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ABSTRACT

We present a method for real-time 3D face localization and verification us-

ing a consumer-grade depth camera. Our approach consists of three parts:

face detection, head pose estimation, and face verification. Face detection

is performed using a standard detection framework which we significantly

improve by leveraging depth information. To estimate the pose of the de-

tected face, we developed a technique that uses a combination of the particle

swarm optimization (PSO) and the iterative closest point (ICP) algorithm

to accurately align a 3D face model to the measured depth data. With the

face localized within the image, we can compare a database 3D face model to

the depth image to verify the identity of the subject. We learn a similarity

metric using a random decision forest to accurately authenticate the subject.

We demonstrate state-of-the-art results for both face localization and face

verification on standard datasets. Since the camera and our method operate

at video rate, our system is capable of continuously authenticating a subject

while he/she uses his/her device.
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CHAPTER 1

INTRODUCTION

1.1 Motivation

Face localization and verification is the task of detecting and verifying the

identity of a person using facial features extracted from an image. Numerous

methods have been proposed over the last few decades, but it still remains a

difficult research problem due to the wide range of possible head poses, facial

expressions, and external lighting conditions.

Recently, the availability of low-cost consumer-grade depth cameras has

greatly increased due to the popularity of Microsoft’s Kinect. In the near

future, these devices will be embedded in our laptops and mobile phones

alongside the standard color cameras. Our objective is to utilize the 3D

data from a consumer depth camera to perform continuous face localization

and verification. For example, when a trusted user walks up to his/her

computer or picks up his/her mobile device, he/she is immediately detected,

authenticated, and granted access, and when the user leaves or an intruder

is detected, we can instantly revoke privileges.

There are several benefits of using a depth camera for face localization and

verification. Depth cameras use infrared light to measure the 3D geometry

of an environment; therefore, they are less sensitive to external illumination.

In addition, with a 3D approach we can utilize a full 3D face model, which

allows our technique to be more robust to changes in pose. There are also

challenges associated with using a low-cost depth camera. Commodity depth

cameras are often noisy and low resolution.

The goal of this thesis is to propose an accurate and real-time method

for face localization and verification using a low-cost consumer-grade depth

camera.
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1.2 Overview

Our work consists of three major components: face detection, head pose

estimation, and face verification, as depicted in Figure 1.1.

The first step is to identify the subject’s face within the image. We use

a standard face detector, but we significantly improve the detection process

by leveraging depth information. Typically, a face detector will search an

image at every location and scale to find faces. With depth data, we restrict

the search to regions that are geometrically able to contain a face. As a

result, we accelerate the detection process by 3.5x, and we greatly improve

the accuracy by eliminating the majority of false detections.

After we identify a face, we need to determine its pose. We developed a ro-

bust, precise, and efficient model-based method for 3D head pose estimation.

Our approach registers a 3D face model to the measured 3D data through

a combination of the particle swarm optimization (PSO) and the iterative

closest point (ICP) algorithm. We demonstrate state-of-the-art accuracy on

a standard benchmark dataset.

With the face precisely localized within the depth image, we can accurately

compare the facial features within the image with a database face model. The

pose is used to align the reference face model to the image, and features are

extracted by computing the difference between the model and the image.

We leverage a learned similarity metric to determine whether or not the face

in the image matches the face model. To evaluate our method, we use a

combination of three datasets: two standard datasets and one we collected

ourselves. We exhibit better performance than the existing 2D and 3D face

verification methods on this hybrid dataset.

The remainder of this thesis is organized as follows. In Chapter 2, we de-

scribe how we improve the Viola-Jones face detector with depth information.

Chapter 3 explains our approach to 3D head pose estimation. In Chapter

4, we discuss our technique for verifying the face localized within the depth

image. We conclude this thesis in Chapter 5 with a summary of our contri-

butions and closing remarks.
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Figure 1.1: An overview of our system. Depth and color images are
collected by a consumer camera. The subject’s face is detected using a
combination of both depth and color information. Afterwards, we estimate
the pose of the user’s head within the depth image, and we use the pose to
align a reference model. The difference between the model and the image is
computed, and the person is authenticated based on the output of our
learned similarity metric.
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CHAPTER 2

FACE DETECTION

2.1 Introduction

Detecting faces is an important initial step for many vision applications. Ap-

plications that typically require face detection are face analysis and biomet-

rics, face recognition, face modeling, human-computer interaction, surveil-

lance, etc. [1].

Over the past few years, the availability of color images with corresponding

depth images (Figure 2.1) has increased due to the popularity of low-cost

depth cameras, notably Microsoft’s Kinect. The goal of this work is to utilize

the additional depth data to reduce the computational cost of face detection,

and in doing so, enabling new real-time applications.

Face detection methods, such as the Viola-Jones object detection frame-

work [2, 3], identify faces by classifying sub-windows within an image as a

face or non-face region. Without prior information, the size and position of a

face within the image are unknown; therefore, the detector must exhaustively

search the image at every position and scale.

Our approach uses depth information to identify all positions and scales

within the color image that may contain a face. As a result, the face detector

is no longer required to classify every sub-window within the image, which

is computationally expensive and prone to false detections.

Our proposed method begins by approximating the size of a face at each

pixel location based on its measured depth value. With our estimated di-

mensions, we analyze the geometry of the region surrounding the pixel to

decide whether or not it is possible for the pixel to lie on a face. Afterwards,

we construct a list of sub-windows to be classified by the Viola-Jones face

detector [3].

