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ABSTRACT

Concurrency is becoming the norm in modern software because multicores are now every-

where. Developers use concurrency constructs (i) to make their software responsive and

scalable via asynchrony and (ii) to increase the throughput of their software via parallelism.

Yet, we know little about how developers use these constructs in practice. Without such

knowledge, (i) other developers cannot educate themselves about the state of the practice,

(ii) language and library designers are unaware of any misuse, (iii) researchers make wrong

assumptions, and (iv) tool providers do not provide the tools that developers really need.

We claim that concurrent programming deserves first-class citizenship in empirical research

and tool support.

In this dissertation, we study the use, misuse, and underuse of concurrency constructs for

C#. Based on our large-scale empirical studies, we found two main problems. First, de-

velopers still use complex, slow, low-level, and old constructs. Second, when developers use

modern concurrency constructs, they highly misuse them, causing severe consequences such

as subtle data-races and swallowed exceptions. Some significantly degrade the performance

of async programs or can even deadlock the program. Other misuses make developers erro-

neously think that their code runs sequentially, when in reality the code runs concurrently;

this causes unintended behavior and wrong results.

This dissertation presents four tools to enable C# developers (i) to migrate their soft-

ware to modern concurrency constructs and (ii) to fix misused modern constructs. First,

we present an automated migration tool, Taskifier, that transforms old style Thread and

ThreadPool constructs to higher-level Task constructs. Second, we present a refactoring

tool, Simplifier, that extracts and converts Task-related code snippets into higher-level

parallel patterns. Third, we provide Asyncifier to developers who want to refactor their
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callback-based asynchronous constructs to new async/await keywords. Fourth, we devel-

oped AsyncFixer, a static analysis tool that detects and corrects 14 common kinds of

async/await misuses that cannot be detected by any existing tools. We released all our tools

as plugins for the widely used Visual Studio IDE which has millions of users.

We conducted both quantitative and qualitative evaluation of our tools. We applied the

tools thousands of times over the real-world software and we show that they (i) are highly

applicable, (ii) are much safer than manual transformations, and (iii) fast enough to be used

interactively in Visual Studio. Our tools are useful in practice for both industry and open-

source communities. Developers of the open-source software accepted 408 patches which are

generated by the tools. We also received positive feedback from the early adopters. In indus-

try, our tools are embraced by two companies. They started to actively use AsyncFixer

in their automated build process.

Our empirical findings have (i) educated thousands of developers through our educational

web portals and (ii) influenced the design of modern constructs across programming lan-

guages. We hope that our dissertation serves as a call to action for the testing, program

verification, and program analysis communities to study new constructs from programming

languages and standard libraries. Researchers can empirically study these constructs and

provide necessary tools to help developers adopt them. Hence, we also present a set of guide-

lines for researchers that aim to make a practical impact on the usage of new programming

constructs.
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CHAPTER 1

Introduction

1.1 Problem Description

The computing hardware industry has resorted to multicore CPUs in order to keep up with

the previous prediction of Moore’s law. While the number of transistors will keep doubling,

the multicore revolution puts pressure on software developers to use concurrency if they

want to benefit from future hardware improvements. Because multicores are now every-

where, concurrency is becoming the norm in modern software. Developers use concurrency

(i) to make their software responsive and scalable via asynchrony and (ii) to increase the

throughput of their software via parallelism. However, developers find it challenging to

introduce asynchrony and parallelism to their software.

The industry leaders hope to simplify concurrent programming by providing concurrency

libraries (APIs). Microsoft provides Task Parallel Library (TPL) [1], Parallel Language

Integrated Query (PLINQ) [2], and Threading [3] for .NET languages (e.g., C#). Java

developers uses java.util.concurrent package. Intel provides Threading Building Blocks

(TBB) [4] for C++. Despite syntactic differences, these libraries provide similar features

such as scalable concurrent collections, high-level parallel constructs, and lightweight tasks.

Yet, we know little about how developers use these libraries in practice. Empirical studies

that answer usage questions are desperately needed. Without such knowledge, other develop-

ers cannot educate themselves about the state of the practice, language and library designers

are unaware of any misuse, researchers make wrong assumptions, and tool providers do not

provide the tools that developers really need. We believe that concurrent programming

deserves first-class citizenship in empirical research and tool support.

Based on our empirical studies regarding the usage of concurrency, we found two main
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problems. First, developers still use complex, slow, low-level, and old constructs. For in-

stance, Thread is still the primary choice for most developers. They heavily use callback-

based asynchronous constructs, not benefitting from new language keywords, async/await.

Second, when developers use modern concurrency constructs, they highly misuse them.

These misuses have severe consequences. Some significantly degrade the performance of

async programs or can even deadlock the program. Other misuses make developers erro-

neously think that their code runs sequentially, when in reality the code runs concurrently;

this causes unintended behaviour and wrong results.

This dissertation presents four tools to enable developers to correctly use modern con-

currency in C# code. First, we present an automated migration tool, Taskifier, that

transforms old style Thread and ThreadPool constructs to higher-level Task constructs. Sec-

ond, we present a refactoring tool, Simplifier, that extracts and converts Task-related code

snippets into higher-level parallel patterns. Third, we provide Asyncifier to developers

who want to refactor their callback-based asynchronous constructs to new async/await key-

words. Fourth, we developed AsyncFixer, a static analysis tool that detects and corrects

14 common kinds of async/await misuses.

1.2 Thesis Statement

Our thesis is three-pronged:'

&

$

%

(1) Empirical studies about concurrency constructs can provide insights into how

developers use, misuse, or underuse concurrency.

(2) It is possible to design and develop interactive program transformations that enable

developers (i) to migrate their software to modern concurrency constructs and (ii) to

fix misused modern constructs.

(3) These program transformations are useful in practice for both industry and

open-source communities.

To prove this thesis statement, we conducted three main studies: (1) an empirical study

on the usage of old and modern C# concurrency constructs and program transformations for
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safely migrating legacy software to modern constructs, (2) an empirical study to understand

the usage of asynchronous programming and a refactoring technique for converting call-

back based asynchronous constructs to async/await keywords, (3) an empirical study on

the misuses of async/await keywords and program transformations to fix them. For each

program transformation, we submitted patches to developers (a total of 408 patches) and

they think our patches are useful.

The rest of this chapter introduces these three bodies of research.

1.3 Migration to Higher-Level Concurrency Constructs

In the quest to support programmers with faster, more scalable, and readable code, parallel

libraries continuously evolve from low-level to higher-level abstractions. In the C# ecosys-

tem, .NET 1.0 (2002) supported a threading library, .NET 4.0 (2010) added lightweight

tasks, declarative parallel queries, and concurrent collections, .NET 4.5 (2012) added reac-

tive asynchronous operations.

Low-level abstractions, such as Thread, make parallel code complex, unscalable, and slow.

Because Thread represents an actual OS-level thread, it consumes a non-trivial amount of

memory, and starting and cleaning up after a retired thread takes hundreds of thousands of

CPU cycles. When developers mix old and new parallel abstractions in their code, it makes it

hard to reason about the code because all these abstractions have different scheduling rules.

On the other hand, higher-level abstractions such as .NET Task [5], a unit of parallel work,

make the code less complex. Task gives advanced control to the developer (e.g., chaining,

cancellation, futures, callbacks), and is more scalable than Thread. Unlike threads, tasks

are lightweight : they have much smaller performance overhead and the runtime system

automatically balances the workload.

However, most developers are oblivious to the benefits brought by the higher-level parallel

abstractions. We and other researchers [6, 7] found that Thread is still the primary choice

for most developers. Therefore, a lot of code needs to be migrated from low-level parallel

abstractions to their higher-level equivalents. However, this migration is (i) tedious and (ii)

error-prone, e.g., it can harm performance and silence the uncaught exceptions. We present
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an automated migration tool, Taskifier, that transforms old style Thread and ThreadPool

abstractions to higher-level Task abstractions in C# code.

The recent versions of concurrency libraries provide even higher-level abstractions on top of

Tasks. For example, the Parallel abstraction in C# supports parallel programming design

patterns: data parallelism in the form of parallel loops, and fork-join task parallelism [8] in

the form of parallel tasks co-invoked in parallel. These dramatically improve the readability

of the parallel code. However, developers rarely use them and developers are not aware of

them. We present another tool, Simplifier, that extracts and converts Task-related code

snippets into higher-level parallel patterns.

This research makes the following contributions:

1. Problem: To the best of our knowledge, this is the first study that describes the novel

problem of migrating low-level parallel abstractions into their high-level counterparts. We

show that this problem appears in real-life applications by bringing evidence of its existence

from a corpus of 880 C# open-source applications.

2. Algorithms: We describe the analysis and transformation algorithms which address the

challenges of (i) migrating Thread-based usage into Task abstractions and (ii) transforming

Task code snippets into higher-level parallel design patterns.

3. Tools: We implemented our algorithms into two tools, Taskifier and Simplifier. We

implemented them as extensions to Visual Studio, the primary IDE for C#.

4. Evaluation: We empirically evaluated our implementations by using our code corpus of

880 C# applications. We applied Taskifier 3026 times and Simplifier 405 times. First,

the results show that the tools are widely applicable. Second, these transformations are

valuable: Taskifier reduces the size of the converted code snippets by 2617 SLOC and

Simplifier reduces by 2420 SLOC in total. Third, the tools save the programmer from

manually changing 10991 SLOC for the migration to Task and 7510 SLOC for the migration

to Parallel. Fourth, automated transformations are safer. Several of the manually written

Task-based codes by open-source developers contain problems: 32% are using blocking op-

erations in the body of the Task, which can result in thread-starvation. Fifth, open-source

developers found our transformations useful. We submitted 66 patches generated by our

tools and the open-source developers accepted 53.
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1.4 Refactoring to async/await Keywords

Concurrency has two different forms: parallelism and asynchrony. When developers use con-

currency for parallelism, it is to improve a non-functional requirement such as performance

and throughput. When developers use concurrency for asynchrony, it is to make a system

more scalable and responsive.

Nowadays, asynchronous programming is in demand because responsiveness is increasingly

important on all modern devices: desktop, mobile, or web apps. Therefore, major program-

ming languages have APIs that support non-blocking, asynchronous operations (e.g., to

access the web, or for file operations). While these APIs make asynchronous programming

possible, they do not make it easy because they rely on callbacks. Callbacks invert the

control flow, are awkward, and obfuscate the intent of the original synchronous code [9].

Recently, major languages (F# [9], C# and Visual Basic [10], and Scala [11]) introduced

async/await language keywords that resemble the straightforward coding style of traditional

synchronous code. Thus, they recognize asynchronous programming as a first-class citizen.

Yet, we know little about how developers use asynchronous programming and specifically

the new async constructs in practice.

We present the first study that analyzes the usage of asynchronous libraries and new

language constructs, async in both industry and open-source communities. We analyze

1378 open-source Windows Phone (WP) apps, comprising 12M SLOC (C#), produced by

3376 developers. In industry, we analyze 3.2M SLOC, comprising various platforms written

in C# (console, web, and library) at two companies.

We found that developers heavily use callback-based asynchronous idioms. However, Mi-

crosoft officially no longer recommends these asynchronous idioms [12] and has started to

replace them with new idioms in new libraries (e.g., WinRT). Developers need to refactor

callback-based idioms to new idioms that can take advantage of the async keywords. The

changes that the refactoring requires are non-trivial, though. For instance, developers have

to inspect deep call graphs. Furthermore, they need to be extra careful to preserve ex-

ception handling behavior. Thus, we implemented the refactoring as an automated tool,

Asyncifier.
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We also found that nearly half of open-source WP8 apps have started to use the 9-month-

old async keywords in 2013. However, developers frequently misuse async in both industry

and open-source codebases. We define misuse as anti-patterns [13], which hurt performance

and might cause serious problems like deadlocks. For instance, we found that 14% of methods

that use (the expensive) async keywords do this unnecessarily, 19% of methods do not follow

an important good practice [14], 1 out of 5 apps misses opportunities in async methods

to increase asynchronicity, and developers (almost) always unnecessarily capture context,

hurting performance. Thus, we implemented a transformation tool, AsyncFixer, that

finds and corrects the misused async.

This study makes the following contributions:

1. Formative Study: To the best of our knowledge, this is the first large-scale empirical

study to answer questions about asynchronous programming and async, that will be avail-

able soon in other major programming languages. We present implications of our findings

from the perspective of four main audiences: developers, language and library designers,

researchers, and tool providers.

2. Toolkit: We implemented the analysis and transformation algorithms to address the

challenges: Asyncifier and AsyncFixer for Visual Studio.

3. Evaluation: We evaluated our tools by using the code corpus and applied the tools

hundreds of times. We show that our tools are highly applicable and efficient. Developers

find our transformations useful. Using Asyncifier, we applied and reported refactorings

in 10 apps. 9 replied and accepted each one of our 28 refactorings. Using AsyncFixer, we

found and reported misuses in 19 apps. 19 replied and accepted each of our 286 patches.

4. Outreach: Because developers learn new language constructs through both positive and

negative examples, we designed an education portal, http://LearnAsync.NET, where

developers can find hundreds of real-world examples of all asynchronous idioms and inspect

real-world misuse examples of async keywords.
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1.5 Finding and Correcting Misused Asynchrony

In 2013, we were the first to study [15] the novel async/await in C#. Back then, the

main problem was under-use: programs used it sparingly, and it was not popular outside

the domain of mobile apps. This inspired us to develop a refactoring tool [15] that helps

developers embrace it. In our latest formative study comprising 51M SLOC representing

all domains of computing, we found a 10-fold increase in usage of async/await since 2013.

By 2016, developers across all domains embraced async/await. Are developers now using

async/await correctly?

In this research, we first conduct a large scale formative study to understand how devel-

opers use async/await in both open-source and proprietary programs across all domains.

Our formative study answers two research questions:

RQ1: How are developers embracing modern asynchronous constructs? We analyzed an-

nual code snapshots of the 100 most popular C# repositories in Github [16] from 2013

to 2016, comprising 51M SLOC in total. We found that developers fully embraced

modern, async/await-based constructs, surpassing the usage of legacy, callback-based

constructs.

RQ2: To what extent do developers misuse modern asynchronous constructs? We discov-

ered 10 kinds of prevalent misuses that have not been studied before.

These async/await misuses have severe consequences. Some cause subtle data-races that

are unique to async/await and cannot be detected by previous race detecting techniques.

Other misuses “swallow” the run-time uncaught exceptions thrown by a program which

hinder developers when searching for errors. Other misuses significantly degrade the perfor-

mance of async programs or can even deadlock the program. Other misuses make developers

erroneously think that their code runs sequentially, when in reality the code runs concur-

rently; this causes unintended behaviour and wrong results.

The async/await misuses are a new source of bugs in software that the research community

has not studied before. Moreover, most of the misuses that we discovered cannot be detected

by the existing bug-finding tools. This study is the first to raise the awareness of the research
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community on an increasingly important source of bugs. We hope that it serves as a call to

action for the testing, program verification, and program analysis community.

Inspired by our formative study, we extended AsyncFixer, our existing static analysis

tool, (i) to detect 10 more kinds of async/await misuses, and (ii) to fix them via program

transformations. Developers can use AsyncFixer as live code analysis: it constantly scans

the source code as soon as the user types in new code. A key challenge is to make the

detection efficient so that developers can use AsyncFixer interactively. The static analysis

that detects the 10 kinds of misuses is non-trivial: it requires control- and data-flow, as well

as dependence information. A syntactic find-and-replace tool cannot detect these misuses.

To empirically evaluate AsyncFixer, we ran it over a diverse corpus of 500 programs from

GitHub, comprising 24M SLOC. We also ran it over the code-bases of two industrial partners,

comprising 4M SLOC. AsyncFixer detected 891 previously unknown misuses in open-

source software, and 169 in proprietary software. The open-source developers accepted 41

AsyncFixer-generated patches. Moreover, our industrial partners integrated AsyncFixer

directly into their automated build process, so that misuses are caught and fixed before they

are in production code.

This study makes the following contributions:

1. Formative study: To the best of our knowledge, we are the first to study the usage and

evolution of modern asynchronous constructs such as async/await over a diverse corpus.

We discovered 10 kinds of prevalent misuses of async/await.

2. Algorithms: We designed the analysis and transformation algorithms to detect and fix

10 kinds of async/await misuses.

3. Tool: We implemented the algorithms in our existing static analysis tool, AsyncFixer

which integrates with Visual Studio.

4. Evaluation: By running AsyncFixer over a hybrid open-source and proprietary corpus

of 28M SLOC, we show that it is applicable and efficient. Open-source developers accepted

41 patches and our industrial partners are now using AsyncFixer in their automated build

process. This shows AsyncFixer is useful.

5. Outreach: To increase our practical impact, we improved our existing educational portal,

http://LearnAsync.NET, which shows real-world examples of async/await misuses.
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1.6 Organization

.

The rest of the dissertation is organized as follows: Chapter 2 gives background informa-

tion on concurrent programming. First, it explains the concepts of concurrency, asynchrony,

and parallelism. Second, it gives a detailed overview of concurrency constructs (both libraries

and language keywords) in C#.

Chapter 3 presents the design and evaluation of two automated tools: (i) Taskifier

converts Thread-based usage to lightweight Task, (ii) Simplifier converts Task-based code

into higher-level parallel design patterns. Our empirical evaluation shows that the tools are

highly applicable, reduce the code bloat, and are much safer than manual transformations.

Chapter 4 presents the design and evaluation of two automated tools: (i) Asyncifier

refactors callback-based asynchronous code to use async, (ii) AsyncFixer finds and corrects

common misuses of async. Evaluation shows that these tools are applicable, efficient, and

useful. Developers accepted 408 patches generated by our tools.

Chapter 5 presents 10 kinds of prevalent misuses of async/await, which have severe

consequences such as subtle data-races, swallowed exceptions, and unintended behavior. We

extend the capability of our previous tool, AsyncFixer so that it detects and corrects these

misuses as well. AsyncFixer discovered 891 misuses in open-source and 169 misuses in

proprietary code-bases. Our industrial partners adopted our tool in their automated build

process.

Chapter 6 presents a set of guidelines for researchers that aim to make a practical impact

on the usage of new programming constructs.

Chapter 7 puts the dissertation in the context of the related research. Chapter 8 concludes

and talks about future work.

Parts of this dissertation have been published in technical reports and conferences. In

particular, Chapter 3 is described in our ECOOP-2014 [19] paper and Chapter 4 in our ICSE-

2014 paper [15], which received ACM SIGSOFT Distinguished Paper Award. Chapter 5 is

currently under review at a premiere software engineering conference. These chapters have

been extended and revised when writing this dissertation.
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CHAPTER 2

Background on Concurrent Programming

2.1 Concurrency, Parallelism, and Asynchrony

The computing hardware industry has resorted to multi-core CPUs in order to keep up

with the previous prediction of Moore’s law. While the number of transistors will keep

doubling, the multi-core revolution puts pressure on software developers to use concurrency

if they want to benefit from future hardware improvements. Developers use concurrency to

improve the performance and scalability of software through enhancing its throughput and

responsiveness on multiprocessor platforms.

Concurrency, parallelism, and asynchrony are three related concepts, but are slightly dif-

ferent. Concurrency is a conceptual property of a system representing the fact that multiple

activities may run during overlapping time periods. However, parallelism and asynchrony

are runtime states of a concurrent system, hence they are forms of concurrency.

When developers use concurrency for parallelism, it is to improve a non-functional re-

quirement such as performance and throughput. They use multiple threads that run on

multicore machine so that multiple operations run at the same time, in parallel. Parallelism

works well when you can separate a task into independent pieces of work. For example,

the manipulation of a large set of data can sometimes be divided over multiple cores, often

in equal operations. Parallelism literally physically run multiple operations, at the same

time using multi-core infrastructure of CPU, by assigning one core to each operation. In a

single-core CPU, parallelism cannot be achieved.

When developers use concurrency for asynchrony, it is to make a system more scalable

and responsive. The emphasis lies on computations that run in the background from the

perspective of a specific thread of execution. For example, to keep the UI responsive, devel-
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opers asynchronously execute expensive and time-consuming operations so that the event

dispatch thread becomes available to respond to UI events (e.g., scrolling, clicking on a

button). Asynchrony is possible in a single-core CPU due to context-switching between

threads.

This dissertation uses the term of concurrency as an umbrella term that encompasses both

asynchrony and parallelism.

2.2 Concurrent Programming in C#

Developers need to use concurrency to leverage multi-core technology. However, it is known

that concurrent programming is hard [20]. The industry leaders hope to convert the hard

problem of using concurrency into the easier problem of using concurrency libraries. Mi-

crosoft provides several libraries for .NET languages (e.g., C#). Java developers uses

java.util.concurrent [21] package. Intel provides Threading Building Blocks (TBB) [4] for

C++. Despite syntactic differences, these libraries provide similar features such as threads,

scalable concurrent collections (e.g., ConcurrentDictionary), high-level parallel constructs

(e.g., Parallel.For), and lightweight tasks (e.g., futures, promises). Their runtime systems

also provide automatic load balancing [8].

C# is particularly rich when it comes to concurrency libraries. Microsoft provides con-

currency constructs with four different libraries in .NET framework: Task Parallel Library

(TPL) [1], Parallel Language Integrated Query (PLINQ) [2], Concurrent Collections [22],

and Threading [3]. We categorized concurrency constructs into two main parts: (i) con-

structs for offloading CPU-bound operations to another thread, (ii) constructs for offloading

I/O-bound operations to another thread.

2.2.1 Concurrency constructs for CPU-bound operations

C# provides five main constructs to offload CPU-bound or custom operations to another

thread so that the current thread is not blocked: (1) starting a new Thread, (2) queuing a

job in the ThreadPool, (3) starting execution of a BackgroundWorker, (4) running a Task,
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(5) calling methods of Parallel class: Parallel.For, Parallel.Invoke.

Thread is the primary construct for encapsulating concurrent computation, and

ThreadPool allows one to reuse threads. Task and Parallel constructs are considered mod-

ern constructs, whereas the rest represents the legacy constructs. Microsoft now encourages

developers to use Task in order to write scalable, hardware independent, fast, and readable

asynchronous code [23].

Thread class. Operating systems use processes to separate the different applications that

they are executing. Thread is the basic unit to which an operating system allocates processor

time, and more than one thread can be executing code inside one process. Threading library

in .NET provides an abstraction of threads, Thread class since its first version, 2003.

Thread represents an actual OS-level thread, so it is expensive to use; creating a Thread

needs about 1.5 MB memory space. Windows also creates many additional data structures

to work with this thread, such as a Thread Environment Block (TEB), a user mode stack,

and a kernel mode stack. Bringing in a new thread may also mean more thread context

switching, which further hurts performance. It takes about 200,000 CPU cycles to create a

new thread, and about 100,000 cycles to retire a thread.

On one hand, Thread class allows the highest degree of control; developers can set many

thread-level properties like the stack size, priority, background and foreground. However,

general-purpose apps do not need most of these low-level features. On that matter, Microsoft

discourages developers to use these features because they are usually misused [23]. In modern

C# code, developers should rarely need to explicitly start their own thread.

On the other hand, Thread has some limitations. For example, a Thread construc-

tor can take at most one parameter and this parameter must be of type Object.

In Code 2.1, a Thread is first created with its body which is MailSlotChecker method.

ParameterizedThreadStart indicates that this method needs to take a parameter. Af-

ter priority and background properties are set, the parameter, info is created and given

to Start method that asynchronously executes the Thread. When the instance info

of MailSlotThreadInfo type is passed to Thread body, it will be forced to upcast to

Object type. Developers manually need to downcast it to MailSlotThreadInfo type
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in MailSlotChecker method. Hence, this introduced verbose code like explicit casting,

ParameterizedThreadStart objects. To wait for the termination of the Thread, the code

invokes a blocking method, Join.

Code 2.1 Thread usage example from Tiraggo[24] app

Thread thread = new Thread(new ParameterizedThreadStart(MailSlotChecker));

thread.Priority = ThreadPriority.Lowest;

thread.IsBackground = true;

MailSlotThreadInfo info = new MailSlotThreadInfo(channelName, thread);

thread.Start(info);

...

thread.Join(info);

ThreadPool class. There is no need to create or destroy threads for each work item; the

threads are recycled in the pool. .NET provides an abstraction, the ThreadPool class, since

its first version.

Although ThreadPool class is efficient to encapsulate concurrent computation, it gives

developers no control at all. Developers only submit work which will execute at some point.

