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ABSTRACT

Graphical models are used to describe the interactions in structures, such as the
nodes in decoding circuits, agents in small-world networks, and neurons in our
brains. These structures are often not static and can change over time, resulting
in removal of edges, extra nodes, or changes in weights of the links in the graphs.
For example, wires in message-passing decoding circuits can be misconnected
due to process variation in nanoscale manufacturing or circuit aging, the style
of passes among soccer players can change based on the team’s strategy, and the
connections among neurons can be broken due to Alzheimer’s disease. The effects
of these changes in graphs can reveal useful information and inspire approaches
to understand some challenging problems.

In this work, we investigate the dynamic changes of edges in graphs and de-
velop mathematical tools to analyze the effects of these changes by embedding
the graphical models in two applications.

The first half of the work is about the performance of message-passing LDPC
decoders in the presence of permanently and transiently missing connections,
which is equivalent to the removal of edges in the codes’ graphical representa-
tion Tanner graphs. We prove concentration and convergence theorems that val-
idate the use of density evolution performance analysis and conclude that arbi-
trarily small error probability is not possible for decoders with missing connec-
tions. However, we find suitably defined decoding thresholds for communication
systems with binary erasure channels under peeling decoding, as well as binary
symmetric channels under Gallager A and B decoding. We see that decoding is ro-
bust to missing wires, as decoding thresholds degrade smoothly. Surprisingly, we
discovered the stochastic facilitation (SF) phenomenon in Gallager B decoders
where having more missing connections helps improve the decoding thresholds
under some conditions.

The second half of the work is about the advantages of the semi-metric property
of complex weighted networks. Nodes in graphs represent elements in systems
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and edges describe the level of interactions among the nodes. A semi-metric edge
in a graph, which violates the triangle inequality, indicates that there is another la-
tent relation between the pair of nodes connected by the edge. We show the equiv-
alence between modelling a sporting event using a stochastic Markov chain and an
algebraic diffusion process, and we also show that using the algebraic representa-
tion to calculate the stationary distribution of a network can preserve the graph’s
semi-metric property, which is lost in stochastic models. These semi-metric edges
can be treated as redundancy and be pruned in the all-pairs shortest-path problems
to accelerate computations, which can be applied to more complicated problems
such as PageRank. We then further demonstrate the advantages of semi-metricity
in graphs by showing that the percentage of semi-metric edges in the interaction
graphs of two soccer teams changes linearly with the final score. Interestingly,
these redundant edges can be interpreted as a measure of a team’s tactics.
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CHAPTER 1

INTRODUCTION

Graph models are everywhere and they have been used in a wide range of appli-
cations such as coding theory, signal processing, and machine learning. As real
systems change over time, dynamic changes happen to their corresponding graph
models. Nodes or edges can be removed from or added to the graphs, an edge
can connect a different pair of nodes, and the weights of the existing edges in the
graphs can also vary. It is of interest for us to answer the questions: what are
the effects of changing edges in a graph and how can we analyze these changes
systematically?

In this thesis, we aim to shine light on this topic by looking at two cases: de-
fective decoders for low-density parity-check (LDPC) codes and algebraic repre-
sentations of stochastic Markov chains in networks. The two examples represent
graphs with missing and redundant edges, respectively.

LDPC, expander, and spatially coupled codes are all codes that can be repre-
sented by graphs, and LDPC codes especially, have been the focus of a great deal
of attention and are now used in a variety of applications such as satellite com-
munications, 10GBase-T Ethernet, the Wi-Fi IEEE 802.11 standard, and storage
systems. The bipartite Tanner graph is not only an elegant graphical representa-
tion of LDPC codes, but is also how the decoding circuits are designed and built.
In iterative message-passing decoders, messages are passed along the edges in the
graph and the computation is performed at the nodes in order to correct corrupted
messages received from the channel.

With the rapid development of nanoscale circuit manufacturing, circuits are
now built with shrinking device area, higher component density, lower power-
supply voltage, and more critical timing constraints. This brings rising concerns
that the computation elements, such as gates, wires, switches, etc., can be unre-
liable and may produce errors. Varshney [1] has characterized LDPC decoders
with noisy computation elements. In the first half of this work, instead of noisy
decoders, we study the performance of LDPC decoders with permanent and tran-
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sient wiring errors, where the connection graphs of the decoder architectures are
different from the designed patterns. In particular, we focus on decoders with
missing connections, where edges are taken out from the corresponding Tanner
graphs.

Chapter 2 motivates the problem of LDPC decoders with missing connections
in detail, and discusses models of codes, channels, and LDPC decoders with both
transiently and permanently missing connections, with a particular focus on hard-
ware modeling. It also develops tools including concentration and convergence
theorems that provide validity to density evolution analysis in Sec. 2.4. Chap-
ter 3 analyzes the peeling decoder on the binary erasure channel (BEC) and the
Gallager A and Gallager B decoders on binary symmetric channel (BSC) using
density evolution, characterizing Pe with missing connections. In Ch. 4, we per-
form sensitivity analysis of density evolution to give insight into whether manu-
facturing or operational resources are more important in communication infras-
tructures. We also comment on how our results inform semiconductor manufac-
turing yield analysis under the new paradigm of allowing some level of wiring
error. To demonstrate the practical utility of density evolution analysis, we also
perform finite-length simulations of decoders with missing connections.

While the first half of the thesis studies the case of missing edges in graphs, the
second half of the work studies the case of redundant edges in graphs. We live
in the age of computing where many systems, including sporting events and the
internet, can be analyzed using data and algorithms developed based on mathe-
matical models. Researchers have achieved great successes in anomaly detection,
information spread prediction, and diffusion models based on stochastic Markov
chains in general. Weighted graphs, where the weights of edges can be consid-
ered as beliefs, have been well studied in the field of fuzzy set theory. The focus
has been on the mathematics of weighted graphs and their algebraic characteris-
tics. Simas and Mocha [2] connected the field of fuzzy set theory with complex
networks by developing methods to compute the transitive closure of weighted
graphs obtained from data. Here, we extend their work and establish the equiva-
lence between stochastic diffusion models based on Markov chains and the alge-
braic transitive closure of weighted graphs. The semi-metric edges, often treated
as redundant connections in distance graphs, enable us to identify indirectly re-
lated elements in networks, which can benefit applications such as community
detection, sports analytics, recipe recommendation, and so on. Using the alge-
braic method allows us to preserve the semi-metric property of graphs, resulting
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in more effective information extraction from data.
Chapter 5 introduces the background and establishes the connection between

stochastic diffusion model and its algebraic belief network. Chapter 6 demon-
strates the advantages of the algebraic methods with two examples: predicting
goals in soccer games and calculating the Internet PageRank. A more detailed
outline is given in the introductory section of Ch. 5.

Bibliographical Note

The problem of LDPC decoders and part of the results of Ch. 2–4 have been pre-
sented at the conference listed below and appear in its proceedings:

� L. Chang, A. Chatterjee, and L. R. Varshney, “LDPC decoders with missing
connections,” in Proceedings of the 2016 IEEE International Symposium on

Information Theory, Barcelona, Spain, 10–15 July 2016, pp.1576–1580.

and also appear in

� L. Chang, A. Chatterjee, and L. R. Varshney, “Performance of LDPC de-
coders with missing connections,” IEEE Transactions on Communications,
to appear.

The problem formulation and results of algebraic representation of stochastic
Markov chain in Ch. 5 and 6 appear in the manuscript

� T. Simas, L. Chang, A. Bassolas, A. Diaz-Guilera, P. Obrador, and P. Ro-
driguez, “Algebraic Representation of Stochastic Markov Chain.”
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CHAPTER 2

DEFECTIVE LDPC DECODERS

Low-density parity-check (LDPC) codes are prevalent due to their performance
near the Shannon limit with message-passing decoders that have efficient im-
plementation [3]. With the end of CMOS scaling nearing, there is interest in
nanoscale circuit implementations of decoders, but this introduces concerns that
process variation in manufacturing may lead to interconnect patterns different than
designed [4–6], especially under self-assembly [7, 8]. Yield on manufactured
chips deemed perfectly operational is small—reports indicate 1–15% of circuit
elements such as wires, switches, and transistors are defective [8]—leading to
rather expensive industrial waste [9]. Changing the paradigm of circuit function-
ality from perfection to some small probability α of missing wires may eliminate
much wastage and so it is of interest to characterize chips with permanently miss-
ing connections to determine suitable error tolerances.

Process variation in manufacturing also causes fluctuation in device geometries,
which might prevent them from meeting timing constraints [10], especially in fu-
ture nanoscale technologies like carbon nanotube circuits where device geometry
control is especially difficult. Such timing errors lead to missed messages in intra-
chip communications, equivalent to transiently missing connections. Connections
can also be missing transiently in programmable LDPC decoders [11]. It is thus
also of interest to characterize decoders with transiently missing connections.

However, most fault-tolerant computing research assumes the circuit is con-
structed correctly and is concerned only with faults in computational elements.
Peter Elias noted the following [12], but it remains true today:

J. Von Neumann has analyzed computers whose unreliable elements
are majority organs—crude models of a neuron. Shannon and Moore
have analyzed combinational circuits whose components are unreli-
able relays. Both papers assume that the wiring diagram is correctly
drawn and correctly followed in construction, but that computation
proper is performed only by unreliable elements.
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Such assumptions of fault-free circuit construction need to be reevaluated and
performance analysis of computation with such wiring faults needs to be carried
out. The only work we are aware of in fault-tolerant computing theory that briefly
discusses wiring errors is the monograph of Winograd and Cowan [13, Ch. 9.2].

Varshney [1] had previously extended the method of density evolution to de-
coders with faults in the computational elements and showed that it is possible
to communicate with arbitrarily small error probability with noisy Gaussian be-
lief propagation. Asymptotic characterizations were also determined for Gallager
A [1] and Gallager B decoders with transient noise [14–16], energy optimization
[17], and both permanent and transient noise [18]. Noisy decoding [19–25], and
general noisy belief propagation, not necessarily in decoding [26, 27], have also
been studied. Recent studies show that bit-flipping decoders with data-dependent
gate failures can achieve zero error probability [25, 28], but with a subset of com-
putation hardware that is reliable and no wiring diagram errors.

Rather than noise in computational elements, here we analyze the performance
of message-passing decoders with missing connections and show that appropri-
ately defined decoding thresholds are robust, in the sense of degrading smoothly.
This is true for both transiently and permanently missing connections in message-
passing decoding circuits. In certain settings, missing connections actually im-
prove performance, resulting in stochastic facilitation (SF).1

A key difference between noisy computational elements and missing connec-
tions is that circuit technology enables detection of missing connections (Sec. 2.3).
This allows for simple adaptations of decoding algorithms, yielding better de-
coding performance under missing connections than under noisy components. A
notable manifestation of this difference is in the so-called decoder useful region.
For transient or permanent noise, there is a strictly positive lower bound for the
useful region, below which the channel output is actually better than the decoded
version since the internal decoder noise makes things worse. For missing con-
nections, there is no such lower boundary since the decoder asymptotically never
degrades performance from the raw channel error rate.

The celebrated results of Richardson and Urbanke [31] developed density evo-
lution for analyzing message-passing decoders for LDPC codes that are correctly
wired. Here we extend those results, so we can use the density evolution tech-
nique to characterize symbol error rate Pe, measuring the fraction of incorrectly

1SF in decoding was observed with transient errors in computation, rather than with missing
connections, initially in memory recall [27, 29] and then in communications [23, 30].

5



Figure 2.1: Tanner graph of a (3, 6) regular LDPC code, with a missing wire for
a corresponding message-passing decoder highlighted with a dashed line.

decoded symbols at the end of message-passing decoding, even when the decoder
has missing connections. We also show that the performance of decoders with
transiently and with permanently missing connections are asymptotically equiva-
lent. Traditionally [31], there are thresholds for channel noise level ε below which
Pe can be driven to 0 with increasing blocklength n. Unfortunately with missing
connections in message-passing decoders, Pe cannot be driven to 0 in general
without a significant modification of the decoding algorithm. Thus, following [1],
we let η be an upper bound to the final error probability that can be achieved by
decoders with missing connections after many iterations ` and give thresholds to
ε, below which lim`→∞P

(`)
e ≤ η under density evolution.