Our technique significantly reduces the time required to detect faces, and
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(a) (b)

Figure 2.1: Example (a) color and (b) depth images captured by a Kinect
camera. In (b), bright pixels indicate a small depth measurement where
dark pixels represent a large depth measurement.

improves accuracy by greatly reducing the number of false detections. In the

following sections, we review work related to our proposed method, describe

our system in detail, and present experimental results.

2.2 Related Work

Face detection is used in a wide variety of computer vision and robotic sys-

tems. Some of these systems contain sensors, such as stereo cameras, laser

scanners, and depth cameras, that are capable of sensing depth. As a re-

sult, there have been a few methods proposed to accelerate face detection

algorithms using depth information [4, 5].

M. Dixon et al. [4] describe a robotic platform where the relationship

between a camera and its environment is known. Based on this knowledge,

they are able to restrict the face detector’s search to only geometrically able

locations. For example, regions of the image that would require a person’s

face to be above the ceiling or below the floor are not classified by the detec-

tor. When a stereo camera or laser scanner is available, [4] further reduces

their search space by eliminating sub-windows whose physical dimensions are

significantly larger or smaller than the average human face.

H. Wu et al. [5] proposed a method to accelerate face detection using

depth information computed by a pair of cameras. To reduce the cost of

stereo depth estimation, [5] only computes a sparse set of depth values. Using
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nearby depth samples, they estimate the size of the sub-windows within the

image. Similar to [4], they avoid classifying sub-windows that are too large

or too small to contain a face.

Comparable to previous work, our proposed method uses depth informa-

tion to approximate the physical size of a sub-window and only classifies

windows that are approximately the size of a human face. Unlike other

methods, we use the geometrical information contained within the depth

image to avoid classifying regions that are unlikely to contain faces.

Furthermore, techniques have been developed that utilize skin color to

accelerate face detection [6]. However, skin color clustering can be affected

by illumination. Depth cameras have the benefit of being robust to various

lighting conditions.

2.3 Method

Our proposed method leverages depth information to identify regions within

a color image that may contain a face. In addition, we use the depth data

to estimate the size of the face within each region. As a result, only a small

subset of windows within the image need to be classified by the face detector.

Our approach avoids the exhaustive and computationally expensive search

over the entire image at multiple scales.

Our technique begins by approximating the size of a face at each pixel

location based on its measured depth value. Next, we analyze the geometry

within the depth image to locate candidate face regions. Finally, we construct

a list of sub-windows to be classified by the Viola-Jones face detector.

2.3.1 Approximating Face Dimensions

If we assume a pixel lies on a face, we can use the pixel’s depth measurement

to approximate the dimensions of the face. For the (i, j)th pixel in the image,

we compute the size of the face in pixels, s(i, j), using the following equation:

s(i, j) =
f · s̄
d(i, j)

, (2.1)
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(a) (b)

Figure 2.2: (a) The estimated size of the face at every pixel location, and
(b) an illustration of how the size of the face changes along a scanline. As
expected, the approximate face size is inversely proportionality to the depth
image (Figure 2.1b).

where f is the depth sensor’s focal length, d(i, j) is the pixel’s depth value

in millimeters, and s̄ is the average width of a human face in millimeters [7].

Figure 2.2 depicts the estimated size of the face at each pixel location.

With only a pixel’s depth measurement, we can avoid searching multiple

scales at every pixel location, which reduces the amount of work required to

detect faces, as shown in [4] and [5]. However, our proposed method goes

further by analyzing a neighborhood of pixels to identify regions that are

geometrically able to contain a face.

2.3.2 Identifying Candidate Face Regions

We use an adaptive template to identify candidate face regions within the

image. We compare the depth measurement at the (i, j)th pixel to the depth

values in a local neighborhood surrounding (i, j), where the size of the neigh-

borhood is based on s(i, j). We exploit the fact that depth measurements

on a face should have similar value, and depth measurements left, right, and

above of the face should be significantly different.

Our adaptive template is illustrated in Figure 2.3. For the (i, j)th pixel

to lie on a face, the depth values in w1 should be similar to d(i, j), and the

depth values in w2, w3, and w4 should be considerably different from d(i, j).

7



(a) (b)

Figure 2.3: (a) Adaptive template used to identify candidate face regions,
and (b) an example illustrating the template at four different locations.

For each window wk, we compute its average depth value,

µwk
(i, j) =

∑
(u,v)∈wk

v(u, v) · d(u, v)∑
(u,v)∈wk

v(u, v) + ε
, (2.2)

where v(i, j) is a map of all valid depth measurements, and ε is a regulariza-

tion constant to avoid division by zero. A depth value is considered valid if

it is greater than zero and below a threshold T :

v(i, j) =

1 if 0 < d(i, j) < T

0 otherwise
. (2.3)

We define T = (f · s̄)
/
s∗, where s∗ is the minimum size of a face in pixels that

the face detector can classify. If a pixel’s depth value is larger than T , the

size of the face at this location will be smaller than s∗, and the face detector

will not be able to identify the face. For our implementation, s∗ = 20 pixels

and T is roughly four and a half meters.