The only thing they can control about the pool is its size. ThreadPool offers no way to find

out when a work item has been completed (unlike Thread.Join()), neither a way to get the

result.

Code 2.2 shows two main examples of ThreadPool usage. QueueUserWorkItem is used to

put work items to the thread pool. The first example executes foo(param) method call in

the thread pool but it is unclear because of the syntax. The second example executes the

same thing with a lambda function which is introduced in C# 4.0. Developers can directly

pass the parameters to the lambda function. However, QueueUserWorkItem only accepts a

lambda function that takes one parameter: (e.g., (x)=> foo(x). Developers always need to

provide one parameter, regardless of whether they use it or not, thus many times they call

this parameter unused or ignored.

Code 2.2 ThreadPool example

ThreadPool.QueueUserWorkItem(new WaitCallback(foo),param);

ThreadPool.QueueUserWorkItem((unused)=> foo(param));
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Task class. Task was introduced in the Task Parallel Library [25] with the release of

.NET 4.0 in 2010. Task offers the best of both worlds: Thread and ThreadPool. Task is

simply a lightweight thread-like entity that encapsulates an asynchronous operation. Like

ThreadPool, a Task does not create its own OS thread so it does not have high-overhead

of Thread. Instead, it is executed by a TaskScheduler; the default scheduler simply runs

on the thread pool. TaskScheduler use work-stealing techniques which are inspired by the

Java fork-join framework [8].

Task is a lightweight thread-like entity that encapsulates an asynchronous operation. Using

tasks instead of threads has many benefits [25] - not only are tasks more efficient, they also

abstract away from the underlying hardware and the OS specific thread scheduler. Task<T>

is a generic class where the associated action returns a result; it essentially encapsulates the

concept of a “Future” computation. TaskFactory creates and schedules tasks. Here is a

fork/join task example from the passwordgenerator [26] application:

Code 2.3 Task example

for (uint i = 0; i < tasks.Length; i++)

{

tasks[i] = tf.StartNew(() => GeneratePassword(length, forceNumbers, ...), _cancellation.Token);

}

Task.WaitAll(tasks, _cancellation.Token);

The code creates and spawns several tasks stored in an array of tasks (the fork step), and

then waits for all tasks to complete (the join step).

Unlike the ThreadPool, Task also allows developers to find out when it finishes, and (via

the generic Task<T>) to return a result. A developer can call ContinueWith() on an existing

Task to make it run more code once the task finishes; if it is already finished, it will run the

callback immediately. A developer can also synchronously wait for a task to finish by calling

Wait() (or, for a generic task, by getting the Result property). Like Thread.Join(), this

will block the calling thread until the task finishes.

The bottom line is that Task is almost always the best option; it provides a much more

powerful API and avoids wasting OS threads. All newer high-level concurrency APIs, in-

cluding PLINQ, async language features, and modern asynchronous methods are all built
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on Task. It is becoming the foundation for all parallelism, concurrency, and asynchrony in

.NET. According to Microsoft, Task is the only preferred way to write multithreaded and

parallel code [23].

Parallel class. Parallel class is a part of the TPL library as well. It provides three

main methods to support parallel programming design patterns: data parallelism (via

Parallel.For and Parallel.ForEach), and task parallelism (via Parallel.Invoke).

Parallel.For method accepts three parameters: an inclusive lower-bound, an exclusive

upper-bound, and a lambda function to be invoked for each iteration. By default, it uses

the work queued to .NET thread pool to execute the loop with as much parallelism as it can

muster. For example, Parallel.For(0, n, (i)=> foo(i)).

Parallel.ForEach is a very specialized loop. Its purpose is to iterate through a specific

kind of data set, a data set made up of numbers that represent a range. For example,

Parallel.ForEach(books, (book)=>foo(book)).

Parallel.Invoke runs the operations (lambda functions) given as parameters concurrently

and waits until they are done. It parallelizes the operations, not the data. For example,

Parallel.Invoke(()=> foo(), ()=> boo()).

Parallel class works efficiently even if developers pass in an array of one million lambda

functions to Parallel.Invoke or one million iterations to Parallel.For. This is because

Parallel class does not necessarily use one Task per iteration or operation, as that could

add significantly more overhead than is necessary. Instead, it partitions the large number of

input elements into batches and then it assigns each batch to a handful of underlying tasks.

Under the covers, it tries to use the minimum number of tasks necessary to complete the loop

(for For and ForEach) or operations (for Invoke) as fast as possible. Hence, Microsoft shows

that Parallel class performs faster than equivalent Task-based code in some cases [27].

Parallel class will run iterations or operations in parallel unless this is more expensive

than running them sequentially. The runtime system handles all thread scheduling details,

including scaling automatically to the number of cores on the host computer.

Here is a usage example from the ravendb [28] application:
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Code 2.4 Parallel.For example

Parallel.For(0, 10, counter => { ... ProcessTask(counter, database, table)} )

The first two arguments specify the iteration domain, and the third argument is a C#

lambda function called for each iteration. TPL also provides more advanced variations of

Parallel.For, useful in map/reduce computations.

PLINQ library. .NET 4.0 provides a fourth parallel library, the Parallel Language-

Integrated Query (PLINQ) library, which supports a declarative programming style. PLINQ

queries operate on IEnumarable objects by calling AsParallel(). Here is an example from

the AppVisum [29] application:

Code 2.5 PLINQ example

assembly.GetTypes().AsParallel()

.Where(t => t.IsSubclassOf(typeof(ControllerBase)))

.Select(t => new ...)

.ForAll(t => controllersCache.Add(t.Name, t.Type));

After the AsParallel, the data is partitioned to worker threads, and each worker thread

executes in parallel the following Where, Select, and ForAll.

2.2.2 Concurrency constructs for IO-bound operations

I/O operations are more complicated to offload asynchronously. The naive approach would

be to just start another thread to run the synchronous operation asynchronously, using the

same mechanics as used for CPU-bound code. This approach would help the event dispatch

thread become available, but it hurts scalability. The spawned thread will be busy-waiting

for the synchronous I/O operation. Because a new thread is a valuable resource, consuming

it just for busy-waiting hurts scalability.

The solution is to use asynchronous APIs provided by the .NET framework, which take

advantage of operating system’s support for I/O completion ports. I/O completion ports

provide an efficient threading model for processing multiple asynchronous I/O requests on a

multiprocessor system. When a process creates an I/O completion port, the system creates
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an associated queue object for requests whose sole purpose is to service these requests. Under

the hood, that queue object sets up the plumbing to get the port to automatically notify

the process when the I/O operation completes. The core idea is that no thread is waiting

while the I/O operation takes place.

The .NET framework mainly provides three models for asynchronous programming, which

use I/O completion threads: (1) callback-based, Asynchronous Programming Model (APM)

in 2002, (2) callback-based, Event-based Asynchronous Pattern (EAP) in 2005, (3) task-

based, Task Asynchronous Pattern (TAP) in 2012.

Both APM and EAP represent the legacy models, whereas TAP is now considered the

modern model for async I/O operations. For (almost) each I/O operation, .NET pro-

vides constructs for each model. For instance, to download the requested resource as a

string, .NET provides BeginDownloadString for APM, DownloadStringAsync for EAP, and

DownloadStringTaskAsync for TAP.

UI freezes without concurrency. Modern graphical user interface (GUI) frameworks

use an event dispatch thread that is a single, specific thread to manipulate the user interface

(UI) state [30, 31, 32, 33]. The UI freezes when this single thread is busy with long-running

CPU-bound or blocking I/O operations. Code 2.6 shows an example of a frozen event

handler: Button Click. When a button click event handler executes a synchronous long-

running CPU-bound or blocking I/O operation, the user interface will freeze because the

UI event thread cannot respond to events. Code 2.6 shows an example of such an event

handler, method Button Click. It uses the GetFromUrl method to download the contents of

a URL, and place it in a text box. Because GetFromUrl is waiting for the network operation

to complete, the UI event thread is blocked, and the UI is unresponsive.

Keeping UIs responsive thus means keeping the UI event thread free of those long-running

or blocking operations. If these operations are executed asynchronously in the background,

the foreground UI event thread does not have to busy-wait for completion of the operations.

That frees up the UI event thread to respond to user input, or redraw the UI: the user will

experience the UI to be responsive.

Asynchronous programming model (APM). APM, the Asynchronous Programming
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Code 2.6 Synchronous example

1 void Button_Click(...) {
2 string contents = GetFromUrl(url)
3 textBox.Text = contents;
4 }
5 string GetFromUrl(string url) {
6 WebRequest request = WebRequest.Create(url);
7 WebResponse response = request.GetResponse();
8 Stream stream = response.GetResponseStream();
9 return stream.ReadAsString();

10 }

Code 2.7 APM-based example

1 void Button_Click(...) {
2 GetFromUrl(url);
3 }
4 void GetFromUrl(string url) {
5 var request = WebRequest.Create(url);
6 request.BeginGetResponse(Callback, request);
7 }
8 void Callback(IAsyncResult aResult) {
9 var request = (WebRequest)aResult.AsyncState;

10 var response = request.EndGetResponse(aResult);
11 var stream = response.getResponseStream();
12 var content = stream.ReadAsString();
13 Dispatcher.BeginInvoke(() => {
14 textBox.Text = content;
15 });
16 }

Model, was part of the first version of the .NET framework, and has been in existence for

10 years. APM asynchronous operations are started with a Begin method invocation. The

result is obtained with an End method invocation. In Code 2.7, BeginGetResponse is such

a Begin method, and EndGetResponse is an End method.

BeginGetRepsonse is used to initiate an asynchronous HTTP GET request. The .NET frame-

work starts the I/O operation in the background (in this case, sending the request to the

remote web server). Control is returned to the calling method, which can then continue to

do something else. When the server responds, the .NET framework will “call back” to the

application to notify that the response is ready. EndGetResponse is then used in the callback

code to retrieve the actual result of the operation. See Figure 2.1 for an illustration of this

flow of events.

The APM Begin method has two pattern-related parameters. The first parameter is the

callback delegate (which is a managed, type-safe equivalent of a function pointer). It can be
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Figure 2.1: Where is callback-based APM code executing?

defined as either a method reference, or a lambda expression. The second parameter allows

the developer to pass any single object reference to the callback, and is called state.

The .NET framework will execute the callback delegate on the thread pool once the

asynchronous background operation completes. The EndGetResponse method is then used

in the callback to obtain the result of the operation, the actual WebResponse.

Note a subtle difference between the synchronous, sequential example in Code 2.6 and

the asynchronous, APM-based example in Code 2.7. In the synchronous example, the

Button Click method contains the UI update (setting the download result as contents of the

text box). However, in the asynchronous example, the final callback contains an invocation

of Dispatcher.BeginInvoke(...) to change context from the thread pool to the UI event

thread.

Task-based Asynchronous Pattern (TAP). TAP, the Task-based Asynchronous Pat-

tern, provides for a slightly different approach. TAP methods have the same base operation

name as APM methods, without ‘Begin’ or ‘End’ prefixes, and instead have an ‘Async’ suffix.

The API consists of methods that start the background operation and return a Task object.

The Task represents the operation in progress, and its future result.

19



The Task can be (1) queried for the status of the operation, (2) synchronized upon to

wait for the result of the operation, or (3) set up with a continuation that resumes in the

background when the task completes (similar to the callbacks in the APM model).

2.2.3 Pause and play with async/await

Drawbacks of APM and plain TAP. Using APM and plain TAP directly has two

main drawbacks. First, the code that must be executed after the asynchronous operation

is finished, must be passed explicitly to the Begin method invocation. For APM, even

more scaffolding is required: The End method must be called, and that usually requires

the explicit passing and casting of an ‘async state’ object instance - see Code 2.7, lines

9-10. Second, even though the Begin method might be called from the UI event thread, the

callback code is executed on a thread pool thread. To update the UI after completion of the

asynchronous operation from the thread pool thread, an event must be sent to the UI event

thread explicitly - see Code 2.7, line 13-15.

async/await keywords. C# 5 introduced async/await keywords in 2012 to treat asyn-

chronous programming as a first-class citizen. These new keywords can only be used with

modern constructs: methods for running a custom Task (e.g., Task.Run()) and TAP meth-

ods for async I/O operations (e.g., GetResponseAsync()). The return type of both types of

methods is a Task, which is a requirement of using the new keywords.

Task represents the operation in progress, and its future result. It can be (1) queried for

the status of the operation, (2) synchronized upon to wait for the result of the operation, or

(3) set up with a continuation that resumes in the background when the task completes.

To solve this problem, the async and await keywords have been introduced in 2012 in

C# 5.0. When a method has the async keyword modifier in its signature, the await keyword

can be used to define pausing points. When a Task is awaited in an await expression,

the current method is paused and control is returned to the caller. When the await’ed

Task’s background operation is completed, the method is resumed from right after the await

expression. Code 2.8 shows the TAP- & async-based equivalent of Code 2.7, and Figure 2.2
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Code 2.8 TAP & async/await-based example

1 async void Button_Click(...) {
2 var content = await GetFromUrlAsync(url);
3 textBox.Text = content;
4 }
5 async Task<string> GetFromUrlAsync(string url) {
6 var request = WebRequest.Create(url);
7 var response = await request.GetResponseAsync()
8 .ConfigureAwait(false);
9 var stream = response.GetResponseStream();

10 return stream.ReadAsString();
11 }

Figure 2.2: Where is the async/await-based code executing?

illustrates its flow of execution.

The code following the await expression can be considered a continuation of the method,

exactly like the callback that needs to be supplied explicitly when using APM or plain TAP.

Methods that have the async modifier will thus run synchronously up to the first await

expression (and if it does not have any, it will complete synchronously). Merely adding

the async modifier does not magically make a method be asynchronously executed in the

background.

Where the code is executing. The new async/await keywords introduced a new pro-

gramming paradigm: pause ’n’ play . When a method has the async keyword modifier in its

signature, the await keyword can be used to define pausing points. When a Task is awaited
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in an await expression, the current method is paused and control is returned to the caller,

which can then continue to do something else. When the awaited Task’s background oper-

ation is completed, the method is resumed from right after the await expression. Code 2.8

shows the TAP- & async/await-based equivalent of synchronous Code 2.6. Figure 2.2 illus-

trates its flow of execution.

The code following the await expression can be considered a continuation of the method,

exactly like the callback that needs to be supplied explicitly when using legacy async I/O

constructs. Methods that have the async modifier will thus run synchronously up to the first

await expression (and if it does not have any, it will complete synchronously). Merely adding

the async modifier does not make a method be asynchronously executed in the background.

There is one important difference between async continuations, and APM or plain TAP

callback continuations: APM and plain TAP always execute the callback on a thread pool

thread. The programmer needs to explicitly schedule a UI event to interface with the UI, as

shown in Code 2.7 and Figure 2.1.

In async/await continuations, the await keyword, by default, captures information about

the thread in which it is executed. This captured context is used to schedule execution of

the rest of the method in the same context as when the asynchronous operation was called.

For example, if the await keyword is encountered in the UI event thread, it will capture

that context. Once the background operation is completed, the continuation of the rest of

the method is scheduled back onto the UI event thread. This behavior allows the developer

to write asynchronous code in a sequential manner. See Code 2.8 for an example.

Comparing the code examples in Code 2.6 and Code 2.8 will show that the responsive

version based on TAP & async/await only slightly differs from the sequential version. It is

readable in a similar fashion, and even the UI update (setting contents of the text box) is

back at its original place.

ConfigureAwait(false). By default, await expressions capture the current context.

However, it is not always needed to make the expensive context switch back to the original

context. To forestall a context switch, an await’ed Task can be set to ignore capturing the

current context by using ConfigureAwait(false). In Code 2.8, in GetFromUrlAsync, none of
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the statements following the await expressions require access to the UI. Hence, the await’ed

Task is set with ConfigureAwait(false). In Button Click, the statement following await

GetFromUrlAsync(url) does need to update the UI. So that await expression should capture

the original context, and the task should not be set up with ConfigureAwait(false).

2.3 Definitions

We define some terms here that we will frequently use in the dissertation:

async call : asynchronous (non-blocking) method call that returns Task.

async I/O call : async call that is provided by .NET framework (not user-defined) to

asynchronously initiate an I/O operation such as WebClient.DownloadFileAsync().

async method : user-defined method definition that is marked with async modifier (see

line 1 in Code 2.8).

to wait (verb): synchronously waiting for an async call (e.g., task.Wait()).

to await (verb): asynchronously waiting for an async call (e.g., await task).

await (noun): a keyword that is inserted in front of an async call that you would like to

await (see line 2 in Code 2.8).

fire & forget async call : async call that is neither waited, nor awaited .
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CHAPTER 3

Migration to Higher-Level Concurrency Constructs

3.1 Introduction

In the quest to support programmers with faster, more scalable, and readable code, par-

allel libraries continuously evolve from low-level to higher-level abstractions. For example,

Java 6 (2006) improved the performance and scalability of its concurrent collections (e.g.,

ConcurrentHashMap), Java 7 (2011) added higher-level abstractions such as lightweight tasks,

Java 8 (2014) added lambda expressions that dramatically improve the readability of parallel

code. Similarly, in the C# ecosystem, .NET 1.0 (2002) supported a Threading library, .NET

4.0 (2010) added lightweight tasks, declarative parallel queries, and concurrent collections,

.NET 4.5 (2012) added reactive asynchronous operations.

Low-level abstractions, such as Thread, make parallel code more complex, less scalable,

and slower. Because Thread represents an actual OS-level thread, developers need to take

into account the hardware (e.g., the number of cores) while coding. Threads are heavyweight :

each OS thread consumes a non-trivial amount of memory, and starting and cleaning up after

a retired thread takes hundreds of thousands of CPU cycles. Even though a .NET developer

can use ThreadPool to amortize the cost of creating and recycling threads, she cannot control

the behavior of the computation on ThreadPool. Moreover, new platforms such as Microsoft

Surface Tablet no longer support Thread. .NET also does not allow using the new features

(e.g., async abstractions) with Thread and ThreadPool. Furthermore, when developers mix

old and new parallel abstractions in their code, it makes it hard to reason about the code

because all these abstractions have different scheduling rules.

Higher-level abstractions such as .NET Task, a unit of parallel work, make the code less

complex. Task gives advanced control to the developer (e.g., chaining, cancellation, futures,

24



callbacks), and is more scalable than Thread. Unlike threads, tasks are lightweight : they

have a much smaller performance overhead and the runtime system automatically balances

the workload. Microsoft now encourages developers to use Task in order to write scalable,

hardware independent, fast, and readable parallel code [23].

However, most developers are oblivious to the benefits brought by the higher-level parallel

abstractions. In recent empirical studies for C# [6] and Java [7], researchers found that

Thread is still the primary choice for most developers. In this study we find similar evidence.

Our corpus of the most popular and active 880 C# applications on Github [16] that we

prepared for this study, shows that when developers use parallel abstractions they still use

the old Thread and ThreadPool 62% of the time, despite the availability of better options.

Therefore, a lot of code needs to be migrated from low-level parallel abstractions to their

higher-level equivalents.

The migration has several challenges. First, developers need to be aware of the different

nature of the computation. While blocking operations (e.g., I/O operations, Thread.Sleep)

do not cause a problem in Thread-based code, they can cause a serious performance issue

(called thread-starvation) in Task-based code. Because the developers need to search for

such operations deep in the call graph of the concurrent abstraction, it is easy to overlook

them. For example, in our corpus of 880 C# applications, we found that 32% of tasks

have at least one I/O blocking operation and 9% use Thread.Sleep that blocks the thread

longer than 1 sec. Second, developers need to be aware of differences in handling exceptions,

otherwise exceptions become ineffective or can get lost.

In this study, we present an automated migration tool, Taskifier, that transforms old

style Thread and ThreadPool abstractions to higher-level Task abstractions in C# code.

During the migration, Taskifier automatically addresses the non-trivial challenges such

as transforming blocking to non-blocking operations, and preserving the exception-handling

behavior.

The recent versions of parallel libraries provide even higher-level abstractions on top of

Tasks. For example, the Parallel abstraction in C# supports parallel programming design

patterns: data parallelism in the form of parallel loops, and fork-join task parallelism in the

form of parallel tasks co-invoked in parallel. These dramatically improve the readability of
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the parallel code. Consider the example in Code 3.1, taken from ravendb [28] application.

Code 3.2 represents the same code with a Parallel operation, which dramatically reduces

the code. According to a study [27] by Microsoft, these patterns may also lead to better

performance than when using Task, especially when there is a large number of work items

(Parallel reuses tasks at runtime to eliminate the overhead).

Code 3.1 Forking Task in a loop

1 List<Task> tasks = new List<Task>();

2 for (int i = 0; i <= n; i++)

3 {

4 int copy = i;

5 Task taskHandle = new Task(

6 () => DoInsert(..., copy));

7 taskHandle.Start();

8 tasks.Add(taskHandle);

9 }

10 Task.WaitAll(tasks);

Code 3.2 Equivalent Parallel.For

1 Parallel.For(0,n,(i)=>DoInsert(...,i));

Despite the advantages of the higher-level abstractions in the Parallel class, develop-

ers rarely use them. In our corpus we found that only 6% of the applications use the

Parallel operations. We contacted the developers of 10 applications which heavily use

Thread, ThreadPool, and Task abstractions, and asked why they are not using the Parallel

operations. The major reason given by developers was lack of awareness. This indicates

there is a need for tools that suggest transformations, thus educating developers about bet-

ter coding practices.

Transforming the Task-related code into higher-level Parallel operations is not trivial:

it requires control- and data-flow analysis, as well as loop-carried dependence analysis. For

the example in Code 3.1, the code does not execute the assignment in Line 4 in parallel with

itself in other iterations (only the code in the task body – Line 6 – is executed in parallel).

However, after converting the original for into a Parallel.For, the assignment in Line 4

will also execute in parallel with other assignments. Thus, the programmer must reason

about the loop-carried dependences.

Inspired from the problems that developers face in practice, we designed and implemented

a novel tool, Simplifier, that extracts and converts Task-related code snippets into higher-
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level parallel patterns. To overcome the lack of developer awareness, Simplifier operates

in a mode where it suggests transformations as “quick-hints” in the Visual Studio IDE. If

the developer agrees with the suggestion, Simplifier automatically transforms the code.

3.2 Formative Study

Before explaining Taskifier and Simplifier, we explore the motivations of these tools by

answering two research questions:

RQ1: What level of parallel abstractions do developers use?

RQ2: What do developers think about parallel abstractions?

We first explain how we gather the code corpus to answer these questions. We use the

same code corpus to evaluate our tools (Section 3.5).

3.2.1 Methodology

We created a code corpus of C# apps by using our tool OSSCollector. We chose

GitHub [16] as the source of the code corpus because Github is now the most popular

open-source software repository, having surpassed Google Code and SourceForge.

OSSCollector downloaded the most popular 1000 C# apps which have been modified

at least once since June 2013. OSSCollector visited each project file in apps in order

to resolve/install dependencies by using nuget [34], the package manager of choice for apps

targeting .NET. OSSCollector also eliminated the apps that do not compile due to

missing libraries, incorrect configurations, etc. OSSCollector made as many projects

compilable as possible (i.e., by resolving/installing dependencies).

OSSCollector also eliminated 72 apps that targeted old platforms (e.g., Windows

Phone 7, .NET Framework 3.5, Silverlight 4) because these old platforms do not support

new parallel libraries.

After all, OSSCollector successfully retained 880 apps, comprising 42M SLOC, pro-

duced by 1859 developers. This is the corpus that we used in our analysis and evaluation.
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In terms of the application domain, the code corpus has (1) 364 libraries or apps for

desktops, (2) 185 portable-libraries for cross-platform development, (3) 137 Windows Phone

8 apps, (4) 84 web apps (ASP.NET), (5) 56 tablet applications (Surface WinRT), and (6)

54 Silverlight apps (i.e., client-side runtime environment like Adobe Flash). Hence, the code

corpus has apps which (i) span a wide domain and (ii) are developed by different teams with

1859 contributors from a large and varied community.

Roslyn. The Microsoft Visual Studio team has released Roslyn [18] with the goal to

expose compiler-as-a-service through APIs to other tools like code generation, analysis, and

refactoring. Roslyn has components such as Syntax, Symbol Table, Binding, and Flow

Analysis APIs. We used these APIs in our tools for analyzing our code corpus.

Roslyn also provides the Services API allowing to extend Visual Studio. Developers can

customize and develop IntelliSense, refactorings, and code formatting features. We used

Services API for implementing our tools.

