇u + χ])Tw · n da −
∫

At
w ·

(
� [∇u + χ]n − sp) da = 0 (4.62)
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Using the definition of the transpose of second-order tensor given by [8],

ATb · c = b ·Ac, (4.63)

and with b = w,A = � [∇u + χ], and c = n, Equation (4.64) can be expressed as∫
Ω

−∇w · � [∇u + χ] dV +

∫
∂Ω

w · (� [∇u + χ]n) da −
∫

At
w ·

(
� [∇u + χ]n − sp) da = 0. (4.64)

The surface ∂Ω is the union of Au and At. As mentioned previously, the displacement on Au will

be prescribed a priori, so the surface integral over ∂Ω can be replaced with a surface integral over

At. This allows the integral over ∂Ω to cancel with the first term in the boundary condition integral

over At in Equation (4.64). The resulting equation is∫
Ω

−∇w · � [∇u + χ] dV +

∫
At
w · sp da = 0. (4.65)

The linearity of both � and the dot product allows Equation (4.65) to be equivalently expressed as

∫
Ω

(−∇w · � [∇u] − ∇w · � [χ]) dV +

∫
At
w · sp da = 0. (4.66)

Since Equation (4.65) should hold over the entire domain, we can enforce it upon individual ele-

ments. At this point shape functions will be introduced to facilitate the finite element formulation.

Let the displacement vector at any position inside an element be represented by the dot product of

the shape functions evaluated at that position and the corresponding nodal displacements, or

u = NAuA
k (4.67)

where A is the index of the shape function, i.e. the sum will include as many terms as there are

shape functions. The weighting function can be expressed in a similar fashion by

w = NBwB
i (4.68)
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where B is the index of the shape function. Differentiating Equations (4.67) and (4.68) leads to

∇u =
∂uk

∂xl
=
∂NA

∂xl
uA

k (4.69)

and

∇w =
∂wi

∂x j
=
∂NB

∂x j
wB

i . (4.70)

Equations (4.69) and (4.70) can be substituted into the body integral of Equation (4.66), which can

be enforced over each element and is expressed in its indicial form

−

∫
Ωe

∂NB

∂x j
wB

i �i jkl
∂NA

∂xl
uA

k dV −
∫
Ωe

∂NB

∂x j
wB

i �i jkl χkl dV = 0 (4.71)

The surface integral from Equation (4.66) will be evaluated over the appropriate boundary faces.

The arbitrary weighting function, wB
i , and the nodal displacements, uA

k , can be pulled out of each

integral since their values do not dependent on position inside the element. Each term can then be

divided by the weighting function, which will effectively remove it from the expression. Moving

the second term to the right hand side of the equation leads to

(∫
Ωe

∂NB

∂x j

∂NA

∂xl
�i jkl dV

)
uA

k =

(
−

∫
Ωe

∂NB

∂x j
�i jkl χkl dV

)
. (4.72)

where the quantity in the parenthesis on the left is the local stiffness matrix and the quantity in the

parenthesis on the right is the local load vector. The incompatible elastic distortion is essentially

acting as a load vector on the displacements.

4.2 Inverse Problem Formulation

The forward problem of calculating the strain field from a known dislocation distribution has been

laid out in Section 4.1. The inverse problem of determining a dislocation distribution from a known

strain field will require the use of nonlinear programming. The goal here is to determine the un-
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derlying dislocation fields that are causing the residual strains presented in Chapter 3. Knowledge

of the dislocation distributions will lead to a deeper understanding of the material state. It could

be argued that since the strain fields have already been measured there is little additional value

added upon determining the dislocation distributions. The hope is that as the technique is devel-

oped further the number of strain measurements can be reduced without losing information about

the full strain field. This could mean reducing the number of strain components that are measured,

or reducing the number of spatial locations where strain is measured.

Inverse problems are solved for both the AA7075 and Ti-64 samples. To isolate residual strains,

only measurements taken in the absence of applied loads are considered. A calculation domain is

first discretized into a mesh of nodes that are connected together to make elements. It should be

noted that the entire samples must be included in the calculation domain so that appropriate bound-

ary conditions can be established. Stress free boundary conditions are suitable for the equilibrium

BVP since there are no external loads, and χn = 0 is taken as the boundary condition anywhere a

material ends for the incompatible elastic distortion BVP. Each node is assigned an α̃ tensor con-

sisting of 9 independent values. For thin samples under plane stress conditions only dislocations

with an in plane (x-y) Burgers vector and an out of plane dislocation line (z), i.e. α̃13 and α̃23,

are significant to the strain calculation. In each iteration of the inverse problem the least squares

finite element formulation described in Section 4.1.1 is used to solve for χ. The calculated χ is

then used in the equilibrium problem described in Section 4.1.2 to calculate the displacements.