We generate a mask, m, of candidate face regions by comparing d(i, j) to

8



(a) (b)

Figure 2.4: (a) Mask generated by our proposed method based on the
depth information in Figure 2.1b. Blue pixels in (a) indicate where
m(i, j) = 1. (b) Sub-windows generated by our method using m and s to be
classified by the face detector.

the average depth values in the surrounding windows:

m(i, j) =


1 if

|µw1(i, j)− d(i, j)| < τ1 and

|µw2(i, j)− d(i, j)| > τ2 and

|µw3(i, j)− d(i, j)| > τ3 and

|µw4(i, j)− d(i, j)| > τ4

0 otherwise

, (2.4)

where τ1 = 100 mm and τ2 = τ3 = τ4 = 200 mm (these values where de-

termined empirically). To reduce noise in the mask, we perform an open

morphological operation [8]. Additionally, we expand the candidate face re-

gions to nearby pixels with similar depth values to increase our chances of

detecting faces. To generate m efficiently, we use integral images [2] to com-

pute the window averages, µwk
(i, j), as well as to perform the morphological

operations. Figure 2.4a depicts the mask of candidate face regions produced

by our method.

Afterwards, we use m and s to construct a list of sub-windows to be clas-

sified by the face detector. For every pixel (i, j) where m(i, j) = 1, we add

to the list one sub-window of size s(i, j) centered on (i, j) as shown in Figure

2.4b. This list is considerably smaller than the list of all possible sub-windows

within the image. As a result, our proposed method reduces not only the

time it takes to detect faces, but also the number of false detections.
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Figure 2.5: Example features used by the Viola-Jones object detection
framework. The features are computed by subtracting the sum of the pixel
intensities in the dark rectangle(s) from the sum of the pixel intensities in
the light rectangle(s). Figure adapted from [3].

2.3.3 Classifying Sub-Windows

To classify our list of sub-windows as face or not, we require a face detector.

Our approach is not reliant on a specific detector, but for our experiments

we utilize the object detection framework proposed by P. Viola and M. Jones

[2, 3] as it is the most commonly used face detection method.

The Viola-Jones method uses a set of Haar-like image features extracted

from the sub-window, as shown in Figure 2.5, to determine whether or not a

face is present. The rectangular features are beneficial because they can be

computed efficiently using an integral image [2].

P. Viola and M. Jones use the AdaBoost learning algorithm [9] for selecting

features and training their classifiers. The AdaBoost algorithm combines a

collection of “weak learners” to form a stronger classifier. For the Viola-Jones

method, each weak learner selects a single rectangle feature and threshold

which best separates positive and negative examples [3]. The outputs of

several weak learners are combined to determine whether or not the sub-

window contains a face. Example features selected by AdaBoost are shown

in Figure 2.6.

Furthermore, [3] uses a cascade of classifiers to efficiently classify a sub-

window. The initial stages of the cascade contain simple classifiers that reject

many negative sub-windows while retaining almost all of the positive sub-

windows. The later stages contain more complex classifiers to reduce the

number of false positives [3]. Figure 2.7 illustrates the cascade of classifiers

used by the Viola-Jones method.

The Viola-Jones face detector was designed to rapidly identify faces within

an image. However, without prior information the detector must exhaustively

10



Figure 2.6: Example features selected by the AdaBoost learning algorithm.
The features leverage the fact that the eyes are often darker than the upper
cheeks and the bridge of the nose. Figure adapted from [3].

Figure 2.7: The cascade of classifiers used by the Viola-Jones face detector.
The initial stages remove a large portion of the negative sub-windows with
a small amount of computation. The later stages contain more complex
classifiers that require more computation to obtain the desired false positive
rate. Figure adapted from [3].

11



search the image at every position and scale to identify all the faces within the

image. Our method improves the performance of the detector by restricting it

to sub-windows that are likely to contain faces based on the scene’s geometry.

2.4 Experimental Results

2.4.1 Data Sets

We evaluate the performance of our proposed method on the Cornell Activity

Dataset (CAD-120), which features 120 videos captured by a Kinect camera

[10]. The sequences contain one of four subjects performing some type of ac-

tivity, such as preparing and eating food, picking up and arranging objects,

cleaning, etc. Each frame consists of a color and depth image with a VGA

resolution (640× 480), as well as, the positions of the subject’s joints within

the images. Using the annotated location of the subject’s head we can deter-

mine whether a detection is a true or false positive. We decided to use this

dataset over other Kinect datasets [11, 12] because it contains subjects per-

forming realistic actions in a cluttered environment. The Biwi Kinect dataset

[11] and the Eurecom Kinect dataset [12] both contain a seated subject at a

fixed distance from the camera with a plain background.

2.4.2 Comparison with Existing Methods

We rely on the Viola-Jones face detector to perform the final classification

of the sub-windows, so the sensitivity of our method is upper-bounded by

the recall of this detector. For this reason, we assume that the set of true

positives detected by the Viola-Jones method contains all the faces within

the CAD-120 dataset. We use this assumption to analyze the accuracy of

our proposed method.

We would also like to compare our method to the techniques proposed by

[4] and [5]. It is difficult to accurately contrast our methods as they have

different setup requirements, and they use different 3D sensors. However,

both methods use depth information in one way or another to estimate the

scale at each pixel location. For comparison, we approximate [4] and [5] with

our implementation by setting m(i, j) = 1 for every pixel (i, j).
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Table 2.1: Evaluation of the Viola-Jones face detection algorithm [3]
(baseline), M. Dixon et al. [4] and H. Wu et al. [5] (scale-only), and our
proposed method on the CAD-120 dataset [10].

