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Abstract

In a generic distributed information processing system, a number of agents

connected by communication channels aim to accomplish a task collectively

through local communications. The fundamental limits of distributed infor-

mation processing problems depend not only on the intrinsic difficulty of the

task, but also on the communication constraints due to the distributedness.

In this thesis, we reveal these dependencies quantitatively under information-

theoretic frameworks.

We consider three typical distributed information processing problems:

decentralized parameter estimation, distributed function computation, and

statistical learning under adaptive composition. For the first two problems,

we derive converse results on the Bayes risk and the computation time, re-

spectively. For the last problem, we first study the relationship between the

generalization capability of a learning algorithm and its stability property

measured by the mutual information between its input and output, and then

derive achievability results on the generalization error of adaptively com-

posed learning algorithms. In all cases, we obtain general results on the

fundamental limits with respect to a general model of the problem, so that

the results can be applied to various specific scenarios. Our information-

theoretic analyses also provide general approaches to inferring global prop-

erties of a distributed information processing system from local properties of

its components.
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Chapter 1

Introduction

In this thesis we use information-theoretic tools to study the fundamental

limits of distributed information processing. In a generic distributed infor-

mation processing system, a number of agents connected by communication

channels aim to accomplish a task collectively through local communica-

tions. The communication among the agents can be either static, where

certain agents passively receive messages sent by the other agents; or dy-

namic, where the agents interact with each other so that the messages sent

by each agent depend on the messages received from the other agents; or se-

quential, where each agent receives messages from the upstream agents, and

sends messages to downstream agents. The fundamental limits of distributed

information processing thus depend not only on the intrinsic difficulty of

the task, but also on the communication constraints due to the distribut-

edness. Our objective is to reveal these dependencies quantitatively under

information-theoretic frameworks. The methods of analysis we develop also

provide general approaches to inferring the global properties of a distributed

information processing system from the local properties of its components.

We consider three typical distributed information processing problems: de-

centralized parameter estimation, as an example of non-interactive process-

ing; distributed function computation, as an example of interactive process-

ing; and statistical learning under adaptive composition, as an example of

sequential processing. For each problem, our goal is to obtain general results

on the fundamental limits with respect to a general model of the problem, so

that the results can be applied to various specific scenarios. For the first two

problems, we derive converse results on the Bayes risk and the computation

time, respectively. For the last problem, we first study the relationship be-

tween the generalization capability of a learning algorithm and its stability

property measured by the mutual information between its input and output,

and then derive achievability results on the generalization error of learning
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algorithms obtained from adaptive composition.

1.1 Decentralized Estimation

In Chapter 2, we study lower bounds for the Bayes risk in decentralized pa-

rameter estimation. In decentralized estimation, the estimator does not have

direct access to the samples generated according to the parameter of interest,

but only to the quantized and possibly noise-contaminated data received from

a local processor that observes the samples. The estimation performance is

therefore not only subject to the statistical relationship between the param-

eter and the samples, but also subject to the communication constraints

caused by the separation of the local processor from the estimator. When

there are more than one local processor, the estimation performance further

degrades because of the distribution of the samples and the communication

resources to multiple processors.

We start with deriving Bayes risk lower bounds for the centralized esti-

mation, where we find ways to relate the Bayes risk to various information-

theoretic quantities, such as the small ball probability of the parameter and

the mutual information between the parameter and the samples. The lower

bounds reflect how the estimation performance is limited by the statisti-

cal constraint, which exists even in the absence of the communication con-

straints, and is determined by the joint distribution of the parameter and

the samples as well as the distortion function. The lower bounds for the

centralized estimation also serve as the basis for deriving lower bounds for

the decentralized estimation.

When the estimation is decentralized, due to the quantization of the sam-

ples and the transmission over noisy channels, the mutual information be-

tween the parameter and the data received by the estimator is a contraction

of the mutual information between the parameter and the original samples.

Therefore, when applying the lower bounds derived for centralized estimation

to the decentralized estimation problems, it is crucial to sharply quantify this

contraction of information according to the communication constraints. We

use a powerful tool called the strong data processing inequality for this pur-

pose. The strong data processing inequality also couples the communication

constraint and the statistical constraint together in the lower bounds, which
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allows us to obtain much tighter Bayes risk lower bounds than one could get

from the ordinary data processing inequality.

For the situation with multiple local processors, we consider the cases

where the processors observe independent or dependent sample sets con-

ditional on the parameter, and where the communication protocol is non-

interactive or interactive. Our general results can recover and improve the

existing Bayes risk and minimax risk lower bounds for specific decentralized

estimation problems with noiseless channels, and also capture the effect of

noisy channels on the estimation performance. Moreover, our lower bounds

provide a general way to quantify the degradation of estimation performance

caused by distributing samples and communication resources to multiple pro-

cessors, which is only discussed for specific examples in existing works.

1.2 Distributed Function Computation

In Chapter 3, we study the problem of distributed function computation.

We consider a general model where the computing agents, or nodes, are

connected by point-to-point discrete memoryless channels, and each node

aims to compute a common function of the observations of all the nodes in the

network through local communication and computation. We are interested in

obtaining lower bounds for the fundamental limit on the computation time,

i.e., the minimum time needed by any algorithm to achieve a given accuracy

with a given confidence on the computation result at each node.

The quantity that plays a key role in our derivation is the conditional mu-

tual information between the function value and the computation result of an

arbitrary node, given the observations in a subset of nodes that contains this

node. Any requirement on the accuracy and confidence of the computation

results translates into a lower bound on this conditional mutual informa-

tion. On the other hand, the computation time of the algorithm, as well as

the communication constraints imposed by the network topology and by the

channel noise, place an upper bound on this conditional mutual information.

Our main objective is to establish tight lower and upper bounds on this con-

ditional mutual information according to the performance requirement and

the communication and time constraints, which in turn will provide us with

lower bounds on the computation time.

3



For the lower bound on the conditional mutual information of interest, we

propose a bound via the small ball probability, which captures the depen-

dence of the computation time on the joint distribution of the observations at

the nodes, the structure of the function, and the accuracy requirement. For

linear functions, the small ball probability can be expressed in terms of Lévy

concentration functions of sums of independent random variables, which lead

to strict improvements over existing results.

For upper bounds on the conditional mutual information of interest, we

propose a bound based on the strong data processing inequality, which com-

plements and strengthens the cutset-capacity upper bound in the literature.

In addition, to address the limitation of the single-cutset analysis in the lit-

erature, we propose a multi-cutset analysis, which quantifies the dissipation

of information as it flows across a sequence of cutsets in the network. This

analysis is based on reducing a general network to a bidirected chain, and the

results highlight the dependence of the computation time on the diameter

of the network, a fundamental parameter that is missing from most of the

existing results.

1.3 Stability and Generalization of Statistical Learning

Algorithms

In Chapter 4, we study the information-theoretic stability and generalization

capabilities of statistical learning algorithms. A statistical learning algo-

rithm can be viewed as a (possibly randomized) transformation that maps

the training dataset to a hypothesis. We say that such an algorithm is stable

if its output does not depend too much on any individual training instance.

Since stability is closely connected to generalization capabilities of learning

algorithms, it is of theoretical and practical interest to obtain sharp quanti-

tative estimates on the generalization error of learning algorithms in terms

of their stability properties.

We propose an information-theoretic notion of stability based on the mu-

tual information between a learning algorithm’s input dataset and its output

hypothesis. This notion of stability naturally follows from the idea that sta-

bility imposes limits on the amount of information the algorithm can extract

from the observed data. We derive upper bounds on the expected general-
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ization error and the absolute generalization error of a learning algorithm in

terms of its input-output mutual information. These upper bounds formalize

and quantify the intuition that the less information the output of a learning

algorithm contains about the input dataset, the better the algorithm general-

izes, or the less it overfits. We also discuss how to design learning algorithms

with controlled input-output mutual information, and show that regulariz-

ing the empirical risk minimization algorithm with the input-output mutual

information leads to the well-known Gibbs algorithm.

Another benefit of relating the generalization error of a learning algorithm

to its input-output mutual information is the ease of analyzing the generaliza-

tion capability of learning algorithms obtained from adaptive composition of

constituent algorithms. Adaptive composition can be realized in a decentral-

ized manner by multiple processors sharing the same dataset and sequentially

executing the constituent algorithms: each processor takes the dataset as well

as the outputs of the executed algorithms as its input, executes its own al-

gorithm, and sends the output to the downstream processors. By bounding

the input-output mutual information of each constituent algorithm, we can

upper-bound the generalization error of the final output of the composed

algorithm. The information-theoretic analysis also helps to capture how the

communication constraints due to separation of the processors influence the

generalization capability of the composed algorithm: although the effective

hypothesis space may be reduced by the communication constraint, the com-

posed algorithm can generalize better because of it. The same techniques can

be applied to adaptive data analytics, where the analyst chooses queries by

interacting with the dataset in multiple rounds, a topic that has become

popular in recent years.
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Chapter 2

Lower Bounds for Bayes Risk in Decentralized
Estimation

2.1 Introduction

2.1.1 Decentralized Estimation

In decentralized estimation, the estimator does not have direct access to the

samples generated according to the parameter of interest, but only to the

data received from local processors that observe the samples. In this chap-

ter, we consider a general model of decentralized estimation, where each local

processor observes a set of samples generated according to a common random

parameter W , quantizes the samples to a fixed-length binary message, and

then encodes and sends the message to the estimator over an independent

and possibly noisy communication channel. When the communication chan-

nels are noiseless and feedback from the estimator to the local processors

is available, the processors can operate in an interactive protocol by taking

turns to send messages, where the message sent by each processor can de-

pend on the previous messages sent by the other processors. An estimate

Ŵ is then computed based on the messages received from the local proces-

sors. The estimation performance is measured by the expected distortion

between W and Ŵ , with respect to some distortion function. The minimum

possible expected distortion is defined as the Bayes risk. We derive lower

bounds on the Bayes risk for this estimation problem, and gain insight into

the fundamental limits of decentralized estimation.

There are three types of constraints inherent in decentralized estimation.

The first, and the most fundamental one, is the statistical constraint, de-

termined by the joint distribution of the parameter and the samples. The

statistical constraint exists even in the centralized estimation, where the

estimator can directly observe the samples. To study how the estimation
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performance is limited by the statistical constraint, we start with deriving

lower bounds on the Bayes risk for centralized estimation in Sec. 2.2. The

results obtained in Sec. 2.2 apply to the decentralized estimation as well, but,

more importantly, they also serve as the basis for the refined lower bounds

for the decentralized estimation in Sec. 2.4 and Sec. 2.5.

The second is the communication constraint, due to the separation be-

tween the local processors and the estimator. The communication constraint

arises even when there is only one local processor. It can be caused by the

finite precision of analog-to-digital conversion, limitations on the storage of

intermediate results, limited transmission blocklength, channel noise, etc. In

Sec. 2.4, we present a detailed study of decentralized estimation with a single

processor and reveal the influence of the communication constraint on the

estimation performance. Section. 2.3 contains background information on

strong data processing inequalities, the major tool used in our analysis of the

communication constraint.

The third constraint appears when there are more than one local proces-

sors. It is the penalty of decentralization, caused by distributing the samples

and communication resources to multiple processors. We study decentral-

ized estimation with multiple processors in Sec. 2.5, where we show that,

regardless of whether or not the sample sets seen by different local proces-

sors are conditionally independent given the parameter, the degradation of

estimation performance becomes more pronounced when the resources are

distributed to more processors. We also provide lower bounds on the Bayes

risk for interactive protocols, where the processors take turns to send their

messages, and each processor sends one message based on its sample set and

the previous messages sent by other processors.

2.1.2 Method of Analysis

Our method of analysis is information-theoretic in nature. The major quan-

tity we examine is the conditional mutual information I(W ; Ŵ |U) with a

judiciously chosen auxiliary random variable U .

We first lower-bound this quantity according to the estimation perfor-

mance, such as the probability of excess distortion or the expected distor-

tion. The lower bounds will also depend on the a priori uncertainty about
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W , measured either by its small ball probability or by its differential entropy.

Any such lower bound can be viewed as a generalization of Fano’s inequality,

which indicates the least amount of information about W that must be con-

tained in Ŵ in order to achieve a certain estimation performance. We also

analyze the probability of excess distortion and the expected distortion via

the distribution of the conditional information density i(W ; Ŵ |U).

On the other hand, various constraints inherent in decentralized estimation

impose upper bounds on I(W ; Ŵ |U). According to the statistical constraint,

I(W ; Ŵ |U) is upper-bounded by the conditional mutual information between

W and the samples. The communication constraint further implies that

the amount of information about W contained in the estimator’s indirect

observation of the samples will be a contraction of the amount contained

in the samples. We use strong data processing inequalities to quantify this

contraction of information and to couple the communication constraint and

the statistical constraint together in the upper bounds on I(W ; Ŵ |U). When

there are multiple processors, strong data processing inequalities also give an

upper bound that decreases as the samples and communication resources are

distributed to more processors, which reflects the penalty of decentralization.

In addition, we rely on a cutset analysis that chooses the conditioning random

variable U to consist of all the samples seen by only a subset of the processors;

this choice is useful for analyzing the situation where the processors observe

sample sets that are dependent conditional on W .

Finally, by combining the upper and lower bounds on I(W ; Ŵ |U), we

obtain lower bounds on the Bayes risk.

2.1.3 Related Work

Early work on the fundamental limits of decentralized estimation mainly

focused on the asymptotic setting, e.g., determining the error exponent in

multiterminal hypothesis testing with fixed quantization rates. That work is

surveyed by Han and Amari [1]. In recent years, the focus has shifted towards

determining explicit dependence of the estimation performance on the com-

munication constraint (see, e.g., [2–6] and references therein). For instance,

Zhang et al. [2] and Duchi et al. [3] derived lower bounds on the minimax

risk of several decentralized estimation problems with noiseless communica-
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tion channels. Their results also provide lower bounds on the number of bits

needed in quantization to achieve the same minimax rate as in the centralized

estimation. Garg et al. [4] extended the lower bound for interactive protocols

in [2], which centered on the one-dimensional Gaussian location model, to the

setting of high-dimensional Gaussian location models. Braverman et al. [5]

presented lower bounds for decentralized estimation of a sparse multivariate

Gaussian mean. Their derivation is based on a “distributed data processing

inequality,” which quantifies the information loss in decentralized binary hy-

pothesis testing under the Gaussian location model. Shamir [6] showed that

the analysis of several decentralized estimation and online learning problems

can be reduced to a certain meta-problem involving discrete parameter es-

timation with interactive protocols, and derived minimax lower bounds for

this meta-problem.

The main idea underlying all of the above works is that one has to quantify

the contraction of information due to the communication constraint; however,

this is often done in a case-by-case manner for each particular problem, and

the resulting contraction coefficients are generally not sharp. Additionally,

these works only consider the situation where the sample sets are condition-

ally independent given the parameter and where the communication channels

connecting the processors to the estimator are noiseless.

By contrast, we derive general lower bounds on the Bayes risk, which

automatically serve as lower bounds on the minimax risk. We use strong

data processing inequalities as a unifiying general method for quantifying the

contraction of mutual information in decentralized estimation. Our results

apply to general priors, sample generating models, and distortion functions.

When particularized to the examples in the existing works, our results can

lead to sharper lower bounds on both the Bayes and the minimax risk. For

example, we improve the lower bound for the mean estimation on the unit

cube studied in [2], as well as the lower bound for the meta-problem of

Shamir [6]. Moreover, we consider the situations where the sample sets are

conditionally dependent and where the communication channels are noisy.

We also provide a general way to quantify the degradation of estimation

performance caused by distributing resources to multiple processors, which

is only discussed for specific examples in existing work.
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2.2 Bayes Risk Lower Bounds for Centralized

Estimation

In the standard Bayesian estimation framework, P = {PX|W=w : w ∈ W}
is a family of distributions on an observation space X, where the parameter

space W is endowed with a prior distribution PW . Given W = w, a sample X

is generated from PX|W=w. In centralized estimation, the unknown random

parameter W ∼ PW is estimated from X as Ŵ = ψ(X), via an estimator

ψ : X → W. Given a non-negative distortion function ` : W × W → R+,

define the Bayes risk for estimating W from X with respect to ` as

RB = inf
ψ

E[`(W,ψ(X))]. (2.1)

In this section, we derive lower bounds on the Bayes risk in the context of

centralized estimation. These bounds serve as lower bounds for the decentral-

ized setting as well, but they can also be used to derive refined lower bounds

for decentralized estimation, as shown in Secs. 2.4 and 2.5. We first present

lower bounds on the Bayes risk based on small ball probability, mutual infor-

mation, and information density in Secs. 2.2.1 and 2.2.2. These lower bounds

apply to estimation problems with an arbitrary joint distribution PW,X and

an arbitrary distortion function `, and also provide generalizations of Fano’s

inequality, as discussed in Sec. 2.2.3. Next, in Sec. 2.2.4, we present a lower

bound based on mutual information and differential entropy, which applies to

parameter estimation problems in Rd, with distortion functions of the form

`(w, ŵ) = ‖w − ŵ‖r for some norm ‖ · ‖ in Rd and some r ≥ 1.

2.2.1 Lower Bounds Based on Mutual Information and Small
Ball Probability

The small ball probability of W with respect to distortion function ` is defined

as

LW (ρ) = sup
w∈W

P[`(W,w) ≤ ρ]. (2.2)

10



Given another random variable U jointly distributed with W , the conditional

small ball probability of W given U = u is defined as

LW |U(u, ρ) = sup
w∈W

P[`(W,w) ≤ ρ|U = u]. (2.3)

Each of these two quantities measures how well the distribution PW or PW |U=u

concentrates in a small region of size ρ as measured by `(·, ·). The larger the

small ball probability, the more concentrated the corresponding distribution

is. We give a lower bound on the probability of excess distortion in terms of

conditional mutual information and conditional small ball probability:

Lemma 2.1. For any estimate Ŵ of W , any ρ ≥ 0, and any auxiliary

random variable U ,

P[`(W, Ŵ ) > ρ] ≥ 1− I(W ; Ŵ |U) + 1

log
(
1/E[LW |U(U, ρ)]

) . (2.4)

Proof. The inequality (2.4) is a direct consequence of the lower bound on the

conditional mutual information: whenever P[`(W, Ŵ ) > ρ] ≤ δ, it holds that

I(W ; Ŵ |U) ≥ (1− δ) log
1

E[LW |U(U, ρ)]
− 1,

which follows from the proof of Lemma 3.1 in Chapter 3. In Sec. 2.7.1, we

present an alternative unified proof of Lemmas 2.1 and 2.2 using properties

of the Neyman–Pearson function.

Our first lower bound on the Bayes risk for centralized estimation is an

immediate consequence of Lemma 2.1:

Theorem 2.1. The Bayes risk for estimating the parameter W based on the

sample X with respect to the distortion function ` satisfies

RB ≥ sup
PU|W,X

sup
ρ>0

ρ

(
1− I(W ;X|U) + 1

log(1/E[LW |U(U, ρ)])

)
. (2.5)

In particular,

RB ≥ sup
ρ>0

ρ

(
1− I(W ;X) + 1

log(1/LW (ρ))

)
. (2.6)

11



Proof. For an arbitrary estimator ψ : X→ W,

I(W ; Ŵ |U) ≤ I(W ;X|U) (2.7)

by the data processing inequality. It follows from Lemma 2.1 that

P[`(W, Ŵ ) > ρ] ≥ 1− I(W ;X|U) + 1

log
(
1/E[LW |U(U, ρ)]

) , ρ ≥ 0. (2.8)

Theorem 2.1 follows from Markov’s inequality E[`(W, Ŵ )] ≥ ρP[`(W, Ŵ ) >

ρ] and from the arbitrariness of ψ, PU |W,X , and ρ ≥ 0.

Remark 2.1. Precise evaluation of the expected conditional small ball prob-

ability E[LW |U(U, ρ)] in Theorem 2.1 can be difficult. The following tech-

nique may sometimes be useful: Suppose we can upper-bound E[LW |U(U, ρ)]

by some increasing function g(ρ), which has an inverse function g−1(p) =

sup{ρ > 0 : g(ρ) ≤ p}. Given some s ∈ (0, 1), choosing a suitable ρ > 0 such

that

g(ρ) ≤ 2−(I(W ;X|U)+1)/(1−s) (2.9)

guarantees

1− I(W ;X|U) + 1

log
(
1/E[LW |U(U, ρ)]

) ≥ s. (2.10)

It then follows from Theorem 2.1 that

RB ≥ sup
PU|W,X

sup
0<s<1

sg−1
(
2−(I(W ;X|U)+1)/(1−s)) . (2.11)

A similar methodology for deriving lower bounds on the Bayes risk has

been recently proposed by Chen et al. [7], who obtained unconditional lower

bounds similar to (2.6) in terms of general f -informativities [8] and a quan-

tity essentially the same as the small ball probability. However, as will be

shown later, the conditional lower bound (2.5) can lead to tighter results

compared to the unconditional version (2.6), and is also useful in the context

of decentralized estimation problems.

For the problem of estimating W based on n samples X1, . . . , Xn condition-

ally i.i.d. given W , we can choose the conditioning random variable U in (2.5)

12



to be an independent copy of Xn = (X1, . . . , Xn) conditional on W , denoted

as X ′n — that is, PW,Xn,X′n = PW ⊗ PXn|W ⊗ PX′n|W and PX′n|W = PXn|W .

This choice leads to

RB ≥ sup
ρ>0

ρ

(
1− I(W ;Xn|X ′n) + 1

log
(
1/E[LW |Xn(Xn, ρ)]

)) . (2.12)

We then need to evaluate or upper-bound I(W ;Xn|X ′n) and E[LW |Xn(Xn, ρ)].

For example, in the smooth parametric case when P is a subset of a finite-

dimensional exponential family and W has a density supported on a compact

subset of Rd, it was shown by Clarke and Barron [9, 10] that

I(W ;Xn) =
d

2
log

n

2πe
+ h(W ) +

1

2
E[log det JX|W (W )] + o(1) as n→∞

(2.13)

where h(W ) is the differential entropy of W , and JX|W (w) is the Fisher

information matrix about w contained in X. When (2.13) holds, we have

I(W ;Xn|X ′n) = I(W ;Xn, X ′n)− I(W ;X ′n) (2.14)

→ d

2
as n→∞, (2.15)

meaning that I(W ;Xn|X ′n) in (2.12) is asymptotically independent of n.

Upper-bounding E[LW |Xn(Xn, ρ)] is more problem-specific. We give two ex-

amples below, in both of which we consider the absolute distortion `(w, ŵ) =

|w − ŵ|, such that the Bayes risk gives the minimum mean absolute error

(MMAE). A benefit of lower-bounding MMAE is that the square of the re-

sulting lower bound also serves as a lower bound for the minimum mean

squared error (MMSE).

Example 2.1 (Estimating Gaussian mean with Gaussian prior). Consider

the case where the parameter W ∼ N(0, σ2
W ), the samples are Xi = W + Zi

with Zi ∼ N(0, σ2) independent of W for i = 1, . . . , n, and `(w, ŵ) = |w−ŵ|.

From the conditional lower bound (2.12), we get the following lower bound

for Example 2.1:
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Corollary 2.1. In Example 2.1, the Bayes risk is lower bounded by

RB ≥
1

16

√
πσ2

W

2(1 + nσ2
W/σ

2)
. (2.16)

Proof. Section 2.7.2.

Note that the MMAE in Example 2.1 is upper bounded by

RB ≤

√
σ2
W

1 + nσ2
W/σ

2
, (2.17)

which is achieved by Ŵ = E[W |Xn]. Thus the non-asymptotic lower bound

on the Bayes risk in (2.16) captures the correct dependence on n, and is off

from the true Bayes risk by a constant factor. If we apply the unconditional

lower bound (2.6) to Example 2.1, we can only get an asymptotic lower bound

RB &
1

4 log (1 + nσ2
W/σ

2)

√
πσ2

W

1 + nσ2
W/σ

2
as n→∞, (2.18)

which differs from the upper bound by a logarithmic factor in n. This exam-

ple shows that the conditional lower bound (2.5) can provide tighter results

than its unconditional counterpart (2.6).

Example 2.2 (Estimating Bernoulli bias with uniform prior). Consider the

example where the parameter W ∼ U [0, 1], the samples Xi ∼ Bern(w) condi-

tional on W = w for i = 1, . . . , n, and `(w, ŵ) = |w − ŵ|.

Corollary 2.2. In Example 2.2, the Bayes risk is lower bounded by

RB &
1

16
√

2πn
as n→∞. (2.19)

Proof. Section 2.7.2.

Note that the MMAE in Example 2.2 is upper bounded by

RB ≤
1√
6n
, (2.20)

which is achieved by the sample mean estimator Ŵ = 1
n

∑n
i=1 Xi. Thus, the
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lower bound in (2.19) asymptotically captures the correct dependence on n,

and is off from the true Bayes risk by a constant factor.

2.2.2 Lower Bounds Based on Information Density and Small
Ball Probability

For a joint distribution PU,W,X on U ×W × X, define the conditional infor-

mation density as

i(w;x|u) = log
dPW |U=u,X=x

dPW |U=u

(w). (2.21)

We give a lower bound on the probability of excess distortion in terms of

conditional information density and conditional small ball probability:

Lemma 2.2. For any estimate Ŵ of W based on the sample X, any ρ ≥ 0,

γ > 0, and any auxiliary random variable U ,

P[`(W, Ŵ ) > ρ] ≥P[i(W ;X|U) < log γ]− γE[LW |U(U, ρ)]+

γ inf
u,w,x

dPW |U=u

dPW |U=u,X=x

(w)P[i(W ;X|U) ≥ log γ]. (2.22)

Proof. The proof, inspired by the metaconverse technique from [11], is given

in Sec. 2.7.1.

Our second Bayes risk lower bound for centralized estimation is a conse-

quence of Lemma 2.2:

Theorem 2.2. The Bayes risk for estimating the parameter W based on the

sample X with respect to the distortion function ` satisfies

RB ≥ sup
PU|W,X

sup
ρ,γ>0

ρ
(
P[i(W ;X|U) < log γ]− γE[LW |U(U, ρ)]

)
. (2.23)

In particular,

RB ≥ sup
ρ,γ>0

ρ
(
P[i(W ;X) < log γ]− γLW (ρ)

)
. (2.24)
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Proof. With the aid of Markov’s inequality, (2.22) leads to the inequality

RB ≥ sup
PU|W,X

sup
ρ,γ>0

ρ

(
P[i(W ;X|U) < log γ]− γE[LW |U(U, ρ)]+

γ inf
u,w,x

dPW |U=u

dPW |U=u,X=x

(w)P[i(W ;X|U) ≥ log γ]

)
. (2.25)

The lower bound in (2.23) follows by replacing infu,w,x
dPW |U=u

dPW |U=u,X=x
(w) with

zero.

We give a high-dimensional example to illustrate the usefulness of Theo-

rem 2.2:

Example 2.3 (Estimating d-dimensional Gaussian mean with uniform prior

on d-ball). Consider the case where the parameter W ∈ Rd is distributed

uniformly on the ball W = {w ∈ Rd : ‖w‖2 ≤ a}, the samples are Xi = W+Zi

with Zi ∼ N(0, σ2Id) independent of W for i = 1, . . . , n, and `(w, ŵ) =

‖w − ŵ‖2.

Corollary 2.3. In Example 2.3, for any a > 0, σ2 > 0, and d ≥ 1, the

Bayes risk is lower bounded by

RB &
1

20

√
2πσ2d

n
as n→∞. (2.26)

Proof. Section 2.7.3.

Note that the Bayes risk in Example 2.3 is upper bounded by

RB ≤
√
σ2d

n
, (2.27)

which is achieved by the sample mean estimator Ŵ = 1
n

∑n
i=1 Xi. Thus, the

lower bound in (2.26) captures the correct dependence on n (asymptotically)

and d (non-asymptotically), and is off from the true Bayes risk by a constant

factor. Moreover, by squaring (2.26), we get a lower bound on the MMSE

that also captures the correct dependence on n and d.
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2.2.3 Generalizations of Fano’s Inequality

The lower bounds on the probability of excess distortion in Lemmas 2.1 and

2.2 can be viewed as generalizations of Fano’s inequality.

When W takes values on {1, . . . ,M} and `(w, ŵ) = 1{w 6= ŵ}, setting

ρ = 0 in (2.4) without conditioning on U recovers the following generalization

of Fano’s inequality due to Han and Verdú [12]:

P[Ŵ 6= W ] ≥ 1− I(W ;X) + 1

log(1/maxw∈[M ] PW (w))
. (2.28)

Similarly, setting ρ = 0 in (2.22) without conditioning on U , we get

P[Ŵ 6= W ] ≥ sup
γ>0

P[i(W ;X) < log γ]− γ max
w∈[M ]

PW (w)+

γ inf
w,x

dPW
dPW |X=x

(w)P[i(W ;X) ≥ log γ]. (2.29)

When W is uniformly distributed on {1, . . . ,M}, (2.28) reduces to the usual

Fano’s inequality

P[Ŵ 6= W ] ≥ 1− I(W ;X) + 1

logM
, (2.30)

while (2.29) reduces to the Poor–Verdú bound [13]

P[Ŵ 6= W ] ≥ sup
γ>0

(
1− γ

M

)
P[i(W ;X) < log γ]. (2.31)

When W is continuous, (2.4) and (2.22) provide continuum generalizations

of Fano’s inequality. For example, when W ⊂ Rd and `(w, ŵ) = ‖w − ŵ‖2,

(2.4) leads to

P
[
‖Ŵ −W‖2 > ρ

]
≥ 1− I(W ;X) + 1

log(1/ supw∈W P[‖W − w‖2 ≤ ρ])
, (2.32)

which is also obtained by Chen et al. [7], and generalizes the result of Duchi

and Wainwright [14]. Similarly, (2.22) leads to

P[‖Ŵ −W‖2 > ρ] ≥ sup
γ>0

(
P[i(W ;X) < log γ]− γ sup

w∈W
P[‖W − w‖2 ≤ ρ]

)
.

(2.33)
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2.2.4 Lower Bounds Based on Mutual Information and
Differential Entropy

For the problem of estimating a real-valued parameter W with respect to

the quadratic distortion `(w, ŵ) = (w − ŵ)2, it can be shown that (see, e.g.

Lemma 3.3 in Sec. 3.2.1), if E(W − Ŵ )2 ≤ α, then

I(W ; Ŵ |U) ≥ h(W |U)− 1

2
log(2πeα). (2.34)

Upper-bounding I(W ; Ŵ |U) by I(W ;X|U), we obtain a lower bound on the

MMSE

inf
ψ

E(W − Ŵ )2 ≥ sup
PU|W,X

1

2πe
2−2(I(W ;X|U)−h(W |U)). (2.35)

More generally, for the problem of estimating a parameter W taking values

in Rd, the Shannon lower bound on the rate-distortion function (see, e.g., [15,

Chap. 4.8]) can be used to show that, if E‖W − Ŵ‖r ≤ α with an arbitrary

norm ‖ · ‖ in Rd and an arbitrary r ≥ 1, then

I(W ; Ŵ ) ≥ h(W )− log

(
Vd

(αre
d

)d/r
Γ
(

1 +
d

r

))
, (2.36)

where Vd is the volume of the unit ball in (Rd, ‖ · ‖) and Γ(·) is the gamma

function. For example, this method can be used to recover the lower bounds

of Seidler [16] for the problem of estimating a parameter in Rd with respect

to squared weighted `2 norms, and gives tight lower bounds on the Bayes

risk and the minimax risk in high-dimensional estimation problems [17, Lec.

13]. A simple extension of (2.36) via an auxiliary random variable U gives

I(W ; Ŵ |U) ≥ h(W |U)− log

(
Vd

(αre
d

)d/r
Γ
(

1 +
d

r

))
. (2.37)

As a consequence, we obtain a lower bound on the Bayes risk in terms of

conditional mutual information and conditional differential entropy:

Theorem 2.3. For an arbitrary norm ‖ · ‖ in Rd and any r ≥ 1, the Bayes

risk for estimating the parameter W ∈ Rd based on the sample X with respect
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to the distortion function `(w, ŵ) = ‖w − ŵ‖r satisfies

RB ≥ sup
PU|W,X

d

re

(
VdΓ

(
1 +

d

r

))−r/d
2−(I(W ;X|U)−h(W |U))r/d. (2.38)

In particular, for estimating a real-valued W with respect to `(w, ŵ) = |w−ŵ|,

RB ≥ sup
PU|W,X

1

2e
2−(I(W ;X|U)−h(W |U)). (2.39)

One advantage of Theorem 2.3 is that its unconditional version can yield

tighter Bayes risk lower bounds than the unconditional version of Theo-

rem 2.1. For example, consider the case where W is uniformly distributed on

[0, 1], and is estimated based on X with respect to the absolute distortion.

Setting g(ρ) = 2ρ in Remark 2.1 and optimizing s in (2.11), the unconditional

version of Theorem 2.1 yields an asymptotic lower bound

RB &
1

8I(W ;X)
2−I(W ;X) as I(W ;X)→∞. (2.40)

By contrast, the unconditional version of Theorem 2.3 yields a tighter and

non-asymptotic lower bound

RB ≥
1

2e
2−I(W ;X). (2.41)

2.3 Mutual Information Contraction via SDPI

While the results in Sec. 2.2 all apply to general estimation problems, either

centralized or decentralized, the results in terms of mutual information (The-

orems 2.1 and 2.3) are particularly amenable to tightening in the context of

the decentralized estimation. For example, Theorem 2.1 reveals two sources

of the difficulty of estimating W : the spread of the prior distribution PW or

its conditional counterpart PW |U , captured by LW or LW |U , and the amount

of information about W contained in the sample X, captured by I(W ;X)

or I(W ;X|U). When an estimator does not have direct access to X, but

can only receive information about it from one or more local processors, the

amount of information about W contained in the estimator’s indirect obser-

vations will contract relative to I(W ;X) or I(W ;X|U). The contraction is
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caused by the communication constraints between the local processors and

the estimator, such as finite precision of analog-to-digital conversion, storage

limitations of intermediate results, limited transmission blocklength, channel

noise, etc.

We will quantify this contraction of mutual information through strong

data processing inequalities, or SDPI’s, for the relative entropy (see [18]

and references therein). Given a stochastic kernel (or channel) K with input

alphabet X and output alphabet Y, and a reference input distribution µ on X,

we say that K satisfies an SDPI at µ with constant c ∈ [0, 1) if D(νK‖µK) ≤
cD(ν‖µ) for any other input distribution ν on X. Here, µK denotes the

marginal distribution of the channel output when the input has distribution

µ. The SDPI constant of K at input distribution µ is defined as

η(µ,K) , sup
ν: ν 6=µ

D(νK‖µK)

D(ν‖µ)
, (2.42)

while the SDPI constant of K is defined as

η(K) , sup
µ
η(µ,K). (2.43)

It is shown in [19] that the SDPI constants are also the maximum contraction

ratios of mutual information in a Markov chain: for a Markov chain

W −X − Y,

we have

sup
PW |X

I(W ;Y )

I(W ;X)
= η(PX , PY |X) (2.44)

if the joint distribution PX,Y is fixed, and

sup
PW,X

I(W ;Y )

I(W ;X)
= η(PY |X) (2.45)

if only the channel PY |X is fixed. This fact leads to the following chain of

inequalities for mutual information:

I(W ;Y ) ≤ I(W ;X)η(PX , PY |X) ≤ I(W ;X)η(PY |X). (2.46)
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This is a stronger result than the ordinary data processing inequality for

mutual information, as it quantitatively captures the amount by which the

mutual information contracts after passing through a channel.

It is generally hard to compute the SDPI constant for an arbitrary pair of

µ and K, except for some special cases:

• For the binary symmetric channel, η(Bern(1
2
),BSC(ε)) = η(BSC(ε)) =

(1− 2ε)2 [20].

• For the binary erasure channel, η(Bern(1
2
),BEC(ε)) = η(BEC(ε)) =

1− ε.

• If X and Y are jointly Gaussian with correlation coefficient ρX,Y , then

[21]

η(PX , PY |X) = ρ2
X,Y . (2.47)

In the remainder of this section, we collect a few upper bounds and properties

of the SDPI constants, which will be used in the following sections. The first

upper bound is due to Cohen et al. [22]:

Lemma 2.3. Define the Dobrushin contraction coefficient of a stochastic

kernel PX|W by

ϑ(PX|W ) = max
w,w′
‖PX|W=w − PX|W=w′‖TV. (2.48)

Then

η(PX|W ) ≤ ϑ(PX|W ). (2.49)

The next upper bound is proved in [18, Remark 3.2] for arbitrary f -divergences:

Lemma 2.4. Suppose there exist a constant α ∈ (0, 1] and a distribution

QX , such that1

dPX|W=w

dQX

(x) ≥ α for all x ∈ X and w ∈ W. (2.50)

1In Markov chain theory, this is known as a Doeblin minorization condition.
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Then

η(PX|W ) ≤ 1− α. (2.51)

Lemma 2.4 leads to the following property:

Lemma 2.5. For a joint distribution PW,X , suppose there is a constant α ∈
(0, 1] such that the forward channel PX|W satisfies

dPX|W=w

dPX|W=w′
(x) ≥ α for all x ∈ X and w,w′ ∈ W. (2.52)

Then the SDPI constants of the forward channel PX|W and the backward

channel PW |X satisfy

η(PX|W ) ≤ 1− α and η(PW |X) ≤ 1− α. (2.53)

Proof. To prove the claim for the forward channel, pick any w′ ∈ W and let

QX = PX|W=w′ . Then the condition in Lemma 2.4 is satisfied with this QX .

To prove the claim for the backward channel, consider any x ∈ X and w ∈ W.

Then

dPW |X=x

dPW
(w) =

dPX|W=w

d
∫
PX|W=w′PW (dw′)

(x) (2.54)

=
1∫ dPX|W=w′

dPX|W=w
(x)PW (dw′)

(2.55)

≥ 1
1
α

∫
PW (dw′)

(2.56)

= α, (2.57)

where (2.56) uses the fact that
dPX|W=w′

dPX|W=w
(x) ≤ 1/α, due to the assumption in

(2.52). Using Lemma 2.4 with QW = PW , we get the result.

In decentralized estimation, we will encounter the SDPI constant η(PXn , PW |Xn).

The following lemma gives an upper bound for this SDPI constant, which is

often easier to compute:

Lemma 2.6. If W − Z −Xn form a Markov chain, then

η(PXn , PW |Xn) ≤ η(PZ , PW |Z). (2.58)
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In particular, Z can be any sufficient statistic of Xn for estimating W .

Proof. It suffices to show that for any Y such that W − Xn − Y form a

Markov chain,

I(W ;Y ) ≤ η(PZ , PW |Z)I(Xn;Y ). (2.59)

Indeed, by the definition of η(PZ , PW |Z) and the fact that W − Z −Xn − Y
form a Markov chain,

I(W ;Y ) ≤ η(PZ , PW |Z)I(Z;Y ) (2.60)

≤ η(PZ , PW |Z)I(Xn;Y ), (2.61)

which proves (2.59) and the lemma.

We will often need a conditional version of the SDPI:

Lemma 2.7. For any Markov chain W,V → X → Y with PY |X = K,

I(W ;Y |V ) ≤ η(K)I(W ;X|V ).

Proof. For binary channels, this result was first proved by Evans and Schul-

man [23, Corollary 1]. Here, we give a general proof. For each v ∈ V we have

the Markov chain W → X → Y conditional on V = v, hence

I(W ;Y |V = v) ≤ η(PY |X,V=v)I(W ;X|V = v)

= η(K)I(W ;X|V = v).

Taking expectation with respect to V on both sides, we get I(W ;Y |V ) ≤
η(K)I(W ;X|V ).