In the following sections, We define the code and channels considered in this
work and construct fault-free and missing-wire decoder models for characteriza-
tion later. We then develop mathematical tools to analyze the performances of
LDPC decoders.

2.1 Ensemble of LDPC Codes and Channels

We are concerned with the standard LDPC code ensemble Gn, both regular and
irregular. First consider the ensemble Gn(dv, dc) of regular LDPC codes of length
n, which can be defined by a bipartite Tanner graph with n variable nodes of
degree dv in one set, and ndv/dc check nodes of degree dc in the other set (see
Fig. 2.1).

For irregular codes Gn(λ, ρ), the degree distribution of variable and check
nodes are denoted by functions λ(x) =

∑∞
d=2 λdx

d−1 and ρ(x) =
∑∞

d=2 ρdx
d−1,

where λd and ρd specify the fraction of edges in the graph that are connected to
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nodes with degree d. The variable nodes hold the codeword messages, and the
check nodes enforce the constraints among variable nodes according to the code
design. We consider this binary linear code ensemble as defined over the alphabet
{±1}. Although this section is general, for convenience, let us think of the com-
munication channel as either BSC with output alphabet {±1} or BEC with output
alphabet {±1, ?}.

2.2 Fault-Free Message-Passing Decoder

The decoder operates by passing messages iteratively over the edges in the Tan-
ner graph of the code. The implementation of such message-passing decoders
in hardware follows the construction of the same Tanner graph too. We define a
variable-to-check node message uv→c and a check-to-variable node message uc→v.
Message uv′→c′ from variable node v′ to check node c′ is often computed based
on all incoming uc→v′ messages, where c ∈ N(v′) is a neighboring node of v′ and
c 6= c′. For peeling, Gallager A, and Gallager B decoders, message vc′→v′ from
check node c′ to variable node v′ is the product of all incoming uv→c′ messages,
where v ∈ N(c′) is a neighboring node of c′ and v 6= v′.

2.3 Missing Connections Model

As discussed in Ch. 1, there are two types of missing connections: permanent
missing connections caused by breaks in interconnects and transient missing con-
nections caused mainly by timing errors in intra-chip communication due to ge-
ometry variation in circuitry. Although specific statistical characterization is not
reported in the semiconductor industry, process variation in manufacturing leads
to both kinds of errors and can be fairly prevalent [8].

For a given decoder circuit, permanent failure is modeled by removing each
connection between variable and check nodes with probability α independently
from others, before decoding starts. These connections are never active once re-
moved. Our conversations with circuit designers suggest that when an intercon-
nect is broken in LDPC decoders implemented in a variety of device technologies,
the measured signal voltage at this open-ended wire is neither low (0–0.3Vdd)
nor high (0.7Vdd–Vdd); it is an intermediate floating value that may vary within
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the range (0.3Vdd–0.7Vdd) which can be differentiated from high and low values.
Hence we model it as an erasure symbol, “?”.

For the transiently missing connection setting, each connection between vari-
able and check nodes is removed independently from others with probability α at
each decoding iteration. Transiently missing connections may occur due to tim-
ing error from incorrect geometry: consider a misalignment of synchronization
when one branch of signal arrives after the computation at the destination node
has started, especially among those circuit implementations that do not store the
last signal sample. Transiently missing connections might similarly happen in
programmable LDPC decoder architectures [11]. Due to the difficulty in control-
ling device geometries, future carbon nanotube circuits are projected to have a
significant number of these transient missing connections. Again we model as an
erasure symbol, “?”.

For notational convenience, let us restrict attention to decoders with messages in
{±1, ?}, but again concentration and convergence results demonstrated in Ch. 2.4
are general. Motivated by different concerns, [32, Example 4.86] considered era-
sures in decoder messages as a representation of confidence, whereas [33] con-
sidered erasures as a way to capture check node or variable node failures in belief
propagation.

2.4 Performance Analysis Tools

We now present mathematical tools to simplify the performance analysis of LDPC
decoders with missing connections. In particular, we establish symmetry condi-
tions for binary codes for easy analysis, and concentration and convergence results
that endow the density evolution method with significance. Such results can be
applied not only to decoders with binary messages, but also to those with larger
message sets.

2.4.1 Restriction to All-One Codeword

Under certain symmetry conditions of the code, the communication channel, and
the message-passing decoder, the probability of error is independent of the trans-
mitted codeword. These conditions are:
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C1. Code Symmetry: Code is a binary linear code.

C2. Channel Symmetry: Channel is a binary memoryless symmetric channel
[32, Def. 4.3 and 4.8].

C3. Check Node Symmetry: If incoming messages of a check node are multi-
plied by {bi ∈ {±1}}, then the computed message is multiplied by

∏
i bi.

C4. Variable Node Symmetry: If the sign of each incoming message is flipped,
the sign of the computed message is also flipped.

Proposition 1. Under conditions C1–C4, in the presence of transiently or perma-

nently missing connections, the probability of error of a message passing decoder

is independent of the transmitted codeword.

Proof. First consider mapping the erasure message “?”, sent when a connection
is missing, to 0; thus the check-to-variable and variable-to-check messages are
the messages computed at check node and variable node, respectively, multiplied
by either 1 (connection exists) or 0 (missing connections). It is easy to see that
messages passed between check and variable nodes satisfy the respective symme-
try conditions [32, Def. 4.82]. Hence, the result follows by invoking [32, Lem.
4.92].

In the sequel, we restrict the analysis of all models to the all-one codeword.

2.4.2 Concentration around Ensemble Average

We now show that the performance of LDPC codes decoded with missing-connection
decoders stays close to the expected performance of the code ensemble for both
transiently and permanently missing wires. The approach follows [31] and is
based on constructing an exposure Martingale, obtaining bounded difference con-
stants, and using Azuma’s inequality.

Fix the number of decoding iterations at some finite ` and let Z be the number
of incorrect values held among all dvn edges at the end of the `th iteration for a
specific choice of code, channel noise, and decoder with missing wires. Let E[Z]

be the expectation of Z. Theorem 1 holds for decoders with both transiently and
permanently missing connections.
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Theorem 1 (Concentration around Expected Value). There exists a positive con-

stant β = β(dv, dc, `) such that for any ε > 0,

Pr[|Z − E[Z]| > ndvε/2] ≤ 2e−βε
2n.

Proof. See Apps. B and C for permanent and transient missing connections, re-
spectively.

Recall Doob’s Martingale construction from [31], and the bounded difference
constants for exposing channel noise realizations and the realized code connec-
tions, together with Azuma’s inequality. The main difference between the Martin-
gale construction here and [31] is in the bounded differences due to the additional
randomness from missing connections.

For permanently missing connections, one can think of the final connection
graph being sampled from an ensemble of irregular random graphs with bino-
mial degree distribution with average degrees (1 − α)dc and (1 − α)dv, bounded
by maximum degrees dc and dv. Hence, the result follows from the result for
correctly-wired irregular codes [31].

For transiently missing connections, the Martingale is constructed differently.
Here instead of edges, for ` iterations, we sequentially expose the realization of
edges at different iterations. Similar to [1] for transient noise in computational ele-
ments, the Martingale difference is bounded using the maximum number of edges
over which a message can propagate in ` iterations, by unwrapping a computation
tree.

Note that β will be smaller for transient than permanent miswiring. The theo-
rem extends directly to irregular LDPC codes.

2.4.3 Convergence to Cycle-Free Case

We now show that the average performance of an LDPC code ensemble converges
to an associated cycle-free tree structure, unwrapping a computation tree as in
[31].

For an edge whose connected neighborhood with depth 2` is cycle-free, let q de-
note the expected number of incorrect values held along this edge at the end of `th
decoding iteration. The expectation is taken over the choice of code, the messages
received from the channel, and the realization of the decoder with missing wires.
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The theorems hold for both transiently and permanently missing connections.

Theorem 2 (Convergence to Cycle-Free Case). There exists a positive constant

γ = γ(dv, dc, `) such that for any ε > 0 and n > 2γ
ε

,

|E[Z]− ndvq| < ndvε/2.

Proof. The proof is identical to [31, Thm. 2], since introducing missing connec-
tions in a cycle-free tree structure does not change its cycle-free property.

Theorem 3 (Concentration around Cycle-Free Case). There exist positive con-

stants β = β(dv, dc, `) and γ = γ(dv, dc, `) such that for any ε > 0 and n > 2γ
ε

,

Pr[|Z − ndvq| > ndvε] ≤ 2e−βnε
2

.

Proof. Follows directly from Thms. 1 and 2.

This concentration result holds for all message-passing decoders with missing
connections. In the sequel, we consider special cases of peeling, Gallager A, and
Gallager B decoders.

2.4.4 Density Evolution

With the concentration around the cycle-free case, it is clear that the symbol error
rate Pe of message-passing decoders with missing connections can be character-
ized with the density evolution technique. Let P (`)

e (g, ε, α) be the error probability
of decoding a code g ∈ Gn, after the `th iteration, where ε is the channel noise
parameter, and α is the decoder missing wire probability. Density evolution eval-
uates the term:

P̄e
(`)

= lim
n→∞

E[P (`)
e (g, ε, α)].

The expectation is over the choice of code, channel noise realization, and missing
wire realization.

Based on the proof of Thm. 2, we claim that the decoding error probability
at any iteration ` for transiently and permanently missing connections, P̄e

(`)
T and

P̄e
(`)
P , becomes identical with the increase of the girth as blocklength n increases.

In particular, in density evolution the state variable x`+1 is computed based on the
x` values of nodes immediately below in the infinite tree. Each connection in the
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tree is encountered only once. In case of permanent failures each connection is
present in the decoder with probability 1 − α, whereas for transient failures each
connection is present at any iteration with probability 1−α. But, for a given code
symbol, its intrinsic messages traverse a particular edge only once if the LDPC
graph is a tree. Thus the messages experience the same statistical effect under
permanent and transient failures. This results in the same probability of error
under both failures.

Theorem 4. For any arbitrarily small δ = δ(dv, dc, `) > 0, σ > 0, and ` ≥ 0:

Pr[|P̄e
(`)
T − P̄e

(`)
P | ≥ σ] ≤ δ.

Proof. First, let N2`
~e be the neighborhood of an edge ~e with depth 2` in the de-

coding graph. Define the event AN as N2`
~e is not tree-like. It is shown that for a

positive constant τ = τ(dv, dc, `), Pr[AN ] ≤ τ
n

[31, Thm 2]. It implies the prob-
ability of exposing an edge multiple times decreases with increasing blocklength
n at any iteration `. Following the edge exposing procedure, P̄e

(`)
T and P̄e

(`)
P dif-

fer only when any edge ~e is exposed multiple times and the presence of ~e in the
two decoding graphs with permanently and transiently missing connections dif-
fers. Hence, Pr

[
|P̄e

(`)
T − P̄e

(`)
P | ≥ σ

]
= Pr

[
|P̄e

(`)
T − P̄e

(`)
P | ≥ σ

∣∣AN]Pr [AN ] +

Pr
[
|P̄e

(`)
T − P̄e

(`)
P | ≥ σ

∣∣ANc]Pr [AN
c]. Since Pr

[
|P̄e

(`)
T − P̄e

(`)
P | ≥ σ

∣∣ANc] = 0,

we can show Pr
[
|P̄e

(`)
T − P̄e

(`)
P | ≥ σ

]
≤ 1 · Pr [AN ] ≤ τ

n
. As n → ∞, this

probability τ
n

= δ approaches 0.

In the sequel, no distinction is made between the analyses for transiently and
permanently missing connection cases.