Technique Recall Precision Runtime
Baseline [3] 1.00 0.57 107.31 ms

Scale-Only [4, 5] 0.95 0.73 55.10 ms
Proposed Method 0.94 0.91 30.64 ms

As shown in Table 2.1, using depth information to avoid searching multiple

scales at every pixel location alone slightly improves the performance of the

face detector. Dixon et al. [4] obtain additional speed-up by using the known

calibration between the camera and its environment to avoid classifying sub-

windows that would require the face to exist above the ceiling or below the

floor. However, this information is not available in the CAD-120 dataset.

Wu et al. [5] claim better performance than what is depicted in Table 2.1.

It is likely they obtain their speed-up by only using a spare set of depth

samples; as a result, they classify a smaller set of sub-windows. Although, it

is probable this will affect the accuracy of the face detection.

Our proposed method does not require prior knowledge about the envi-

ronment, nor does it sacrifice accuracy by using a subset of pixels. Our tech-

nique uses the geometrical information contained within the depth images

to achieve its performance. As shown in Table 2.1, our approach acceler-

ates face detection by 3.5x; in addition, it profoundly improves the precision

without significantly impacting the recall. The total overhead incurred by

our proposed method is 3.96 ms, which is included in the runtime recorded

in Table 2.1. All the techniques were profiled on an Intel Core i7 CPU.

Example results from the CAD-120 dataset are shown in Figure 2.8. In

order to demonstrate that our proposed method is robust to multiple sub-

jects, we captured a few sequences with a Kinect camera, and the results are

shown in Figure 2.9.

2.5 Concluding Remarks

We presented a method for improving face detection with depth. Our ap-

proach utilized the geometrical information within a depth image to identify

regions within a color image that may contain a face. As a result, we avoid
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Figure 2.8: A set of RGB images (first column) and corresponding depth
images (second column) from the CAD-120 dataset [10]. The mask
generated by our proposed method is visualized in the third column. In the
last column, faces detected by our approach are shown in green; also, false
positives detected by the Viola-Jones face detector but removed by our
technique are shown in red.
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Figure 2.9: A set of results from videos captured by a Kinect that contain
multiple subjects. Faces detected by our proposed method are shown in
green; in addition, false detection classified by the Viola-Jones algorithm
but eliminated by our approach are shown in red. Note that our approach
works well even in the situation where the faces are close together.
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the exhaustive and computationally expensive search over the entire image

at multiple scales. Our method enables us to detect faces 3.5x faster, and

it greatly reduces false detections. By providing additional post-processing

time, our technique enables new real-time applications.

Our proposed method is integrated into the OpenCV library [13] through

its mask generator feature, which allows us to specify the sub-windows that

should be classified without modifying the face detector itself. Consequently,

it is trivial to add our method to an existing system that utilizes a Kinect

camera and OpenCV.
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CHAPTER 3

HEAD POSE ESTIMATION

3.1 Introduction

Estimating the 3D pose of the head (rotation and position) is an impor-

tant problem with applications in facial motion capture, human-computer

interaction and video conferencing. It is a pre-requisite to gaze tracking,

face recognition, and facial expression analysis. Head pose estimation has

traditionally been performed on RGB images with rotation-specific classi-

fiers or facial features [14], or by registering images to 3D templates [15, 16].

However, RGB-based head pose estimation is difficult when illumination vari-

ations, shadows, and occlusions are present. With the emergence of inexpen-

sive commodity depth cameras, promising 3D techniques for body [17], hand

[18], and head [11] pose estimation have been proposed.

We present an algorithm for accurate 3D head pose estimation for data

acquired with commodity depth cameras. Our approach uses only 3D infor-

mation, no manual intervention or training, and generalizes well to different

3D sensors. On the benchmark Biwi Kinect dataset [11], we achieve average

angular errors of 2.0◦, 2.1◦ and 2.3◦ for yaw, pitch, and roll, respectively, and

an average translational error of 5.1 mm, while running at near real-time on a

graphics processing unit (GPU). To our knowledge, this is the best accuracy

reported on this dataset up to now.

We achieve this high accuracy by combining a number of concepts together

in an effective manner. We register a morphable face model [19] to the

measured facial data through a combination of particle swarm optimization

(PSO) and the iterative closest point (ICP) algorithm. We demonstrate that

together PSO and ICP simultaneously improve robustness, accuracy, and

computational efficiency. Instead of creating a person-specific model during

an initialization phase, we continuously adapt a morphable model to fit the
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subject’s face on the fly. Additionally, we dynamically weight the vertices of

the morphable model to give more importance to the useful visible parts of

the face, and thus handle extreme poses and partial occlusions effectively.

3.2 Related Work

Notable techniques for 3D head pose estimation employ features, pose-specific

classifiers, or registration to reference 3D head models.

Sun and Yin [20] locate facial features using curvature properties to infer

the head pose to within 5◦. Breitenstein et al. [21] use the orientation of the

nose as an initial estimate for head pose and refine it by comparing against

pre-rendered depth images of an average face model in various poses 6◦ apart.