Once the displacement field is known the in-plane strain components are calculated and then com-

pared with the XRD measurements. It can be proven that a constant dislocation distribution will

produce a strain field that is equal to zero everywhere [11]. This result ensures that a one-to-one

mapping between strain fields and dislocation distributions does not exist, as any strain field will

be unchanged by adding a constant value to the entire dislocation distribution. In mathematical

terms this means that the inverse problem of determining a dislocation distribution causing a strain

field has infinite solutions, and is thus ill-posed. To create a well-posed problem the dislocation

distribution must be pinned down in some fashion to remove the addition of an arbitrary constant
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dislocation distribution. To these ends, constraints are added such that the square of the dislocation

distribution integrals are within a set tolerance to zero across the domain.

The optimization problem is stated as

minimize
p

f (p)

such that gi(p) ≤ 0, i = 1, 2
(4.73)

where the objective function is given by

f (p) =

Nnode∑
j

(
ε

e(j)
xx,meas − ε

e(j)
xx,calc

)2
+

(
ε

e(j)
yy,meas − ε

e(j)
yy,calc

)2
+

(
ε

e(j)
xy,meas − ε

e(j)
xy,calc

)2
(4.74)

and the constraint functions are given by

g1(p) =

(∫
Ω

α̃13 dV
)2

− ρ (4.75)

g2(p) =

(∫
Ω

α̃23 dV
)2

− ρ (4.76)

where Ω is the calculation domain and ρ is the desired tolerance. The dislocation densities can be

assumed to be constant with z-coordinate since only edge dislocations with dislocation lines along

the z-axis are considered. Each line of nodes with a common x- and y-coordinate, but varying

z-coordinates, is assumed to have the same α̃. The number of optimization parameters becomes

2 Nx Ny where Nx is the number of nodes in the x-direction and Ny is the number of nodes in the

y-direction.

4.3 Aluminum Alloy 7075 Results

The first objective is to show that the inverse problem formulation outlined in Section 4.2 is capa-

ble of producing realistic α̃ distributions from input strain measurements. Taking the calculation

domain to be the whole sample, which is necessary to determine appropriate boundary conditions,
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is problematic considering that XRD measurments were only taken in a small region in the cen-

ter of the sample. This problem will be initially addressed by replacing the XRD measurements

with results from a finite element simulation of the experiment. It is understood that in practice

this would defeat the purpose of solving the inverse problem, but it will serve to meet the first

objective.

The commercial software package ABAQUS was used to solve for displacements in an elasto-

plastic finite element simulation. The AA7075 sample was considered the computational domain

and a perfectly plastic assumption was used with a yield stress of 500 MPa. Pressure loads were

applied at the location of each load pin with equal magnitudes such that the calculated strains were

very similar to the experimental strains for the 4th load step which corresponded with 3 complete

turns of the actuation screw. Residual strains were then calculated in ABAQUS by removing the

pressure loads. Scatter plots of the XRD strain measurements from both the loaded and unloaded

states are presented in Figure 4.1. These same results were presented in Chapter 3 as a line plot,

but a scatter plot is better suited here so that the size of the XRD measurement region can be

compared with the computational domain from the ABAQUS simulation. Scatter plots of the

strains calculated from ABAQUS in the loaded and unloaded state are presented in Figure 4.3. The

XRD and ABAQUS strains are compared quantitatively in Figure 4.4, and it is clear from these

plots that the data sets from both load steps are in close agreement, i.e. ABAQUS was able to

accurately predict the residual strains upon removing the pressure loads.

A dislocation distribution was calculated by solving the inverse problem outlined in Section 4.2

using the residual strains from the ABAQUS simulation as the measured data. It was determined

through initial coarse simulations that the α̃23 values remained very close to zero, and so to reduce

computational cost only the α̃13 values were optimized in the results presented here. As such the

number of optimization parameters is reduced from 2 Nx Ny to Nx Ny and only the first constraint

from Equation (4.75) is enforced. The AA7075 sample was discretized into a 3D mesh consisting

of 20 elements in the x-direction, 10 elements in the y-direction, and 2 elements in the z-direction.

