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ABSTRACT

Correcting errors in DNA sequencing data is an important process that can

improve the quality of downstream analyses using the data. Even though

many error-correction methods have been proposed for Illumina reads, their

throughput is not high enough to process data from large genomes. The thesis

describes the first FPGA-based error-correction tool, which is designed to

improve the throughput of DNA error correction for Illumina reads. The base

algorithm of the FPGA implementation is BLESS which is highly accurate

but slow. The hardware implemented on the FPGA consists of a Bloom filter

that is the main data structure of BLESS and the error-correction subroutines

in BLESS. The design is compared with the software version of BLESS,

and two other leading tools. The results show significant improvements in

speed for the FPGA-based implementation with comparable accuracy of error

correction.
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CHAPTER 1

INTRODUCTION

This chapter provides an introduction to DNA error correction, and briefly

considers issues related to the throughput and acceleration of the associated

algorithms.

First, the nature of data available from DNA sequencing is examined, and

the need for DNA error correction is explained. Next, a popular and highly

successful class of DNA error-correction algorithms is introduced. The need

to accelerate these algorithms is discussed, and the opportunities and chal-

lenges in accelerating them are listed. Third, Feld Programmable Gate Ar-

rays (FPGAs) are introduced as a viable platform that may be employed

to accelerate these error-correction algorithms, and a particular algorithm

is picked, matching its specific features with the strengths/weaknesses of an

FPGA. Finally, related work in FPGA acceleration as applicable to bioinfor-

matics, and the novelty of the work attempted in this thesis are discussed.

1.1 DNA Sequencing Data

Each organism has material inside its cells called the genome that has infor-

mation on how the organism is built and how it functions. The genome is

composed of a sequence of Deoxyribonucleic acid (DNA) bases, also called

nucleotide bases (in the foregoing, the terms “genome” and “DNA” will be

interchangeably used). Given its fundamental nature in governing how an or-

ganism executes life processes, examining genomic data is essential to many

biological and medical analyses. The information regarding the DNA is ex-

tracted through the process of DNA sequencing. The entirety of this in-

formation may be viewed as long strings of characters (running to billions

in large genomes) belonging to the alphabet {A, C, G, T} representing the

two strands of the DNA molecule. Each of the characters in the alphabet
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represents a nucleotidic base, that is, one of Adenine, Guanine, Thymine or

Cytosine.

However, sequencing does not give us two contiguous strings representing

the DNA strands. Instead it gives us a large number of much shorter strings,

called reads. Information on which portion of the genome each read originates

from is unknown. Reads overlap with each other to provide some redundant

information, at the same time the extend of overlap is variable from read

pair to read pair, and unknown. In addition, some of the reads sequenced

from the same region of the genome may disagree because of errors in the

sequencing process. Given this nature of DNA sequencing data, it is difficult

to directly build a picture of the organism’s genome from reads. Hence,

many computational methods and algorithms have been invented to extract

information about the genome from sequenced data.

DNA sequencing is becoming increasingly affordable. The cost of sequenc-

ing is estimated at approximately $1000/genome. The trend in sequenc-

ing cost has been following a steep fall over the years, often advertised as

steeper than Moore’s law [1]. Coupled with the massive increase in sequenc-

ing throughput, this has led to the initiation of large-scale sequencing projects

that aim at sequencing millions of genomes [2]. Such projects are ushering

in a future of precision medicine, which would enable clinical decisions based

on genome sequencing and analysis of the sequenced data.

Even though the throughput and cost of sequencing are improving rapidly,

DNA reads remain erroneous. For example, the most popular sequencing

platform available today is from Illumina. Illumina’s sequencing machines

provide reads of length up to 300 bases long [3]. Illumina’s HiSeq X Ten

system can sequence 1.8 Tbp (tera base pair) in a single run spanning less

than three days; however only three-fourths of the reads from this sequencing

run have sufficiently high quality [4] (quality of bases in a read is available as

a parameter of the sequenced data; “high quality” here means a quality score

of more than 30). These sequencing errors can cause errors in the analyses

that use the data, and correcting these errors can improve the quality of

these analyses [5], [6].
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1.2 k-mer Spectrum-Based Algorithms for Error

Correction

Fortunately, two properties of the sequenced data which were briefly intro-

duced in the previous section can facilitate the correction of a majority of

these errors:

• Redundancy: Reads overlap. Though there may be disagreements

among reads coming from a particular region in the genome, regarding

a base in an overlapping portion, usually the error is present only in a

minority of the overlapping reads. Hence, a majority vote may be used

to determine the correct base at that position.

• Quality Scores: The data available from sequencing machines comes

with confidence values for each base in each read. These quality scores

can give information that helps us to correct errors.

There is a highly successful class of algorithms called k-mer spectrum-based

algorithms [7] that have been devised to correct errors in Illumina reads, in

which the errors are usually substitutions, where a base in the genome is

wrongly replaced with a different base in the read. These algorithms make

the following heuristic assumptions:

1. If a k-length segment of a read, called a k-mer, matches with a k-mer

from another read, the reads overlap. This is largely true in genomes

that do not have repetitive segments if k is kept sufficiently large. Usu-

ally, k is kept in the range 15 to 50 depending on the type of the genome

being sequenced.