2.4.5 Decoder Useful Region and Thresholds

Usually density evolution converges to a certain stable fixed point with increasing
number of iterations `. We define this fixed point as:

P̄e
(∞)

= lim
`→∞

P̄e
(`)

= lim
`→∞

lim
n→∞

E[P (`)
e (g, ε, α)].

In order to decide when to use a decoder with missing connections, a useful

decoder is defined. A decoder is said to be useful and should be used instead of
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taking the codeword directly from the channel without decoding, if the asymptotic
decoding error probability satisfies [1]:

P̄e
(∞)

< P̄e
(0)

= ε.

The useful region of a decoder is defined as the set of parameters, in our case
(ε, α), that satisfies the above condition. Note that in case of transient computa-
tion noise where computation is erroneous with probability α̃ [1], there are (ε, α̃)

such that P̄e
(∞)

> ε. But under missing connections, for peeling, Gallager A, and
Gallager B decoders, P̄e

(∞) ≤ ε for any (ε, α). This is because these decoders
do not propagate erroneous messages under missing connections and hence can-
not degrade symbols received from the channel. When decoding with a fault-free
decoder where α = 0, there exists an ε∗ below which the final decoding error prob-
ability goes to 0 and a much larger value otherwise. We will see in the following
sections that P̄e

(∞) does not go to zero for positive α, but a threshold phenomenon
still exists.2 For every fixed α, there exists a channel noise decoding threshold
ε∗, below which the final error probability P̄e

(∞) goes to a small value η. We call
decoders that can achieve P̄e

(∞) that is lower than this small value η-reliable, and
the channel noise level beyond which the decoder is not η-reliable the decoding
threshold ε∗ [1]:

ε∗(η, α) = sup
{
ε ∈ [0, 0.5]

∣∣P̄e(∞) exists and P̄e
(∞)

< η
}
.

2In general for P̄e
(∞) to go to 0 in a faulty decoder, one needs to either substantially change

the decoder or to have a structural relationship between data and errors [17, 25, 28].
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CHAPTER 3

PERFORMANCE OF DECODERS WITH
MISSING CONNECTIONS

3.1 Peeling Decoder over Binary Erasure Channel

Consider the peeling decoder for communication over a BEC with alphabet {±1, ?}.
The check node computation is a product of all messages ±1 it receives from
neighboring variable nodes if none is “?”, otherwise an erasure symbol “?” is
sent. The variable node computation is to send any ±1 symbol received either
from the other check nodes or from the channel, otherwise send “?”. When the
connection between two nodes is missing, the message exchanged is equivalent
to “?”, so peeling extends naturally to decoders with missing connections. Note
that this decoder satisfies the symmetry conditions C1–C4, so we can use density
evolution assuming the all-one codeword was transmitted.

Although high-level intuition would suggest that the performance of decoding
would degrade for any code and any decoder with missing connections, this is not
the case as we later show for the Gallager B decoder. For the peeling decoder, the
intuition holds and can be formalized using coupling techniques and the fact that
peeling decoders never propagate erroneous messages.

Lemma 1. For any LDPC code g with an arbitrary but finite blocklength, af-

ter a finite number of decoding iterations `, for both permanently and transiently

missing connections, the symbol error probability P (`)
e (g, ε, α) increases mono-

tonically with α for a given ε.

Proof. Let us use Pe as shorthand for P (`)
e (g, ε, α). The proof for monotonicity of

Pe follows by simple coupling arguments. For a specific LDPC code, consider two
different missing connection probabilities α1 and α2, where α1 < α2. Then, we
couple the two missing connection processes as follows. Remove the wires with
probability α1, and from this check-variable connection graph, remove each of the
remaining connections with probability α2−α1. This gives a second missing con-
nection process. It is not hard to check that the probability of missing connection
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in the second process is α2. Thus we can couple the missing connection processes
to get a sample path dominance of connections. In this coupling, any realization
of α2 process has more missing connections than that of α1.

Now consider the probability of correctly decoding any bit i. Note that with
the peeling decoder, no erroneous messages are exchanged between the check
and variable nodes; only correct messages and erasures are passed along wires.
A variable node vi holding message bit i can be decoded correctly if either the
received bit is correct, or the received bit is an erasure but vi receives a correct
message through a path on the computation tree passing through one of its check
nodes. The probability that the received bit is correct is the same in case of both
α1 and α2. So, let us compare the other probability. Now, by coupling as any
realization of α1 has more connections than α2, if a correct message reaches i
following a path in the α2 graph, then that path also exists in the α1 graph. Thus,
the event of receiving a correct message in case of α2 is a subset of that of α1.
This proves the monotonicity of probability of correct decoding. Hence, missing
connections can only degrade the performance.

A similar coupling argument yields an ordering relationship with respect to
channel erasure probability ε for a given α.

3.1.1 Density Evolution Equation

First, recall that the peeling decoding algorithm allows {±1, ?} to be sent, where
“?” stands for an erasure caused by either the channel noise or a missing con-
nection. In this case, the decoder only outputs either the correct message or an
erasure symbol.

Consider a regular (dv, dc) LDPC code, BEC(ε), and each wire that can be dis-
connected independently with probability α. Let x0, x1, . . . , x` denote the fraction
of erasures existing in the code at each decoding iteration. The original received
message from the channel is erased with probability ε, so

Pe
(0)(ε, α) = x0 = ε.

Let qin be the probability that a node receives an erasure, and qout be the proba-
bility that a node sends out an erasure. At a variable node, the probability that a
given internal incident variable will be erased is the probability that both the ex-
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ternal incident variable is erased and all other dv−1 nodes are either disconnected
or connected but erased.

qout = x0

dv−1∑
i=0

(
dv − 1

i

)
αi[qin(1− α)](dv−1)−i

= ε[α + (1− α)qin]dv−1.

At a check node, the probability that a given incident variable will not be erased
is the probability that all dc − 1 other internal incident variables are not erased or
disconnected. So the probability that a message is erased is

qout = 1− [(1− qin)(1− α)]dc−1.

Hence, the density evolution of the fraction of erasure between two consecutive
decoding iterations is

x`+1 = ε
[
α + (1− α)

(
1− [(1− x`)(1− α)]dc−1

)]dv−1
.

The density evolution result can be extended to irregular LDPC codes:

x`+1 = ελ

(
α + (1− α)

(
1− ρ[(1− x`)(1− α)]

))
.

Let fDE(x`, ε, α) = x`+1 be the recursive update function for the fraction of era-
sure, where 0 ≤ ε < 0.5 and 0 ≤ α ≤ 1 is the domain of interest.

3.1.2 Fixed Points

The density evolution function fDE is non-decreasing in each of its arguments,
given the other two. Thus, a monotonicity result similar to [32, Lem. 3.54] holds
here. This also implies that a convergence result for x`, similar to [32, Lem.
3.56], holds. So, for a given α and ε, x` converges to the nearest fixed point of
x = fDE(ε, x, α). Due to this existence of the fixed point, we can characterize the
error probability when the decoding process is finished. The fixed points can be
found by solving for the real solutions to the polynomial equation

x− ελ
(
α + (1− α)

(
1− ρ[(1− x)(1− α)]

))
= 0. (3.1)
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We now prove that the decoding error probability is strictly positive by showing
that x = 0 is not a fixed point in (3.1).

Lemma 2. For any irregular code ensemble C∞(λ, ρ), there exists a δ > 0, such

that the probability of error P (∞)
e satisfies P (∞)

e > ελ(1 − (1 − α)ρ(1 − α)) >

δ > 0.

Proof. Since x` is monotonic, if x0 ≤ x1 then for any `, x`+1 ≥ x` ≥ x`−1. Now,
for x0 = 0, by substituting this value in fDE ,

x1 = fDE(0, ε, α) = ελ(1− (1− α)ρ(1− α)) > 0 = x0.

This implies that lim`→∞ x` ≥ fDE(0, ε, α), for x0 = 0. But, as x` converges to
the fixed point nearest to x0 in the direction of monotonicity, x = 0 is not a fixed
point and there is no fixed point in (0, fDE(0, ε, α)) for any ε, α > 0. Thus we
have P (∞)

e > 0.

Since this lemma shows all fixed points of the density evolution equation are
greater than ελ(1− (1− α)ρ(1− α)), decoding error probability cannot be taken
to zero. But this does not mean that the decoder is not useful. In fact it is al-
ways better to use the decoder, even when there are missing connections, rather
than just taking corrupted symbols from the channel directly, since the peeling
decoder never has incorrect messages. We can see this using the monotonicity
of fDE(x, ε, α) in each of its arguments, given the other two. For any channel
and code, x0 = ε, and it follows from fDE that x1 = fDE(x0, ε.α) ≤ ε. Hence
x` ≤ ε, for all `, and P (∞)

e ≤ ε. This is in sharp contrast to the decoders with
computation noise, where decoder output can be strictly worse than channel out-
put [1].

3.1.3 Performance Analysis

In the previous section, we developed the recursive function to characterize the
final error probability achieved by a peeling decoder with missing wires. Now we
want to characterize the performance of such decoders.

For a peeling decoder, when ε = 0, the error probability stays at 0 regardless
of the quality of the decoder. When α = 0, it has been shown that there exists
decoding threshold on the channel noise ε, below which the final error probability
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can be driven to 0 with the increase of decoding iterations [31]. For the following
analysis, we consider the system when ε > 0 and α > 0. Ideally, we want the error
probability to be driven to 0, but as demonstrated in Lem. 2, this is impossible.
Here we use the weaker notion of η-reliability defined in Sec. 2.4.5, where η limits
the final decoding error probability Pe.

Figure 3.1 shows the final symbol error rate of decoding a C∞(3, 6) LDPC
code under peeling decoding with various missing connection probabilities α over
BEC(ε). It can be seen that given α, there exists a threshold in channel noise level
where a phase transition in Pe happens. Figure 3.2 illustrates such thresholds
with the change of α under different small η-reliable constraints. An interesting
phenomenon to notice in the decoding threshold is that there also exists a phase
transition with the change of the decoder missing connection probability α. With
the increase of α, for a fixed η-reliable decoder with missing connections, the
decoding threshold first decreases linearly, and then exhibits more rapid decrease
before convergence to zero.

Figure 3.1: Final symbol error rate of decoding a C∞(3, 6) LDPC code under
peeling decoding algorithm with various missing connection probability α over
BEC.

3.2 Gallager A Decoder over Binary Symmetric
Channel

Consider a fault-free Gallager A decoder for communication over a BSC. The
messages are passed along the edges in the corresponding Tanner graph during
decoding. A check node computes the product of incoming variable-to-check
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Figure 3.2: Channel threshold of decoding a C∞(3, 6) LDPC code under peeling
decoding algorithm over BEC(ε) for different given final error η-limits.

node messages {uv→c}; a variable node decides to flip the message from channel
yv if all of the incoming check-to-variable node messages are −yv [3].

With the introduction of missing connections, the check node computation is
not defined if an input is unknown (“?”). The product computed at the check
node is the modulo-2 sum of all incoming messages to ensure that the parity con-
straints of the code are satisfied. When one of the bits involved in the parity is
unknown, that parity check is no longer informative. This is because any bit of
a linear code is equally likely to be ±1 (as complementing a binary codeword
gives a codeword). So, for decoders with missing connections we make a natural
adaptation: uc→v = “?” if any of the incoming messages- is “?”. We also make
a natural adaptation for variable node computation: −yv is sent if more than one
non-erasure check node messages are −yv, and yv is sent otherwise.