The mesh is pictured in the x-y plane with an equal aspect raio in Figure 4.1. Matlab was used
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to solve both BVPs for the incompatible elastic distortion and displacement fields. The global

stiffness matrices for each BVP are only factored once at the beginning of the optimization, which

reduced the computation time of one iteration by about an order of magnitude, yet computation

time was still a limiting factor in the resolution of the simulations. As the mesh is refined there is

an increase in computation time for each iteration, which includes solving both BVPs, along with

an increased number of parameters and therefore number of iterations necessary to find a local

minimum. These two effects combine to create a rapid increase in computation time as the mesh is

refined. The optimized strain contours, comparison between ABAQUS and optimized strains, and

the optimized α̃13 distribution is presented in Figure 4.5. The optimization succeeded in matching

the ABAQUS reasonably well for each component of strain, especially considering the coarseness

of the mesh. Further, the optimized α̃13 distribution has a physical analogy which will be discussed

in Section 4.5.

One of the goals of this project is to reduce the number of XRD measurements needed to

gain a full understanding of a residual stress state. To these ends, a very similar optimization was

performed using the ABAQUS data in which only εe
xx was compared with the optimized strains in

the objective function, i.e.

f (p) =

Nnode∑
j

(
ε

e(j)
xx,meas − ε

e(j)
xx,calc

)2
. (4.77)

Results from this optimization are presented in Figure 4.6. As before, the optimization was able

to match all three components of strain and produce a realistic α̃13 distribution. It appears that

very little information about the material state was lost by only comparing the εe
xx rather than all

three strain components. It should be noted that εe
xx was the dominant component of strain, but

the algorithm’s ability to infer almost the same dislocation behavior using only one component of

strain is promising.

The next step is to investigate the behavior of the optimized solution when the input measure-

ments do not cover the whole computational domain, as would be the case in practice. For this

optimization problem the XRD measurements presented in Chapter 3 are compared with the calcu-

lated strains, and so only nodes in the center of the sample where XRD measurements were taken
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are considered in the objective function. This technique leaves much of the domain uncontrolled.

The results from the optimization are displayed in Figure 4.7. These results show that a signif-

icant amount of information is lost through only supplying the objection function with the XRD

measurements. The strain field is matched quite well inside the XRD measurement region, but

the optimized strains do not follow the behavior suggested by the ABAQUS model outside of the

measurement region. The optimization has no way of knowing that the strain field trends to zero

quickly outside of the load pins, and the optimized α̃13 behavior appears to be somewhat random

without a physical basis.

The ABAQUS model displayed strain contours that were constant with x-coordinate inside the

load pins, but rapidly decayed outside of them. To guide the simulation towards the true strain field

columns of zero strain values were added to the XRD measurements as displayed in Figure 4.8.

The actual strain values would not be exactly zero here, but zero will serve as a close enough

approximation. This technique seems to help the optimization reach the strain field, as displayed

by the results in Figure 4.9. The addition of the zero strain values gives enough information to the

optimizer so that an appropriate dislocation arrangement can be determined. The overall character

of the strain behavior was captured by the input measurements and thus an accurate representation

was obtained from the optimization. Results from an optimization that used the technique of

adding zero values but only optimized against εe
xx are presented in Figure 4.10. It appears that

restricting two components of strain caused the optimization to severely misrepresent the strain

behavior outside the measurement region, despite its reasonable match inside the measurement

region. It cannot be concluded whether this trend will hold for all loading conditions, but for the

case of four-point bending it is important to supply multiple strain components that characterize

the full field residual strain behavior.

The results suggest that the inverse problem formulated here is very capable of determining

an α̃ distribution to match a strain field if the objective function is supplied with the entire strain

field. If measurements are supplied from a small region such that behavior outside the region is not

captured at all, the optimization behaves poorly. The key finding, however, is that the optimization
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can reasonably match the full strain field if enough measurements are supplied such that the essence

of the strain behavior is captured by the measurements.

4.4 Titanium-6Al-4V Results

The dislocation distribution inverse problem was only solved for the Ti-64 α-phase, since the β-

phase elastic properties are not known. The main contrast with the AA7075 results is the strain

concentrations caused by the notches machined into the samples. The mesh used for these calcula-

tions is pictured in Figure 4.11. The behavior of the strain field is such that it reaches a maximum

at the horizontal location of the notches, and then decays towards the left and right boundaries.