3.2.2 RQ1: What level of parallel abstractions do developers use?

In a previous study [6], we found out that developers prefer to use old style threading

code over Task in C# apps. We wanted to have a newer code corpus which includes the

recently updated most popular apps. We used Roslyn API to get the usage statistics of the

abstractions.

As we explained in Section 2.2.1, there are 4 main ways to offload a computation to another

thread: (1) creating a Thread, (2) accessing the ThreadPool directly, (3) creating a Task,

(4) using task or data parallelism patterns with Parallel.Invoke and Parallel.For(Each).

Table 3.1 tabulates the usage statistics of all these approaches. Some apps use more than

one parallel idiom and some never use any parallel idiom.

As we see from the table, developers use Thread and ThreadPool more than Task and

Parallel even though our code corpus contains recently updated apps which target the

latest versions of various platforms. The usage statistics of Parallel are also very low

compared to Task. These findings definitely show that developers use low-level parallel
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Table 3.1: Usage of parallel idioms. The three columns show the total number of abstrac-
tion instances, the total number of apps with instances of the abstraction, and the percentage
of apps with instances of the abstraction.

# App App%

Creating a Thread 2105 269 31%

Using ThreadPool 1244 191 22%

Creating a Task 1542 170 19%

Data Parallelism Pattern with Parallel.For(Each) 432 51 6%

Task Parallelism Pattern with Parallel.Invoke 53 12 1%

abstractions.

Surprisingly, we also found that 96 apps use Thread, ThreadPool, and Task at the same

time. This can easily confuse the developer about the scheduling behavior.

3.2.3 RQ2: What do developers think about parallel abstractions?

In this question, we explore why developers use low-level abstractions and whether they are

aware of the newer abstractions.

We first asked the experts on parallel programming in C#. We looked for the experts on

StackOverflow [35] which is the pioneering Q&A website for programming. We contacted

the top 10 users for the tags “multithreading” and “C#”, and got replies from 7 of them.

Among them are Joe Albahari who is the author of several books on C# (e.g., “C# in a

Nutshell”), and John Skeet who is the author of “C# in Depth” and he is regarded as one

of the most influential people on StackOverflow.

All of them agree that Task should be the only way for parallel and concurrent pro-

gramming in C#. For example, one said “Tasks should be the only construct for building

multithreaded and asynchronous applications”. According to them, Thread should be used

for testing purposes: “threads are actually useful for debugging” (e.g., guaranteeing a mul-

tithreading environment, giving names to threads). When we asked them whether an auto-

mated tool is needed to convert Thread to Task, they concluded that the existence of some

challenges makes the automation really hard. For example, one said that “I wonder whether
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doing it nicely in an automated fashion is even feasible” and another said that ”Often there’s

in-brain baggage about what the thread is really doing which could affect what the target of

the refactoring should actually be”.

Second, we contacted the developers of 10 applications which heavily mix Thread,

ThreadPool, and Task. Most of them said that the legacy code uses Thread and ThreadPool

and they always prefer Task in the recent code. The developer of the popular ravendb ap-

plication [28], Oren Eini, said that “We intend to move most stuff to tasks, but that is on

an as needed basis, since the code works” and another said that his team “never had time

to change them”. This comment indicates that the changes are tedious.

We also asked the developers whether they are aware of the Parallel class. Developers

of 7 of the apps said that they are not aware of the Parallel class and they were surprised

seeing how much it decreases the code complexity: “Is this in .NET framework? It is the

most elegant way of a parallel loop”.

3.3 Taskifier: Migrating Thread-based Code to Task

We developed Taskifier, a tool that migrates Thread and ThreadPool abstractions to Task

abstractions. Section 3.3.1 presents the algorithms for the migration from Thread to Task.

Section 3.3.2 presents the migration from ThreadPool to Task. Section 3.3.3 presents the

special cases to handle some challenges. Section 3.3.4 presents how developers interact with

Taskifier.

3.3.1 Thread to Task

First, Taskifier needs to identify the Thread instances that serve as the target of the trans-

formation. In order to do this, Taskifier detects all variable declarations of Thread type

(this also includes arrays and collections of Thread). For each Thread variable, it iterates over

its method calls (e.g., thread.Start()) and member accesses (e.g., thread.IsAlive=...).

Then, Taskifier replaces each of them with their correspondent from the Task class.

However, corresponding operations do not necessarily use the same name. For instance,
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thread.ThreadState, an instance field of Thread class gets the status of the current thread.

The same goal is achieved in Task class by using task.Status.

Some low-level operations in Thread do not have a correspondent in the Task class. For

example, (1) Priority, (2) Dedicated Name, (3) Apartment State.

After studying both Thread and Task, we came up with a mapping between them. Task-

ifier uses this map for the conversion. If Taskifier finds operations that have no equiv-

alents, it will discard the whole conversion from Thread to Task for that specific Thread

variable.

The most important transformations in the uses of Thread variables are for creating, start-

ing, and waiting operations. Code 3.3 shows a basic usage of Thread and Code 3.4 represents

the equivalent code with Task operations. Developers create Thread by using its constructor

and providing the asynchronous computation. There are various ways of specifying the com-

putation in the constructor such as delegates, lambdas, and method names. In the example

below, a delegate (ThreadStart) is used. Taskifier gets the computation from the delegate

constructor and transforms it to a lambda function. For starting the Thread and Task, the

operation is the same and for waiting, Task uses Wait instead of Join.

Code 3.3 Simple Thread example

1 ThreadStart t = new ThreadStart(doWork);

2 Thread thread = new Thread(t);

3 thread.Start();

4 thread.Join();

Code 3.4 Equivalent Task code

1 Task task = new Task(()=>doWork());

2 task.Start();

3 task.Wait();

While the transformation in Code 3.3 and Code 3.4 show the most basic case when the

asynchronous computation does not take any arguments, the transformation is more in-

volved when the computation needs arguments. Consider the example in Code 3.5. The

asynchronous computation is the one provided by the Reset method (passed in line 1), but

the parameter of the Reset method is passed as an argument to the Thread.Start in line

3. Since the Thread.Start can only take Object arguments, the developer has to downcast

from Object to a specific type (in line 7).

Code 3.6 shows the refactored version, that uses Task. Unlike in Thread, Task.Start

does not take a parameter. In order to pass the state argument e to the asynchronous
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computation Reset, the code uses a lambda parameter in the Task constructor. In this

case, since there is no need to cast parameters in the Reset method body, Taskifier also

eliminates the casting statement (Line 7 from Code 3.5).

Code 3.5 Thread with dependent operators from Dynamo[36] app

1 ParameterizedThreadStart threadStart = new ParameterizedThreadStart(Reset);

2 Thread workerThread = new Thread(threadStart);

3 workerThread.Start(e);

4 ...

5 private void Reset(object state)

6 {

7 var args = (MouseButtonEventArgs)state;

8 OnClick(this, args);

9 ...

10 }

⇓

Code 3.6 Code 3.5 migrated to Task

1 Task workerTask = new Task(()=>Reset(e));

2 workerTask.Start();

3 ...

4 private void Reset(MouseButtonEventArgs args)

5 {

6 OnClick(this, args);

7 ...

8 }

Taskifier also changes the variable names such as from workerThread to workerTask by

using the built-in Rename refactoring of Visual Studio.

After Taskifier migrates the Thread variable to Task, it makes an overall pass over the

code again to find some optimizations. For instance, in Code 3.6, there is no statement

between Task constructor and Start method. In Task, there is a method combining these

two statements: Task.Run creates a Task, starts running it, and returns a reference to it.

Taskifier replaces the first two lines of Code 3.6 with only one statement:

Task workerTask = Task.Run(()=>Reset(e));
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Taskifier successfully detects all variable declarations of Thread class type; however,

we noticed that developers can use threads through an anonymous instance. The example

below from antlrcs app [37] shows such an anonymous usage of Thread on the left-hand side,

and refactored version with Task on the right-hand side. Taskifier replaces the Thread

constructor and the start operation with a static method of Task.

new Thread(t1.Run).Start(arg); => Task.Run(()=>t1.Run(arg));

3.3.2 ThreadPool to Task

The conversion from ThreadPool to Task is less complex than the previous

transformation. There is only one static method that needs to be replaced,

ThreadPool.QueueUserWorkItem(...). Taskifier simply replaces this method with

the static Task.Run method and removes the parameter casting from Object to actual

type in the beginning of the computation. The example below illustrates the transformation.

WaitCallback operation= new WaitCallback(doSendPhoto);

ThreadPool.QueueUserWorkItem(operation, e);

⇓

Task.Run(()=>DoSendPhoto(e));

3.3.3 Special cases

There are three special cases that make it non-trivial to migrate from Thread and ThreadPool

to Task manually:

I/O or CPU-bound Thread. During manual migration, developers need to understand

whether the candidate thread for migration is I/O or CPU bound since it can significantly
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affect performance. If an I/O-bound Thread is transformed to a Task without special con-

sideration, it can cause starvation for other tasks in the thread pool. Some blocking syn-

chronization abstractions like Thread.Sleep can also cause starvation when the delay is

long.

Manually determining whether the code in a Thread transitively calls some blocking op-

erations is non-trivial. It requires deep inter-procedural analysis. When developers convert

Thread to Task manually, it is easy to miss such blocking operations that appear deep inside

the methods called indirectly from the body of the Thread. In our code corpus, we found

that 32% of tasks have at least one I/O blocking operation and 9% use Thread.Sleep that

blocks the thread longer than 1 second. It shows that developers are not aware of this issue

and their tasks can starve.

Thus, it is crucial for Taskifier to determine whether the nature of the computation is

I/O or CPU-bound. If it finds blocking calls, it converts them into non-blocking calls, in

order to avoid starvation.

To do so, Taskifier checks each method call in the call graph of the Thread body for

a blocking I/O operation by using a blacklist approach. For this check, we have the list of

all blocking I/O operations in .NET. If Taskifier finds a method call to a blocking I/O

operation, it tries to find an asynchronous (non-blocking) version of it. For example, if it

comes across a stream.Read() method call, Taskifier checks the members of the Stream

class to see if there is a corresponding ReadAsync method. Upon finding such an equivalent,

it gets the same parameters from the blocking version. ReadAsync is now non-blocking and

returns a future Task to get the result when it is available. After finding the corresponding

non-blocking operation, Taskifier simply replaces the invocation with the new operation

and makes it await’ed. When a Task is awaited in an await expression, the current method

is paused and control is returned to the caller. The caller is the thread pool so the thread

pool will choose another task instead of busy-waiting. When the await’ed Task’s background

operation is completed, the method is resumed from right after the await expression.

var string = stream.Read(); => var string = await stream.ReadAsync();
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If Taskifier cannot find asynchronous versions for all blocking I/O operations in the

Thread body, it does not take any risks of blocking the current thread and, instead, it

inserts a flag to the Task creation statement: TaskCreationOptions.LongRunning. This

flag forces the creation of a new thread outside the pool. This has the same behavior as the

original code, i.e., it explicitly create a new Thread. But now the code still enjoys the many

other benefits of using Tasks, such as compatibility with the newer libraries and brevity.

In the case of Thread.Sleep, Taskifier replaces this blocking operation with a timer-

based non-blocking version, await Task.Delay. Upon seeing this statement, the thread in

the thread pool does not continue executing its task and another task from the thread pool

is chosen (cooperative-blocking).

Foreground and background Thread. By default, a Thread runs in the foreground,

whereas threads from ThreadPool and Task run in the background. Background threads are

identical to foreground threads with one exception: a background thread does not keep the

managed execution environment running. Thread is created on the foreground by default

but can be made background by “thread.IsBackground = true” statement. If a developer

wants to execute Task in a foreground thread, she has to add some extra-code in the body

of Task.

Since the intention is to preserve the original behavior as much as possible, Taskifier

should do the transformations accordingly. In the example below, the program will not

terminate until the method, LongRunning reaches the end. However, when this Thread is

turned into Task without any special consideration, the program will not wait for this method

and it will immediately terminate. While it is easy to diagnose the problem in this simple

example, it can be really hard for a fairly complex app.

public static void main(String args[])

{

...

new Thread(LongRunning);

}

Although, in some cases, Taskifier is able to tell from the context if the thread is

foreground or background, it is usually hard to tell if the developer really intended to create
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a foreground thread. Developers usually do not put much thought into a thread’s being a

foreground thread when created. We chose to implement our algorithm for Taskifier to

transform Thread to Task by default to work in the background. The developer still has the

option of telling Taskifier to create foreground tasks; however, the reasoning behind going

with the background by default is that when we contacted the developers, most of them did

not want the Task to work in the foreground even though they created foreground threads.

Exception handling. Another difference between Thread and Task is the mechanism

of unhandled exceptions. An unhandled exception in Thread and ThreadPool abstractions

results in termination of the application. However, unhandled exceptions that are thrown

by user code that is running inside Task abstractions are propagated back to the joining

thread when the static or instance Task.Wait methods are used. For a thrown exception to

be effective in a Task, that Task should be waited; otherwise, the exceptions will not cause

the termination of the process.

A simple direct migration from Thread and ThreadPool to Task can make the unhanded

exceptions silenced so developers will not notice them. This situation may destroy the

reliability and error-recovery mechanism that developers put into the original program.

To take care of this, Taskifier adds a method call to make sure exception handling is

preserved and unhandled exceptions are not ignored when non-waited threads are migrated

to tasks. During the transformation of the example below, Taskifier adds a new method,

FailFastOnException to the project just once. Other instances of Task in the project can

use this method. However, this stage is optional and can be enabled by the user upon

request.

new Thread(method).Start();

void method()

{

throw new Exception();

}

⇓

Task.Run(()=>method()).FailFastOnException();
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void method()

{

throw new Exception();

}

public static Task FailFastOnException(this Task task)

{

task.ContinueWith(c => Environment.FailFast("Task faulted", c.Exception),

TaskContinuationOptions.OnlyOnFaulted |

TaskContinuationOptions.ExecuteSynchronously |

TaskContinuationOptions.DetachedFromParent);

return task;

}

3.3.4 Workflow

We implemented Taskifier as a Visual Studio plugin, on top of the Roslyn SDK [18].

Because developers need to run Taskifier only once per migration, Taskifier operates

in a batch mode. The batch option allows the programmer to migrate automatically by

selecting any file or project in the IDE. Before starting the migration, Taskifier asks the

user for two preferences: Foreground Thread option and Exception Handling option. When

it operates at the file levels, Taskifier might still modify other files when necessary (e.g.,

if the method in Thread body is located in another file). Taskifier migrates Thread and

ThreadPool abstractions to Task in about 10 seconds on an average project (100K SLOC).

3.4 Simplifier: Refactoring to Parallel Design Patterns

Taskifier automatically migrates old-style parallel abstractions (Thread and ThreadPool)

to the modern Task. However, there are still some opportunities for higher-level abstractions

that can make the code faster and more readable.

Parallel class (see Section 2.2.1) provides parallel programming design patterns as a

higher-level abstraction over Task class. Implementing these design patterns with tasks

requires developers to write code with several instances of Tasks. A much simpler alternative

is to use a single instance of the Parallel class, which encapsulates the main skeleton of
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the design patterns. While the direct usage of Tasks affords more flexibility and control, we

found out that in many cases, developers do not use the extra flexibility, and their code can

be greatly simplified with a higher-level design pattern.

We developed Simplifier that converts multiple Task instances to one of three Parallel

operations (Parallel.For, Parallel.ForEach, Parallel.Invoke). Simplifier suggests

code snippets that can be transformed to Parallel operations and then does the actual

transformation on demand. Hence, we divided the explanation of the algorithms into two

parts: Suggestion and Transformation. In the Suggestion part, we explain how Simplifier

chooses the code candidates. In the Transformation part, we explain how Simplifier trans-

forms these candidates to Parallel operations. After explaining the three algorithms, we

discuss how developers interact with Simplifier in Section 3.4.4.

3.4.1 Multiple Task instances to Parallel.Invoke

Simplifier offers the transformation of task parallelism pattern composed of a group of

Task instances to Parallel.Invoke. First we explain the properties of code snippets that

can be transformed to this operation.

Suggestion. As we explained in Section 2.2.1, Parallel.Invoke is a succinct way of

creating and starting multiples tasks and waiting for them. Consider the example below.

Parallel.Invoke code on the right-hand side is the equivalent of the code on the left-hand

side. For the purpose of simplifying the code with Parallel.Invoke, Simplifier needs to

detect such a pattern before suggesting a transformation.

Code 3.7 Multiple Tasks

1 Task t1=new Task(()=>sendMsg(arg1));

2 Task t2=new Task(()=>sendMsg(arg2));

3 t1.Start();

4 t2.Start();

5 Task.WaitAll(t1,t2);

Code 3.8 Equivalent with Invoke

1 Parallel.Invoke(()=>sendMsg(arg1),

2 ()=>sendMsg(arg2));

Code 3.7 shows the simplest form of many variations of code snippets. In order to find

as many fits as possible, we need to relax and expand this pattern to detect candidates.
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First step to detect the pattern is that the number of Task variables should be at least

2, as Parallel.Invoke can take unlimited work items as parameters. Second, Simplifier

has to consider that there are many syntactic variations of task creation and task starting

operations. Also, there are some operations that combine both creation and starting like

Task.Factory.StartNew and Task.Run methods. Third, one should keep in mind that there

is no need to separate the creation of Tasks into one phase and starting them into another.

Each Task can be created then started immediately. Fourth, there may be other statements

executing concurrently in between the start of a Task and the barrier instruction that waits

for all spawned tasks. In case of such statements, Simplifier encapsulates them in another

Task and passes the task to Parallel.Invoke. Code 3.9 shows a more complex pattern of

task parallelism from a real-world app and demonstrates the last point.

After Simplifier finds out the code snippets that fit into the pattern stated above, it

checks if some preconditions hold true to ensure that the transformation is safe. These

preconditions are not limitations of Simplifier; they are caused by how Parallel.Invoke

encapsulates the task parallelism pattern. Because it is a higher-level abstraction, it waives

some advanced features of Task. The preconditions are:

P1: None of the Task variables in the pattern can be result-bearing computations, i.e., a

future – Task<ResultType> – also called a promise in C#. The reason is that after the

transformation, there is no way to access the result-bearing from the Parallel class.

P2: There should be no reference to the Task variables outside of code snippet of the

design pattern. Such references will no longer bind to a Task after the transformation

eliminates the Task instances.

P3: None of the Task variables in the pattern can use the chaining operation

(ContinueWith). Since the chaining requires access to the original task, this task

will no longer exist after the transformation.

Transformation. If Simplifier finds a good match of code snippets, its suggestion can be

executed and turned into a transformation which yields Parallel.Invoke code. Code 3.10

shows the code after the transformation of Code 3.9.
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During transformation, the main operation is to get work items from Task variables. In

the example below, the work item of first Task is ()=> DoClone(...). These work items

can be in different forms such as method identifiers, delegates, or lambda functions as in the

example below. Simplifier handles this variety of forms by transforming the work items

to lambda functions.

After Simplifier gets the work items for the tasks t1 and t2, it forms another work item

to encapsulate the statements between task creation and task waiting statements (line 3 and

4 in Code 3.9).

Simplifier gives all these work items in the form of lambda functions to Parallel.Invoke

method as parameters. It replaces the original lower-level task parallelism statements with

this Parallel.Invoke method.

Code 3.9 Candidate from Kudu[38] app

1 var t1 = Task.Factory.StartNew(() => DoClone("PClone1", appManager));

2 var t2 = Task.Factory.StartNew(() => DoClone("PClone2", appManager));

3 ParseTheManager();

4 DoClone("PClone3", appManager);

5 Task.WaitAll(t1, t2);

⇓

Code 3.10 Equivalent Parallel.Invoke code

1 Parallel.Invoke(() => DoClone("PClone1", appManager),

2 () => DoClone("PClone2", appManager),

3 () => {ParseTheManager();

4 DoClone("PClone3", appManager);})

3.4.2 Fork join tasks to Parallel.For

Simplifier can transform a specific data parallelism pattern to Parallel.For. First we

explain the properties of code snippets that can be transformed to this operation.

Suggestion. As we explained in Section 2.2.1, Parallel.For is a more concise way to
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express the pattern of forking several tasks and then waiting for them all to finish at a global

barrier.

Considering the example below, the Parallel.For code on the right is the equivalent of

the code on the left.

Code 3.11 Forking tasks in a loop

1 Task[] tasks = new Task [n];

2 for(int i=0; i<n; i++)

3 {

4 int temp = i;

5 tasks[i]= new Task(

6 ()=>Queues[temp].Stop());

7 tasks[i].Start();

8 }

9 Task.WaitAll(tasks);

Code 3.12 Equivalent with Parallel.For

1 Parallel.For(0,n,(i)=> Queues[i].Stop());

Simplifier needs to detect usages of Tasks that form the pattern on the left example

above. The code snippet in Code 3.11 is one of the basic representatives of this design

pattern; there are other variations who fit the pattern. First thing the tool looks for in the

code to decide if it matches the pattern is that the increment operation of the loop must

be of the form ++ or += 1 (i.e., increments should only be by 1). The loop boundaries do

not matter as long as they are integers. Second, as explained in Section 3.4.1, there may be

many syntactic variations for the task creation and starting operations.

Third, the collection of tasks does not have to be of type Array, they may be of another

type like List. In this case, tasks are added with tasks.add(...) method to the collection

in the loop. Fourth, as long as there is no modification to the collection, there may be

other statements between creating the collection of tasks and the for loop. During the

transformation, these statements are not discarded and they take place before Parallel.For.

Fifth, there might be other statements in the loop besides task creation, starting, and

adding to the collection. In the Code 3.11 above, there is one such statement: int temp=i;.

This causes each task to have its own copy of the loop index variable during the iteration of

the loop.

Sixth and last, some simple assignment operations may also exist between the loop and

the barrier operation that waits for all spawned tasks. Code 3.13 shows a more complex
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pattern of data parallelism from a real-world app and demonstrates the last point with the

statements in Line 8-9.

After Simplifier detects the code snippets that fit into the pattern stated above, it checks

some preconditions ensuring that the transformation is safe. These preconditions are the

result of how the Parallel.For encapsulates the date parallelism pattern.

P1, P2, P3: The first three preconditions are the same as the first three preconditions in

Section 3.4.1.

P4: The operations in the loop except the task-related statements should not carry any

dependence between iterations. Consider the Code 3.13, the statements in Line 4-5

will sequentially execute because they are not included in Task. After transforming to

Parallel.For, the whole body of the loop will be parallelized.

P5: The statements after the loop (e.g., Line 8-9 in Code 3.13) but before the Task.WaitAll

should not access any data from the Task body. At first, Simplifier did not allow

any statement between the loop and Task.WaitAll. After we manually analyzed the

statements between the loop and WaitAll in our code corpus, we noticed that many

of them are simple variable declarations which do not use any data from the loop and

do not contain any method call sites like in the Code 3.13. Therefore, we relaxed this

precondition and allowed the statements after the loop but before the Task.WaitAll

unless they do not access any data from the Task body in the loop. To detect such

cases, Simplifier used an intra-procedural data-flow analysis to determine that these

statements are independent from the loop. Roslyn [18] provides ready-to-use control

& data flow analysis APIs that Simplifier used to understand how variables flow in

and out of regions of source.

Transformation. Code 3.14 shows the code after the transformation of Code 3.13 showing

a more complex example.

During transformation, the main operation is to the get loop boundaries and the work

item from the task in the loop. In the example below (Line 6), the work item is ()=>
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MultiSearcherCallableNoSort(...). The loop boundaries are 0 and tasks.Length. How-

ever, the collection of tasks will be deleted after the transformation. Hence, when Simplifier

detects such a dependence on the size of task collections in the loop boundaries, it replaces

this boundary with the original size of the task collection, which is searchables.Length.

Then, Simplifier needs to make sure that the statements in the loop (e.g. Line 4-5 in

Code 3.13) are not dependent on loop iterations. If they are not, these statements are put

in the beginning of the work item; otherwise, the transformation will not occur. If one of

these statements is the temporary holder of the iteration value like cur = i in the example

below, Simplifier removes it and replaces the holder (cur) with the iteration variable (i)

in the work item as seen in Code 3.14.

Lastly, Simplifier replaces the original lower-level data parallelism statements with the

Parallel.For method.