For product input distributions and product channels, the SDPI constant

tensorizes [19] (see [18] for a more general result for other f -divergences):

Lemma 2.8. For distributions µ1, . . . , µm on X and channels K1, . . . , Km

with input alphabet X,

η(µ1 ⊗ . . .⊗ µm, K1 ⊗ . . .⊗Km) = max
1≤i≤m

η(µi, Ki).
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Finally, the following lemma that gives an SDPI for multiple uses of a

channel. It is a special case of Polyanskiy and Wu [24, Corollary 2], obtained

using the method of Evans and Schulman [23]. We give the proof, since we

adapt the underlying technique at several points in this chapter as well as in

Chapter 3.

Lemma 2.9. Consider sending a message Y through T uses of a memoryless

channel PV |U with feedback, where Ut = ϕ(Y, V t−1, t) with some encoder ϕ

for t = 1, . . . , T . Then for any random variable W such that W−Y −UT , V T

form a Markov chain,

I(W ;V T ) ≤ I(W ;Y )
(
1− (1− η(PV |U))T

)
. (2.62)

In particular, the result holds when the channel is used T times without feed-

back.

Proof. Let η = η(PV |U). Then

I(W ;V T ) = I(W ;V T−1) + I(W ;VT |V T−1) (2.63)

≤ I(W ;V T−1) + ηI(W ;UT |V T−1) (2.64)

= (1− η)I(W ;V T−1) + ηI(W ;V T−1, UT ) (2.65)

≤ (1− η)I(W ;V T−1) + ηI(W ;Y ), (2.66)

where (2.64) follows from the Markov chain W,V T−1 − UT − VT and the

conditional version of SDPI (Lemma 2.7); (2.66) follows from the Markov

chain W − Y − V T−1, UT . Unrolling the above recursive upper bound on

I(W ;V T ) and noting that I(W ;V1) ≤ ηI(W ;Y ), we get (2.62).

Using the same proof technique, we can obtain an upper bound for the

SDPI constant of a product channel:

Lemma 2.10. For a product channel K =
⊗m

i=1Ki, if the constituent chan-

nels satisfy η(Ki) ≤ η for i ∈ {1, . . . ,m}, then

η(K) ≤ 1− (1− η)m. (2.67)
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2.4 Decentralized Estimation: Single Processor

We start the discussion of decentralized estimation with the single-processor

setup. Consider the following decentralized estimation problem with one

local processor, shown schematically in Fig. 2.1:
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Figure 2.1: Model of decentralized estimation (single processor).

• W is an unknown parameter (discrete or continuous, scalar or vector)

with prior distribution PW .

• Conditional on W = w, n samples Xn = (X1, . . . , Xn) are indepen-

dently drawn from the distribution PX|W=w.

• The local processor observes Xn and maps it to a b-bit message Y =

ϕQ(Xn).

• The encoder maps Y to a codeword UT = ϕE(Y ) with blocklength T ,

and transmits UT over a discrete memoryless channel (DMC) PV |U . We

allow the possibility of feedback from the estimator to the processor,

in which case Ut = ϕE(Y, V t−1, t), t = 1, . . . , T .

• The estimator computes Ŵ = ψ(V T ) as an estimate of W , based on

the received codeword V T .

The Bayes risk in the single processor setup is defined as

RB = inf
ϕQ,ϕE,ψ

E
[
`(W,ψ(V T ))

]
, (2.68)

which depends on the problem specification including PW,X , `, n, b, T , and

PV |U . We can use the unconditional versions of Theorems 2.1 and 2.3 to

obtain lower bounds for RB, by replacing I(W ;X) with I(W ;V T ). To reveal

the dependence of RB on various problem specifications, we need an upper

bound on I(W ;V T ) which is independent of ϕQ and ϕE:
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Theorem 2.4. In decentralized estimation with a single processor, for any

choice of ϕQ and ϕE,

I(W ;V T ) ≤ min
{
I(W ;Xn)ηT , η(PXn , PW |Xn) (H(Xn) ∧ b) ηT ,

η(PXn , PW |Xn)CT
}
, (2.69)

where C is the Shannon capacity of the channel PV |U , and

ηT =

1− (1− η(PV |U))T with feedback

η(P⊗TV |U) without feedback
. (2.70)

Proof. When the channel is used with feedback, the problem setup gives rise

to the Markov chain W −Xn − Y −UT , V T . With ηT = 1− (1− η(PV |U))T ,

as a consequence of Lemma 2.9, we have

I(W ;V T ) ≤ I(W ;Y )ηT ≤ I(W ;Xn)ηT . (2.71)

Alternatively,

I(W ;V T ) ≤ I(W ;Y )ηT (2.72)

≤ η(PXn , PW |Xn)I(Xn;Y )ηT (2.73)

≤ η(PXn , PW |Xn)(H(Xn) ∧ b)ηT , (2.74)

where (2.73) is from the SDPI in (2.46); (2.74) is because I(Xn;Y ) ≤
min{H(Xn), H(Y )} and Y ∈ [2b]. Lastly, from the SDPI and following the

proof that feedback does not increase the capacity of a discrete memoryless

channel [25],

I(W ;V T ) ≤ η(PXn , PW |Xn)I(Y ;V T ) ≤ η(PXn , PW |Xn)CT.

We complete the proof for the case with feedback by taking the minimum of

the three resulting estimates to get the tightest bound on I(W ;V T ).

When the channel is used without feedback, we have the Markov chain

W −Xn − Y − UT − V T . In this case, (2.71) holds with ηT = η(P⊗TV |U) as a

consequence of the SDPI. The rest of the proof for this case is the same as

the case with feedback.
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Note that, with the ordinary data processing equality, we can only get the

upper bound

I(W ;V T ) ≤ min
{
I(W ;Xn), H(Xn) ∧ b, CT

}
, (2.75)

where the first term reflects the statistical constraint due to the finite number

of samples, the second term reflects the communication constraint due to the

quantization, and the third term reflects the communication constraint due

to the noisy channel. All of these terms are tightened in (2.69) via the

multiplication by various contraction coefficients. Thus, using the SDPI, we

can tighten the results of Theorems 2.1 and 2.3 in the setting of decentralized

estimation by quantifying the communication constraint, and by coupling the

statistical constraint and the communication constraint together.

Next we study a few examples of this problem setup to illustrate the ef-

fectiveness of using Theorem 2.4 to derive lower bounds on the Bayes risk.

2.4.1 Transmitting a Bit over a BSC

Example 2.4. Consider the case where the parameter takes values 0 and

1 with equal probabilities, the local processor directly observes W , and com-

municates the value of W to the estimator through T uses of the channel

BSC(ε). Formally, W is Bern(1
2
), W = Xn = Y , and PV |U = BSC(ε). The

Bayes risk is defined as RB = infϕE,ψ P[W 6= Ŵ ].

In this simple example, there is no statistical constraint since W can be

directly observed by the local processor, while the communication constraint

is imposed by the T uses of a BSC. Using Theorem 2.4, we can derive lower

bounds on RB and obtain upper bounds on the error exponent when the

channel is used with or without feedback:

Corollary 2.4. In Example 2.4, if the channel is used without feedback, then

RB ≥ h−1
2

(
1√
2T

(4ε(1− ε))
T
2

)
, (2.76)

and

lim sup
T→∞

− 1

T
logRB ≤

1

2
log

1

4ε(1− ε)
. (2.77)
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If the channel is used with feedback, then

RB ≥ h−1
2

(
(4ε(1− ε))T

)
, (2.78)

and

lim sup
T→∞

− 1

T
logRB ≤ log

1

4ε(1− ε)
. (2.79)

Proof. Choose the ϕE and ψ that attain RB. In this case, we can bypass

Theorem 2.1 by using the binary-alphabet version of Fano’s inequality:

1− h2(P[Ŵ 6= W ]) ≤ I(W ;V T ). (2.80)

If the channel is used without feedback, it follows from Theorem 2.4 and

Lemma 2.3 that

I(W ;V T ) ≤ I(W ;Xn)η
(
BSC(ε)⊗T

)
≤ ϑ

(
BSC(ε)⊗T

)
≤ 1− 1√

2T
(4ε(1− ε))T/2, (2.81)

where the upper bound on ϑ
(
BSC(ε)⊗T

)
is evaluated in [24]. Combining

(2.80) and (2.81), and using the fact that [26, Theorem 2.2]

h−1
2 (x) ≥ x

2 log(6/x)
for x ∈ [0, 1], (2.82)

we obtain (2.76) and (2.77).

If the channel is used with feedback, Theorem 2.4 gives

I(W ;V T ) ≤ I(W ;Xn)
(
1− (1− η(BSC(ε))T

)
≤ 1− (4ε(1− ε))T , (2.83)

where we used the fact that η(BSC(ε)) = (1−2ε)2. Combining (2.80), (2.82),

and (2.83), we obtain (2.78) and (2.79).

Using the Chernoff bound, it can be shown that a blocklength-T repetition

code without feedback can achieve P[Ŵ 6= W ] ≤ (4ε(1− ε))−T/2 [27]. Thus,
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when the channel is used without feedback,

lim inf
T→∞

− 1

T
logRB ≥

1

2
log

1

4ε(1− ε)
, (2.84)

which matches the upper bound on the error exponent given by (2.77). There-

fore, Theorem 2.4 can effectively capture the communication constraint in

this example.

2.4.2 Estimating a Discrete Parameter

Example 2.5. Consider the case where W is uniformly distributed on {−1, 1}d.
The sample X ∈ {−1, 1}d is generated conditionally on W as follows. For

j = 1, . . . , d, given Wj = wj, the jth coordinate of X, denoted by Xj, is in-

dependently drawn from the distribution PXj |Wj=wj(xj) = (1 + xjwjδ)/2 for

some δ ∈ [0, 1]. In other words, PXj |Wj
is BSC(1−δ

2
). It follows that Xj

is uniformly distributed on {−1, 1}, and PWj |Xj is BSC(1−δ
2

) as well. The

communication channel PV |U is assumed to be an arbitrary DMC.

Theorem 2.4 gives the following upper bound on I(W ;V T ) for this exam-

ple:

Corollary 2.5. In Example 2.5,

I(W ;V T ) ≤ min
{
d
(
1− h2

(
1−δ

2

))
ηT , δ

2bηT , δ
2CT

}
. (2.85)

Proof. Since (W1, X1), . . . , (Wd, Xd) are independent in this case, we can ap-

ply the tensorization property of the SDPI constant (Lemma 2.8), which

states that

η(PX , PW |X) = max
1≤j≤d

η(PXj , PWj |Xj). (2.86)

Due to the fact that Xj is uniform on {−1, 1} and PWj |Xj = BSC(1−δ
2

), we

have the exact SDPI constant

η(PXj , PWj |Xj) = δ2. (2.87)

We also have I(W ;X) = d
(
1 − h2

(
1−δ

2

))
. The results then follow from

Theorem 2.4.
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The same problem with a noiseless communication channel was considered

in [2]. The result in [2, Lemma 3], proved in a much more complicated way,

shows that

I(W ;Y ) ≤ 32δ2(d ∧ b)
(1− δ)4

(2.88)

where the contraction coefficient is less than 1 only when δ < 0.133. By con-

trast, the contraction coefficient in (2.85) never exceeds 1. Moreover, since

1 − h2

(
1−δ

2

)
≤ δ2, the upper bound in (2.85) is a considerable improvement

on the one in (2.88) over all δ ∈ [0, 1], especially for large δ, under the same

noiseless channel assumption (ηT = 1). Corollary 2.5 can also be used to de-

rive lower bounds on the minimax risk of estimating the mean of an arbitrary

probability distribution on the cube [−1, 1]d. We discuss this application in

Sec. 2.5.1, in the multi-processor setup.

From another point of view, Example 2.5 is essentially a problem of noisy

lossy source coding [28] of an i.i.d. Bern(1
2
) source of length d observed

through a BSC(1−δ
2

), with an additional challenge of sending the quantized

message over T uses of another noisy channel. Using Corollary 2.5, we can

obtain lower bounds on the average bit error probability for estimating the

source W and on the quantization rate of the sample X:

Corollary 2.6. In Example 2.5, let `(w, ŵ) = 1
d

∑d
j=1 1{wj 6= ŵj}. Then,

RB ≥ h−1
2

(
1− 1

d
min

{
d
(
1− h2

(
1−δ

2

))
ηT , δ

2bηT , δ
2CT

})
, (2.89)

provided b, d, and T are such that the argument of h−1
2 (·) lies in [0, 1]. More-

over, to achieve RB ≤ p, it is necessary that

b

d
≥ 1− h2(p)

δ2ηT
, (2.90)

where ηT = 1− (1− η(PV |U))T .

Proof. Choose the ϕQ, ϕE, and ψ that attain RB. In this case, we can again

bypass Theorem 2.1 by using the following chain of inequalities to relate the
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average bit error probability with I(W ;V T ):

1− h2(RB) = d2(RB‖1
2
) (2.91)

≤ 1

d

d∑
j=1

d2

(
P[Wj 6= Ŵj]‖1

2

)
(2.92)

≤ 1

d

d∑
j=1

I(Wj; Ŵj) (2.93)

≤ 1

d
I(W ;V T ) (2.94)

≤ 1

d
min

{
d
(
1− h2

(
1−δ

2

))
ηT , δ

2bηT , δ
2CT

}
, (2.95)

where (2.92) uses the fact that RB = 1
d

∑d
j=1 P[Wj 6= Ŵj] and the convexity

of divergence; (2.93) uses the fact that Wj is uniform on {−1, 1} and the

data processing inequality for divergence; (2.94) uses the fact that Wj’s are

independent; (2.95) follows from Corollary 2.5. Applying h−1
2 to both sides,

we get (2.89). The lower bound (2.90) is a consequence of (2.95).

The asymptotic rate limit of noisy lossy coding of an i.i.d. Bern(1
2
) source

observed through a BSC(1−δ
2

) with distortion p is given by

R̃(p) = 1− h2

(
2p+ δ − 1

2δ

)
, 0 ≤ 1− δ

2
≤ p ≤ 1

2
. (2.96)

In Fig. 2.2, the lower bounds on the quantization rate given by (2.90) with

different values of η(PV |U) are compared with R̃(p). The lower bounds are

also compared with the rate-distortion function of an i.i.d. Bern(1
2
) source,

given by

R(p) = 1− h2(p), 0 ≤ p ≤ 1

2
. (2.97)

We can see that with η(PV |U) = 1, the lower bound well matches the asymp-

totically achievable rate given by (2.96) for large δ. With η(PV |U) < 1, the

elevated lower bounds capture the need to increase the quantization rate for

sending the quantized message through another noisy channel.
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Figure 2.2: Comparison of lower bounds on b/d, where p = 0.3 and
η = η(PV |U).

2.4.3 Estimating a Continuous Parameter

Example 2.6. Consider the problem of estimating the bias of a Bernoulli

random variable through a BSC. In this case, W is assumed to be uniformly

distributed on [0, 1], PX|W=w is Bern(w), and PV |U is BSC(ε). We are inter-

ested in lower-bounding the Bayes risk with respect to the absolute distortion

`(w, ŵ) = |w − ŵ|.

Define I∗ = supϕQ,ϕE
I(W ;V T ). Replacing I(W ;X) with I∗ in (2.41), we

obtain the following lower bound on the Bayes risk for this example as a

consequence of Theorem 2.3:

RB ≥
1

2e
2−I

∗
. (2.98)

Now we only need to upper-bound I∗:

Corollary 2.7. In Example 2.6, for any choice of ϕQ and ϕE,

I(W ;V T ) ≤ min
{(1

2
log n+ γn

)
ηT , (1− 2−n)bηT , (1− 2−n)(1− h2(ε))T

}
,
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where γn is some sequence such that limn→∞ γn = −0.6, and ηT = 1−(4ε(1−
ε))T .

Proof. From (2.13),

I(W ;Xn) =
1

2
log

n

2πe
+ h(W ) +

1

2
E
[
log

1

W (1−W )

]
+ o(1) (2.99)

=
1

2
log n− 0.6 + o(1) as n→∞. (2.100)

Moreover, from Lemma 2.3,

η(PW |Xn) ≤ ϑ(PW |Xn) = 1− 2−n, (2.101)

where the Dobrushin coefficient is evaluated in Sec. 2.7.4. In addition,

η(BSC(ε)) = (1 − ε)2. With these facts, the result follows from Theo-

rem 2.4.

Now we apply the above results to two special cases.

Case 1 : ε = 0, T ≥ b. In this case, the communication constraint only

comes from the quantization of the samples, since the quantized message can

be perfectly received by the estimator. Setting b = 1
2

log n, the lower bound

in (2.98) together with Corollary 2.7 imply that

RB ≥
1

2e
2−(1−2−n)b ≥ 1

2e
√
n
. (2.102)

To obtain an upper bound on RB, consider the scheme where the local pro-

cessor computes the sample mean X̄ = 1
n

∑n
j=1Xj, which is uniformly dis-

tributed on {0, 1/n, . . . , 1}, and quantizes X̄ into X̃ using a uniform b-bit

quantization of [0, 1]. The estimator sets Ŵ = X̃. By the triangle inequality,

E|W − Ŵ | ≤ E|W − X̄|+ E|X̄ − X̃| ≤
√

E[Var(X̄|W )] + 2−b (2.103)

=
1√
6n

+ 2−b. (2.104)

Thus for b = 1
2

log n,

RB ≤
1.41√
n
, (2.105)
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which differs from the lower bound only by a constant factor.

Case 2 : ε > 0, b ≥ log(n + 1). In this case, the communication constraint

only comes from the noisy channel, since log(n + 1) bits are enough to per-

fectly represent the sample mean X̄, which is a sufficient statistic of Xn for

estimating W and can take only n+1 values. From (2.98) and Corollary 2.7,

RB ≥ max

{
1

2enηT /2
2−γnηT ,

1

2e
2−(1−2−n)(1−h2(ε))T

}
. (2.106)

To obtain an upper bound on RB, consider the scheme where the local

processor first uses log(n + 1) bits to represent the sample mean X̄ as a

message uniformly distributed on {0, 1/n, . . . , 1}, then transmits the message

over the channel using an optimal blocklength-T code. The estimator decodes

X̄ as X̂, and sets Ŵ = X̂. Then

E|W − Ŵ | ≤ E|W − X̄|+ E|X̄ − X̂| (2.107)

≤ 1√
6n

+ P[X̄ 6= X̂] (2.108)

≤ 1√
6n

+ 2−Er( 1
T

log(n+1))T , (2.109)

where Er(·) is the random coding error exponent of BSC(ε) [27, p. 146]. For
1
T

log(n+ 1) ≤ 1− h2

( √
ε√

ε+
√

1−ε

)
,

Er

(
1
T

log(n+ 1)
)

= 1− log(1 +
√

4ε(1− ε))− 1
T

log(n+ 1). (2.110)

If the channel is used with feedback, then Er(·) in (2.109) can be replaced

by Ef(·), the best attainable error exponent on BSC using block codes with

feedback. In particular [29, Problem 10.36],

lim
R→0

Ef(R) = Ef(0) = − log
(
ε1/3(1− ε)2/3 + ε2/3(1− ε)1/3

)
> Er(0).

(2.111)

From the lower bound in (2.106) and the upper bound in (2.109), we know

that the Bayes risk in this case decays polynomially in n and exponentially
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in T . Moreover,

1 ≤ 1− h2(ε)

− log
(
ε1/3(1− ε)2/3 + ε2/3(1− ε)1/3

) ≤ 9

8
for ε ∈

(2

9
,
1

2

)
, (2.112)

which implies that the error exponent with respect to T in the lower bound

can closely match that in the upper bound when transmission rate is low and

ε is relatively large.

2.5 Decentralized Estimation: Multiple Processors

We now consider the problem setup with m local processors. The ith proces-

sor, i = 1, . . . ,m, observes n samples Xn
(i) generated from a common random

parameter W . Given W = w, the joint distribution of the m × n array of

samples is P⊗nX(1),...,X(m)|W=w. In other words, the samples across different pro-

cessors can be dependent conditional on W , but, at each processor i, the sam-

ples are i.i.d. draws from PX(i)|W=w. As in the single-processor setup, the ith

processor maps its samples to a b-bit message Y(i) = ϕQ,i(X
n
(i)), then maps the

message to a blocklength-T codeword UT
(i) = ϕE,i(Y(i)), and sends it to the es-

timator via T uses of a discrete memoryless channel. The estimator computes

Ŵ = ψ(V m×T ) based on the received codewords V m×T = (V T
(1), . . . , V

T
(m)).

Here we assume that the channels between the processors and the estimator

are independent and have the same probability transition law PV |U .2 The

Bayes risk in this multi-processor setup is defined as

RB = inf
ϕmQ ,ϕ

m
E ,ψ

E
[
`(W,ψ(V m×T ))

]
. (2.113)

Compared with the single processor setup, the multi-processor setup gives

rise to some new problems:

• The sample sets observed by different processors can be either inde-

pendent or dependent conditionally on W , depending on the joint dis-

tribution PX(1),...,X(m)|W=w. In Sec. 2.5.1, we derive lower bounds for

the case where X(1), . . . , X(m) are conditionally independent given W ;

in Sec. 2.5.2, we study the case where X(1), . . . , X(m) are dependent

2The results can be straightforwardly generalized to the case where the parameters n,
b, T , and the channels are different across the processors.
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conditionally on W . We will see that the Bayes risk can behave quite

differently in these two cases.

• Suppose the m × n array of samples (Xn
(1), . . . , X

n
(m)) can be observed

by a single processor, which can map the samples to an mb-bit message

and use the channel mT times to send the message, and the estimation

is based on the received codeword of blocklength mT . How will the

estimation performance degrade once these resources are distributed

into m processors in the multi-processor setup? We examine this per-

formance degradation through the Bayes risk lower bounds, for both

cases where the sample sets are conditionally independent and depen-

dent.

• When the channels are noiseless and feedback is available from the esti-

mator to the local processors, each processor can observe the messages

sent by the other processors. This allows for interactive protocols, as

studied in [2, 4, 5]. We will mainly focus on the case where the com-

munication from local processors to the estimator is carried out with-

out feedback, except for Sec. 2.5.3, where we consider the case where

feedback is available and derive lower bounds on the Bayes risk for

interactive protocols.

Before delving into various special cases, we give two general lower bounds

for Bayes risk in the multi-processor setup, which are immediate consequences

of Theorems 2.1 and 2.3, respectively:

Theorem 2.5. In the multi-processor setup, the Bayes risk satisfies

RB ≥ inf
ϕmQ ,ϕ

m
E

sup
S⊂[m], ρ>0

ρ

(
1− I(W ;V m×T |Xn

S ) + 1

log(1/E[LW (Xn
S , ρ)])

)
, (2.114)

where Xn
S = (Xn

(i))i∈S . When W ∈ Rd and `(w, ŵ) = ‖w− ŵ‖r for any norm

‖ · ‖ in Rd and any r ≥ 1,

RB ≥ inf
ϕmQ ,ϕ

m
E

sup
S⊂[m]

d

re

(
VdΓ

(
1 +

d

r

))−r/d
2−(I(W ;Vm×T |Xn

S )−h(W |Xn
S ))r/d.

(2.115)

The proof of Theorem 2.5 is inspired by the proof of the Slepian-Wolf converse

for distributed almost-lossless source coding using the cutset argument [25,
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Chap. 15.4]: choose the auxiliary random variable U = Xn
S in Theorems 2.1

and 2.3, then optimize over S.

2.5.1 Sample Sets Conditionally Independent Given W

We first study the case where the sets of samples observed by the proces-

sors are conditionally independent given the parameter W . In this case, we

can simply choose S = ∅ in Theorem 2.5 to obtain lower bounds on the

Bayes risk. To that end, we need an upper bound on I(W ;V m×T ) which is

independent of ϕmQ and ϕmE :

Theorem 2.6. In the multi-processor setup, where the samples observed by

the processors are conditionally i.i.d. given W , for any choice of ϕmQ and ϕmE ,

I(W ;V m×T ) ≤ min
{
I(W ;Xm×n)ηmT , η(PXn , PW |Xn)mbηT ,

η(PXn , PW |Xn)mCT
}
, (2.116)

where ηT = η(P⊗TV |U). The first upper bound can be replaced by mI(W ;Xn)ηT .

Proof. Applying SDPI to the Markov chain W − Xm×n − Um×T − V m×T ,

we get the first upper bound in (2.116). Due to the independence assump-

tion, the codewords V T
(1), . . . , V

T
(m) received by the estimator are conditionally

independent given W . This implies that (see, e.g., [3, Lemma 4])

I(W ;V m×T ) ≤
m∑
i=1

I(W ;V T
(i)). (2.117)

Using Theorem 2.4 to upper-bound each term, we obtain the second and the

third upper bound in (2.116), as well as an alternative mI(W ;Xn)ηT to the

first upper bound.

To capture the penalty of decentralization, consider the situation where

a total number of N conditionally i.i.d. samples are allocated to a single

processor, which maps them to a B-bit message and uses the channel L

times to send the message. In this situation, Theorem 2.4 gives the upper
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bound

I(W ;V L) ≤ min
{
I(W ;XN)ηL, η(PXN , PW |XN )BηL, η(PXN , PW |XN )CL

}
.

(2.118)

Once these resources are evenly distributed to m processors, so that each

processor observes N/m samples, maps then to a B/m-bit message, and uses

the channel L/m times to send the message, Theorem 2.6 implies that

I(W ;V m× L
m ) ≤ min

{
I(W ;XN)ηL, η(PXN/m , PW |XN/m)BηL/m,

η(PXN/m , PW |XN/m)CL
}
, (2.119)

where the first upper bound can be replaced by mI(W ;XN/m)ηL/m. Compar-

ing (2.119) with (2.118), we see that the differences are in the SDPI constants

η(PXN/m , PW |XN/m) and ηL/m. Since W−Xn−Xk form a Markov chain when-

ever k ≤ n, Lemma 2.6 implies that η(PXN/m , PW |XN/m) is decreasing in m.

For example, when W ∼ N(0, σ2
W ) and Xi = W + Zi with Zi drawn i.i.d.

from N(0, σ2) for i = 1, . . . , n, we have η(PX̄ , PW |X̄) = nσ2
W/(nσ

2
W + σ2) by

(2.47). Then by Lemma 2.6

η(PXN/m , PW |XN/m) ≤ σ2
WN/m

σ2
WN/m+ σ2

(2.120)

≈ N

m

σ2
W

σ2
when

σ2
W

σ2
is small. (2.121)

Moreover, from (2.67) we know that ηL/m is decreasing in m as well, and

ηL/m ≈
L

m
η(PV |U) when η(PV |U) is small. (2.122)

Thus, when the processors observe sample sets that are conditionally inde-

pendent given the parameter, the penalty of decentralization can be captured

by the reduced SDPI constants. The resulting upper bound on I(W ;V m× L
m )

decreases as the resources are distributed to more processors.

To illustrate the effectiveness of Theorem 2.6, we first show an example

of mean estimation in the d-dimensional Gaussian location model with a

Gaussian prior:

Example 2.7. Consider the decentralized estimation of W ∼ N(0, σ2
W Id)
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with m processors, where the samples are i.i.d. draws from N(w, σ2Id) given

W = w. The distortion function is `(w, ŵ) = ‖w − ŵ‖2
2. Suppose there are

N samples in total, a budget of B bits for quantization, and L available uses

of the channels. These resources are evenly distributed to the m processors.

Combining (2.119) from Theorem 2.6 and (2.115) in Theorem 2.5, we get

the following Bayes risk lower bound for Example 2.7:

Corollary 2.8. In Example 2.7, the Bayes risk satisfies

RB ≥ dσ2
W max

{(
1 +

Nσ2
W

σ2

)−ηL
, exp

(
− Nσ2

W ln 4

Nσ2
W +mσ2

(BηL/m ∧ CL)

d

)}
,

(2.123)

where ηL = η(P⊗LV |U).

The first lower bound captures the increase of the Bayes risk due to the

noisy communication channels, as compared to the Bayes risk
dσ2
W

1+Nσ2
W /σ2 of the

centralized estimation. From the second lower bound, we can see the order

increase of the Bayes risk when the samples and the communication resources

are distributed to more processors. When the communication channels are

noiseless, the lower bound in Corollary 2.8 reduces to

RB ≥ max

{
dσ2

W

1 +Nσ2
W/σ

2
, dσ2

W exp

(
− Nσ2

W ln 4

Nσ2
W +mσ2

B

d

)}
. (2.124)

It shows that, with noiseless communication channels, in order to achieve

the same performance as in the centralized scenario, the total number of bits

allocated for quantization needs to be at least

B ≥
(

1 +
mσ2

Nσ2
W

)
d

2
log

(
1 +

Nσ2
W

σ2

)
. (2.125)

Note that it is necessary to have N ≥ m, since each processor should observe

at least one sample. Whether the lower bound in (2.125) is a sufficient

condition for achieving the Bayes rate of centralized estimation is an open

problem.

As a second example, we use Theorem 2.6 to derive lower bounds on the

minimax risk for a nonparametric estimation problem studied in [2]. Here

we assume that the communication channels are noisy:
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Example 2.8. Consider the decentralized estimation of the mean of an un-

known distribution P on X = [−1, 1]d, where each processor i ∈ [m] only ob-

serves a single independent sample X(i) drawn from P . We use P to denote

the family of probability distributions on [−1, 1]d, and define θ(P ) = EP [X]

for a distribution P ∈ P. The minimax risk of this example is defined as

RM = inf
ϕmQ ,ϕ

m
E ,ψ

sup
P∈P

EP‖θ(P )− ψ(V m×T )‖2
2, (2.126)

where ψ is an estimator of θ ∈ [−1, 1]d.

Corollary 2.9. In Example 2.8, the minimax risk satisfies

RM >
d

5
min

{
1,

d

mmin{dηT , bηT , CT}

}
, (2.127)

where ηT = η(P⊗TV |U).

Proof. At a high level, the proof strategy follows that in [2] by reducing the

minimax estimation problem to the Bayes estimation problem in Example 2.5

of Sec. 2.4.2. However, here we use the result of Corollary 2.6 instead of the

distance-based Fano’s inequality used in [2] to obtain a tighter lower bound.

The lower bound will also be able to capture the influence of noisy channels

between the processors and the estimator.

Let W , δ, and PXj |Wj
be defined as in Example 2.5. Conditional on W = w,

each processor observes an independent copy of X, whose coordinates are

drawn according to PXj |Wj=wj for i = 1, . . . , d. Hence PX|W=w ∈ P for all

w ∈ {−1, 1}d. Let θw , θ(PX|W=w) = δw, then

‖θw − θw′‖2 = 4δ2`H(w,w′), (2.128)

where `H denotes the Hamming distance. Define

RB = inf
ϕm1 ,ϕ

m
2

inf
ψ

E[`H(W, Ŵ )], (2.129)

where the second infimum is over all estimators of W ∼ Unif({−1,+1}d).
Then, for 0 ≤ δ ≤ 1,

RM ≥ 4δ2RB. (2.130)
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From the proof of Corollary 2.6 and Theorem 2.6, we have

1− h2(RB/d) ≤ 1

d
I(W ;V m×T ) ≤ δ2m

d
min

{
dηT , bηT , CT

}
, (2.131)

where we have replaced the first upper bound in Theorem 2.6 withmI(W ;X)ηT ,

and used the fact that 1− h2((1− δ)/2) ≤ δ2. Thus,

RM ≥ 4δ2d h−1
2

(
1− δ2m

d
min{dηT , bηT , CT}

)
. (2.132)

With δ2 = min{1, d/(2mmin{dηT , bηT , CT})}, the quantity in the paren-

theses is at least 1/2, and since h−1
2 (1/2) > 1/10, we obtain the desired

result.

When the communication channels are noiseless, Corollary 2.9 reduces to

RM >
d

5
min

{
1,

d

m(d ∧ b)

}
, (2.133)

which recovers the lower bound in [2, Proposition 2] and improves the multi-

plicative constant. The lower bound can be achieved within a constant factor

when b = d, using a method described in [2].

As the last example of this section, we apply Theorem 2.6 to the case where

the parameter is a vector of length n, and each component of the sample set

is generated according to the corresponding component of the parameter.

Example 2.9 (CEO problem with noisy channels). Suppose the unknown

parameter now is a random sequence W n, consisting of n i.i.d. draws from

some prior distribution PW on Rd. X(1), . . . , X(m) are assumed to be inde-

pendent, but not necessarily identically distributed, conditional on W . Given

W n = wn, the ith processor observes the sample set Xn
(i), whose jth com-

ponent is independently drawn from PX(i)|W=wj , for j = 1, . . . , n. The ith

processor then maps Xn
(i) to a bi-bit message and encodes it for transmission

via T uses of a noisy channel PV |U . The estimator computes Ŵ n from the

m received codewords as an estimate of W n. The distortion is measured by
1
n

∑n
j=1 ‖wj − ŵj‖r with some norm ‖ · ‖ on Rd and some r ≥ 1.

When the channels between the processors and the estimator are noiseless,

Example 2.9 coincides with the chief estimation officer (CEO) problem [30].

Courtade [31] worked out a lower bound on the sum rate of the CEO problem
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using SDPI. The following result is an extension of the result in [31] to the

case where the channels between the processors and the estimator are noisy:

Corollary 2.10. For the CEO problem with noisy channels in Example 2.9,

if 1
n

∑n
j=1 E‖Wj − Ŵj‖r ≤ α, then the quantization rates bi/n, i = 1, . . . ,m,

need to satisfy

m∑
i=1

bi
n
η(PX(i)

, PW |X(i)
)ηT ≥ h(W )− log

(
Vd

(αre
d

)d/r
Γ
(

1 +
d

r

))
, (2.134)

where ηT = η(P⊗TV |U).

Proof. Since Xn
(1), . . . , X

n
(m) are conditionally independent given W n, Theo-

rem 2.6 gives

I(W n; Ŵ n) ≤
m∑
i=1

biη(PXn
(i)
, PWn|Xn

(i)
)ηT (2.135)

=
m∑
i=1

biη(PX(i)
, PW |X(i)

)ηT , (2.136)

where the second step follows from the independence among (Wj, X(i),j)’s for

each fixed i = 1, . . . ,m, and the tensorization property of the SDPI constant

(Lemma 2.8).

Now define

RW (α) = inf
P
Ŵ |W :E‖W−Ŵ‖r≤α

I(W ; Ŵ )

and

RWn(α) = inf
P
Ŵn|Wn : 1

n

∑n
j=1 E‖Wj−Ŵj‖r≤α

I(W n; Ŵ n)

to be the rate-distortion functions of W and W n, respectively. We have

I(W n; Ŵ n) ≥ RWn(α) (2.137)

= nRW (α) (2.138)

≥ n

(
h(W )− log

(
Vd

(αre
d

)d/r
Γ
(

1 +
d

r

)))
, (2.139)

where (2.137) is because of the assumption that 1
n

∑n
j=1 E‖Wj − Ŵj‖r ≤ α;

(2.138) uses the additivity property of the rate-distortion function under ad-

ditive distortions; and (2.139) is a consequence of (2.36). The proof of (2.134)
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is completed by combining the upper and lower bounds on I(W n; Ŵ n).

2.5.2 Sample Sets Conditionally Dependent Given W

Now we consider the situation where the processors observe dependent sam-

ple sets conditional on the parameter. To obtain tight Bayes risk lower

bounds, we need to choose a suitable conditioning subset S in Theorem 2.5.

Once S is chosen, we need to evaluate or upper-bound the expected con-

ditional small ball probability E[LW (Xn
S , ρ)] or the conditional differential

entropy h(W |Xn
S ). We also need to upper-bound I(W ;V m×T |Xn

S ) regard-

less of the choice of ϕmQ and ϕmE . Here we give a general upper bound on

I(W ;V m×T |Xn
S ), which holds regardless of whether or not the sample sets

are conditionally independent given W :

Theorem 2.7. In the multi-processor setup, for any choice of ϕmQ and ϕmE ,

and for any S ⊂ [m],

I(W ;V m×T |Xn
S ) ≤ min

{
I(W ;Xn

Sc |Xn
S )η|Sc|T , η(S)|Sc|bη|Sc|T , η(S)|Sc|CT

}
,

(2.140)

where Sc = [m] \ S, η|Sc|T = η
(
P
⊗|Sc|T
V |U

)
, and

η(S) = sup
xnS

η
(
PXn
Sc |X

n
S=xnS

, PW |Xn
Sc ,X

n
S=xnS

)
. (2.141)

In particular, when the channels are noiseless, we have

I(W ;V m×T |Xn
S ) ≤ min

{
I(W ;Xn

Sc|Xn
S ), η(S)|Sc|b

}
. (2.142)

Proof. Section 2.7.5.

Theorem 2.7 can be used to capture the penalty of decentralization when

the sample sets are conditionally dependent. Consider the situation where

all of the m sample sets Xn
(1), . . . , X

n
(m) are observed by a single processor,

which maps them to an mb-bit message and uses the channel mT times to
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send the message. In this situation, we have the upper bound

I(W ;V mT |Xn
S ) ≤ min

{
I(W ;Xn

Sc |Xn
S )ηmT , η(S)mbηmT , η(S)mCT

}
(2.143)

(see Section 2.7.5 for the proof). In particular, when the channels are noise-

less, we have

I(W ;V mT |Xn
S ) ≤ min

{
I(W ;Xn

Sc |Xn
S ), η(S)mb

}
. (2.144)

Comparing (2.140) with (2.143), we can see that, when the sample sets are

dependent conditionally on W , the penalty of decentralization can still be

captured by the reduced upper bound on I(W ;V mT |Xn
S ). In particular, when

the channels are noiseless, for a fixed S, the second upper bound in (2.142)

is only a m−|S|
m

fraction of the second upper bound in (2.144). However, this

does not mean that choosing S as large as possible leads to the tightest lower

bound on the Bayes risk. The reason is that a larger S generally corresponds

to a larger E[LW (Xn
S , ρ)] or a smaller h(W |Xn

S ), which may offset the decrease

of the upper bound on I(W ;V mT |Xn
S ). The optimal S to choose thus depends

on the specific problem.

We study two examples to illustrate the effectiveness of combining the

upper bound on I(W ;V mT |Xn
S ) in Theorem 2.7 with the lower bounds in

Theorem 2.5. For simplicity, we focus on the case where the communication

channels are noiseless.

Example 2.10. Consider a two-processor case, where W ∼ U [0, 1] and

X1, X2 ∈ {0, 1}. The conditional distribution PX(1),X(2)|W=w is specified as

PX(1),X(2)|W=w(0, 0) = PX(1),X(2)|W=w(1, 1) = (1− w)/2, and PX(1),X(2)|W=w(0, 1)

= PX(1),X(2)|W=w(1, 0) = w/2. Note that X1 and X2 are marginally indepen-

dent of W , but are jointly dependent on W . In the decentralized estimation,

processor i observes Xn
(i) and maps the samples to a b-bit message. The esti-

mator computes Ŵ based on the noiselessly received messages. The distortion

function is `(w, ŵ) = |w − ŵ|.

For this example, we can choose S = {2}, then use (2.115) in Theorem 2.5

and (2.142) in Theorem 2.7 to obtain the following lower bound on the Bayes

risk:
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Corollary 2.11. In Example 2.10, the Bayes risk satisfies

RB ≥
1

2e
2−(1−2−n)b. (2.145)

Proof. Since Xn
(2) is independent of W , h(W |Xn

(2)) = h(W ) = 0. Moreover,

since Xn
(1) and Xn

(2) are independent, and Zn = Xn
(1) ⊕ Xn

(2) is a sufficient

statistic of Xn
(1) and Xn

(2) for W ,

η(PXn
(1)
|Xn

(2)
=xn

(2)
, PW |Xn

(1)
,Xn

(2)
=xn

(2)
) = η(PZn , PW |Zn) for all xn(2), (2.146)

where Zi’s are i.i.d. Bern(1/2) and PZi|W=w = Bern(w). As shown in

Sec. 2.7.4, ϑ(PW |Zn) = 1− 2−n. Thus

sup
xn
(2)

η(PXn
(1)
|Xn

(2)
=xn

(2)
, PW |Xn

(1)
,Xn

(2)
=xn

(2)
) ≤ 1− 2−n. (2.147)

Combining (2.115) in Theorem 2.5 and (2.142) in Theorem 2.7, we get

RB ≥
1

2e
2−I(W ;Y(1),Y(2)|Xn

(2)
)+h(W |Xn

(2)
) (2.148)

≥ 1

2e
2−(1−2−n)b, (2.149)

which proves the claim.