The XRD measurements are presented again in Figure 4.12, with the x- and y-limits of the plot

set such that the measurement region can be compared with the size of the sample. The strain

behavior turned out to be significant in that the Ti-64 XRD measurements showed a trend toward

zero strain that was not exhibited by the AA7075 measurements. In short, the essence of the

strain behavior over the entire specimen is captured by the strain measurements, and so adding

additional zero strain data points to guide the solution was not necessary. The results from an

optimization that only considered the XRD measurements in the objective function are displayed

in Figure 4.13. The results of this optimization support the conjecture made in Section 4.3; the

essence of the full field strain behavior was captured by the measurements that were accessed by

the objective function, and therefore the optimization was able to reasonably match the full field

strain behavior with a realistic dislocation distribution. Another calculation was performed that

only used the εe
xx component of the XRD measurements in the objective function. The results from

this optimization, presented in Figure 4.14, show a deteriorated agreement between the measured

and calculated strains. Further, unrealistic oscillations are seen in the α̃13 distribution. As was the

case with the AA7075 results, it appears that multiple strain components that capture the essence

of the full field strain behavior are required for the optimization to produce a reasonable match

with the experiment.
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4.5 Comparison of Dislocation Modeling Techniques

Until now the only method for optimizing a dislocation arrangement to match a strain field is that

of continuum dislocations presented in Sections 4.1-4.2. Throughout the course of the project,

however, a method utilizing discrete dislocations was also extensively studied. In this method

the analytical solution for a plane-strain edge dislocation in an infinite plate was employed. The

linearity of the analytical dislocation strain field allows the strain field from an arrangement of dis-

locations to be calculated through superposing the strain fields from each individual dislocation.

A sample of code that performs this calculation is given in Appendix B. A set number of in-plane

discrete edge dislocations were placed in a computational domain. The x-location, y-location,

Burgers vector magnitude, and orientation of each dislocation was treated as an optimization pa-

rameter leading to 4Nd parameters for Nd dislocations. The parameters were varied until a local

minimum in the difference between the calculated and measured strain values was reached. The

downfall of the method comes when strains near the boundary are desired. The analytical solutions

used in the calculation are derived from an infinite plate assumption. In order to mimic a material

boundary image dislocations were used to enforce zero stress boundary conditions. Image disloca-

tions are a mirror image of a dislocation located on the opposite side of a free surface. The strain

calculation simply superposes the image dislocation strain field with the original dislocation strain

field. Image dislocation behavior is not entirely physical though as each component of stress is set

to zero at the boundaries, rather than just the normal stress. This method is much easier to code

and orders of magnitude faster to compute.

Despite the simplicity of the method, the optimized strains agreed quite well with measured

strains. Contours of the measured strain components are compared with the optimized strain con-

tours for the AA7075 sample in Figure 4.15. The optimized discrete dislocations are overlaid

on the calculated strain contours. The measured and calculated strains are compared along the

x = 0 line in Figure 4.17. Free surface boundaries were placed at the minimum and maximum y-

coordinate of the measured data points, which explain why each strain component approaches zero
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at the minimum and maximum y-coordinate. The calculation domain only included the measure-

ment region since vertical free surfaces could easily be excluded on the left and right side of the

measurement region. The physical representation of the α̃13 distribution discussed in Section 4.3 is

easier to see here. Comparing the α̃13 distribution given in Figure 4.5 with the discrete dislocations

displayed in Figure 4.15 gives insight to a physical representation. Regions of negative α̃13 located

near the top and bottom of the domain in Figure 4.5 correspond to the negative edge dislocations

in Figure 4.15, while the region of positive α̃13 located in the middle of the domain in Figure 4.5

corresponds to the positive edge dislocations in Figure 4.15. The method lost some accuracy when

only the εe
xx measurements were supplied to the objective function. Strain contours are displayed in

Figure 4.16, and a line plots comparing the XRD measurements to the optimized strains is in Fig-

ure 4.18. At first glance there is an obvious discrepancy between the measured and calculated εe
xy.

This could be due to the lack of a periodic boundary condition, which would be more appropriate

since the effect of material on both sides of the domain is not included in the model. The trend in

the εe
yy calculation matches that of the measurements, despite this component being withheld from

the objective function.

Discrete dislocation optimization results for the Ti-64 sample are displayed in Figure 4.19.

Only contour plots from this calculation are presented as the inherent 2D nature of the strain fields

caused by the notches prevents a line plot from conveying the ability of the method. It is clear from

these contours that the magnitudes are not in close agreement, but the overall trends are captured.