Code 3.13 Candidate from lucene.net[39] app

1 Task[] tasks = new Task[searchables.Length];

2 for (int i = 0; i < tasks.Length; i++)

3 {

4 int cur = i;

5 cur = callableIterate(cur);

6 tasks[i] = Task.Factory.StartNew(() => MultiSearcherCallableNoSort(cur, ...));

7 }

8 int totalHits = 0;

9 float maxScore = float.NegativeInfinity;

10 Task.WaitAll(tasks);

⇓

Code 3.14 Equivalent Parallel.For code

1 Parallel.For(0, searchables.Length, (i) => {

2 i = callableIterate(i);

3 MultiSearcherCallableNoSort(i, ...);} );

4 int totalHits = 0;

5 float maxScore = float.NegativeInfinity;
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3.4.3 Fork join tasks to Parallel.ForEach

While this transformation is very similar to Parallel.For, it transforms foreach loops

instead of for loops. foreach loops are a special case of loops that are used to iterate over

the elements of a collection.

First we explain the properties of code snippets that can be transformed to this operation.

Suggestion. Considering the example below, the Parallel.ForEach code on the right is

the equivalent of the code on the left.

Code 3.15 Equivalent Task example

1 Task[] tasks = new Task[sables.Length];

2 foreach (var sable in sables)

3 {

4 tasks[i] = Task.Run(

5 () => sable.DocFreq(term));

6 }

7 Task.WaitAll(tasks);

Code 3.16 Parallel.ForEach example

1 Parallel.ForEach(sables,

2 (sable)=>sable.DocFreq(term));

Simplifier needs to detect usages of Tasks in a foreach loop that form the pattern on

the left example above. We will generalize this pattern with the same 5 variations in the

Parallel.For algorithm, except the first one which represents the custom loop boundaries.

After Simplifier detects the code snippets that fit into the pattern, it checks for the

same preconditions as in the Parallel.For transformation.

Transformation. Code 3.18 shows the code after the transformation of Code 3.17. The

transformation is done in a very similar manner with the Parallel.For version, except the

loop boundaries.

After the work item is extracted from Task, Simplifier needs to get the collection variable

and iteration variable from the loop declaration (functions, functionText). Then, Simpli-

fier replaces the original lower-level data parallelism statements with the Parallel.ForEach

method.

Code 3.17 Candidate from Jace[40] app

1 List<Task> tasks = new List<Task>();

2 foreach (string functionText in functions)
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3 {

4 Task task = new Task(() =>

5 {...

6 function(functionText, ...); ...

7 });

8 tasks.Add(task);

9 task.Start();

10 }

11 Task.WaitAll(tasks.ToArray());

⇓

Code 3.18 Equivalent Parallel.ForEach code

1 Parallel.ForEach(functions,(functionText) =>{...

2 function(functionText, ...); ...

3 });

3.4.4 Workflow

We implemented Simplifier as a Visual Studio plugin, on top of the Roslyn SDK [18].

Simplifier’s workflow is similar to a “quick hint” option which exists in major IDEs such

as Eclipse, Netbeans, IntelliJ. Simplifier scans the file that is open in the editor in real-

time. It tries to find code snippets that fit into the patterns of the three transformations

discussed above. Because it executes on the background (triggered by any keystroke), the

analysis of finding code snippets should be fast enough to prevent sluggishness. However,

the analyses for Parallel.For(Each) require some expensive checking of preconditions such

as P4 and P5 in Section 3.4.2. Because they require dependence and data-flow analyses, we

do not execute them in the suggestion phase, but in the transformation phase.

If Simplifier finds candidates, it suggests the places where the transformations can be

useful by underlining the code snippet and displaying a hint in the sidebar. After the user

clicks the hint and confirms, Simplifier transforms the code for the Parallel.Invoke.

Simplifier tests long-running preconditions, such as for the Parallel.For(Each), in the

transformation phase. If the candidate passes these preconditions too, the code will be trans-

formed to the Parallel.For(Each). If not, Simplifier will give an informative warning.
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3.5 Evaluation

We conducted two kinds of empirical evaluation. First, we quantitatively evaluate based on

case studies of using our tools on open-source software. Second, we qualitatively evaluate

based on patches that we sent to open-source developers.

3.5.1 Quantitative

To quantitatively evaluate the usefulness of Taskifier and Simplifier, we answer the

following research questions:

EQ1: How applicable are the tools?

EQ2: Do the tools reduce the code bloat?

EQ3: How much programmer effort is saved by the tools?

EQ4: Are the automated transformations safe?

Experimental setup. To answer the questions above, we ran Taskifier and Simplifier

on our code corpus that we gathered from Github. The code corpus has 880 C# apps,

comprising 42M SLOC, spanning a wide spectrum from web & desktop apps to libraries and

mobile apps.

We ran both tools in batch mode over this code corpus. Even though Simplifier was

not designed to run in a batch mode, we implemented a batch mode specifically for the

purpose of the evaluation. Taskifier visits all Thread variable declarations and anonymous

instances, and applies the migration algorithm. Simplifier finds the candidates of code

snippets for each source file, then transforms the snippets to the targeted pattern.

Table 3.2 summarizes the results for the first three research questions.

EQ1: How applicable are the tools? Out of our corpus of 880 apps, 269 used Threads

(see Table 3.1). Together, they account for 2105 Thread instances. Based on our discussion

with experts (see Section 3.2.3), they suggested we discard Thread usages in test code because
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Table 3.2: Applicability of Taskifier and Simplifier. The first column shows the total
number of instances that the tool applied. The second column shows the total number of
instances that the tool successfully converted and the third column shows the percentage of
successfully transformed instances. The fourth column shows the total number of reduced
SLOC by the transformations and the fifth column shows the percentage of the reduced
lines. The last column shows the total number of modified SLOC.

Applicability Reduction Modified

Applied Conv. Conv. % SLOC %. SLOC

Thread to Task 1782 1390 78% 2244 24% 8876

ThreadPool to Task 1244 1244 100% 173 14% 2115

Task to Parallel.Invoke 85 85 100% 502 44% 1870

Task to Parallel.For(Each) 205 188 92% 1918 62% 5640

developers may need threads for enforcing a multithreading testing environment. After

eliminating the Thread usages in test code, we were left with 1782 Thread instances in

production code, as shown in Table 3.2.

Taskifier migrated 78% of the Thread instances. The remaining 22% of Thread instances

used operations that are not available in the Task class, thus are not amenable for migration.

For example, one can set up the name of a Thread, but not of a Task. Deciding whether

the name is important requires domain knowledge, thus Taskifier stays on the safe side and

warns the programmer.

Because there are no preconditions for the migration of ThreadPool instances, Taskifier

migrated all of them to Task.

As for Simplifier, it successfully transformed 100% of the 85 Task-based fork-join pat-

terns to Parallel.Invoke. Out of the 205 identified Task-based data-parallelism patterns,

it transformed 92% to Parallel.For or Parallel.ForEach. The remaining 8% did not pass

the preconditions. A major number of them was failed due to P4: loop-carried dependence.

EQ2: Do the tools reduce the code bloat? The second column, Reduction, of Table 3.2

shows by how much each tool eliminates bloated code. As we expect, because Simplifier

transforms multiple Task operations and helper operations to one equivalent method in the

Parallel class (i.e., a many-to-one transformation), it has the largest impact. For the trans-
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formation to Parallel.Invoke, Simplifier achieved on average a 44% reduction in SLOC

for each code snippet that it transformed. For the transformation to Parallel.For(Each),

it achieved on average a 62% reduction for each transformed code snippet.

Taskifier migrates one Thread operation to one equivalent Task operation (i.e., a one-

to-one transformation), so we expect modest reductions in LOC. These come from optimiza-

tions such as combining the creation and start Task operations, removing explicit casting

statements which are not needed in Task bodies, etc. However, the advantages brought by

Taskifier are (i) the modernization of the legacy code so that it can now be used with

the newer platforms, and (ii) the transformation of blocking operations to the equivalent

non-blocking operations.

EQ3: How much programmer effort is saved by the tools? The last column of

Table 3.2 shows that the transformations are tedious. Had the programmers manually

changed the code, they would have had to manually modify 10991 SLOC for the migration

to Task and 7510 SLOC for the migration to Parallel.

Moreover, these changes are non-trivial. Taskifier found that 37% of Thread instances

had at least one I/O blocking operation. To find these I/O blocking operations, Taskifier

had to check deeper in the call-graphs of Thread bodies, which span 3.4 files on average.

Simplifier found that 42% of the loops it tried to transform contained statements that

needed an analysis to identify loop-carried dependences.

EQ4: Are the automated transformations safe? We used two means to check the

safety of our transformations. First, after our tools applied any transformation, our evalu-

ation script compiled the app in-memory and determined that no compilation errors were

introduced. Second, we sampled and manually checked 10% of all transformed instances and

determined that they were correct. Also, the original developers of the source code thought

that the transformations were correct (see Section 3.5.2).

In contrast to the code that was transformed with the tools, we found that 32% of the

Task-code manually written by open-source developers contained at least one I/O blocking

operation which can cause serious performance issues (see Section 3.3.3). However, the code

transformed by Taskifier into Task instances does not have this problem.
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3.5.2 Qualitative evaluation

To further evaluate the usefulness our of tools in practice, we identified actively developed

C# applications, we ran our tools on them, and submitted patches to the developers.

For Taskifier, we selected the 10 most recently updated apps that use Thread and

ThreadPool and transformed them with Taskifier. We submitted 52 patches via a pull

request. Developers of 8 apps out of 10 responded, and accepted 42 patches.

We received very positive feedback on these pull requests. Some developers said that

migration to Task is on their TODO list but they always postponed it because of working on

new features. It is tedious to migrate Task and developers can easily miss some important

issues such as blocking I/O operations during the migration. Taskifier helps them migrate

their code in a fast and safe manner.

For Simplifier, we selected a different set of 10 most recently updated apps that had

a high chance of including good matches of code snippets for Parallel.For(Each) or

Parallel.Invoke patterns. We submitted 14 patches. Developers of 7 apps out of 10 re-

sponded, and accepted 11 patches. All of them liked the new code after the transformation

and asked us whether we can make the tool available now.

3.5.3 Discussion

As explained in Section 3.3.3, Taskifier analyzed the call graph of Thread body to de-

tect I/O blocking operations, using a blacklist approach. Although we have the list of I/O

blocking operations in .NET framework, Taskifier is not aware of I/O blocking operations

implemented by 3rd-party libraries whose source code is not available in the app. How-

ever, we don’t expect that the number of blocking I/O operations implemented by external

libraries to be high.

Most of non-blocking I/O and synchronization operations were released in .NET 4.5 (2012).

If an application does not target .NET 4.5, it cannot take advantage of the non-blocking

operations. However, applications that are targeting the new platforms (e.g, Windows Phone

8, Surface) are forced to use .NET 4.5.

With respect to releasing Taskifier and Simplifier, we will be able to publish the
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tools when Microsoft publicly releases the new version of Roslyn (expected by Spring ’14).

Because we used an internal version of Roslyn, we had to sign an NDA, which prohibits us

from releasing tools based on Roslyn.

3.6 Summary

To make existing parallel code readable, faster, and scalable, it is essential to use higher-level

parallel abstractions. Their usage is encouraged by the industry leaders as the old, low-level

abstractions are subject to deprecation and removal in new platforms.

Our motivational study of a corpus of 880 C# applications revealed that many developers

still use the lower-level parallel abstractions and some are not even aware of the better

abstractions. This suggests a new workflow for transformation tools, where suggestions can

make developers aware of new abstractions.

Converting from low-level to high-level abstractions cannot be done by a simple find-and-

replace tool, but it requires custom program analysis and transformation. For example, 37%

of Thread instances use blocking I/O operations, which need special treatment when they

are converted to Task instances, otherwise it can create severe performance bugs. We found

that 32% instances of manually written Task indeed contain blocking I/O operations.

In this study we presented two tools. Our first tool, Taskifier, converts Thread-based

usage to lightweight Task. We were surprised that despite some differences between Thread

and Task abstractions, 78% of the code that uses Thread can be successfully converted

to Task. Our second tool, Simplifier, converts Task-based code into higher-level parallel

design patterns. Such conversions reduce the code bloat by 57%. The developers of the

open-source projects accepted 53 of our patches and are looking forward to using our tools.
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CHAPTER 4

Refactoring to async/await Keywords

4.1 Introduction

User interfaces are usually designed around the use of a single user interface (UI) event

thread [30, 31, 32, 33]: every operation that modifies UI state is executed as an event on

that thread. The UI “freezes” when it cannot respond to input, or when it cannot be redrawn.

It is recommended that long-running CPU-bound or blocking I/O operations execute asyn-

chronously so that the application (app) continues to respond to UI events. Asynchronous

programming is in demand today because responsiveness is increasingly important on all

modern devices: desktop, mobile, or web apps. Therefore, major programming languages

have APIs that support non-blocking, asynchronous operations (e.g., to access the web, or

for file operations). While these APIs make asynchronous programming possible, they do

not make it easy.

Asynchronous APIs rely on callbacks. However, callbacks invert the control flow, are

awkward, and obfuscate the intent of the original synchronous code [9].

Recently, major languages (F# [9], C# and Visual Basic [10], and Scala [11]) introduced

async constructs that resemble the straightforward coding style of traditional synchronous

code. Thus, they recognize asynchronous programming as a first-class citizen.

Yet, we know little about how developers use asynchronous programming and specifically

the new async constructs in practice. Without such knowledge, other developers cannot ed-

ucate themselves about the state of the practice, language and library designers are unaware

of any misuse, researchers make wrong assumptions, and tool providers do not provide the

tools that developers really need. This knowledge is also important as a guide to designers

of other major languages (e.g., Java) planning to support similar constructs. Hence, asyn-
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chronous programming deserves first-class citizenship in empirical research and tool support,

too.

We present the first study that analyzes the usage of asynchronous libraries and new lan-

guage constructs, async/await in both industry and open-source communities. We analyze

1378 open-source Windows Phone (WP) apps, comprising 12M SLOC (C#), produced by

3376 developers. In industry, we analyze 3.2M SLOC, comprising various platforms written

in C# (console, web, and library) in two companies.

We focus on WP platform in the open-source apps because we expect to find many exem-

plars of asynchronous programming, given that responsiveness is critical. Mobile apps can

easily be unresponsive because mobile devices have limited resources and have high latency

(excessive network accesses). With the immediacy of touch-based UIs, even small hiccups in

responsiveness are more obvious and jarring than when using a mouse or keyboard. Some

sluggishness might motivate the user to uninstall the app, and possibly submit negative

comments in the app store [41]. Moreover, mobile apps are becoming increasingly more

important. According to Gartner, by 2016 more than 300 billion apps will be downloaded

annually [42].

The goal of this study is twofold. First, we obtain a deep understanding of the problems

around asynchronous programming. Second, we present a toolkit (two tools) to address

exactly these problems. To this end, we investigate both industry and open-source codebases

through tools and by hand, focussing on the following research questions:

RQ1: How do developers use asynchronous programming?

RQ2: To what extent do developers misuse async?

We found that developers heavily use callback-based asynchronous idioms. However, Mi-

crosoft officially no longer recommends these asynchronous idioms [12] and has started to

replace them with new idioms in new libraries (e.g., WinRT). Developers need to refactor

callback-based idioms to new idioms that can take advantage of the async/await keywords.

The changes that the refactoring requires are non-trivial, though. For instance, developers

have to inspect deep call graphs. Furthermore, they need to be extra careful to preserve
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exception handling behavior. Thus, we implemented the refactoring as an automated tool,

Asyncifier.

We also found that nearly half of open-source WP8 apps have started to use the 9-month-

old async/await keywords. However, developers frequently misuse async/await in both

industry and open-source codebases. We define misuse as anti-patterns, which hurt perfor-

mance and might cause serious problems like deadlocks. For instance, we found that 14%

of methods that use (the expensive) async/await keywords do this unnecessarily, 19% of

methods do not follow an important good practice [14], 1 out of 5 apps misses opportunities

in async methods to increase asynchronicity, and developers (almost) always unnecessar-

ily capture context, hurting performance. Thus, we implemented a transformation tool,

AsyncFixer, that finds and corrects the misused async.

4.2 Formative Study

We are interested in assessing the usage of state of the art asynchronous programming in

real world apps from industry and open-source codebases.

4.2.1 Methodology

Open-source codebase. We chose Microsoft’s CodePlex [43] and GitHub [16] as sources

of the code corpus of WP apps. According to a recent study [44], most C# apps reside in

these two repositories. We developed OSSCollector to create our code corpus.

We used OSSCollector to download all recently updated WP apps which have a WP-

related signature in their project files. It ignores (1) apps without commits since 2012, and

(2) apps with less than 500 non-comment, non-blank lines of code (SLOC). The latter “toy

apps” are not representative of production code.

OSSCollector makes as many projects compilable as possible (e.g., by resolving-

installing dependencies), because the Roslyn APIs that we rely on (see Analysis Infras-

tructure) require compilable source code.
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OSSCollector successfully downloaded and prepared 1378 apps, comprising 12M

SLOC, produced by 3376 developers. Our analysis uses all apps, without sampling. OSS-

Collector just downloaded the version from the main development branch as of August

1st, 2013 for each app.

In our corpus, 1115 apps are targeting WP7, released in October 2010. Another 349 apps

target WP8, released in October 2012. 86 apps target both platforms.

Proprietary codebase. To gather the industry data, we had extensive visits at two

companies. We first ran our analysis tools on the whole C# codebase of a leading company

that provides health information services. We analyzed 405 compilable projects that target

library, console, and ASP.NET (web) platforms, comprising 2.5M SLOC. We did not include

any test projects in our analyses. Our analysis was applied to the codebase from the main

development branch as of October 1st, 2014.

As a second opportunity for the industry data, we analyzed the C# codebase for a new

build language which is being developed by a leading technology company. We analyzed

0.6M SLOC that target library and console platforms from the main development branch as

of August 1st, 2015.

In total, we analyzed 3.2M SLOC to gather statistics for the industry data.

Analysis infrastructure. We developed AsyncAnalyzer to perform the static anal-

ysis of asynchronous programming construct usage. We used Microsoft’s recently released

Roslyn [18] SDK, which provides an API for syntactic and semantic program analysis, AST

transformations, and editor services in Visual Studio.

We executed AsyncAnalyzer in our corpus. We developed a specific analysis to answer

each research question.

4.3 How do Developers Use Asynchronous Programming?

We analyzed the usage of both APIs and language keywords for asynchronous programming.
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4.3.1 Asynchronous APIs

We detected all APM and TAP methods that are used as async I/O operations in our code

corpus as shown in Tables 4.1 and 4.2.

We also detected the ways of executing CPU-bound operations asynchronously. There are

two ways to offload CPU-bound operations to another thread: by creating a new thread, or by

reusing threads from the thread pool. Based on C# books and references [46], we distinguish

4 different approaches developers use to access the thread pool: (1) the BackgroundWorker

class, (2) accessing the ThreadPool directly, (3) creating Tasks, and (4) implicitly creating

Tasks by using Parallel class. Tables 4.1 and 4.2 tabulate the usage statistics of all these

approaches.

Open-source corpus. Because in WP7 apps, TAP methods are only accessible via addi-

tional libraries, Table 4.2 tabulates the usage statistics for WP7 and WP8 apps separately.

The data shows that APM is more popular than TAP for both WP7 and WP8.

Because Task is only available in WP7 apps by using additional libraries, the table shows

separate statistics for WP7 and WP8 apps. The data shows that Task is used significantly

more in WP8 apps, most likely because of availability in the core platform.

We also manually inspected all APM and TAP methods used and categorized them based

on the type of I/O operations (see Table 4.3). We found that asynchronous operations are

most commonly used for network operations (see Table 4.4).

Proprietary corpus. Surprisingly, the industry codebases use new TAP methods much

more than old-fashioned APM methods. To offload CPU-bound operations, the codebase

rarely uses old APIs such as BackgroundWorker, ThreadPool, and Thread operations. New

Task and Parallel APIs are preferred.

4.3.2 Missing opportunities for asynchronous I/O

To make the application more scalable, developers should use async I/O operations because

synchronous I/O operations are going to waste CPU resources by blocking threads that

consume non-trivial amount of memory. Therefore, we detected the locations of blocking
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Table 4.1: Usage of asynchronous idioms in the proprietary code. The column per codebase
shows the total number of idiom instances.

Type Industry #1 Industry #2

# callsites # callsites

I/O-bound
APM Methods 0 42

TAP Methods 189 101

CPU-bound

New Thread 17 15

BG Worker 0 5

ThreadPool 0 2

New Task 119 90

Parallel.For/Each 42 72

Parallel.Invoke 6 0

Table 4.2: Usage of asynchronous idioms in the open-source code. The three columns per
codebase show the total number of idiom instances, the total number of apps with instances
of the idiom, and the percentage of apps with instances of the idiom.

Type Open-source WP7 Open-source WP8

# callsites # apps % apps # callsites # apps % apps

I/O
bound

APM Methods 1028 242 22% 217 65 19%

TAP Methods 123 23 2% 269 57 16%

CPU
bound

New Thread 183 92 8% 28 24 7%

BG Worker 149 73 6% 11 6 2%

ThreadPool 386 103 9% 52 24 7%

New Task 51 11 1% 182 28 8%

Parallel.For/Each 10 5 0.5% 45 22 6%

Parallel.Invoke 6 3 0.3% 19 10 3%
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Table 4.3: Most popular I/O operations used in the open-source code

Method #

APM

WebRequest.BeginGetResponse 725

WebRequest.BeginGetRequestStream 268

Stream.BeginRead 84

Stream.BeginWrite 66

CommittableTransaction.BeginCommit 60

TAP

HttpContent.ReadAsStringAsync 45

OpenStreamForReadAsync 40

Stream.CopyToAsync 32

OpenStreamForWriteAsync 30

ReadToEndAsync 25

Table 4.4: Catalog of I/O operations used in the open-source code

Type # Call Sites

Network 1012

File System 310

Database 145

User Interaction 102

Other I/O (speech recog.) 68

I/O operations which should be replaced with corresponding async versions. To detect these

operations, AsyncAnalyzer looks up symbols of each method invocation in the codebases.

After getting symbol information, the tool looks at the other members of the containing class

of that symbol to check whether there is an asynchronous version. For instance, if there is

an x.Read() method invocation and x is an instance of the Stream class, the tool looks at

the members of the Stream class to see whether there is a ReadAsync method that gets the

same parameters and returns Task.

However, it is not necessary and efficient to replace every synchronous I/O operation with

their corresponding async operation. For relatively fast I/O operations, the overhead of
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async I/O requests may make asynchronous I/O less beneficial, particularly if many fast

I/O operations need to be made (e.g., in a loop). In this case, synchronous I/O would be

better for fast local I/O operations. Because of the possibility of very long timeouts, network

I/O should always be async, even if it is to only send 1 single byte.

Because finding fast local I/O operations requires dynamic analysis and depends on the

input size, we could not filter out these fast operations. It is still valuable to have a list

of potentially blocking I/O operations because the locations of these operations are great

places to use a profiler and detect the bottlenecks.

Open-source corpus. We found 19 blocking I/O operations per app on average.

Proprietary corpus. We detected 4512 blocking I/O operations in total (11 per C#

project on average).

4.3.3 Language constructs (async/await)

Open-source corpus. async/await have become accessible for WP development in last

quarter of 2012. While they are available by default in WP8, WP7 apps have to reference

Microsoft.Bcl.Async library to use them.

We found that 45% (157) of WP8 apps use async/await keywords. While nearly half of

all WP8 apps have started to use the new 9-month-old constructs, only 10 WP7 apps use

them. In the combined 167 apps, we found that there are 2383 async methods that use at

least one await keyword in their method body. An async method has 1.6 await keywords

on average, meaning that async methods call other async methods.

Proprietary corpus. We found 545 async methods from two industry codebases.�
�

�
�

Callback-based APM is the most widely used idiom. While nearly half of all WP8 apps

have started to use async/await, only 10 WP7 apps use them.
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4.4 Do Developers Misuse async/await?

Because async/await are relatively new language constructs, we have also investigated how

developers misuse them. We define misuse as anti-patterns which hurt performance and

might cause serious problems like deadlocks. We detected the following typical misusage

idioms.

4.4.1 Fire & forget methods

The async/await methods can return void instead of Task. This means they are

“fire&forget” methods, which cannot be awaited. Exceptions thrown in such methods cannot

be caught in the calling method, and cause termination of the app. Unless these methods

are UI event handlers, this is a code smell. Such methods should return Task, which does

not force the developer to change anything else, but it does enable easier error handling,

composition and testability.