2. If a k-mer does not occur with high multiplicity in the read dataset,

then some base(s) in the k-mer is(are) erroneous and the k-mer needs

to be corrected. This is based on the assumption that many reads

are sequenced from any given part of the genome, which leads to the

conclusion that a k-mer in that area of the genome will be shared among

many of these reads. Hence a k-mer will have high multiplicity in the

set of all the reads whose overlaps contain that k-mer, unless some of

the reads are affected by a sequencing error changing the k-mer.
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Figure 1.1: Errors in sequencing data

Figure 1.1 depicts the basic assumptions and high-level idea behind k-mer

spectrum-based error correction. The example shows reads of length 8, all

sampled from the same region in the genome. 5-mers from the reads are

examined, and a particular 5-mer, GACAC, is found to have a low multiplic-

ity while another, GATAC, has a high multiplicity. Error-correction tools in

the k-mer spectrum category try to convert GACAC in the source read to

GATAC. Different tools in the category follow different methods to determine

the correct transformation.

As accurate as they are, k-mer spectrum-based algorithms require long du-

rations to complete execution. A recent study [8] evaluated that the amount

of time needed to correct errors in reads from the entire human genome can

be up to four hours. In light of the fact that the amount of sequencing data

is going to rapidly increase in the coming years, it becomes extremely impor-

tant to correct these errors as fast as possible to enable faster DNA analysis

pipelines.

There are opportunities to accelerate these algorithms on parallel archi-

tectures, but also associated challenges. For instance, the algorithms are

highly data-parallel in that two reads can be corrected independently, once

the k-mer multiplicities are computed. At the same time, given that the

algorithms depend on the statistics of occurrences of different k-mers, and

because different reads may have different numbers of errors, the particular

operations followed in correcting two different reads may be vastly different,

and may have to be expressed using sophisticated routines. Because of this,

it is desired that the computing platform chosen to accelerate the algorithms

must be able to support parallelism and efficient execution of complex serial

tasks.
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1.3 FPGAs for Accelerating DNA Error Correction

FPGAs are reconfigurable logic design platforms that allow the user to spec-

ify a hardware-level implementation of an algorithm. A standard FPGA

consists of an array of Look-Up Tables (LUTs), registers, Arithmetic and

Logic Units (ALUs), and memory bits (as Block RAMs or BRAMs), which

can be configured as needed. The architecture of FPGAs allows design of

sophisticated state-machines and data-paths in a highly optimized manner.

It is also possible to use multiple instances of the same hardware block to

do parallel processing. An FPGA can thus be used to parallelize as well as

optimize serial execution of an algorithm, and hence suggests itself as a good

candidate platform for use in accelerating DNA error correction.

The FPGA, however, has a limitation that it usually has access to limited

off-chip memory compared to the CPU. Hence, to adapt an error-correction

tool to the FPGA platform, the chosen k-mer spectrum-based algorithm

has to be memory frugal. Many algorithms in this class require a lot of

memory because they store the multiplicities of k-mers in the sequenced

data. However, BLESS [9], one of the most accurate k-mer spectrum-based

algorithms is also extremely memory efficient. BLESS achieves this memory

efficiency by employing a Bloom filter to store high-multiplicity k-mers. The

Bloom filter can store a large number of strings in a small amount of space,

if a certain rate of false positives can be tolerated. BLESS uses additional

algorithmic steps to tolerate such errors from the Bloom filter.

Considering the merits of the FPGA platform and the merits of the BLESS

algorithm, they arise as good fits for each other. In this thesis, an implemen-

tation of BLESS on FPGA will be examined in detail.

However, before going into further details about BLESS and the hardware

implementation, the work done in the thesis must be compared to related

work in FPGA acceleration, to clearly express its novelty and value.

1.4 Related Work

Examining past work in accelerating genomic workloads on FPGAs, one

can see many instances but none that accelerate error correction of Illu-

mina data. One work, [10], corrects errors in Pacbio sequencing reads us-
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ing FPGAs. The base algorithm can correct errors in PacBio sequencing

reads (http://www.pacificbiosciences.com) by aligning Illumina reads that

have fewer errors to the PacBio reads. Their implementation focused only

on the alignment part.

On the other hand, the Bloom filter that is the main data structure in

BLESS has been widely used in FPGA designs mainly for finding patterns.

In [11], [12], Bloom filters were used to accelerate the seed matching stage

of BLASTN [13], [14] that is the most popular homology database search

algorithm. Bloom filters were used in these works to store k-mers in querying

sequences.

In addition, there are plenty of successful implementations of genomic tools

on FPGA. For example, [15] accelerates the assembly of reads into larger con-

tiguous strings called contigs, a process called de-novo Assembly. In [16], the

process of DNA sequence alignment, in which DNA sequence data is mapped

to a reference DNA sequence by minimizing the edit distance between the

reads and the reference sequence, is accelerated.

This thesis presents the first FPGA implementation of DNA error correc-

tion for Illumina reads. It obtains up to 40× acceleration compared to the

base version of BLESS, on which the implementation presented here is based.

The presented implementation is compared against two other popular CPU-

based error-correction tools as well, and it comes out to be faster in these

comparisons. Its accuracy is comparable to that of BLESS while not equal

to it. These points will be explored in detail in the remaining sections.