More interestingly, the trends in all three strain components are still captured when only the εe
xx

component is supplied to the objective function, as seen in the results presented in Figure 4.20. The

discrete dislocation method proved to be useful to quickly determine an approximate layout of the

dislocation distribution, and was reliable if strain values are desired “far” from a boundary. In real

applications this will likely not be the case as boundary behavior is especially important to fatigue

behavior. To calculate realistic full field behavior both BVPs must be solved so that equilibrium

is ensured and boundary conditions are enforced. That is not to say that the discrete dislocation

optimization does not have its place as a quick first calculation.
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4.6 Figures

Figure 4.1 Mesh Used for AA7075 Continuum Dislocation Calculations
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(d) Residual XRD εe
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Figure 4.2 AA7075 XRD Measurements

−40−30−20−10 0 10 20 30 40

x-coordinate (mm)

−4

−2

0

2

4

y
-c

o
or

d
in

at
e

(m
m

)

-1.000
-0.800
-0.600
-0.400
-0.200
0.000
0.200
0.400
0.600
0.800
1.000

S
tr

ai
n
ε

(%
)

(a) Loaded ABAQUS εe
xx

−40−30−20−10 0 10 20 30 40

x-coordinate (mm)

−4

−2

0

2

4

y
-c

o
or

d
in

at
e

(m
m

)

-0.400
-0.320
-0.240
-0.160
-0.080
0.000
0.080
0.160
0.240
0.320
0.400

S
tr

ai
n
ε

(%
)

(b) Loaded ABAQUS εe
yy

−40−30−20−10 0 10 20 30 40

x-coordinate (mm)

−4

−2

0

2

4

y
-c

o
or

d
in

at
e

(m
m

)

-0.500
-0.400
-0.300
-0.200
-0.100
0.000
0.100
0.200
0.300
0.400
0.500

S
tr

ai
n
ε

(%
)

(c) Residual ABAQUS εe
xx

−40−30−20−10 0 10 20 30 40

x-coordinate (mm)

−4

−2

0

2

4

y
-c

o
or

d
in

at
e

(m
m

)

-0.200
-0.160
-0.120
-0.080
-0.040
0.000
0.040
0.080
0.120
0.160
0.200

S
tr

ai
n
ε

(%
)

(d) Residual ABAQUS εe
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Figure 4.3 ABAQUS Calculations

54



-6.0 -4.0 -2.0 0.0 2.0 4.0 6.0

y-coordinate (mm)

-1.0

-0.5

0.0

0.5

1.0

S
tr

ai
n
ε

(%
)

XRD εxx
XRD εyy
XRD εxy
ABAQUS εxx
ABAQUS εyy
ABAQUS εxy

(a) Loaded State

-6.0 -4.0 -2.0 0.0 2.0 4.0 6.0

y-coordinate (mm)

-0.4

-0.2

0.0

0.2

0.4

S
tr

ai
n
ε

(%
)

XRD εxx
XRD εyy
XRD εxy
ABAQUS εxx
ABAQUS εyy
ABAQUS εxy

(b) Residual State

Figure 4.4 Comparison of AA7075 XRD Measurements to ABAQUS Calculations
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(d) Optimized α̃13 Distribution
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Figure 4.5 ABAQUS Optimization Results
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(d) Optimized α̃13 Distribution
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Figure 4.6 ABAQUS Comparing εe
xx Only Optimization Results
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(d) Optimized α̃13 Distribution
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Figure 4.7 AA7075 XRD Measurements Optimization Results
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(a) Zeros Added to εe
xx Measurements
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Figure 4.8 Zeros Added to AA7075 XRD Measurements
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(e) Comparison of XRD εe and Optimized εe Along x = 0

Figure 4.9 AA7075 XRD Measurements With Added Zeros Optimization Results
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Figure 4.10 AA7075 XRD Measurements With Added Zeros Comparing εe
xx Optimization Results

61



Figure 4.11 Mesh Used for Ti-64 Continuum Dislocation Calculations
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xy Measurements

Figure 4.12 Ti-64 XRD Measurements
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(e) Comparison of XRD εe and Optimized εe Along x = 0