Open-source corpus. 799 of 2382 async/await methods are “fire&forget” methods.

However, we found that only 339 out of these 799 async void methods are event handlers.

It means that 19% of all async methods (460 out of 2383) are not following this important

practice [14]. One in five async methods violate the principle that an async method

should be awaitable unless it is the top level event handler.

Proprietary corpus. Only 10 of 545 async methods return void. However, all of these

10 async void methods are not event handlers so they need to return Task instead of void.

4.4.2 Unnecessary async/await methods

Consider the example from “Cimbalino Windows Phone Toolkit” [47]:

public async Task<Stream> OpenFileForReadAsync(...) {

return await Storage.OpenStreamForReadAsync(path);

}

The OpenStream method is a TAP call, which is awaited in the OpenFile method. However,
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there is no need to await it. Because there is no statement after the await expression

except for the return, the method is paused without reason: the Task that is returned by

Storage.OpenStream can be immediately returned to the caller. The snippet below behaves

exactly the same as the one above:

public Task<Stream> OpenFileForReadAsync(...) {

return Storage.OpenStreamForReadAsync(path);

}

It is important to detect this kind of misuse. Adding the async modifier comes at a price:

the compiler generates some code in every async method and generated code complicates

the control flow which results in decreased performance.

Open-source corpus. We discovered that in 26% of the 167 apps, 324 out of all 2383

async methods unnecessarily use async. There is no need to use async/await in 14%

of async methods.

Proprietary corpus. 35 of 545 async methods unnecessarily use async/await keywords.

4.4.3 Using long-running operations under async methods

We also noticed that developers use some potentially long-running operations under async

methods even though there are corresponding asynchronous versions of these methods in

.NET or third-party libraries. Consider the following example from indulged-flickr [48]:

public async void GetPhotoStreamAsync(...) {

var response = await DispatchRequest(...);

using (StreamReader reader = new StreamReader(...)){

string jsonString = reader.ReadToEnd();

}

}

The developer might use await ReadToEndAsync() instead of the synchronous ReadToEnd

call, especially if the stream is expected to be large.

In the example below from iRacerMotionControl [49], the situation is more severe.

private async void BT2Arduino_Send(string WhatToSend){

...
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await BTSock.OutputStream.WriteAsync(datab);

txtBTStatus.Text = "sent";

System.Threading.Thread.Sleep(5000); ...

}

The UI event thread calls BT2Arduino Send, which blocks the UI thread by busy-waiting for

5 seconds. Instead of using the blocking Thread.Sleep method, the developer should use

the non-blocking Task.Delay(5000) method call to preserve similar timing behavior, and

await it to prevent the UI to freeze for 5 seconds.

Open-source corpus. We found 115 instances of potentially long-running operations in

22% of the 167 apps that use async. 1 out of 5 apps miss opportunities in at least

one async method to increase asynchronicity.

Proprietary corpus. We found 21 instances of potentially long-running operations in 12

of 545 async methods.

4.4.4 Unnecessarily capturing context

async/await introduce new risks if the context is captured without specifying

ConfigureAwait(false). For example, consider the following example from adsclient [50]:

void GetMessage(byte[] response) {

...

ReceiveAsync(response).Wait(); ...

}

async Task<bool> ReceiveAsync(byte[] message) {

...

return await tcs.Task;

}

If GetMessage is called from the UI event thread, the thread will wait for completion

of ReceiveAsync because of the Wait call. When the await completes in ReceiveAsync, it

attempts to execute the remainder of the method within the captured context, which is the

UI event thread. However, the UI event thread is already blocked, waiting for the completion

of ReceiveAsync. Therefore, a deadlock occurs.
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To prevent the deadlock, the developer needs to set up the await expression to use

ConfigureAwait(false). Instead of attempting to resume the ReceiveAsync method on the

UI event thread, it now resumes on the thread pool, and the blocking wait in GetMessage does

not cause a deadlock any more. In the example above, although ConfigureAwait(false)

is a solution, we fixed it by removing await because it was also an instance of unnecessary

async/await use. The developer of the app accepted our fix as a patch.

We found 5 different cases for this type of deadlock which can happen if the caller method

executes on UI event thread.

Capturing the context can also cause another problem: it hurts performance. As asyn-

chronous GUI applications grow larger, there can be many small parts of async methods

all using the UI event thread as their context. This can cause sluggishness as responsive-

ness suffers from thousands of paper cuts. It also enables a small amount of parallelism:

some asynchronous code can run in parallel with the UI event thread instead of constantly

badgering it with bits of work to do.

To mitigate these problems, developers should await the Task with

ConfigureAwait(false) whenever they can. If the statements after the await ex-

pression do not update the UI, ConfigureAwait(false) must be set. Detecting this

misuse is important because using ConfigureAwait(false) might prevent future bugs like

deadlocks and improve the performance.

Open-source corpus. 1786 out of 2383 async methods do not update GUI elements in

their call graph after await expressions. We found that ConfigureAwait(false) is used

in only 16 out of these 1786 async methods in await expressions. All 1770 other async

methods should have used ConfigureAwait(false). 99% of the time, developers did

not use ConfigureAwait(false) where this was needed.

Proprietary corpus. 544 out of 545 async methods are library async methods so they do

not need to capture the context in their bodies. However, all 544 library async methods

do not use ConfigureAwait(false).
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Table 4.5: Statistics of async/await misuses in the open-source code. The first column
shows the total number of idiom instances. The second column contains the total number of
apps with idiom instances. The third column shows the relative amount of apps with idiom
instances.

Misuse # Method App

(1) Fire & Forget 460 19% 76%

(2) Unnecessary Async 324 14% 26%

(3) Potential LongRunning 115 5% 22%

(4) Unnecessary Context 1770 74% 86%

4.5 Asyncifier: Refactoring from Callbacks to async/await

Based on our findings from Section 4.2, developers regularly make mistakes when introducing

async/await in their Windows Phone apps. To support them, we developed a refactoring

tool, Asyncifier that transforms legacy APM-based code into async-based code. This

gives programmers production-level examples in their own code base of how async-based

code should look. Additionally, it helps programmers move from the legacy APM pattern to

the modern TAP and async/await pattern. Section 4.5.1 describes the challenges of refac-

toring APM-based code to code using async. Once those are clear, we describe a canonical

form of the original source code to which the refactoring can be applied in Section 4.5.2.

Section 4.5.3 describes the refactoring algorithm, as it is applied to code in the canonical

form. Finally, Section 4.5.4 describes the most important implementation details of the

refactoring tool.

4.5.1 Challenges

There are three main challenges that make it hard to execute the refactoring quick and

flawlessly by hand. First, the developer needs to understand if the APM instance is a

candidate for refactoring based on the preconditions in Section 4.5.2. Second, he must

transform the code while retaining the original behavior of the code - both functionally

and in terms of scheduling. This is non-trivial, especially in the presence of (1) exception
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handling, and (2) APM End methods that are placed deeper in the call graph.

Exception handling. The refactoring from APM to async/await should retain the

functional behavior of the original program, both in the normal case and under exceptional

circumstances. In 52% of all APM instances, try-catch blocks are in place to handle those

exceptions. The try-catch blocks surround the End method invocation, which throws an

exception if the background operation results in an exceptional circumstance. These catch

blocks can contain business logic: e.g., a network error sometimes needs to be reported to

the user: “Please check the data or WiFi connection”. Code 4.1 shows such an example.

Code 4.1 EndGetResponse in try-catch block

1 void Button_Click(...) {

2 WebRequest request = WebRequest.Create(url);

3 request.BeginGetResponse(Callback, request);

4 }

5 void Callback(IAsyncResult ar) {

6 WebRequest request = (WebRequest)ar.AsyncState;

7 try {

8 var response = request.EndGetResponse(ar);

9 // Code does something with successful response

10 } catch (WebException e) {

11 // Error handling code

12 }

13 }

Code 4.2 EndGetResponse on longer call graph path

1 void Button_Click(...) {

2 WebRequest request = WebRequest.Create(url);

3 request.BeginGetResponse(ar => {

4 IntermediateMethod(ar, request);

5 }, null);

6 }

7 void IntermediateMethod(IAsyncResult result, WebRequest request) {

8 var response = GetResponse(request, result);

9 // Code does something with response

10 }

11 WebResponse GetResponse(WebRequest request, IAsyncResult result) {

12 return request.EndGetResponse(result);

13 }
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The naive approach to introducing async/await is to replace the Begin method invocation

with an invocation to the corresponding TAP method, and await the result immediately.

However, the await expression is the site that can throw the exception when the background

operation failed. In the APM code, the exception would be thrown at the End call site.

Thus, the exception would be thrown at a different site, and this can drastically change

behavior. Exception handling behavior can be retained by introducing the await expression

as replacement of the End method call at the exact same place. This is a non-trivial insight for

developers, because online examples of async/await only show the refactoring for extremely

simple cases, where this is not a concern.

Hidden (Nested) End method calls. The developer needs to take even more care when

the End method is not immediately called in the callback lambda expression, but is ‘hidden’

deeper down the call chain. In that case, the Task instance that is returned by the TAP

method that replaces the Begin method, must be passed down to where the End method

invocation was, to retain exceptional behavior. This requires an inter-procedural analysis of

the code: each of the methods, through which the IAsyncResult ‘flows’, must be refactored,

which makes the refactoring more tedious. The developer must trace the call graph of the

callback to find the End method call, and in each encountered method: (1) replace the

IAsyncResult parameter with a Task<T> parameter (with T being the return type of the

TAP method, (2) replace the return type R with async Task<R>, or void with async void

or async Task, and (3) stay on the same thread by ignoring the current synchronization

context through the introduction of ConfigureAwait(false) at each await expression.

As shown in the results of the empirical study, when its presence is important to retain

UI responsiveness, developers almost never use ConfigureAwait(false) where it should be

used. Code 4.2 shows an example of a nested End method call.

4.5.2 Canonical form of APM-based code

A key insight in designing refactorings is that there is a canonical form for input code. This

canonical form adheres to the preconditions of the refactoring transformation, so that the
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result of the transformation is indeed correct. However, many APM instances are not in

the canonical form, but are very close to the canonical form. This means that, often, other

refactorings are necessary to transform the input code into canonical form. First, we describe

the preconditions of the algorithm of our refactoring transformation. Then, we show a few

examples of such preparatory refactorings.

Algorithm preconditions. The refactoring has several preconditions, which together

dictate the canonical form which the source code must have for a successful transformation.

It starts with an invocation of an APM Begin method. It is a candidate for refactoring to

async, if it adheres to the following preconditions and restrictions:

P1: The APM method call must represent an asynchronous operation for which a TAP-

based method also exists.

Obviously, if the corresponding TAP-based method does not exist, the code cannot be

refactored.

P2: The Begin method invocation statement must be contained in a regular method, i.e,

not in a lambda expression or delegate anonymous method.

The method containing the Begin invocation will be made async. While it is pos-

sible to make lambdas and delegate anonymous methods async, this is considered

a bad practice because it usually creates an async void fire & forget method (see

Section 4.4.1).

P3: The callback argument must be a lambda expression with a body consisting of a block

of statements.

The call graph of that block must contain an End method invocation that takes the

lambda IAsyncResult parameter as argument. This means that the callback must

actually end the background operation.

P4: In the callback call graph, the IAsyncResult lambda parameter should not be used,

except as argument to the End method.

The IAsyncResult lambda parameter will be removed after the refactoring.
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Code 4.3 An APM instance that adheres to preconditions

void Action(WebRequest request) {
request.BeginGetResponse(asyncResult => {

var response=request.EndGetRequest(asyncResult);
// Code does something with response

}, null);
}

Code 4.4 Refactored version of Code 4.3

void Action(WebRequest request) {
var task = request.GetResponseAsync();
var response = await task.ConfigureAwait(false);
// Code does something with response

}

P5: The state argument must be a null literal.

As the IAsyncResult lambda parameter must be unused, its AsyncState property

should be unused as well, so the state argument expression of the Begin method invo-

cation should be null.

P6: The IAsyncResult return value of the Begin method invocation should not be used in

the initiating method (the method containing the Begin method invocation).

As the Begin method invocation disappears, its return value should not be used.

Code 4.3 shows a valid example in the context of these preconditions. It can be refactored

with our tool to take advantage of async/await, as shown in Code 4.4.

Refactoring to the canonical form. In real-world applications, we found that many

instances are not in the canonical form as described in Section 4.5.2. The preconditions

listed in that section would restrict applicability of the refactoring significantly. Fortunately,

many instances in other forms can be refactored into the canonical form with well-known

refactorings.

Code 2.7 shows an example that fails P3 and P5: the callback argument is a method

reference, and the state argument is not null. This instance can be refactored into the code

shown in Code 4.5 by applying the Introduce Parameter refactoring to remove the request

variable and add it as parameter to the original Callback method.

Based on encountered cases in the analyzed code corpus, we have identified and (partially)

implemented several such refactorings. Examples are (1) identification of unused state argu-
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Code 4.5 Code 2.7 after applying Introduce Parameter

void GetFromUrl(string url) {
var request = WebRequest.Create(url);
request.BeginGetResponse(asyncResult => {

Callback(asyncResult, request);
}, null);

}
void Callback(IAsyncResult ar, WebRequest request) {

var response = request.EndGetResponse(ar);
var stream = response.getResponseStream();
var content = stream.ReadAsString();
Dispatcher.BeginInvoke(() => {

textBox.Text = content;
});

}

ments which can be replaced with null (solves violations of P5), and (2) rewriting of some

callback argument expressions (solves violations of P3).

4.5.3 Refactoring algorithm

Asyncifier detects all Begin method invocations that fulfill the preconditions. It takes the

following steps to refactor the APM instance to async-based code:

Traveling the call graph from APM begin to end. First, Asyncifier explores the

call graph of the body of the callback lambda expression to find the invocation path to the

End invocation. It does a depth-first search of the call graph, by looking up the symbols

of any non-virtual method that is encountered. There are two possible scenarios: the End

method invocation (1) is placed directly in the lambda expression, or (2) it is found on the

call graph of the lambda body in another method’s body. Code 4.3 is an example of the first

case.

In the second case, Asyncifier identifies three different methods which are on the call

graph path: (1) the initiating method, i.e., the method containing the Begin method invoca-

tion, (2) the result-obtaining method, i.e., the method containing the End method invocation,

and (3) intermediate methods, i.e., the remaining methods on the path. Code 4.5 is an ex-

ample of the second case. We use this example in the description of the following steps.

Rewriting the initiating method. In both cases, the initiating method needs to be

rewritten. The tool adds the async modifier to the signature of the initiating method. It
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changes the return value is to either Task instead of void, or Task<T> for any return type

T.

void GetFromUrl(string url) { ... }

⇓

async Task GetFromUrl(string url) { ... }

Then, the Begin method invocation must be replaced with the corresponding TAP method

invocation. The Begin invocation statement is replaced with a local variable declaration

that captures the Task return value of the TAP method invocation. The (optional) Task

parameter type is the return type of the End method:

request.BeginGetResponse(...);

⇓

Task<WebResponse> task = request.GetResponseAsync();

It then concatenates the statements in the lambda expression body to the body of the

initiating method:

async Task GetFromUrl(string url) {

var request = WebRequest.Create(url);

var task = request.GetResponseAsync();

Callback(asyncResult, request);

}

Finally, it replaces the lambda parameter reference asyncResult with a reference to the

newly declared Task instance. The rewritten initiating method:

async Task GetFromUrl(string url) {

var request = WebRequest.Create(url);

var task = request.GetResponseAsync();

Callback(task, request);

}
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Rewriting the result-obtaining method. If the APM End method invocation was

found in a result-obtaining method, the refactoring updates the signature of that method as

follows: (1) it adds the async modifier, (2) it replaces return type void with Task, or any

other T with Task<T>, and (3) it replaces the IAsyncResult parameter with Task<R>, with

R the return type of the End method.

void Callback(IAsyncResult asyncResult,

WebRequest request) { ... }

⇓

async Task Callback(Task<WebResponse> task,

WebRequest request) { ... }

Then it replaces the End method invocation expression with await task, without capturing

the synchronization context:

var response = request.EndGetResponse(asyncResult);

⇓

var response = await task.ConfigureAwait(false);

The refactoring rewrites the complete APM instance into the code shown in Code 4.6. If

the introduction of new variables leads to identifier name clashes, Asyncifier disambiguates

the newly introduced names by appending an increasing number to them, i.e., task1, task2,

etc.

Callbacks containing the End call. If the End method invocation is now in the initiating

method, Asyncifier replaces it with an await expression, and the refactoring is complete.

The example in Code 4.3 would be completely refactored at this point:

If there is no result-obtaining method, but instead the End method invocation is directly in

the callback of the Begin method, the previous step is skipped. The End method invocation

was inlined into the initiating method in step 2 (see Section 4.5.3). The refactoring replaces

the End method invocation with an await expression, and the refactoring is complete. At
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this point, the example in Code 4.3 would be completely refactored. Code 4.4 shows the

refactored code.

Rewriting intermediate methods. Intermediate methods must be rewritten if the

End method is not invoked in the callback lambda expression body. Every method on the

call graph path from the initiating method to the result-obtaining method is recursively

refactored. The same steps are applied as for the result-obtaining method. Additionally, at

the call site of each method, the reference to the (removed) result parameter is replaced

with a reference to the (newly introduced) task parameter.

Retaining original behavior. First, it is crucial that the refactored code has the same

behavior in terms of scheduling as the original code. By calling the Begin method or the

TAP method, the asynchronous operation is started. In the APM case, the callback is only

executed once the background operation is completed. With async, the same happens-before

relationship exists between the await expression and the statements that follow the await

of the Task returned by the TAP method. Because the statements in callbacks are placed

after the await expression that pauses execution until the completion of the background

operation, this timing behavior is preserved.

Second, after the refactoring, the different code pieces will be executed on the same thread

as they were executed before the refactoring. The ConfigureAwait(false) flag is used to

make sure this is the case. This makes sure that the asynchronous behavior of the application,

and thus its responsiveness stays the same.

Finally, because the await expression is positioned at the same place as the APM End

method invocation, behavior in the presence of thrown exceptions remains the same.

Note on call sites of the initiating method. When the original initiating method

has a return type T, in call sites of that method, the return value might be captured. After

executing the refactoring transformation, the return type of the initiating method will be

Task<T>. These call sites will need to be manually adjusted (the IDE or compiler will emit

a type error on compilation). Such call sites can simply use Task.Result, or the containing

method could also be made into an asynchronous method.
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Code 4.6 async/await code after refactoring Code 2.7

async Task GetFromUrl(string url) {
var request = WebRequest.Create(url);
Task<WebResponse> task=request.GetResponseAsync();
Callback(task, request);

}

async Task Callback(Task<WebResponse> task,
WebRequest request) {

var response = await task.ConfigureAwait(false);
var stream = response.getResponseStream();
var content = stream.ReadAsString();
Dispatcher.BeginInvoke(() => {

textBox.Text = content;
});

}

4.5.4 Refactoring implementation

We have implemented the APM to async/await refactoring in C# with Microsoft’s Roslyn

framework. It can be downloaded from the Visual Studio Gallery (the official store for

extensions for VS) 1.

Implementation limitations. The current tool is a research prototype aimed at showing

the feasibility of the refactoring for common cases. Because of that, the current implementa-

tion is based on the following assumptions related to re-use of Begin or End methods. First,

there should not be other call graph paths leading from any Begin method call to the target

End method, which means so much as that the specific End method invocation must not

be shared between multiple Begin invocations. Second, recursion in the callback through

another Begin call that references the same callback again is not allowed (essentially, this

is also sharing of an End method call). Third, the refactoring does not support multiple

End method invocations that correspond to a single Begin method invocation, for example

through the use of branching. However, this case is very rare. With additional engineering

effort support for these cases can be created as well, which is outside the scope of this thesis.

1https://marketplace.visualstudio.com/items?itemName=SemihOkur.Asyncifier
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Figure 4.1: AsyncFixer tool interactivity

4.6 AsyncFixer: Fixing Common Misuses

Asyncifier helps developer to upgrade APM code to async/await without errors by re-

taining the original behavior. If the developer manually introduces or has already introduced

async, we implemented another tool that detects and corrects common misuses: Async-

Fixer.

AsyncFixer will help in finding and removing misuses that we explained in Section 4.4.

We implemented AsyncFixer by using Roslyn Diagnostics API. There are two options to

use AsyncFixer:

VSIX extension. In this option, AsyncFixer will work just in the Visual Studio and

work as an analyzer on every project developers open in Visual Studio. This mode is also

called as live code analysis because AsyncFixer is constantly scanning the source code as

soon as the user typed in new code. Thus, it dramatically shortens the time between the

introduction of an error and its detection.

When AsyncFixer detects a misuse, the light bulb will appear in the left margin and

developers can click on it or hover over the code to see suggestions and code fixes as shown

in Figure 4.1. AsyncFixer can also operate in batch mode to correct all misuses in the

document, project, or solution file as shown in Figure 4.1. AsyncFixer VSIX extension

can be downloaded from the Visual Studio Gallery 2.

2https://marketplace.visualstudio.com/items?itemName=SemihOkur.AsyncFixer
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NuGet package. AsyncFixer can also be deployed as a package (library) for the NuGet

package management system [34]. In this option, AsyncFixer will work as a project-local

analyzer that participates in builds. Attaching an analyzer to a project means that the

analyzer travels with the project to source control and so it is easy to apply the same rule

for the team. It also means that commandline builds report the issues reported by the

analyzer. The NuGet package can be downloaded from the NuGet Gallery 3.

4.6.1 Fire & forget methods

There is no automated fix for this misuse. AsyncFixer just converts the return type from

void to Task. However, the fire & forget async method should also be awaited in all callers

of it, causing changing the semantics. Therefore, the developer’s understanding of code is

required to fix this case.

4.6.2 Unnecessary async/await methods

AsyncFixer checks whether async method body has only one await keyword and this

await is used for a TAP method call that is the last statement of the method. AsyncFixer

does not do this for async void (fire & forget) methods; because if it removes await from

the last statement in async void methods, it will silence the exception that can occur in

that statement.

To fix these cases, AsyncFixer removes the async from the method identifiers and the

await keyword from the TAP method call. The method will return the Task that is the

result of TAP method call.

4.6.3 Using long-running operations under async methods

To detect these operations, AsyncFixer looks up symbols of each method invocation in the

bodies of async methods. After getting symbol information, AsyncFixer looks at the other

members of the containing class of that symbol to check whether there is an asynchronous

3https://nuget.org/packages/AsyncFixer
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version. For instance, if there is an x.Read() method invocation and x is an instance of the

Stream class, AsyncFixer looks at the members of the Stream class to see whether there

is a ReadAsync method that gets the same parameters and returns Task. By checking the

members, AsyncFixer can also find asynchronous versions not only in the .NET framework

but also in third-party libraries.

AsyncFixer also maps corresponding blocking and non-blocking methods which do not

follow the Async suffix convention (e.g., Thread.Sleep ->Task.Delay).

AsyncFixer avoids introducing asynchronous operations of file IO operations in loops,

as this could result in slower performance than the synchronous version.

After finding the corresponding non-blocking operation, Asyncifier simply replaces the

invocation with the new operation and makes it await’ed.

4.6.4 Unnecessarily capturing context

AsyncFixer checks the call graph of async methods to see if there are accesses of GUI

elements. All GUI elements are in the namespaces System.Windows and Microsoft.Phone.

If AsyncFixer does not find any use of elements from those namespaces after await ex-

pressions, it introduces ConfigureAwait(false) in those await expressions.

4.7 Evaluation

To evaluate Asyncifier and AsyncFixer, we studied their applicability, their impact on

the code, their performance, and the usefulness of their results to developers.

4.7.1 Applicability

We executed Asyncifier in batch mode over the entire open-source code corpus that we

described in Section 4.2.1. The code corpus contains 1245 APM instances, i.e., invocations

of an APM Begin method. Of these 1245 instances, 54% adhered to the preconditions

defined in Section 4.5.2. Only the APM instances that passed the preconditions test were
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refactored, and then compiled in-memory to verify that the AST transformation created a

legal C# program. For the other 46% of APM instances, the original code was untouched.

We verified the success of the refactorings by manually checking the output of the batch tool

on 10% of the refactored instances (randomly sampled).