In the extremal case when Processor 1 does not send anything to the

estimator, no matter how many bits Processor 2 can send to the estimator,

the Bayes risk is lower-bounded by

RB ≥
1

2e
, (2.150)

which follows from (2.145) by setting b = 0. This conforms to the fact

that Xn
(2) is independent of W . It shows that the communication constraint

can have much more severe effects on the estimation performance when the

sample sets are dependent conditionally on the parameter, as compared to

the case where the processors can observe samples that are conditionally i.i.d.

given the parameter.

The lower bound in (2.145) may not be tight in general. Setting b = 1
2

log n,
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(2.145) implies that

RB ≥
1

2e
√
n
. (2.151)

This lower bound would be achievable up to a constant factor when Proces-

sor 1 could observe both Xn
(1) and Xn

(2), in which case the problem is reduced

to Example 2.6 with noiseless channel. But it is unlikely to be achievable

when the sample sets are distributed to the two processors. A recent paper

of El Gamal and Lai [32] studies the problem of decentralized minimum-

variance unbiased estimation of W based on observations quantized at the

rate of b/n. It is shown that Slepian–Wolf rates are not necessary to achieve

the centralized estimation performance, but in their protocol b needs to be

proportional to n. The optimal rate region for this decentralized estimation

problem is still unknown.

Now we examine the penalty of decentralization. First consider the situa-

tion where a single processor can observe both Xn
(1) and Xn

(2) and map them

to a 2b-bit message. In this situation, (2.115) in Theorem 2.5 together with

(2.144) lead to

RB ≥
1

2e
2−(1−2−n)2b. (2.152)

Choosing 2b = 1
2

log n, we have

RB ≥
1

2e
√
n
. (2.153)

For achievability, the processor can compute the sufficient statistic Zn =

Xn
(1) ⊕Xn

(2), where Zi’s are i.i.d. Bern(w) given W = w, and use 1
2

log n bits

to uniformly quantize the sample mean of Zn over [0, 1]. Following the same

analysis as in Case 1 of Example 2.6, we obtain

RB ≤
1.41√
n
. (2.154)

Thus the lower bound (2.153) is tight up to a constant factor in this situation.

Once the sample sets and the 2b = 1
2

log n bits are distributed to the two
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processors, it follows from (2.145) that

RB ≥
1

2en1/4
. (2.155)

Compared with (2.153), we can see the order increase of the lower bound.

Therefore, although the Bayes risk lower bound given by (2.145) may be

conservative, it can already reflect the penalty of distributing the sample

sets and the communication resources to two processors.

Example 2.10 can be extended to the m-processor case:

Example 2.11. Consider the following conditional distribution of a length-m

binary vector (X(1), . . . , X(m)) given W :

PX(1),...,X(m)|W=w(x(1), . . . , x(m)) =

(1− w)2−(m−1), if x(1) ⊕ . . .⊕ x(m) = 0

w2−(m−1), if x(1) ⊕ . . .⊕ x(m) = 1
.

(2.156)

The vector (X(1), . . . , X(m)) has the property that any m − 1 or fewer of

its coordinates are independent of W , while the entire vector is dependent

on W . Moreover, Z = X(1) ⊕ . . . ⊕ X(m) is Bern(w) conditional on W =

w, and Z is a sufficient statistic of (X(1), . . . , X(m)) for estimating W . In

decentralized estimation, the ith processor observes Xn
(i), i = 1, . . . ,m, and

maps its samples to a b-bit message. The estimator computes Ŵ based on the

noiselessly received messages. The distortion function is `(w, ŵ) = |w − ŵ|.

With S = {2, . . . ,m}, following a similar analysis as in Example 2.10, we

can show that

h(W |Xn
S ) = h(W ) = 0, (2.157)

and

sup
xnS

η(PXn
(1)
|Xn
S=xnS

, PW |Xn
(1)
,Xn
S=xnS

) ≤ 1− 2−n. (2.158)

Thus combining (2.115) in Theorem 2.5 with Theorem 2.7, we get a lower
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bound on the Bayes risk in Example 2.11:

RB ≥
1

2e
2−(1−2−n)b. (2.159)

Again, we can examine the penalty of decentralization. In the situation

where a single processor can observe (Xn
(1), . . . , X

n
(m)) and map them to a

mb-bit message, it follows from (2.114) in Theorem 2.5 and (2.144) that

RB ≥
1

2e
2−(1−2−n)mb. (2.160)

Choosing mb = 1
2

log n, we have

RB ≥
1

2e
√
n
, (2.161)

which is tight up to a constant factor. Once the sample sets and the mb =
1
2

log n bits are distributed to the m processors, it follows from (2.159) that

RB ≥
1

2en1/(2m)
. (2.162)

Compared with (2.161), we can see the order increase of the lower bound as

m increases, which reflects the penalty of distributing the sample sets and

the communication resources to more processors.

2.5.3 Interactive Protocols

When the communications channels are noiseless and feedback is available

from the estimator to the processors, each processor can observe the messages

sent by the other processors. This allows for the interactive protocols, as

studied in [2, 4, 5]. Here we consider a case where the processors take turns

to send messages to the estimator, and each processor transmits only once.

The message sent by a processor can depend on the previous messages sent

by other processors, and is noiselessly received by the estimator. This serial

interactive setup has also been considered by Shamir [6].

Theorem 2.8. Consider the multi-processor setup, where the processors ob-

serve sample sets Xn
(1), . . . , X

n
(m) that are conditionally i.i.d. given W , and
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where the message sent by the ith processor is given by

Y(i) = ϕi(X
n
(i), Y

i−1), i = 1, . . . ,m. (2.163)

If the backward channel PX|W satisfies

dPX|W=w

dPX|W=w′
(x) ≥ α, for all x ∈ X and w,w′ ∈ W (2.164)

for some constant α ∈ (0, 1], then, for any choice of ϕm and ψ,

I(W ;Y m) ≤ min
{
I(W ;Xm×n), (1− αn)mb

}
. (2.165)

In particular, the above upper bound holds in the non-interactive case as well.

Proof. Section 2.7.6.

We can apply Theorem 2.8 to the “hide-and-seek” problem formulated

by Shamir [6] as a generic model for a number of decentralized estimation

problems and online learning problems:

Example 2.12. Consider a family of distributions P = {Pw : w = 1, . . . , d}
on {0, 1}d. Under Pw, the wth coordinate of the random vector X ∈ {0, 1}d

has bias 1
2
+ρ, while the other coordinates of X are independently drawn from

Bern(1
2
). For i = 1, . . . ,m, the ith processor observes n samples Xn

(i) drawn

independently from Pw, and sends a b-bit message Y(i) = ϕi(X
n
(i), Y

i−1) to the

estimator. The estimator computes Ŵ from the received messages Y m. The

minimax risk of this example is defined as

RM = inf
ϕm,ψ

max
w∈[d]

P[Ŵ 6= w]. (2.166)

The minimax lower bound for this problem obtained in [6] is

RM ≥ 1−

(
3

d
+ 5

√
min

{
10ρnmb

d
,mnρ2

})
for 0 ≤ ρ ≤ 1

4n
. (2.167)

The question was left open whether this lower bound can be improved. The

following result gives an affirmative answer.
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Corollary 2.12. In Example 2.12, the minimax risk is lower bounded by

RM ≥ 1− 1

log d
min

{[
1−

(1− 2ρ

1 + 2ρ

)n]
mb+ 1, (4mnρ2 ∧ log d) + 1

}
(2.168)

for 0 ≤ ρ ≤ 1
2
.

Proof. Let W be uniformly distributed on {1, . . . , d}. Then we can use the

techniques developed so far to derive lower bounds on the average error prob-

ability P[Ŵ 6= W ], which will provide lower bounds on the minimax risk.

Using the fact that

PX|W=w(x)

PX|W=w′(x)
≥

1
2
− ρ

1
2

+ ρ
for all x ∈ X and w,w′ ∈ W, (2.169)

Theorem 2.8 gives

I(W ;Y m) ≤
[
1−

(1− 2ρ

1 + 2ρ

)n]
mb for 0 ≤ ρ ≤ 1

2
. (2.170)

In addition, since the entries in Xm×n are i.i.d. conditional on W = w,

defining Q as the uniform distribution on {0, 1}d, we have

I(W ;Xm×n) ≤ mnD(PX|W‖PX |PW ) (2.171)

≤ mnD(PX|W‖Q|PW ) (2.172)

= mn
(
1− h2(1

2
+ ρ)

)
(2.173)

≤ 4mnρ2, (2.174)

where (2.172) follows from the identity

D(PX|W‖PX |PW ) = D(PX|W‖Q|PW )−D(PX‖Q),

and in the last step we have used the fact that h2(p) ≥ 4p(1 − p). We also

know that I(W ;Xm×n) ≤ H(W ) = log d. Therefore, for 0 ≤ ρ ≤ 1
2
,

I(W ;Y m) ≤ min

{[
1−

(1− 2ρ

1 + 2ρ

)n]
mb, (4mnρ2 ∧ log d)

}
. (2.175)

Moreover, the lower bound (2.114) in Theorem 2.5 with the choice S = ∅
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and the distortion function `(w, ŵ) = 1{ŵ 6= w} becomes the usual Fano’s

inequality

P[Ŵ 6= W ] ≥ 1− I(W ;Y m) + 1

log d
. (2.176)

Plugging in the upper bound (2.175), we get the result.

Now we compare the result of Corollary 2.12 and the lower bound in

(2.167). Note that the lower bound in (2.167) holds only for 0 ≤ ρ ≤ 1
4n

,

whereas the lower bound given in Corollary 2.12 holds for all 0 ≤ ρ ≤ 1
2
. We

compare them in two cases. In the first case we set ρ = 1
4n

, and in the second

case we set ρ = 0.01 for all n. In both cases we set m = 10, d = 512, and

b = 3d, as [6] considers the situation where b = O(d). With n varying from 1

to 1000, we plot the lower bounds for the two cases in Fig. 2.3 and Fig. 2.4,

respectively. We can see that the lower bound given by Corollary 2.12 is

tighter in the plotted range of n in both cases.

n
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; = 1

4n

our lower bound
lower bound by Shamir

Figure 2.3: Comparison of minimax lower bounds given by Corollary 2.12
and by [6], where m = 10, d = 512, b = 3d, and ρ = 1

4n
.
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Figure 2.4: Comparison of minimax lower bounds given by Corollary 2.12
and by [6], where m = 10, d = 512, b = 3d, and ρ = 0.01 (the lower bound
in [6] is set to 0 when n > 1/4p).

2.6 Conclusion and Future Research Directions

We have proposed an information-theoretic framework for deriving general

lower bounds on the Bayes risk in a systematic way, with applications to

decentralized estimation. The main contributions are summarized below.

• Starting in the context of centralized estimation, we have derived lower

bounds on the Bayes risk in terms of mutual information (Theorem 2.1)

and information density (Theorem 2.2). Both lower bounds involve

the small ball probability. They are proved by lower-bounding the

probability of excess distortion using properties of the Neyman-Pearson

function, and then converting these bounds into lower bounds on the

expected distortion using Markov’s inequality. The lower bounds in

Theorem 2.1 and Theorem 2.2 apply to general parameter spaces, prior

distributions, sample generating models, and distortion functions.

• Theorem 2.3 gives a lower bound on the Bayes risk in terms of mutual

information and differential entropy. The proof does not involve a de-

tour to bounding the probability of excess distortion, and instead relies
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on the Shannon lower bound for the rate-distortion function, which

directly relates the mutual information to the expected distortion. Its

unconditional version can yield tighter lower bounds than that of The-

orem 2.1. However, it only applies when the parameter space is Rd and

the distortion is measured by some norm.

• All of our lower bounds on the Bayes risk for centralized estimation

involve an auxiliary conditioning random variable U . A proper choice of

U can lead to tighter lower bounds than the ones without conditioning.

Moreover, when applied to decentralized estimation, choosing U as a

subcollection of sample sets enables us to handle the case where the

processors observe conditionally dependent sample sets (Theorem 2.5).

• In the context of decentralized estimation, the general results are re-

finements of the lower bounds on the Bayes risk based on mutual in-

formation (Theorem 2.1 and Theorem 2.3). We have used strong data

processing inequalities (SDPIs) as a unified method to quantify the con-

traction of mutual information caused by communication constraints.

The essence of this method is exhibited already in the upper bounds on

the mutual information for the single-processor setup (Theorem 2.4).

For the multi-processor setup, we have discussed two cases depending

on whether the sample sets are conditionally independent or not (The-

orem 2.6 and Theorem 2.7). The resulting lower bounds on the Bayes

risk (Theorem 2.5) provide us with a systematic way to quantify the

penalty of decentralization.

• Finally, we have obtained upper bounds on the mutual information

(Theorem 2.8) for interactive communication protocols, where the pro-

cessors take turns to send their messages, and each processor transmits

only once. Deriving general upper bounds on the mutual information

using SDPIs for multi-round interactive protocols is an interesting di-

rection for future research.
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2.7 Additional Proofs for Chapter 2

2.7.1 Proofs of Lemma 2.1 and Lemma 2.2

The proof relies on the properties of the Neyman–Pearson function, which

arises in the context of binary hypothesis testing, and is defined as follows:

Given two probability measures P and Q on a common measurable space Z,

for any α ∈ [0, 1] let

βα(P,Q) = inf
f :Z→[0,1]

{∫
Z

f dQ :

∫
Z

f dP ≥ α

}
. (2.177)

We will need the following properties of βα(P,Q):

• Data processing inequality: For any Markov kernel K from Z into an-

other measurable space Y,

βα(PK,QK) ≥ βα(P,Q), (2.178)

where PK and QK are the images of P and Q under K [33].

• Weak converse: For any α ∈ [0, 1],

d2(α‖βα) ≤ D(P‖Q), (2.179)

where d2(p‖q) , p log p
q

+ (1− p) log 1−p
1−q is the binary relative entropy

[34].

• Strong converse: For any α ∈ [0, 1],

α− γβα ≤
(

1− γ inf
z

dQ
dP

(z)
)
P
[

dP
dQ

(Z) ≥ γ
]

∀γ > 0. (2.180)

(see [35, Lemma 35]).

Now we proceed to the proof. Fixing an arbitrary PU |W,X , define P = PU,W,X

and Q = PU ⊗ PW |U ⊗ PX|U . For any estimator ψ : X → W and any

ρ ≥ 0, consider the function f(w, x) = 1{`(w, ŵ) ≤ ρ}. Then
∫
f dP =
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P[`(W, Ŵ ) ≤ ρ] and
∫
f dQ = Q[`(W, Ŵ ) ≤ ρ]. On the one hand,

Q[`(W, Ŵ ) ≤ ρ] =

∫
U

∫
W

∫
W

1{`(w, ŵ) ≤ ρ}PW |U(dw|u)PŴ |U(dŵ|u)PU(du)

(2.181)

=

∫
U

∫
W

P[`(W, ŵ) ≤ ρ|U = u]PŴ |U(dŵ|u)PU(du) (2.182)

≤
∫
U

sup
ŵ∈W

P[`(W, ŵ) ≤ ρ|U = u]PU(du) (2.183)

= E[LW |U(U, ρ)]. (2.184)

On the other hand, by the definition of βα and by the data processing in-

equality (2.178),

Q[`(W, Ŵ ) ≤ ρ] ≥ βP[`(W,Ŵ )≤ρ]

(
PW,Ŵ ,QW,Ŵ

)
(2.185)

≥ βP[`(W,Ŵ )≤ρ](P,Q). (2.186)

Combining (2.184), (2.185), and (2.179), and using the fact that d2(α‖β) ≥
α log 1

β
−h2(α), we obtain a lower bound on the excess distortion probability

P[`(W, Ŵ ) > ρ] ≥ 1− I(W ; Ŵ |U) + 1

log
(
1/E[LW |U(U, ρ)]

) , (2.187)

which proves Lemma 2.1.

Combining (2.184), (2.186), and (2.180), we obtain another lower bound

on the excess distortion probability

P[`(W, Ŵ ) > ρ] ≥P[i(W ;X|U) < log γ]− γE[LW |U(U, ρ)]+

γ inf
u,w,x

dPW |U=u

dPW |U=u,X=x

(w)P[i(W ;X|U) ≥ log γ] ∀γ > 0,

(2.188)

which proves Lemma 2.2.
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2.7.2 Proofs of Corollary 2.1 and Corollary 2.2

Proof of Corollary 2.1

We prove this result using Theorem 2.1, by choosing U as an conditionally

independent copy of Xn given W . In Example 2.1, we have the conditional

pdf

pW |Xn=xn = N
(
E[W |Xn = xn],Var[W |Xn = xn]

)
, (2.189)

where

E[W |Xn = xn] =
σ2
W

σ2
W + σ2/n

x̄, Var[W |Xn = xn] =
σ2
W

1 + nσ2
W/σ

2
,

(2.190)

and x̄ = 1
n

∑n
i=1 xi. Thus,

∥∥pW |Xn=xn
∥∥
∞ = sup

w
|pW |Xn=xn(w)| =

√
1

2π

(
1

σ2
W

+
n

σ2

)
, (2.191)

and therefore

LW |Xn(xn, ρ) = sup
w∈R

P[|W − w| ≤ ρ|Xn = xn] (2.192)

= sup
w∈R

∫ w+ρ

w−ρ
pW |Xn=xn(w′)dw′ (2.193)

≤ 2ρ
∥∥pW |Xn=xn

∥∥
∞ (2.194)

= ρ

√
2

π

(
1

σ2
W

+
n

σ2

)
. (2.195)

In addition,

I(W ;Xn|X ′n) = I(W ;Xn, X ′n)− I(W ;X ′n) =
1

2
log

1 + 2nσ2
W/σ

2

1 + nσ2
W/σ

2
.

(2.196)
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From (2.11),

RB ≥ sup
0<s<1

√
πσ2

W

2(1 + nσ2
W/σ

2)
s2−(I(W ;Xn|X′n)+1)/(1−s) (2.197)

≥ 1 + σ2/(nσ2
W )

8(2 + σ2/(nσ2
W ))

√
πσ2

W

2(1 + nσ2
W/σ

2)
(2.198)

≥ 1

16

√
πσ2

W

2(1 + nσ2
W/σ

2)
, (2.199)

where the second line follows by setting s = 1/2.

Proof of Corollary 2.2

Again, we use Theorem 2.1 by choosing U as an conditionally independent

copy of Xn given W . In Example 2.2, we have the conditional pdf

pW |Xn(w|xn) = (n+ 1)

(
n

k

)
(1− w)n−kwk1{0 ≤ w ≤ 1}, (2.200)

where k =
∑n

i=1 xi. Since the maximum of the function

w 7→ (1− w)n−kwk1{0 ≤ w ≤ 1}

is achieved at w∗ = k/n, we have

∥∥pW |Xn=xn
∥∥
∞ = (n+ 1)

(
n

k

)(
1− k

n

)n−k(k
n

)k
, (2.201)

and therefore

LW |Xn(xn, ρ) ≤ 2ρ
∥∥pW |Xn=xn

∥∥
∞ = 2ρ(n+ 1)

(
n

k

)(
1− k

n

)n−k(k
n

)k
.

(2.202)

Since the marginal distribution of K =
∑n

i=1Xi is uniform over {0, . . . , n},

E[LW |Xn(Xn, ρ)] ≤ 2ρ
n∑
k=0

(
n

k

)(
1− k

n

)n−k(k
n

)k
, (2.203)

and, using Stirling’s approximation [36, p. 54], we have the estimate
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(
n

k

)(
1− k

n

)n−k(k
n

)k
≤
√

n

2πk(n− k)
, k = 1, . . . , n− 1. (2.204)

With these upper bounds, we have

E[LW |Xn(Xn, ρ)] ≤ 2ρ

(
2 +

n−1∑
k=1

√
n

2πk(n− k)

)
≤ 2ρ

(
2 +

√
πn/2

)
.

(2.205)

In addition, from (2.15),

I(W ;Xn|X ′n)→ 1

2
as n→∞. (2.206)

Therefore, using Eq. (2.11), we find

RB ≥ sup
0<s<1

s

2(2 +
√
πn/2)

2−(I(W ;Xn|X′n)+1)/(1−s) (2.207)

≥ 1

4(2 +
√
πn/2)

2−2(I(W ;Xn|X′n)+1) (2.208)

∼ 1

16
√

2πn
as n→∞, (2.209)

where the second line follows by setting s = 1/2.

2.7.3 Proof of Corollary 2.3

We use the lower bound in (2.24) to prove this result. In Example 2.3, the

conditional pdf pW |Xn=xn is a truncated Gaussian distribution

pW |Xn(w|xn) =
1{‖w‖2 ≤ a}

cn(x̄)(2πσ2/n)d/2
exp

(
− n

2σ2
‖x̄− w‖2

2

)
, (2.210)

where x̄ = 1
n

∑n
i=1 xi ∈ Rd, and the normalizing factor is

cn(x̄) =

∫
Rd

1{‖w‖2 ≤ a}
(2πσ2/n)d/2

exp
(
− n

2σ2
‖x̄− w‖2

2

)
dw (2.211)

= P[‖X̄ + Un‖2 ≤ a|X̄ = x̄] (2.212)
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with Un ∼ N(0, σ
2

n
Id) independent of X̄. We can show that3

cn(X̄)
P−→ 1 as n→∞. (2.213)

Indeed, since X̄
P−→ W and Un

d−→ 0, we have X̄ + Un
d−→ W [37, Lemma 4.5

and Corollary 4.7], hence

E[|cn(X̄)− 1|] = 1− E[cn(X̄)] = P[‖X̄ + Un‖2 > a]→ P[‖W‖2 > a] = 0

(2.214)

as n→∞, and thus cn(X̄)
L1

−→ 1 as n→∞. Since Zn
P−→ Z is equivalent to

E[|Zn − Z| ∧ 1]→ 0 as n→∞, we arrive at (2.213). From (2.210),

∥∥pW |Xn=xn
∥∥
∞ =


1

cn(x̄)

( n

2πσ2

)d/2
, ‖x̄‖2 ≤ a

1

cn(x̄)

( n

2πσ2

)d/2
exp

(
−n(‖x̄‖2 − a)2

2σ2

)
, ‖x̄‖2 > a

.

(2.215)

Let Vd denote the volume of the unit ball in (Rd, ‖ · ‖2). Then, for all xn and

‖w‖2 ≤ a,

pW |Xn=xn(w)

pW (w)
≤ Vda

d
∥∥pW |Xn=xn

∥∥
∞ ≤

Vda
d

cn(x̄)

( n

2πσ2

)d/2
. (2.216)

Choosing γ = (1+δ)Vda
d
(

n
2πσ2

)d/2
(for an arbitrary δ > 0) and ρ = a(2γ)−1/d

in (2.24), we get

RB ≥ ρ
(
P
[
i(W ;Xn) < log γ

]
− γLW (ρ)

)
(2.217)

≥ ρ

(
P
[
Vda

d

cn(X̄)

( n

2πσ2

)d/2
< γ

]
− γ

(ρ
a

)d)
(2.218)

≥
( 1

2(1 + δ)

)1/d

V
−1/d
d

√
2πσ2

n

(
P
[

1

cn(X̄)
< 1 + δ

]
− 1

2

)
(2.219)

&
1

20

√
2πσ2d

n
as n→∞, (2.220)

3Given a sequence of real-valued random variables {Zn}, we write Zn
L1

−−→ Z, Zn
P−→

Z, and Zn
d−→ Z to indicate the convergence in L1, in probability, and in distribution,

respectively.
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where the last step follows from the fact that cn(X̄)
P−→ 1 (hence 1/cn(X̄)

P−→
1), (1/2)1/d ≥ 1/2 for all d ≥ 1, V

1/d
d ≤ 5/

√
d for all d ≥ 1, and the fact that

δ > 0 is arbitrary. We thus obtain a lower bound that is asymptotic in n and

non-asymptotic in a, σ2, and d.

2.7.4 Proof of Equation (2.101)

We have pW (w) = 1 for w ∈ [0, 1], and PXn|W (xn|w) = ws(1− w)n−s, where

s is the Hamming weight (the number of 1’s) of xn. Thus,

PXn(xn) =

∫ 1

0

ws(1− w)n−sdw =
1

(n+ 1)
(
n
s

)
and

PW |Xn(w|xn) = ws(1− w)n−s(n+ 1)

(
n

s

)
.

This gives

‖PW |Xn=xn − PW |Xn=x̃n‖TV =
n+ 1

2∫ 1

0

∣∣∣ws(1− w)n−s
(
n

s

)
− ws̃(1− w)n−s̃

(
n

s̃

)∣∣∣dw,
which is maximized by choosing xn and x̃n such that s = 0 and s̃ = n. Hence

ϑ(PW |Xn) =
n+ 1

2

∫ 1

0

∣∣(1− w)n − wn
∣∣dw = 1− 2−n.
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2.7.5 Proofs of Theorem 2.7 and Equation (2.143)

Proof of Theorem 2.7

The first upper bound follows from

I(W ;V m×T |Xn
S ) = I(W ;V T

Sc|Xn
S ) (2.221)

≤ η(PV TSc |UTSc )I(W ;UT
Sc |Xn

S ) (2.222)

≤ η|Sc|T I(W ;YSc |Xn
S ) (2.223)

≤ η|Sc|T I(W ;Xn
Sc|Xn

S ), (2.224)

where (2.221) follows from the Markov chain W,V T
Sc −Xn

S − V T
S , and (2.222)

follows from the Markov chain W,Xn
S −UT

Sc−V T
Sc and the conditional version

of SDPI (Lemma 2.7).

Alternatively, we can upper-bound I(W ;YSc |Xn
S ) in (2.223) with the fol-

lowing chain of inequalities:

I(W ;V m×T |Xn
S ) ≤ η|Sc|T I(W ;YSc|Xn

S ) (2.225)

= η|Sc|T

∫
I(W ;YSc |Xn

S = xnS)PXn
S
(dxnS) (2.226)

≤ η|Sc|T

∫
I(Xn

Sc ;YSc|Xn
S = xnS)η

(
PXn
Sc |X

n
S=xnS

, PW |Xn
Sc ,X

n
S=xnS

)
PXn
S
(dxnS)

(2.227)

≤ η|Sc|T sup
xnS

η
(
PXn
Sc |X

n
S=xnS

, PW |Xn
Sc ,X

n
S=xnS

)
|Sc|b, (2.228)

where (2.227) is from the Markov chainW−Xn
Sc−YSc conditional onXn

S = xnS
and the SDPI, and (2.228) is because I(Xn

Sc ;YSc|Xn
S ) ≤ H(YSc) ≤ |Sc|b.

Lastly, from the Markov chain W −Xn
Sc−V T

Sc conditional on Xn
S = xnS and

the SDPI,

I(W ;V m×T |Xn
S ) = I(W ;V T

Sc |Xn
S ) (2.229)

≤ I(Xn
Sc ;V

T
Sc|Xn

S ) sup
xnS

η
(
PXn
Sc |X

n
S=xnS

, PW |Xn
Sc ,X

n
S=xnS

)
(2.230)

≤ |Sc|CT sup
xnS

η
(
PXn
Sc |X

n
S=xnS

, PW |Xn
Sc ,X

n
S=xnS

)
, (2.231)

where the last step follows from I(Xn
Sc ;V

T
Sc |Xn

S ) ≤ I(UT
Sc ;V

T
Sc |Xn

S ) ≤ I(UT
Sc ;V

T
Sc),
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because of the Markov chain Xn
S − UT

Sc − V T
Sc .

Proof of Equation (2.143)

The proof parallels that of Theorem 2.7. For the first upper bound in (2.143),

I(W ;V mT |Xn
S ) ≤ η(PVmT |UmT )I(W ;UmT |Xn

S ) (2.232)

≤ ηmT I(W ;Y |Xn
S ) (2.233)

≤ ηmT I(W ;Xn
Sc |Xn

S ), (2.234)

where (2.232) is from the Markov chain W,Xn
S − UmT − V mT .

Alternatively, we can upper-bound I(W ;Y |Xn
S ) in (2.233) with the follow-

ing chain of inequalities:

I(W ;V mT |Xn
S ) ≤ ηmT I(W ;Y |Xn

S ) (2.235)

= ηmT

∫
I(W ;Y |Xn

S = xnS)PXn
S
(dxnS) (2.236)

≤ ηmT

∫
I(Xn

Sc ;Y |Xn
S = xnS)η

(
PXn
Sc |X

n
S=xnS

, PW |Xn
Sc ,X

n
S=xnS

)
PXn
S
(dxnS)

(2.237)

≤ ηmT sup
xnS

η
(
PXn
Sc |X

n
S=xnS

, PW |Xn
Sc ,X

n
S=xnS

)
mb, (2.238)

where (2.237) is from the Markov chain W−Xn
Sc−Y conditional on Xn

S = xnS
and the SDPI; (2.238) is because I(Xn

Sc ;Y |Xn
S ) ≤ H(Y ) ≤ mb.

Lastly, from the Markov chain W − Xn
Sc − V mT conditional on Xn

S = xnS
and the SDPI,

I(W ;V mT |Xn
S ) ≤ I(Xn

Sc ;V
mT |Xn

S ) sup
xnS

η
(
PXn
Sc |X

n
S=xnS

, PW |Xn
Sc ,X

n
S=xnS

)
(2.239)

≤ mCT sup
xnS

η
(
PXn
Sc |X

n
S=xnS

, PW |Xn
Sc ,X

n
S=xnS

)
, (2.240)

where the last step follows from I(Xn
Sc ;V

mT |Xn
S ) ≤ I(UmT ;V mT |Xn

S ) ≤
I(UmT ;V mT ), because of the Markov chain Xn

S − UmT − V mT .
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Figure 2.5: Bayesian network of (W,Xm×n, Y m) in the interactive case
(m = 4).

2.7.6 Proof of Theorem 2.8

The first upper bound in (2.165) follows from the Markov chain W −Xm×n−
Y m.

To prove the second upper bound in (2.165), we use the chain rule to

decompose I(W ;Y m) as

I(W ;Y m) =
m∑
i=1

I(W : Y(i)|Y i−1), (2.241)

and then apply SDPI to each term. Since Y(i) = ϕi(X
n
(i), Y

i−1), we know that

W −Xn
(i)−Y(i) form a Markov chain given Y i−1 = yi−1. Thus the SDPI gives

I(W ;Y(i)|Y i−1 = yi−1) ≤ η(PW |Xn
(i)
,Y i−1=yi−1)I(Xn

(i);Y(i)|Y i−1 = yi−1).

(2.242)

Now the goal is to upper-bound η(PW |Xn
(i)
,Y i−1=yi−1). We can view PW |Xn

(i)
,Y i−1=yi−1

as the backward channel and PXn
(i)
|W,Y i−1=yi−1 as the forward channel. Since

we assume that each processor sends its message only once, Xn
(i) and Y i−1

are conditionally independent given W , which can be seen from the Bayesian

network in Fig. 2.5. Therefore,

dPXn
(i)
|W=w,Y i−1=yi−1

dPXn
(i)
|W=w′,Y i−1=yi−1

(xn(i)) =
dPXn

(i)
|W=w

dPXn
(i)
|W=w′

(xn(i)) (2.243)

≥ αn for all xn(i), w, and w′, (2.244)

where (2.244) follows from the condition in (2.164) and the assumption that

the samples in Xn
(i) are conditionally i.i.d. given W . Then by Lemma 2.5, the
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SDPI constant of the backward channel satisfies

η(PW |Xn
(i)
,Y i−1=yi−1) ≤ 1− αn. (2.245)

Since the above inequalities hold for any yi−1, we have

I(W ;Y(i)|Y i−1) ≤ (1− αn)I(Xn
(i);Y(i)|Y i−1) (2.246)

≤ (1− αn)I(Xm×n;Y(i)|Y i−1). (2.247)

It follows that

I(W ;Y m) ≤ (1− αn)I(Xm×n;Y m) (2.248)

≤ (1− αn)mb. (2.249)
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Chapter 3

Lower Bounds for Distributed Function
Computation

3.1 Introduction and Preview of Results

3.1.1 Model and Problem Formulation

The problem of distributed function computation arises in such applications

as inference and learning in networks, and consensus or coordination of mul-

tiple agents. Each node of the network has an initial random observation and

aims to compute a common function of the observations of all the nodes by ex-

changing messages with its neighbors over discrete memoryless point-to-point

channels and by performing local computations. A problem of theoretical and

practical interest is to determine the fundamental limits on the computation

time, i.e., the minimum number of steps needed by any distributed computa-

tion algorithm to guarantee that, when the algorithm terminates, each node

has an accurate estimate of the function value with high probability.

Formally, a network consisting of nodes connected by point-to-point chan-

nels is represented by a directed graph G = (V , E), where V is a finite set of

nodes and E ⊆ V × V is a set of edges. Node u can send messages to node

v only if (u, v) ∈ E . Accordingly, to each edge e ∈ E we associate a discrete

memoryless channel with finite input alphabet Xe, finite output alphabet Ye,

and stochastic transition law Ke that specifies the transition probabilities

Ke(ye|xe) for all (xe, ye) ∈ Xe × Ye. The channels corresponding to different

edges are assumed to be independent. Initially, each node v has access to

an observation given by a random variable (r.v.) Wv taking values in some

space Wv. We assume that the joint probability law PW of W , (Wv)v∈V is

known to all the nodes. Given a function f :
∏

v∈VWv → Z, each node aims

to estimate the value Z = f(W ) via local communication and computation.

For example, when f is given by the identity mapping Z = W , the goal of
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each node is to estimate the observations of all other nodes in the network.

The operation of the network is synchronized, and takes place in discrete

time. A T -step algorithm A is a collection of deterministic encoders (ϕv,t)

and estimators (ψv), for all v ∈ V and t ∈ {1, . . . , T}, given by mappings

ϕv,t : Wv × Yt−1
v← → Xv→, ψv : Wv × YTv← → Z,

where Xv→ =
∏

u∈Nv→ X(v,u) and Yv← =
∏

u∈Nv← Y(u,v). Here, Nv← , {u ∈
V : (u, v) ∈ E} and Nv→ , {u ∈ V : (v, u) ∈ E} are, respectively, the in-

neighborhood and the out-neighborhood of node v. The algorithm operates

as follows: at each step t, each node v computes Xv,t , (X(v,u),t)u∈Nv→ =

ϕv,t
(
Wv, Y

t−1
v

)
∈ Xv→, and then transmits each message X(v,u),t along the

edge (v, u) ∈ E . For each (u, v) ∈ E , the received message Y(u,v),t at each t is

related to the transmitted message X(u,v),t via the stochastic transition law

K(u,v). At step T , each node v computes Ẑv = ψv(Wv, Y
T
v ) as an estimate of

Z, where Yv,t , (Y(u,v),t)u∈Nv← ∈ Yv← for t ∈ {1, . . . , T}.
Given a nonnegative distortion function ` : Z×Z→ R+, we use the excess

distortion probability P
[
`(Z, Ẑv) > ε

]
to quantify the computation fidelity

of the algorithm at node v. A key fundamental limit of distributed function

computation is the (ε, δ)-computation time:

T (ε, δ) , inf
{
T ∈ N :∃ a T -step algorithm A such that

max
v∈V

P
[
`(Z, Ẑv) > ε

]
≤ δ
}
. (3.1)

If an algorithm A has the property that

max
v∈V

P
[
`(Z, Ẑv) > ε

]
≤ δ,

then we say that it achieves accuracy ε with confidence 1− δ. Thus, T (ε, δ)

is the minimum number of time steps needed by any algorithm to achieve

accuracy ε with confidence 1 − δ. The objective of this chapter is to derive

general lower bounds on T (ε, δ) for arbitrary network topologies, discrete

memoryless channel models, continuous or discrete observations, and func-

tions f .

Previously, this problem (for real-valued functions and quadratic distor-

tion) has been studied by Ayaso et al. [38] and by Como and Dahleh [39] using
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information-theoretic techniques. This problem is also related to the study

of communication complexity of distributed computing over noisy channels.

In that context, Goyal et al. [40] studied the problem of computing Boolean

functions in complete graphs, where each pair of nodes communicates over a

pair of independent binary symmetric channels (BSCs), and obtained tight

lower bounds on the number of serial broadcasts using an approach tailored

to that special problem. The technique used in [40] has been extended to

random planar networks by Dutta et al. [41]. Other related, but differ-

ently formulated, problems include communication complexity and informa-

tion complexity in distributed computing over noiseless channels, surveyed

in [42]; minimum communication rates for distributed computing [43–45],

compression, or estimation based on infinite sequences of observations, sur-

veyed in [46, Chap. 21]; and distributed computing in wireless networks,

surveyed in [47]. Some achievability results for specific distributed function

computation problems can be found in [38,48–55].

3.1.2 Method of Analysis and Summary of Main Results

Our analysis builds upon the information-theoretic framework proposed by

Ayaso et al. [38] and Como and Dahleh [39]. The underlying idea is rather

natural and exploits a fundamental trade-off between the minimal amount of

information any good algorithm must necessarily extract about the function

value Z when it terminates and the maximal amount of information any

algorithm is able to obtain due to time and communication constraints. To

be more precise, given any set of nodes S ⊆ V , let WS , (Wv)v∈S denote

the vector of observations at all the nodes in S. The quantity that plays a

key role in the analysis is the conditional mutual information I(Z; Ẑv|WS)

between the actual function value Z and the estimate Ẑv at an arbitrary

node v, given the observations in an arbitrary subset of nodes S containing

node v.

Consider an arbitrary T -step algorithm A that achieves accuracy ε with

confidence 1− δ. Then, as we show in Lemma 3.1 of Sec. 3.2.1, this mutual

information can be lower-bounded by

I(Z; Ẑv|WS) ≥ (1− δ) log
1

E[LZ|WS (WS , ε)]
− h2(δ), (3.2)

67



where h2(δ) = −δ log δ − (1 − δ) log(1 − δ) is the binary entropy function,

and

LZ|WS (wS , ε) = sup
z∈Z

P[`(Z, z) ≤ ε|WS = wS ]

= sup
z∈Z

P[`(f(W ), z) ≤ ε|WS = wS ]

is the conditional small ball probability of Z = f(W ) given WS = wS as de-

fined in (2.3). The conditional small ball probability quantifies the difficulty

of localizing the value of Z = f(W ) in a “distortion ball” of size ε given

partial knowledge about the value of W , namely WS = wS . For example, as

discussed in Sec. 3.4, when f is a linear function of the observations W , the

conditional small ball probability can be expressed in terms of so-called Lévy

concentration functions [56], for which tight estimates are available under

various regularity conditions.