Figure 4.13 Ti-64 XRD Measurements Optimization Results
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Figure 4.14 Ti-64 XRD Measurements Comparing εe
xx Only Optimization Results
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Figure 4.15 AA7075 Discrete Dislocation Optimization Results
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Figure 4.16 AA7075 Discrete Dislocation Comparing εe
xx Only Optimization Results
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Figure 4.18 Comparison of Measured and Optimized Strains from Discrete Dislocation
Optimization, Only εe

xx Compared
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Figure 4.19 Ti-64 Discrete Dislocation Optimization Results
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Figure 4.20 Ti-64 Discrete Dislocation Comparing εe
xx Only Optimization Results
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CHAPTER 5: CONCLUSION

Understanding the residual stress state of processed metals is crucial to accurately predict their

fatigue life. Residual stresses, or those present in the absence of applied loads, are caused by ar-

rangements of crystalline defects referred to as dislocations. Dislocations introduce elastic strains

into a crystal lattice by shifting material. XRD measurements are ideally suited for measuring

residual stresses, since they are non-destructive and only sensitive to elastic strain. A continuum

dislocation formulation has been presented that allows elastic strains to be calculated from known

dislocation density distributions. This work aims to develop a technique for reducing the number

of necessary XRD measurements needed to fully characterize the residual stress state. Instead of

measuring the entire strain field, only essential regions that characterize the strain behavior are

measured. An inverse problem is then solved to determine an optimal dislocation density dis-

tribution whose calculated strain field matches the XRD measurements. The optimal dislocation

distribution is then used to solve two BVPs; first for the incompatible elastic distortion field and

then for the displacement field. Finally, the stress field in the entire sample can be calculated from

the displacement field.

The proposed technique was explored in a four-point bending experiments using both AA7075

and Ti-64 samples. Continuum and discrete techniques for modeling dislocations were explored

and compared. The continuum approach is much more complicated to understand and develop

in code, however, realistic boundary conditions are respected. The discrete approach is much

simpler, but does not enforce proper boundary conditions and can only be used under the plane

strain assumption. Thus, a trade off exists that should be explored for each specific application.

If a quick answer is desired and strains are low or unimportant near the boundaries, the discrete

technique may be a reasonable choice. If an accurate answer is desired and strains are high or

important near the boundaries, the continuum technique should be employed.
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The ability of a dislocation strain field to match all components of a measured residual strain

field provides further evidence that dislocations are the underlying mechanism in residual stress.

This concept was verified by determining a dislocation distribution whose strain field matched

residual strains predicted from an ABAQUS simulation. The optimal dislocation distribution had

a physical parallel to regions of positive and negative edge dislocations. Further optimizations

explored the behavior of the technique as measurement locations and strain components were

withheld from the objective function. It was determined that so long as enough measurements

were taken such that the essence of the strain behavior was captured, the optimization algorithm

was able to determine a dislocation arrangement whose calculated strain field reasonably matched

the measurements. In the case of bending, multiple strain components that capture the overall

behavior of the strain field are necessary to produce a reasonable match between measured and

calculated strain across the entire sample.
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APPENDIX A: XRD STRAIN CALCULATION PYTHON CODE

import numpy as np

import numpy.linalg as la

from scipy.optimize import leastsq

########################################################################################################

# User Inputs

########################################################################################################

dark_path = ’/media/kswartz92/Swartz/chess/ti64_notched/1081/ff/ff_02650.ge2’

data_path = ’/media/kswartz92/Swartz/chess/ti64_notched/1091/ff/ff_02660.ge2’

detector_dist = 4261.26 # pixels

true_center = [1021.42, 1027.24] # [row, column] of detector image center in pixels (shifted by

1 for python index)

E = 113800 # elastic modulus (MPa)

v = 0.342 # poisson’s ratio

radius = 500 # ring radius in pixels

dr = 25 # half of ring width in pixels

err_max = 0.5 # 2 norm of error / 2 norm of data

min_amp = 200 # minimum acceptable peak amplitude

two_theta_0 = 0.11661487 # unstressed two_theta value

num_vecs = 360 # number of diffraction vectors to fit peaks

dgamma = np.radians(0.1) # size of azimuthal patch analyzed in each peak fit

########################################################################################################

# Functions

########################################################################################################

def ge2_reader(path, header_size=4096, image_size=2048):

FID = open(path, ’r’)

image_1d = np.fromfile(FID, dtype=np.uint16)

FID.close()

num_images = (image_1d.shape[0] - header_size) / image_size**2

images = np.array(image_1d[header_size:].reshape(num_images,image_size,image_size), dtype=float)

return images
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def gaussian(x, param):

peakCtr, fwhmL, fwhmR, amp = param

xL = x[x<=peakCtr]