There are two main reasons why the refactoring tool could not successfully refactor 46%

of the APM instances. First, some instances do not adhere to the preconditions set in

Section 4.5.2. Second, the tool currently has limitations, as described in Section 4.5.4. The

former are mostly instances that cannot be refactored because of fundamental limitations of

the algorithm. One example are callback expressions that reference a (public) field delegate

that is perhaps set by external code. Another example are APM End methods that are

hidden behind interface implementations (both violations of precondition P3).

We also applied AsyncFixer to the open-source code corpus (2209 times). All instances

of type 2, 3, and 4 misuses (see Table 4.5 were corrected automatically.

4.7.2 Impact on source code

To evaluate the impact of our refactorings on the code we investigate the size of the changes.

Asyncifier changes 28.9 lines on average per refactoring. This shows that automation is

needed, since each refactoring changes many lines of code. Moreover, these changes are not

trivial.

AsyncFixer changes a single line of source code, in the case of use of a syn-

chronous method call in an asynchronous methods (see Section 4.6.3) or a missing

ConfigureAwait(false) setting (see Section 4.6.4). The unnecessary use of async/await

(see Section 4.6.2) required changing two or three lines of source code. However, the main

advantage of an in-IDE implementation is not that the change to be made is hard, but

primarily that misuse becomes visible to the developer.
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4.7.3 Tool performance

For Asyncifier, the average time needed to refactor one instance is 508ms. This is fast

enough to make the refactoring suitable for implementation as an interactive refactoring in

an IDE. Because the number of APM instances per application is almost never higher than

100, Asyncifier is fast enough for batch-mode refactoring too.

The quick fixes for unnecessary use of async, and for detection of synchronous method

calls in asynchronous code are straightforward, so we did not measure computation time for

those. However, it is complicated to decide whether a missing ConfigureAwait(false) (see

Section 4.6.4) setting is a misuse, because the call graph of the asynchronous method needs

to be inspected. Still, it only took on average 47 ms to analyze a single await expression.

This is fast enough to interactively use the analysis in an IDE.

4.7.4 What do developers think?

To further evaluate the usefulness in practice, we conducted a qualitative analysis of the 10

most recently updated apps that have APM instances. We applied Asyncifier ourselves,

and offered the modifications to the original developers as a patch via a pull request.4 Of 9

out of 10 apps, the developers responded, and they accepted each of the pull requests, for

in total 28 refactored APM instances.

We received very positive feedback from the developers on those pull requests. One devel-

oper “look[s] forward to the release of that refactoring tool, it seems to be really useful.”[51].

The developer of phoneguitartab [52] said that he had “been thinking about replacing all

asynchronous calls [with] new async/await style code”. This illustrates the demand for tool

support for the refactoring from APM to async.

For AsyncFixer, we selected the 10 most recently updated apps containing either un-

necessary uses of async/await or use of synchronous method calls in asynchronous methods.

This led to a list of 19 apps (one app was on the list for both misuses). We did not separately

select apps for missing ConfigureAwait(false) instances. For each of these apps, we ran

AsyncFixer in batch mode and supplied the changes to the developers as patch or pull

4All patches can be found on our web site: http://LearnAsync.NET
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Table 4.6: AsyncFixer patches accepted by developers

Section Misuse #

4.6.2 Unnecessary Async 149

4.6.3 Potential LongRunning 39

4.6.4 Unnecessary Context 98

Total 286

request. We received a response from developers of 18 of the 19 apps, who accepted all 286

proposed changes. Table 4.6 shows a breakdown of the types of accepted changes.

The responses from developers to the proposed changes were similarly positive. One de-

veloper pointed out that he missed several unnecessary async/await instances that Async-

Fixer detected: “Totally agree, I normally try to take the same minimizing approach, though

it seems I missed these.” [53]. The developer of SoftbuildData [54] experienced performance

improvements after removing unnecessary async: “[...] performance has been improved to

28 milliseconds from 49 milliseconds.” Again, these illustrate the need for tools that support

the developer in finding problems in the use of async.

Some other positive responses from the developers are the following: “Thanks for your

great advice” [55], “This is awesome insight! it’s working like wonders.” [48], and “That’s

very interesting and useful.” [56].

Furthermore, the developers of the playerframework [57] said that they missed the misuses

because the particular code was ported from old asynchronous idioms. This demonstrates

the need for Asyncifier as it can help a developer to upgrade his or her code, without

introducing incorrect usage of async.

4.8 Discussion

Our study has implications for developers, educators, language and library designers, tool

providers, and researchers.

Developers learn and educators teach new programming constructs through both positive
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and negative examples. Robillard and DeLine [58] study what makes large APIs hard to learn

and conclude that one of the important factors is the lack of usage examples. We provide

hundreds of real-world examples of all asynchronous idioms on http://LearnAsync.NET.

Because developers might need to inspect the whole source file or project to understand the

example, we also link to highlighted source files on GitHub. We also provide negative

examples anonymously, without giving app names.

Language and library designers can learn which constructs and idioms are embraced by

developers, and which ones are tedious to use or error-prone. Because some other major

languages (Java 9) have plans to introduce similar constructs for asynchronous programming,

this first study can guide them to an improved design of similar language constructs for their

languages. The architects of async constructs in C#, F#, and Scala confirmed that our

findings are useful and will influence the future evolution of these constructs. For instance,

capturing the context need not be the default: as we have seen developers are very likely to

forget to use ConfigureAwait(false).

Tool providers can take advantage of our findings on async/await misuse. IDEs such

as Visual Studio should have built-in quick fixes (similar to ours) to prevent users from

introducing misuse. For instance, if developers introduce a fire & forget method, the IDE

should give a warning unless the method is the top level event handler.

Researchers in the refactoring community can use our findings to target future research.

For example, as we see from Table 4.2, the usage of Task jumped to 8% from 1% in WP8.

This calls for work on a tool that converts old asynchronous idioms of CPU-bound compu-

tations (e.g., Thread) to new idioms (e.g., Task).

4.8.1 Why is async/await commonly misused?

We have seen extensive misuse of the async/await keywords in the projects in our code

corpus. Different authors, both from Microsoft and others, have documented these potential

misuses extensively. This raises the question: Why is the misuse so extensive? Are developers

just uninformed, or are they unaware of risks or performance characteristics of async?

The async/await feature is a powerful abstraction. Asynchronous methods are more
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complicated than regular methods in three ways.

1. Control flow of asynchronous methods: Control is returned to the caller when awaiting,

and the continuation is resumed later on.

2. Exception handling: Exceptions thrown in asynchronous methods are automatically

captured and returned through the Task. The exception is then re-thrown when the

Task is awaited.

3. Non-trivial concurrent behavior: Up to the first await expression, the asynchronous

method is executed synchronously. The continuation is potentially executed in parallel

with the main thread. Each of these is a leak in the abstraction, which requires an

understanding of the underlying technology - which developers do not yet seem to

grasp.

Another problem might simply be the naming of the feature: asynchronous methods.

However, the first part of the method executes synchronously, and possibly the continuations

do so as well. Therefore, the name asynchronous method might be misleading: the term

pauseable could be more appropriate.

Microsoft has introduced a powerful new feature with async/await keywords in C# 5.

This empowers developers. However, the flip side of the same coin is that they can easily

misuse it. Therefore, it is important to support developers in their understanding of the

feature, its pros and cons, and best practices. Documentation is one manner of doing this; a

toolkit and/or IDE support is another. We believe that these are complimentary, and should

both be provided.

4.8.2 Threats to validity

External. For what C# programs are the results representative? We analyzed both

industry and open-source code bases. Open-source 1378 Windows Phone apps span a wide

domain, from games, social networking, and office productivity to image processing and third

party libraries. They are developed by different teams with 3376 contributors from a large
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and varied community, comprising all Windows Phone apps from GitHub and Codeplex. Our

industry code base consists of reusable libraries, server side code (ASP.NET), and console

apps.

Our tools can also be applied to any other C# system such as tablet and desktop apps.

Internal. Are the measurement results that we obtained actually informing us on what we

want to know? Or are they skewed in some way? We wanted to know how programmers use

and misuse asynchronous programming constructs. We studied construct use through static

analysis: we counted the number of call site instances. The results do not give insight into

how hot those call sites are, or how much CPU time is spent in asynchronous parts of the

program. In that case, using dynamic analysis would have been more appropriate. However,

we were not interested in the performance perspective. Instead, we were interested in the

development and maintenance point of view: development, comprehension and evolution of

code.

With respect to the misuse analysis, for most cases, our analysis is an under-estimation:

For example, we detect one form of unnecessary async, but likely there are other unnecessary

uses that we do not detect. In other cases, heuristics are used, for example to discover the

existence of asynchronous versions of long running methods, or for detecting GUI code. So

we can conclude that the results are a lower bound on misuse numbers, and are likely to be

slightly higher.

Concerning the applicability of the refactorings, our tool presently can handle 54% of the

APM cases. This percentage can go up by addressing some of Asyncifier’s tool limitations.

Reliability. To facilitate replication of our analysis, we provide a detailed description of our

results with fine-grained reports online at http://LearnAsync.NET. It shows all usage

examples that we found of asynchronous idioms (e.g., APM, TAP, Thread, ThreadPool,

etc.). It also shows misuse examples of async.

Asyncifier and AsyncFixer can be downloaded through our webpage or Visual Studio

Gallery.
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4.9 Summary

Because responsiveness is getting very important, asynchronous programming is already

a first-class citizen in modern programming languages. However, the empirical research

community and tool providers have not yet caught up.

Our large-scale empirical study of C# apps in both industry and open-source codebases

provides insight into how developers use asynchronous programming. We have discovered

that developers make many mistakes when manually introducing asynchronous program-

ming. We provide a toolkit to support developers in preventing and curing these mistakes.

Our toolkit (1) safely refactors legacy callback-based asynchronous code to the new async,

(2) detects and fixes existing errors, and (3) prevents introduction of new errors. Evaluation

of the toolkit shows that it is highly applicable, and developers already find the transfor-

mations very useful and are looking forward to using our toolkit. We hope that our study

motivates other follow-up studies to fully understand the state of the art in asynchronous

programming.
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CHAPTER 5

Finding and Correcting Misused Asynchrony

5.1 Introduction

Asynchronous programming is crucially important for today’s programs. Programs that are

UI-centric such as many desktop and mobile apps use asynchrony to improve responsiveness.

Programs that need to service many requests (e.g., web, console, or libraries) use asynchrony

for scalability. Thus, many developers now treat asynchrony as a first-class citizen in their

programs.

All major software development platforms support asynchronous programming through

APIs that rely on callbacks. While these APIs make asynchrony possible, they do not

make it easy. Callbacks invert the control flow and introduce accidental complexity [9]. To

simplify asynchronous programming, some languages (C# [10], F# [9], Scala [11]) introduced

async/await keywords. These keywords are novel and many developers are not familiar with

them.

In 2013, we were the first to study [15] the novel async/await in C#. Back then, the

main problem was under-use: programs used it sparingly, and it was not popular outside

the domain of mobile apps. This inspired us to develop a refactoring tool [15] that helps

developers embrace it. In our current formative study comprising 51M SLOC representing

all domains of computing, we found a 10-fold increase in usage of async/await since 2013.

By 2016, developers across all domains embraced async/await. Are developers now using

async/await correctly?

In this paper we first conduct a large scale formative study to understand how developers

use async/await in both open-source and proprietary programs across all domains. Our

formative study answers two research questions:
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RQ1: How are developers embracing modern asynchronous constructs? We analyzed an-

nual code snapshots of the 100 most popular C# repositories in Github [16] from 2013

to 2016, comprising 51M SLOC in total. We found that developers fully embraced

modern, async/await-based constructs, surpassing the usage of legacy, callback-based

constructs.

RQ2: To what extent do developers misuse modern asynchronous constructs? We discov-

ered 10 kinds of prevalent misuses that have not been studied before.

These async/await misuses have severe consequences. Some cause subtle data-races that

are unique to async/await and cannot be detected by previous race detecting techniques.

Other misuses “swallow” the run-time uncaught exceptions thrown by a program which

hinder developers when searching for errors. Other misuses significantly degrade the perfor-

mance of async programs or can even deadlock the program. Other misuses make developers

erroneously think that their code runs sequentially, when in reality the code runs concur-

rently; this causes unintended behaviour and wrong results.

The async/await misuses are a new source of bugs in software that the research community

has not studied before. Moreover, most of the misuses that we discovered cannot be detected

by the existing bug-finding tools. This paper is the first to raise the awareness of the research

community on an increasingly important source of bugs. We hope that it serves as a call to

action for the testing, program verification, and program analysis community.

Inspired by our formative study, we extended AsyncFixer, our existing static analysis

tool, (i) to detect 10 more kinds of async/await misuses, and (ii) to fix them via program

transformations. Developers can use AsyncFixer as live code analysis: it constantly scans

the source code as soon as the user types in new code. A key challenge is to make the

detection efficient so that developers can use AsyncFixer interactively. The static analysis

that detects the 10 kinds of misuses is non-trivial: it requires control- and data-flow, as well

as dependence information. A syntactic find-and-replace tool cannot detect these misuses.

To empirically evaluate AsyncFixer, we ran it over a diverse corpus of 500 programs from

GitHub, comprising 24M SLOC. We also ran it over the code-bases of two industrial partners,

comprising 4M SLOC. AsyncFixer detected 891 previously unknown misuses in open-
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source software, and 169 in proprietary software. The open-source developers accepted 41

AsyncFixer-generated patches. Moreover, our industrial partners integrated AsyncFixer

directly into their automated build process, so that misuses are caught and fixed before they

are in production code.

5.2 Formative Study

We first conducted a formative study to understand the needs of programmers with regard

to asynchronous programming. To conduct our study, we created a code corpus from open-

source programs.

Methodology. We chose Github [16] as the source of the corpus because Github is the

most popular open-source hosting service. We downloaded the git repositories of the most

popular (i.e., sorted by stars) 100 C# programs that were created before January 1, 2013

and have at least one commit since January 1, 2016. The code corpus has various programs

which target library, console, windows phone, windows store, and ASP.NET (web) platforms.

5.2.1 RQ1: How are developers embracing modern asynchronous
constructs?

We wonder how soon developers started to use modern async constructs and whether the

usage of modern constructs has surpassed the usage of legacy constructs. We developed a

static analysis tool to get the usage statistics of async constructs. The tool analyzed annual

code snapshots of our corpus starting from 2013 to 2016 because modern async constructs

were released in 2012. In total, the tool analyzed 4 different versions of 100 programs, which

comprise 51M SLOC.

Async I/O constructs. .NET provides three kinds of constructs to asynchronously

execute I/O operations (see Section 2.2.2 for more details). The tool measured the call-sites

of APM, EAP, and TAP methods. As shown in Figure 5.1, the usage of legacy async I/O

constructs remained constant, but the usage of TAP grew a lot. It means that developers
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Figure 5.1: Usage trend of async I/O constructs over four years. Y-axis represents the
number of call-sites per 100K lines of code.

Table 5.1: Usage trend of async/await over four years. The second row represents the
number of async methods per 100K lines of code.

01/2013 01/2014 01/2015 01/2016

4.9 13.4 23.4 50

are not replacing legacy constructs with modern ones but adding even more asynchrony in

the form of TAP.

Async CPU-bound constructs. .NET is a rich platform for developers to offload

custom operations to another thread. We have measured the call-sites of several constructs

that represent five approaches explained in Section 2.2.1. For instance, for running a task,

we have measured the call-sites of Task.Run, TaskFactory.StartNew, Task.Start methods.

Figure 5.2 shows that the usage of Thread and ThreadPool decreased, whereas the usage

of modern Task constructs constantly increased.

Language constructs. TAP constructs from the first group and Task constructs from the

second group can be used with async/await keywords. We measured the number of method

definitions that have async modifier. As shown in Table 5.1, there is a 10-fold increase in

usage of async methods since 2013.�
�

�
�

The usage of legacy constructs remained the same or decreased. Developers fully

embraced modern async constructs, surpassing the usage of legacy constructs.
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Figure 5.2: Usage trend of async CPU-bound constructs over four years. Y-axis represents
the number of call-sites per 100K lines of code.

5.2.2 RQ2: To what extent do developers misuse modern asynchronous
constructs?

In our previous study [15] conducted in 2013, we presented a refactoring tool that migrate the

legacy code to async/await. In that study, we found little use of async/await in programs

beyond mobile; and even there we found many instances of anti-patterns (lightweight, stylis-

tic problems such as unnecessary usage of async/await) in mobile apps. By 2016, developers

across all domains embraced async/await and the usage of async/await is increased 10-

fold. We now expect that we will find prevalent, significant misuses of async/await across

all domains.

We collected the misuses in the following ways:

1. We manually examined the bug reports of programs in our corpus. We filtered the

reports whose content contains async/await keywords.

2. We visited two large software companies and talked to some of their developers about

the difficulties and most common bugs of modern async constructs.

3. We discovered some misuses ourselves.

We discovered 10 kinds of prevalent misuses that have not been studied before and cat-

egorized them into three main types: performance (Section 5.4), correctness (Section 5.5),

and bad-practices (Section 5.6).
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5.3 AsyncFixer: Extending it to Fix 10 New Misuses

In our previous study (see Chapter 4), we developed AsyncFixer to detect and fix four

kinds of async/await misuses. We now extended AsyncFixer to detect and fix 10 more

kinds of async/await misuses.

AsyncFixer is shipped in two different ways: Visual Studio extension (VSIX) and NuGet

package.

Nuget package. AsyncFixer can be deployed as a package (library) for the NuGet

package management system [34]. In this option, developers add the AsyncFixer nuget

package as a dependency to the projects that they want to analyze. Then, AsyncFixer

works as part of the automated build process. Build output shows the misuses detected by

AsyncFixer.

VSIX package. The VSIX package only works in Visual Studio so command-line builds

do not report the misuses unlike the Nuget package. The advantage is that AsyncFixer is

enabled for every project that developers open in Visual Studio.

Both packages. Either mode can work as live code analysis in the Visual Studio because

AsyncFixer constantly scans the source code as soon as the user types in new code. Thus,

it dramatically shortens the time between the introduction of an error and its detection.

When AsyncFixer detects a misuse, the light bulb will appear in the left margin and

developers can click on it or hover over the code to see suggestions and code fixes. Async-

Fixer can also operate in batch mode to correct all misuses in the document, project, or

solution file.

Misuse catalog. There are 10 new kinds of misuses that AsyncFixer can automatically

detect and fix. In the next sections, we explain these 10 misuses in detail. For each misuse, we

first explain (i) the problem and when the misuse happens, (ii) the static analysis algorithm

to detect this misuse, and (iii) the program transformation algorithm to fix it. (see Section 2.3

for the definitions of the terms which are frequently used when explaining the misuses.)
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5.4 Performance Misuses

There are misuses which have negative impacts on the performance of the software system.

In other words, code could be written differently to improve performance.

5.4.1 Missing parallelism when chaining multiple I/O operations

Problem. Async I/O is one critical way to make the code more scalable. However, devel-

opers might still miss opportunities even though they use async I/O calls .

In Code 5.1, two independent async I/O calls are executed one after another:

GetStorageFolder() and GetFiles(). However, both operations can be run asynchronously

like in Code 5.2.

More await statements also mean more complexity in the state machine that is generated

by the C# compiler, causing more overhead. Hence, developers can gain performance here

by (i) lowering the overhead by decreasing the await statements and (ii) executing async

I/O calls in parallel.

Code 5.1 Real-world example for 5.4.1 from LanguageDetectApp [60]

1 override async void OnNavigatedTo(NavigationEventArgs e)

2 {

3 ...

4 await _fileViewModel.GetStorageFolder();

5 await _fileViewModel.GetFiles();

6 ...

7 }

Code 5.2 Fixed version of Code 5.1

1 override async void OnNavigatedTo(NavigationEventArgs e)

2 {

3 ...

4 await Task.WhenAll(_fileViewModel.GetStorageFolder(),

5 _fileViewModel.GetFiles());

6 ...

7 }
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Detection. AsyncFixer analyzes each method call in the async methods . If it detects

2 or more consecutive awaited async I/O calls , there is an opportunity to execute them in

parallel. It also makes sure that those calls do not carry any dependence between them: not

sharing any variables in the call arguments. Roslyn provides ready-to-use control & intra-

procedural data flow analysis APIs that AsyncFixer uses to understand how variable flows

in and out of regions of source.

Another challenge is to detect async I/O calls . To address this challenge, AsyncFixer

uses a blacklist of all async I/O calls provided by .NET framework.

Fix. AsyncFixer does not await the consecutive async I/O calls so they only return

tasks. Then, these tasks will be awaited together by using Task.WhenAll() so that multiple

async I/O calls will be initiated in parallel. The results of these tasks will be gathered by

using Task.Result expressions if necessary.

5.4.2 User defined async methods that are synchronously waited

Problem. async/await is a “contagious” programming model because asynchronous code

tends to drive surrounding code to also be asynchronous. The code that calls an async

method must not block waiting for the Task to complete, and so the caller will probably also

await it. In this way, developers end up writing chains of async methods , each awaiting the

next. This behavior is inherent in all types of asynchronous programming, not just the new

async/await keywords.

Developers sometimes venture into asynchronous programming, converting just a small

part of their app and wrapping it in a synchronous API so the rest of the app is isolated

from the changes.

The async method (see lines 1-5 in Code 5.3) is called in line 9 and the returned Task is

synchronously waited. A thread is blocked to wait for a Task, so such a valuable resource is

wasted. This practice does not increase the performance or scalability in overall. Developers

await async methods in order to benefit from them.
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Code 5.3 Example for 5.4.2

1 async Task WriteAsync(byte[] message)

2 {

3 ...

4 await WriteToDatabaseAsync(...);

5 }

6 void OnNavigated(EventArgs event)

7 {

8 ...

9 WriteAsync(...).Wait();

10 }

Code 5.4 Fixed version of Code 5.3

1 async void OnNavigated(EventArgs event)

2 {

3 ...

4 await WriteAsync(...);

5 }

Detection. AsyncFixer finds all user-defined async methods (not provided by li-

braries) by checking if the method declarations have a async modifier. Then, for each

async async method , it scans all call sites to check if the method is synchronously waited

with Task.Wait() or Task.Result constructs.

However, there are some contexts where you cannot await async methods : query expres-

sion, in the catch or finally block of an exception handling statement, in the block of a

lock statement, or in an unsafe context. If none of the call sites is in such contexts above,

AsyncFixer reports those async methods .

Fix. Developer needs to manually fix this misuse. If async method needs to awaited in a

call-site, the enclosing method of the call-site needs to be an async method as well because

await keyword can only be used in async methods . Then, the developer needs to change

the call sites of that enclosing method as well because async/await is a contagious model.

Hence, AsyncFixer only reports those misuses, and the developer needs to fix the call site

and its call graph.
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5.4.3 Awaiting short running async calls

Problem. Although operations should be made asynchronous if they could take longer than

50 milliseconds to execute [61], developers can overuse async/await. For relatively fast async

operations, the overhead may make asynchronous code less beneficial, particularly if many

fast async calls need to be made frequently (e.g., in a loop). Adding await keyword comes

at a price: the compiler generates some code that complicates the control flow, resulting in

decreased performance.

Because AsyncFixer employs static analysis and it does not profile the programs, we

decided to find the fast async calls by focusing on only one operation: Task.Delay(). This

operation acts in a very different way than Thread.Sleep(). Developers use both of them to

suspend the execution of a program (thread) for a given timespan. However, Task.Delay()

will create a task which will complete after a time delay. If the time delay is less 50 ms (see

line 7 in Code 5.5), this task causes some overhead, especially if Task.Delay is used in a

loop.

Code 5.5 Real-world example for 5.4.3 from waslibs [62]

1 async void OnPointerWheelChanged(...)

2 {

3 ...

4 for (int n = 0; n < Math.Abs(offset); n++)

5 {

6 await TranslateDelta(delta);

7 await Task.Delay(10);

8 }

9 }

Code 5.6 Fixed version of Code 5.5

1 async void OnPointerWheelChanged(...)

2 {

3 ...

4 for (int n = 0; n < Math.Abs(offset); n++)

5 {

6 await TranslateDelta(delta);

7 Task.Delay(10).Wait();

8 }
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9 }

Detection. AsyncFixer finds all awaited Task.Delay() calls whose delay argument that

is less than 50ms.

Fix. AsyncFixer synchronously waits for those Task.Delay() calls instead of awaiting

(see line 7 in Code 5.6). Hence, there will be no context-switching overhead which was

previously caused by awaiting .