The rest of the thesis is divided into two parts. Chapter 2 examines back-

ground concepts regarding the Bloom filter, and the BLESS algorithm. Chap-

ter 3 examines techniques that were used to map BLESS onto an FPGA [17]

using customized hardware. The results of experiments with the implemen-

tation using various benchmarks are also presented.
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CHAPTER 2

BACKGROUND

2.1 Bloom Filter

At the heart of BLESS is a Bloom filter [18], a space-efficient data structure

that responds to membership queries. A Bloom filter can return false-positive

queries, but no false-negatives. BLESS uses the Bloom filter to store a list of

high multiplicity k-mers in the read set, called solid k-mers. Low multiplicity

k-mers are called weak k-mers. Use of a Bloom filter suggests that BLESS

may be prone to false corrections. However, BLESS tests a base correction

by checking the solidity of multiple k-mers containing that base, so the effects

of false positives from the Bloom filter are reduced drastically.

Figure 2.1: Bloom filter query process

The query operation in a Bloom filter is depicted in Figure 2.1. A given

input is hashed into multiple locations in a bit-vector. If all the locations

in the bit-vector are 1, the result of the query is positive, otherwise it is

negative. For a store operation, all the hashed bits are set to 1. Under the

assumptions of ideal random and independent hashes, the false positive rate

(FPR) of a Bloom filter can be adjusted as

FPR = (1− e−qn/m)q (2.1)
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where q is the number of hash functions, n is the number of elements stored

in the Bloom filter, and m is the size of the bit-vector. The Bloom filter size

for BLESS for large genomes can run up to a few GBs. Thus the Bloom filter

queries are largely expected to go to main memory.

Figure 2.2: Counting Bloom filter

A variant of the Bloom filter, called the counting Bloom filter (CBF) re-

places the bit-vector with a count-vector, (Figure 2.2) where each location

is a count value. Originally designed to be a type of Bloom filter that could

program as well as delete elements from it, this data structure can also be

used to count the multiplicity of a stored element. The query input is now

hashed into multiple count values in the count-vector, instead of bits in a

bit-vector. The minimum value among all the indexed counts is an estimate

of the multiplicity of the queried element. When an element is to be stored

in the CBF, the hashed count values are all incremented.

Given that hash functions for the Bloom filter generate hash values that are

uniformly distributed across positions in the bit-vector, there can be wastage

of memory bandwidth during the query and program operations. A DDR3

memory fetch, for example, opens up a whole line in the memory, which can

run up to a couple of Kbs, while the Bloom filter might end up using only

one bit in that line. Other hash values may index locations in other DDR

lines. A solution to this problem is a blocked Bloom filter [19]. As shown

in Figure 2.3, the blocked Bloom filter is an array of bit-vectors. A hash

function HASH0, say the primary hash function, hashes the input into one

of the bit-vectors. This bit-vector is read from memory, and the remaining

hash functions (call them subsidiary hash functions) index into locations

within this bit-vector. This ensures that all operations access locations close

to each other in memory thus ensuring better memory performance. The

blocked Bloom filter performs with better throughput but also a higher false

positive rate, depending on how well the hash functions perform.
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Figure 2.3: Blocked Bloom filter

2.2 BLESS

2.2.1 Counting k-mers

Being a k-mer spectrum-based algorithm, BLESS has to count the number

of occurrences of each k-mer across all reads in the input dataset. A read of

length l can give (l−k+1) k-mers. The size of all k-mers is thus much larger

than the size of the reads, and a data-structure designed for (key, value)

storage of all k-mers in the read set and their associated multiplicities can

be too big to fit in main memory.

BLESS does the counting by hashing k-mers into a number of files such

that a particular k-mer will be written always into a particular file. This

means that when finally counting the k-mers, these files can be loaded one

at a time, and each file can be made small enough to fit into main memory.

To decide solid k-mers, either the user can provide a threshold for the

number of occurrences above which a k-mer must be considered solid, or let

the tool decide a good threshold. In the hardware implementation, the former

method is used and the value may be programmed into the FPGA through

an access through the PCIe port, though it is not very hard to mimic the

tool’s method of determining the threshold in hardware. The solid k-mers

are then programmed into a Bloom filter for use during error correction.

2.2.2 Determining locations to be corrected

BLESS corrects errors in reads by replacing a weak k-mer by the correct solid

k-mer. For this, first the parts of the read containing weak k-mers must be

determined. A simple way to achieve this is to query whether each k-mer in
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a read exists in the Bloom filter’s list of solid k-mers, and if it does not exist

in the Bloom filter, to correct it. However, the Bloom filter can deliver false

positive queries, so BLESS stands to miss correcting some of the weak k-mers

by following this naive procedure. To avoid this problem, BLESS uses some

heuristics to turn some of the solid k-mers into weak k-mers.

For example, if there is an isolated solid k-mer in a read, then that k-mer

is considered weak. If there is an island of weak k-mers of size k − 1 (a

weak k-mer island is a set of consecutive weak k-mers surrounded by solid

k-mers or the read boundary; a similar definition may be used for a solid

k-mer island), BLESS extends the island by one position in both directions

if possible. This is because an erroneous base will be contained in k k-mers

and one should expect as many weak k-mers to be present adjacent to each

other in a read containing an erroneous base.