NLG = (xL-peakCtr)**2

DLG = 2*(fwhmL)**2

LG = amp*np.exp(-NLG/DLG)

xR = x[x>peakCtr]

NRG = (xR-peakCtr)**2

DRG = 2*(fwhmR)**2

RG = amp*np.exp(-NRG/DRG)

return np.hstack([LG,RG])

def residualsG(param, x, y):

return y - gaussian(x, param)

def get_peak_fit_indices(peak, ctr=0.5, lo=0.2, hi=0.8):

peakCtr = int(round(len(peak)*ctr))

loCut = int(round(len(peak)*lo ))

hiCut = int(round(len(peak)*hi ))

return peakCtr, loCut, hiCut

def fitPeak(x, y, peakCtr0, fwhm0=10, amp0=3000):

param0 = [peakCtr0, fwhm0, fwhm0, amp0]

param_opt = leastsq(residualsG, param0, args=(x, y), full_output=1)[0]

fit = gaussian(x, param_opt)

err = la.norm( residualsG(param_opt, x, y), 2.0) / la.norm(y, 2.0)

return fit, param_opt, err

def RemoveBackground(x, y, loCut, hiCut):

x_bg = np.concatenate([ x[x<loCut], x[x>hiCut] ])

y_bg = np.concatenate([ y[x<loCut], y[x>hiCut] ])

coeff = np.polyfit(x_bg, y_bg, 1.0)

background = np.polyval(coeff, x)

yClean = y - background

return yClean, background
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########################################################################################################

# Strain Calculation

########################################################################################################

# read in dark image

dark_image = DataReader.ge2_reader(dark_path)

# average dark images

if len(dark_image.shape) > 1:

dark_image = np.mean(dark_image, axis=0)

# read in detector image

image = DataReader.ge2_reader(data_path)[0] # only using first image

image -= dark_image # subtract dark image

# generate coordinates of each pixel and calculate radius and vector angle

x, y = np.meshgrid(np.arange(image.shape[1], dtype=float), np.arange(image.shape[0],

dtype=float))

x -= true_center[1]

y -= true_center[0]

rad = np.sqrt( x**2 + y**2 ) # covert x,y coordinates into r,omega coordinates

gamma = np.arctan2(y, x) # covert x,y coordinates into r,omega coordinates

# initialize storage arrays

vec_gamma = np.linspace(-np.pi+(dgamma/2), np.pi-(dgamma/2), num=num_vecs)

two_theta = np.zeros(num_vecs)

peak_amps = np.zeros(num_vecs)

peak_errs = np.zeros(num_vecs)

# loop through each diffraction vector

for i_vec in range(num_vecs):

# grab slice of detector pixels that are within domega of desired omega

img_slice = image[np.abs(gamma-vec_gamma[i_vec]) < dgamma]

r_slice = rad[np.abs(gamma-vec_gamma[i_vec]) < dgamma]

# grab section of slice that is within dr of ring radius

img_slice = img_slice[np.abs(r_slice-radius) < dr]

r_slice = r_slice[np.abs(r_slice-radius) < dr]

# sort selected pixels values by radial coordinate
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sorted_indices = np.argsort(r_slice)

sorted_r = r_slice[sorted_indices]

sorted_peak = img_slice[sorted_indices]

# fit peak to sorted selected pixel values

ctr_ind, lo_ind, hi_ind = PeakFitting.get_peak_fit_indices(sorted_peak)

peak_bg_rm, _ = PeakFitting.RemoveBackground(sorted_r, sorted_peak, sorted_r[lo_ind],

sorted_r[hi_ind])

peak_fit, p_opt, err = PeakFitting.fitPeak(sorted_r, peak_bg_rm, sorted_r[ctr_ind])

# calculate 2 theta

opp = p_opt[0]

adj = detector_dist

two_theta[i_vec] = np.arctan(opp/adj)

# store peak amplitude and relative error

peak_amps[i_vec] = p_opt[3]

peak_errs[i_vec] = err

# determine which points to use in analysis

use = np.ones((num_vecs), dtype=bool)

use[peak_errs > err_max] = False

use[peak_amps < min_amp] = False

theta_0 = two_theta_0 / 2

theta = two_theta / 2

# only use peak fits that met filtering criteria

vec_gamma = vec_gamma[use]

theta = theta[use]

# true strain definition

normal_strains = np.log( np.sin(theta_0) / np.sin(theta) )