When it comes to Gallager A decoding over BSC, the messages being passed
between nodes may carry erroneous information, unlike the peeling decoder for
BEC, where the messages are either correct or erasure. So, for a sample path
realization of channel and missing connections, a missing connection may prevent
propagation of erroneous messages. Hence, unlike the peeling decoder for BEC, it
is not apparent that there exists a stochastic dominance result like Lem. 1 between
two different probabilities of missing connections. As fault-free decoding with
the Gallager A algorithm satisfies conditions C1–C4, we can restrict analysis to
the all-one codeword.
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3.2.1 Density Evolution Equation

We find the probability for a variable node to compute −1 at iteration ` + 1, in
terms of x`. We consider a regular (dv, dc) LDPC code and the adaptation of
Gallager A decoding with erasure symbols for missing connections.

First note that since a BSC only outputs ±1, a variable node never computes
“?” with the Gallager A adaptation, even though it may receive (due to connection
failure or check-node computes “?”) or send the erasure symbol “?” (only due to
connection failure).

The probability that a check node computation is −1 is:

Pr
{

all (dc − 1) variable nodes are connected and send odd number of− 1
}

= (1− α)dc−1 Pr{odd number of (dc − 1) nodes send− 1}

= (1− α)dc−1
(1− (1− 2x`)

dc−1)

2
,

where the last line follows using results from [3, Sec. 4.3].
The probability that a check node computation is +1 is:

Pr
{

all (dc − 1) variable nodes are connected and send even number of− 1
}

= (1− α)dc−1 Pr{even number of (dc − 1) nodes have− 1}

= (1− α)dc−1
(1 + (1− 2x`)

dc−1)

2
.

The probability that a check-to-variable message is “?” is the complement of
the probability that a check node computes ±1. Define p0 to be

1− (1− α)dc−1. (3.2)

Consider a random variable V ∼ Binomial(dv−1, 1−α) with probability mass
function pV (v), capturing the distribution of number of check nodes connected to
a variable node. Define p+1 and p−1 such that

p+1 = (1− α)dc−1
(1 + (1− 2x`)

dc−1)

2
(3.3)

and

p−1 = (1− α)dc−1
(1− (1− 2x`)

dc−1)

2
. (3.4)
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Now consider x`+1, the error probability at a variable node at the (` + 1)th
iteration. The fraction of incorrect values held at this variable node is the sum of
the probability of two events. The first event is that the message received from the
channel is correct, and none of the incoming messages from the connected check
nodes is correct, but not all of them are “?”, and not only one says different while
others are “?”. The second event is that the message received from the channel
is wrong, and at least one of the incoming messages from the connected check
nodes is wrong or at most one check node is correct while all others are “?”.

The probability of the first event is:

EV
[
(1− ε)

[
Pr{no connected check nodes sends 1}

− Pr{all V connected check nodes send “?”}

− Pr{one check node sends − 1 while others send “?”}
]]

=
dv−1∑
v=1

pV (v)(1− ε)[(p−1 + p0)
v − pv0 − p−1p0v−1].

The probability of the second event is:

EV
[
ε
[

Pr{at least one connected check nodes send − 1}

+ Pr{all V connected check nodes send “?”}

+ Pr{one check node sends + 1 while others send “?”}
]]

= EV
[
ε
[
1− Pr{no connected check nodes sends − 1}

+ Pr{all V connected check nodes send “?”}

+ Pr{one check node sends + 1 while others send “?”}
]]

=
dv−1∑
v=0

pV (v)ε[1− (p+1 + p0)
v + pv0 + p+1p0

v−1].

Let x`+1 = fDE(x`, ε, α), and take the expectation of V according to the bino-

21



mial distribution to get

x`+1 = fDE(x`, ε, α)

= εαdv−1 +
dv−1∑
v=1

(
dv − 1

v

)
(1− α)vα(dv−1−v)

[
(1− ε)[(p−1 + p0)

v − pv0

− p−1p0v−1] + ε[1− (p+1 + p0)
v + pv0 + p+1p0

v−1]

]
.

To extend to irregular LDPC ensembles, we take the average of the check node
distribution and get:

p
(irr)
+1 = ρ(1− α)

1− ρ(1− 2x`)

2
(3.5)

and

p
(irr)
−1 = ρ(1− α)

1 + ρ(1− 2x`)

2
. (3.6)

The terms in fDE(x`, ε, α) have to be averaged over the variable node degree
distribution of dv with function λ(·).

3.2.2 Fixed Points

It can be seen that fDE(x, ε, α) is monotonic in x for a set of given α and ε. Hence,
by the same arguments as for peeling decoders, for any initial 0 ≤ ε = x0 ≤ 0.5,
x` converges to the nearest fixed point of the density evolution equation. We use
τ1 ≤ τ2 ≤ τ3 ≤ · · · to denote these fixed points.

Note that for all ε > 0, α > 0, and x` = 0, fDE(x`, ε, α) = x`+1 > 0. This
implies a result similar to Lem. 2 here. With the existence of channel noise and
missing wiring, the decoding probability cannot be driven to 0. It is easy to show
that for ε = 0, fDE(x, 0, α) has one fixed point at τ1 = 0. We then focus on the
case where 0 < ε < 0.5 for the following analysis.

Define p+(x) = (p−1 +p0)
v−pv0−p−1p0v−1 and p−(x) = 1− (p+1 +p0)

v +pv0.
An analytical expression for the channel threshold is the root (τ2) of the following
expression between 0 and 0.5:

xλ(α) + λ

(
p+(x)− xp+(x) + xp−(x)

)
= x.
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Figure 3.3: Decoding a C∞(3, 6) regular LDPC code with α-missing wire
Gallager A decoding algorithm over BSC(ε). The useful region where it is
beneficial to use decoder is between the curve and α-axis.

The solid line in Fig. 3.3 shows the useful region of decoding for a (3, 6) regular
LDPC code with missing wire, which is between τ1 and τ2 due to the monotonicity
of function fDE . Compared to [1, Fig. 2] where computation at each node is
noisy with probability α, the useful region of a decoder with missing connection
is larger. In this case, decoders with missing connections outperform those with
noisy internal computation. At any node, if the corresponding incoming message
is missing rather than noisy with probability α, the node is more likely to send a
correct message than an erroneous one.

3.2.3 Performance Analysis

Figure 3.4 shows η-thresholds for communication over BSC(ε) with a Gallager
A decoder with missing connections. Recall that for a (3, 6) regular LDPC code
with a fault-free Gallager A decoder, the threshold is roughly 0.039 [34]. Note
that Pe can be driven to a fairly small number even with missing wires. Decoding
is robust to missing connection defects, though less than the peeling decoder over
BEC.

As observed in Fig. 3.4, a phase transition of the decoding threshold ε with the
change of missing connection probability α noticed in the peeling decoder case
also exists here.

In contrast to classic settings, there may be degree-one nodes in decoding graphs
due to the random missing connections. Hence, a tie-breaker at a variable node is
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Figure 3.4: Channel threshold of decoding a C∞(3, 6) LDPC code under
Gallager A decoding algorithm over BSC(ε) for different given final error
η-limits.

necessary when the only incoming message from a check node is different from
the received message from the channel. Since the channel message is more reli-
able than internal messages when there are missing connections in the decoder,
we choose not to flip the channel message when the only incoming non-erasure
message is the opposite. With this minor twist, the decoding threshold increases
significantly. The dotted line in Fig. 3.3 shows the useful region of the decoder
without the tie-breaker for degree-one case, choosing to flip the channel symbol
when all incoming non-erasure messages are different from the channel symbol.

3.3 Gallager B Decoder over Binary Symmetric
Channel

Gallager B decoders are usually more robust than Gallager A decoders without
missing connections [18], so we modify the Gallager B algorithm by introducing
erasure symbols for missing connections. In the Gallager B decoder, a check node
performs the same operation with incoming variable-to-check node messages as
Gallager A in Sec. 3.2, sending an unknown symbol “?” if one of the incoming
messages is from a disconnected node. At a variable node however, instead of
flipping the current value u only when all the incoming messages from connected
nodes say −u, a variable node in the Gallager B decoder decides to correct the
current value u when there are more than b number of incoming messages that
are −u. This threshold can be iteration-specific to reach optimality. In our case,
we use the majority criterion and choose b∗ = bdv+1

2
c in all iterations because
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this threshold results in small error probability independent of iteration number in
fault-free Gallager B work [35, Sec. 5]. We also choose b∗ based on the designed
code without counting the number of actually connected nodes for simplicity, and
it is verified numerically that there is no significant difference in performance.

Similar to the Gallager A model developed in Sec. 3.2, the codeword symmetry
conditions C1–C4 are all satisfied in invoking Prop. 1.

3.3.1 Density Evolution Equation

The density evolution equation for the Gallager B decoder is similar to Gallager
A. Consider a regular (dv, dc) LDPC code and all-one codeword transmitted over
BSC. At iteration `, the probability of a check-to-variable message is “?”, +1 or
−1 with probabilities p0, p+1 and p−1, respectively, which have the same expres-
sions as in Sec. 3.2.

Now consider x`+1, the error probability at a variable node at the (` + 1)th
iteration. The fraction of incorrect values held at this variable node is the sum of
the probability of two events. The first event is that the message received from
the channel is correct, and at least b = bdv+1

2
c check nodes are connected and

send incorrect messages. The second event is that the message received from the
channel is wrong, and at most b− 1 = bdv−1

2
c of the incoming messages from the

check nodes are correct. Consider a random variable V ∼ Binomial(dv−1, 1−α)

capturing the distribution of the number of check nodes connected to a variable
node.

The probability of the first event is:

EV
[
(1− ε) Pr{at least b check nodes are connected and send− 1}

]
=

dv−1∑
v=b

pV (v)(1− ε)p−1v(1− p−1)dv−1−v.

The probability of the second event is:

EV
[
εPr{at most (b− 1) check nodes send + 1}

]
= EV

[
ε[1− Pr{at least b check nodes are connected and send + 1}]

]
=

dv−1∑
v=b

pV (v)ε[1− p+1
v(1− p+1)

dv−1−v].

25



Figure 3.5: Channel threshold of decoding a C∞(3, 6) LDPC code under
Gallager A decoding algorithm over BSC(ε) for different given final error
η-limits.

Taking the expectation of V according to the binomial distribution, we have

x`+1 =
dv−1∑
v=b

(
dv − 1

v

)
(1− α)vα(dv−1−v)

[
(1− ε)[p−1v(1− p−1)dv−1−v]

+ ε[1− p+1
v(1− p+1)

dv−1−v]

]
.

The density evolution equation can also be extended to irregular LDPC codes,
with changes in parameters b(x) = bλ(x)+1

2
c, p(irr)+1 , and p(irr)−1 defined in expres-

sions (3.5) and (3.6).

3.3.2 Performance Analysis

We carry out detailed performance characterization of the Gallager B decoder with
missing connection and show that such a decoder is indeed more robust to missing
connections than Gallager A.

Note that when variable node degree dv = 3 for a regular LDPC code, a fault-
free Gallager B decoder with the defined threshold b = bdv+1

2
c is equivalent to a

fault-free Gallager A decoder. However, due to the modification of the Gallager
A decoder to keep the received channel message when there exists only one in-
coming message, in the case of missing connections, these two decoders behave
differently for decoding a C∞(3, 6) regular LDPC code.

One interesting phenomenon shown in Fig. 3.5 is that the decoding thresholds
first increase with the increasing decoder missing connection probability. This
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error enhancement phenomenon is introduced by the missing connections, essen-
tially resulting in a change of choice for threshold b in each iteration to achieve a
lower error rate. This SF phenomenon demonstrates that optimization of degree
distribution and threshold b in each iteration can be utilized to combat missing
connections. A similar SF result shows that the errors introduced in estimat-
ing Markov random field models can be partially canceled and benefit end-to-
end inference performance [36]. SF effects due to noise in computational ele-
ments, rather than graphical model structure errors as here, have been observed
in [27, 29, 37] and later specifically in LDPC decoders [23, 25].
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CHAPTER 4

MOVING TOWARDS PRACTICE

Though performance analysis of LDPC decoders with missing connections using
density evolution is an important topic in coding theory, our eventual goal is to
use analytical understanding for practical system design.