Papazov et al. [22] introduce a triangular surface patch (TSP) descriptor to

match facial point clouds to a gallery of synthetic faces and to infer their

pose. Feature-based techniques fail when the features cannot be detected,

e.g. in the case of extreme rotations or partial occlusions.

Among the classifier-based techniques is the work of Seemann et al. [23],

where they detect faces in RGB images and estimate the head pose from the

disparity map of a stereo camera using a neural network for each rotation.

Fanelli et al. [11] train random classification and regression forests with

range image patches for head detection and pose estimation. Their technique

achieves good accuracy on high and low quality depth data [24, 11]. Tulyakov

et al. [25] use cascaded tree classifiers and achieve higher accuracies than

Fanelli et al. Classifier-based techniques require extensive training with large

datasets. Moreover, classifiers trained on one 3D sensor do not generalize well

to others.

An alternate approach registers a 3D head model to the measured data

using the rigid/non-rigid ICP algorithm. Previous promising methods, e.g.

[26, 27, 28, 29], employ 3D deformable model fitting to create person-specific

models for head pose estimation. However, these existing methods require

offline initialization with significant cooperation from the user to construct

the subject-specific reference models. In contrast, we refine the morphable

model’s shape continuously to fit the subject while simultaneously estimating

the head pose.

To ensure robustness to facial expressions, a number of the existing de-
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formable model fitting based approaches, e.g. [30, 27], include only the less

deformable eyes and nose regions of the face in the reference model. However,

when the parts of the face that are included in the reference model are not

visible, e.g. when the head is tilted back, such that the eyes and nose regions

are not visible, the reference model matches poorly to the observed data,

resulting in inaccurate pose estimation. In order to address this, we instead

employ the entire morphable model and dynamically weight the regions of

the model based on which parts of the face are visible.

Techniques for facial animation capture with high [31, 32, 33] and low

[30, 34] quality 3D scans also employ very precise morphable model fitting.

These techniques require significant manual interaction to create very de-

tailed person-specific models. Also, these studies do not directly report the

accuracy of head pose estimation, but presumably perform sufficiently well

to enable effective facial expression capture.

To avoid deformable model fitting, some methods directly use facial data

from the 3D video sequence as a reference. For example, Padeleris et al. [35]

use the first frame, Bar et al. [36] use frontal, left, and right profile faces,

and Martin et al. [37] employ 100 frames with faces in different poses. When

the absolute pose of the reference face is unknown, these techniques merely

provide the pose of the face relative to the reference and not the absolute

head pose. Furthermore, the quality of these references is low, as they often

contain holes and noise. Generally, including more views of the face in the

reference model tends to improve accuracy. Tulyakov et al. [25] achieve the

best accuracy among these approaches by registering multiple frames and

volumetrically averaging them to produce a higher quality reference model.

To register the reference model to the measured data, ICP and its variants

are often used. However, ICP fails to converge to the correct solution when

it is initialized poorly. To overcome this, Padeleris et al. [35] employ the

stochastic PSO algorithm [38] to register facial surfaces. However, PSO also

suffers from slow and/or premature convergence to a local optimum. Re-

cently, Qian et al. [39] proposed an optimization algorithm that combines

PSO and ICP to overcome their individual limitations and successfully ap-

plied it to estimate the 26-dimensional pose of 3D hands. Their work has

inspired us to employ a combination of PSO and ICP to accurately estimate

the 3D head pose. As an extension of their work, we provide a detailed anal-

ysis to understand the underpinnings and conditions for success of combining
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PSO and ICP for 3D surface registration.

3.3 Method

3.3.1 Reference Model

For the reference model, we utilize the 3D Basel Face Model [40], which

is a 3D morphable model [19]. With a morphable model, a facial surface,

comprised of a set of 3D vertices V = (v1,v2, ...,vN), can be represented

as a linear combination of an average face shape µ and a set of face shape

components S = (s1, s2, . . . , sM):

V = µ+
M∑
m=1

αmsm = µ+ Sα. (3.1)

Figure 3.1 illustrates the 3D morphable face model. Parts of the observed

face may not match the reference model (e.g., due to facial hair, or eye-

wear); therefore, we use a weight vector, W = (w1, w2, ..., wN), to represent

the confidence of each vertex in the reference model. For the initial frame,

we set our shape vector V0 to the average face µ and our weight vector W0

to unity for all vertices. In subsequence frames, we update the shape and

weight vector to better match the observed face.

3.3.2 Cost Function

The pose of the head is indicated by a 6-dimensional vector x = (θx, θy, θz,

tx, ty, tz), where θi and ti represent a rotation about and a translation along

the axis i. We evaluate a hypothetical pose x for an observed depth image do

by first rendering a depth image dx and a weight image wx of the reference

model in the pose x:

(dx, wx) = Render (x,Vk,Wk,K) , (3.2)

where Vk and Wk are the current shape and weight of the reference model,

and K is the camera’s intrinsic calibration matrix. Figure 3.2 depicts an
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Figure 3.1: The mean shape and the shape vectors generated by adding or
subtracting one of the first three shape components of the 3D Basel Face
Model. Figure adapted from [40].

example of an observed depth image, as well as a rendered depth and weight

image. Each depth pixel in do and dx has a corresponding 3D vertex gener-

ated by back-projection:

vo(i, j) = K−1do(i, j)

ij
1

 , vx(i, j) = K−1dx(i, j)

ij
1

 . (3.3)