2.2.3 Correcting errors

Figure 2.4: BLESS error-correction algorithm

Figure 2.4 depicts a sample execution of the core error-correction routine

in BLESS that determines possible corrections to an erroneous read. Given

is a read of length 10, and correction is attempted using 4-mers. The first

k-mer, CAGA, in the read is a solid k-mer. This implies that all the bases
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Figure 2.5: Corrections at the end of a read

in the first k-mer are correct. The next k-mer, AGAA, is weak. This means

that the last base in the second k-mer has to be corrected. The algorithm

tries three alternative k-mers with bases C, G, and T at the last position.

Two alternatives, AGAG and AGAT are solid k-mers, but only one of the

two can be the correct replacement for the second k-mer in the read. The

other could arise from a similar k-mer in another part of the genome, or

from a false positive from the Bloom filter. To filter out wrong candidate

correction(s), adjacent k-mers from the read are checked, assuming that each

of the two possible candidates is the correct one. In this case, the correction

implied by AGAG holds and is accepted as a valid candidate correction. In

general, when k k-mers covering a base correction all turn out to be solid,

that base correction is a good candidate to retain.

If the base to be corrected is at one of the ends of the read, it may not be

possible to find k k-mers within the read containing each candidate correction

to the base. In this case, the algorithm looks for all possible extensions of

the k-mer beyond the end of the read by removing one base at the end

contained inside the read and trying out all four bases at the opposite end.

The extension is done for a few steps less than k. This is depicted in Figure

2.5.

There can be cases where the algorithm needs to correct a read with no

solid k-mers in it. In this case, first the leftmost k-mer (or the first k-mer)

is corrected by making a small number of modifications to it. Subsequently,

the algorithm presented above is employed to correct the rest of the read

starting from the second k-mer. The second step has to be executed multiple

times if multiple choices exist for the correct first k-mer in the read.

It is possible that after the algorithms described so far complete, they
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provide a list of candidate corrections rather than just one. BLESS sums

up the quality score of each corrected base in a candidate, and discards all

candidates except the one with the minimum total score. The hardware

implementation follows BLESS, but uses a reduced 2-bit representation of

quality scores rather than the 8-bit native representation.
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CHAPTER 3

HARDWARE ACCELERATION OF BLESS

3.1 Design Methodology

3.1.1 Overview

The custom design for accelerating BLESS is implemented on the DE5 FPGA

board that comes with Altera’s Stratix V FPGA. The board supports com-

munication with a host PC through a PCI Express Gen3 x8 bus. It has two

DDR3 memory modules mounted on it, of capacity 2 GB each. The memory

modules are accessed through Altera’s IP blocks, which provide an interface

to an accelerator with a bus width of 512 bits per access at a rate of 200

MHz.

The overall architecture of the hardware implementation is shown in Figure

3.1. First, the host PC dispatches reads to the FPGA via the PCIe interface

for counting the occurrences of k-mers. The custom hardware implementa-

tion (or “accelerator”, henceforth) uses a CBF to count the occurrences of

the k-mers in reads. To do this, the hardware extracts all k-mers from each

of the reads and programs them into the CBF counter vector housed in the

DDR3 memory modules on the board. Then, reads are transferred to the

FPGA a second time, and weak k-mers in each read are corrected in the

error-correction unit and the corrected reads are read back by the host PC.

Each operation will be explained in the following sections in detail.

3.1.2 Hardware components

This section will describe the main hardware components used in the design.
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Figure 3.1: Architecture of hardware implementation

Counting Bloom filter

The CBF in the hardware implementation is fashioned after the blocked

Bloom filter depicted in Figure 2.3. Instead of the primary hash function

choosing a bit-vector, the primary hash function will now choose a count-

vector and the subsidiary hash functions will index into this vector of count

values. An example structure of the CBF for 45-mer queries is shown in

Figure 3.2. Here, the number of input bits is 90 because two bits each are

needed to represent a base from the alphabet {A, C, G, T}, and hence a string

of 45 such bases needs 90 bits. The main hash function HASH0 addresses

into the DDR3 memory retrieving a block of data which is 1024 bits wide.

This 1024-bit wide block is an array of 2-bit counter values. The remaining

9-bit wide hash functions address into this array of counters. During the

program operation, the selected counter values are incremented and the line

is written back into memory (the counters saturate). For a query operation,

if each selected counter exceeds the threshold value for solidity, the query

(k-mer) is determined to be solid.

Figure 3.2: The blocked counting Bloom filter structure used to count
k-mers

The hash functions in the CBF are created out of look-ahead Linear Feed-

back Shift Registers (la-LFSR) [20]. An n-step la-LFSR is a pseudorandom
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number generator, which in a single iteration, implements n iterations of a

corresponding LFSR. In the accelerator, a k-mer is used to determine the

initial state of the la-LFSR and after running the la-LFSR the new state is

used as a hash output. Computationally simple, with a systematic method

to determine the circuit of an n-step la-LFSR given n and the taps of the

corresponding LFSR, there are three advantages in using this method for

implementing hash-functions:

• The structure of the la-LFSR can be easily pipelined. For example, to

generate a single 21-step la-LFSR, one may use three 7-step la-LFSRs

cascaded one after the other giving a three-stage pipelined implemeta-

tion.