Towards this, we first briefly discuss how one can use DE analysis to study
sensitivity of codes and decoders, so as to give insight into resource allocation
over the entire telecommunications system. In particular we ask whether more
resources should be spent in manufacturing or in operation. Second, as density
evolution analysis is an asymptotic approximation of practical finite-length codes,
we also perform simulations to understand how well the asymptotics describe
finite-length code performance. Finally we note that increasing the accuracy of
semiconductor fabrication by just a small amount requires a significant increase
in manufacturing cost (which already takes tens of billions of dollars to build fa-
cilities, and limits growth of the industry). As such, we perform some preliminary
manufacturing yield analysis to show the industry potential for our research. For
brevity, this section is largely restricted to Gallager A.

4.1 Decoder Sensitivity Analysis

Should the industry invest more resources in operating good communication chan-
nels or in manufacturing better receiver hardware?

By taking the derivatives of the density evolution function x`+1 = fDE(xl, ε, α)

with respect to ε and α and evaluating at P̄e
(∞)

= x` = x`+1, we can describe the
impact of noise level of the channel and the missing connection on the final error
rate.

P̄e
(∞)

(ε, α) = ελ(α) + λ
(

(1− ε)p+(P̄e
(∞)

(ε, α)) + εp−(P̄e
(∞)

(ε, α))
)

.
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Figure 4.1: Comparison between the derivative of P̄e
(∞)

(ε, α) with respect to ε
and α of decoding a C∞(3, 6) regular LDPC code with α-missing wire Gallager
A decoding algorithm over BSC(ε), when ε and α are at the boundary of decoder
useful region.

Denote
g(x) = (1− ε)p+(x(ε, α)) + εp−(x(ε, α)).

Take partial derivatives of each side with respect to ε:

∂x(ε, α)

∂ε
= λ(α) +

∂λ(g(x(ε, α)))

∂x(ε, α)

∂x(ε, α)

∂ε
+
∂λ(g(x(ε, α)))

∂ε

=
λ(α) + ∂λ(g(x(ε,α)))

∂ε

1− ∂λ(g(x(ε,α)))
∂x(ε,α)

.

Similarly,

∂x(ε, α)

∂α
= ε

∂λ(α)

∂α
+
∂λ(g(x(ε, α)))

∂x(ε, α)

∂x(ε, α)

∂α
+
∂λ(g(x(ε, α)))

∂α

=
ε∂λ(α)

∂α
+ ∂λ(g(x(ε,α)))

∂α

1− ∂λ(g(x(ε,α)))
∂x(ε,α)

.

Figure 4.1 illustrates the ratio of the derivative of P̄e
(∞)

(ε, α) with respect to ε
and α, when α and ε are at the boundary of useful region depicted in Fig. 3.4:(

∂P̄e
(∞)

(ε, α)

∂ε

/
∂P̄e

(∞)
(ε, α)

∂α

)
.

Contrary to our intuition, both derivate values are negative at the boundary of the
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useful region. Recall the linear relationship of ε and α at the boundary of the
useful region; with the increase of α, ε has to decrease in order to stay in the
useful region, resulting in the decrease in P̄e

(∞)
(ε, α).

When operating at the edge of the useful region, as we can see in Fig. 4.1, it
is advantageous to put resources into circuit manufacturing up to an α value of
roughly 0.03 where the curve crosses the equal-ratio point, whereas it is advanta-
geous to put resources into the channel thereafter. Thus aiming for manufacturing
that achieves such a crossover point α may be an appropriate resource allocation
strategy.

4.2 Finite-length Simulations

As shown in [1, 31] and Sec. 2.4 in this thesis, the density evolution technique is
based on the concentration around the cycle-free case when the code’s blocklength
n goes to infinity. However, codes of finite-length are not cycle-free and have
positive probability of edge repeats in the unrolled computation tree. In order
to demonstrate the significance of the results derived with density evolution, we
simulate finite-length codes for noisy decoders described in [1] and decoders with
missing connections and compare the two types of faulty decoders.

4.2.1 Noisy Decoder for Finite-length Codes

As discussed in Ch. 2, one type of defective decoder is that with noisy computa-
tion elements, where the connection diagram of the wires is drawn correctly. At
each node in a message-passing decoder, a message is sent out with processing
error independently from other nodes and iterations. The performance of such
noisy LDPC decoders is characterized in [1] using density evolution. Here, we
simulate the finite-length systems with transiently noisy Gallager A decoders to
demonstrate that performance is close to the analytical results derived with density
evolution.

For (3, 6)-regular LDPC codes with blocklength n = 198, 498, 1998, and 4998

drawn at random from the code ensemble using socket-switching, the decoding
performance is simulated with transiently noisy decoders that randomly flip each
correctly computed message with probability α = 0.005 at every iteration. For
each trial, decoding is performed for 25 iterations (error probability usually con-
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vergences within 10 iterations in fault-free decoding). For each channel noise
level and decoder noise level, the decoding error probability is averaged over 300

randomly selected code realizations.

Figure 4.2: Pe of decoding (3, 6) LDPC code with finite blocklength under
Gallager A decoding algorithm over BSC with α = 0.005 noisy decoder.

As Fig. 4.2 illustrates, the symbol error rates for all blocklengths increase smoothly
with channel noise. According to the analytical results in [1], the decoding thresh-
old ε∗ for (3, 6)-regular LDPC code with α = 0.005 noisy decoder is roughly
0.026, which is where Pe for different blocklengths intersect in Fig. 4.2. As ob-
served, the symbol error rate Pe decreases as blocklength n increases when chan-
nel noise is below the decoding threshold, while Pe exhibits the opposite trend
when the channel noise is above the decoding threshold. The transition around the
decoding threshold also becomes sharper as the blocklength grows larger, similar
to the trend in fault-free decoding simulation results in [38], indicating that the
performance of finite-length codes approaches the density evolution analysis as
the blocklength n goes to infinity.

4.2.2 Decoder with Missing Connections for Finite-Length Codes

We simulate finite-length systems having decoders with either transiently or per-
manently missing connections, to demonstrate performance is comparable in the
two settings and predicted by density evolution. For (3, 6)-regular LDPC codes
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with blocklength n = 498, 1002, and 1998 drawn at random from the code en-
semble using socket-switching, we randomly simulate decoding performance with
connections either permanently removed before the decoding starts or transiently
removed during each decoding iteration for various sets of (ε, α). For each trial,
decoding is performed for more than 30 iterations. For each channel noise level
and missing connection probability, the decoding error probability is averaged
over 100 randomly selected code realizations and missing connection realizations.

As Fig. 4.3 illustrates, the performance of finite-length codes resembles the
asymptotic performance of codes. As expected, below the decoding threshold, the
symbol error rates of finite-length codes are higher than asymptotic performance.
For fault-free decoders with channel noise below threshold, the asymptotic sym-
bol error rate is 0, whereas in the case of finite-length codes Pe increases smoothly
with increasing ε [38]. Similar to fault-free decoders for finite-length codes, de-
coders with missing connections show a similar trend of increasing Pe. Further,
as observed in the simulations, the performances of transiently and permanently
missing connection cases are close to one another. We chose α = 0.02 because
it is within the range of defective interconnect 1–15% estimated in [8]; see also
Sec. 4.1. Different from [38], in the simulations, codes with small stopping sets
are not expurgated. Also recall from Thm. 1 that the concentration of the indi-
vidual performance around the ensemble average is exponential in blocklength
and the concentration happens more slowly in the case of missing connections
compared to fault-free decoders. Hence, there is more numerical variation in the
simulation results at all blocklengths, especially for small n. Nevertheless, sim-
ulations show that the asymptotic analysis of decoders with missing connections
has practical significance.

It is also observed that when the channel is noisy (around and above decod-
ing threshold), decoders with missing connections outperform noisy decoders for
finite-length codes under Gallager A algorithm even when the missing connec-
tion probability 0.02 is much higher than the decoder noise 0.005. This further
shows that under some conditions, passing missing connections or no information
is better than noisy or wrong information.
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Figure 4.3: Pe of decoding (3, 6) LDPC code with finite blocklength under
Gallager A decoding algorithm over BSC with permanently and transiently
missing connection probability α = 0.02.

4.3 Semiconductor Manufacturing Yield Analysis

By understanding the computational purpose of circuits (here decoding) it is of-
ten possible to raise effective manufacturing yield above the raw yield where all
components must be fault-free [39, 40]. To demonstrate that the effective yield
of LDPC decoder circuits increases by allowing missing connection probability α
that still guarantees the decoding performance η, we can apply the error-tolerant
methodology [39,40]. Threshold testing in [39] accepts or rejects a chip based on
whether the chip’s performance passes a determined threshold; the increase in ef-
fective yield is the amount of chips with defects but still meeting the performance
requirement. In our case of decoders with missing connections, this threshold is
the maximum symbol error rate η. We want to find the highest missing connection
probability αmax(Gn, ε, η) such that for every decoder with α ≤ αmax, the result-
ing Pe is under the target error rate η for a given code ensemble Gn and channel
quality ε.

Let φ(α) be the yield factor, the expected percentage of decoders with missing
connection probability α, and p(α) be the probability that the circuit has defect
density α, often taken as an exponential distribution [40]. Then the effective yield
is:

Y =

∫ αmax(Gn,ε,η)

0

p(α)φ(α)dα.

For the C∞(3, 6) LDPC code ensemble and η = 10−5, for a large range of possible
channel values ε, Fig. 3.2 shows us that αmax = 0.01 is more than sufficient for
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the case of peeling decoder under BEC. It is straightforward to see that, compared
to the yield of the fault-free case Y0 = p(0)φ(0), allowing some error-tolerance
in manufacturing may increase effective yield significantly. For the exponential
distribution function, the absolute increase in yield is linear in αmax [40]:

∆Y = Y − Y0 = αmax
D0A

(1 + AD0)2
,

where D0 is the defect density (average number of defects per unit of chip area),
and A is the chip area. Likewise the fractional increase in yield, is:

∆Y/Y0 =
Y − Y0
Y0

= αmax
D0A

1 + AD0

.

As shown in the previous sections, a small defect rate α does not degrade the
performance too much. However, as reported in the semiconductor manufacturing
industry, a 1% reduction in yield can result in a 12% reduction in profit [41, 42].
Hence even by allowing a small probability of defects α, the industry can save a
significant amount of wastage and cost without much change in performance.
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CHAPTER 5

COMPLEX WEIGHTED NETWORKS

Networked structure, a graphical model with a set of nodes and edges, is a com-
plex and useful topological model where weights are assigned to the links in the
connection graph to accurately capture the intensity of interactions in both natu-
ral and man-made systems [43–49]. With the growing popularity of data mining,
social networks, and biological networks, stochastic diffusion models based on
Markov chains have been the focus of a great deal of attention due to their applica-
tions to analyze the seemingly chaotic data in various fields. Pons and Latapy [50]
computed communities in large-scale networks using random walks; Blanchard
and Volchenkov [51] gave an extensive overview on the mathematics behind ran-
dom walks and diffusion on networks, using examples that range from the study
of epidemics, to synchronization and self-regulation in complex networks.

Semi-metrics, distance functions that violate the triangle inequality, only exist
in networks that lie in non-metric spaces. Consider a network with a pair of el-
ements xi and xj: it might happen that the distance of the direct path between
these two elements, dij , is larger than the distance of an indirect path, dik + dkj ,
through a third element xk. The intensity of semi-metric behavior is computed by
the ratio of direct path distance over indirect path distance. Hence, this measure
of semi-metricity captures the latent association among the elements in a network.