On the other hand, if A is a T -step algorithm, then the amount of infor-

mation any node v has about Z once A terminates can be upper bounded by

a quantity that increases with T and also depends on the network topology

and on the information transmission capabilities of the channels connecting

the nodes. To quantify this amount of information, we consider a cut of the

network, i.e., a partition of the set of nodes V into two disjoint subsets S and

Sc , V\S, such that v ∈ S. The underlying intuition is that any information

that nodes in S receive about WSc must flow across the edges from nodes in

Sc to nodes in S. The set of these edges, denoted by ES , is referred to as

the cutset induced by S. Figure 3.1 illustrates these concepts on a simple

four-node network. We then have the following upper bound [38,39] (see also
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Figure 3.1: A four-node network with a cut defined by S = {2, 3} and
Sc = {1, 4}. The cutset ES consists of edges (1, 2) and (4, 3), marked in
blue.
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Lemma 3.4 in Sec. 3.2.2):

I(Z; Ẑv|WS) ≤ TCS . (3.3)

The quantity CS , referred to as the cutset capacity, is the sum of the Shannon

capacities of all the channels located on the edges in the cutset ES . Thus,

if there exists a cut (S,Sc) with a small value of CS , then the amount of

information gained by the nodes in S about Z will also be small. Note that

the cutset upper bound grows linearly with T . However, when the initial

observations W are discrete, we also know that

I(Z; Ẑv|WS) ≤ I(WSc ; Ẑv|WS) ≤ H(WSc |WS),

where H(WSc|WS) is the conditional entropy of WSc given WS , which does

not depend on T . In fact, we sharpen this bound by showing in Lemma 3.5

in Sec. 3.2.3 that

I(Z; Ẑv|WS) ≤
(
1− (1− ηv)T

)
H(WSc |WS). (3.4)

Here, ηv is defined as

ηv = sup
I(U ;Yv)

I(U ;Xv)
,

where the supremum is over all triples (U,Xv, Yv) of r.v.’s, such that U takes

values in an arbitrary alphabet, U → Xv → Yv is a Markov chain, Xv takes

values in Xv←, Yv takes values in Yv←, and the conditional probability law

PYv |Xv is equal to the product of all the channels entering v. As discussed in

detail in Sec. 2.3, this constant is related to so-called strong data processing

inequalities, and quantifies the information transmission capabilities of the

channels entering v. When ηv < 1, the upper bound (3.4) is strictly smaller

than H(WSc|WS). With the upper bound (3.4), we can strengthen the cutset

bound to the following:

I(Z; Ẑv|WS) ≤ min
{
TCS ,

(
1− (1− ηv)T

)
H(WSc|WS)

}
. (3.5)

Combining the bounds in (3.2) and (3.5), we conclude that, if there exists a

69



T -step algorithm A that achieves accuracy ε with confidence 1− δ, then

T ≥ max

{
1

CS

(
(1− δ) log

1

E[LZ|WS (WS , ε)]
− h2(δ)

)
,

log
(

1− 1
H(WSc |WS)

(
(1− δ) log 1

E[LZ|WS (WS ,ε)]
− h2(δ)

))
log(1− ηv)

}
;

(3.6)

moreover, this inequality holds for all choices of S ⊂ V and v ∈ S. The

precise statements of the resulting lower bounds on T (ε, δ) are given in The-

orem 3.1 and Theorem 3.3.

The lower bound in (3.6) accounts for the difficulty of estimating the value

of Z = f(W ) given only a subset of observations WS through the small

ball probability LZ|WS (WS , ε), and for the communication bottlenecks in the

network through the cutset capacity CS and the constants ηv. The presence

of LZ|WS (WS , ε) in the bound ensures the correct scaling of T (ε, δ) in the

high-accuracy limit ε→ 0. In particular, when the function f is real-valued

and the probability distribution of Z = f(W ) has a density, it is not hard to

see that LZ|WS (WS , ε) = O(ε), and therefore T (ε, δ) grows without bound at

the rate of log(1/ε) as ε → 0. By contrast, the bounds of Ayaso et al. [38]

saturate at a finite constant even when no computation error is allowed,

i.e., when ε = 0. Detailed comparison with existing bounds is given in

Sec. 3.4, where we particularize our lower bounds to the computation of

linear functions. Moreover, in certain cases our lower bound on T (ε, δ) tends

to infinity in the high-confidence regime δ → 0. By contrast, existing lower

bounds that rely on cutset capacity estimates remain bounded regardless of

how small we make δ.

Throughout this chapter, we provide several concrete examples that il-

lustrate the tightness of the general lower bound in (3.6). In particular,

Example 3.1 in Sec. 3.2.4 concerns the problem of computing the mod-2 sum

of two independent Bern(1
2
) random variables in a network of two nodes com-

municating over binary symmetric channels (BSCs). For that problem, we

obtain a lower bound on T (0, δ) that matches an achievable upper bound

within a factor of 2. In Example 3.2 in Sec. 3.2.4, we consider the case where

the nodes aim to distribute their discrete observations to all other nodes,

and obtain a lower bound on T (0, δ) that captures the conductance of the
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network, which plays a prominent role in the previously published bounds

of Ayaso et al. [38]. In Sec. 3.5, we study two more examples: computing a

sum of independent Rademacher random variables in a dumbbell network of

BSCs, and distributed averaging of real-valued observations in an arbitrary

network of binary erasure channels (BECs). Our lower bound for the former

example precisely captures the dependence of the computation time on the

number of nodes in the network, while for the latter example it captures the

correct dependence of the computation time on the accuracy parameter ε.

A significant limitation of the analysis based on a single cut (S,Sc) of the

network is that it only captures the flow of information across the cutset

ES , but does not account for the time it takes the algorithm to disseminate

this information to all the nodes in S. We address this limitation in Sec. 3.3

through a multi-cutset analysis. The main idea is to partition the set of nodes

V into several subsets S1, . . . ,Sn, such that, for all Pi , S1 ∪ . . . ∪ Si, the

cutsets EP1 , . . . , EPn−1 , EPc1 , . . . , EPcn−1
are disjoint, and to analyze the flow of

information across this sequence of cutsets. Once such a partition is selected,

the analysis is based on a network reduction argument (Lemma 3.7), which

lumps all the nodes in each Si into a single virtual “supernode.” The con-

struction of the partition ensures that each supernode i only communicates

with supernodes i − 1 and i + 1, and can also send noisy messages to itself

(this is needed to simulate noisy communication among the nodes within Si
in the original network). Thus, the reduced network takes the form of a chain

with n nodes communicating with their nearest neighbors over bidirectional

noisy links and, in addition, sending noisy messages to themselves. We refer

to this network as a bidirected chain of length n− 1. Figure 3.2a shows the

partition of a six-node network, and the bidirected chain reduced from this

network is shown in Fig. 3.2b.

Once this reduction is carried out, we can convert any T -step algorithm

A running on the original network into a randomized T -step algorithm A′

running on the reduced network with the same accuracy and confidence guar-

antees as A. Consequently, it suffices to analyze distributed function com-

putation in bidirected chains. The key quantitative statement that emerges

from this analysis can be informally stated as follows: For any bidirected

chain with n > 3 nodes, there exists a constant η ∈ [0, 1] that plays the same

role as ηv in (3.4) and quantifies the information transmission capabilities

of the channels in the chain, such that, for any algorithm A that runs on
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-bitb

(1)Y

(2)
nX

noisy

(2)
TU

(2)
TV

channel-bitb
(2)Q

(2)E
(2)Y

Processor 2

1W 2W

3W
4W

1W 2W

1� 2�

1 2 3

4 5 6

3�

1
2

3
4

1' 2' 3'

�c�

(b)

Figure 3.2: A six-node network partitioned into three sets, S1 = {1, 4},
S2 = {2, 5}, and S3 = {3, 6}. Here, P1 = {1, 4}, P2 = {1, 2, 4, 5}, and the
cutsets EP1 = {(2, 1), (2, 4)}, EP2 = {(3, 2), (6, 5)}, EPc1 = {(1, 5), (4, 5)}, and
EPc2 = {(2, 3), (5, 6)} are disjoint. Observe that nodes in S1 communicate
only with nodes in S2 and S1, and nodes in S3 communicate only with
nodes in S2 and S3. The bidirected chain reduced from the network is
shown on the right.

this chain and takes time T = O(n/η), the conditional mutual information

between the function value Z and its estimate Ẑn at the rightmost node n

given the observations of nodes 2 through n is upper bounded by

I(Z; Ẑn|W2:n) = O

(
C(1,2)n

2

η
e−2nη2

)
, (3.7)

where C(1,2) is the Shannon capacity of the channel from node 1 to node 2.

The precise statement is given in Lemma 3.8 in Sec. 3.3.1. Intuitively, this

shows that, unless the algorithm uses Ω(n/η) steps, the information about

W1 will dissipate at an exponential rate by the time it propagates through

the chain from node 1 to node n. Combining (3.7) with the lower bound on

I(Z; Ẑn|W2:n) based on small ball probabilities, we can obtain lower bounds

on the computation time T (ε, δ). The precise statement is given in Theo-

rem 3.4. Moreover, as we show, it is always possible to reduce an arbitrary

network with bidirectional point-to-point channels between the nodes to a

bidirected chain whose length is equal to the diameter of the original net-

work, which implies that, for networks with sufficiently large diameter, and

for sufficiently small values of ε, δ,

T (ε, δ) = Ω

(
diam(G)

η

)
, (3.8)

where diam(G) denotes the diameter. This dependence on diam(G), which
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cannot be captured by the single-cutset analysis, is missing in almost all of

the existing lower bounds on computation time. An exception is the paper

by Rajagopalan and Schulman [50] that gives an asymptotic lower bound

on the time required to broadcast a single bit over a chain of unidirectional

BSCs. Our multi-cutset analysis applies to both discrete and continuous

observations, and to general network topologies. It can be straightforwardly

particularized to specific networks, such as bidirected chains, rings, trees, and

grids, as discussed in Sec. 3.3.2. We note that techniques involving multiple

(though not necessarily disjoint) cutsets have also been proposed in the study

of multi-party communication complexity by Tiwari [57] and more recently

by Chattopadhyay et al. [58], while our concern is the influence of network

topology and channel noise on the computation time.

3.2 Single-cutset Analysis

We start by deriving information-theoretic lower bounds on the computation

time T (ε, δ) based on a single cutset in the network. Recall that a cutset

associated to a partition of V into two disjoint sets S and Sc , V \S consists

of all edges that connect a node in Sc to a node in S:

ES ,
{

(u, v) ∈ E : u ∈ Sc, v ∈ S
}
≡ (Sc × S) ∩ E .

When S is a singleton, i.e., S = {v}, we will write Ev instead of the more

clunky E{v}. As the discussion in Sec. 3.1.2 indicates, our analysis revolves

around the conditional mutual information I(Z; Ẑv|WS) for an arbitrary set

of nodes S ⊂ V and for an arbitrary node v ∈ S. The lower bound on

I(Z; Ẑv|WS) expresses quantitatively the intuition that any algorithm that

achieves

max
v∈V

P
[
`(Z, Ẑv) > ε

]
≤ δ

must necessarily extract a sufficient amount of information about the value

of Z = f(W ) = f(WS ,WSc). On the other hand, the upper bounds on

I(Z; Ẑv|WS) formalize the idea that this amount cannot be too large, since

any information that nodes in S receive about WSc must flow across the edges

in the cutset ES (cf. [25, Sec. 15.10] for a typical illustration of this type of
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cutset arguments). We capture this information limitation in two ways: via

channel capacity and via SDPI constants.

The remainder of this section is organized as follows. We first present

conditional mutual information lower bounds in Sec. 3.2.1. Then we state

the upper bound based on cutset capacity in Sec. 3.2.2 and the upper bounds

based on SDPI in Sec. 3.2.3. Finally, we combine the lower and upper bounds

to derive lower bounds on T (ε, δ) in Sec. 3.2.4.

3.2.1 Lower Bounds on I(Z; Ẑv|WS)

Lower Bound via Small Ball Probability

For any ε ≥ 0, S ⊂ V , and wS ∈
∏

v∈SWv, according to the definition in

(2.3), the conditional small ball probability of Z given WS = wS is

LZ|WS (wS , ε) = sup
z∈Z

P[`(Z, z) ≤ ε|WS = wS ]. (3.9)

This quantity measures how well the conditional distribution of Z given

WS = wS concentrates in a small region of size ε as measured by `(·, ·). A

useful fact about the conditional small ball probability is the monotonicity

of the set function S 7→ E[LZ|WS (WS , ε)]: if S ⊆ S ′ ⊂ V , then

E[LZ|WS (WS , ε)] ≤ E[LZ(WS′ , ε)]. (3.10)

Indeed, by the law of iterated expectation, for any S ⊆ S ′ ⊂ V we have

LZ|WS (wS , ε) = sup
z∈Z

E
[
E[1{`(Z, z) ≤ ε}|WS′ ]

∣∣WS = wS
]

≤ E
[

sup
z∈Z

E[1{`(Z, z) ≤ ε}|WS′ ]
∣∣∣WS = wS

]
= E

[
LZ(WS′ , ε)

∣∣WS = wS
]
.

Integrating over wS , we obtain (3.10).

The following lower bound on I(Z; Ẑv|WS) in terms of the conditional

small ball probability is essential for proving lower bounds on T (ε, δ).
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Lemma 3.1. If an algorithm A achieves

max
v∈V

P
[
`(Z, Ẑv) > ε

]
≤ δ ≤ 1/2, (3.11)

then for any set S ⊂ V and any node v ∈ S,

I(Z; Ẑv|WS) ≥ (1− δ) log
1

E[LZ|WS (WS , ε)]
− h2(δ), (3.12)

where h2(δ) = −δ log δ − (1− δ) log(1− δ) is the binary entropy function.

Proof. Fix an arbitrary S ⊂ V and an arbitrary v ∈ S. Consider the proba-

bility distributions P = PWS ,Z,Ẑv and Q = PWS ⊗ PZ|WS ⊗ PẐv |WS . Define the

indicator random variable Υ , 1
{
`(Z, Ẑv) ≤ ε

}
. Then from (3.11) it follows

that P[Υ = 1] ≥ 1 − δ. On the other hand, since Z → WS → Ẑv form a

Markov chain under Q, by Fubini’s theorem,

Q[Υ = 1] =

∫
WS

∫
Z

∫
Z

1
{
`(z, ẑv) ≤ ε

}
P(dz|wS)P(dẑv|wS)P(dwS)

=

∫
WS

∫
Z

P
[
`(Z, ẑv) ≤ ε

∣∣WS = wS
]
P(dẑv|wS)P(dwS)

≤
∫
WS

sup
ẑv∈Z

P
[
`(Z, ẑv) ≤ ε

∣∣WS = wS
]
P(dwS)

= E[LZ|WS (WS , ε)]. (3.13)

Consequently,

I(Z; Ẑv|WS) = D(P‖Q)

(a)

≥ d2(P[Υ = 1]‖Q[Υ = 1])

(b)

≥ P[Υ = 1] log
1

Q[Υ = 1]
− h2(P[Υ = 1])

(c)

≥ (1− δ) log
1

E[LZ|WS (WS , ε)]
− h2(δ),

where

(a) follows from the data processing inequality for divergence, where d2(p‖q) ,
p log(p/q)+(1−p) log((1−p)/(1−q)) is the binary divergence function;

(b) follows from the fact that d2(p‖q) ≥ p log(1/q)− h2(p); and
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(c) follows from the fact that P[Υ = 1] ≥ 1 − δ ≥ 1/2 by (3.11), and

Q[Υ = 1] ≤ E[LZ|WS (WS , ε)] by (3.13).

For a fixed ε, Lemma 3.1 captures the intuition that, the more spread the

conditional distribution PZ|WS is, the more information we need about Z to

achieve the required accuracy; similarly, for a fixed PZ|WS , the smaller the

accuracy parameter ε, the more information is necessary. In Sec. 3.4, we

provide explicit expressions and upper bounds for the conditional small ball

probability LZ|WS (wS , ε) in the context of computing linear functions of real-

valued r.v.’s with absolutely continuous probability distributions. We show

that, in such cases, LZ|WS (wS , ε) = O(ε), which implies that the lower bound

of Lemma 3.1 grows at least as fast as log(1/ε) in the high-accuracy limit

ε→ 0.

Lower Bound via Rate-distortion Functions

In Sec. 3.1.1, we have defined the (ε, δ)-computation time where the excess

distortion probability is used as a measure of the computation fidelity. Al-

ternatively, we can use the expected distortion E
[
`(Z, Ẑv)

]
to quantify the

computation fidelity of node v, and define the ε-computation time as

T (ε) , inf
{
T ∈ N : ∃A ∈ A(T ) such that max

v∈V
E
[
`(Z, Ẑv)

]
≤ ε
}
. (3.14)

Lemma 3.2 summarizes the relationship between the two definitions of com-

putation time.

Lemma 3.2.

1. For all ε ≥ 0 and δ ∈ (0, 1),

T (ε/δ, δ) ≤ T (ε).

2. If the distortion function is bounded, i.e., dmax , maxz,ẑ∈Z `(z, ẑ) <∞,

then for all ε ∈ [0, dmax] and δ ∈ [0, 1),

T (ε+ δdmax) ≤ T (ε, δ).
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Proof. 1. If E
[
`(Ẑv, Z)

]
≤ ε, then due to the non-negativity of the distor-

tion function and Markov’s inequality,

P
[
`(Ẑv, Z) > ε/δ

]
≤

E
[
`(Ẑv, Z)

]
ε/δ

≤ δ.

2. If P
[
`(Ẑv, Z) > ε

]
≤ δ, then by the assumption that 0 ≤ `(z, ẑ) ≤ dmax,

E
[
`(Ẑv, Z)

]
=

∫ ∞
0

P
[
`(Ẑv, Z) > u

]
du

=

∫ ε

0

P
[
`(Ẑv, Z) > u

]
du+

∫ dmax

ε

P
[
`(Ẑv, Z) > u

]
du

≤ ε+ δdmax.

To obtain lower bounds for the ε-computation time defined with respect to

the expected distortion, we can make use of the conditional rate-distortion

function of Z given WS [59], defined as

RZ|WS (ε) = inf
P
Ẑ|Z,WS

:E[`(Z,Ẑ)]≤ε
I(Z; Ẑ|WS). (3.15)

The operational meaning of RZ|WS (ε) is the minimum asymptotic rate to

encode the source Z within expected distortion ε when both the encoder and

the decoder are provided with the side information WS . Also denote the

usual rate distortion function of Z by

RZ(ε) = inf
P
Ẑ|Z :E[`(Z,Ẑ)]≤ε

I(Z; Ẑ).

Under the expected distortion criterion, I(Z; Ẑv|WS) can be lower-bounded

in terms of RZ|WS (ε) or RZ(ε). Moreover, when Z is continuous and the

distortion function is quadratic, the lower bound only involves the conditional

differential entropy of Z given WS , as stated in the following lemma.

Lemma 3.3. If an algorithm achieves maxv∈V E
[
`(Z, Ẑv)

]
≤ ε, then for any

set S ⊂ V and any node v ∈ S,

I(Z; Ẑv|WS) ≥ RZ|WS (ε) ≥ RZ(ε)− I(Z;WS).
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If Z is continuous and `(z, ẑ) = (z − ẑ)2, then under the same condition,

I(Z; Ẑv|WS) ≥ h(Z|WS) +
1

2
log

1

2πeε
.

Proof. For any set S ⊂ V and any node v ∈ S, an algorithm that achieves

maxv∈V E
[
`(Z, Ẑv)

]
≤ ε yields a conditional distribution PẐv |Z,WS that lies in

the feasible set for the infimization in (3.15). Thus,

I(Z; Ẑv|WS) ≥ RZ|WS (ε).

The conditional rate distortion function can be further lower bounded in

terms of RZ(ε) [59],

RZ|WS (ε) ≥ RZ(ε)− I(Z;WS).

If Z is continuous and `(z, ẑ) = (z − ẑ)2, then

I(Z; Ẑv|WS) = h(Z|WS)− h(Z|Ẑv,WS)

= h(Z|WS)− h(Z − Ẑv|Ẑv,WS)

≥ h(Z|WS)− h(Z − Ẑv)

≥ h(Z|WS)− 1

2
log
(
2πeE[(Z − Ẑv)2]

)
≥ h(Z|WS) +

1

2
log

1

2πeε
,

where we have used the fact that conditioning reduces differential entropy and

h(Z−Ẑv) ≤ 1
2

log
(
2πeE[(Z−Ẑv)2]

)
. This completes the proof of Lemma 3.3.

3.2.2 Upper Bound on I(Z; Ẑv|WS) via Cutset Capacity

Our first upper bound involves the cutset capacity CS , defined as

CS ,
∑
e∈ES

Ce.

Here, Ce denotes the Shannon capacity of the channel Ke.

Lemma 3.4. For any set S ⊂ V, let ẐS , (Ẑv)v∈S . Then, for any T -step
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algorithm A and for any v ∈ S,

I(Z; Ẑv|WS) ≤ I(Z; ẐS |WS) ≤ TCS .

Proof. The first inequality follows from the data processing lemma for mutual

information. The second inequality has been obtained in [38] and [39] as well,

but the proof in [38] relies heavily on differential entropy. Our proof is more

general, as it only uses the properties of mutual information.

For a set of nodes S ⊂ V , let XS,t , (Xv,t)v∈S and YS,t , (Yv,t)v∈S . For two

subsets S1 and S2 of V , define X(S1,S2),t ,
(
X(u,v),t : u ∈ S1, v ∈ S2, (v, u) ∈

E
)

as the messages sent from nodes in S1 to nodes in S2 at step t, and

Y(S1,S2),t ,
(
Y(u,v),t : u ∈ S1, v ∈ S2, (u, v) ∈ E

)
as the messages received by

nodes in S2 from nodes in S1 at step t. We will be using this notation in the

proofs that follow, as well.

If T = 0, then for any v ∈ S, Ẑv = ψv(Wv), hence I(Z; ẐS |WS) ≤
I(Z;WS |WS) = 0. For T ≥ 1, we start with the following chain of in-

equalities:

I(Z; ẐS |WS)
(a)

≤ I(WS ,WSc ;WS , Y
T
S |WS)

= I(WSc ;Y
T
S |WS)

=
T∑
t=1

I(WSc ;YS,t|WS , Y t−1
S )

(b)
=

T∑
t=1

I(WSc ;YS,t|WS , Y t−1
S , XS,t)

≤
T∑
t=1

I(WSc , XSc,t;YS,t|WS , Y t−1
S , XS,t)

=
T∑
t=1

I(XSc,t;YS,t|WS , Y t−1
S , XS,t) + I(WSc ;YS,t|WS , Y t−1

S , XS,t, XSc,t)

(c)
=

T∑
t=1

I(XSc,t;YS,t|WS , Y t−1
S , XS,t)

(d)

≤
T∑
t=1

I(XSc,t;YS,t|XS,t), (3.16)

where
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(a) follows from data processing inequality, and the fact that Z = f(WS ,WSc)

and Ẑv = ψv(Wv, Y
T
v );

(b) follows from the fact that Xv,t = ϕv,t(Wv, Y
t−1
v );

(c) follows from the memorylessness of the channels, hence the Markov

chainWSc ,WS , Y
t−1
S → XS,t, XSc,t → YS,t, and the weak union property

of conditional independence [60, p. 25]; and

(d) follows from the Markov chain WS , Y
t−1
S → XS,t, XSc,t → YS,t, together

with the fact that, if X → A,B → C form a Markov chain, then

I(A;C|X,B) ≤ I(A;C|B).

To prove this, we expand I (A,X;C|B) in two ways to get

I (A,X;C|B) = I(X;C|B) + I (A;C|X,B)

= I(A;C|B) + I (X;C|A,B) .

The claim follows from the fact that I (X;C|A,B) = 0.

From now on we drop the step index t and denote X(S1,S2),t as XS1S2 to

simplify the notation. Note that XS = (XSS , XSSc) and YS = (YSS , YScS).

We have

I(XSc ;YS |XS) = I(XSc ;YScS , YSS |XS)

= I(XSc ;YScS |XS) + I(XSc ;YSS |XS , YScS)

(a)
= I(XScS , XScSc ;YScS |XS)

= I(XScS ;YScS |XS) + I(XScSc ;YScS |XS , XScS)

(b)

≤ I(XScS ;YScS)

(c)

≤
∑
e∈ES

Ce, (3.17)

where

(a) follows from the Markov chain XSc , YScS → XS → YSS and the weak

union property of conditional independence;
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(b) follows from the Markov chains XS → XScS → YScS and XScSc , XS →
XScS → YScS , and the weak union property of conditional indepen-

dence; and

(c) follows from the fact that the channels associated with ES are indepen-

dent, and the fact that the capacity of a product channel is at most

the sum of the capacities of the constituent channels [34].

Then the statement of Lemma 3.4 follows from (3.16) and (3.17).

3.2.3 Upper Bound on I(Z; Ẑv|WS) via SDPI

In Sec. 2.3, we have introduced the necessary background on strong data pro-

cessing inequalities (SDPIs). We now state our upper bounds on I(Z; Ẑv|WS)

based on SDPI constants. Let Kv ,
⊗

e∈Ev Ke be the overall transition law

of the channels across the cutset Ev. Define

ηv , η(Kv)

as the SDPI constant of Kv according to (2.43), and

η∗v , max
e∈Ev

η(Ke)

as the largest SDPI constant among all the channels across Ev. Our sec-

ond upper bound on I(Z; Ẑv|WS) involves these SDPI constants, and the

conditional entropy of WSc given WS .

Lemma 3.5. For any set S ⊂ V, any node v ∈ S, and any T -step algorithm

A,

I(Z; Ẑv|WS) ≤ (1− (1− ηv)T )H(WSc |WS)

≤ (1− (1− η∗v)|Ev |T )H(WSc |WS).

Proof. We adapt the proof of Lemma 2.10. For any v and t, define the

shorthand Xv←,t , X(Nv←,v),t. If T = 0, then for any v ∈ S, Ẑv = ψv(Wv);
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hence I(Z; Ẑv|WS) ≤ I(Z;Wv|WS) = 0. If T ≥ 1, then for any v ∈ S,

I(Z; Ẑv|WS) ≤ I(WS ,WSc ;Wv, Y
T
v |WS)

= I(WSc ;Y
T
v |WS)

= I(WSc ;Y
T−1
v |WS) + I(WSc ;Yv,T |WS , Y T−1

v )

≤ I(WSc ;Y
T−1
v |WS) + ηvI(WSc ;Xv←,T |WS , Y T−1

v )

= (1− ηv)I(WSc ;Y
T−1
v |WS) + ηvI(WSc ;Y

T−1
v , Xv←,T |WS),

(3.18)

where the fourth line follows from the conditional SDPI (Lemma 2.7) and

the fact that WSc ,WS , Y
t−1
v → Xv←,t → Yv,t form a Markov chain for t ∈

{1, . . . , T}. Unrolling the recursive upper bound (3.18) on I(WSc ;Y
T
v |WS),

and noting that I(WSc ;Yv,1|WS) ≤ ηvI(WSc ;Xv←,1|WS), we get

I(WSc ;Y
T
v |WS) ≤ (1− ηv)T−1ηvI(WSc ;Xv←,1|WS) + . . .+

(1− ηv)ηvI(WSc ;Y
T−2
v , Xv←,T−1|WS) + ηvI(WSc ;Y

T−1
v , Xv←,T |WS)

≤
(
(1− ηv)T−1 + . . .+ (1− ηv) + 1

)
ηvH(WSc |WS)

=
(
1− (1− ηv)T

)
H(WSc|WS).

The weakened upper bound follows from the fact that ηv ≤ 1− (1− η∗v)|Ev |,
due to Lemma 2.10. This completes the proof of Lemma 3.5.

Comparing Lemma 3.4 and Lemma 3.5, we note that the upper bound

in Lemma 3.4 captures the communication constraints through the cutset

capacity alone, in accordance with the fact that the communication con-

straints do not depend on W or Z. The bound applies when W is either

discrete or continuous; however, it grows linearly with T . By contrast, the

upper bound in Lemma 3.5 builds on the fact that I(Z; Ẑv|WS) is upper

bounded by H(WSc|WS), and goes a step further by capturing the commu-

nication constraint through a multiplicative contraction of H(WSc|WS). It

never exceeds H(WSc|WS) as T increases. However, it is useful only when

the conditional entropy H(WSc|WS) is well-defined and finite (e.g., when W

is discrete). We give an explicit comparison of Lemma 3.4 and Lemma 3.5

in the following example:

Example 3.1. Consider a two-node network, where the nodes are connected

by BSCs. The problem is for the two nodes to compute the mod-2 sum of
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their one-bit observations. Formally, we have G = (V , E) with V = {1, 2},
E = {(1, 2), (2, 1)}, K(1,2) = K(2,1) = BSC(p), W1 and W2 are independent

Bern(1
2
) r.v.’s, Z = W1 ⊕W2, and `(z, ẑ) = 1{z 6= ẑ}.

Choosing S = {2}, Lemma 3.4 gives

I(Z; Ẑ2|W2) ≤ (1− h2(p))T, (3.19)

whereas Lemma 3.5, together with the fact that η(BSC(p)) = (1−2p)2, gives

I(Z; Ẑ2|W2) ≤ 1− (4pp̄)T , (3.20)

where, for p ∈ [0, 1], p̄ , 1− p. For this example, the cutset-capacity upper

bound is always tighter for small T , as

∂
(
1− (4pp̄)T

)
∂T

∣∣∣
T=0

= log
1

4pp̄
≥ 1− h2(p), p ∈ [0, 1].

Fig. 3.3 shows the two upper bounds with p = 0.3: the cutset-capacity upper

bound is tighter when T < 5.
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Figure 3.3: Comparison of upper bounds in Lemma 3.4 and Lemma 3.5 for
computing mod-2 sum in a two-node network.
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3.2.4 Lower Bounds on Computation Time

We now proceed to derive lower bounds on the computation time T (ε, δ)

and T (ε) based on the previously derived lower and upper bounds on the

conditional mutual information I(Z; Ẑv|WS). Define the shorthand notation

I(S, ε, δ) , (1− δ) log
1

E[LZ|WS (WS , ε)]
− h2(δ),

which is the lower bound on I(Z; Ẑv|WS) in Lemma 3.1.

Cutset-capacity Bounds

Combined with the conditional small ball probability lower bound in Lemma 3.1,

the cutset-capacity upper bound in Lemma 3.4 leads to a lower bound on

T (ε, δ):

Theorem 3.1. For an arbitrary network, for any ε ≥ 0 and δ ∈ [0, 1/2],

T (ε, δ) ≥ max
S⊂V

I(S, ε, δ)
CS

.

Combined with the rate-distortion lower bound in Lemma 3.3, the cutset-

capacity upper bound leads to a lower bound on T (ε):

Theorem 3.2. For an arbitrary network,

T (ε) ≥ max
S⊂V

RZ(ε)− I(Z;WS)

CS
.

If Z is continuous and `(z, ẑ) = (z − ẑ)2, then

T (ε) ≥ max
S⊂V

1

CS

(
h(Z|WS) +

1

2
log

1

2πeε

)
.

From an operational point of view, the lower bound of Theorem 3.1 re-

flects the fact that the problem of distributed function computation is, in

a certain sense, a joint source-channel coding (JSCC) problem with pos-

sibly noisy feedback. In particular, the lower bound on I(Z; Ẑv|WS) from

Lemma 3.1, which is used to prove Theorem 3.1, can be interpreted in terms

of a reduction of JSCC to generalized list decoding [61, Sec. III.B]. Given
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any algorithm A and any node v ∈ V , we may construct a “list decoder” as

follows: given the estimate Ẑv, we generate a “list” {z ∈ Z : `(z, Ẑv) ≤ ε}. If

we fix a set S ⊂ V and allow all the nodes in S to share their observations

WS , then E[LZ|WS (WS , ε)] is an upper bound on the PW -measure of the list of

any node v ∈ S. Therefore, I(S, ε, δ) is a lower bound on the total amount

of information that is necessary for the JSCC problem. The complementary

cutset upper bound on I(Z; Ẑv|WS) bounds the amount of information that

can be accumulated with each channel use. The lower bound on T (ε, δ) can

thus be interpreted as a lower bound on the blocklength of the JSCC prob-

lem. Similarly, the lower bound from Lemma 3.3 involves the (conditional)

rate-distortion function, which quantifies the asymptotic fundamental limits

of lossy source coding. The complementary upper bounds on I(Z; Ẑv|WS)

involve channel capacity, which quantifies the asymptotic fundamental limits

of channel coding.

As we will demonstrate in Sec. 3.4, based on Theorem 3.1, it is possible

to exploit structural properties of the function f (such as linearity) and of

the probability law PW (such as log-concavity) to derive lower bounds on the

computation time that are often tighter than existing bounds.

SDPI Bounds

Combining the lower bound of Lemma 3.1 with the SDPI upper bound of

Lemma 3.5, we get the following:

Theorem 3.3. For an arbitrary network, for any ε ≥ 0 and δ ∈ [0, 1/2],

T (ε, δ) ≥ max
S⊂V

max
v∈S

log
(
1− I(S,ε,δ)

H(WSc |WS)

)−1

|Ev| log(1− η∗v)−1
, (3.21)

where η∗v , maxe∈Ev η(Ke).

We can obtain a lower bound on T (ε) of the same form by replacing I(S, ε, δ)
in (3.21) with the lower bounds on I(Z; Ẑv|WS) in Lemma 3.3.

The lower bounds in Theorem 3.1 and Theorem 3.3 for T (ε, δ) can behave

quite differently. To illustrate this, we compare them in two cases:
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When H(WSc |WS)� log 1
E[LZ|WS (WS ,ε)]

, Theorem 3.3 gives

T (ε, δ) ≥ max
S⊂V

max
v∈S

log
(
1− I(S,ε,δ)

H(WSc |WS)

)−1

|Ev| log(1− η∗v)−1

≈ max
S⊂V

max
v∈S

I(S, ε, δ) log e

H(WSc |WS)|Ev| log(1− η∗v)−1
,

which has essentially the same dependence on I(S, ε, δ) as the lower bound

given by Theorem 3.1. In this case, Theorem 3.1 gives more useful lower

bounds as long as CS � H(WSc |WS), especially when W is continuous.

When H(WSc |WS) ≈ log 1
E[LZ|WS (WS ,ε)]

and δ is small, H(WSc |WS) serves

as a sharp proxy of I(S, ε, δ). Theorem 3.1 in this case gives

T (ε, δ) ≥ max
S⊂V

I(S, ε, δ)
CS

≈ max
S⊂V

H(WSc |WS)

CS
,

while Theorem 3.3 gives

T (ε, δ) ≥ max
S⊂V

max
v∈S

log
(
1− I(S,ε,δ)

H(WSc |WS)

)−1

|Ev| log(1− η∗v)−1

≈ max
S⊂V

max
v∈S

logH(WSc |WS) + log 1
h2(δ)

|Ev| log(1− η∗v)−1
,

where in the last step we have used the fact that log
(
δ + h2(δ)

H(WSc |WS)

)
∼

log
(

h2(δ)
H(WSc |WS)

)
as δ → 0. Theorem 3.1 in this case is sharper in capturing

the dependence of T (ε, δ) on the amount of information contained in Z, in

that the lower bound is proportional to H(WSc |WS), whereas the lower bound

given by Theorem 3.3 depends on H(WSc|WS) only through logH(WSc |WS).

On the other hand, Theorem 3.3 in this case is much sharper in capturing the

dependence of T (ε, δ) on the confidence parameter δ, since log h2(δ) grows

without bound as δ → 0, while the lower bound given by Theorem 3.1 remains

bounded. We consider two examples for this case.

The first is Example 3.1 in Sec. 3.2.3, for the two-node mod-2 sum problem.

We have LZ|W2(w2, 0) = maxz∈{0,1} P[W1 ⊕ W2 = z|W2 = w2] = 1
2
, and

I(S, 0, δ) = 1− δ − h2(δ). Theorems 3.1 and 3.3 imply the following:

Corollary 3.1. For the problem in Example 3.1, for δ ∈ [0, 1/2], the (0, δ)-
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computation time satisfies

T (0, δ) ≥ max
{1− δ − h2(δ)

1− h2(p)
,
log(δ + h2(δ))−1

log(4pp̄)−1

}
, (3.22)

where the first lower bound is given by Theorem 3.1, and the second one is

given by Theorem 3.3.

To obtain an achievable upper bound on T (0, δ) in Example 3.1, we consider

the algorithm where each node uses a length-T repetition code to send its

one-bit observation to the other node. Using the Chernoff bound, as in [27],

it can be shown that the probability of decoding error at each node is upper-

bounded by (4pp̄)T/2, and therefore this algorithm achieves accuracy ε = 0

with confidence parameter δ ≤ (4pp̄)T/2. This gives the upper bound

T (0, δ) ≤ 2 log(δ)−1

log(4pp̄)−1
. (3.23)

Comparing (3.23) with the second lower bound in (3.22), we see that they

asymptotically differ only by a factor of 2 as δ → 0, as limδ→0 log(δ +

h2(δ))/ log(δ) = 1. Thus, for the problem in Example 3.1, the converse lower

bound on T (0, δ) obtained from the SDPI closely matches the achievable

upper bound on T (0, δ).

The second example concerns the problem of disseminating all of the ob-

servations through an arbitrary network:

Example 3.2. Consider the problem where Wv’s are i.i.d. samples from the

uniformly distribution over {1, . . . ,M}, Z = W , and `(z, ẑ) = 1{z 6= ẑ}. In

other words, the goal of the nodes is to distribute their observations to all

other nodes.

In this example, H(WSc |WS) = |Sc| logM , and I(S, 0, δ) = (1−δ)|Sc| logM−
h2(δ). Following Ayaso et al. [38, Def. III.4], we define the conductance of

the network G as

Φ(G) , min
S∈V:|V|/2<|S|<|V|

CS
|Sc|

.

Then we have the following corollary:
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Corollary 3.2. For the problem in Example 3.2, Theorem 3.1 gives

T (0, δ) ≥ max
S⊂V

(1− δ)|Sc| logM − h2(δ)

CS
(3.24)

&
logM

Φ(G)
as δ → 0, (3.25)

whereas Theorem 3.3 gives

T (0, δ) & max
S⊂V

max
v∈S

log
(
|Sc| logM

)
+ log h2(δ)−1

|Ev| log(1− η∗v)−1
as δ → 0. (3.26)

Again, we see that the lower bound obtained from SDPI is much sharper for

capturing the dependence of T (0, δ) on δ, since log h2(δ)−1 → +∞ as δ → 0.

On the other hand, the lower bound obtained from the cutset capacity upper

bound is tighter in its dependence on M , and can also capture the dependence

on the conductance of the network.

Finally, we point out that Theorem 3.1 gives the correct lower bound

T (ε, δ) = +∞ when the network graph G is disconnected (assuming f de-

pends on the observations of all nodes): If V consists of two disconnected

components S and Sc, then CS = 0, which results in T (ε, δ) = +∞. Despite

the sharp dependence of the lower bounds of Theorems 3.1 and 3.3 on ε and

δ, they have the same limitation as all previously known bounds obtained via

single-cutset arguments: they examine only the flow of information across a

cutset ES , but not within S; hence they cannot capture the dependence of

computation time on the diameter of the network. We address this limitation

in the following section.

3.3 Multi-cutset Analysis

We now extend the techniques of Sec. 3.2 to a multi-cutset analysis, to ad-

dress the limitation of the results obtained from the single-cutset analysis. In

particular, the new results are able to quantify the dissipation of information

as it flows across a succession of cutsets in the network. As briefly sketched in

Sec. 3.1.2, we accomplish this by partitioning a general network using multi-

ple disjoint cutsets, such that the operation of any algorithm on the network

can be simulated by another algorithm running on a chain of bidirectional
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noisy links. We then derive tight mutual information upper bounds for such

chains, which in turn can be used to lower-bound the computation time for

the original network.

3.3.1 Network Reduction

Consider an arbitrary network G = (V , E). If there exists a collection of

nested subsets P1 ⊂ . . . ⊂ Pn−1 of V , such that the associated cutsets

EP1 , . . . , EPn−1 are disjoint, and the cutsets EPc1 , . . . , EPcn−1
are also disjoint,

then we say that G is successively partitioned according to P1, . . . ,Pn−1 into

n subsets S1, . . . ,Sn, where Si = Pi \ Pi−1, with P0 , ∅ and Pn , V . For

i ∈ {2, . . . , n}, a node in Si is called a left-bound node of Si if there is an

edge from it to a node in Si−1. The set of left-bound nodes of Si is denoted

by
←
∂Si. For S1, define

←
∂S1 = {v} for an arbitrary v ∈ S1. In addition, for

i ∈ {2, . . . , n}, let

di , |EPci−1
|+ |EPi |+ |{E ∩ (Si ×

←
∂Si)}| (3.27)

be the number of edges entering Si from its neighbors Si−1 and Si+1, plus

the number of edges entering
←
∂Si from Si itself. For example, Fig. 3.2a in

Sec. 3.1.2 illustrates a successive partition of a six-node network into three

subsets S1 = {1, 4}, S2 = {2, 5}, and S3 = {3, 6}, with
←
∂S1 = {4},

←
∂S2 =

{2}, and
←
∂S3 = {3, 6}. In addition, d2 = 5 and d3 = 4. As another example,

the network in Fig. 3.4a, where each undirected edge represents a pair of

channels with opposite directions, can be successively partitioned into S1 =

{1}, S2 = {2, 7}, S3 = {3, 6, 8, 9}, S4 = {4, 10}, and S5 = {5}, with
←
∂S1 =

{1},
←
∂S1 = {2, 7},

←
∂S3 = {3, 8},

←
∂S4 = {4, 10}, and

←
∂Si = {5}. In addition,

d2 = 6, d3 = 7, d4 = 6, and d5 = 2.