• Multiple hash-functions can be generated by simply changing the LFSR

taps.

• The RTL for a hash function can be automatically generated. To help

design different configurations of the accelerator, a C program was writ-

ten that generates the Verilog code for a hash function of given speci-

fication using the la-LFSR theory.

As explained before, the rationale behind using a blocked memory layout

for the CBF is to reduce the number of DDR3 accesses required per k-mer

program and query operation. A normal Bloom filter requires as many ran-

dom memory accesses as there are hash functions, whereas the blocked type

Bloom filter requires access to a single contiguous block of data (bits ad-

dressed by HASH0). To further minimize the access times, one must limit

the number of DDR3 pre-charge cycles required per k-mer query. This means

that the number of bits accessed by HASH0 should be less than or equal to

the bit-width of a DDR3 row, since only a single row is available for reads or

writes after a pre-charge cycle. If a smaller number of bits than the DDR3

row-width are accessed per k-mer program or query, then a pre-charge cycle

is not completely utilized. However an increase in the number of bits read by

HASH0 would not increase the throughput of the algorithm, though it could

potentially improve its accuracy by reducing the chances of two different k-

mers choosing the same set of counters within a block. Hence, allocating only

512 bits for each count-vector accessed by HASH0 (DDR3 row width in DE5

is greater than 512 bits), will minimize the number of accesses requested from
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Altera’s external memory controller IP per k-mer program and query (since

the bit-width of the IP’s data bus is 512). At the same time, since BLESS

verifies a base correction by querying more than one k-mer containing that

base, the effect of the potentially higher false positive probability arising from

the blocked layout of the Bloom filter is reduced greatly.

Since the la-LFSR hash functions are randomizing functions, the addresses

generated for the DDR3 memory will have little spatial locality. This allows

exploitation of bank-parallelism in such memories. Bank-parallelism means

that a DDR memory can work on accesses to different banks in the memory

at the same time. Hence, if the generated memory accesses are very well

spread across the different banks within the same memory device, then the

throughput of the memory accesses is maximized. In addition, there are two

DDR3 memory devices on the DE5 board, and each of the devices can act

independently of the other. This provides another opportunity to increase

memory throughput and reduce the time taken to query for a k-mer on the

average. Combining these features of DDR memories and the particular

memory specifications of the DE5 board, the CBF in the accelerator is split

across the two DDR3 memory slots on the DE5 board, the CBF utilizing all

4 GB of space available. The HASH0 function is designed to generate an

address whose bit-width is one more than that of the address bus of each

individual DDR3 memory module on the board. The most signficant bit

of the address is examined to determine which of the two memory slots an

access goes to. Since the two different DDR3 slots can have two different

response times, a slot that was requested for data second can respond first.

To deal with this problem, the MSB of the address is stored until the access

is completed, to correctly order the responses from the slots and send them

back to the CBF logic.

Even though the la-LFSR-based hash functions generate addresses that

are pseudorandom, it is possible that at some point of time, many addresses

are consecutively generated to access only one of the two DDR3 memory

slots. This can lead to one of the DDR3 memory slots being swamped with

requests while the other slot is idling. To average out the effects of such

blocks of consecutive accesses occurring to a single slot, extra First In First

Out (FIFO) queues are added at the input interfaces of the DDR3 controller

IPs.

Figure 3.3 shows the overall memory organization for the CBF as discussed
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Figure 3.3: Memory organization for the counting Bloom filter

above. An example is described next to demonstrate the operation of the

memory structure.

C-A and C-B are two memory controllers. The address map for the CBF

starts at C-A and ends in C-B. Say, C-A and C-B have a capacity to accept

eight outstanding memory accesses at any given point of time. Even though

the hash functions in the Bloom filter should generate addresses uniformly

across the memory map, it is possible that addresses come in chunks address-

ing C-A and C-B at some point in time. Say, the first sixteen requests are

to C-A and the next sixteen are to C-B. In the native design, the accesses

would be stalled after the eighth access to C-A because the subsequent ac-

cesses have to wait for C-A to complete processing the first request. Note

that C-B is idling during this period while accesses for C-B may be ready

in the pipeline. To prevent this stall, the extra accesses are collected into

FIFO-A allowing the second set of sixteen accesses to proceed to access C-B.

Since the seventeenth request (first request to C-B) may be serviced before

the sixteenth request (last request to C-A), the read data may be available

out of order. To correctly order the read data, the MSBs of the accesses, iden-

tifying which DDR3 memory an access is meant for, are stored in a FIFO

(labeled “tokens”), and in conjunction with a MUX determine, the order in

which the read data must be sent back.

Read profiling unit

After the CBF has been programmed with all the k-mers in the read dataset,

and before correcting errors, the accelerator has to decide which bases in a

read need to be corrected. There are l−k+1 k-mers in a read R with length

l, which are generated in parallel and sent to the CBF. The results of the

queries are used to build the solid k-mer island map of the read, which is a

bit-vector with l − k + 1 bits with a 1 at a position indicating that a k-mer
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starting at that position within the read is solid. The parallel extraction of

k-mers out of a read allows the generation of a large number of queries for the

CBF, which sends requests to DDR3, making good utilization of the DDR3

bandwidth. For example, when l is 101 and k is 45, 57 k-mers are generated

in a single clock-cycle. In addition, the hardware cost of doing this is very

little given that only rewiring is needed for this. An example is in Figure 3.4.