Most of the works on networks fit the data collected to a stochastic Markov
chain in a metric space by approximately calculating the transition probability
from one state to another with the normalizing constraint

∑
j pij = 1, namely,

that the sum of the probabilities from state i to all possible states j must be 1. The
equilibrium distribution, where the changes in the network quiet down, can then
be derived by finding the convergence of the transitions. While this method has
assisted researchers immensely in deriving meaningful results, the semi-metric
property is lost in such models, since the semi-metric property only holds in non-
metric distance spaces. With a stochastic model, the probability distribution of all
states at every unit time is constrained to

∑
j pij = 1, where the triangle inequality
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holds everywhere.
We propose an algebraic method to calculate the equilibrium distribution of

a stochastic diffusion model via the transitive closure based on the interaction
graph obtained directly from the observed data without the normalizing constraint
in the stochastic model. With this proposed algebraic method, the semi-metric
property can be preserved. Moreover, since semi-metric edges can be treated
as redundant connections in a network, removing these semi-metric edges in the
network can shorten the computation for various algorithms. Learning more about
the algebraic representation behind the n-diffusion model would also provide us
with more insights into the phenomenon. In the following sections, we establish
the connection between the transitive closure of fuzzy networks and the stationary
distribution of stochastic Markov chains to show that the two are equivalent, and
we highlight the benefit of using the algebraic representation.

In Secs. 5.1 and 5.2, we introduce notation and background knowledge on the
Markov chain and algebraic diffusion model. In Sec. 5.3, we derive the algebraic
representation of stochastic Markov chains, demonstrate how to calculate a net-
work’s equilibrium distribution algebraically, and establish theorems to show the
equivalence. Then in Sec. 6.1 and 6.2 we give two examples: predicting goals
in soccer games and calculating the Internet PageRank. Further, we discuss the
connection of the algebraic form of stochastic diffusion model to fuzzy set the-
ory [2, 52], and demonstrate the benefits of using the algebraic method by con-
necting the notion of graph semi-metricity and metric backbone in Secs. 6.1.3
and 6.2.3. By applying the algebraic diffusion model, the semi-metric property of
a network can be preserved, and thus it is possible to extract the metric backbone.
In the soccer pass networks, the percentage of semi-metric edges has a linear re-
lation to the final game score, while in the Internet hyperlink networks, extracting
metric backbones from the graphs after semi-metric edges are removed can ac-
celerate the computation time for PageRank and reduce the storage required for
Internet companies.

5.1 Discrete-state Markov Chain

Let S be a finite or countable state space and P be a transition probability matrix
where each entry at position (i, j) is pij , the probability of the network changing
from state i to j, i, j ∈ S, and

∑
j pij = 1. Let (Xt : t ∈ T) be a Markov chain
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defined on a probability space (Ω,F ,P), taking values in the state space S with
transition probability matrix P . Then we have

P(Xt+1 = k|Xt = j,Xt−1 = xt−1, ..., X0 = x0) = P(Xt+1 = k|Xt = j) = pjk.

(5.1)
The Markov chain’s memoryless property says that the conditional probability
only depends on the states j and k, and not on any earlier states xt−1, ..., x0.

The equilibrium or stationary distribution of a Markov chain is defined to be a
collection of probability distribution of each state π = {π(j) =

∑
k∈S π(k)pkj :

j, k ∈ S}.

5.2 Algebraic Diffusion Model

Consider a weighted graph Gp(V , E), where V is the collection of all vertices and
E is the collection of all edges in the network. The graph is weighted and each
edge weight wij ∈ [0, 1] denotes the strength of interaction between node vi and
vj , vi, vj ∈ V . Consider when each node v ∈ V represents a state in S and
|V| = |S|, we say that Gp(V , E) is a graphical representation of state space S. We
useM = {Gp : wij ∈ [0, 1], for all i, j ∈ S} to denote the set of graphs with edge
weight representing the strength of connection of two nodes and bounded between
0 and 1. Similarly, we useMsc = {Gp : wij ∈ [0, 1] and

∑
j wij = 1, for all i, j ∈

S} to denote the set of graphs that represent Markov chains with wij being the
transition probability from state i to j. It is easy to see thatMsc ⊂M.

Isomorphic to Gp, Gd(V , E ′) captures the association of the network while each
edge weight dij represents how distant or poorly related two nodes vi and vj ,
vi, vj ∈ V are [2]. The most common way to convert Gp(V , E) to Gd(V , E ′) is to
use conversion function ϕ:

dij = ϕ(wij) =
1

wij
− 1, ∀vi, vj ∈ V . (5.2)

The function ϕ : [0, 1] → [0,∞] is a distance function because it is nonnegative,
symmetric, and anti-reflexive [2].
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5.3 Algebraic Representation of Markov Chain

In this section, we introduce some background knowledge on abstract algebra and
derive the algebraic representation of stochastic Markov chains to show that the
stationary distribution can be calculated algebraically.

In abstract algebra, an algebraic structure I = (A, f, g, . . . ) on a set A is a
collection of finitary operations {f, g, . . . } on the set itself so that the operations
satisfy a list of axioms [53]. A fuzzy graphG is a weighted graph whose adjacency
matrix can be represented by a binary relation R(V ,V) such that the Cartesian
products of the elements in V are each assigned a value r ∈ [0, 1] [52]. In fact,
the network of interactions among a set of variables is conceptualized as a fuzzy
graph, if all the weights are defined to be in the unit interval [0, 1].

Let us now consider two algebraic structures I = ([0, 1], DT 1
∨, DT

1
∧) and II =

([0,∞], f, g), where

DT 1
∨ =

a+ b− 2ab

1− ab
, DT 1

∧ =
ab

a+ b− ab

and
f(x, y) =

xy

x+ y
, g(x, y) = x+ y.

It is shown in [2] that the transitive closure of a fuzzy graph Gp with algebraic
structure I is isomorphic to the distance closure of Gp’s isomorphic graph Gd using
algebraic structure II . This is one example for the generalized n-diffusion pro-
cess. The distance closure of Gd with algebraic structure I = ([0, 1], DT 1

∨, DT
1
∧)

represents a memoryless n-power diffusion process, and the transitive closure of
Gp with algebraic structure II = ([0,∞], f, g) represents the n-diffusion with
memory, depending on all states before step n.

The stationary distribution of this Markov chain, or the k-power of P (P k), is
obtained by the transition matrix powered by a certain number of steps k until the
condition πk+1 = πk · P = πk is satisfied. This is equivalent to the P k calculated
using 〈+, ·〉 if the pair satisfies the triangular conorm/norm (T-Conorm/Norm)
properties [54, 55]. We also know from [2, Thm. 4] that for a given fuzzy graph
Gp = (X,P ), Gd = (X,D), and the isomorphism ϕ and Φ, there exists an
algebraic structure with II = ([0,+∞], f, g) with a TD-Conorm/TD-Norm pair
〈f, g〉 to compute the transitive closure isomorphic distance closure of D, where
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DTC = Φ(P TC), and f and g can be computed by:

f(dik, dkj) = ϕ(ϕ−1(dik) ∨ ϕ−1(dkj)) (5.3)

g(dik, dkj) = ϕ(ϕ−1(dik) ∧ ϕ−1(dkj)). (5.4)

Note that although [2, Thm. 4] states the graph Gp is a proximity graph, the
result still holds for fuzzy graphs in general [2, p. 232]; Gp does not have to be
reflexive, symmetric, or transitive.

Theorem 5. For a discrete-state Markov chain with state space X , one-time

transition probability matrix P , fuzzy graph Gp = (X,P ), a distance graph

Gd = (X,D), and the isomorphism ϕ and Φ defined, for an algebraic struc-

ture I = ([0, 1],∨,∧) = ([0, 1],+, ·) to compute the transitive closure of P , the

corresponding algebraic structure II = ([0,+∞], f, g) to compute the distance

closure of D is defined such that:

f(x, y) =
xy − 1

x+ y + 2
, g(x, y) = x+ y + xy.

Proof. Since each weight w in the fuzzy graph Gp satisfies the condition that
w ∈ [0, 1], it is straightforward to see that operations 〈+, ·〉 satisfy the four ax-
ioms of T-Norm and T-Conorm in the unit interval (commutativity, monotonicity,
associativity, and identity) [54, 55]. Now we just need to show that both + and
· are binary operations on [0, 1]2 → [0, 1]. Since every entry in the probability
matrix P satisfies wij ∈ [0, 1] and

∑
j wij = 1, for all i, j, k ∈ S,wij + wkj ≤ 1

and wij · wkj ≤ 1. Combining the two operations, we see that

wij · wki + · · ·+ wil · wmi︸ ︷︷ ︸
|S|

≤ 1, ∀i, j, k, l,m ∈ S.

With the condition that 〈+, ·〉 is a T-Conorm/T-Norm pair proved, we can ap-
ply equations (5.3) and (5.4) to calculate the corresponding functions f and g

to calculate the distance closure, where the condition also holds for all integers
n ≤ k : Dn = Φ(P n) [2, Thm. 4].
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CHAPTER 6

APPLICATIONS OF SEMI-METRICITY IN
GRAPHS

The previous chapter shows that a stochastic Markov chain’s stationary distribu-
tion can be computed algebraically as the corresponding fuzzy graph’s k-power
of P by applying the n-diffusion model. Note that the TD-Conorm/TD-Norm pair
〈f, g〉 for the general fuzzy relations case with T-Conorm/T-Norm pair 〈DT 1

∨, DT
1
∧〉

is similar for the discrete Markov chain with T-Conorm/T-Norm pair 〈+, ·〉. For
the general case, function f is the harmonic mean averaged by the total number
of paths through two nodes. For the Markov chain case, the measure is a modified
version of harmonic mean with penalty:

fgeneral(x, y) =
xy

x+ y
=

1
1
x

+ 1
y

=
HMg

n

⇓

fstochastic(x, y) =
xy − 1

x+ y + 2
=

1
1

x+1
+ 1

y+1

− 1 =
HMs

n
,

where
HMg(x1, . . . , xn) =

n∑n
i=1

1
xi

and
HMs(x1, . . . , xn) =

n∑n
i=1

1
xi+1

− n

and there is added penalty on the distance measure g:

ggeneral(x, y) = x+ y

⇓

gstochastic(x, y) = x+ y + xy.

When x, y � 1, fgeneral ≈ fstochastic and ggeneral � gstochastic; when x, y � 1,
fgeneral � fstochastic and ggeneral ≈ gstochastic. In both cases, the operations 〈f, g〉
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for the general fuzzy graph and the stochastic model are similar. This provides
an algebraic explanation for why we can use the original data without fitting to
a stochastic model to calculate the diffusion closure for a network and still get a
good approximation.

However, we observed that it is more beneficial to study networks using a fuzzy
graph than using a stochastic model since fitting the data to a stochastic model can
be considered as projecting a high-dimensional surface onto a lower-dimensional
space, resulting in loss of information [56]. Since a stochastic model is strictly
within the metric space, it does not have properties such as semi-metricity. With
semi-metricity existing in a graph, it is possible to calculate the metric backbone
of the network, and thus achieve compression [57].

Definition 1 (Semi-metricity). A distance function d is semi-metric in the alge-

braic structure L(Y,⊕) if:

1. for all x ∈ Y : d(x, x) = 0;

2. for all x, y ∈ Y : d(x, y) = d(y, x);

3. there exist x, y, z ∈ Y : d(x, z)⊕ d(z, y) < d(x, y).

Definition 2 (Graph Semi-metricity). LetGp ∈M be a fuzzy graph,M be the set

of all fuzzy graphs Gp(V , E), and Gd be the isomorphic Gd(V , E ′) distance graphs

such that Gd = Φ(Gp), defined in the algebraic structures I and II as above,

respectively. If for some n ≤ k, there exist vi, vj ∈ V : Gn
d(vi, vj) < Gd(vi, vj),

then the edge that connects vi to vj , and therefore also the graph, is said to be

semi-metric.

Definition 3 (Metric Backbone). The metric backbone is the minimum subgraph

that preserves the shortest paths of the original weighted network [57–60].

Metric backbone can be used as a good approximation for a large-scale network
by removing the first-order semi-metric edges, achieving compression and hence
shortening computation time [57].