5.4.4 Unnecessary dispatcher to access the UI thread

Problem. Developers frequently call Dispatcher.BeginInvoke() method which allows

developers to schedule the given action for execution in the UI thread. It is useful to update

the UI after running long-running operation in the background. However, it is not needed

if developers use async/await keywords. Because await captures information about the

thread in which it is executed, the statements after await will be executed in the same

thread. In Code 5.7, the statement in line 9 will be executed in the UI thread even without

BeginInvoke(). In Code 5.7, the UI thread basically queues an action (statements between

line 7-10) to herself (UI thread), resulting in unnecessary overhead.

Code 5.7 Real-world example for 5.4.4 from native-windows-phone-sdk [63]

1 async public Task LoadStoreOffers()

2 {

3 textField.Text = "loading";

4 var response = await Api.GetOfferListAsync(options);

5 Deployment.Current.Dispatcher.BeginInvoke(() =>

6 {

7 textField.Text = response;

8 });

9 }

Code 5.8 Fixed version of Code 5.7

1 async public Task LoadStoreOffers()

2 {

93



3 textField.Text = "loading";

4 ...

5 var response = await Api.GetOfferListAsync(options);

6 textField.Text = response;

7 }

Detection. AsyncFixer first locates the usages of Dispatcher.BeginInvoke() method.

Then, it determines if the UI thread is responsible for execution. There are certain properties

and methods that are only accessed by the UI thread: all members from System.Windows

namespace. If the method has members from this namespace (see line 3 in Code 5.7), it

means that the UI thread is responsible for the execution.

Fix. AsyncFixer first moves the statements in the lambda (see line 5-8 in Code 5.7) to

the line before the dispatcher method. Then, it removes the dispatcher method call (see line

6 in Code 5.8).

5.5 Correctness Misuses

The misuses in this section are coding mistakes resulting in code that the developer did not

intend.

5.5.1 Fire & Forget async calls in the using statement

Using statement. Before explaining this misuse, we should explain the using state-

ment [64], which is a C# specific construct. It provides the syntax to specify the scope of

the use of a resource object.

The using statement is useful for objects whose lifetimes are within the method or block

in which they are created. This statement eliminates the need for multiple calls to release

the resources at the end of their scope. For example, in Code 5.9, the using statement is

initiated with a writer lock (line 1). Then, this writer lock will be automatically disposed

and released at the end of block (line 5).

94



Problem. A using statement whose code block has some fire & forget async calls such as

PutBatchAsync() in line 3 in Code 5.9 can result in a bug. When an async call is not waited

or awaited , the lock might be released at the end of block before the async call completed.

This interleaving will cause data races when accessing unprotected shared variables that are

transitively reachable from PutBatchAsync().

Code 5.9 Real-world example for 5.5.1 from NBitcoin [65]

1 using(lock.LockWrite())

2 {

3 InnerRepository.PutBatchAsync(...);

4 ...

5 }

Code 5.10 Fixed version of Code 5.9

1 using(lock.LockWrite())

2 {

3 await InnerRepository.PutBatchAsync(...);

4 ...

5 }

In industry code, we have seen many instances of this misuse. For instance, the using

statement is commonly used to measure the execution time of a code block. However, when

there are fire & forget async calls in the block, they are not accounted for in the block’s

execution time, causing misleading performance measurements.

Detection. AsyncFixer scans each top-level method call in the using statements to

check if it is a fire & forget async call . It does not scan the method calls inside the call

graphs.

Fix. AsyncFixer inserts the await keyword to asynchronously wait the fire & forget

async call if the enclosing method definition is an async method (see line 3 in Code 5.10).

Otherwise, the async call will be synchronously waited such as asyncCall.Wait().
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5.5.2 Fire & forget Task.Delay calls

Problem. Some fire & forget async calls methods need to be awaited or waited. For

example, when the async Task.Delay() is not awaited or waited, no delay will be inserted

between Task.Delay statement and the next statement, causing erroneous behavior.

In Code 5.11, the developer intends to insert quarter-second delays between

SetFrameState() calls. However, the developer forgot to await or wait the Task.Delay(),

so this statement has no effect.

Because this misuse is so common in the open-source programs, we contacted several devel-

opers. Most of them did not notice that Task.Delay() is an asynchronous call which returns

a Task. They thought that this operation is a direct replacement of the Thread.Sleep()

method (see Section 5.4.3 for more information).

Code 5.11 Real-world example for 5.5.2 from Windows10IoTAdaFruitLed [66]

1 for (byte l = 0; l < 2; l++)

2 {

3 matrix.SetFrameState(LedDriver.Display.Off);

4 Task.Delay(250);

5 matrix.SetFrameState(LedDriver.Display.On);

6 Task.Delay(250);

7 }

Code 5.12 Fixed version of Code 5.11

1 for (byte l = 0; l < 2; l++)

2 {

3 matrix.SetFrameState(LedDriver.Display.Off);

4 await Task.Delay(250);

5 matrix.SetFrameState(LedDriver.Display.On);

6 await Task.Delay(250);

7 }

Detection. AsyncFixer scans all Task.Delay() calls to check if the returned Task

is awaited or waited. The challenge is that there are many constructs to synchronously

wait a Task: Task.Wait(), Task.WaitAll(), Task.GetAwaiter().GetResult(). Developers

sometimes set a variable to the returned Task and then, this variable is awaited or waited
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with one of the constructs above. Hence, AsyncFixer employs data-flow analysis to track

the Task.

Fix. AsyncFixer awaits or synchronously waits the Task.Delay() call based on whether

the enclosing method is an async method . AsyncFixer inserted await keywords in front

of Task.Delay calls in Code 5.12 because the enclosing method is an async method .

5.5.3 Awaited async call in the compound assignment

Problem. The pause ’n’ play semantics featured in async/await has many implications.

It might cause interleavings that can be the source of timing-related bugs. Such a subtle

bug happens when developers combine the await keyword with compound assignments (e.g.,

+=, *=, &=).

In Code 5.13, the C# compiler will rewrite the statement in line 6 into the following:

total = total + await provider.Ask(...);

This statement executes in the following (non-atomic) steps: (1) load total onto the

stack, (2) await the task, (3) push result of task onto the stack, (4) add the stack values,

(5) store into total.

Suppose that provider.Ask() is a long-running operation, causing the execution to pause

at step 2. Because total variable is an instance variable, some other threads might modify

this variable in the meantime. When provider.Ask() completes, its result will be pushed

onto the stack and the values in the stack will be summed up. However, the stack had the

old value for total. Because step 1 has already executed, the total is now stale.

This timing-related is not one of the usual data-races because this can happen in a single-

threaded UI environment as well. Imagine that Search() method is called when the user

clicks a button. If the user clicks the button again before the completion of first click, the

event handler in the second click will read the stale value. This subtle bug is a data-race

specific to async/await, that cannot be detected by existing race-checker tools.

Code 5.13 Real-world example for 5.5.3 from Orleankka [67]

1 int total;
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2 async Task Search(string api)

3 {

4 ...

5 total += await provider.Ask(new Search(query));

6 ...

7 }

Code 5.14 Fixed version of Code 5.13

1 int total;

2 async Task Search(string api)

3 {

4 ...

5 int temp = await provider.Ask(new Search(query));

6 total += temp;

7 ...

8 }

Detection. AsyncFixer finds all compound assignment statements whose right-hand

side expressions contain await. Then, it determines whether the left-hand side expression is

a shared variable (i.e., not a local variable).

Fix. To avoid this misuse, developers should not mix await and the compound assignment

operators. AsyncFixer replaces the compound assignment statement with two different

statements: (1) the first statement stores the result of the awaited Task (see line 5 in

Code 5.14), (2) a new compound assignment that uses the variable in the previous statement

(see line 6).

5.5.4 Implicit down-casting from Task<Task> to Task

Problem. Task.Factory.StartNew() is the primary method for scheduling a new Task

in .NET. Developers usually mix this method call with async lambdas that are basically

anonymous methods returning a Task. This practice can backfire in some cases.

In Code 5.15, the argument of StartNew() method call is an async lambda (see lines 3-

10). StartNew() returns a Task<T>, where T is the return type of the lambda argument. In
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Code 5.15, it returns a task within another task, Task<Task> because of the async lambda’s

return type.

In line 3, the await statement will pause the execution until the outer task completes.

The outer task represents only the first part of the async lambda: the execution until the

await point in line 5. Hence, the return statement in line 11 will be concurrently executed

with the second part of the async lambda (see lines 6-9). The developer erroneously think

that the second part of lambda and the return statement run sequentially; however, it runs

concurrently; this causes data-races and unintended behaviour.

There is an important danger in Code 5.15: a silent exception. If DeAuthenticate() call

returns false, an exception in line 8 will be thrown to the inner task. The exceptions in a

task can only propagate to the caller if the task is awaited or waited. In line 3, only the

outer task is awaited so the exceptions in the inner task will be swallowed and have no effect

at all: the user will never see the “DeAuthenticate” error and the developer cannot handle

this exception.

Code 5.15 Real-world example for 5.5.4 from app-crm [68]

1 public async Task<bool> LogoutAsync()

2 {

3 await Task.Factory.StartNew(async () =>

4 {

5 var success = await DeAuthenticate();

6 if (!success)

7 {

8 throw new Exception("Failed DeAuthenticate");

9 }

10 });

11 return true;

12 }

Code 5.16 Fixed version of Code 5.15

1 public async Task<bool> LogoutAsync()

2 {

3 await Task.Run(...);

4 return true;

5 }
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Detection. AsyncFixer finds StartNew() calls that take async lambdas as an argument.

Among these calls, it reports the ones that (i) are not double awaited and (ii) are not followed

by UnWrap() call.

Fix. Task.Factory.StartNew() does not understand async lambdas. Task<Task> is im-

plicitly down-casted to Task, so the inner task cannot be awaited or waited. There are

several ways to fix this problem. Developers can double await the nested task:

await await Task.Factory.StartNew(async ...)

AsyncFixer uses another approach to fix it: it replaces Task.Factory.StartNew() with

Task.Run() like in Code 5.16. Task.Run() automatically unwraps the nested task and

returns the inner task.

5.6 Bad Practices

The misuses in this sections are less severe, anti-patterns which are violations of recom-

mended and essential coding practices.

5.6.1 AggregateException when synchronously waiting for async calls

Problem. Developers should avoid synchronously waiting for async calls (see Sec-

tion 5.4.2). However, there are cases when developers cannot await async calls such as

inside a lock statement, or inside the entry method of the program (main method). In

such cases, developers wait for async calls by using Task.Result or Task.Wait() methods.

These methods always encapsulate the inner exception in an AggregateException. This

type of exception makes the exception handling code more complex. The debugging experi-

ence is not preferred as well because the exception message is generic: “One or more errors

occurred”.

Detection. AsyncFixer reports async calls which are waited with Task.Wait(). It also

reports async calls which are not awaited and whose results are accessed by Task.Result

expressions.

100



Fix. AsyncFixer replaces the Task.Wait() or Task.Result() with

GetAwaiter().GetResult(). This new method preserves the stack trace and task

exceptions instead of wrapping them in an AggregateException, providing simplified

post-mortem debugging.

5.6.2 Fire & forget tasks

Problem. Exceptions thrown in a task are automatically captured, and then re-thrown

when the task is (i) awaited , (ii) synchronously waited, or (iii) passed to another task via

continuation. If none of these three conditions is met, uncaught exceptions in task are

silenced. Hence, if developers use fire & forget tasks, they can never handle and know the

exceptions occurred in those tasks.

Detection. AsyncFixer scans all task creation calls (e.g., Task.Run,

TaskFactory.StartNew) and figures out if they are awaited , waited, or chained with some

other tasks. Otherwise, AsyncFixer reports those task creation calls as fire & forget tasks.

Fix. AsyncFixer inserts the await keyword to asynchronously wait the task if the

enclosing method definition is an async method. Otherwise, the fire & forget task will be

synchronously waited such as task.Wait().

5.7 Evaluation

To evaluate AsyncFixer, we answer the following research questions:

EQ1: How applicable is AsyncFixer?

EQ2: Are the program transformations safe?

EQ3: Is AsyncFixer fast enough to be used interactively?

EQ4: Do developers find these transformations useful?
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5.7.1 Experimental setup

We evaluated AsyncFixer by running it in batch mode over both open-source and propri-

etary software.

Open-source corpus. We gathered open-source C# programs from Github. We filtered

the programs that have at least one commit since January 1, 2016 because we want to

analyze recently updated programs. Then, we sorted them by popularity and gathered 500

of them. In total, the corpus comprises 24M SLOC, spanning a wide spectrum from web &

desktop programs to libraries and mobile apps.

Proprietary corpus. To gather the industry data, we conducted extensive visits at two

companies. The first company is a leading company that provides health information ser-

vices. We analyzed C# projects that target library, console, and ASP.NET (web) platforms,

comprising 2.5M SLOC.

As a second opportunity for the industry data, we visited a global technology company

where we analyzed the C# code-base of the devops tools. We analyzed 1.5M SLOC that

target library and console platforms.

In total, we analyzed 4M SLOC to gather statistics from the proprietary corpus.

5.7.2 Applicability

We ran AsyncFixer in batch mode over the entire corpus. We counted the number and

kinds of misuses that it detected.

Table 5.2 tabulates the number of misuses for each kind separately. In total, AsyncFixer

detected 891 in open-source corpus and 169 in proprietary corpus. As shown in the third

column, there are no numbers for some kinds of misuses, because AsyncFixer did not have

the detection of some kinds of misuses when we visited the first company.

It is surprising that the density of misuses in the proprietary corpus is higher than in the

open-source corpus. We noticed that developers synchronously wait async methods as the

most common misuse in both open-source and proprietary corpus.

102



Table 5.2: Misuse statistics of async/await. In the second column, misuse type is repre-
sented by the section number. The third column shows the results for open-source corpus.
The fourth and fifth columns show the results for proprietary corpus.

Category Type Open-source Industry #1 Industry #2

# misuses # misuses # misuses

Performance

5.4.1 63 - 12

5.4.2 422 25 32

5.4.3 52 - 6

5.4.4 35 2 0

Correctness

5.5.1 34 - 26

5.5.2 32 0 0

5.5.3 19 0 3

5.5.4 29 - 11

Bad-practices
5.6.1 120 10 24

5.6.2 85 0 18

5.7.3 Safe transformations

We checked the safety of AsyncFixer transformations in two ways. First, when run-

ning AsyncFixer over the code corpus, it also fixed the found misuses. Our evaluation

script compiled the program in-memory and determined that no compilation errors were

introduced. Second, we sampled and manually checked 10% of the fixed instances in the

open-source corpus and all the fixed instances in the industry corpus. We determined that

the fixes are correct. We also sent the fixes as patches to developers (see Section 5.7.5).

5.7.4 Performance

We measured the execution time of AsyncFixer in batch mode. For 100K SLOC, Async-

Fixer took 1.3 minutes with all misuse detections enabled. However, the performance

depends on many other factors besides #SLOC: the number of async methods, call graph

depth of async methods, etc.
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AsyncFixer is also fast enough to be used as a live analyzer in Visual Studio. Because

it runs on a background thread to analyze the code-base of the active project in the IDE,

developers do not experience any slowdown.

5.7.5 Developer feedback

Our industrial partners found AsyncFixer useful. They integrated AsyncFixer directly

into their automated build process. When developers build their code-base from Visual

Studio or command-line, they see the misuse warnings reported by AsyncFixer in the

build output. They also used AsyncFixer to fix the reported misuses in Table 5.2.

To further evaluate the usefulness in practice, we submitted (via pull requests) 56 patches

generated by AsyncFixer in 20 recently updated open-source programs. Developers ac-

cepted patches for 41 misuses in 15 programs. The developers of 4 programs did not reply

and the developers of one program did not like the fix for Section 5.5.1.

We have received very positive feedback. The developer of oscill [69] said “idea is great.

It’s proof-of-concept work and it fully worked”. One developer from CodeSmithTools [70]

“love(s) the AsyncFixer package”, and he found it “extremely useful”.

AsyncFixer also educates developers. The developer of languagedetectapp [60] said

“your patch has updated my knowledge about running multi-task, thanks so much”. The

developer of nbitcoin [65] was not aware about the subtle misuse that AsyncFixer found

in his code and said “very nice catch”.

5.8 Discussion

Our previous study [15] already influenced the design of the C# compiler. We previously re-

ported a very common anti-pattern, when developers unnecessarily use async/await. Based

on our empirical data, Neal Gafter, the main C# compiler architect, proposed a specific

compiler optimization for this anti-pattern [71]. According to the proposed optimization, if

the C# compiler detects the unnecessary usage, it will not generate the state machine and

ignore async/await. This optimization is scheduled to become part of C# 7. Similarly, we
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expect that our current study will have a significant impact on future versions of C#.

Other major programming languages (e.g., Java) have plans to introduce similar constructs

for asynchronous programming. Our findings can guide language designers to an improved

design of async/await for their languages.

We have seen a wide variety of misuses of the async/await keywords in our code corpus.

Different authors, both from Microsoft and others, have documented these potential misuses

extensively. We have noticed that the samples and tutorials in Github have misuses as well.

If developers start to learn async/await from flawed tutorials, the misuses get ingrained

into the developers’ culture, they are hard to un-learn. Hence, to educate developers, we

provide the misuse examples in our website: http://LearnAsync.NET. We believe that

documentation and tool support are complementary, and should both be provided.

5.8.1 Threats to validity

External. For what C# programs are the results representative? We analyzed both indus-

try and open-source code-bases. Open-source programs span a wide domain, from games,

social networking, and office productivity to image processing and third party libraries. They

are developed by different teams from a large and varied community. Our industry code-base

consists of reusable libraries, server side code (ASP.NET), and console programs, developed

by approximately 150 developers.

Internal. Our anti-pattern analysis is an under-estimation: For example, we detect one

form of avoid short running async operations, but likely there are other fast operations that

should not be async’ed. In other cases, heuristics are used, for example to discover the

existence of short running operations, or for detecting UI context. So we can conclude that

the results are a lower bound on misuse numbers, and are likely to be slightly higher.
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5.9 Summary

Developers fully embraced the novel async/await across all domains. However, we discovered

10 kinds of prevalent misuses that have severe consequences: subtle data-races, swallowed

exceptions, and unintended behavior. These are a new source of bugs in today’s programs.

Because no other tool can detect these bugs, we designed, implemented, and evaluated a

new static analysis tool, AsyncFixer that (i) detects and (ii) fixes async/await misuses.

Our large-scale empirical evaluation shows that AsyncFixer is highly applicable: it

discovered 891 misuses in open-source and 169 misuses in proprietary code-bases. Our in-

dustrial partners have already started to use AsyncFixer in their automated build process.

We hope that our work serves as a call to action for the testing, program verification, and

program analysis communities to tackle an increasingly important source of bugs.
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CHAPTER 6

A Guide for Researchers Studying New Constructs

Programming languages and standard libraries evolve so that they are more powerful and

expressive, leading to more sophisticated software. Technology trends drive this evolution

and decide new constructs. For instance, the competitive mobile app market has led to

fast & responsive user interfaces, which require asynchronous programming. Programming

languages and standard libraries provided new constructs (e.g., async/await keywords) to

treat asynchrony as a first-class citizen.

In future, new programming constructs will be released in a similar way for trends stem-

ming from other needs, e.g., to process big-data. We expect that these new constructs will

be released fast without adequate tool support and extensive empirical & usability testing.

Subsequently, researchers can fill these gaps by empirically studying these new constructs

and providing necessary tools to help developers adopt them. Here, we provide a guide for

researchers studying new constructs with the goal of producing a practical impact.

We have followed ourselves the principles outlined in this guide and found them to hold in

each of the three pieces of technical work that compass this dissertation. Figure 6.1 shows

the interaction among the five steps of our guideline.

6.1 Choosing a Construct to Study

The first step is to choose a new construct to empirically study. A programming construct

is either a language keyword or an API class from the standard library. Because we need

to analyze the usages of this new construct, we selected constructs for which there exist

instances in real-world software. When we first studied async keywords in 2013, they were

one-year old. However, we were able to find many usages in the Windows Phone applications
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- up to 3-year old
- if replacing legacy constructs
- popularity in developer Q & A forums

New Programming Constructs

Step 2: Analyzing the Usage
- open-source and/or proprietary code corpus
- text-based search
- static analysis 

Step 3: Implementing New Tools
- underuse
- misuse
- overuse

Step 4: Evaluating the Tools
- using the same code corpus from Step 2
- quantitative evaluation
- qualitative evaluation

Step 5: Interactions for Impact
- language and standard library designers
- contacting developers
- educational web portals 

Figure 6.1: Guide for researchers studying new programming constructs

because of the beta release of those keywords in 2011. Hence, to maximize the likelihood of

finding instances, we studied constructs which are up to 3-year old (including the first beta

version).

To maximize the likelihood of practical impact, it is best to choose a new construct

which can replace the usages of some existing constructs and thus require developers to

migrate their legacy code. For instance, async replaces call-back asynchronous constructs,

Parallel class replaces fork & join Task instances. C# 7 will introduce pattern matching

soon, which will replace specific switch statements. These new constructs are valuable for

researchers because developers desperately need automated migration and refactoring tools

for upgrading their codebases.

To find inspiration, we also recommend to look at developer Q & A forums such as Stack

Overflow [35]. These forums can highlight which are the constructs that developers find hard

to use or error-prone.
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6.2 Analyzing the Usage from Early Adopters

We analyzed the real usages of the new construct to check whether there were usability

problems. Because Github [16] is currently the most popular code repository hosting service,

it is the best place for researchers to mine the usages of the construct. We first searched

the construct by using the basic search functionality in Github’s webpage. The text-based

search results showed us in which contexts the construct was commonly used. These results

helped us develop the static analysis that accurately detects the usage of the construct.

There are choices of static analysis frameworks for each major programming language:

e.g., WALA [107] and Eclipse JDT [108] for Java, Clang [109] and Eclipse CDT [110] for

C++, Roslyn [18] for C#. Researchers can use these frameworks to build static analysis tools

that reveal more accurate information about real-world usages of the construct. We started

the implementation with over-approximation, allowing many false-positives and almost-zero

false-negatives. Then, we improved the accuracy of the static analysis to tolerate fewer

false-positives.

After we implemented an initial version of the static analysis tool for detection, we down-

loaded the code repositories from Github to run the detection tool. Based on the text-based

search, we had an idea in which type of software the new construct was likely to be used.

For instance, when we first studied async, we only downloaded Windows Phone applications

from Github because these constructs were not popular outside the mobile domain at that

time. Hence, we downloaded all C# code repositories and then filtered the repositories that

contain a specific configuration file which was specific to Windows Phone.

When setting up the corpus of data, the goal is to do filtering as much as possible before

downloading the repositories. Github rest API [111] allows researchers to find repositories

via various criteria: size, date of creation, when they were last updated, language they are

written in, the number of stars, keyword which will be searched in the description of the

repository. We detected repositories which were last updated after the release date of the

construct to be studied. As another criteria, we ignored the forked repositories. In the Git

community, developers often fork a repository and start making changes in their own copies.

Sometimes, the main repository might merge changes from the forked repositories, but many
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times the forked repositories start evolving independently. Because these forked repositories

share most of their codebases, it is best to ignore those and include only the main repository.

Then, we downloaded the most popular repositories (i.e., sorted by the number of stars) that

match our criteria.

After downloading repositories, we eliminated two types of repositories as well to increase

the quality of their code corpus. First, we eliminated the “toy repositories”, e.g., the ones

that have less than 1000 non-comment, non-blank lines of code (SLOC) because many were

just experimentally written by developers who learn a new construct, and they did not

represent realistic usage of production code. Second, we eliminated the repositories which did

not compile due to the missing libraries, incorrect configurations, etc., since these repositories

would not be processed correctly by static analysis tools.

6.3 Implementing the Tools that Developers Need

The most important step is to understand what kind of tool support developers need regard-

ing the new construct. This decision should be data-driven, based on the previous step. We

also contacted the developers already using the new construct to understand if they need

tool support. For example, in our ASE-2015 paper [112] we contacted developers but also

technical authors who blog about this new construct.

We focused on three problems that require the creation of new tools: (i) underuse, (ii) mis-

use, (iii) overuse. We aimed to solve these problems with automated program transformation

tools.

6.3.1 Underuse

We found that developers are not using the new constructs due to two different reasons.