Formally, a network G has bidirectional links if, for any pair of nodes

u, v ∈ V , (u, v) ∈ E if and only if (v, u) ∈ E . A path between u and v is

a sequence of edges {(vi, vi+1)}k−1
i=1 , such that v1 = u and vk = v (if G is

connected, there is at least one path between any pair of nodes). The graph

distance between u and v, denoted by dG(u, v), is the length of a shortest path

between u and v (shortest paths are not necessarily unique). The diameter
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Figure 3.4: A successive partition of a network and the chain reduced
according to it.
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Figure 3.5: Another successive partition (using the construction in the
proof of Lemma 3.6) and the chain reduced according to it.

of G is then defined by

diam(G) , max
u∈V

max
v∈V

dG(u, v).

The following lemma states that any such network G can be successively

partitioned into n = diam(G) + 1 subsets:

Lemma 3.6. Any network G = (V , E) with bidirectional links (i.e., (u, v) ∈ E
if and only if (v, u) ∈ E) admits a successive partition into subsets S1, . . . ,Sn
with n = diam(G) + 1.

Proof. For any v ∈ V and any r ∈ {0 : diam(G)}, we define the sets

BG(v, r) , {u ∈ V : dG(v, u) ≤ r}

and

SG(v, r) , {u ∈ V : dG(v, u) = r} ,

i.e., the ball and the sphere of radius r centered at v. In particular, BG(v, r) =

BG(v, r − 1) ∪ SG(v, r).
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We now construct the desired successive partition. Let n = diam(G) + 1,

and pick any pair of nodes v0, v1 ∈ V that achieve the maximum in the

definition of diam(G). With this, we take

Pi = BG(v0, i− 1), i = 1, . . . , n.

Clearly, P1 = {v0} ⊂ P2 ⊂ . . . ⊂ Pn = V , and moreover

Si = SG(v0, i− 1), i = 1, . . . , n.

From this construction, we see that

EPi = {(u, v) ∈ E : u ∈ Si+1, v ∈ Si}

and

EPci = {(u, v) ∈ V : u ∈ Si, v ∈ Si+1} .

The pairwise disjointness of the cutsets EPi , as well as of the cutsets EPci , is

immediate.

Remarks:

• Using the construction underlying the proof, we can also show that, for

any two nodes inG, we can successively partitionG into n = dG(u, v)+1

subsets.

• For the successive partition constructed in the proof, all nodes in Si
are left-bound nodes, and di is the sum of the in-degrees of the nodes

in Si.

As an example, Fig. 3.5a shows the successive partition of the network in

Fig. 3.4a using the construction in the proof, where S1 = {1}, S2 = {2, 7},
S3 = {3, 8}, S4 = {4, 6, 9}, S5 = {5, 10}, with

←
∂Si = Si, i ∈ {1, . . . , 5}, and

d2 = 6, d3 = 6, d4 = 9, and d5 = 5.

The successive partition of G ensures that nodes in Si only communicate

with nodes in Si−1 and Si+1, as well as among themselves. Indeed, suppose

that the network graph G includes an edge e = (u, v) ∈ E with u ∈ Si
and v ∈ Sj, where i > j + 1. By construction of the successive partition,

u ∈ Pcj+1 ⊂ Pcj and v ∈ Pj ⊂ Pj+1. Therefore, e belongs to both EPj and
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EPj+1
. However, the cutsets EPj and EPj+1

are disjoint, so we arrive at a

contradiction. Likewise, we can use the disjointness of the cutsets EPci and

EPcj to show that the network graph contains no edges (u, v) with u ∈ Si,
v ∈ Sj, and j > i+ 1.

In view of this, we can associate to the partition {Si} a bidirected chain

G′ = (V ′, E ′), i.e., a network with vertex set V ′ = {1′, . . . , n′}, edge set

E ′ =
{

(i′, (i− 1)′)
}n
i=2
∪
{

(i′, (i+ 1)′)
}n−1

i=1
∪
{

(i′, i′)
}n
i=1
,

and channel transition laws

K(i′,(i−1)′) =
⊗

(u,v)∈E:u∈Si,v∈Si−1

K(u,v) (3.28)

K(i′,(i+1)′) =
⊗

(u,v)∈E:u∈Si,v∈Si+1

K(u,v) (3.29)

K(i′,i′) =
⊗

(u,v)∈E:u∈Si,v∈
←
∂ Si

K(u,v), (3.30)

where node i′ in G′ observes

Wi′ = WSi .

In other words, the subset Si in G is reduced to node i′ in G′; the channels

across the subsets in G are reduced to the channels between the nodes in G′;

and the channels from Si to
←
∂Si in G are reduced to a self-loop at node i′ in

G′. The channels from Si to Si \
←
∂Si in G are not included in G′, and will be

simulated by node i′ using private randomness. For the network in Fig. 3.2a

in Sec. 3.1.2, according to the illustrated partition, it can be reduced to a

3-node bidirected chain in Fig. 3.2b, with K(1′,1′) = K(1,4), K(2′,2′) = K(5,2),

and K(3′,3′) = K(3,6) ⊗ K(6,3). For the network in Fig. 3.4a, according to

the illustrated partition, it can be reduced to a 5-node bidirected chain in

Fig. 3.4b, with K(2′,2′) = K(2,7) ⊗ K(7,2), K(3′,3′) = K(6,3) ⊗ K(6,8) ⊗ K(9,8),

and K(4′,4′) = K(4,10) ⊗ K(10,4). According to the partition in Fig. 3.5a, the

same network can be reduced to a 5-node bidirected chain in Fig. 3.5b, with

K(2′,2′) = K(2,7)⊗K(7,2), K(4′,4′) = K(6,9)⊗K(9,6), andK(5′,5′) = K(5,10)⊗K(10,5).

For the bidirected chain G′ reduced from G, we consider a class of ran-

domized T -step algorithms that run on G′ and are of a more general form
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compared to the deterministic algorithms considered so far. Such a ran-

domized algorithm operates as follows: at step t ∈ {1, . . . , T}, node i′

computes the outgoing messages X(i′,(i−1)′),t =
←
ϕi′,t(Wi′ , Y

t−1
i′ ), X(i′,(i+1)′),t =

→
ϕi′,t(Wi′ , Y

t−1
i′ , U t−1

i′ ), and X(i′,i′),t = ϕ̊i′,t(Wi′ , Y
t−1
i′ , U t−1

i′ ), and computes the

private message Ui′,t = ϑi′,t(Wi′ , Y
t−1
i′ , U t−1

i′ , Ri′,t), where Ri′,t is the private

randomness held by node i′, uniformly distributed on [0, 1] and independent

across i′ ∈ V ′ and t ∈ {1, . . . , T}. At step T , node i′ computes the final esti-

mate Ẑi′ = ψi′(Wi′ , Y
T
i′ ) of Z. These randomized algorithms have the feature

that the message sent to the node on the left and the final estimate of a node

are computed solely based on the node’s initial observation and received mes-

sages, whereas the messages sent to the node on the right and to itself are

computed based on the node’s initial observation, received messages, as well

as private messages, and the computation of the private messages involves

the node’s private randomness. Define

T ′(ε, δ) = inf
{
T ∈ N : ∃ a randomized T -step algorithm A′ such that

max
i′∈V ′

P[`(Z, Ẑi′) > ε] ≤ δ
}

(3.31)

as the (ε, δ)-computation time for Z on G′ using the randomized algorithms

described above. The following lemma indicates that we can obtain lower

bounds on T (ε, δ) by lower-bounding T ′(ε, δ).

Lemma 3.7. Consider an arbitrary network G that can be successively par-

titioned into S1, . . . ,Sn, such that
←
∂Si’s are all nonempty. Let G′ = (V ′, E ′)

be the bidirected chain constructed from G according to the partition. Then,

given any T -step algorithm on G that achieves maxv∈V P[`(Z, Ẑv) > ε] ≤
δ, we can construct a randomized T -step algorithm A′ on G′, such that

maxi′∈V ′ P[`(Z, Ẑi′) > ε] ≤ δ. Consequently, T (ε, δ) for computing Z on

G is lower bounded by T ′(ε, δ) defined in (3.31).

Proof. Section 3.7.1.

Remark: In the network reduction, we can alternatively map all the chan-

nels from Si to Si (instead of only mapping the channels from Si to
←
∂Si) in

the original network G to the self-loop at node i′ of the reduced chain G′.

By doing so, to simulate the operation of an algorithm A that runs on G,

the algorithm A′ that runs on G′ no longer needs to generate private mes-

sages using the nodes’ private randomness, since all the channels in G are
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preserved in G′. In other words, under this alternative reduction, any T -step

algorithm A in that runs on G can be simulated by a T -step algorithm A′ of

the same deterministic type as A that runs on G′. However, this alternative

reduction increases the information transmission capability of the self-loops

in G′, and will result in a looser lower bound on T (ε, δ), as will be discussed

in the remark following Theorem 3.4.

In light of Lemma 3.7, in order to lower-bound T (ε, δ) for computing Z

on G, we just need to lower-bound T ′(ε, δ) defined in (3.31). To this end,

we derive upper bounds on the conditional mutual information for bidirected

chains by extending the techniques behind Lemma 3.4 and Lemma 3.5:

Lemma 3.8. Consider an n-node bidirected chain with vertex set V = {1, . . . , n}
and edge set

E =
{

(i, i− 1)
}n
i=2
∪
{

(i, i+ 1)
}n−1

i=1
∪
{

(i, i)
}n
i=1
,

and an arbitrary randomized T -step algorithm A′ that runs on this chain. Let

ηi , η(Ki) denote the SDPI constant of the channel Ki ,
⊗

j: (j,i)∈E K(j,i),

and let η , maxi=1,...,n ηi. If T ≤ n− 2, then

I(Z; Ẑn|W2:n) = 0.

If T ≥ n− 1, then

I(Z; Ẑn|W2:n) ≤


H(W1|W2:n)η

T−n+2∑
i=1

B(T − i, n− 2, η), n ≥ 2 (3.32a)

C(1,2)η

T−n+2∑
i=1

B(T − i− 1, n− 3, η)i, n ≥ 3 (3.32b)

with B(m, k, p) ,
(
m
k

)
pk(1 − p)m−k. For n ≥ 2, the above upper bounds can

be weakened to

I(Z; Ẑn|W2:n) ≤

{
H(W1|W2:n)

(
1− (1− η)T−n+2

)n−1
, (3.33a)

C(1,2)(T − n+ 2)
(
1− (1− η̃)T−n+2

)n−2
. (3.33b)
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Moreover, if n ≥ 4 and n− 1 ≤ T ≤ 2 + (n− 3)γ/η for some γ ∈ (0, 1), then

I(Z; Ẑn|W2:n) ≤ C(1,2)
(n− 3)2γ2

η
exp

(
−2

(
η

γ
− η
)2

(n− 3)

)
. (3.34)

Proof. Section 3.7.2.

Equation (3.32a) is reminiscent of a result of Rajagopalan and Schul-

man [50] on the evolution of mutual information in broadcasting a bit over a

unidirectional chain of BSCs. The result in [50] is obtained by solving a sys-

tem of recursive inequalities on the mutual information involving suboptimal

SDPI constants. Our results apply to chains of general bidirectional links and

to the computation of general functions. We arrive at a system of inequali-

ties similar to the one in [50], which can be solved in a similar manner and

gives (3.32a) and (3.32b). We also obtain weakened upper bounds in (3.33a)

and (3.33b), which show that, for a fixed T , the conditional mutual infor-

mation decays at least exponentially fast in n. The upper bound in (3.34)

provides another weakening of (3.32a) and (3.32b), and shows explicitly the

dependence of the upper bound on n.

Assuming for simplicity that H(W1|W2:n) = 1, Fig. 3.6 compares (3.32a)

with the weakened upper bound in (3.33a). We can see that the gap can be

large when n is large and T is much larger than n. Nevertheless, the weakened

upper bounds in (3.33a) and (3.33b) allow us to derive lower bounds on

computation time that are non-asymptotic in n, and explicit in ε, δ, and

channel properties.

3.3.2 Lower Bounds on Computation Time

We now build on the results presented above to obtain lower bounds on

the T (ε, δ) by reducing the original problem to function computation over

bidirected chains. We first provide the result for an arbitrary network, and

then particularize it to several specific topologies (namely, chains, rings, grids,

and trees).
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Figure 3.6: Upper bound in (3.32a) (solid line) vs. the weakened one in
(3.33a) (dashed line) for chains.

Lower Bound for an Arbitrary Network

Theorem 3.4 below contains general lower bounds on computation time for

an arbitrary network. The statement of the theorem is somewhat lengthy,

but can be parsed as follows: Given an arbitrary connected network with

bidirectional links, any reduction of that network to a bidirected chain gives

rise to a system of inequalities that must be satisfied by the computation

time T (ε, δ). These inequalities, presented in (3.35), are nonasymptotic in

nature and involve explicitly computable parameters of the network, but

cannot be solved in closed form. The first inequality follows from an SDPI-

based analysis analogous to Theorem 3.3, while the second inequality is a

cutset bound in the spirit of Theorem 3.1. Explicit but weaker expressions

that lower-bound T (ε, δ) in terms of network parameters appear below as

(3.36) and (3.38), together with asymptotic expressions for large n (the size

of the reduced bidirected chain). Both of these bounds state that T (ε, δ) is

lower bounded by the size of the bidirected chain plus a correction term that

accounts for the effect of channel noise (via channel capacities and SDPI con-

stants). Finally, (3.39) and (3.40) provide the precise version of the bound in

(3.8): asymptotically, the computation time T (ε, δ) scales as Ω(n/η̃), where

η̃ is the worst-case SDPI constant of the reduced network. By Lemma 3.6,

it is always possible to reduce the network to a bidirected chain of length
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diam(G) + 1, so the main message of Theorem 3.4 is that the computation

time T (ε, δ) scales at least linearly in the network diameter. Thus, the main

advantage of the multi-cutset analysis over the usual single-cutset analysis is

that it can capture this dependence on the network diameter.

Theorem 3.4. Assume the following:

• The network graph G = (V , E) is connected, the capacities of all edge

links are upper bounded by C, and the SDPI constants of edge links are

upper bounded by η.

• G admits a successive partition into S1, . . . ,Sn, such that
←
∂Si’s are all

nonempty.

Let

∆ , max
i∈{2:n}

di

where

di = |EPci−1
|+ |EPi |+ |{E ∩ (Si ×

←
∂Si)}|

as defined in (3.27), and let

η̃ = 1− (1− η)∆.

Then for ε ≥ 0 and δ ∈ (0, 1/2], the (ε, δ)-computation time T (ε, δ) must

satisfy the inequalities

I(Sc1, ε, δ) ≤

H(WS1 |WSc1)η̃
∑T (ε,δ)−n+2

i=1 B(T (ε, δ)− i, n− 2, η̃), n ≥ 2

CSc1 η̃
∑T (ε,δ)−n+2

i=1 B(T (ε, δ)− i− 1, n− 3, η̃)i, n ≥ 3.

(3.35)

The above results can be weakened to

T (ε, δ) ≥
log

(
1−

( I(Sc1 ,ε,δ)
H(WS1 |WSc1 )

) 1
n−1

)−1

∆ log(1− η)−1
+ n− 2 (3.36)

∼
log(n− 1) + log

(
1− I(Sc1 ,ε,δ)

H(WS1 |WSc1 )

)−1

∆ log(1− η)−1
+ n− 2 as n→∞, (3.37)
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and

T (ε, δ) ≥ I (Sc1, ε, δ)
CSc1

+ n− 2. (3.38)

Moreover, if the partition size n is large enough, so that n ≥ 4 and

C|V|2(n− 3)2

4η
exp

(
−2η2(n− 3)

)
< I(Sc1, ε, δ), (3.39)

then

T (ε, δ) > 2 +
n− 3

2η̃
= Ω

(
n

η̃

)
. (3.40)

Proof. In light of Lemma 3.7, it suffices to show that the lower bounds in

Theorem 3.4 need to be satisfied by T ′(ε, δ) for the bidirected chain G′, to

which G reduces according to the partition {Si}.
Consider any randomized T -step algorithm A′ that achieves

max
i′∈V ′

P[`(Z, Ẑi′) > ε] ≤ δ

on G′. From Lemma 3.1,

I(Z; Ẑn′|W2′:n′) ≥ I({2′ : n′}, ε, δ).

Then from Lemma 3.8 and the fact that

ηi′ = η(K((i−1)′,i′) ⊗K((i+1)′,i′) ⊗Ki′,i′) ≤ 1− (1− η)di ≤ 1− (1− η)∆,

(3.41)

we have

I({2′ : n′}, ε, δ) ≤

H(W1′|W2′:n′)η̃
∑T−n+2

i=1 B(T − i, n− 2, η̃), n ≥ 2

C(1′,2′)η̃
∑T−n+2

i=1 B(T − i− 1, n− 3, η̃)i, n ≥ 3
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and

I({2′ : n′}, ε, δ) ≤

H(W1′ |W2′:n′)
∏n

i=2

(
1− (1− η)di(T−n+2)

)
C(1′,2′)(T − n+ 2)

∏n
i=3

(
1− (1− η)di(T−n+2)

) , n ≥ 2.

(3.42)

Since I({2′ : n′}, ε, δ) = I(Sc1, ε, δ), H(W1′ |W2′:n′) = H(WS1|WSc1), and

C(1′,2′) = CSc1 , we see that T ′(ε, δ) must satisfy (3.35) in Theorem 3.4.

Using (3.41), (3.42) can be weakened to

I(Sc1, ε, δ) ≤

H(WS1|WSc1)
(
1− (1− η)∆(T−n+2)

)n−1

CSc1(T − n+ 2)
(
1− (1− η)∆(T−n+2)

)n−2
. (3.43)

The first line of (3.43) leads to

T ′(ε, δ) ≥
log

(
1−

( I(Sc1 ,ε,δ)
H(WS1 |WSc1 )

) 1
n−1

)−1

∆ log(1− η)−1
+ n− 2

∼
log(n− 1) + log

(
1− I(Sc1 ,ε,δ)

H(WS1 |WSc1 )

)−1

∆ log(1− η)−1
+ n− 2 as n→∞,

where the last step follows from the fact that log
(
1 − p

1
n

)−1 ∼ log n
1−p as

n→∞ for p ∈ (0, 1). The second line of (3.43) leads to

T ′(ε, δ) ≥ I (Sc1, ε, δ)
CSc1

+ n− 2.

Finally, we prove that T ′(ε, δ) = Ω(n/η̃) under the assumption that (3.39)

holds. Suppose that T ′(ε, δ) ≤ 2 + (n − 3)/2η̃. Then, from (3.34) in

Lemma 3.8, we have

I(Sc1, ε, δ) ≤ CSc1
(n− 3)2

4η̃
exp

(
−2η̃2(n− 3)

)
if n ≥ 4.

Note that ∆ ≥ 1 by the assumption that G is connected, thus η̃ = 1− (1−
η)∆ ≥ η. Moreover, CSc1 ≤ C|E| ≤ C|V|2. As a result,

I(Sc1, ε, δ) ≤
C|V|2(n− 3)2

4η
exp

(
−2η2(n− 3)

)
if n ≥ 4,
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which contradicts the assumption that (3.39) holds. Thus,

T ′(ε, δ) > 2 +
n− 3

2η̃
= Ω

(
n

η̃

)
.

Theorem 3.4 then follows from Lemma 3.7.

Remarks:

• We call a node in Si a boundary node if there is an edge (either inward

or outward) between it and a node in Si−1 or Si+1. Denote the set

of boundary nodes of Si by ∂Si. The results in Theorem 3.4 can be

weakened by replacing di with

∂di =
∑
v∈∂Si

|Ev|,

namely the summation of the in-degrees of boundary nodes of Si, since

di ≤ ∂di for i ∈ {2, . . . , n}.

• As discussed in the remark following Lemma 3.7, an alternative network

reduction is to map all the channels from Si to Si (instead of only

mapping the channels from Si to
←
∂Si) in the original network G to

the self-loop at node i′ of the reduced chain G′. Using the same proof

strategy with this alternative reduction, we can obtain lower bounds

on T (ε, δ) of the same form as the results in Theorem 3.4, but with di’s

replaced by

d̃i , |EPci−1
|+ |EPi |+ |{E ∩ (Si × Si)}|.

Since di ≤ ∂di ≤ d̃i for i ∈ {2, . . . , n}, the lower bounds on T (ε, δ)

obtained by this alternative network reduction are weaker than the

results in Theorem 3.4, and are even weaker than the results obtained

by replacing di’s with ∂dis.

• Due to Lemma 3.6, for a network G of bidirectional links, we can always

find a successive partition of G such that n in Theorem 3.4 is equal to

the diam(G) + 1. By contrast, the diameter cannot be captured in

general by the theorems in Sec. 3.2.
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• Choosing a successive partition of G with n = 2 is equivalent to choos-

ing a single cutset. In that case, we see that (3.38) recovers Theo-

rem 3.1, while (3.36) recovers a weakened version of Theorem 3.3 (in

(3.36), ∆ = d2 is at least the sum of the in-degrees of the left-bound

nodes of S2, while Theorem 3.3 involves the in-degree of only one node

in S2).

We now apply Theorem 3.4 to networks with specific topologies. We assume

that nodes communicate via bidirectional links. Thus, any such network will

be represented by an undirected graph, where each undirected edge represents

a pair of channels with opposite directions.

Chains

For chains, the proof of Theorem 3.4 already contains lower bounds on

T ′(ε, δ). These lower bounds apply to T (ε, δ) as well, since the class of T -step

algorithms on a chain is a subcollection of randomized T -step algorithms on

the same chain. We thus have the following corollary.

Corollary 3.3. Consider an n-node bidirected chain without self-loops, where

the SDPI constants of all channels are upper bounded by η. Then for ε ≥ 0

and δ ∈ (0, 1/2], T (ε, δ) must satisfy the inequalities in Theorem 3.4 with

S1 = {1} and di = 2 for all i ∈ {1, . . . , n}. In particular, if all channels are

BSC(p), then

T (ε, δ) ≥ max

I(V \ {1}, ε, δ)
1− h2(p)

,
log(n− 1) + log

(
1− I(V\{1},ε,δ)

H(W1|WV\{1})

)−1

2 log(4pp̄)−1

+ n− 2,

for all sufficiently large n.

Here and below, the estimates for a network of bidirectional BSCs are ob-

tained using the bounds (3.19) and (3.20).

Rings

Consider a ring with 2n − 2 nodes, where the nodes are labeled clockwise

from 1 to 2n−2. The diameter is equal to n−1. According to the successive

partition in the proof of Lemma 3.6, this ring can be partitioned into S1 =
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{1}, Si = {i, 2n − i}, i ∈ {2, . . . , n − 1}, and Sn = {n}. As an example,

Fig. 3.7a shows a 6-node ring and Fig. 3.7b shows the chain reduced from

it. With this partition, we can apply Theorem 3.4 and get the following
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Figure 3.7: A ring network and the chain reduced from it.

corollary.

Corollary 3.4. Consider a (2n− 2)-node ring, where the SDPI constants of

all channels are upper bounded by η. Then for ε ≥ 0 and δ ∈ (0, 1/2], T (ε, δ)

must satisfy the inequalities in Theorem 3.4 with S1 = {1} and di = 4 for all

i ∈ {1, . . . , n}. In particular, if all channels are BSC(p), then

T (ε, δ) = max

I
(
V \ {1}, ε, δ

)
2(1− h2(p))

,
log(n− 1) + log

(
1− I(V\{1},ε,δ)

H(W1|WV\{1})

)−1

4 log(4pp̄)−1

+ n− 2,

for all sufficiently large n.

Grids

Consider an n+1
2
× n+1

2
grid (where we assume n is odd), which has diameter

n− 1. Figure 3.8a shows a successive partition of a n+1
2
× n+1

2
grid into n+1

2

subsets, with ∆ = maxi∈{2:n} di = 2n. Figure 3.8b shows the successive parti-

tion in the proof of Lemma 3.6, which partitions the network into n subsets,

with ∆ = maxi∈{2:n} di = 2(n − 1), thus resulting in strictly tighter lower

bounds on computation time compared to the ones obtained from the par-

tition in Fig. 3.8a. With the latter partition, we get the following corollary.

Corollary 3.5. Consider an n+1
2
× n+1

2
grid, where 1 − . . . − n is one of

the longest paths. Assume that the SDPI constants of all channels are upper

bounded by η. Then for ε ≥ 0 and δ ∈ (0, 1/2], T (ε, δ) must satisfy the

inequalities in Theorem 3.4 with S1 = {1}, di = dn+1−i = 4(i − 2) + 6,
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Figure 3.8: Successive partitions of a 4× 4 (n = 7) grid network. The
length of the labeled path is the diameter of the network.

i ∈ {1, . . . , n−1
2
}, and d(n+1)/2 = 2(n − 1). In particular, if all channels are

BSC(p), then

T (ε, δ) ≥ max

I
(
V \ {1}, ε, δ

)
2(1− h2(p))

,
log(n− 1) + log

(
1− I(V\{1},ε,δ)

H(W1|WV\{1})

)−1

2(n− 1) log(4pp̄)−1

+ n− 2,

for all sufficiently large n.

Trees

Consider a tree, whose nodes are numbered in such a way that 1 − . . . − n
is one of the longest paths. Then the diameter of the tree is n − 1, and

nodes 1 and n are necessarily leaf nodes. The tree can be viewed as being

rooted at node 1. Let Di be the union of node i and its descendants in

the rooted tree, and let Si = Di \ Di+1, i ∈ {1, . . . , n}. The tree can then

be successively partitioned into S1, . . . ,Sn. In the n-node bidirected chain

reduced according to this partition, the edges between nodes i′ and (i + 1)′

are the pair of channels between nodes i and i+1 in the tree, and the self-loop

of node i′, i ∈ {2, . . . , n − 1}, is the channel from Si \ {i} to node i in the

tree. As an example, Fig. 3.9a shows this partition of a tree network, where

the chain reduced from it has the same form as the one in Fig. 3.4b. With

this partition, we get the following corollary.

Corollary 3.6. Consider a d-regular tree network where 1 − . . . − n is one

of the longest paths. Assume that the SDPI constants of all channels are

upper bounded by η. Then for ε ≥ 0 and δ ∈ (0, 1/2], T (ε, δ) must satisfy the

inequalities in Theorem 3.4 with S1 = {1} and di = d for all i ∈ {1, . . . , n}.
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Figure 3.9: Successive partitions of a tree network.

In particular, if all channels are BSC(p), then

T (ε, δ) ≥ max

I
(
V \ {1}, ε, δ

)
1− h2(p)

,
log(n− 1) + log

(
1− I(V\{1},ε,δ)

H(W1|WV\{1})

)−1

d log(4pp̄)−1

+ n− 2,

for all sufficiently large n.

If we use the successive partition in the proof of Lemma 3.6 on a d-regular

tree with diameter n−1, then the tree will be reduced to an n-node bidirected

chain without self-loops. Figure 3.9b shows such an example. However, with

this partition, ∆ = maxi∈{2:n} di increases with n, which renders the resulting

lower bound on computation time looser than the one in Corollary 3.6. It

means that, although the partition in the proof of Lemma 3.6 always captures

the diameter of a network, it may not always give the best lower bound on

computation time among all possible successive partitions.

3.4 Small Ball Probability Estimates for Computation

of Linear Functions

The bounds stated in the preceding sections involve the conditional small

ball probability, defined in (3.9). In this section, we provide estimates for

this quantity in the context of a distributed computation problem of wide

interest — the computation of linear functions. Specifically, we assume that

the observations Wv, v ∈ V , are independent real-valued random variables,
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and the objective is to compute a linear function

Z = f(W ) =
∑
v∈V

avWv (3.44)

for a fixed vector of coefficients (av)v∈V ∈ R|V|, subject to the absolute error

criterion `(z, ẑ) = |z − ẑ|. We will use the following shorthand notation: for

any set S ⊂ V , let aS = (av)v∈S and 〈aS ,WS〉 =
∑

v∈S avWv.

The independence of the Wv’s and the additive structure of f allow us to

express the conditional small ball probability LZ|WS (wS , ε) defined in (3.9)

in terms of so-called Lévy concentration functions of random sums [56]. The

Lévy concentration function of a real-valued r.v. U (also known as the “small

ball probability”) is defined as

L(U, ρ) = sup
u∈R

P [|U − u| ≤ ρ] , ρ > 0.

If we fix a subset S ⊂ V , and consider a specific realization WS = wS of the

observations of the nodes in S, then

LZ|WS (wS , ε) = sup
z∈R

P

[∣∣∣∑
v∈V

avWv − z
∣∣∣ ≤ ε

∣∣∣∣∣WS = wS

]

= sup
z∈R

P

[∣∣∣∑
v∈Sc

avWv +
∑
v∈S

avwv − z
∣∣∣ ≤ ε

]

= sup
z∈R

P

[∣∣∣∑
v∈Sc

avWv − z
∣∣∣ ≤ ε

]
= L (〈aSc ,WSc〉, ε) , (3.45)

where in the second line we have used the fact that the Wv’s are independent

r.v.’s, while in the third line we have used the fact that for any function

g : R → R and any a ∈ R, supz g(z) = supz g(z + a). In other words, for a

fixed S, the quantity LZ|WS (wS , ε) is independent of the boundary condition

wS , and is controlled by the probability law of the random sum 〈aSc ,WSc〉,
i.e., the part of the function f that depends on the observations of the nodes

in Sc.
The problem of estimating Lévy concentration functions of sums of inde-

pendent random variables has a long history in the theory of probability —
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for random variables with densities, some of the first results go back at least

to Kolmogorov [62], while for discrete random variables it is closely related

to the so-called Littlewood–Offord problem [63]. We provide a few examples

to illustrate how one can exploit available estimates for Lévy concentration

functions under various regularity conditions to obtain tight lower bounds

on the computation time for linear functions. The examples are illustrated

through Theorem 3.1, as it tightly captures the dependence of computation

time on I(S, ε, δ). (However, since the results of Theorems 3.3 and 3.4 also

involve the quantity I(S, ε, δ), the estimates for Lévy concentration functions

can be applied there as well.)

3.4.1 Computing Linear Functions of
Continuous Observations

Gaussian Sums

Suppose that the local observations Wv, v ∈ V , are i.i.d. standard Gaussian

random variables. Then, for any S ⊆ V , 〈aS ,WS〉 is a zero-mean Gaussian

r.v. with variance ‖aS‖2
2 =

∑
v∈S a

2
v (here, ‖ · ‖2 is the usual Euclidean `2

norm). A simple calculation shows that

LZ|WS (wS , ε) = L
(
N
(
0, ‖aSc‖2

2

)
, ε
)
≤
√

2

π

ε

‖aSc‖2

.

Using this in Theorem 3.1, we get the following result.

Corollary 3.7. For the problem of computing a linear function in (3.44),

where (Wv)
i.i.d.∼ N(0, 1), suppose that the coefficients av are all nonzero.

Then for ε ≥ 0 and δ ∈ (0, 1/2],

T (ε, δ) ≥ max
S⊂V

1

CS

(
1− δ

2
log

π‖aSc‖2
2

2ε2
− h2(δ)

)
.

Thus, the lower bound on the computation time for (3.44) depends on the

vector of coefficients a only through its `2 norm.
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Sums of Independent r.v.’s with Log-concave Distributions

Another instance in which sharp bounds on the Lévy concentration function

are available is when the observations of the nodes are independent random

variables with log-concave distributions (we recall that a real-valued r.v. U

is said to have a log-concave distribution if it has a density of the form

pU(u) = e−F (u), where F : R→ (−∞,+∞] is a convex function; this includes

Gaussian, Laplace, uniform, etc.). The following result was obtained recently

by Bobkov and Chistyakov [64, Theorem 1.1]: Let U1, . . . , Uk be independent

random variables with log-concave distributions, and let Sk = U1 + . . .+Uk.

Then, for any ρ ≥ 0,

1√
3

ρ√
Var(Sk) + ρ2/3

≤ L(Sk, ρ) ≤ 2ρ√
Var(Sk) + ρ2/3

. (3.46)

Corollary 3.8. For the problem of computing a linear function in (3.44),

where the Wv’s are independent random variables with log-concave distribu-

tions and with variances at least σ2, suppose that the coefficients av are all

nonzero. Then for ε ≥ 0 and δ ∈ (0, 1/2],

T (ε, δ) ≥ max
S⊂V

1

CS

(
1− δ

2
log

(
σ2‖aSc‖2

2

4ε2
+

1

12

)
− h2(δ)

)
.

Proof. For each v ∈ V , avWv also has a log-concave distribution, and, for

any S ⊂ V ,

Var(〈aSc ,WSc〉) =
∑
v∈Sc
|av|2Var(Wv) ≥ ‖aSc‖2

2σ
2.

The lower bound follows from Theorem 3.1 and from (3.46).

Sums of Independent r.v.’s with Bounded Third Moments

It is known that random variables with log-concave distributions have bounded

moments of any order. Under a much weaker assumption that the local obser-

vations Wv, v ∈ V have bounded third moments, we can prove the following

result.

Corollary 3.9. Consider the problem of computing the linear function in

(3.44), where the Wv’s are independent zero-mean r.v.’s with variances at
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least 1 and with third moments bounded by B, and the coefficients av satisfy

the constraint K1 ≤ |av| ≤ K2 for some K1, K2 > 0. Then for ε ≥ 0 and

δ ∈ (0, 1/2],

T (ε, δ) ≥ max
S⊂V

1

CS

(
1− δ

2
log
|V \ S|
M2(ε)

− h2(δ)

)
,

where M(ε) , c
(
ε/K1 +B(K2/K1)3

)
with some absolute constant c.

Proof. Under the conditions of the theorem, a small ball estimate due to

Rudelson and Vershynin [65, Corollary 2.10] can be used to show that, for

any S ⊂ V ,

L(〈aS ,WS〉, ε) ≤
M(ε)√
|S|

.

The desired conclusion follows immediately.

3.4.2 Linear Vector-valued Functions

Similar to the Lévy concentration function of a real-valued random variable,

the Lévy concentration function of a random vector U taking values in Rn

can be defined as

L(U, ρ) = sup
u∈Rn

P [‖U − u‖2 ≤ ρ] , ρ > 0.

Consider the case where each node observes an independent real-valued ran-

dom variable Wv, and the observations form a |V| × 1 vector WV . Suppose

the nodes wish to compute a linear transform of WV ,

Z = AWV (3.47)
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with some fixed n× |V| matrix A, subject to the Euclidean-norm distortion

criterion `(z, ẑ) = ‖z − ẑ‖2. In this case

LZ|WS (wS , ε) = sup
z∈Rn

P[‖AWV − z‖2 ≤ ε|WS = wS ]

= sup
z∈Rn

P[‖AScWSc + ASwS − z‖2 ≤ ε]

= sup
z∈Rn

P[‖AScWSc − z‖2 ≤ ε]

= L(AScWSc , ε),

where ASc is the submatrix formed by the columns of A with indices in Sc.
We will need the following result, due to Rudelson and Vershynin [66]. Let

sj(ASc), j = 1, . . . ,min{n, |Sc|}, denote the singular values of ASc arranged

in non-increasing order, and define the stable rank of ASc by

r(ASc) =

⌊
‖ASc‖2

HS

‖ASc‖2

⌋
,

where ‖ASc‖HS =
(∑min{n,|Sc|}

j=1 sj(ASc)
2
)1/2

is the Hilbert-Schmidt norm of

ASc , and ‖ASc‖ = s1(ASc) is the spectral norm of ASc . (Note that for any

non-zero matrix ASc , 1 ≤ r(ASc) ≤ rank(ASc).) Then, provided

L(Wv, ε/‖ASc‖HS) ≤ p

for all v ∈ Sc, we will have

L(AScWSc , ε) ≤ (cp)0.9r(ASc ),

where c is an absolute constant [66, Theorem 1.4]. This result relates the

Lévy concentration function of the linear transform of a vector to the Lévy

concentration function of each coordinate of the vector. Applying this result

in Theorem 3.1, we get a lower bound on T (ε, δ) for computing linear vector-

valued functions.

Corollary 3.10. For the problem of computing a linear transform of the

observations defined in (3.47), where Wv’s are independent real-valued r.v.’s,
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suppose the rows of A are nonzero vectors. Then for ε ≥ 0 and δ ∈ (0, 1/2],

T (ε, δ) ≥ max
S⊂V

1

CS

(
0.9(1− δ)r(ASc) log

1

cmaxv∈Sc L(Wv, ε/‖ASc‖HS)
− h2(δ)

)

for some absolute constant c.

3.4.3 Linear Function of Discrete Observations

Finally, we consider a case when the local observations Wv have discrete dis-

tributions. Specifically, let the Wv’s be i.i.d. Rademacher random variables;

i.e., each Wv takes values ±1 with equal probability. We still use the absolute

distortion function `(z, ẑ) = |z − ẑ| to quantify the estimation error. In this

case, the Lévy concentration function L(〈aS ,WS〉, ε) will be highly sensitive

to the direction of the vector aS , rather than just its norm. For example,

consider the extreme case when av = |V| for a single node v ∈ S, and all

other coefficients are zero. Then L(〈aS ,WS〉, 0) = L(|V|Wv, 0) = 1/2. On

the other hand, if av = 1 for all v ∈ V and |S| is even, then

L(〈aS ,WS〉, 0) = 2−|S|
(
|S|
|S|/2

)
∼

√
2

π|S|
as |S| → ∞,

where the last step is due to Stirling’s approximation. Moreover, a celebrated

result due to Littlewood and Offord, improved later by Erdős [67], says that,

if |av| ≥ 1 for all v, then

L(〈aS ,WS〉, 1) ≤ 2−|S|
(
|S|
b|S|/2c

)
∼

√
2

π|S|
as |S| → ∞,

which translates into a lower bound on the (1, δ)-computation time which is

of the same order as the lower bound on the zero-error computation time.

Corollary 3.11. For the problem of computing the linear function in (3.44),

where the Wv’s are independent Rademacher random variables, suppose that

|av| ≥ 1 for all v, and δ < 1/2. Then

T (0, δ) ≥ T (1, δ) & max
S⊂V

1

CS

(
1− δ

2
log

π|V \ S|
2

− h2(δ)

)
as |S| → ∞.
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3.4.4 Comparison with Existing Results

We illustrate the utility of the above bounds through comparison with some

existing results. For example, Ayaso et al. [38] derive lower bounds on a

related quantity

T̃ (ε, δ) , inf
{
T ∈ N :∃ a T -step algorithm A such that

max
v∈V

P
[
Ẑv /∈ [(1− ε)Z, (1 + ε)Z]

]
< δ
}
.