6.1 Example: Semi-metricity in Soccer Pass Networks

We obtained pass-by-pass data including the player ids, timestamps, start and end
coordinates, outcomes, etc., from [61]. The size of the playing field is normalized
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to 100 on each dimension and the field is divided into 32 zones. We also added
two states for shots on target (33) and shots off target (34) for each team. To
account for both successful passes and interceptions, we use a network of 4 sub-
networks NAA, NAB, NBA, and NBB to represent the successful passes among
team A, interceptions of passes from team A by team B (team A fails to pass),
interceptions of passes from team B by team A, and successful passes among
team B, respectively. The network of networks NN is shown as follows:

NN =

[
NAA NAB

NBA NBB

]
.

All the networks are constructed using the data from the first half of the games
and then compared with the results at the end of the games to show the ability of
the models to demonstrate trends and team play.

6.1.1 Algebraic Diffusion Model

The fuzzy graphGp of each sub-network is constructed so that for each team, each
edge eij connecting node vi and vj represents that there exist either successful
passes or interceptions from zone i to j. The edge weight wij is proportional to
the number of successful passes or interceptions between the two zones that it is
connecting, and normalized with a unique linear function so that the maximum
edge weight between any two zones is bounded by 1. In this case, we chose
function

wnormij =
(1− 2ε) · worigij + (2ε− 1) ·min(worigij )

max(worigij )−min(worigij )
+ ε, (6.1)

where ε is usually set to 0.01 to avoid isolated vertices with edge weights close to
the boundary of the original weights. To convert the fuzzy graph Gp to distance
graph Gd, we take the nonlinear transform function ϕ in function (5.2) and apply
to each edge weight in Gp. Figure 6.1 illustrates the colormap of a network of
networks constructed using data of one match in the Spanish Primera División in
season 2012-13.
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Figure 6.1: Colormap of fuzzy graph of match 1 in the Spanish Primera División
in season 2012-13.

6.1.2 Stochastic Markov Chain

The transition probability matrix P for the stochastic Markov chain is constructed
such that each entry pij is the probability of one team passing or the ball being in-
tercepted by the opposing team from zone i to j, considering the offset for i and j
using the structure of network of networks NN . The entries in each row are nor-
malized so that

∑
j pij = 1. The stationary distribution for the game can be found

by calculating the nth power of the transition matrix.

6.1.3 Comparison of Two Models Using Data

Remark. The n-diffusion Gn
p memoryless and the transitive closure GTC

p of a

network stays around the same as a stochastic Markov chain’s stationary distri-

bution.

Figure 6.2 shows that the difference in two teams’ shots on target stationary
distribution calculated with stochastic Markov chain is similar to the difference
in two teams’ shots on target n-diffusion Gn

p calculated with fuzzy and distance
network. They are both close to the real measure. Note that Fig. 6.2a shows the
diffusion closure result when Gk

d, the powered matrix at step k, is used, while
Fig. 6.2b shows the diffusion closure result when the sum (⊕ ≡ f = min(·)) of
the powered matrix at each step k is used.
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(a) n-diffusion = Gk
d

(b) Diffusion closure = Gd ⊕G2
d ⊕ · · · ⊕Gk

d

Figure 6.2: Difference in two teams’ rates of shots on target with diffusion
model’s transitive closure and stochastic stationary distribution vs. the score
difference of 380 games of the Spanish Primera División in season 2012-13.

6.1.4 Semi-metricity for Trend Prediction

Semi-metricity in the fuzzy graph of the network reveals more critical information
of team play, which cannot be captured by the metric graph. Figure 6.3a shows
the level of semi-metricity in the pass/interception network using the data of one
match, where the upper-left area stands for the home team and the bottom-right
area stands for the away team. It is clear that the semi-metricity of the successful
passes of the home team is larger than that of the away team. In fact, the home
team is also the winner of this specific game. In comparison, Fig. 6.3b shows the
same statistics of one game in the German Bundesliga, where the away team is
the winner.
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(a) Match 1 in the Spanish Primera División in season 2012-13.

(b) Match 9 in the German Bundesliga in season 2012-13.

Figure 6.3: Colormap of semi-metricity of the pass/interception network.

Since the percentage of semi-metric edges is a measure of the degree to which
indirect paths have shorter distance than a direct path between two nodes in a net-
work, when the network is spatial soccer passes, we can interpret it as a measure
of how flexible one team is at getting the ball from one zone to another. Consider
the situation where player xA on team A tries to pass the ball from zone i to j;
however, there are opposing team B players on the direct path i → j. In order to
overcome the blockage, the player chooses to first pass the ball to zone k, where
there is at least one player yA on team A. Player yA, after successfully receiving
the ball in zone k, then passes the ball to player zA in zone j to complete the
indirect pass i→ k → j.
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Figure 6.4: Averaged difference in semi-metricity of home and away team vs.
their score difference in 1776 matches across 6 soccer leagues.

Hypothesis 1. When indirect passes are utilized successfully more often than di-

rect ones, the team has higher goal differential.

In order to verify Hypo. 1, we aggregated the data for 1776 matches across 6
different soccer leagues (Spanish Primera División, German Bundesliga, English
Premier League, French Ligue 1, Italian Serie A, and UEFA Europa League).
Figure 6.4 illustrates that there exists a linear relationship between the difference
in semi-metricity of successful passes and the score difference at the end of the
match within some score difference range.

Note that in the high score difference regime (|scoreA − scoreB| > 5), the
average difference in semi-metricity decreases with the increase of the score dif-
ference. This phenomenon might be caused by the fact that when the strengths
of two teams differ too much, it is more efficient for the stronger team to attack
directly than to go through indirect passes.

Since with stochastic Markov chain model, under the restriction that
∑

j pij =

1, for all j ∈ S for each row in the corresponding probability transition matrix P ,
the weights in the distance network strictly follow the triangle inequality, no semi-
metricity would be found when calculating the all-pairs shortest path. Normaliz-
ing the probability entry in P can be considered projecting a high-dimensional
surface to a lower dimension, which is a lossy process [56]. Thus, it is useful in
complex network analysis to utilize more general fuzzy spaces without forcing
such constraints, in order to preserve more information from the data.
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6.2 Example: Metric Backbone in Internet PageRank
Network

PageRank, the probability of arriving at a web page after a large number of clicks,
is a measure of the relative importance of web pages according to the directed
graph of the web [62]. Similar to a citation network, PageRank is also a diffusion
process with damping factor [57]. Consider a directed graph G = (V , E), where
V is the set of vertices of n web pages and E is the set of directed edges eij which
exist if page i has a hyperlink to page j. We then define di as the out-degree of
node i, representing the number of hyperlinks on page i.

6.2.1 Existing Methods

PageRank xi assigned to page i is defined as a function of the rank of pages that
point to it, divided by the number of links those pages have in total [62] — ob-
taining in this way a stochastic matrix in A ∈Msc:

xi =
∑
eij∈E

d−1j xj.

In order to guarantee convergence and work around web pages that have no links
to other pages, a damping factor is added to the summation term to form the actual
model:

xi = (1− α) + α
∑
eij∈E

d−1j xj.

The problem can then be formulated as computing the principal eigenvector of a
matrix:

x = (1− α)I + αAx,

where I is the all-ones vector and aij = d−1ij if eij ∈ E and zero otherwise.
Intuitively, the algorithm simulates a bored surfer randomly clicking on links

to browse one page and another, with probability α to continue at each click.
PageRank can be solved both iteratively with power method and algebraically by
solving for the steady state distribution of the random walk. The iterative power
method is the most straightforward technique. After k iterations, the PageRank of
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each web page is:

x(k+1) = x+ αAx+ α2A2x2 + · · ·+ αkAkxk.

PageRank is not restricted to binary directed graphs. In this work we consider
the case of weighted graphs and its PageRank calculation [63, 64].

This problem may be posed as the solution to the a more general linear equation:

X = G ·X ⊕B,

whereG ·X =
∑⊕

i Gi,k⊗Xk, B specifies the initial conditions, andG a weighted
graph or, with proper normalization, a fuzzy graph,G ∈M. The PageRank power
method of G becomes an approximation of the more general linear equation, be-
cause A ∈Msc. The solution to the generalized linear equation is:

X = (G⊕G2 ⊕ · · · ⊕Gk)⊗B ≡ GTC ⊗B.

If we make
N ≡ αG

the solution becomes:

X = (αG⊕ α2G2 ⊕ · · · ⊕ αkGk)⊗B ≡ NTC ⊗B,

where NTC is the transitive closure. Therefore, the solution to the PageRank
problem can be converted to the calculation of the transitive closure and its con-
vergence, if a solution to the general linear equation exists. Here, the parameter
α plays an important role, since it guarantees transitive closure convergence to
the scaled network N = αG, working as a damping factor in G. That is, it is
guaranteed that there exists a fixed point to the generalized linear equation.

6.2.2 Metric Backbone Simulation Results

Since PageRank is a diffusion process and the metric backbone contains only the
edges that participate in the shortest paths, [57] shows that metric backbone can
be used to approximate PageRank accurately and efficiently. The metric backbone
can be approximated by removing the first-order semi-metric edges from the orig-
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inal graph. They also measured the size reduction of the Neo4j database when the
approximate backbone for query evaluation is used to calculate PageRank. The
reduction of storage ranges from 16.67% for to 59.14% for highly semi-metric
graphs. The authors also conducted experiments on real-life dataset (Facebook,
Tuenti, LiveJournal, Twitter, Notredam, and DBLP) on an Amazon EC2 clus-
ter consisting of 16 r3.2xlarge instances, and the highest speedup for PageRank
runs close to six times faster for the Tuenti graph. The final result of computing
PageRank using the original weighted graph and using the metric backbone re-
sults in high Spearman coefficient ranging from 0.76 to 0.98. Using the metric
backbones can largely speed up the computation while giving accurate results.

6.2.3 Metric Backbone Algebraic Interpretation

In the work of [57] only simulations were done showing that using the metric
backbone in weighted graphs is a useful approximation to PageRank and other
algorithms that do not depend directly on the shortest paths (see Sec. 6.2.2). In
this section, we want to show algebraically why metric backbone are so good at
approximating diffusion processes like PageRank.

In this section, we want to show algebraically why metric backbone results in
such good approximation for diffusion processes like PageRank. Recall that the
metric backbone is the minimum subgraph that preserves the shortest paths of the
original weighted network and is strictly metric with the following properties:

Let G be a fuzzy graph, Gd = Φ(G) the isomorphic distance graph, and GMB

the metric backbone ofG. Consider the algebras: L1 = ([0, 1],⊕,⊗) with a⊕b =

a+b and a⊗b = a·b, L2 = ([0, 1],∧,∨) with a∧b = ab
a+b−ab and a∨b = max(a, b)

and their isomorphic algebras, L1d = ([0,∞], f, g) with f(x, y) = xy−1
x+y+2

and
g(x, y) = x + y + xy and L2d = ([0,+∞],min,+), respectively. Therefore the
following is true:

1. GTC1 ≥ GTC2 or isomorphically GDC1
d ≤ GDC2

d .

2. GTC2
MB = GTC2 or isomorphically GDC2

MBd
= GDC2

d .

3. GTC1 ≥ GTC1
MB ≥ GTC2

MB or isomorphically GDC1
d ≤ GDC1

MBd
≤ GDC2

MBd
.

In fact it is shown in [2] that:

GTC1 ≈ GTC2
MB
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or isomorphically
GDC1
d ≈ GDC2

MBd
.

Therefore,
GTC1 ≈ GTC1

MB ≥ GTC2
MB ,

and the solution of the general linear equation with algebra L1 can be approxi-
mated by determining the metric backbone in algebra L2 and applying algebra L1

to the compressed graph representation, i.e. the metric backbone to calculate the
PageRank. This justifies algebraically the results obtained in [57] as described
above.