First, they are not aware of them. Second, they are aware of them but they find it tedious

to refactor their existing (legacy) code. Because these two reasons require different types of

tool solutions, it is valuable for researchers to distinguish between them based on the usage

data.
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If the new construct is (almost) always used in the code that has been created after the

release date of the construct, it means that developers are aware of the construct and they

prefer using it in their new code rather than the existing code. In this scenario, developers

know where to introduce the new construct but they find the migration tedious and/or

challenging. Hence, researchers should consider developing an automated migration tool for

legacy code.

If the construct is rarely used in the recent code, researchers should consider developing a

transformation tool suggesting code snippets that can be transformed to the new construct.

This recommendation workflow can make developers aware of the new construct.

6.3.2 Misuse

We found that developers usually misuse the new constructs due to several reasons. To

find out the misuses, researchers should start with looking at public bug reports in Github.

Github webpage allows users to search a specific keyword in the description of the bug

reports (i.e., issue in git jargon). Hence, researchers can search the name of the construct in

the bug reports and find the misused patterns.

Second, they can manually compare the real-world usages with the guideline that the

language designer publishes regarding the new construct. Programming language designers

usually write a guideline about how to use the newly released constructs. This guideline can

be useful to find out the misused patterns in the real-world usages.

6.3.3 Overuse

We found that when developers start using a new construct, they sometimes overuse it.

They introduce the new construct to some code which does not benefit from it at all. In this

case, the construct can even degrade the code performance or readability. Hence, researchers

should manually review the real-world usages to detect in which contexts the new construct is

unnecessarily used. If necessary, researchers contact the developers of those usage instances

to confirm whether developers really need to use the construct in those contexts.
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6.4 Evaluating the Tools

We extensively evaluated the usefulness of program transformation tools that help developers

adopt the new construct. In our studies, we conducted two kinds of empirical evaluation:

quantitative and qualitative. For both evaluation methods, we used the same code corpus

that we prepared from Github (see Section 6.2).

6.4.1 Quantitative evaluation

To quantitatively evaluate the usefulness of the program transformation tool, we answered

questions like the ones below:

1. How applicable is the tool? To evaluate the applicability, we executed the tool over

the code corpus. We measured how many times the tool was applied and the number

of false-positives and false-negatives. We discussed the soundness and completeness of

the tool under this question.

2. Are the automated transformations safe? It is important to evaluate the safety of

transformations applied by the tool. After each transformation, it should be automat-

ically checked whether any of them break the existing unit test suite or the software

with a compilation error. We also randomly sampled and manually checked some of

transformed instances.

3. Is the tool fast enough to be used interactively? The program transformation tool is

useful if developers can use it interactively in their IDE. Hence, it is important for

developers if the tool detects the code snippet and applies the transformation in a fast

manner. The detection and the transformation of one instance should be measured

all together. Because developers sometimes want to run the automated tool against

their projects in batch mode, it is valuable to measure how much time the tool takes

on average to run against a project.

4. How much programmer effort is saved by the tool? The programmer effort is directly

correlated with the size of the changes. We evaluated the impact of the program
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transformations by investigating the size of the changes. We measured how many lines

of code were changed per transformation by the tool.

6.4.2 Qualitative evaluation

We further evaluated the usefulness of the tools in practice. Because it is hard to acquire

real users of the tool in the experimental version, we applied the tool ourselves, and offered

the transformations to the original developers as a patch via a pull request. We also asked

developers whether they need such a tool to automate those transformations.

To increase the response rate for the pull requests, we identified recently updated reposito-

ries and offered patches to a limited number of those repositories using an iterative process:

first experiment with the length of the pull request, the recency of the code affected by the

pull request. These experiments will teach the researcher how to create pull requests that

have a higher chance of being reviewed by open-source developers.

6.5 Interactions for Impact

To increase the impact of our research, we constantly communicated with (i) language and

standard library designers and (ii) developers.

6.5.1 Language and standard library designers

The empirical evidence from Section 6.2 determines which tool support is appropriate, but

can also have a tremendous impact on the design of the construct. For researchers who

are interested on having practical impact on the language constructs, we recommend going

the extra mile. We shared our empirical findings with the designers of the construct in

C#. We did not only inform them of our findings but also suggested solutions in terms of

language design. Our fruitful collaboration resulted in a new C# compiler optimization that

eliminates a common misuse.

We believed that our findings can cross language boundaries because programming lan-
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guages release the same construct due to competition and technology trends. Hence, we

provided our findings to the designers of the construct in other languages such as F#. They

appreciated our effort and claimed that they would use our findings for language revisions.

We also contacted the designers of the languages that consider adding the same construct

in the future, for example Scala. Because it is easier to change the proposed design before

it reaches production, we thought that we can have a more impact on those languages. For

instance, async/await keywords might not capture the threading context by default in other

languages, based on our suggestion.

Our communication with the language designers was not one-way. They often shared their

reasonings about the findings and suggested new research questions to study. Hence, our

empirical studies have been enriched by our communication with the construct designers.

6.5.2 Developers

Throughout our research, we contacted developers many times to ask questions and feedback.

For a widespread impact, we aimed to both (i) understand their needs and (ii) educate

them with our findings. Based on our findings and communication with developers, we

noticed that (i) developers miss real-world usage examples of the construct and (ii) even

the official samples and tutorials might contain misuses. Hence, we designed educational

web portals (http://LearnAsync.NET and http://LearnParallelism.NET) to

share our empirical findings with developers. These educational resources attracted more

than 200,000 of visitors from 141 countries, showing that developers need real-world code

examples.

We did not only educate the developers through our web portals but also acquired early

adopter users for our tools. When we listed thousands of real-world misused examples on

the webpage, we put a sign-up form for them to register and get notified when we release

our tools. Thus, we first released our tools to these early adopters from our mailing list

(around a thousand early adopters) and got early-feedback. More importantly, they helped

us improve the accuracy of our static analyses by reporting corner-cases and false-positives

that they discovered. We noticed that those early adopters were generous with their time
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and explained the false-positives with examples. Because they value the tools that save them

a lot of time, these early adopters contributed back to these tools.
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CHAPTER 7

Related Work

We briefly present the work that is closest to the dissertation. We organize the related work

into: (i) empirical studies for language and API usage; (ii) empirical studies for concurrency

bugs; (iii) concurrency misuse detection; (iv) refactoring for Concurrency.

7.1 Empirical Studies for Language and API Usage

There is a multitude of documented empirical studies into the use of language constructs or

libraries. These range from deep investigations into specific projects to very broad surveys

of huge numbers of projects.

Some small-scale studies include Karus et al.’s “[A] Study of Language Usage Evolution

in Open Source Software” [72], which describes how developers combine use of different lan-

guages and artifacts in open source projects. Parnin et al. [73] studied the adoption patterns

of Java generics in open-source applications. Hoppe and Hanenberg [74] also performed a

small empirical study to determine if generic types in Java provide benefit to developers.

There are several large-scale studies into the use of programming languages. Callau et

al. [75] investigated into 1000 Smalltalk projects of “How (and why) developers use the

dynamic features of programming languages [...]”. Grechanik et al. [76] analyzed 2080 Java

projects to understand how general language features are used. Torres et al. [7] conducted

a study on the usage of concurrent programming constructs in Java, by analyzing around

2000 applications. Dyer et al. [77] analyzed 31k open-source Java projects to find uses of

new Java language features over time. Buse et al. [78] proposed an automatic technique

for synthesizing API usage examples and conducted a study on the generated examples.

Pankratius et al. [79] studied the current state-of-the-practice in shared-memory, multicore

116



programming, and suggested areas and engineering principles for future research. Others [80]

have studied the correlation between usage of the MPI parallel library and productivity of

the developers.

Weslley et al. [7] studied how developers are retrofitting applications to become more

concurrent and summarized the usage of concurrent programming constructs in Java by

analyzing more than 2000 projects. They give some coarse-grain usage results like the

number of synchronized blocks and the number of classes extending Thread. In contrast,

our studies look at every concurrency construct in the concurrency libraries, and we also

look at how these constructs form patterns and structures. Although they analyze the

usage of very few constructs, their results are not accurate due to missing type information

because they only perform lexical analysis. Also, their count of the constructs’ usage can

be misleading. For example, they measure the usage of java.util.concurrent by counting

statements that import the library. In our study, there are many applications that import

the Task library but never invoke any constructs. For example, there is an application,

DotNetWebToolkit [81], that imports TPL 111 times but invokes TPL just once. To best of

our knowledge, our empirical studies are the first large-scale studies that uses both syntactic

and semantic analysis, thus increasing the accuracy of the usage statistics.

Monperrus et al. [82] study the API documentation of several libraries and propose a set

of 23 guidelines for writing effective API documentation. Robillard and DeLine [58] study

what makes large APIs hard to learn and conclude that one of the important factors is the

lack of usage examples. Our studies provide educational portals which contain lots of usage

examples from real code which can hopefully educate newcomers to concurrency libraries.

These studies cover a wide range of topics. However, we are not aware of large-scale

empirical studies into the use of language constructs or libraries for specifically parallel and

asynchronous programming for C#.

7.2 Empirical Studies for Concurrency Bugs

Many works focus on studying concurrency bugs. Lu et al. [83] categorized concurrency

bug types by analyzing a large number of bug reports from open-source repositories. In
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a followup work [84] they also described bugs that manifest as performance slowdowns in

concurrent programs. Schaefer et al. [85] showed several examples of how sequential refac-

torings can break concurrent programs. Fonseca et al. [86] presented a study of concurrency

bugs in MySQL, in which they categorized and analyzed the effects (e.g., program crash,

assertion violation) of the concurrent bugs. Another study [87] focused on identifying the

contented resources (e.g., shared cache) that adversely impact the parallel performance. Li

et al. [88] studied and categorized bug characteristics in modern software. Their result shows

concurrency and performance related bugs can have a severe impact on software.

Dig et al. [89] studied the evolution of Java concurrent applications and cataloged the

changes that programmers made in response to concurrency. Another work [90] on auto-

mated refactoring to introduce concurrent library constructs shows that manual refactorings

from HashMap to ConcurrentHashMap are error-prone.

To best of our knowledge, there is no study that looked at the misuses of async/await

keywords.

7.3 Concurrency Misuse Detection

There are some recent work focusing on the misuse detection for concurrency. Lin and

Dig [91] recently mined a corpus of 28 widely used open source Java projects for violations

of check-then-act misuse of concurrent collections. Like our work, their work documents a

set of anti-patterns, which they hope will inform library designers to build more resilient

APIs.

De Wael et al. [92] studied a corpus of 120 open source Java projects that make use of

the Fork/Join framework. They documented three common anti-patterns in this framework

and studied the impact on performance of these anti-patterns. Unlike our study, they did

not implement a tool to detect these anti-patterns in source-code.

Pattern inference and identification is also a widely used approach to improve software

quality. AVIO [93] and Falcon [94] analyze the access patterns of variables to detect or locate

concurrency bugs. FindBugs [95] detects bugs by statically matching the bug patterns to

programs. Yu et al. [96] exploited interleaving idioms to test concurrent programs. Uddin
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et al. [97] inferred temporal API usage patterns that can be used to improve the API design

and usage. Wendehals and Orso [98] proposed a dynamic technique to recognize design

patterns in the programs.

The success of the previous technique in finding buggy idioms shows that despite the fact

that the buggy idioms are not particularly deep, today’s state-of-the-art systems are still

riffle with such bugs. Thus, custom pattern-based analyses, like our current work on patterns

of async/await usage, can be quite effective.

To best of our knowledge, there is no anti-pattern detection for asynchronous programming

and specifically for async keywords.

7.4 Refactoring for Concurrency

There have been numerous publications of studies on refactoring since Griswold first pub-

lished a doctoral dissertation on the subject [99], with various goals. Of primary interest

to us is refactoring for concurrency. The introduction of concurrency in programs can be

categorized to have four different objectives [89]:

Latency. Latency is the subject of this thesis: it measures the time it takes for an

inquiry to return an (initial) response. Heavy operations in the UI thread increase latency,

causing responsiveness problems. Lin et al. [100] developed a refactoring tool to extract

heavy operations in the UI thread to asynchronous execution.

Throughput. Task and data parallelization can improve the number of work units exe-

cuted per time unit. This form of concurrency has evident use: it decreases the time the

user has to wait for an inquiry to return its final result.

Java 8 introduced bulk data manipulation support, both for sequential processing and for

parallel processing. A first step in moving to parallel data processing from sequential data

processing through refactoring is by transforming traditional for-loops to the new bulk data

APIs as described by Gyori et al. in [101].

Another example is the ReLooper tool by Dig et al. [102] which can automatically refactor

arrays into ParallelArrays to do parallel processing of the data in the array.
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Scalability. Application performance should scale up with the number of execution units

that it runs on. This is directly related to Amdahl’s law [103] by decreasing the fraction

of computation that must be executed sequentially, total performance can be increased.

Generally speaking, by using the right data structures, the scalability of programs can be

improved. For example, Dig et al. [90] published a study on how code using Java HashMaps

can be refactored to take advantage of Java 5’s ConcurrentHashMaps, thereby enabling more

code to be executed in parallel.

Correctness. It is assumed that code is functionally correct for sequential execution.

However, that does not mean that the same code is thread-safe. The code must then be

transformed into a thread-safe form, before introducing any kind of concurrency.

To the best of our knowledge, there is no refactoring tool that specifically targets asyn-

chronous programming. In industry, ReSharper [104] is a well-known refactoring tool, but it

does not support async-specific refactorings. Asyncifier helps developer design responsive

apps, which is an area that has not yet been explored.

None of these previous tools address the problem of migrating between different levels of

abstractions in (already) parallel code. Balaban et al. [105] present a tool for converting

between obsolete classes and their modern replacements. The developer specifies a mapping

between the old APIs and the new APIs. Then, the tool uses a type-constraint analysis to

determine if it can replace all usages of the obsolete class. Their tool supports a one-to-

one transformation whereas Simplifier supports many-to-one transformations. Even our

one-to-one transformations from Taskifier require custom program analysis, e.g., detecting

I/O blocking operations, and cannot be simply converted by a mapping program.
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CHAPTER 8

Conclusion and Future Work

8.1 Revisiting Thesis Statement

It is inevitable for developers to use concurrency in their software due to the need for

responsiveness and performance. Hence, programming language and library designers treat

concurrency as a first-class citizen. They provide faster, more scalable, and more readable

concurrency constructs every other year. However, they do not check how developers embrace

these new constructs and if developers are in trouble with using them. We claim that

concurrency constructs deserve first-class citizenship in empirical research and tool support,

too.

Because our thesis statement is three-pronged, we would like to separately visit each of

our claims:

(1) Empirical studies about concurrency constructs can provide insights into

how developers use, misuse, or underuse concurrency.

Our empirical studies [6, 15, 19, 112] show that developers still use old (low-level) con-

currency constructs. When developers use concurrency for parallelism, heavyweight Thread

and ThreadPool constructs are still the primary choices for them. They are also oblivious to

the benefits brought by the higher-level concurrency constructs such as Parallel and Task.

When developers use concurrency for asynchrony, they heavily use callback-based con-

currency constructs that invert the control flow and obfuscate the intent of the original

synchronous code. When they start using new async/await constructs, they either overuse

or misuse them. We found that 14% of methods that use async/await do not need to be

async at all. Developers also misuse async/await in many different ways. These async/await
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misuses have severe consequences. Some significantly degrade the performance of async pro-

grams or can even deadlock the program. Others cause subtle data-races that are unique to

async/await and cannot be detected by previous race detecting techniques. Other misuses

“swallow” the run-time uncaught exceptions thrown by a program which hinder developers

when searching for errors.

(2) It is possible to design and develop interactive program transformations that

enable developers (i) to migrate their software to modern concurrency constructs

and (ii) to fix misused modern constructs.

Library and programming language designers expect developers to manually migrate the

legacy software to modern concurrency constructs. However, the manual migration is tedious

and has several challenges. This migration cannot be done by a simple find-and-replace

tool, but it requires custom program analysis and transformation. We hypothesized that

interactive program transformation tools can mitigate these problems. Hence, we present

three interactive refactoring tools:

Taskifier safely transforms old style Thread and ThreadPool constructs to higher-level

Task constructs.

Simplifier converts Task-based code into higher-level parallel design patterns:

Parallel.For(Each) and Parallel.Invoke.

Asyncifier refactors callback-based asynchronous constructs to new async/await key-

words.

When developers manually migrate their legacy software to modern concurrency con-

structs, they introduce misuses. We present AsyncFixer, an interactive program transfor-

mation tool that detects and fixes 14 common async/await misuses.

(3) These program transformations are useful in practice for both industry and

open-source communities.

Developers of the open-source software accepted 408 patches which are generated by our

tools. We received positive feedback from early users.
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Our tools are also embraced by two companies. They started to actively use AsyncFixer

in their automated build process AsyncFixer detected and fixed 169 misuses in proprietary

code-bases.

We now present our plans for possible future work building upon our current contributions

and results as described in Chapters 3, 4, and 5:

8.2 Understanding Runtime Properties of Concurrent Code

So far we statically analyzed the source code to understand how programmers use concur-

rency. Although static analysis offered very interesting findings in our studies, it offered a

limited insight in true intricacies of concurrency libraries’ usage. The key motivation for

developing concurrent applications is to deliver superior performance in comparison to se-

quential applications. Analyzing this fundamental question – the speedup obtained from

parallel libraries – cannot be based on static source code analysis alone. To the best of our

knowledge, there is no empirical study which dynamically inspects parallel library usage on

a large-scale.

We plan to dynamically analyze a subset of our previously analyzed C# code repository.

We only select the applications which use many concurrency constructs and have unit tests

which ensure high execution coverage. Because the executions considered by a dynamic

analysis is exactly those that are triggered by the test suite, the selection of the unit tests is

critical. When the test suite is not rich enough, we plan to research techniques to automat-

ically carve out performance tests from executions of an application under a realistic load.

During the execution of the unit tests, .NET profilers can be used to gather the following

runtime information:

1. CPU utilization: Low CPU usage could be a sign of concurrency bugs such as deadlocks

and synchronization overhead. Conversely, a high CPU utilization does not necessarily

indicate success, as livelocks result in high CPU utilization.

2. Garbage collection: For managed applications, too many memory management opera-

tions can hinder actual work execution and could point to faulty design or implemen-
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tation.

3. Total thread execution time: This enables us to approximate the total execution time if

the program was to be executed sequentially. By comparing the total thread execution

time to the elapsed time of sequential implementation of the same program, we can

understand the parallelization overhead.

We plan to collect the runtime information from the unit tests that are executed both

in parallel and sequential. However, in most cases, we only have access to the concur-

rent implementations of the programs. To emulate the sequential execution, we can set

MaxDegreeOfParallelism to 1. This limits the number of concurrent operations to 1, which

enables sequential mode. However, switching to serial execution could pose other challenges.

For example, it could trigger deadlocks in programs where a thread will wait indefinitely

for a signal from another concurrent thread. Such deadlocks would not occur under the

concurrent execution. We plan to adapt deadlock strategies (e.g., setting upper bounds on

execution time, roll-backs, etc.) to recover from such cases. After collecting runtime infor-

mation and comparing the performance of concurrent mode with sequential mode, we can

answer many questions: are programmers getting speedup from parallel execution? Why

or why not? What are some bad practices? Answering such questions can uncover very

interesting facts and give clues about concurrency bugs in concurrent applications.

8.3 Runtime Implications of async/await

If we only rely on static analysis, we might miss many misuses of async/await. For in-

stance, developers unknowingly execute long-running operations on UI thread due to new

async paradigm. We found that developers (almost) always capture UI context in await

statements even though they do not update UI in the rest of the method. This causes the

rest of the method executes on UI thread, thus running long operations can make the UI

unresponsive. The must accurate way to detect these long-running operations is performing

dynamic analysis. We plan to implement a profiler that analyzes top-level event handlers in

order to detect long-running operations on UI thread.
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The profiler also enables us to understand whether there are many separate accesses to

UI thread. This can cause sluggishness as responsiveness suffers from thousands of paper

cuts. Hence, it is important to combine UI update statements to eliminate this overhead of

context-switching. We can warn the developer and guide him to combine these UI accesses.

8.4 Context Decider Tool

We noticed that the source of many async/await misuses is the lack of thread-execution

knowledge. Developers are always in doubt about whether the statements following the

await keyword should execute on (i) the UI & ASP.NET request threads or (ii) threadpool

threads. We propose to develop an analyzer which decides whether or not the developer

should capture the context at the await point by calling the ConfigureAwait(false). One

way of doing this is to recursively check the call graph after the await statement. If the

call graph does not need the UI or ASP request thread context, then developer should

use ConfigureAwait(false) and the rest should be executed on the threadpool. This will

definitely increase the performance of the software. The main question here is how the tool

understands whether the code needs the synchronization context. For instance, for the UI

thread, the analyzer will check the symbol of every member access in the call graph whether

they are derived from System.Windows classes. Accessing or modifying the components from

those classes potentially require the context. This approach is based on heuristics and it will

allow false-negatives by being on the safe side.

This analyzer can be coupled with a visualizer which colorizes the expressions and methods

based on what kind of thread executes them in the current program:

1. Methods or expressions are executed only on the UI & ASP.NET request threads

(synchronization context).

2. Methods or expressions are executed only on the thread pool threads.

3. Methods or expressions can be executed on both UI/ASP or thread pool threads.

4. Undecidable ones at the compile-time.
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8.5 Guiding Programmers to Parallelize the Code

According to the previously mentioned Intel survey [113], 33% of participants said that

“[determining] where parallelization should occur” is the most important feature they would

like to see in a tool. Programmers are most interested in tools that would guide and help

them parallelize their code via an interactive approach.

We propose an interactive tool that exposes parallelism by identifying independent code

regions in methods or loops. Such a tool helps programmers discover opportunities for

parallelism in their code. Based on the opportunities, the tool suggests several refactorings

for improving performance via pipelines with TPL dataflow, fork/join tasks, loop parallelism,

etc.

This approach is also important for exploiting fine-grained parallelism with async/await

constructs. Programmers can use await keywords too early in the methods, so that other

independent code fragments cannot execute in parallel. Even though the control is passed

to the caller in await points and maintain responsiveness, it is not exploiting fine-grained

parallelism. The location where the programmers introduce await keyword in the async

methods is critical for performance.

In the example code below, the method AccessTheWebAsync asynchronously gets the con-

tent of an url. At line 3, there is an asynchronous operation and it returns a Task. This

task needs to be completed until line 4, where await keyword is used. If the task is not

completed by the line 4, await is a blocking call and waits for the task completion. Hence,

between line 3 and 4, the programmer might put some independent operations. In the

code below, DoIndependentWork should be introduced between these lines to take advan-

tage of fine-grained parallelism. Our approach that identifies independent code regions can

determine where to put the await keyword for the best degree of parallelism.

1 async Task<int> AccessTheWebAsync() {

2 HttpClient client = new HttpClient();

3 Task<string> getStringTask = client.GetStringAsync("http://msdn.microsoft.com");

4 string urlContents = await getStringTask;

5 DoIndependentWork(); // Independent work from GetStringAsync.

6 return urlContents.Length;

7 }
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Our approach will be based on static source code analysis (dependency, escape analysis)

enhanced with dynamic information and programmer feedback, and, in some cases, sup-

ported by code contracts. The runtime information provided by the profile-driven dynamic

analysis can help with the imprecision of the static analyses used in refactoring tools. Method

properties (e.g., pure methods) specified with the code contracts can also be helpful.

Performing this analysis based on static code examination is exactly the same problem

that auto-parallelizing compilers face in discovering parallelizable code. These compilers

have only been successful at parallelizing small and straight-forward kernel loops, but have

been unsuccessful at introducing meaningful parallelism in large, irregular, non-scientific

applications. Meaningful parallelism requires deep understanding of the program invariants,

along with the data- and control-flow relationships between parts of the program. Using

profile-driven dynamic analysis we could overcome these limitations of auto-parallelizing

compilers (e.g., overly conservative), enabling us to increase program comprehension and to

identify more application parallelism.

One of the main challenges here is correlating the low-level information (e.g., specific

memory accesses, branch operations) gathered during program execution to the high-level

data and control flow information. The other challenge is that profile-driven analysis can

only provide accurate dependence information for a specific input. It is important to run

the program with a representative input, such that all important code regions are exercised

and the most important data dependencies can manifest. For the critical “may” data de-

pendences, we propose an interactive approach that receives feedback from the programmer,

who has domain knowledge and sees the big picture.
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