One of their results is as follows: if Z = f(W ) is a linear function of the form

(3.44) and (Wv)
i.i.d.∼ Uniform([1, 1 +B]) for some B > 0, then

T̃ (ε, δ) ≥ max
S⊂V

|S|
2CS

log
1

Bε2 + κδ + (1/B)2/|V| (3.48)

for all sufficiently small ε, δ > 0, where κ > 0 is a fixed constant [38, Theo-

rem III.5]. Let us compare (3.48) with what we can obtain using our tech-

niques. It is not hard to show that

T̃ (ε, δ) ≥ T
(
‖a‖1(1 +B)ε, δ

)
, (3.49)

where ‖a‖1 =
∑

v∈V |av| is the `1 norm of a. Moreover, since any r.v. uni-

formly distributed on a bounded interval of the real line has a log-concave

distribution, we can use Corollary 3.8 to lower-bound the right-hand side of

(3.49). This gives

T̃ (ε, δ) ≥ max
S⊂V

1

CS

(
1− δ

2
log

B2‖aSc‖2
2

48(B + 1)2‖a‖2
1ε

2
− h2(δ)

)
(3.50)

for all sufficiently small ε, δ > 0. We immediately see that this bound is

tighter than the one in (3.48). In particular, the right-hand side of (3.48)

remains bounded for vanishingly small ε and δ, and in the limit of ε, δ → 0

tends to

max
S⊂V

|S|
CS

logB

|V|
≤ logB

minS⊂V CS
.

By contrast, as ε, δ → 0, the right-hand side of (3.50) grows without bound

as log(1/ε).
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Another lower bound on the (ε, δ)-computation time T (ε, δ) was obtained

by Como and Dahleh [39]. Their starting point is the following continuum

generalization of Fano’s inequality [39, Lemma 2] in terms of conditional

differential entropy: if Z, Ẑ are two jointly distributed real-valued r.v.’s, such

that EZ2 <∞, then, for any ε > 0,

h(Z|Ẑ) ≤ P
[
|Z − Ẑ| ≤ ε

]
log ε+

1

2
log
(
16πeEZ2

)
. (3.51)

If we use (3.51) instead of Lemma 3.1 to lower-bound I(Z; Ẑv|WS), then we

get

T (ε, δ) ≥ max
S⊂V

1

CS

(
1− δ

2
log

1

ε2
+ h(Z|WS)− 1

2
log
(
16πeEZ2

))
. (3.52)

Again, let us consider the case when Z = f(W ) is a linear function of the

form (3.44) with all av nonzero and with (Wv)
i.i.d.∼ N(0, 1). Then (3.52)

becomes

T (ε, δ) ≥ max
S⊂V

1

CS

(
1− δ

2
log

1

ε2
+

1

2
log
‖aSc‖2

2

8‖a‖2
2

)
. (3.53)

The lower bound of our Corollary 3.7 will be tighter than (3.53) for all ε > 0

as long as

1− δ
2

log
π‖aSc‖2

2

2
− h2(δ) ≥ 1

2
log
‖aSc‖2

2

8‖a‖2
2

, ∀S ⊂ V . (3.54)

Note that the quantity on the right-hand side is nonpositive. More gener-

ally, for observations with log-concave distributions, the result of Lemma 3.1

can be weakened to get a lower bound involving the conditional differential

entropy h(Z|WS), which is tighter than similar results obtained in [39].

Corollary 3.12. If the observations Wv, v ∈ V, have log-concave distribu-

tions, then for computing the sum Z =
∑

v∈VWv subject to the absolute error

criterion `(z, ẑ) = |z − ẑ|, for ε ≥ 0 and δ ∈ (0, 1/2],

T (ε, δ) ≥ max
S⊂V

1

CS

(
(1− δ)

(
h(Z|WS) + log

1

2eε

)
− h2(δ)

)
.

112



Proof. Let pS(z) denote the probability density of
∑

v∈ScWv. From (3.45),

LZ|WS (wS , ε) = sup
z∈R

∫ z+ε

z−ε
pS(z)dz ≤ 2ε‖pS‖∞, ∀wS ∈

∏
v∈S

Wv, (3.55)

where ‖pS‖∞ is the sup norm of pS . By a result of Bobkov and Madiman [68,

Proposition I.2], if U is a real-valued r.v. with a log-concave density p, then

the differential entropy h(U) is upper bounded by log e + log ‖p‖−1
∞ . Using

this fact together with (3.55), the log-concavity of pS , and the fact that the

Wv’s are mutually independent, we can write

log
1

E[LZ|WS (WS , ε)]
≥ log

1

2ε
+ log

1

‖pS‖∞

≥ log
1

2eε
+ h
(∑
v∈Sc

Wv

)
= log

1

2eε
+ h(Z|WS).

Using this estimate in Theorem 3.1, we get the desired lower bound on T (ε, δ).

3.5 Comparison with Upper Bounds on Computation

Time

For the two-node mod-2 sum problem in Example 3.1, we have shown in

Corollary 3.1 that the lower bound on computation given by Theorem 3.3

can tightly match the upper bound. In this section, we provide two more

examples in which our lower bounds on computation time are tight. In the

first example, our lower bound precisely captures the dependence of compu-

tation time on the number of nodes in the network. In the second example,

our lower bound tightly captures the dependence of computation time on the

accuracy parameter ε.

3.5.1 Rademacher Sum over a Dumbbell Network

Example 3.3. Consider a dumbbell network of bidirectional BSCs with the

same crossover probability. Formally, suppose |V| is even, and let the nodes be
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indexed from 1 to |V|. Nodes 1 to |V|/2 form a clique (i.e., each pair of nodes

is connected by a pair of BSCs), while nodes |V|/2 + 1 to |V| form another

clique. The two cliques are connected by a pair of BSCs between nodes |V|/2
and |V|/2 + 1. Each node initially observes a Bern(1

2
) (or Rademacher) r.v.

The goal is for the nodes to compute the sum of the observations of all nodes.

The distortion function is `(z, ẑ) = |z − ẑ|.

By choosing the cutset as the pair of BSCs that joins the two cliques,

our lower bound for random Rademacher sums in Corollary 3.11 gives the

following lower bound on computation time.

Corollary 3.13. For the problem of in Example 3.3, for δ ∈ (0, 1/2),

T (0, δ) &
1

C

(
1− δ

2
log

π|V|
4
− h2(δ)

)
as |V| → ∞,

which implies

T (0, δ) = Ω (log |V|) .

Now we show that the above lower bound matches the upper bound on

the computation time, which turns out to be

T (0, δ) = O (log |V|) .

As shown by Gallager [48], for a fixed success probability, nodes |V|/2 and

|V|/2 + 1 can learn the partial sum of the observations in their respective

cliques in O
(

log log |V|
)

steps. These two nodes then exchange their par-

tial sum estimates using binary block codes. Each partial sum can take

|V|/2 + 1 values, and can be encoded losslessly with log(|V|/2 + 1) bits.

The blocklength needed for transmission of the encoded partial sums is thus

O
(

log(|V|/2 + 1)
)
, where the hidden factor depends on the required success

probability and the channel crossover probability, but not on |V|. Having

learned the partial sum of the other clique, nodes |V|/2 and |V|/2 + 1 con-

tinue to broadcast this partial sum to other nodes in their own clique. This

takes another O
(

log(|V|/2+1)
)

step. In total, the computation can be done

in O
(

log log |V|
)

+ 2O
(

log(|V|/2 + 1)
)

= O(log |V|) steps, to have all nodes

learn the sum of all observations, for any prescribed success probability. This

shows that T (0, δ) = O (log |V|).
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3.5.2 Distributed Averaging over Discrete Noisy Channels

Example 3.4. Consider a network where the nodes are connected by binary

erasure channels with the same erasure probability. Each node initially ob-

serves a log-concave r.v. The goal is for the nodes to compute the average of

the observations of all nodes.

For this example, Carli et al. [51] define the computation time as

T̃ (ε) , inf
{
T ∈ N :

1

|V|
∑
v∈V

E
[
(Z − Ẑv(t))2

]
≤ ε, ∀t ≥ T

}
and show that

T̃ (ε) ≤ c1 + c2
log3 ε−1

log2 ρ−1
, (3.56)

where ρ is the second largest singular value of the consensus matrix adapted

to the network, and c1 and c2 are positive constants depending only on chan-

nel erasure probability. It can be shown that the above upper bound still

holds (with different constants) when channels are BSCs.

We use Corollary 3.12 to derive the following lower bound on T̃ (ε).

Corollary 3.14. For the problem in Example 3.4,

T̃ (ε) ≥ max
S⊂V

1

CS

(
1

2

(
h(Z|WS) + log

1

4e|V|
+

1

2
log

1

ε

)
− 1

)
. (3.57)

Proof. Using Jensen’s inequality twice, we can write

1

|V|
∑
v∈V

E
[
(Z − Ẑv(T ))2

]
≥ 1

|V|
∑
v∈V

(
E|Z − Ẑv(T )|

)2

≥

(
1

|V|
∑
v∈V

E|Z − Ẑv(T )|

)2

.

Therefore, |V|−1
∑

v∈V E
[
(Z − Ẑv(T ))2

]
≤ ε implies that E|Z − Ẑv(T )| ≤

|V|
√
ε for all v ∈ |V|, and

P
[
|Z − Ẑv(T )| ≥ |V|

√
ε

δ

]
≤ δ, ∀v ∈ V , δ ∈ (0, 1/2]
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by Markov’s inequality. Then by Corollary 3.12,

T̃ (ε) ≥ T

(
|V|
√
ε

δ
, δ

)
≥ max
S⊂V

1

CS

(
(1− δ)

(
h(Z|WS) + log

δ

2e|V|
√
ε

)
− h2(δ)

)
.

Choosing δ = 1/2, we obtain (3.57).

Alternatively, we can use the lower bound on T (ε) to obtain a lower bound

on T̃ (ε). Noting that T̃ (ε) can be lower bounded by T (|V|ε) with `(z, ẑ) =

(z − ẑ)2. The lower bound for T (ε) in Theorem 3.2 leads to

T̃ (ε) ≥ max
S⊂V

1

CS

(
h(Z|WS) +

1

2
log

1

2πe|V|ε

)
.

The above lower bounds imply that T̃ (ε) is necessarily logarithmic in ε−1,

which tightly matches the poly-logarithmic dependence on ε−1 in the upper

bound given by (3.56). As pointed out in Carli et al. [69], it is possible to

prove that a computation time logarithmic in ε−1 is achievable by embedding

a quantized consensus algorithm for noiseless networks into the simulation

framework developed by Rajagopalan and Schulman [50] for noisy networks.

3.6 Conclusion and Future Research Directions

We have studied the fundamental time limits of distributed function com-

putation from an information-theoretic perspective. The computation time

depends on the amount of information about the function value needed by

each node and the rate for the nodes to accumulate such an amount of in-

formation. The small ball probability lower bound on conditional mutual

information reveals how much information is necessary, while the cutset-

capacity upper bound and the SDPI upper bound capture the bottleneck on

the rate for the information to be accumulated. The multi-cutset analysis

provides a more refined characterization of the information dissipation in a

network.

Here are some questions that are worthwhile to consider in the future:

• In the multi-cutset analysis, the purpose of introducing self-loops when
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reducing the network to a chain is to establish necessary Markov re-

lations for proving upper bounds on I(Z; Ẑn|WS) in bidirected chains,

and the reason for considering left-bound nodes is to improve the lower

bounds on computation time. We could have included all channels from

Si to Si into the self-loop at node i′ in G′, but this would result in looser

lower bounds on computation time (cf. the remark after Theorem 3.4).

However, there might be other network reduction methods, e.g., differ-

ent ways to construct the bidirected chain, that will yield even tighter

lower bounds on computation time than our proposed method.

• In the first step of the derivation of Lemma 3.4 and Lemma 3.5, we

have upper-bounded I(Z; Ẑv|WS) using the ordinary data processing

inequality as

I(Z; Ẑv|WS) ≤ I(WSc ; Ẑv|WS).

One may wonder whether we can tighten this step by a judicious use

of SDPIs. The answer is negative. It can be shown that

I(Z; Ẑv|WS) ≤ I(WSc ; Ẑv|WS) sup
wS∈

∏
v∈SWv

η(PWSc |WS=wS ,PZ|WSc ,WS=wS ),

where the contraction coefficient depends on the joint distribution of

the observations PW and the function Z = f(W ). However,

η(PWSc |WS=wS ,PZ|WSc ,WS=wS ) = 1

for both discrete and continuous observations. For discrete observa-

tions, this is a consequence of the fact that [20]

η(PX ,PY |X) < 1⇐⇒graph
{

(x, y) : PX(x) > 0,PY |X(y|x) > 0
}

is connected,

and the fact that, for any PY |X induced by a deterministic function

f : X → Y, this graph is always disconnected. This condition can

be extended to continuous alphabets [70]. It would be interesting to

see whether nonlinear SDPIs, e.g., of the sort recently introduced by

Polyanskiy and Wu [71], can be somehow applied here to tighten the
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upper bounds.

• If the function to be computed is the identity mapping, i.e., Z = W ,

then the goal of the nodes is to distribute their observations to all

other nodes in the network. In this case, our results on the computa-

tion time can provide non-asymptotic lower bounds on the blocklength

of the codes for the source-channel coding problems in multi-terminal

networks. In Example 3.2, we have considered one such case with dis-

crete observations, and obtained lower bounds in Corollary 3.2 based

on the single cutset analysis. It would be interesting to apply the

multi-cutset analysis to the source-channel coding problems in multi-

terminal, multi-hop networks.

3.7 Additional Proofs for Chapter 3

3.7.1 Proof of Lemma 3.7

The goal of this proof is to show that, given any T -step algorithm A running

on G, we can construct a randomized T -step algorithm A′ running on G′

that simulates A. Fix any T -step algorithm A that runs on G. For each

t, we can factor the conditional distribution of the messages Xt , (Xv,t)v∈V

given W,X t−1, Y t−1 as follows:

PXt|W,Xt−1,Y t−1(xt|w, xt−1, yt−1) =
∏
v∈V

PXv,t|Wv ,Y
t−1
v

(xv,t|wv, yt−1
v )

=
n∏
i=1

∏
v∈Si

PXv,t|Wv ,Y
t−1
v

(
xv,t

∣∣∣wv, yt−1
v

)
=

n∏
i=1

PXSi,t|WSi ,Y t−1
Si

(
xSi,t

∣∣∣wSi , yt−1
Si

)
. (3.58)

Likewise, the conditional distribution of the received messages Yt , (Yv,t)v∈V
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given W,X t, Y t−1 can be factored as

PYt|W,Xt,Y t−1(yt|w, xt, yt−1) =
∏
e∈E

PYe,t|Xe,t(ye,t|xe,t)

=
∏
e∈E

Ke(ye,t|xe,t)

=
n∏
i=1

∏
u∈Si

∏
v∈V: (u,v)∈E

K(u,v)(y(u,v),t|x(u,v),t). (3.59)

Since the successive partition of G ensures that nodes in Si can communicate

with nodes in Sj only if |i− j| ≤ 1, the messages originating from Si at step

t can be decomposed as

XSi,t = (X(Si,Si−1),t, X(Si,Si+1),t, X(Si,Si),t)

= (X(Si,Si−1),t, X(Si,Si+1),t, X(Si,
←
∂ Si),t, X(Si,Si\

←
∂ Si),t),

and the messages received by nodes in Si at step t can be decomposed as

YSi,t = (Y(Si−1,Si),t, Y(Si+1,Si),t, Y(Si,Si),t)

= (Y(Si−1,Si),t, Y(Si+1,Si),t, Y(Si,
←
∂ Si),t, Y(Si,Si\

←
∂ Si),t). (3.60)

According to the operation of algorithm A, for each (u, v) ∈ E there exists a

mapping ϕ(u,v),t, such that X(u,v),t = ϕ(u,v),t(Wu, Y
t−1
u ). By the definition of

←
∂Si, we can write

X(Si,Si−1),t =
(
ϕ(u,v),t(Wu, Y

t−1
u ) : (u, v) ∈ E , u ∈

←
∂Si, v ∈ Si−1

)
.

Thus, there exists a mapping
←
ϕSi,t, such that

X(Si,Si−1),t =
←
ϕSi,t(W

←
∂ Si, Y

t−1←
∂ Si

), (3.61)

where

Y←∂ Si,t =
(
Y (Si−1,

←
∂ Si),t, Y (Si+1,

←
∂ Si),t, Y (Si,

←
∂ Si),t

)
. (3.62)
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By the same token, there exist mappings
→
ϕSi,t, ϕ̊Si,t and ϕ̄Si,t, such that

X(Si,Si+1),t =
→
ϕSi,t(WSi , Y

t−1
Si ), (3.63)

X(Si,
←
∂ Si),t = ϕ̊Si,t(WSi , Y

t−1
Si ), (3.64)

X(Si,Si\
←
∂ Si),t = ϕ̄Si,t(WSi , Y

t−1
Si ). (3.65)

Define the random variables

Wi , WSi ,

Xi,t = (X(i,i−1),t, X(i,i+1),t, X(i,i),t)

, (X(Si,Si−1),t, X(Si,Si+1),t, X(Si,
←
∂ Si),t),

Yi,t = (Y(i−1,i),t, Y(i+1,i),t, Y(i,i),t)

, (Y(Si−1,Si),t, Y(Si+1,Si),t, Y(Si,
←
∂ Si),t),

Ui,t , (X(Si,Si\
←
∂ Si),t, Y(Si,Si\

←
∂ Si),t).

From the decomposition of YSi,t in (3.60), we know that (Y t−1
i , U t−1

i ) con-

tains Y t−1
Si ; while from the decomposition of Y←∂ Si,t in (3.62), we know that

Y t−1
i contains Y t−1←

∂ Si
. Therefore, from (3.61) and (3.63)-(3.65), we deduce

the existence of mappings
←
ϕi,t,

→
ϕi,t, ϕ̊i,t, and ϕ̄i,t, such that the messages

transmitted by nodes in Si at time t can be generated as

X(i,i−1),t =
←
ϕi,t(Wi, Y

t−1
i ), (3.66)

X(i,i+1),t =
→
ϕi,t(Wi, Y

t−1
i , U t−1

i ), (3.67)

X(i,i),t = ϕ̊i,t(Wi, Y
t−1
i , U t−1

i ), (3.68)

X(Si,Si\
←
∂ Si),t = ϕ̄i,t(Wi, Y

t−1
i , U t−1

i ). (3.69)

Note that the computation of X(i,i−1),t does not involve U t−1
i . Next, the

messages received by nodes in Si at step t are related to the transmitted

messages as

X(i−1,i),t

K(i−1,i)−−−−→ Y(i−1,i),t,

X(i+1,i),t

K(i+1,i)−−−−→ Y(i+1,i),t,

X(i,i),t

K(i,i)−−−→ Y(i,i),t,

where the stochastic transition laws have the same form as those in (3.28) to
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(3.30). In addition, since X(Si,Si\
←
∂ Si),t and Y(Si,Si\

←
∂ Si),t are related through

the channels from Si to Si \
←
∂Si, there exists a mapping κi,t such that

Y(Si,Si\
←
∂ Si),t can be realized as

Y(Si,Si\
←
∂ Si),t = κi,t(X(Si,Si\

←
∂ Si),t, Ri,t), (3.70)

where Ri,t can be taken as a random variable uniformly distributed over [0, 1]

and independent of everything else. From (3.69) and (3.70), we know that

Ui,t can be realized by a mapping ϑi,t as

Ui,t = ϑi,t(Wi, Y
t−1
i , U t−1

i , Ri,t). (3.71)

Taking all of this into account, we can rewrite the factorization (3.58) as

follows:

PXt|W,Xt−1,Y t−1(xt|w, xt−1, yt−1)

=
n∏
i=1

1
{
x(i−1,i),t =

←
ϕi,t(wi, y

t−1
i )

}
· 1
{
x(i,i+1),t =

→
ϕi,t(wi, y

t−1
i , ut−1

i )
}

· 1
{
x(i,i),t = ϕ̊i,t(wi, y

t−1
i , ut−1

i )
}
· 1
{
x(Si,Si\

←
∂ Si),t = ϕ̄i,t(wi, y

t−1
i , ut−1

i )
}
,

(3.72)

and we can rewrite the factorization (3.59) as

PYt|W,Xt,Y t−1(yt|w, xt, yt−1)

=
n∏
i=1

K(i−1,i)(y(i−1,i),t|x(i−1,i),t) ·K(i+1,i)(y(i+1,i),t|x(i+1,i),t) ·K(i,i)(y(i,i),t|x(i,i),t)

·
⊗

(u,v)∈E:u∈Si,v∈Si\
←
∂ Si

K(u,v)(y(Si,Si\
←
∂ Si),t|x(Si,Si\←∂ Si),t), (3.73)

where the channel
⊗

(u,v)∈E:u∈Si,v∈Si\
←
∂ Si

K(u,v) can be realized by the mapping

κi,t with the r.v. Ri,t.

To summarize: the mappings defined in (3.66) to (3.68) and (3.71) specify

a randomized T -step algorithm A′ that runs on G′ and simulates the T -step

algorithm A that runs on G. Specifically, using these mappings, each node

i′ in G′ can generate all the transmitted and received messages of Si in A
as (XT

i′ , Y
T
i′ , U

T
i′ ). Moreover, from (3.72) and (3.73) we see that the random
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objects

(
WSi , X

T
Si , Y

T
Si : i ∈ {1, . . . , n}

)
and

(
Wi′ , X

T
i′ , Y

T
i′ , U

T
i′ : i′ ∈ {1, . . . , n}

)
have the same joint distribution.

Finally, as we have assumed that
←
∂Si’s are all nonempty, we can define

Ẑi , Ẑv = ψv(Wv, Y
T
v )

with an arbitrary v ∈
←
∂Si. From the definition of Yi,t and the fact that Y T

i

contains Y T
v , it follows that there exists a mapping ψi such that

Ẑi = ψi(Wi, Y
T
i ).

Using this mapping, node i′ in G′ can generate the final estimate of the

chosen v ∈
←
∂Si in A as Ẑi′ , such that (Z, Ẑi : i ∈ {1, . . . , n}) and (Z, Ẑi′ : i ∈

{1, . . . , n}) have the same joint distribution. This guarantees that

max
i′∈V ′

P[`(Z, Ẑi′) > ε] = max
i∈{1:n}

P[`(Z, Ẑi) > ε]

≤ max
v∈V

P[`(Z, Ẑv) > ε]

≤ δ.

The claim that T (ε, δ) for computing Z on G is lower bounded by T ′(ε, δ)

for computing Z on G′ then follows from the definition of T ′(ε, δ) in (3.31).

This proves Lemma 3.7.

3.7.2 Proof of Lemma 3.8

Recall that, for any randomized T -step algorithm A′, at step t ∈ {1, . . . , T},
node i ∈ {1, . . . , n} computes the outgoing messagesX(i,i−1),t =

←
ϕi,t(Wi, Y

t−1
i ),

X(i,i+1),t =
→
ϕi,t(Wi, Y

t−1
i , U t−1

i ), and X(i,i),t = ϕ̊i,t(Wi, Y
t−1
i , U t−1

i ), and the

private message Ui,t = ϑi,t(Wi, Y
t−1
i , U t−1

i , Ri,t), where Ri,t is the private ran-

domness of node i. At step T , node i computes Ẑi = ψi(Wi, Y
T
i ). We

will use the Bayesian network formed by all the relevant variables and the

d-separation criterion [60, Theorem 3.3] to find conditional independences

among these variables. To simplify the Bayesian network, we merge some of

122



the variables by defining

Ũi,t , (X(i,i),t, X(i,i+1),t, Ui,t)

and

Ỹi,t , (Y(i,i),t, Y(i+1,i),t)

for i ∈ {1, . . . , n}. The joint distribution of the variables can then be factored

as

PW,XT ,UT ,Y T (w, xT , uT , yT )

= PW (w)
T∏
t=1

n∏
i=1

1
{
x(i,i−1),t =

←
ϕi,t(wi, y

t−1
i )

}
PŨi,t|Wi,Y

t−1
i ,Ũt−1

i
(ũi,t|wi, yt−1

i , ũt−1
i )

×
n∏
i=1

PY(i−1,i),t|Ũi−1,t
(y(i−1,i),t|ũi−1,t)PỸi,t|Ũi,t,X(i+1,i),t

(ỹi,t|ũi,t, x(i+1,i),t).

(3.74)

The Bayesian network corresponding to this factorization for n = 4 and

T = 4 is shown in Fig. 3.10 at the end of this chapter.

If T = 0, then Ẑn = ψ(Wn), hence I(Z; Ẑn|W2:n) ≤ I(Z;Wn|W2:n) = 0.

For T ≥ 1, we prove the upper bounds in the following steps, where we

assume n ≥ 4. The case n = 3 can be proved by skipping Step 2, and the

case n = 2 can be proved by skipping Step 1 and Step 2.

Step 1:

For any i and t, define the shorthand Xi←,t , X(Ni←,i),t, where Ni← is the in-

neighborhood of node i. From the Markov chain W,Y T−1
n → Xn←,T → Yn,T

and Lemma 2.7, we follow the same argument as the one used for proving

Lemma 3.5 to show that

I(Z; Ẑn|W2:n) ≤ I(W1;Y T
n |W2:n)

≤ (1− ηn)I(W1;Y T−1
n |W2:n) + ηnI(W1;Y T−1

n , Xn←,T |W2:n).

Applying the d-separation criterion to the Bayesian network corresponding

to (3.74) (see Fig. 3.10 at the end of this chapter for an illustration), we can
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read off the Markov chain

W1 → W2:n, Y
t−1
n−1 → Y t−1

n , Ũn−1,t, Ũn,t

for t ∈ {1, . . . , T}, since all trails from W1 to (Y t−1
n , Ũn−1,t, Ũn,t) are blocked

by (W2:n, Y
t−1

(n−2,n−1)), and all trails from (Y t−1
n , Ũn−1,t, Ũn,t) to W1 are blocked

by (W2:n, Ỹ
t−1
n−1). This implies the Markov chain

W1 → W2:n, Y
T−1
n−1 → Y T−1

n , Xn←,T ,

since X(n−1,n),T is included in Ũn−1,T and X(n,n),T is included in Ũn,T . Conse-

quently,1

I(W1;Y T
n |W2:n) ≤ (1− ηn)I(W1;Y T−1

n |W2:n) + ηnI(W1;Y T−1
n−1 |W2:n). (3.75)

Note that I(W1;Yn,1|W2:n) ≤ I(W1;Xn←,1|W2:n) ≤ I(W1;WNn←|W2:n) = 0.

Step 2:

For i ∈ {1, . . . , n − 3}, from the Markov chain W,Y T−i−1
n−i → X(n−i)←,T−i →

Yn−i,T−i and Lemma 2.7,

I(W1;Y T−i
n−i |W2:n) ≤(1− ηn−i)I(W1;Y T−i−1

n−i |W2:n)+

ηn−iI(W1;Y T−i−1
n−i , X(n−i)←,T−i|W2:n)

From the Bayesian network corresponding to (3.74), we can read off the

Markov chain

W1 → W2:n, Y
t−1
n−i−1 → Y t−1

n−i , Ũn−i−1,t, Ũn−i,t, X(n−i+1,n−i),t

for t = 1, . . . , T−i, since all trails fromW1 to (Y t−1
n−i , Ũn−i−1,t, Ũn−i,t, X(n−i+1,n−i),t)

are blocked by (W2:n, Y
t−1

(n−i−2,n−i−1)), and all trails from

(Y t−1
n−i , Ũn−i−1,t, Ũn−i,t, X(n−i+1,n−i),t)

to W1 are blocked by (W2:n, Ỹ
t−1
n−i−1). This implies the Markov chain W1 →

W2:n, Y
T−i−1
n−i−1 → Y T−i−1

n−i , X(n−i)←,T−i, since X(n−i−1,n−i),T−i is included in

1This follows from the ordinary DPI and from the fact that, if X → A,B → C is a
Markov chain, then X → B → C is a Markov chain conditioned on A = a.
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Ũn−i−1,T−i and X(n−i,n−i),T−i is included in Ũn−i,T−i. Therefore,

I(W1;Y T−i
n−i |W2:n) ≤ (1− ηn−i)I(W1;Y T−i−1

n−i |W2:n) + ηn−iI(W1;Y T−i−1
n−i−1 |W2:n)

(3.76)

for i ∈ {1, . . . , n− 3}. Also note that

I(W1;Yn−i,1|W2:n) ≤ I(W1;X(n−i)←,1|W2:n) ≤ I(W1;WN(n−i)←|W2:n) = 0.

Step 3:

Finally, we upper-bound I(W1;Y T−n+2
2 |W2:n) for T ≥ n−1. From the Markov

chain W,Y t−1
2 → X2←,t → Y2,t and Lemma 2.7,

I(W1;Y T−n+2
2 |W2:n) ≤ (1− η2)I(W1;Y T−n+1

2 |W2:n) + η2H(W1|W2:n).

(3.77)

This upper bound is useful only when H(W1|W2:n) is finite. If the observa-

tions are continuous r.v.’s, we can upper-bound I(W1;Y T−n+2
2 |W2:n) in terms

of the channel capacity C(1,2):

I(W1;Y T−n+2
2 |W2:n) =

T−n+2∑
t=1

I(W1;Y2,t|W2:n, Y
t−1

2 )

=
T−n+2∑
t=1

I(W1;Y(1,2),t|W2:n, Y
t−1

2 ) + I(W1; Ỹ2,t|W2:n, Y
t−1

2 , Y(1,2),t)

≤
T−n+2∑
t=1

I(X(1,2),t;Y(1,2),t|W2:n, Y
t−1

2 )

≤
T−n+2∑
t=1

I(X(1,2),t;Y(1,2),t)

≤ C(1,2)(T − n+ 2), (3.78)

where we have used the Markov chain W1 → W2:n, Y
t−1

2 , Y(1,2),t → Ỹ2,t for

t ∈ {1, . . . , T−n+2}, which follows by applying the d-separation criterion to

the Bayesian network corresponding to the factorization in (3.74), so that the

second term in the second line is zero; the Markov chain W,Y t−1
2 → X(1,2),t →

Y(1,2),t, which also implies the Markov chain W1 → X(1,2),t,W2:n, Y
t−1

2 →
Y(1,2),t by the weak union property of conditional independence, hence the
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third line and the fourth line; and the fact that I(X(1,2),t;Y(1,2),t) ≤ C(1,2).

Step 4:

Define Ii,t = I(W1;Y t
i |W2:i) for i ≥ 2 and t ≥ 1. From (3.75), (3.76), (3.77),

and (3.78), we can write, for n ≥ 3 and T ≥ n− 1,

In−i,T−i ≤ η̄n−iIn−i,T−i−1 + ηn−iIn−i−1,T−i−1, i ∈ {0, . . . , n− 3} (3.79)

where η̄n−i = 1− ηn−i, and In−i,1 = 0. In addition, for T ≥ n− 1,

I2,T−n+2 ≤

η̄2I2,T−n+1 + η2H(W1|W2:n)

C(1,2)(T − n+ 2)
, (3.80)

and I2,0 = 0.

An upper bound on I(W1;Y T
n |W2:n) can be obtained by solving this set

of recursive inequalities with the specified boundary conditions. It can be

checked by induction that I(W1;Y T
n |W2:n) = 0 if T ≤ n− 2. For T ≥ n− 1,

if ηi ≤ η̃ for all i ∈ {1, . . . , n}, then the above inequalities continue to hold

with ηi’s replaced with η̃. The resulting set of inequalities is similar to the

one obtained by Rajagopalan and Schulman [50] for the evolution of mutual

information in broadcasting a bit over a unidirectional chain of BSCs. With

B(m, k, p) ,
(
m
k

)
pk(1− p)m−k, the exact solution is given by

I(W1;Y T
n |W2:n) ≤ H(W1|W2:n)η̃

T−n+2∑
i=1

η̃n−2(1− η̃)T−i−n+2

(
T − i
n− 2

)

= H(W1|W2:n)η
T−n+2∑
i=1

B(T − i, n− 2, η)

for n ≥ 2, and

I(W1;Y T
n |W2:n) ≤ C(1,2)η̃

T−n+2∑
i=1

η̃n−3(1− η̃)T−i−n+2

(
T − i− 1

n− 3

)
i

= C(1,2)η
T−n+2∑
i=1

B(T − i− 1, n− 3, η)i

for n ≥ 3. This proves (3.32a) and (3.32b).

For general ηi’s, we obtain a suboptimal upper bound by unrolling the first

term in (3.79) for each i and using the fact that In−i,t = 0 for t ≤ n− i− 2,
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getting

In−i,T−i ≤ η̄T−n+1
n−i ηn−iIn−i−1,n−i−2 + . . .+ η̄n−iηn−iIn−i−1,T−i−2 + ηn−iIn−i−1,T−i−1

≤
(
η̄T−n+1
n−i + . . .+ η̄n−i + 1

)
ηn−iIn−i−1,T−i−1

=
(
1− η̄T−n+2

n−i
)
In−i−1,T−i−1.

Iterating over i, and noting that I2,T−n+2 ≤ min
{
H(W1|W2:n)(1−η̄T−n+2

2 ), C(1,2)(T−
n+ 2)

}
, we get for n ≥ 2 and T ≥ n− 1,

I(W1;Y T
n |W2:n) ≤

H(W1|W2:n)
∏n

i=2

(
1− (1− ηi)T−n+2

)
C(1,2)(T − n+ 2)

∏n
i=3

(
1− (1− ηi)T−n+2

) . (3.81)

The weakened upper bounds in (3.33a) and (3.33b) are obtained by replacing

ηi in (3.81) with η , maxi=1,...,n ηi.

Finally, we show (3.34) using an argument similar to the one in [50]. If

n ≥ 4 and T ≤ 2 + (n− 3)γ/η for some γ ∈ (0, 1), then

η <
η

γ
≤ n− 3

T − 2
≤ n− 2

T − 1
≤ 1,

where the last inequality follows from the assumption that T ≥ n− 1, since

otherwise I(Z; Ẑn|W2:n) = 0. The upper bounds in (3.32a) and (3.32b) can

be weakened to

I(Z; Ẑn|W2:n) ≤

H(W1|W2:n)η(T − n+ 2)B(T − 1, n− 2, η)

C(1,2)η(T − n+ 2)2B(T − 2, n− 3, η)

≤ min{H(W1|W2:n), C(1,2)}η(T − n+ 2)2B(T − 2, n− 3, η)

≤ C(1,2)η(T − n+ 2)2 exp

(
−2

(
n− 3

T − 2
− η
)2

(T − 2)

)

≤ C(1,2)
(n− 3)2γ2

η
exp

(
−2

(
η

γ
− η
)2

(n− 3)

)
,

where the first and second lines follow from monotonicity properties of the

binomial distribution; the third line follows from the Chernoff–Hoeffding

bound; and the fourth line follows from the assumption that n ≥ 4 and

n− 1 ≤ T ≤ 2 + (n− 3)γ/η.
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Figure 3.10: Bayesian network of (W,XT , UT , Y T ) for the randomized
algorithm A′ on a 4-node bidirected chain with T = 4. (W1:4 are arbitrarily
correlated, and not all edges emanating from W2:4 are shown.)
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Chapter 4

Upper Bounds for Generalization Error of
Statistical Learning Algorithms

4.1 Introduction

Machine learning algorithms can be viewed as stochastic transformations that

map training data to hypotheses. The performance of a learning algorithm is

assessed by the true risk of its output hypothesis: based on a random training

dataset, a good learning algorithm should generate a hypothesis with small

true risk either in expectation or with high probability. The generalization

error of a hypothesis is defined as the difference between its true risk and its

empirical risk on the training data. A small generalization error means that

the true risk of a hypothesis can be accurately estimated by its empirical

risk. A hypothesis will have a small true risk if both its empirical risk and its

generalization error are small, meaning that it both can fit the training data

and is able to generalize, or in other words, does not overfit. It turns out

that the generalization capability of a learning algorithm is determined by its

stability properties, which pertain to sensitivity of the learning algorithm’s

output to local modifications of the input dataset. Algorithmic stability

was introduced in the 1970’s by Devroye and Wagner [72] and Rogers and

Wagner [73] as a tool for estimating the generalization error, and studied

more recently by Kearns and Ron [74], Bousquet and Elisseeff [75], Poggio

et al. [76], and Shalev-Shwartz et al. [77] to establish sufficient and necessary

conditions for learnability.

In recent years, the interest in stability was renewed through the work

on differential privacy [78], which quantifies the sensitivity of the distribu-

tion of the algorithm’s output to the dataset, and can therefore be viewed

as a form of information-theoretic stability. Once the connection to gener-

alization error bounds was established, it was used to study adaptive data

analytics, where the analyst chooses queries by interacting with the dataset
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in multiple rounds [79, 80]. Differential privacy also behaves nicely under

composition of algorithms [81, 82], which makes it particularly amenable to

information-theoretic analysis. Based on the idea that the distribution of the

output of a stable learning algorithm cannot depend too much on any par-

ticular instance in the input dataset, a number of new information-theoretic

notions of stability, e.g., stability in erasure mutual information and stability

in Wasserstein distance, have been proposed recently by Raginsky et al. [83].

The notion of stability in erasure mutual information is weaker (i.e., less re-

strictive) than differential privacy; whereas stability in Wasserstein distance

is a stronger notion, which is based on the theory of optimal transporta-

tion, and can be related to other information-theoretic stability notions via

transportation-information inequalities.

In this chapter, we define a new notion of stability through the mutual

information between the input dataset and the output hypothesis of a learn-

ing algorithm, and call it stability in input-output mutual information. This

notion of stability naturally captures the idea that stability imposes limits

on the amount of information the algorithm can glean from the observed

data. We derive an upper bound on the expected generalization error for

learning algorithms that are stable in input-output mutual information (The-

orem 4.2). Our generalization error bound is similar to the result obtained

by Russo and Zou [84], which is in terms of the mutual information between

the output hypothesis and the collection of empirical risks. For learning al-

gorithms that generate the output hypothesis solely based on the empirical

risks, these two upper bounds are equivalent. However, the proof in [84]

requires the hypothesis space to be a finite set, whereas our formulation al-

lows uncountably infinite hypothesis spaces. Moreover, for algorithms that

are stable in input-output mutual information, we derive a high-probability

bound for the absolute generalization error that decays exponentially in the

size of the dataset (Theorem 4.4). In addition, we discuss several approaches

to designing learning algorithms with input-output mutual information sta-

bility, and show that the popular Gibbs algorithm [85] can be viewed as a

regularized variant of empirical risk minimization, where the regularization

controls the input-output mutual information.

We also discuss the input-output mutual information stability in the adap-

tive composition of learning algorithms, where a number of learning algo-

rithms are sequentially executed, and the output of each algorithm may de-
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pend on the dataset as well as on the outputs of the previously executed

learning algorithms. Adaptive composition can be used as a way of obtain-

ing complex learning algorithms by combining simple constituent algorithms,

and can be realized in a decentralized fashion by multiple processors shar-

ing the same dataset and running the constituent algorithms. By analyzing

the input-output mutual information of each constituent algorithm, we can

upper-bound the generalization error of the final output of the composed

algorithm. The information-theoretic analysis also helps to capture the in-

fluence of communication constraints on the generalization capability of the

algorithm obtained from adaptive composition. Finally, we apply the rela-

tionship between input-output mutual information stability and generaliza-

tion error to analyzing bias and accuracy in adaptive data analytics.