This algebraic result as well as the simulations done in [57] were intuitively
expected: since PageRank is seen as a diffusion process in a network, the flow
should dynamically travel mainly through metric edges. That is, the metric back-
bone only contains metric edges leaving out semi-metric edges from the network,
by definition. Moreover, from [58] metric edges have edge betweenness greater
than zero, i.e. (bi,j ≥ 1), and semi-metric edges have betweenness zero, i.e.
(bi,j = 0), which explains the diffusion flow going mainly through metric edges,
with some diffusion drift through semi-metric edges.

The algebraic interpretation of a diffusion process in this work allows us to
better justify the results found in [57].
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CHAPTER 7

CONCLUSION

This thesis investigates the effects of changing edges in graphical models through
two cases, one with missing edges and one with redundant edges. In this final
chapter, we briefly summarize the main results and contributions of the thesis and
mention some possible directions for future work.

The first half of the thesis characterizes the performance of message-passing de-
coders with transiently and permanently missing connections that might be caused
by process variation in manufacturing or timing errors in intra-chip communica-
tions (or both). We derived density evolution equations to characterize the error
probability in the peeling decoder over the BEC and modifications of the Gallager
A and Gallager B decoders over the BSC, using erasure symbols to represent
missing connections. Although the error probability cannot be driven to 0 in the
presence of missing connections, it can be suppressed to a small value η when the
channel noise is under a certain decoding threshold ε∗. That is, η-reliable com-
munication is possible with faulty decoders with missing connections. In a sense,
even when there exist missing connections in the decoder, equivalent to when the
encoder and decoder are effectively using different codebooks, the result is not
catastrophic. A novel structural stochastic facilitation is also observed in Gallager
B decoders with missing connections.

Future work involves considering not just decoders with missing connections,
but also miswired and noisy decoders. It is also interesting to study and model
missing connections for min-sum and other belief propagation-like decoders. A
natural way to model missing connections when messages are not just a single
bit, but are either multi-bits or real-valued, is that the messages are erased due to
missing connections. Note that as long as messages are in so-called belief format,
all of the symmetry, concentration, and convergence results established in this
thesis will hold directly. The performance of decoders with missing connections
for finite-length codes is also interesting, especially on the difference between
transiently and permanently missing connections, and how to set the parameters of
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the codes, change stopping conditions, and modifications to decoding algorithms
to take advantage of the stochastic facilitation effect. The error floor region is also
of crucial importance for understanding finite-length codes, so it is worthwhile to
do more simulations and detailed combinatorial analysis. One may also design
new decoder architectures to ensure reliable communication even with miswiring;
for example, horizontal connections, a crucial structure in the cortex contributing
to the filling in of missing parts in visual images [65, Ch. 8.33], can be added to
decoder designs.

Similar scenarios of missing connections in decoders can be also found in data-
driven inference tasks, where some constraints or relations among elements are
missing. The underlying graphical models can be treated as generalized models
for bipartite graphs with missing connections.

The second half of the thesis establishes the equivalence between an algebraic
transitive closure of a belief graph and a stochastic Markov chain. The exam-
ples of the semi-metric or redundant edges in soccer pass networks and the metric
backbone in calculating the internet PageRank demonstrate the benefits of pre-
serving semi-metricity in graph structure to study a network diffusion process.
Instead of imposing additional constraints on the original network structure, thus
sacrificing topological properties, we may work with the original network struc-
ture with different algebras and apply more extended topological methods, such
as semi-metricity, to better understand the network topology.

Moreover, the general Markov process (memoryless or with memory) can be
seen in light of transitive closure or isomorphically by the diffusion closure, en-
abling a graphical and geometrical interpretation of a stochastic process. More
specifically, a Markov process in the distance space may be described by the
equations in Sec. 6.1.3; that is, the Markov chain from one state to another may
be interpreted as the harmonic mean of all paths that connect two states (nodes)
in a graph with some penalizations. At the same time, using the algebraic repre-
sentation of the stochastic Markov chain allows a geometrical interpretation of the
process. This graphical and geometrical interpretation may be extended to general
stochastic processes.
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APPENDIX A

PROBABILITY THEORY DEFINITIONS

Before diving into the proof of Thm. 1 in App. B, some probability theory defi-
nitions and the Hoeffding-Azuma inequality are reviewed here. Consider a space
(Ω,F), where Ω is a sample space, and a σ-algebra F contains subsets of Ω. A
random variable Z is an F-measurable function from a probability space into the
real number. If there is a collection (Zγ|γ ∈ C) of random variables Zγ : Ω→ R,
then

Z = σ(Zγ|γ ∈ C)

is defined to be the smallest σ-algebra Z on Ω such that each map (Zγ|γ ∈ C) is
Z-measurable.

Definition 4 (Filtration). Let {Fi} be a sequence of σ-algebras with respect to the

same sample space Ω. These Fi are said to form a filtration if F0 ⊆ F1 ⊆ · · ·
are ordered by refinement in the sense that each subset of Ω in Fi is also in Fj for

i ≤ j. Also F0 = {∅,Ω}.

The conditional expectation of a random variable Z given a σ-algebra F is a
random variable denoted by E[Z|F ].

Definition 5 (Martingale). Let F0 ⊆ F1 ⊆ · · · be a filtration on Ω and let

Z0, Z1, . . . be a sequence of random variables on Ω such that Zi isFi-measurable.

Then Z0, Z1, . . . is a Martingale with respect to the filtration F0 ⊆ F1 ⊆ · · · if

E[Zi|Fi−1] = Zi−1.

Definition 6 (Doob’s Martingale). Let F0 ⊆ F1 ⊆ · · · be a filtration on Ω and let

Z be a random variable on Ω. Then the sequence of random variables Z0, Z1, . . .

such that Zi = E[Z|Fi] is a Doob’s Martingale.

Lemma 3 (Hoeffding-Azuma Inequality [31, 66, 67]). Let Z0, Z1, . . . be a Mar-

tingale with respect to the filtration F0 ⊆ F1 ⊆ · · · such that for each i > 0, the
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following bounded difference condition is satisfied

|Zi − Zi−1| ≤ αi, αi ∈ [0,∞).

Then for all n > 0 and any ξ > 0,

Pr [|Zn − Z0| ≥ ξ] ≤ 2 exp

(
− ξ2

2
∑n

k=1 α
2
k

)
.
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APPENDIX B

CONCENTRATION: PERMANENTLY
MISSING CONNECTIONS

The proof of Thm. 1 is an extension of and largely identical to [1, Thm. 2], [31,
Thm. 2], or [32, Thm. 4.94]. We want to construct a Doob’s Martingale with
respect to the fraction of error held on each edge during the random revealing
process and to show that the change in the object of interest from one iteration to
the next is bounded by a number unrelated to the number of iterations.

Recall that Z denotes the number of incorrect values held at the end of the `th
iteration for a specific (g, y, w) ∈ Ω, where g is a specific bipartite Tanner graph
to represent the choice of LDPC code with variable node degree dv and check
node degree dc, y is a specific input to the decoder, w is a particular realization of
the decoder with missing wires, and Ω is the sample space. Let ≡i, 0 ≤ i ≤ m

be a sequence of equivalence relations on Ω ordered by refinement, such that
(g′, y′, w′) ≡i (g′′, y′′, w′′) implies (g′, y′, w′) ≡i−1 (g′′, y′′, w′′). The equivalence
relations define equivalence classes by partial equalities such that (g′, y′, w′, u′) ≡i
(g′′, y′′, w′′, u′′) if and only if the realizations of random quantities revealed in the
first i steps for both pairs are the same.

Next we use the technique of exposing the edges in the decoding graph in se-
quence. The first case is when wires are permanently missing. Note that even with
positive probability of missing connections α, for a specific code realization, the
number of potentially connected edges can be at most ndv. Hence, we expose at
most ndv edges one at a time. At step i ≤ ndv, we expose the particular check
node socket that is connected to the ith variable node socket. Next, in the fol-
lowing n steps, we expose the received values yi from the channel one at a time.
At the end of the n(dv + 1) steps, the decoder missing wire probability is also
realized, since the defect is permanent. Then we have (g′, y′, w′) ≡i (g′′, y′′, w′′)

if and only if the information revealed in the first i steps for both pairs is the same.
Now, define Z0, Z1, ..., Zm by

Zi(g, y, w) = E[Z(g′, y′, w′)|(g′, y′, w′) ≡i (g, y, w)],
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where Z0 = E[Z] and Zm = Z. By construction, Z0, Z1, ..., Zm is a Doob’s
Martingale. We then use Lem. 3 to give bounds on

Pr[|Z − E[Z]| > ndvε/2] = Pr[|Zm − Z0| > ndvε/2].

To use Azuma’s inequality, we first need to prove that for each consecutive mem-
ber in the sequence Z0, Z1, ..., Zm, the difference is bounded:

|Zi+1(g, y, w)− Zi(g, y, w)| ≤ δi, i = 0, 1, ...,m− 1,

where δi depends on dv, dc, and `.
It was shown by Richardson and Urbanke [31] that for the fault-free decoder

without any missing wire, when edges are exposed,

|Zi+1(g, y, w)− Zi(g, y, w)| ≤ 8(dvdc)
`, 0 ≤ i ≤ ndv.

In our case when there exist permanently missing connections, the difference
when exposing edges is that the number of edges existing is smaller, and bounded
by ndv. The expected number of edges left is ndv(1− α). The bound established
above still holds with a change in the step number:

|Zi+1(g, y, w)− Zi(g, y, w)| ≤ 8(dvdc)
`, 0 ≤ i ≤ ndv.

It was also shown that when channel outputs are revealed, the difference between
consecutive elements in the sequence is bounded by

|Zi+1(g, y, w)− Zi(g, y, w)| ≤ 2(dvdc)
`,

where ndv ≤ i ≤ n(dv+1) in the case where some wires are permanently missing.
Then the theorem follows from applying Azuma’s inequality to the Martingale
constructed.
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APPENDIX C

CONCENTRATION: TRANSIENTLY
MISSING CONNECTIONS

The second case is when wires are transiently missing at each decoding itera-
tion. The Martingale is constructed differently. Instead of exposing edges, at `
iterations, we sequentially expose the realization of edges at different iterations.
Since each edge can be missing independently from others with probability α,
only sockets whose nodes are connected through these edges are affected. In each
iteration, there are 2 realizations for each edge (present or missing); then for all
previous ` iterations, the total number of affected edges is bounded by 2(2dvdc)

`.
With symmetry of switching node sockets, the difference between consecutive
elements in the sequence is bounded by:

|Zi+1(g, y, w)− Zi(g, y, w)| ≤ 8(2dvdc)
`,

where n(dv + 1) ≤ i ≤ m.
Hence, in the transiently missing wire case, the bounded difference δi = 8(2dvdc)

`.
The theorem follows from applying Azuma’s inequality to the Martingale con-
structed.
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[20] B. Vasić and S. K. Chilappagari, “An information theoretical framework
for analysis and design of nanoscale fault-tolerant memories based on low-
density parity-check codes,” IEEE Trans. Circuits Syst. I, vol. 54, no. 11, pp.
2438–2446, Nov. 2007.
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[25] S. Brkic, P. Ivaniš, and B. Vasić, “Guaranteed error correction of faulty bit-
flipping decoders under data-dependent gate failures,” in Proc. 2016 IEEE
Int. Symp. Inf. Theory, Jul. 2016, pp. 1561–1565.

[26] C.-H. Huang, Y. Li, and L. Dolecek, “Belief propagation algorithms on noisy
hardware,” IEEE Trans. Commun., vol. 63, no. 1, pp. 11–24, Jan. 2015.

[27] A. Karbasi, A. H. Salavati, A. Shokrollahi, and L. R. Varshney, “Noise fa-
cilitation in associative memories of exponential capacity,” Neural Comput.,
vol. 26, no. 11, pp. 2493–2526, Nov. 2014.

[28] S. Brkic, O. A. Rasheed, P. Ivaniš, and B. Vasić, “On fault-tolerance of
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