Figure 3.4: Generating k-mers from reads

Once the island map is produced it is sent through a pipeline of combi-

national logic masks that implement many of the heuristics BLESS uses so

as to mitigate the effects of the false positives of the Bloom filter, or to fil-

ter out solid k-mers which may be produced due to a similarity between an

erroneous read and another part of the genome that is sequenced correctly.

The recursive unit

The base algorithm in BLESS was summarized in Figure 2.4. This algo-

rithm returns a list of candidate corrections that fix the weak k-mers in a

read. Naturally, the core hardware unit for correction executes this func-

tionality. The software implementation of BLESS executes this functionality

using recursive function calls, hence the rest of the document will call the

hardware that executes this feature, the recursive unit. The implementation

of this unit is depicted in Figure 3.5. It uses two BRAMs to store interme-

diate candidate corrections. Referring back to Figure 2.4, for example, after

looking at the first weak k-mer in the read, the intermediate candidates will

be CAGAGCTTAT, and CAGATCTTAT. In a recursion that looks at an

even numbered position in the read, candidates are picked from BRAM1,

k-mers produced from it, new candidates decided for correcting the current

location, and the results written to BRAM0. In a recursion that looks at an

odd numbered position in the read, the roles of the BRAMs are interchanged.
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Comparing to the software, the recursive call stack includes the candidate

corrections and various control signals and state-machine bits that indicate

the stage of execution.

Figure 3.5: The recursive unit

Later representations of the recursive units will assume the inclusion of

a comparator block that picks the candidate that corrects bases with the

lowest total quality score as the correct candidate, along with the recursion

implementation presented above.

One other point needs to be noted so that subsequent diagrams are not

confusing. For the case where a read has no solid k-mers in it, the error-

correction routine needs to potentially correct bases at either ends of the

read. Figure 2.5 described the method used to verify a correction at the

end of a read using extensions beyond the read. In the implementation of

the task that handles reads with no solid islands in them, therefore, two

such extensions are needed, one at the left end of the read and another at

the right end of the read. The extension toward the right end of the read is

handled by the recursive unit executing the correction algorithm following the

determination of the candidate replacements for the first k-mer in the read.

The extension toward the left needs to be handled by a different recursive

unit. Hence, in later representations of the task handling the correction of

a read with no solid k-mers in it, there will be two types of recursive units

operating one after the other.
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Other units in the design

There are a few other hardware units in the error-correction block in addition

to the recursive unit. They will be referred to using different names to

indicate their impact on throughput, but none of them is as critical to overall

throughput as the recursive units referred to above.

• Pipelined units. These are pipeline stages that convert one representa-

tion of the island map that represents the positions of weak islands in

a read into another that is convenient for the units performing the cor-

rection to use. The throughput of these units does not depend on any

external memory queries, and is solely determined by the throughput

at their inputs and the back-pressure from the subsequent blocks.

• Iterative units. These are slower than the pipelined units but faster

than the recursive units. The reason they are slower than the pipelined

units is that their throughput depends on memory latency. They are

faster than the recursive units because their next access of memory

does not depend on the result of the last access. In the case of the

recursive units, the next set of candidate corrections, and hence the k-

mers to be queried from them depend on the set of candidates written

into BRAM as a result of k-mer queries from the last set of candidate

corrections (numbered step 3 in Figure 3.5). There are two types of

iterative units in the design. One type operates after the recursive

unit completes recording all possible candidate corrections for weak

islands, when the weak islands are contained completely inside a read.

This type takes each candidate correction from the recursive unit and

checks k-mers from the solid part of the read that contain the modified

bases in this candidate. The other type operates before the recursive

unit when there are no solid k-mers in a read. This type tries to make a

minimal number of changes to the first k-mer in the read to see whether

it can find a solid k-mer to substitute into that position. This allows

the recursive algorithm to correct the rest of the read as described in

Section 2.2.3.
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3.1.3 Extracting task-level parallelism

Errors in disjoint portions of a single read can be corrected independently.

As shown in Figure 3.6, disjoint erroneous portions are separated by at least

one solid k-mer. Four independent tasks running in parallel can be employed

to correct four types of errors and the results can be appropriately combined

into the correction of a single corrected read (note that the ends of the read

are labeled 5’-end and 3’-end; these will be used as terminology without

further elaboration). This can allow error correction to proceed faster due to

the extraction of task-level parallelism.

Figure 3.6: Task-level parallelism

Each of the tasks shown in Figure 3.6 uses one or more recursive units. In

addition, each task may contain a variable number and type of pipelined and

iterative units. So, overall these are very similar tasks, with customizations

for dealing with a specific part of the read. However, the amount of work

done by these tasks is not the same. This is because errors are not uniformly

distributed in a read. It is observed that there are more errors in the 3’-

end part of the read than in other parts. If a similar number of resources is

allocated to each task, then there would be a load-balancing problem. Hence,

resources need to be allocated to tasks in proportion to the work they do.