4.2 Preliminaries

4.2.1 Formulation of General Statistical Learning Problem

In the standard framework of statistical learning theory [77, 86], we have

an instance space Z, a hypothesis space W, and a nonnegative loss function

` : W× Z→ R+. The learning algorithm is given a dataset of size n, i.e., an

n-tuple

S = (Z1, . . . , Zn)

of i.i.d. random elements of Z with distribution µ, serving as training sam-

ples. The distribution µ of the training samples is unknown to the learning

algorithm. A possibly randomized learning algorithm is a Markov kernel

PW |S that maps a dataset S to a random element W of the hypothesis space

W. The randomness in W comes from two sources: the randomness of the

dataset S, and the private randomness utilized by the learning algorithm if

it is randomized. The true risk of a hypothesis w ∈ W on µ is given by

Lµ(w) , E[`(w,Z)] =

∫
Z

`(w, z)µ(dz). (4.1)

The goal of a learning algorithm is to output a hypothesis W based on the

input dataset S such that the true risk of W is small either in expectation or
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with high probability. Had the learning algorithm known the data-generating

distribution µ, it could pick a hypothesis from W that minimizes Lµ(w) and

attain the minimum true risk over W, which is infw∈W Lµ(w). The excess

risk of a learning algorithm is the difference Lµ(W ) − infw∈W Lµ(w), which

is always nonnegative. For a learning algorithm characterized by PW |S, the

expected excess risk on µ is given by

Rexcess(µ, PW |S) , E[Lµ(W )]− inf
w∈W

Lµ(w)

where the expectation is taken over the marginal distribution of W . A good

learning algorithm should have a small expected excess risk for any data-

generating distribution µ. Since µ is unknown, the learning algorithm can-

not directly compute Lµ(w) for any w ∈ W, but can instead compute the

empirical risk of w

LS(w) ,
1

n

n∑
i=1

`(w,Zi) (4.2)

as a proxy of Lµ(w). For a learning algorithm characterized by PW |S, the gen-

eralization error on µ is the difference Lµ(W )−LS(W ), and we are interested

in its expected value

gen(µ, PW |S) , E[Lµ(W )− LS(W )],

where the expectation is taken with respect to the joint distribution PS,W =

µ⊗n ⊗ PW |S. When a learning algorithm has a small empirical risk, it means

that its output fits the training samples well. When a learning algorithm has

a small generalization error, it means that the difference between the true risk

of its output and the empirical risk of its output is small; in other words, the

algorithm does not overfit. As will be discussed in the next subsection, if a

learning algorithm has a small expected empirical risk, and at the same time

has a small expected generalization error, then it will have a small expected

excess risk.

The above framework of statistical learning applies to both supervised and

unsupervised learning. As an example of supervised learning, consider the

problem of learning a neural network for image classification. In this case,

each training sample Zi = (Xi, Yi), where Xi ∈ X is an image and Yi ∈ Y is
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the label of that image. The hypothesis space W is the set of predictors of

the form w : X → Y that can be implemented by the neural network. For

a given network structure, each w ∈ W is determined by a configuration of

the set of weights over the edges in the network. For any w ∈ W and any

instance z = (x, y), the loss function takes the form `(w, z) = 1{w(x) 6= y}.
A learning algorithm for a neural network takes a dataset S consisting of n

training samples as input, and outputs a configuration of the set of weights

in the network, hence a predictor W ∈ W.

As an example of unsupervised learning, consider the problem of k-means

clustering in Rd. In this case, Z = Rd, W is the collection of all subsets of Rd

of size k, and `(w, z) = minc∈w ‖z−c‖2. Here, each w ∈ W represents a set of

k centroids, and the loss function measures the squared Euclidean distance

between an instance z and its nearest centroid, according to the hypothesis

w. A learning algorithm for k-means clustering takes as input a dataset S

consisting of n i.i.d. training samples drawn from µ and outputs a set W of

k centroids.

4.2.2 Trade-off Between Empirical Risk and
Generalization Error

A learning algorithm aims to output a hypothesis W ∈ W with a small true

risk Lµ(W ) either in expectation or with high probability. The expected true

risk can be expressed as

E[Lµ(W )] = E[LS(W )] + E[Lµ(W )]− E[LS(W )]

= E[LS(W )] + gen(µ, PW |S). (4.3)

The first term in (4.3) is the expected empirical risk of W , which reflects how

well the output hypothesis fits the training samples, while the second term in

(4.3) is the expected generalization error, which reflects how well the output

hypothesis generalizes. To minimize the expected true risk of the algorithm

we need both terms to be small.

A learning algorithm is called an empirical risk minimization (ERM) al-

gorithm if it always outputs a hypothesis WERM ∈ W that minimizes the
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empirical risk, i.e.,

LS(WERM) = inf
w∈W

LS(w).

Note that the expected minimum empirical risk is less than the minimum

true risk, as

E[LS(WERM)] = E
[

inf
w∈W

LS(w)
]
≤ inf

w∈W
E[LS(w)] = inf

w∈W
Lµ(w). (4.4)

A less restrictive requirement for a learning algorithm to have small empir-

ical risk is asymptotic empirical risk minimization (AERM) [77], where the

output hypothesis W is required to satisfy

sup
µ

E[LS(W )− LS(WERM)]
n→∞−−−→ 0.

We say that a learning algorithm PW |S generalizes on average if

sup
µ

∣∣gen(µ, PW |S)
∣∣ n→∞−−−→ 0.

We say that a learning algorithm PW |S is consistent if

sup
µ
Rexcess(µ, PW |S)

n→∞−−−→ 0.

The following theorem formalizes the intuition that if a learning algorithm

has both small expected empirical risk and small expected generalization

error, then it has small expected excess risk.

Theorem 4.1 (Shalev-Shwartz et al. [77]). If a learning algorithm is AERM

and generalizes on average, then it is consistent.

Proof. For any data-generating distribution µ,

Rexcess(µ, PW |S) = E[Lµ(W )]− inf
w∈W

Lµ(w)

= E[Lµ(W )]− E[LS(W )] + E[LS(W )]− E[LS(WERM)]+

E[LS(WERM)]− inf
w∈W

Lµ(w)

≤ gen(µ, PW |S) + (E[LS(W )]− E[LS(WERM)]),

where in the last step we have used (4.4). From the definition of AERM and
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generalization on-average, we know that

lim
n→∞

sup
µ
Rexcess(µ, PW |S) ≤ 0.

The claim follows because Rexcess(µ, PW |S) is nonnegative for all n.

However, it is generally impossible to minimize the expected empirical risk

and the expected generalization error simultaneously: on one hand, if W con-

tains a hypothesis that perfectly fits the training samples, then choosing this

hypothesis will result in zero empirical risk, but at the same time lead to

overfitting, such that the hypothesis would fail on fresh instances and result

in large generalization error; on the other hand, by ignoring the training

samples, the learning algorithm can output a hypothesis with zero expected

generalization error (which will be shown in Sec. 4.4.2), but clearly this will

lead to large empirical risk. Therefore, any learning algorithm faces a trade-

off between the empirical risk and the generalization error. In this chapter,

we focus on information-theoretic analysis of the generalization error. We

will mainly show that we can control the generalization error of a learning

algorithm by controlling the mutual information between the input and out-

put of the algorithm. We will use the analytical results to design algorithms

that balance the empirical risk and the generalization error, and also apply

the results to adaptive composition of learning algorithms and adaptive data

analytics.

4.2.3 Adaptive Composition of Learning Algorithms

Adaptive composition is a way of obtaining complex learning algorithms by

combining simple constituent algorithms. It can be realized in a decentral-

ized fashion by multiple processors (machines) sharing the same dataset and

running the constituent algorithms. Under a k-fold adaptive composition,

the dataset S is shared by k processors. The jth processor runs a learning

algorithm Aj = PWj |S,W j−1 , which outputs a random element Wj ∈ W based

on the dataset S and the outputs W j−1 of the algorithms A1, . . . , Aj−1 run

by the first j − 1 processors. Figure 4.1 shows the dependence among the

dataset and the algorithm outputs under a 4-fold adaptive composition.

Suppose each of the constituent algorithms A1, . . . , Ak satisfies certain gen-
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Figure 4.1: Dependence of the dataset and the algorithm outputs in a
4-fold composition.

eralization guarantees conditional on the outputs of the previous algorithms.

We would like to find out what generalization performance the overall al-

gorithm can achieve. Our information-theoretic analysis provides us with

the right tool to tackle such a problem, so that we can upper-bound the

generalization error of the composed learning algorithm using the knowledge

of local generalization guarantees of the constituent algorithms. The same

information-theoretic analysis can be applied to upper-bounding the bias in

the adaptive data analytics [79,80], a topic that has become popular in recent

years.

4.3 Stability and Generalization of Learning

Algorithms

As discussed in Sec. 4.2.2, having a small generalization error is crucial for a

learning algorithm to produce an output hypothesis with a small true risk. It

turns out that the generalization error of a learning algorithm is determined

by its stability properties. Roughly speaking, a learning algorithm is stable

if a small change of the input to the algorithm does not change the output of

the algorithm much. In this section, we first review the traditional notions

of stability that quantify the variability of the output W relative to local

changes of the dataset S. Then we introduce an information-theoretic notion

of stability that measures the statistical dependence between the input and

output of a learning algorithm based on the mutual information I(S;W ). We

also review some other information-theoretic notions of stability and discuss

their relationships.
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4.3.1 Traditional Notions of Stability

On-average Stability

The first notion of stability we present is the on-average stability defined in

[77], which is equivalent to generalization on average. Let S ′ = (Z ′1, . . . , Z
′
n)

be an i.i.d. copy of the dataset S, and let

S(i) = (Z1, . . . , Zi−1, Z
′
i, Zi+1, . . . , Zn).

In other words, S(i) is obtained by replacing the ith sample in S with the

ith sample in S ′. For the same learning algorithm PW |S, let W be its output

when the input dataset is S, and let W(i) be its output when the input

dataset is S(i). We say an algorithm is (ε, µ)-stable on average if, under the

data-generating distribution µ,

∣∣∣ 1
n

n∑
i=1

E[`(W(i), Zi)]− E[`(W,Zi)]
∣∣∣ ≤ ε,

where the expectations are taken over the random tuples (S(i),W(i), Zi) and

(S,W ), respectively. A learning algorithm is said to be stable on average if

sup
µ

∣∣∣ 1
n

n∑
i=1

E[`(W(i), Zi)]− E[`(W,Zi)]
∣∣∣ n→∞−−−→ 0.

It is straightforward to show that

1

n

n∑
i=1

E[`(W(i), Zi)]− E[`(W,Zi)] = gen(µ, PW |S)

by noting that W(i) is independent of Zi. Therefore, a learning algorithm

generalizes on average if and only if it is stable on average.

Uniform Stability

A stronger stability notion is uniform stability [75]. We say that an algorithm

is ε-uniformly stable if, for all datasets s, s′ ∈ Zn differing in at most one
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instance, i.e., their Hamming distance dH(s, s′) ≤ 1,

sup
z∈Z

∣∣E[`(W, z)|S = s]− E[`(W, z)|S = s′]
∣∣ ≤ ε.

Note that if an algorithm is ε-uniformly stable, then for all i = 1, . . . , n,

E[`(W(i), Zi)]− E[`(W,Zi)]

=

∫
Zn
µ⊗n(ds(i))

∫
Z

µ(dzi)E[`(W(i), zi)|S(i) = s(i)]−
∫
Zn
µ⊗n(ds)E[`(W, zi)|S = s]

=

∫
Zn+1

µ⊗n(ds)µ(dz′i)
(
E[`(W, zi)|S = s(i)]− E[`(W, zi)|S = s]

)
≤ ε;

hence the algorithm is also (ε, µ)-stable on average, and

∣∣gen(µ, PW |S)
∣∣ ≤ ε

for any µ. Moreover, the notion of uniform stability is strong enough,

such that for uniformly stable deterministic algorithms, we can derive high-

probability bounds for the absolute generalization error |Lµ(W ) − LS(W )|.
Specifically, it is shown by Bousquet and Elisseeff [75] that if a deterministic

learning algorithm is ε-uniformly stable, and the loss function ` takes values

in [0, 1], then

P[|Lµ(W )− LS(W )| > α + 2ε] ≤ 2e−2nα2/(4nε+1)2 .

Thus, if ε = O(1/n), then the probability for |Lµ(W )− LS(W )| being large

decays exponentially in n.

4.3.2 Information-theoretic Notions of Stability

Stability in Input-output Mutual Information

The traditional notions of stability suggest that the generalization capability

of a learning algorithm hinges on how sensitive the output of the algorithm

is to local modifications of the input dataset. It suggests that the more

independent the output hypothesis W is of the input dataset S, the better
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the learning algorithm generalizes. The dependence between S and W can be

naturally measured by the mutual information between them, which prompts

the following definition: a learning algorithm is (ε, µ)-stable in input-output

mutual information if, under the data-generating distribution µ,

I(S;W ) ≤ ε.

This information-theoretic definition of stability says that the less informa-

tion the output of a learning algorithm can provide about its input dataset,

the more stable it is. We mainly focus on studying the consequences of this

notion of stability in this chapter. In the next section, we will show that a

learning algorithm that is (ε, µ)-stable in input-output mutual information

has strong generalization guarantees. But before doing that, we review some

other information-theoretic notions of stability, and discuss some of their

relationships.

Stability in Erasure Mutual Information

As proposed by Raginsky et al. [83], a learning algorithm is (ε, µ)-stable in

mutual information if, under the data-generating distribution µ,

1

n

n∑
i=1

I(Zi;W |S−i) ≤ ε

where S−i = (Z1, . . . , Zi−1, Zi+1, . . . , Zn). To distinguish this notion of sta-

bility from the preceding definition of stability in input-output mutual infor-

mation, we call it stability in erasure mutual information in this chapter, as

the quantity
∑n

i=1 I(Zi;W |S−i) coincides with the erasure mutual informa-

tion [87, Def. 6] between S and W . Since

1

n

n∑
i=1

I(W ;Zi|S−i) = I(W ;S)− 1

n

n∑
i=1

I(W ;S−i),

we see that if an algorithm is (ε, µ)-stable in input-output mutual informa-

tion, then it is (ε, µ)-stable in erasure mutual information.

139



On-average KL-stability

As a slight modification of the definition proposed by Wang et al. [88], we

say a learning algorithm is (ε, µ)-KL-stable on average if, under the data-

generating distribution µ,

1

n

n∑
i=1

∫
µ⊗n(ds)µ(dz′i)D(PW |S=s‖PW |S=s(i)) ≤ ε, (4.5)

where s(i) = (z1, . . . , zi−1, z
′
i, zi, . . . , zn). Using the i.i.d. assumption on S and

the convexity of relative entropy, we can show that

I(Zi;W |S−i) ≤
∫
µ⊗n(ds)µ(dz′i)D(PW |S=s‖PW |S=s(i)).

Therefore, if an algorithm is (ε, µ)-KL-stable on average, then it is (ε, µ)-

stable in erasure mutual information.

KL-stability and TV-stability

The notions of KL-stability and TV-stability are introduced recently by Bass-

ily et al. [80]. A learning algorithm is ε-KL-stable if

sup
s,s′∈Zn: dH(s,s′)≤1

D(PW |S=s‖PW |S=s′) ≤ ε

and is ε-TV-stable if

sup
s,s′∈Zn: dH(s,s′)≤1

‖PW |S=s − PW |S=s′‖TV ≤ ε.

It is clear that if a learning algorithm is ε-KL-stable, then it is (ε, µ)-on-

average KL-stable for any µ, and hence (ε, µ)-stable in erasure mutual in-

formation for any µ. Moreover, from the variational representation of the

total-variation distance

‖P −Q‖TV = sup
f :X→[0,1]

EPf(X)− EQf(X) (4.6)
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we see that, if the loss function ` takes values in [0, 1], then for any s, s′ ∈ Zn

sup
z∈Z

∣∣E[`(W, z)|S = s]− E[`(W, z)|S = s′]
∣∣ ≤ ‖PW |S=s − PW |S=s′‖TV.

Therefore, if a learning algorithm is ε-TV-stable and `(·, ·) ∈ [0, 1], then it is

ε-uniformly stable. In addition, from Pinsker’s inequality 1

‖PW |S=s − PW |S=s′‖TV ≤
√

1

2
D(PW |S=s‖PW |S=s′)

it follows that, if a learning algorithm is ε-KL-stable and `(·, ·) ∈ [0, 1], then

it is
√
ε/2-uniformly stable.

(ε, δ)-Differential Privacy

Recently the concept of (ε, δ)-differential privacy, introduced in the context

of statistical processing of databases, has been adopted as a notion of algo-

rithmic stability for statistical learning and adaptive data analytics [79, 80].

A learning algorithm is said to be (ε, δ)-differentially private for some ε ≥ 0

and δ ∈ [0, 1] if, for any two datasets s, s′ ∈ Zn with dH(s, s′) ≤ 1 and for

any measurable set F ⊆ W,

PW |S=s(F ) ≤ eεPW |S=s′(F ) + δ.

The relationship between (ε,δ)-differential privacy and other information-

theoretic stability notions has been a popular topic in the literature, and

some recent results are obtained in [83] and [89].

Stability in Max-information

Dwork et al. [79] propose to measure the stability of a learning algorithm

using the max-information between S and W , defined as

I∞(S;W ) , sup
s∈Zn,w∈W

log
dPS,W

d(PS ⊗ PW )
(s, w).

1All logarithms are natural in this chapter.
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A learning algorithm is ε-stable in max-information if

I∞(S;W ) ≤ ε.

It can be shown that

I∞(S;W ) = sup
s,s′∈Zn

sup
w∈W

log
dPW |S=s

dPW |S=s′
(w) ≥ I(S;W ).

Therefore, if a learning algorithm is ε-stable in max-information, then it is

(ε, µ)-stable in input-output mutual information for any µ. Moreover, if a

learning algorithm is (ε, 0)-differentially private, then it is ε-stable in max-

information.

Stability in Wasserstein Distance

Suppose that W is a complete separable metric space with metric d. For

p ≥ 1, the p-Wasserstein distance between two probability measures P and

Q on W is defined as [90]

Wp(P,Q) ,

(
inf

W∼P,W ′∼Q
E[dp(W,W ′)]

)1/p

,

where the infimum is over all couplings of P and Q, i.e., random couples

(W,W ′) taking values in the product space W ×W, such that the marginal

distribution of W (respectively, W ′) is equal to P (respectively, Q).

As proposed by Raginsky et al. [83], a learning algorithm PW |S is ε-stable

in p-Wasserstein distance if, for any two s, s′ ∈ Zn with dH(s, s′) ≤ 1,

Wp(PW |S=s, PW |S=s′) ≤ ε.

It is shown in [83] that if the function w 7→ `(w, z) is ρ-Lipschitz for any

z ∈ Z, i.e., |`(w, z)− `(w′, z)| ≤ ρd(w,w′), then a learning algorithm that is

ε-stable in 1-Wasserstein distance implies that the algorithm is ρε-uniformly

stable. To see this, fix s and s′ with dH(s, s′) = 1, and let Π ∈ P(W ×W)

be the optimal coupling of As and As′ , i.e., the one that achieves W1. Then,
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for any z ∈ Z,

∣∣E[`(W, z)|S = s]− E[`(W, z)|S = s′]
∣∣

=

∣∣∣∣∫
W

`(w, z)As(dw)−
∫
W

`(w, z)As′(dw)

∣∣∣∣
=

∣∣∣∣∫
W×W

(`(w, z)− `(w′, z)) Π(dw, dw′)

∣∣∣∣
≤ ρ

∫
W

d(w,w′)Π(dw, dw′)

= ρW1(As, As′)

≤ ρε.

4.4 Upper-bounding Generalization Error via I(S;W )

We have defined a learning algorithm to be (ε, µ)-stable in input-output

mutual information, if under the data-generating distribution µ,

I(S;W ) ≤ ε.

Now we turn to deriving generalization guarantees for learning algorithms

with this property.

4.4.1 A Decoupling Estimate

We start with a digression from the statistical learning problem to a more

general problem. Suppose there is a pair of random variables S and W with

joint distribution PS,W . Let S̄ be an independent copy of S, and W̄ an

independent copy of W , such that PS̄,W̄ = PS ⊗ PW . Consider an arbitrary

real-valued function f : S ×W → R of S and W . The problem is to upper-

bound the absolute difference between E[f(S,W )] and E[f(S̄, W̄ )]. There

are two cases where we can obtain information-theoretic upper bounds on

this quantity.

The first case is when the function f takes values in the unit interval.2

From a straightforward application of the variational representation of the

2Actually any bounded function will work; restricting the function to be bounded in
[0, 1] is just for convenience.
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total-variation distance in (4.6), we can show that

Lemma 4.1. If f(s, w) ∈ [0, 1] for all s ∈ S and w ∈ W, then

∣∣E[f(S,W )]− E[f(S̄, W̄ )]
∣∣ ≤ ‖PS,W − PS ⊗ PW‖TV

where the right-hand side of the above inequality coincides with the so-called

T-information between S and W [71].

The second case is when the random variable f(S̄, W̄ ) is σ-subgaussian.

Recall that a random variable X is σ-subgaussian if logE[eλ(X−EX)] ≤ λ2σ2/2

for all λ ∈ R [91].

Lemma 4.2. If f(S̄, W̄ ) is σ-subgaussian under PS̄,W̄ = PS ⊗ PW , then

∣∣E[f(S,W )]− E[f(S̄, W̄ )]
∣∣ ≤√2σ2I(S;W ).

Proof. For any s ∈ S and w ∈ W, let

F (s, w) , f(s, w)− E[f(S̄, W̄ )].

By the subgaussian assumption,

logE
[
eλF (S̄,W̄ )

]
= logE

[
eλ(f(S̄,W̄ )−E[f(S̄,W̄ )])

]
≤ λ2σ2

2
∀λ ∈ R. (4.7)

Just like Russo and Zou [84], we exploit the Donsker–Varadhan variational

representation of the relative entropy [92, Cor. 4.15]: for any two probability

measures π, ρ on a common measurable space (Ω,F),

D(π‖ρ) = sup
F

{∫
Ω

F dπ − log

∫
Ω

eFdρ

}
, (4.8)

where the supremum is over all measurable functions F : Ω → R, such that

eF ∈ L1(ρ). From (4.8) and (4.7), we know that for any λ ∈ R,

D(PS,W‖PS ⊗ PW ) ≥ E[λF (S,W )]− logE
[
eλF (S̄,W̄ )

]
≥ λ

(
E[f(S,W )]− E[f(S̄, W̄ )]

)
− λ2σ2

2
. (4.9)

The above inequality gives a nonnegative parabola in λ, whose discriminant
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must be nonpositive, which implies

∣∣E[f(S,W )]− E[f(S̄, W̄ )]
∣∣ ≤√2σ2D(PS,W‖PS ⊗ PW ).

The result follows by noting that I(S;W ) = D(PS,W‖PS ⊗ PW ).

Generally, the function f(s, w) need not have an additive structure for

f(S,w) to be subgaussian. As an example, when S = (Z1, . . . , Zn) where

Zi’s are i.i.d. standard Gaussian, if f(s, w) is ρ-Lipchitz in s, i.e.,

|f(s, w)− f(s′, w)| ≤ ρ‖s− s′‖2

then f(S,w) is ρ-subgaussian [91].

4.4.2 Upper Bound on Expected Generalization Error

Upper-bounding the generalization error of a learning algorithm PW |S is a

special case of the general problem considered in the preceding subsection.

In this case,

S = (Z1, . . . , Zn) ∼ µ⊗n

is the input dataset, and W is the output hypothesis of the learning algo-

rithm. For some loss function ` : W × Z → R+, let the function f take the

form

f(s, w) =
1

n

n∑
i=1

`(w, zi).

For an arbitrary w ∈ W, recall that the empirical risk is

LS(w) ,
1

n

n∑
i=1

`(w,Zi) = f(S,w)

and the true risk is

Lµ(w) , E[`(w,Z)] = E[f(S,w)].
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Also recall the expected generalization error of the learning algorithm PW |S,

which can be written as

gen(µ, PW |S) , E[Lµ(W )− LS(W )]

= E[f(S̄, W̄ )]− E[f(S,W )],

where the joint distribution of S and W is PS,W = µ⊗n ⊗ PW |S.

Theorem 4.2. Suppose `(w,Z) is σ-subgaussian under µ for all w ∈ W,

i.e.,

E
[
eλ(`(w,Z)−E[`(w,Z)])

]
≤ eλ

2σ2/2 ∀λ ∈ R. (4.10)

Then when S ∼ µ⊗n,

∣∣gen(µ, PW |S)
∣∣ ≤√2σ2

n
I(S;W ). (4.11)

Proof. In this case

f(S,w) =
1

n

n∑
i=1

`(w,Zi). (4.12)

Since `(w,Z) is assumed to be σ-subgaussian and Zi’s are i.i.d. random vari-

ables, we have

E[exp{λ(f(S,w)− Ef(S,w))}] = E
[

exp
{ n∑

i=1

λ

n

(
`(w,Zi)− Lµ(w)

)}]
=

n∏
i=1

E
[

exp
{λ
n

(
`(w,Zi)− Lµ(w)

)}]
≤ exp

{λ2σ2

2n

}
,

which means that f(S,w) is σ/
√
n-subgaussian for all w ∈ W, hence f(S̄, W̄ )

is σ/
√
n-subgaussian. The claim then follows from Lemma 4.2.

Theorem 4.2 implies that if a learning algorithm is (ε, µ)-stable in input-

output mutual information and if `(w,Z) is σ-subgaussian under µ, then

∣∣gen(µ, PW |S)
∣∣ ≤√2σ2ε

n
.
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It suggests that, by controlling the mutual information between the input and

the output of a learning algorithm, we can control the learning algorithm’s

generalization error.

Comparison with the Result by Russo and Zou

Russo and Zou [84] considered the case where the hypothesis space W is a

finite set and showed that, if `(w,Z) is σ-subgaussian for all w ∈ W, then

∣∣gen(µ, PW |S)
∣∣ ≤√2σ2

n
I(ΛW(S);W ), (4.13)

where

ΛW(S) ,
(
LS(w)

)
w∈W

is the collection of empirical risks of the hypotheses in W. Since for each

w ∈ W, LS(w) is a deterministic functions of S, we always have the Markov

chain

ΛW(S)− S −W,

hence

I(ΛW(S);W ) ≤ I(S;W ).

Thus, in the case considered in [84], the result of Theorem 4.2 can be obtained

as a consequence of (4.13). On the other hand, if the output W of the

learning algorithm depends on S only through the empirical risks ΛW(S), in

other words, when the Markov chain

S − ΛW(S)−W

holds, then

I(ΛW(S);W ) = I(S;W )

and the result of Theorem 4.2 implies (4.13). The advantage of Theorem 4.2

is that it does not put any restriction on W, which is allowed to be an

uncountably infinite set.
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Comparison with the Upper bound via Erasure Mutual Information

It is shown by Raginsky et al. [83] that, under certain regularity conditions

on the loss function, if a learning algorithm is (ε, µ)-stable in erasure mutual

information, then the expected generalization error is upper bounded by√
2σ2ε:

Theorem 4.3 ( [83, Theorem 2]). If for any s ∈ Zn and any i ∈ [n], `(W, zi)

is σ-subgaussin with respect to PW |S−i=s−i, i.e.

logE
[

exp
{
λ(`(W, zi)− E[`(W, zi)|S−i = s−i])

} ∣∣∣S−i = s−i
]
≤ λ2σ2

2
(4.14)

for all λ ∈ R, where

S−i = (S1, . . . , Si−1, Si+1, . . . , Sn),

then

∣∣gen(µ, PW |S)
∣∣ ≤

√√√√2σ2

n

n∑
i=1

I(W ;Zi|S−i). (4.15)

For completeness, we include the proof of Theorem 4.3 in Sec. 4.8.1. The

results in Theorem 4.2 and Theorem 4.3 are complementary to each other.

Since
1

n

n∑
i=1

I(W ;Zi|S−i) = I(W ;S)− 1

n

n∑
i=1

I(W ;S−i),

requiring an algorithm to have a small I(S;W ) for a given µ is more re-

strictive than to have a small 1
n

∑n
i=1 I(W ;Zi|S−i). However, having a small

I(S;W ) implies that the absolute generalization error |Lµ(W ) − LS(W )| is

small with high probability, as discussed in the next subsection.

4.4.3 High-probability Bound on |Lµ(W )− LS(W )|

We now turn to the study of guarantees on the absolute generalization error

|Lµ(W ) − LS(W )| of a learning algorithm which is (ε, µ)-stable in input-

output mutual information. The objective is to derive a high-probability

bound for |Lµ(W ) − LS(W )| to be small. First of all, for any fixed w ∈ W,
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if the loss function takes values in [0, 1], then from the Chernoff-Hoeffding

bound,

P[|Lµ(w)− LS(w)| > α] ≤ 2e−2nα2

.

It means that for each w ∈ W, to make

P[|Lµ(w)− LS(w)| > α] ≤ β

it is sufficient to have a sample complexity

n ≥ 1

2α2
log

2

β
,

which is polynomial in 1/α and logarithmic in 1/β. The following results

(cf. Corollary 4.2) show that, even if W is a random element from W that

is dependent on S, as long as the mutual information I(S;W ) is small, a

sample complexity polynomial in 1/α and logarithmic in 1/β still suffices to

guarantee P[|Lµ(W )−LS(W )| > α] ≤ β, where the probability now is taken

with respect to the joint distribution of S and W .

Theorem 4.4. Suppose the loss function ` takes values in [0, 1], and the

dataset S has the distribution µ⊗n. For any 0 < α, β ≤ 1, if an algorithm

PW |S is (ε, µ)-stable in input-output mutual information and ε ≥ 8β
α

log 2
β

,

then choosing n ≥ 16ε
α2β

guarantees that P[|LS(W )− Lµ(W )| > α] ≤ β.

Choosing ε = 8β
α

log 2
β

in Theorem 4.4, we get the following result.

Corollary 4.1. Suppose the loss function ` takes values in [0, 1], and the

dataset S has the distribution µ⊗n. For any 0 < α, β ≤ 1, if an algorithm

PW |S satisfies

I(S;W ) ≤ 8β

α
log

2

β
,

then choosing

n ≥ 128

α3
log

2

β

guarantees that P[|LS(W )− Lµ(W )| > α] ≤ β.

Another corollary of Theorem 4.4 can be stated as follows.

Corollary 4.2. Suppose the loss function ` takes values in [0, 1], and the
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dataset S has the distribution µ⊗n. For any 0 < α, β ≤ 1, if

n ≥ 128

α3
log

2

β

and if the algorithm PW |S satisfies

I(S;W ) ≤ α2β

16
n,

then P[|LS(W )− Lµ(W )| > α] ≤ β.

Note that the above results are independent of the size of the hypothesis

space W, which is allowed to be an uncountable set. To prove Theorem 4.4,

we need the following lemmas.

Lemma 4.3. Consider the parallel execution of m independent copies of PW |S

on independent datasets S1, . . . , Sm: for t = 1, . . . ,m, an independent copy

of PW |S takes St ∼ µ⊗n as input and outputs Wt. Define S̃ , (S1, . . . , Sm).

If PW |S is (ε, µ)-stable in input-output mutual information, then the overall

algorithm PWm|S̃ satisfies I(S̃;Wm) ≤ mε.

Proof. The proof is based on the independence among (St,Wt), t = 1, . . . ,m,

and the chain rule of mutual information.

Lemma 4.4. Let S̃ , (S1, . . . , Sm), where St ∼ µ⊗n. If an algorithm

PW,T,R|S̃ : Zm×n → W× [m]×{±1} satisfies I(S̃;W,T,R) ≤ ε, and if `(w,Z)

is σ-subgaussian for all w ∈ W, then

E
[
R(LST (W )− Lµ(W ))

]
≤
√

2σ2ε

n
.

Proof. For any s̃ ∈ Zm×n, w ∈ W, t ∈ [m] and r ∈ {±1}, let

u(s̃, w, t, r) , r(Lst(w)− Lµ(w)).

If `(w,Z) is σ-subgaussian under Z ∼ µ for all w ∈ W, then r
n

∑n
i=1 `(w,Zt,i)

is σ/
√
n-subgaussian under St ∼ µ⊗n for all w ∈ W, t ∈ [m] and r ∈ {±1},
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hence

logE
[
eλu(S̃,w,r,t)

]
= logE

[
exp

{
λ
( r
n

n∑
i=1

`(w,Zt,i)−
r

n

n∑
i=1

E[`(w,Zt,i)]
)}]

≤ λ2σ2

2n
for all λ ∈ R.

From the Donsker-Varadhan variational representation of the relative entropy

(4.8),

D(PS̃|W=w,T=t,R=r‖PS̃) ≥ E[λu(S̃, w, t, r)|W = w, T = t, R = r]− logE
[
eλu(S̃,w,r,t)

]
≥ λ

(
E[rLSt(w)|W = w, T = t, R = r]− rLµ(w)

)
− λ2σ2

2n
.

Averaging both sides with respect to PW,T,R, we get

I(S̃;W,T,R) ≥ λE
[
R(LST (W )− Lµ(W ))

]
− λ2σ2

2n
for all λ ∈ R,

which implies that

E
[
R(LST (W )− Lµ(W ))

]
≤

√
2σ2I(S̃;W,T,R)

n

and proves the claim.

Note that the upper bound in Lemma 4.4 does not depend on m. The

following lemma pertains to the accuracy of the so-called exponential mech-

anism introduced by McSherry and Talwar [93] in the context of differential

privacy.

Lemma 4.5 (Bassily et al. [80, Lemma 7.1]). Let F be a finite set, f be a

function F → R, and η > 0. If a random variable X on F has the distribution

PX(x) ∝ eηf(x), x ∈ F (4.16)

then

Ef(X) ≥ max
x∈F

f(x)− 1

η
log |F |. (4.17)

With these lemmas, we can prove Theorem 4.4.
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Proof of Theorem 4.4. The proof is an adaptation of a “monitor technique”

proposed by Bassily et al. [80]. First, let PWm|S̃ be the parallel execution

of m independent copies of PW |S: for t = 1, . . . ,m, an independent copy of

PW |S takes an independent St ∼ µ⊗n as input and outputs Wt. Given the

outputs wm, define the set

F = {t = 1, . . . ,m : (wt, t, 1), (wt, t,−1)} (4.18)

with cardinality 2m. Then, let the output of the “monitor” be a sample

(W ∗, T ∗, R∗) drawn from F according to the distribution

PW ∗,T ∗,R∗|S̃=s̃,Wm=wm(w∗, t∗, r∗) ∝ exp
(γnr∗

2

(
Lµ(w∗)− Lst∗ (w

∗)
))

(4.19)

for (w∗, t∗, r∗) ∈ F , with some γ > 0. Note that given s̃ and wm, the

output (W ∗, T ∗, R∗) is essentially obtained from an exponential mechanism

[93] applied to s̃ with respect to the function

u
(
(w∗, t∗, r∗), s̃

)
= r∗

(
Lµ(w∗)− Lst∗ (w

∗)
)
, (w∗, t∗, r∗) ∈ F. (4.20)

It can be shown that the above exponential mechanism with ` ∈ [0, 1] has

the following property: for two datasets s̃, s̃′ ∈ Zm×n such that dH(s̃, s̃′) ≤ 1,

e−γ ≤
PW ∗,T ∗,R∗|S̃=s̃,Wm=wm(w∗, t∗, r∗)

PW ∗,T ∗,R∗|S̃=s̃′,Wm=wm(w∗, t∗, r∗)
≤ eγ, ∀(w∗, t∗, r∗) ∈ F (4.21)

which means that the algorithm PW ∗,T ∗,R∗|S̃,Wm=wm is (γ, 0)-differentially pri-

vate for all wm. By the group privacy property of (γ, 0)-differentially private

algorithms [81, Theorem 2.2],

I(S̃;W ∗, T ∗, R∗|Wm) ≤ sup
wm

sup
s̃,s̃′

D(PW ∗,T ∗,R∗|S̃=s̃,Wm=wm‖PW ∗,T ∗,R∗|S̃=s̃′,Wm=wm)

≤ nγ. (4.22)

In addition, since PW |S satisfies I(S;W ) ≤ ε, Lemma 4.3 implies that

I(S̃;Wm) ≤ mε. (4.23)

Therefore, by the chain rule of mutual information and the data processing
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inequality, we have

I(S̃;W ∗, T ∗, R∗) ≤ I(S̃;Wm,W ∗, T ∗, R∗)

≤ mε+ nγ. (4.24)

By Lemma 4.4 and the assumption that `(·, ·) ∈ [0, 1] (hence σ2 = 1/4 in

Lemma 4.4),

E
[
R∗
(
LST∗ (W

∗)− Lµ(W ∗)
)]
≤
√
mε+ nγ

2n
. (4.25)

On the other hand, in view of (4.54), we can apply Lemma 4.5 with the set

F , the function f(w∗, t∗, r∗) = u
(
(w∗, t∗, r∗), s̃

)
, and η = γn/2 to get

E
[
R∗
(
LST∗ (W

∗)− Lµ(W ∗)
)∣∣S̃ = s̃,Wm = wm

]
≥ max

(w∗,t∗,r∗)∈F
u
(
(w∗, t∗, r∗), s̃

)
− 2

γn
log |F |

= max
t∈[m]

∣∣Lst(wt)− Lµ(wt)
∣∣− 2

γn
log(2m),

which implies

E
[
R∗
(
LST∗ (W

∗)− Lµ(W ∗)
)]
≥ E

[
max
t∈[m]

∣∣LSt(Wt)− Lµ(Wt)
∣∣]− 2

γn
log(2m).

(4.26)

Combining (4.60) and (4.61) gives

E
[

max
t∈[m]

∣∣LSt(Wt)− Lµ(Wt)
∣∣] ≤ 2

γn
log(2m) +

√
mε+ nγ

2n
. (4.27)

The rest of the proof is by contradiction. Choose m = b1/βc, and γ =

ε/βn. Suppose the algorithm PW |S does not satisfy the claimed generalization

property, namely,

P
[∣∣LS(W )− Lµ(W )

∣∣ > α
]
> β. (4.28)
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Then by the independence among the pairs (St,Wt), t = 1, . . . ,m,

P
[

max
t∈[m]

∣∣LSt(Wt)− Lµ(Wt)
∣∣ > α

]
> 1−

(
1− β

)b1/βc
>

1

2
.

Thus

E
[

max
t∈[m]

∣∣LSt(Wt)− Lµ(Wt)
∣∣] > α

2
. (4.29)

Combining (4.62) and (4.63) gives

α

2
<

2β

ε
log

2

β
+

√
ε

βn
. (4.30)

Since it is assumed that ε ≥ 8β
α

log 2
β
, the above inequality implies that

n <
ε

β(α
2
− 2β

ε
log 2

β
)2
≤ 16ε

α2β
,

which contradicts the assumption that n ≥ 16ε
α2β

, and hence completes the

proof.

Using the same monitor technique, we can also obtain a high-probability

bound on |Lµ(W ) − LS(W )| for algorithms stable in erasure mutual infor-

mation, stated in the following theorem. Since stability in erasure mutual

information is much weaker than stability in input-output mutual informa-

tion, the resulting sample complexity is polynomial in both 1/α and 1/β.

Theorem 4.5. Suppose PW |S is (ε, µ)-stable in erasure mutual information,

and ` : W × Z→ [0, 1]. If ε < α2β2/4 and

n ≥ 2

ε
(
α
2
− 1

β

√
ε
) log

2

β
(4.31)

for some 0 < α, β < 1, then

P
[∣∣Lµ(W )− LS(W )

∣∣ > α
]
≤ β.

Consequently, if PW |S is (α2β2/16, µ)-stable in erasure mutual information,
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then

n ≥ 128

α3β2
log

2

β
(4.32)

guarantees P
[∣∣Lµ(W )− LS(W )

∣∣ > α
]
≤ β.

Proof. Section 4.8.2.

Note that, if we simply use the Markov inequality instead of the monitor

technique, then it can be shown that, if PW |S is (α2β2/4, µ)-stable in erasure

mutual information, then

n ≥ 16 log 2

α3β3
(4.33)

guarantees P[|Lµ(W ) − LS(W )| > α] ≤ β. This is a worse bound on the

sample complexity because it depends on β through 1
β3 , whereas the sample

complexity bound in (4.32) depends on β through 1
β2 log 1

β
.

4.4.4 Upper Bound on E|Lµ(W )− LS(W )|

The proof of Theorem 4.4 also yields an upper bound for the expected abso-

lute generalization error.

Theorem 4.6. Suppose the loss function ` takes values in [0, 1], and the

dataset S has the distribution µ⊗n. If a learning algorithm PW |S is (ε, µ)-

stable in input-output mutual information, then

E
∣∣LS(W )− Lµ(W )

∣∣ ≤ inf
γ>0

(
log 2

γn
+

√
ε

2n
+ γ

)
.

Proof. Choose m = 1 in the proof of Theorem 4.4. Combining (4.60) and

(4.61) gives

E
∣∣LS(W )− Lµ(W )

∣∣ ≤ 2 log 2

γn
+

√
ε+ nγ

2n
. (4.34)

The claim holds because γ > 0 is arbitrary.