In addition, we compute a normal vector nx for each vertex in vx using the

relative position of its neighboring vertices:

nx(i, j) = [vx(i+ 1, j)− vx(i, j)]× [vx(i, j + 1)− vx(i, j)] . (3.4)

To factor out the effect of outliers, which are commonly observed with low-

cost depth cameras, we generate a subset, R, of reliable vertices to be com-

pared:

R =
{

(i, j)
∣∣ ‖vo(i, j)− vx(i, j)‖ < τ, (i, j) ∈ O ∩H

}
, (3.5)

where O and H are the sets of valid (non-zero) pixels in the observed and

hypothetical depth images, respectively. In our experiments, we empirically

set τ = 3 cm.
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(a) (b) (c)

Figure 3.2: To evaluate a pose, we compare the (a) observed depth image
with the (b) rendered depth image weighted by the (c) rendered weight
image.

We then compute the following cost function to quantify the discrepancy

between the observed and the hypothetical data:

E(x) = Ev(x) + λEc(x), (3.6)

where

Ev(x) =

∑
(i,j)∈Rwx(i, j)

[
(vo(i, j)− vx(i, j))T nx(i, j)

]2∑
(i,j)∈Rwx(i, j)

(3.7)

and

Ec(x) =

1−
∑

(i,j)∈R

wx(i, j)
/ ∑
(i,j)∈H

wx(i, j)

2

. (3.8)

The term Ev(x) measures the point-to-plane distance between corresponding

vertices on the two surfaces, whereas Ec(x) measures the extent to which the

depth images coincide with each other (i.e., it penalizes the hypothetical and

observed depth images for not overlapping). The parameter λ designates the

relative importance of the two terms, and it was empirically set to 350.

3.3.3 Optimization

In order to compute the pose, we employ a combination of particle swarm

optimization (PSO) and the iterative closest point (ICP) algorithms.
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PSO [41] uses a set of particles, that evolve through social interactions

over a series of generations, to search for a global optimum in a non-convex

parameter space. For head pose estimation, each particle represents a head

pose x and has a corresponding cost, E(x), specified by Eq. (3.6). Each

particle keeps track of the position x∗ where it has observed the lowest cost,

E(x∗), across all generations. The best position across all particles and

generations is indicated by x∗g. At generation t, every particle stochastically

updates its position x and velocity u based on its position relative to x∗ and

x∗g [42]:

ut+1 = γ
(
ut + αξ1 (x∗ − xt) + βξ2

(
x∗g − xt

))
xt+1 = xt + ut+1,

(3.9)

where the constants α, β, and γ are the cognitive, social, and constriction

factors, respectively, and ξ1 and ξ2 are uniform random variables ∈ [0, 1].

Based on [42], we set α = β = 2.05 and γ = 0.7298.

During the first generation (t = 0), the particles’ positions are initialized

randomly, and their velocities are set to zero. For the initial frame, the par-

ticles’ positions are generated by randomly sampling a normal distribution

with the mean set to the frontal pose. For subsequent frames, half of the par-

ticles are initialized in this way, and the other half use a normal distribution

with a mean set to the previous frame’s pose estimate.

To prevent unlikely head poses, we bound the parameter space: θx ∈
[−60◦, 60◦] for pitch, θy ∈ [−90◦, 90◦] for yaw, and θz ∈ [−45◦, 45◦] for roll.

For translation, we force the centroid of the reference model to remain within

a certain distance (∼ 10 cm) from the location we identified during face

detection.

For each particle and for each generation, we perform a few iterations of

ICP [43] to push particles toward a local optimum of the parameter space.

Instead of minimizing E(x) directly, which would be difficult because of the

implicit rendering of dx and wx, we solve a simpler problem. We fix dx

and wx, and we solve for a rigid body transformation that pushes vo toward

vx. Afterwards, we can update the particle’s pose by applying the inverse

transformation to it.
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A rigid body transformation is defined as a rotation matrix,

R =

1 0 0

0 cos θx − sin θx

0 sin θx cos θx


 cos θy 0 sin θy

0 1 0

− sin θy 0 cos θy


cos θz − sin θz 0

sin θz cos θz 0

0 0 1


(3.10)

and a translation vector t = [tx ty tz]
T . We solve for the parameters of R

and t by minimizing the point-to-plane distance between vo and vx,

arg min
R,t

∑
(i,j)∈R

wx(i, j)
[
(Rvo(i, j) + t− vx(i, j))T nx(i, j)

]2
, (3.11)

which is the same distance measured by the first term of the cost function,

Ev. To obtain a closed-form solution we utilize the small angle approxima-

tion [44]. After solving for the rigid body transformation, we modify vo by

applying the transformation and re-projecting each vertex. We repeat this

process for a fixed number of iterations. Upon completion, we apply the

inverse rigid body transformation to update the particle’s position x.

As a trade-off between accuracy and computation time for our combined

PSO and ICP optimization procedure, we used a set of 10 particles and 5

generations for PSO, and 3 iterations of ICP. After the optimization termi-

nates, we provide the position of the best particle over all the generations,

x∗g, as the final pose estimate for the face in the current frame.