In addition, the allocated resources need to address critical computations in

each of the tasks. As mentioned before, the performance critical blocks are

the recursive units. Hence more recursive units will be allocated to tasks

that need to do more work. For example, the task addressing errors at the

3’-end of the read will get more recursive units. The allocation is decided

based on the simulation of a sample set of reads from a complete dataset.

When the results of load-balanced tasks need to be combined there can still

be some issues. This is because the load-balancing scheme discussed above

may only balance the throughputs of the tasks on the average. There can
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still be throughput variations among the tasks from one input to another.

Referring to Figure 3.7, two load-balanced tasks, Task A and Task B, operate

on the same input and their outputs are combined. The tasks have equal

average throughput. However, for any given input they can have different

execution times. In this case, the faster executing task should hold its output

and remain idle until the other task completes. The tasks will thus keep

blocking each other creating idle cycles for portions of the hardware. To

more efficiently use the hardware, extra memory is added at the output and

at the input of each task. In this way, each task can write its output to

local memory and proceed to the next input without waiting for the slower

task. Since the tasks have the same average throughput in the long run, the

number of times the tasks block each other can be reduced if a sufficient

amount of local memory is provided.

Figure 3.7: Averaging throughput variance

The nature of tasks in Figure 3.6 is identical to that of the tasks described

in the preceding two paragraphs. The tasks can be balanced on the average,

but not from one read to the next. This is because, for any particular read,

there can be more errors in one part of the read than another, and there

may be more candidates that need to be considered at intermediate steps of

the recursion for that part. These depend on the statistics of the sequenced

read dataset and is beyond the control of the algorithm to decide. Thus pro-

visioning for load-balancing and throughput-averaging, the error-correction

block in the hardware implementation is assembled as in Figure 3.8.

The input consisting of the read, 2-bit quality scores and the island map
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Figure 3.8: The architecture of the error-correction block

representation are sent to each of the tasks. The tasks each have a set of

pipelined and iterative units. Where recursive units are used, provision is

made for instanciating more than one of the units in parallel. Many recur-

sive units operating in parallel can provide outputs out of order, because a

recursive unit that accepts the second input may have a lesser amount of

work to do than the recursive unit that accepted the first input. This makes

it necessary to employ some form of reordering at the outputs of these units.

A scheme similar to the one used to reorder memory request responses pre-

sented in Figure 3.3 is used here. In addition, on examining Figure 3.8, it

becomes clear that many hardware units are operating in parallel that need

to query for k-mers in the CBF. This means that some form of arbitration

is required among these different units. In Figure 3.8, it may be noted that

there are arbiters provided at various levels in the design that feed into a

main arbiter. The arbiters are designed to assign priority to certain units

that interface with them. For example, tasks related to 3’-end correction

have higher priority in the main arbiter.

3.2 Experiments and Results

The methods presented in Section 3.1 were implemented in hardware and ex-

periments were conducted using different benchmarks to examine the efficacy

of the design. The results of the experiments are presented here.
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3.2.1 Data preparation

To assess the performance of the accelerator, its accuracy and runtime were

compared with those of BLESS, Musket [21], and Lighter [22]. Musket is a

very fast and accurate tool that was the best in terms of execution speed in a

previous evaluation work [23] and Lighter is a recently introduced super-fast

error-correction algorithm that does not require counting the multiplicity of

k-mers. The versions of BLESS and Musket used for the experiments were

0.12, 1.1, respectively. Lighter was downloaded from its repository on May

24, 2014.

Four read sets from two bacterium genomes and two human chromosomes

were used for the evaluation. D1, D2, and D3 were downloaded from the Na-

tional Center for Biotechnology Information (NCBI) Sequence Read Archive

(SRA) and the Genome Assembly Gold-Standard Evaluations (GAGE) [24]

website. D4 was generated using simNGS (http://www.ebi.ac.uk/goldman-

srv/simNGS) from human chromosome 1 that is the longest chromosome

in the human genome. The characteristics of the read sets are summarized

in Table 3.1. The corrected reads were compared with the reference DNA

sequences downloaded from the NCBI Reference Sequence Database, and

their accuracy was evaluated using Error Correction Evaluation Toolkit) [25].

BLESS, Musket, and Lighter were evaluated on a server with two six-core

Xeon X5650 processors and 24 gigabytes of memory.

3.2.2 FPGA resource usage

The design was fitted on an Altera Stratix V 5SGXEA7N2F45C2 FPGA. All

configurations used four recursive functional units in the 3’-correction task

and three recursive functional units in the no-solid-island correction task. All

other units were instanciated once. The FPGA has 234,720 ALMs, 938,800

registers, and 52,428,800 memory bits. Results are summarized in Table 3.2.