For the more general case where `(w,Z) is σ-subgausian instead of bounded

in [0, 1], Russo and Zou [84, Proposition 4] derived an upper bound for
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E
∣∣LS(W )− Lµ(W )

∣∣ stated as

E
∣∣LS(W )− Lµ(W )

∣∣ ≤ σ√
n

+ cσ

√
2I(ΛW(S);W )

n
,

where c < 36 is a constant. This result relies on a proof that, if a random

variable U is subgaussian, then |U | is also subgaussian. We will compare

these two bounds later when we discuss adaptive data analysis.

4.5 Learning Algorithms with Input-output Mutual

Information Stability

In this section, we analyze several learning algorithms from the viewpoint

of input-output mutual information stability. The first two algorithms we

consider, namely the Gibbs algorithm and noisy empirical risk minimiza-

tion, are in the paradigm of approximate ERM algorithms, where the output

hypothesis approximates the ERM hypothesis in a certain sense. In this

paradigm, the output W of the learning algorithm depends on the dataset

S only through the collection of empirical risks ΛW(S); thus we have the

Markov chain

S − ΛW(S)−W

and

I(S;W ) = I(ΛW(S);W ),

as the Markov chain ΛW(S) − S −W always holds. We also briefly discuss

the method of inducing input-output mutual information stability by pre-

processing of the dataset, where strong data processing inequalities can play

a role in the analysis. Finally, we analyze the input-output mutual informa-

tion stability of learning algorithms obtained from adaptive composition of

constituent algorithms.
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4.5.1 Gibbs Algorithm

As discussed in Sec. 4.2.2, the expected true risk of the output hypothesis

W can be decomposed as

E[Lµ(W )] = E[LS(W )] + gen(µ, PW |S).

This decomposition suggests that, to obtain a learning algorithm with small

true risk, the output should, on one hand, have small empirical risk (fit

the dataset), and, on the other hand, have small generalization error (not

overfit). Since Theorem 4.2 shows that the generalization error can be upper

bounded in terms of the mutual information I(S;W ), it is natural to consider

an algorithm that minimizes the empirical risk regularized by I(S;W ):

P ?
W |S = arg inf

PW |S

(
E[LS(W )] +

1

β
I(S;W )

)
, (4.35)

where β > 0 is a parameter that balances fitting and generalization. To deal

with the issue that µ is unknown to the learning algorithm, we can replace

the mutual information term with an upper bound D(PW |S‖Q|PS) on it that

does not depend on µ, where Q is an arbitrary distribution on W. From

P ∗W |S = arg inf
PW |S

(
E[LS(W )] +

1

β
D(PW |S‖Q|PS)

)
(4.36)

= arg inf
PW |S

∫
Zn
µ⊗n(ds)

(
E[Ls(W )|S = s] +

1

β
D(PW |S=s‖Q)

)
=

∫
Zn
µ⊗n(ds) arg inf

PW |S=s

(
E[Ls(W )|S = s] +

1

β
D(PW |S=s‖Q)

)
,

it follows that for each s ∈ Zn, the algorithm P ∗W |S that minimizes (4.36)

satisfies

P ∗W |S=s = arg inf
PW |S=s

(
E[Ls(W )|S = s] +

1

β
D(PW |S=s‖Q)

)
. (4.37)

In the minimization in (4.37), the term 1
β
D(PW |S=s‖Q) can be viewed as a

stabilizer for the ERM algorithm, which is added to improve the generaliza-

tion capability of the algorithm. The closer Q is to PW in relative entropy,
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the closer D(PW |S‖Q|PS) is to I(S;W ), as

I(S;W ) = D(PW |S‖Q|PS)−D(PW‖Q)

and the better P ∗W |S approximates P ?
W |S that minimizes (4.35). It turns

out that the algorithm P ∗W |S that satisfies (4.37) for each s ∈ Zn is the

Gibbs algorithm [85], a randomized algorithm that outputs a hypothesis with

smaller empirical risk with exponentially larger probability, which satisfies

P ∗W |S=s(dw) =
e−βLs(w)Q(dw)

EQ[e−βLs(W )]

for each s ∈ Zn. The parameter β > 0 controls how well the Gibbs al-

gorithm approximates the ERM algorithm. The Gibbs algorithm can thus

be interpreted as a way to stabilize the ERM algorithm by controlling the

input-output mutual information I(S;W ).

If the loss function ` takes value, in [0, 1], then

e−2β/n ≤
dP ∗W |S=s

dP ∗W |S=s′
≤ e2β/n

for all s, s′ ∈ Zn such that dH(s, s′) ≤ 1. This implies that the Gibbs algo-

rithm with `(·, ·) ∈ [0, 1] is (2β/n, 0)-differentially private, 2β/n-KL-stable,

and (2β/n, µ)-stable in erasure mutual information for any µ. We can also

upper-bound the mutual information I(S;W ) for the Gibbs algorithm. From

the group privacy property of (2β/n, 0)-differentially private mechanisms [81,

Theorem 2.2], we know that, if the loss function `(·, ·) ∈ [0, 1], then

e−2β ≤
dP ∗W |S=s

dP ∗W |S=s′
≤ e2β ∀s, s′ ∈ Zn,

which implies that for any µ

I(S;W ) ≤ sup
s,s′∈Zn

D(P ∗W |S=s‖P ∗W |S=s′) ≤ 2β.

By Theorem 4.2, the generalization error of the Gibbs algorithm with ` taking
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values in [0, 1] satisfies

∣∣gen(µ, P ∗W |S)
∣∣ ≤√β

n
.

This estimate is the same as the one given by the guarantee that the algo-

rithm is 2β/n-stable in erasure mutual information [83]. In addition, from

Hoeffding’s lemma and the fact that the Gibbs algorithm is (1− e−2β/n)-TV

stable, it is shown in [83] that

∣∣gen(µ, P ∗W |S)
∣∣ ≤ (1− e−2β/n) ∧ β

4n
∧
√
β

n
. (4.38)

Moreover, it is shown by Wang et al. [88, Theorem 4] that, for the Gibbs

algorithm,

gen(µ, P ∗W |S) =
1

β

n∑
i=1

∫
µ⊗n(ds)µ(dz′i)D(PW |S=s‖PW |S=s(i)). (4.39)

Recalling the notion of on-average KL-stability defined in (4.5), the above

identity implies that the Gibbs algorithm is (ε, µ)-KL-stable on average if

and only if

gen(µ, P ∗W |S) ≤ nε

β
.

In Sec. 4.8.3, we give a more readable proof of (4.39).

We can also analyze the excess risk of the Gibbs algorithm when W is a

finite set and ` takes values in [0, 1]. Suppose W has cardinality k. Using

a proof similar to that of Lemma 4.5, we can show that, for any dataset

s, the empirical risk of the Gibbs algorithm (with Q chosen as the uniform

distribution on W) satisfies

E[Ls(W )|S = s] ≤ min
w∈W

Ls(w) +
1

β
log k. (4.40)

Choosing β = 2
√
n log k, we have

E[LS(W )] ≤ E[LS(WERM)] +
1

2

√
log k

n

≤ min
w∈W

Lµ(w) +
1

2

√
log k

n
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where the last step is due to (4.4). Combining with the upper bound (4.38)

on generalization error, the true risk can be upper bounded by

E[Lµ(W )] ≤ min
w∈W

Lµ(w) +
1

2

√
log k

n
+

1

2

√
log k

n
.

Therefore, the expected excess risk of the Gibbs algorithm in this case satisfies

Rexcess(µ, P
∗
W |S) ≤

√
log k

n
.

4.5.2 Noisy Empirical Risk Minimization

The second algorithm we consider is the noisy empirical risk minimization

algorithm. The algorithm adds independent noise to the empirical risk of

each hypothesis, and then outputs the hypothesis that minimizes the noisy

empirical risks. Suppose the hypothesis space W = {w1, . . . , wk} is a finite

set with cardinality k, and the output of the algorithm is W = wJ∗ , with

J∗ = arg min
j∈[k]

(
LS(wj) +Nj

)
.

We first consider the case where Nj’s are are i.i.d. Gaussian with zero-mean

and variance σ2
N . In this case, if `(w,Z) is σ-subgaussian, then

I(ΛW(S);W ) ≤ I
(
(LS(wi))i∈[k]; (LS(wi) +Ni)i∈[k]

)
≤

k∑
j=1

I(LS(wj);LS(wj) +Nj)

≤ max
j∈[k]

k

2
log

(
1 +

Var[LS(wj)]

σ2
N

)
≤ k

2
log

(
1 +

σ2

nσ2
N

)
≤ kσ2

2nσ2
N

,

where we have used the data processing inequality for mutual information;

the fact that for product channels, the mutual information between the over-

all input and output is upper bounded by the sum of the input-output mu-

tual information of individual channels [34]; the formula for the capacity of
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input-power constrained Gaussian channel; the fact that LS(wj)’s are σ/
√
n

subgaussian hence Var[LS(wj)] ≤ σ2/n; and the fact that log(1 + x) ≤ x.

Also note that in this case

I(ΛW(S);W ) ≤ H(W ) ≤ log k.

Choosing a small noise variance σ2
N , we obtain an approximate ERM algo-

rithm, with ∣∣gen(µ, PW |S)
∣∣ ≤ σ2

√
k

nσN
∧
√

2σ2 log k

n

by Theorem 4.2. For example, by choosing σ2
N = 1/n, we have

∣∣gen(µ, PW |S)
∣∣ ≤ σ2

√
k

n
∧
√

2σ2 log k

n
.

Now we consider the case where Nj’s are are i.i.d. exponential random

variables with mean b. In this case, if `(·, ·) ∈ [0, 1], then

I(ΛW(S);W ) ≤
k∑
j=1

I(LS(wj);LS(wj) +Nj)

≤ max
j∈[k]

k log

(
1 +

E[LS(wj)]

b

)
≤ k log

(
1 +

1

b

)
,

where we have used the fact that, for any nonnegative random variable X

with mean a and an exponential random variable N independent of X with

mean b [94],

I(X;X +N) ≤ log
(

1 +
a

b

)
.

Choosing a small noise mean b, we obtain an approximate ERM algorithm,

with ∣∣gen(µ, PW |S)
∣∣ ≤√ k

2n
log
(

1 +
1

b

)
∧
√

log k

2n

by Theorem 4.2.
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4.5.3 Preprocessing of the Dataset

Another method of inducing input-output mutual information stability is to

preprocess the dataset S to obtain S̃, and then run a learning algorithm on

the preprocessed dataset S̃. The preprocessing can consists of adding noise

to the data or erasing some of the instances in the dataset, etc. In any case,

we have the Markov chain

S − S̃ −W.

The strong data processing inequality introduced in Sec. 2.3 implies that

I(S;W ) ≤ min
{
I(S; S̃), I(S̃;W )η(PS̃, PS|S̃)

}
.

If Z̃i is generated from Zi independently of everything else, then by the

tensorization property of the SDPI constant (Lemma 2.8),

η(PS̃, PS|S̃) = max
i∈[n]

η(PZ̃i , PZi|Z̃i) ≤ max
i∈[n]

η(PZi|Z̃i).

As an example, if Zi and Z̃i are jointly Gaussian with correlation coefficient

ρ, then

η(PZ̃i , PZi|Z̃i) = ρ2.

It would be interesting to find preprocessing methods such that we can evalu-

ate η(PZ̃i , PZi|Z̃i) or η(PZi|Z̃i), so that we can sharply bound the input-output

mutual information I(S;W ).

4.5.4 Adaptive Composition

Consider the situation where k learning algorithms are sequentially executed.

The output of the jth algorithm may depend on the dataset S, as well as on

the outputs W j−1 of the executed learning algorithms. The output at the

final step can be viewed as obtained from an adaptive composition of the k

constituent learning algorithms. From the chain rule of mutual information,

I(S;Wk) ≤ I(S;W k) =
k∑
j=1

I(S;Wj|W j−1).
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It suggests that we can control the generalization error of the final output by

controlling the conditional mutual information I(S;Wj|W j−1) at each step

of the composition.

When the constituent algorithms are run on different processors sharing the

same dataset, the output hypothesis of each processor needs to be communi-

cated to other processors to serve as an input. In this case, communication

constraints may occur due to the quantization of the output hypothesis, the

finite blocklength for transmission, and the noisy channels connecting the

processors. These communication constraints will limit the effective hypoth-

esis space of each constituent algorithm and the accuracy for reconstructing

the hypotheses at each processor. At the same time, since the mutual infor-

mation terms I(S;Wj|W j−1) are limited by the communication constraints

as well, the generalization capability of the composed algorithm may be im-

proved. For example, if each output of the first k−1 algorithms is constrained

to be represented by b bits, then each of the first k − 1 hypothesis spaces

is effectively confined to a set of cardinality 2b, and the final input-output

mutual information can be bounded by

I(S;Wk) ≤ (k − 1)b log 2 + I(S;Wk|W k−1).

The methods developed in Chapter 2 and 3 can also be used to upper bound

the mutual information I(S;Wj|W j−1), j = 1, . . . , k, according to the com-

munication constraints; then Theorem 4.2 can be invoked to upper-bound

the generalization error.

It is the chain rule of mutual information that makes the adaptive com-

position easy to analyze under the notion of input-output mutual informa-

tion stability. We can also apply the chain rule of mutual information or

relative entropy to analyze the adaptive composition for other information-

theoretic stability notions, e.g., stability in erasure mutual information and

KL-stability. Specifically, if the algorithms PWj |S,W j−1 , j = 1, . . . , k, satisfy

1

n

n∑
i=1

I(Zi;Wj|S−i,W j−1) ≤ εj
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for some µ, then

1

n

n∑
i=1

I(Zi;W1, . . . ,Wk|S−i) ≤
k∑
j=1

εj

for the same µ; moreover, if the algorithms PWj |S,W j−1 , j = 1, . . . , k, satisfy

sup
s,s′∈Zn: dH(s,s′)≤1

sup
wj−1

D(PWj |S=s,W j−1=wj−1‖PWj |S=s′,W j−1=wj−1) ≤ εj,

then

sup
s,s′∈Zn: dH(s,s′)≤1

D(PWk|S=s‖PWk|S=s′) ≤
k∑
j=1

εj.

For other notions of information-theoretic stability, the adaptive composition

is not as easy to analyze. For example, for the (ε, δ)-differential privacy,

one may need to use results in binary hypothesis testing to characterize the

privacy degradation under adaptive composition [82].

4.6 Application to Adaptive Data Analytics

4.6.1 Non-adaptive and Adaptive Data Analytics

In non-adaptive data analytics, there is an unknown distribution µ on Z, and

a random dataset S ∈ Zn drawn from µ⊗n. Given a query space W and a

function ` : W × Z → R+, the data analyst picks some query w ∈ W and

wishes to evaluate the expectation of `(w,Z) under Z ∼ µ, denoted as

Lµ(w) = E[`(w,Z)].

Although the distribution µ is unknown, there is an answer-generating mech-

anism holding the dataset S, which accepts the query w and returns the

empirical mean

LS(w) =
1

n

n∑
i=1

`(w,Zi)

to the data analyst. The query picked by the data analyst could also be a

random element W in W, which is independent of the dataset S. By the
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law of large numbers (assuming the function ` is bounded), we know that

LS(W ) − Lµ(W ) converges to zero both in L1 and in probability uniformly

for all µ. Therefore, in non-adaptive data analytics, due to the independence

between the query W and the dataset S, there is a strong guarantee that the

answer given as LS(W ) can well approximate the true expectation Lµ(W ) for

any µ. As an example, consider the problem of performance evaluation in the

general statistical learning framework: W is a hypothesis generated by some

learning algorithm based on a training dataset S ′; the learner (playing the

role of the data analyst) would like to evaluate the true risk of W , Lµ(W ),

under µ; the tester (playing the role of the answer-generating mechanism)

holds a testing dataset S independent of S ′ and provides the empirical risk of

W on S, LS(W ), to the learner as a proxy of Lµ(W ). Due to the independence

between W and S, the answer LS(W ) is an accurate estimate of the true risk

Lµ(W ) of the hypothesis W .

In practice, data analytics is often performed in multiple rounds in an

adaptive manner: in the jth round, the data analyst issues a query Wj based

on the previously issued queries W j−1 as well as the answers Y j−1 received so

far; a new answer Yj is then generated based on the dataset S and the query

Wj. In this case, the queries Wj for j ≥ 2 are no longer independent of the

dataset S; hence, the empirical mean LS(Wj) can severely deviate from the

true expectation Lµ(Wj). The difference Lµ(Wj)−LS(Wj) is called the bias

of Wj on S. An important problem in adaptive data analytics is to design

answer-generating mechanisms such that the answers Yj are close to the true

expectations Lµ(Wj) under multiple rounds of adaptive analysis. Continuing

the preceding example of performance evaluation in statistical learning: once

the learner receives Y1 = LS(W1) from the tester, he can modify the learning

algorithm based on it, and come up with a new hypothesis W2 to see whether

it can reduce the empirical risk on the testing dataset. If the tester naively

returns the empirical risks Yj = LS(Wj) all the time, the learner may gradu-

ally find a hypothesis that overfits the testing dataset such that empirical risk

on S is small, but the true risk is large. The answer-generating mechanism

thus has to be carefully designed to prevent the learner from overfitting the

testing dataset.

Recently, ideas in differential privacy have been brought to designing the

answer-generating mechanisms in adaptive data analytics [79,80,95]. In these

works, the major concern is the bias analysis, which is based on deriving
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generalization guarantees of differentially private algorithms. Once the bias

is upper bounded, the accuracy of the answers can be analyzed by combining

the upper bound on the bias and the accuracy guarantees of various privacy-

inducing mechanisms. In this section, we use information-theoretic methods

developed earlier in this chapter to analyze the bias and accuracy in adaptive

data analytics. Our analyses are simpler than those based on differential

privacy, and provide information-theoretic insights about how to design good

answer-generating mechanisms that reduce bias and improve accuracy.

4.6.2 Analyzing Bias and Accuracy Using I(S;W )

We consider the k-round adaptive analysis, where both the queries and an-

swers can be drawn from randomized mechanisms. At the jth round, the

data analyst issues a query Wj drawn according to the kernel PWj |W j−1,Y j−1 ,

and receives an answer Yj to the query drawn according to the kernel PYj |S,Wj
.

The Bayesian network of the query-answer pairs is shown in Fig. 4.2 for k = 4.

1W

S

1Y 2Y 3Y 4Y

2W 3W 4W

Figure 4.2: Bayesian network of adaptive data analysis, k = 4.

Note that the bias Lµ(Wj)−LS(Wj) is equivalent to the generalization error

discussed earlier in this chapter. Consequently, we can upper-bound the bias

of the jth query Wj in terms of the mutual information I(S;Wj) using the

results obtained in Sec. 4.4. From the chain rule of mutual information, we
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have the following chain of inequalities: for j = 1, . . . , k,

I(S;Wj) ≤ I(S;W j−1, Y j−1)

=

j−1∑
i=1

I(S;Wi, Yi|W i−1, Y i−1)

=

j−1∑
i=1

I(S;Wi|W i−1, Y i−1) + I(S;Yi|Wi,W
i−1, Y i−1)

≤
j−1∑
i=1

I(S;Yi|Wi), (4.41)

where the last step uses the fact that I(S;Wi|W i−1, Y i−1) = 0 because of the

Marjov chain S → W i−1, Y i−1 → Wi, and the fact that

I(S;Yi|Wi,W
i−1, Y i−1) ≤ I(W i−1, Y i−1, S;Yi|Wi) = I(S;Yi|Wi)

because W i−1, Y i−1 → S → Yi form a Markov chain conditioned on Wi.

Russo and Zou considered the same problem in [84]. However, their as-

sumption is that (1) the query space W is a finite set, and (2) the answer Yj

is generated by adding noise on LS(Wj). Their result [84, Lemma 1] shows

that

I(ΛW(S);Wj) ≤
j−1∑
i=1

I(LS(Wi);Yi|W i−1, Y i−1,Wi),

where ΛW(S) = (LS(w))w∈W. Our result is more general, as neither assump-

tion is needed. When the answer Yj is generated by adding noise on LS(Wj),

we can obtain the same upper bound on I(ΛW(S);Wj):

I(ΛW(S);Wj) ≤ I(S;Wj)

≤
j−1∑
i=1

I(S;Yi|Wi,W
i−1, Y i−1)

≤
j−1∑
i=1

I(LS(Wi);Yi|Wi,W
i−1, Y i−1)

and we allow the query space W to be uncountably infinite.
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Gaussian Noise-adding

Now we evaluate the upper bound in the special case where Yj is generated

by adding Gaussian noise to LS(Wj), i.e., for j = 1, . . . , k,

Yj = LS(Wj) +Nj,

where Nj’s are i.i.d. zero-mean Gaussian with variance σ2
j . If `(w,Z) is σ-

subgaussian for all w ∈ W, then from (4.41),

I(S;Wj) ≤
j−1∑
i=1

I(S;Yi|Wi)

≤
j−1∑
i=1

I(LS(Wi);LS(Wi) +Ni|Wi)

≤
j−1∑
i=1

1

2
log

(
1 +

supw∈W Var[LS(w)]

σ2
i

)

≤
j−1∑
i=1

σ2

2nσ2
i

.

By Theorem 4.2, the generalization error (bias) of the jth query in this special

case satisfies

∣∣E[Lµ(Wj)]− E[LS(Wj)]
∣∣ ≤ σ2

n

√√√√ j−1∑
i=1

1

σ2
i

, j = 1, . . . , k.

Moreover, we can study the accuracy of the jth answer measured by the

absolute error using Theorem 4.6. Suppose `(·, ·) ∈ [0, 1], then for any γ > 0,

E|Yj − Lµ(Wj)| ≤ E|Yj − LS(Wj)|+ E|LS(Wj)− Lµ(Wj)|

≤ σj +
log 2

γn
+

√
I(S;Wj)

2n
+ γ

≤ σj +
log 2

γn
+

√√√√ 1

16n2

j−1∑
i=1

1

σ2
i

+ γ.
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Choosing σ2
j =

√
j/2n, γ =

√
j/4n, and using the fact that

∑j
i=1 1/

√
i ≤

2
√
j, we get

E|Yj − Lµ(Wj)| ≤
√

2j1/4

√
n

+
4 log 2√

j
, j = 1, . . . , k. (4.42)

Note that the choice of the noise variance σ2
j =
√
j/2n does not depend on k,

meaning that the answer-generating mechanism does not need to know the

total number of queries that will be issued by the analyst in advance. From

(4.42), we see that for a sufficiently large k such that k = Ω(n2/3), we have

max
j∈[k]

E|Yj − Lµ(Wj)| .
√

2k1/4

√
n

. (4.43)

This upper bound is on the same order as the result obtained by Russo and

Zou [84, Proposition 9] (under the assumption that the query space W is a

finite set), which states that

max
j∈[k]

E|Yj − Lµ(Wj)| ≤
ck1/4

√
n

with some constant c. Under the assumption that the collection of empirical

risks (LS(w))w∈W is a Gaussian process with variance σ2/n, and under a rich-

ness assumption on the query space, Wang et al. [96] obtained the minimax

rate of the mean squared error for the k-fold adaptive data analytics:

inf
{PYj |S,Wj }

k
j=1

sup
{P
Wj |Wj−1,Y j−1}kj=1

max
j∈[k]

E(Yj − Lµ(Wj))
2 = O

(√kσ2

n

)
.

For the more general problem setup that we have considered above, whether

the upper bound in (4.43) can be improved is an open problem. It would

also be interesting to consider other answer-generating mechanisms beyond

the noise-adding method, and analyze the corresponding bias and accuracy

via I(S;Yj|Wj), j = 1, . . . , k.
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4.7 Conclusion and Future Research Directions

In this chapter, we mainly analyzed the generalization error of a learning

algorithm via the mutual information between its input and output. We

derived an upper bound on the expected generalization error and a high-

probability bound on the absolute generalization error for algorithms that

are stable in input-output mutual information. We also discussed how to

design learning algorithms with input-output mutual information stability,

and showed that the Gibbs algorithm can be viewed as an input-output

mutual information regularized ERM algorithm. In addition, we discussed

the input-output mutual information stability in adaptive composition, which

is useful for analyzing the generalization performance when the constituent

algorithms are run on multiple processors in a decentralized setting with

communication constraints. The results have also been applied to analyzing

the bias and accuracy in adaptive data analytics. There are a few problems

worthwhile for future study.

• The notion of input-output mutual information stability is a somewhat

strong condition for stability. It is not satisfied by classical learning

algorithms such as the ERM algorithm and the stochastic gradient

descent (SGD) algorithm. The notion of Wasserstein stability is less

restrictive, and can be used to analyze the generalization error of ERM

algorithm and algorithms with random incremental updates [83]. An

interesting research topic is to use Wasserstein stability to analyze the

generalization performance of the SGD algorithm.

• Our upper bound on the expected generalization error (Theorem 4.2)

only requires that the loss function `(w, z) is subgaussian in z for any

w ∈ W. However, the high-probability bound (Theorem 4.4) and

the expectation bound for the absolute generalization error |Lµ(W )−
LS(W )| (Theorem 4.6) both require the loss function to be bounded.

This is due to the need for upper-bounding the input-output mutual

information of the exponential mechanism used in the proof of these

results, which requires a bounded loss function. Are there better ways

to prove these results which do not require boundedness of the loss

function?

• We have derived information-theoretic upper bounds on the generaliza-
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tion error, but did not have any discussion on how to lower-bound this

quantity. For the Gibbs algorithm, Wang et al. [88] provide an exact

information-theoretic characterization of the generalization error, as

stated in (4.39). It would be interesting to study information-theoretic

lower bounds on the generalization error for general algorithms.

• We have been focusing on the generalization error. However, as dis-

cussed in Sec. 4.2.2, having a small generalization error alone is not suf-

ficient to have a small true risk. Can we provide information-theoretic

conditions for a learning algorithm to be asymptotic ERM, so that we

can characterize the consistency of a learning algorithm in an information-

theoretic manner?

4.8 Additional Proofs for Chapter 4

4.8.1 Proof of Theorem 4.3

Given an index i ∈ [n] and a sample s = (z1, . . . , zn) ∈ Zn, let π = PW |S=s,

ρ = PW |S−i=s−i , and F (w) = −λ`(w, zi), where λ ∈ R is an arbitrary param-

eter. Then from the Donsker-Varadhan variational representation of relative

entropy (4.8), we have

D
(
PW |S=s

∥∥PW |S−i=s−i) ≥ −λE [`(W, zi)∣∣S = s
]
− logE

[
e−λ`(W,zi)

∣∣S−i = s−i
]
.

(4.44)

By the subgaussianity assumption (4.14), we can write

logE
[
e−λ`(W,zi)

∣∣S−i = s−i
]
≤ λE

[
`(W, zi)

∣∣S−i = s−i
]

+
λ2σ2

2
. (4.45)

Using (4.45) in (4.44), we obtain

D
(
PW |S=s

∥∥PW |S−i=s−i) ≥ λ
(
E
[
`(W, zi)

∣∣S−i = s−i
]
− E

[
`(W, zi)

∣∣S = s
])
− λ2σ2

2
.

(4.46)

Let S ′ = (Z ′1, . . . , Z
′
n) be an n-tuple of i.i.d. draws from µ, independent of

(S,W ), and let W(i) denote the output of the learning algorithm A operating

171



on Si,Z
′
i , (Z1, . . . , Zi−1, Z

′
i, Zi+1, . . . , Zn). Using the fact that S and S ′ are

two independent samples of size n from µ, we can write∫
µ⊗n(ds)E

[
`(W, zi)

∣∣S−i = s−i
]

=

∫
µ⊗n(ds)

∫
PW,Z′i|S−i=s−i(dw, dz

′
i)`(w, zi)

=

∫
µ⊗n(ds)µ⊗n(ds′)PW |S=s(i)(dw)`(w, zi)

=

∫
µ⊗n(ds)µ⊗n(ds′)PW |S=s(dw)`(w, z′i)

= E[`(W,Z ′i)]

and∫
µ⊗n(ds)E

[
`(W, zi)

∣∣S = s
]

=

∫
µ⊗n(ds)µ⊗n(ds′)PW |S=s(dw)`(w, zi)

=

∫
µ⊗n(ds)µ⊗n(ds′)PW |S=s(i)`(w, z

′
i)

= E[`(W(i), Z
′
i)].

Therefore, taking expectations of both sides of (4.46) with respect to Zn, we

have

I(W ;Zi|S−i) ≥ −
λ2σ2

2
+ λ

(
E[`(W,Z ′i)]− E[`(W(i), Z

′
i)]
)
. (4.47)

Summing (4.47) over i gives

1

n

n∑
i=1

I(W ;Zi|S−i) ≥ −
λ2σ2

2
+
λ

n

n∑
i=1

(
E[`(W,Z ′i)]− E[`(W(i), Z

′
i)]
)

= −λ
2σ2

2
+ λE [L(W )− LS(W )] .

Maximizing the right-hand side with respect to λ ∈ R, we obtain (4.15).

4.8.2 Proof of Theorem 4.5

Similar to the proof for Theorem 4.4, we need the following two lemmas

to prove Theorem 4.5. As before, define S̃ = (S1, . . . , Sm), where St =

(Zt,1, . . . , Zt,n), t = 1, . . . ,m, are i.i.d. datasets drawn from µ⊗n.

Lemma 4.6. Consider the parallel execution of m independent copies of
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PW |S: for t = 1, . . . ,m, an independent copy of PW |S takes S̃t as input, and

outputs Wt. If PW |S is (ε, µ)-stable in erasure mutual information:

1

n

n∑
i=1

I(W ;Zi|S−i) ≤ ε (4.48)

for some µ, then the overall algorithm PW1,...,Wm|S̃ is also (ε, µ)-stable in

erasure mutual information:

1

mn

m∑
t=1

n∑
i=1

I(W1, . . . ,Wm;Zt,i|S̃−t,i) ≤ ε. (4.49)

Proof. The proof is based on the independence among (St,Wt), t = 1, . . . ,m.

Lemma 4.7. Suppose an algorithm PW,T,R|S̃ : Zm×n → W × [m] × {−1, 1}
is (ε, µ)-stable in erasure mutual information, i.e.,

1

mn

m∑
t=1

n∑
i=1

I(W,T,R;Zt,i|S̃−t,i) ≤ ε, (4.50)

and for all s̃, t ∈ [m] and i ∈ [n], the random variable 1{T = t}`(W, zt,i)R
with (W,T,R) distributed according to PW,T,R|S̃−t,i=s̃−t,i is σ-subgaussian, i.e.,

for all λ ∈ R

logE
[

exp
{
λ
(
1{T = t}`(W, zt,i)R−

E
[
1{T = t}`(W, zt,i)R

∣∣S̃−t,i = s̃−t,i
])}∣∣∣S̃−t,i = s̃−t,i

]
≤ λ2σ2

2
. (4.51)

Then

E
[
R
(
Lµ(W )− LST (W )

)]
≤ m
√

2σ2ε.

Proof. Let S̃ ′ be an independent copy of S̃. First of all, we have

E[Lµ(W )R]− E[LST (W )R] =
1

n

n∑
i=1

m∑
t=1

(
E
[
1{T = t}`(W,Z ′t,i)R

]
−

E
[
1{T = t}`(W,Zt,i)R

])
. (4.52)

Then, from the Donsker-Varadhan variational representation of the relative
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entropy and the subgausisan assumption in (4.51), we have

D(PW,T,R|S̃=s̃‖PW,T,R|S̃−t,i=s−t,i) ≥ λ
(
E
[
1{T = t}`(W, zt,i)R

∣∣S̃−t,i = s̃−t,i
]
−

E
[
1{T = t}`(W, zt,i)R

∣∣S̃ = s̃
])
− λ2σ2

2
.

Integrating with µ⊗mn(ds̃), and using the fact that

E
[
1{T = t}`(W,Z ′t,i)R

]
=

∫
µ⊗mn(ds̃)E

[
1{T = t}`(W, zt,i)R

∣∣S̃−t,i = s̃−t,i
]

and

E
[
1{T = t}`(W,Zt,i)R

]
=

∫
µ⊗mn(ds̃)E

[
1{T = t}`(W, zt,i)R

∣∣S̃ = s̃
]
,

we have

I(W,T,R;Zt,i|S−t,i) ≥ −
λ2σ2

2
+ λ
(
E
[
1{T = t}`(W,Z ′t,i)R

]
−

E
[
1{T = t}`(W,Zt,i)R

])
.

Therefore, by (4.52),

E[Lµ(W )R]− E[LST (W )R] ≤ mλσ2

2
+
m

λ

1

mn

n∑
i=1

m∑
t=1

I(W,T,R;Zt,i|S̃−t,i)

for all λ ∈ R. Optimizing over λ, we get

E[Lµ(W )R]− E[LST (W )R] ≤ m

√√√√2σ2

mn

n∑
i=1

m∑
t=1

I(W,T,R;Zt,i|S̃−t,i)

which proves the claim.

Proof of Theorem 4.5

The proof is based on the monitor technique proposed in [80], and parallels

with the proof for Theorem 4.4. First, let PW1,...,Wm|S̃ be the parallel execution

of m = b1/βc independent copies of PW |S: for t = 1, . . . ,m, an independent
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copy of PW |S takes St as input and outputs Wt. Define the set

F = {t = 1, . . . ,m : (Wt, t, 1), (Wt, t,−1)}. (4.53)

Then, let the output of the monitor be a sample (W ∗, T ∗, R∗) from F ac-

cording to the distribution

PW ∗,T ∗,R∗|S̃=s̃,Wm=wm(w∗, t∗, r∗) ∝ exp
(εnr∗

2

(
Lµ(w∗)− Lst∗ (w

∗)
))

(4.54)

for (w∗, t∗, r∗) ∈ F . Note that given s̃ and w1, . . . , wm, the output (W ∗, T ∗, R∗)

is essentially obtained from an exponential mechanism applied to s̃ with re-

spect to the function

u
(
(w∗, t∗, r∗), s̃

)
= r∗

(
Lµ(w∗)− Lst∗ (w

∗)
)
, (w∗, t∗, r∗) ∈ F. (4.55)

It can be shown that the above exponential mechanism with ` ∈ [0, 1] satisfies

that, for two datasets s̃ and s̃′ such that dH(s̃, s̃′) = 1,

e−ε ≤
PW ∗,T ∗,R∗|S̃=s̃,Wm=wm(w∗, t∗, r∗)

PW ∗,T ∗,R∗|S̃=s̃′,Wm=wm(w∗, t∗, r∗)
≤ eε, ∀(w∗, t∗, r∗) ∈ F ; (4.56)

hence,

sup
s̃,s̃′:dH(s̃,s̃′)=1

sup
wm

D(PW ∗,T ∗,R∗|S̃=s̃,Wm=wm‖PW ∗,T ∗,R∗|S̃=s̃′,Wm=wm) ≤ ε (4.57)

and

1

mn

m∑
t=1

n∑
i=1

I(W ∗, T ∗, R∗;Zt,i|S̃−t,i,W1, . . . ,Wm) ≤ ε. (4.58)

In addition, by Lemma 4.6, we know that PW1,...,Wm|S̃ satisfies

1

mn

m∑
t=1

n∑
i=1

I(W1, . . . ,Wm;Zt,i|S̃−t,i) ≤ ε. (4.59)
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Therefore, by the chain rule of mutual information,

1

mn

m∑
t=1

n∑
i=1

I(W ∗, T ∗, R∗;Zt,i|S̃−t,i)

≤ 1

mn

m∑
t=1

n∑
i=1

I(W1, . . . ,Wm,W
∗, T ∗, R∗;Zt,i|S̃−t,i)

≤ 2ε.

By Lemma 4.7 and the assumption that ` ∈ [0, 1] (hence σ2 = 1/4 in

Lemma 4.7),

E
[
R∗
(
Lµ(W ∗)− LS̃T∗ (W

∗)
)]
≤ m
√
ε. (4.60)

On the other hand, in view of (4.54), we can apply Lemma 4.5 with the set

F , the function f(w∗, t∗, r∗) = u
(
(w∗, t∗, r∗), s̃

)
, and η = εn/2 to get

E
[
R∗
(
Lµ(W ∗)− L ST∗ (W

∗)
)∣∣S̃ = s̃,Wm = wm

]
≥ max

(w∗,t∗,r∗)∈F
u
(
(w∗, t∗, r∗), s̃

)
− 2

εn
log ∗|F |

= max
t∈[m]

∣∣Lµ(wt)− Lst(wt)
∣∣− 2

εn
log(2m),

which implies

E
[
R∗
(
Lµ(W ∗)− LST∗ (W

∗)
)]
≥ E

[
max
t∈[m]

∣∣Lµ(Wt)− LSt(Wt)
∣∣]− 2

εn
log(2m).

(4.61)

Combining (4.60) and (4.61) gives

E
[

max
t∈[m]

∣∣Lµ(Wt)− LSt(Wt)
∣∣] < 2

εn
log(2m) +m

√
ε. (4.62)

The rest of the proof is by contradiction. Suppose the algorithm PW |S does

not satisfy the claimed generalization property, namely,

P
[∣∣Lµ(W )− LS(W )

∣∣ > α
]
> β.
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Then by the independence among the pairs (S̃t,Wt), t = 1, . . . ,m,

P
[

max
t∈[m]

∣∣Lµ(Wt)− LSt(Wt)
∣∣ ≥ α

]
> 1−

(
1− β

)m
>

1

2
.

Thus

E
[

max
t∈[m]

∣∣Lµ(Wt)− LSt(Wt)
∣∣] > α/2. (4.63)

Combining (4.62) and (4.63) gives

n <
2

ε
(
α
2
− 1

β

√
ε
) log

2

β
,

which contradicts the assumption that n ≥ 2

ε
(
α
2
− 1
β

√
ε
) log 2

β
, and hence com-

pletes the proof.

4.8.3 Proof of Equation (4.39)

Recall that for a Gibbs algorithm PW |S, dPW |S=s/dQ is given for all s ∈ Zn.

Thus, for any two datasets s, s′ ∈ Zn,

log
dPW |S=s

dPW |S=s

= log dPW |S=s − log dPW |S=s′ .

According to the definition of the Gibbs algorithm, for any w, s, and z′i,

log dPW |S=s(w) = −β
n

∑
j 6=i

`(w, zj)−
β

n
`(w, zi) + log dQ(w)− g(s)

and

log dPW |S=s(i)(w) = −β
n

∑
j 6=i

`(w, zj)−
β

n
`(w, z′i) + log dQ(w)− g(s(i)),

where

g(s) , logEQ
[

exp
{
− β

n

∑
j 6=i

`(W̄ , zj)−
β

n
`(W̄ , zi)

}]
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and

g(s(i)) , logEQ
[

exp
{
− β

n

∑
j 6=i

`(W̄ , zj)−
β

n
`(W̄ , z′i)

}]
.

Note that for each i ∈ [n],∫
µ⊗n(ds)µ(dz′i)g(s) =

∫
µ⊗n(ds)µ(dz′i)g(s(i)).

Therefore,

1

n

n∑
i=1

∫
µ⊗n(ds)µ(dz′i)D(PW |S=s‖PW |S=s(i))

=
1

n

n∑
i=1

∫
µ⊗n(ds)µ(dz′i)PW |S=s(dw)

(
log dPW |S=s(w)− log dPW |S=s(i)(w)

)
=

β

n2

n∑
i=1

∫
µ⊗n(ds)µ(dz′i)PW |S=s(dw)

(
`(w, z′i)− `(w, zi)

)
+

1

n

n∑
i=1

∫
µ⊗n(ds)µ(dz′i)

(
g(s(i))− g(s)

)
=

β

n2

n∑
i=1

(
E[Lµ(W )]−

∫
µ⊗n(ds)PW |S=s(dw)`(w, zi)

)
=
β

n

(
E[Lµ(W )]− E[LS(W )]

)
,

which proves (4.39).
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