3.3.4 Model Update

Once the head pose has been estimated, we update the shape and weights of

the reference model to match the observed face in the current frame. Utilizing

the estimated pose, we identify point correspondences between the reference

face model and the observed data by transforming and projecting the vertices

of the model into the observed vertex map vo,[
i j 1

]T
= K (Rvn + t) , v̂n = R−1 (vo(i, j)− t) , (3.12)

where R and t are the rotation matrix and translation vector parameterized

by the estimated pose x∗g, vn is the n-th element in the shape vector Vk,

and v̂n is a vertex in vo which is the point corresponding to vertex vn. In
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addition, we define a mask:

mn =

1 if ‖vn − v̂n‖ < δ

0 otherwise
(3.13)

for rejecting corresponding points that are too far apart (δ = 1 cm). We

solve for the coefficients of the morphable model that minimize the following

linear system of equations:

α∗ = arg min
α

∥∥∥M(
µ+ Sα− V̂

)∥∥∥2 + ν ‖α‖2 , (3.14)

where V̂ = (v̂1, v̂2, ..., v̂N), M = diag (m1,m2, ...,mN), and ν is a large

constant to prevent unrealistic face shapes. Afterwards, we update the shape

of the reference model,

Vk+1 = η (µ+ Sα∗) + (1− η)Vk, (3.15)

where η = 0.1 is a damping parameter introduced to prevent the shape from

drastically changing between frames. In addition, we update the weights of

the reference model as:

wn = exp
(
−‖vn − v̂n‖2/σw

)
, (3.16)

where wn and vn are the n-th elements in the weight vector Wk+1 and the

shape vector Vk+1, respectively, and σw = 0.01.

3.3.5 Dynamic Swarm

Through our experimentation we observed that the entire swarm of particles

is not always necessary to accurately estimate the pose in every frame. If

we correctly estimate the pose in the previous frame, then only a few par-

ticles are required to update the pose in the subsequent frame. For this

reason, we propose a variant of our approach that dynamically updates the

number of particles in the swarm. By dynamically resizing the swarm, we

can improve the runtime performance of the algorithm without significantly

affecting accuracy.
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The distance term Ev of the cost function (Eq. 3.6) gives us an indication

of the accuracy of the estimated head pose, x∗g. When we correctly identify

the pose, the value of Ev(x
∗
g) should be the expected measurement error of

the depth camera. Therefore, we can update the size of the swarm for the

next frame using the following procedure:

Pk+1 =



Pmax if Ev(x
∗
g)� e

Pk + 1 else if Ev(x
∗
g) > e and Pk < Pmax

Pk − 1 else if Ev(x
∗
g) ≤ e and Pk > Pmin

Pk otherwise

(3.17)

where Pk is the number of particles in the current frame k, Pmin = 1 and

Pmax = 10 are the minimum and maximum number of particles in the swarm,

respectively, and e is the expected measurement error of our sensor. For the

Kinect camera, we experimentally determined e ≈ 5 mm.

3.4 Experimental Results

3.4.1 Data Sets

We measured the performance of our method and compared it with state-

of-the-art algorithms on two datasets. The Biwi Kinect Head Pose dataset,

acquired with a Kinect sensor, contains over 15K RGB and depth images

of 20 subjects recorded in 24 sessions [45]. It has large head rotations, long

hair, and occlusions. For each frame, a ground truth binary mask of the

face pixels, as well as the 3D orientation of the head and the location of

its center, are provided. On this dataset, we first locate the head using the

method described in Chapter 2 and then estimate its pose.

The ETH Face Pose Range Image dataset by Breitenstein et al. contains

10K range images of 20 people [21]. These data are of higher quality than

the Biwi Kinect data, and were acquired with a stereo enhanced structured

light sensor [46]. In the ETH dataset, depth data is only available for the

head region, thus we did not apply head detection on it.
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3.4.2 Evaluation of Our Approach

Table 3.1 shows the average absolute errors for the yaw, pitch, and roll an-

gles achieved by our algorithm on the Biwi Kinect dataset. It also contains

the average positional errors for the head center and the accuracy of pose

estimation. Accuracy is defined as the percentage of frames with an L2 norm

of angular errors less than 10◦.

On the Biwi Kinect dataset, we achieved angular errors of 2.0◦, 2.1◦ and

2.3◦ for the yaw, pitch, and roll, a translational error of 5.1 mm and an

accuracy of 95.0% with our proposed algorithm (row 1 in Table 3.1). In order

to understand the contribution of each of the individual concepts employed

in our algorithm, we additionally evaluated its performance with different

configurations (Table 3.1).

Observe that between the morphable model (first row in Table 3.1) and

the average face model (second row in Table 3.1), the morphable model

consistently performed slightly better by allowing a better fit to each specific

subject. Although, we did not fit the morphable model very precisely to the

observed face. It seems that personalization of the face model is important

for head pose estimation, but further investigation is required to establish

this conclusively.

Next, we investigated the effect of combining PSO and ICP for optimiza-

tion. Keeping all other parameters constant, we performed the optimization

with 40 iterations of ICP only. In addition, we used PSO only with 25 parti-

cles and 40 generations. This configuration was previously shown to be effec-

tive [35]. Individually, PSO (fourth row in Table 3.1) performed the worst,

considerably worse than ICP (third row in Table 3.1), plausibly because of

PSO’s slow convergence rate and susceptibility to premature convergence.