3.2.3 Accuracy and running time

ECET uses sensitivity, gain, and specificity as the accuracy metrics. It counts

the number of erroneous bases correctly modified (true positive, TP), the

number of correct or erroneous bases erroneously changed (false positives,
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Table 3.1: Datasets used for evaluation

ID Genome Reference Read
Genome
length
(Mbase) c

Read
length

Number of
reads

Per-
base
Error
(%) d

D1 S.aureus
NC010079,
NC010063.1,
NC012417.1

SRR022868 2.9 101 1,096,140 2.1

D2 E.coli NC 000913 SRR001665 4.6 36 20,693,240 0.5

D3
Human
Chr14

NC000014.8 N/Aa 88.2 101 36,172,396 1.4

D4
Human
Chr1

NC000001.10 N/Ab 225 101 89,220,048 0.6

a Downloaded from the GAGE website

b Generated using simNGS

c Number of bases in reference sequences after all the bases that are neither A, C, G, nor T are removed

d How many substitution errors each read set has

Table 3.2: Summary of FPGA resource utilization

Dataset k-mer length ALM(%) Register(%) Memory(%)

D1 21 40 22 22
D2 19 25 15 9
D3 31 43 24 22
D4 45 44 25 22

FP), the number of erroneous bases unmodified (false negatives, FN), and

the number of remaining bases (true negative, TN). Then, sensitivity, gain,

and specificity are calculated using these quantities. Sensitivity, defined as

TP/(TP + FN), shows how many errors in the input reads are corrected.

Gain, defined as (TP - FP)/(TP + FN), represents the ratio of the reduction

of errors to the total number of errors in the original reads. Specificity shows

the fraction of error-free bases left unmodified, and it can be defined as

TN/(TN + FP).

Accuracy and runtime of each method are shown in Table 3.3. The accu-

racy of the tools is sensitive to their key parameters. In order to obtain the

best results using each software, we applied a contiguous range of numbers

to the key parameters of each software and chose the combination of the
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parameters that makes gain of the method the highest. Lighter, and Musket

support multiple cores and they were executed using all the twelve cores in

the server while only one core was used for BLESS.

As summarized in Table 3.3, the implementation presented in this thesis

performed faster than other methods in all cases. For D1, it was 43x faster

than BLESS. For D1 and D2 it was more than 2x faster than Lighter, the

fastest competitor. Accuracy of the hardware accelerator was better than

that of Lighter and Musket for D1 and D3. The average speedup of the

accelerator was 36.7x and in the worst case it was 28.2x faster than BLESS.

The accuracy of the accelerator compares well with that of competing tools

for all the cases.

Table 3.3: Comparison of accuracy and runtime of each error-correction
method; suffix“(p)” indicates parallelized on 12 cores

Data Tool
Accuracy

Runtime(s) Speedup(x)
Sensitivity Gain Specificity

D1

Accelerator 0.883 0.879 1.000 6.35 1
BLESS 0.895 0.895 1.000 273 43.0

Lighter (p) 0.652 0.643 1.000 17 2.6
Musket (p) 0.711 0.705 1.000 66 10.4

D2

Accelerator 0.927 0.923 1.000 31 1
BLESS 0.969 0.967 1.000 1293 41.7

Lighter (p) 0.941 0.926 1.000 88 2.8
Musket (p) 0.936 0.928 1.000 115 3.7

D3

Accelerator 0.654 0.610 0.999 322 1
BLESS 0.673 0.644 1.000 9099 28.2

Lighter (p) 0.602 0.555 0.999 414 1.2
Musket (p) 0.577 0.537 0.999 1649 5.1

D4

Accelerator 0.853 0.818 1.000 690 1
BLESS 0.891 0.870 1.000 23728 34.0

Lighter (p) 0.879 0.828 1.000 1047 1.5
Musket (p) 0.888 0.866 1.000 3051 4.4

3.3 Conclusions

DNA error correction is an important process to be integrated into genomic

workflows. While the quality of error correction is high in state-of-the-art

tools, their throughput needs improvement. If the best error-correction tool
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could also be made the fastest, it would greatly benefit downstream analyses

performed on DNA sequencing data. In this work, one of the most accurate

DNA error-correction algorithms available today, BLESS, was successfully

ported to an FPGA platform to create one of the fastest tools for correcting

errors in Illumina reads.

Although the amount of speedup achieved is signficant, it must be noted

that the implementation has not utilized the full capabilities of the FPGA

device. However, it is designed to scale to a larger number of threads without

hassles by simple adjustment of parameter values in the source code. There

is also potential in using multiple FPGAs to further accelerate the algorithm

as it is inherently data-parallel. It will also be interesting to see how this

implementation would scale on a system such as BlueDBM [26].

Not all features in BLESS have been implemented in the accelerator, e.g.,

some heuristics applied to the initial island map to mitigate the effects of false

positives of the Bloom filter are not included. Because some of these rules are

yet to be implemented, the accuracy of the accelerator is not equal to that

of BLESS, though it is comparable. In addition, a new version of BLESS,

BLESS 2 [27], was released recently, which improves on the accuracy and

speed of BLESS. To improve accuracy, BLESS 2 introduces new techniques

to analyze quality scores better, as well as to trim reads where errors cannot

be corrected satisfactorily. To improve runtime, it uses a new method to

count k-mers [28], and also parallelizes the error-correction routine on multi-

ple CPU cores. Future work will concentrate on combining the strength of the

hardware implementation presented here to quickly find a list of candidate

corrections with the strength of the new software techniques to more accu-

rately pre-process reads and post-process candidate corrections by tightly

integrating hardware and software routines. Some other directions worth ex-

ploring include combining functional units in different error-correction tasks

to obtain a generic task that will partition resources automatically based on

error statistics in the input data.
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