# strain rosette equation

A = np.zeros((vec_gamma.shape[0], 3))

A[:, 0] = (1+np.cos(2*vec_gamma)) / 2

A[:, 1] = (1-np.cos(2*vec_gamma)) / 2

A[:, 2] = np.sin(2*vec_gamma)

rhs = normal_strains / np.cos(theta)**2 # project snormal strains onto sample x1-x2 plane

exx, eyy, exy = la.lstsq(A, rhs)[0] # solve linear least squares problem
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APPENDIX B: DISCRETE DISLOCATION STRAIN CALCULATION PYTHON CODE

import numpy as np

def get_image_dis(free_surface, xc, yc, b, t):

# orientation and location of free surface

coord, surf_loc = free_surface

# vertical free surface

if coord == ’x’:

xi = 2*surf_loc - xc

yi = yc

bi = b

ti = np.pi - t

# horizontal free surface

if coord == ’y’:

xi = xc

yi = 2*surf_loc - yc

bi = b

ti = -t

return xi, yi, bi, ti

def superpose_strain_field(exx, eyy, exy, xc, yc, b, t, x, y, mat_props):

# unpack material properties

E, G, v = mat_props

# calculate components in dislocation coordinate system (rotate coordinates by theta)

x1 = np.cos(t)*(x-xc) + np.sin(t)*(y-yc)

x2 = -np.sin(t)*(x-xc) + np.cos(t)*(y-yc)
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# calculate strain components

e11 = ( (G*b) / (2*np.pi*E*(1-v)) ) * ( ( (x1**2*x2)*(2*v**2-1*v-3) ) + ( (x2**3)*(2*v**2+v-1) )

) / ( (x1**2+x2**2)**2 )

e22 = ( (G*b) / (2*np.pi*E*(1-v)) ) * ( ( (x1**2*x2)*(2*v**2+3*v+1) ) + ( (x2**3)*(2*v**2+v-1) )

) / ( (x1**2+x2**2)**2 )

e12 = ( b / (4*np.pi*(1-v)) ) * ( x1*(x1**2-x2**2) ) / ( (x1**2+x2**2)**2 )

# rotate coordinates by -theta

exx += (e11*np.cos(t)**2) + (e22*np.sin(t)**2) - (2*e12*np.sin(t)*np.cos(t))

eyy += (e11*np.sin(t)**2) + (e22*np.cos(t)**2) + (2*e12*np.sin(t)*np.cos(t))

exy += ((e11-e22)*np.sin(t)*np.cos(t)) + (e12*(np.cos(t)**2-np.sin(t)**2))

return exx, eyy, exy

def calculate_strain(params, x, y, free_surfaces, mat_props):

""" function calculates the superposed elastic stress/strain fields from input discrete dislocations in an

infinite plate with plane strain assumption

inputs:

params : 1d array with lists of (x-positions, y-positions, Burgers vector maginitudes, and

orientations) dislocation parameters

x : nd array of x coordinates where stress/strain field is to be calculated

y : nd array of y coordinates where stress/strain field is to be calculated

free_surfaces : list of free surfaces (example entry: [’x’,4.0])

mat_props : list of material properties containing [elastic modulus, shear modulus, poisson’s

ratio]

outputs:

exx : array of xx normal strain values at data points given by x and y arrays

eyy : array of yy normal strain values at data points given by x and y arrays

exy : array of xy shear strain values at data points given by x and y arrays """

# unpack parameters

n_dis = params.shape[0]//4 # number of dislocations

xd = params[0*n_dis : 1*n_dis]

yd = params[1*n_dis : 2*n_dis]

bd = params[2*n_dis : 3*n_dis]

td = params[3*n_dis : 4*n_dis]
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# initialize stress/strain arrays

exx, eyy, exy = np.zeros(x.shape), np.zeros(x.shape), np.zeros(x.shape)

# sum up contribution from each dislocation

for i_dis in range(n_dis):

# superpose strain field from dislocation

exx, eyy, exy = superpose_strain_field(exx, eyy, exy, xd[i_dis], yd[i_dis], bd[i_dis], td[i_dis], x, y,

mat_props)

# superpose strain fields from image dislocations

for surface in free_surfaces:

xi, yi, bi, ti = get_image_dis(surface, xd[i_dis], yd[i_dis], bd[i_dis], td[i_dis])

exx, eyy, exy = superpose_strain_field(exx, eyy, exy, xi, yi, bi, ti, x, y, mat_props)

return exx, eyy, exy
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