ICP, by itself, performed better than PSO, but tended to fail for large angles

of rotation. Lastly, analogous to what Qian et al. [39] observed for 3D hand

pose estimation, we found that the combined PSO and ICP optimization

method produced the most accurate results for 3D head pose estimation, as

well.

The fifth row of Table 3.1 lists the performance of our algorithm for the

case when we employed only the distance term Ev (Eq. 3.6) to measure the

similarity between two 3D point clouds. On comparing these results with

those in the first row of Table 3.1, where we used both the error terms in Eq.
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(3.6), it can be concluded that the 2D overlap term (Ec) helps to improve

accuracy of head pose estimation considerably. Breintenstien et al. [21]

made similar observations in their work where they found the overlap term

to positively impact the accuracy of head pose estimation.

The effect of dynamically re-weighting parts of the reference model to

best match the instantaneous appearance of the observed 3D face can be

evaluated by comparing the first and sixth rows of Table 3.1. To obtain the

values listed in the sixth row, we set all the weights of the reference model

to unity and kept them constant over time instead of dynamically varying

them. Dynamically re-weighting the reference model improves accuracy and

helps to robustly handle partial occlusions of the face (e.g., the first and

sixth rows of Figure 3.3). Recently, Tulyakov et al. [25] also achieved a good

pose estimation result by adopting a slightly different dynamic re-weighting

scheme.

Finally, the result of dynamically changing the number of particles in the

swarm can be seen by comparing the first and the seventh rows of Table 3.1.

The accuracy is reduced by a small amount, but the runtime performance is

greatly improved. Our implementation of the proposed method with a fixed

number of particles runs in approximately 160 ms, where the variant of the

proposed method with a dynamic number of particles runs in about 60 ms

on an NVIDIA GeForce GTX 660 GPU. With a dynamic swarm we reduce

the average runtime by 100 ms.

3.4.3 Comparison with Existing Methods

A number of recent algorithms [21, 11, 26, 35, 27, 37, 25, 22] for 3D head

pose estimation have also been evaluated on the benchmark Biwi Kinect [11]

and ETH [46] datasets. For all these methods, except for Padeleris et al.’s

[35], we list the results reported by the authors in Tables 3.1 and 3.2, along

with a summary of their methods. Padeleris et al. report average errors for

only 91.4% of the frames on which their algorithm succeeded. Furthermore,

when their algorithm failed, they re-initialized head pose tracking with the

ground truth pose (personal communications with the authors). For a fair

comparison, we re-implemented their PSO-based algorithm and reported its

results for the entire Biwi Kinect dataset in Table 3.1.
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Table 3.2: The average absolute angular errors for yaw and pitch, for the
methods by Breitenstein et al. [21], Fanelli et al. [24], and for our method,
on the ETH database [24]. No head localization was performed.

Method
Error

Accuracy
Yaw [◦] Pitch [◦]

Breitenstein [21] 6.1 4.2 80.8%
Fanelli [24] 5.7 5.1 90.4%
Proposed 2.9 2.3 98.9%

On the Biwi Kinect dataset (Table 3.1), our proposed algorithm produced

the lowest rotational errors, which were lower than those of the existing

classifier-based [11, 25], rigid model-fitting-based [35, 37], non-rigid model-

fitting-based [26, 27] and surface patch descriptor-based [22] approaches for

head pose estimation. Despite using only the 3D information, our algorithm

performed even better than the algorithms that employed both depth and

color information [27, 26, 22].

We observed similar results on the ETH dataset (Table 3.2), where our

algorithm outperformed the existing methods at estimating the yaw and

pitch rotations (this dataset does not contain rotations about the roll axis).

Example results are shown in Figure 3.4.

For all frames of the Biwi Kinect dataset, our algorithm also resulted in

the smallest translational error (5.1 mm) of all the purely 3D-based head

pose estimation algorithms (Table 3.1). Rekik et al.’s algorithm produced

the same translational error as ours, but they used both color and depth

data.

We also applied our head pose estimation algorithm to data acquired with

a SoftKinetic DS325 time-of-flight camera. We observed similar accuracy for

head pose estimation with this sensor as well (Figure 3.5).

To further understand the effect of noise and resolution, we re-projected

faces in the Biwi Kinect dataset, which are originally ∼ 1 m away from the

sensor, to 1.5 m, 2 m and 2.5 m and added progressively increasing depth-

dependent noise using the model proposed by Khoshelham and Elberink [47].

With increasing distance from the sensor our head pose estimation technique

resulted in a linear increase in the yaw, pitch, and roll errors at a rate of

1.25◦/m and a linear decrease in accuracy at a rate of 6.7%/m.
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Figure 3.3: A set of RGB images (first column) and the corresponding
depth images (second column) from the Biwi Kinect dataset [45]. The last
column shows the head pose estimated by our method along with the
dynamic weights assigned to different parts of the reference model.
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Figure 3.4: Range images from the ETH Face Pose Range Image dataset
[21] are displayed in the left column. The head poses estimated by our
approach are shown in the right column.

Figure 3.5: A set of color (first column) and depth images (second column)
acquired by the SoftKinetic DS325 camera. The head poses estimated by
our algorithm are depicted in the rightmost column (colored according to
the adaptive weights).
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3.4.4 Combined PSO and ICP Optimization

To better understand the peculiarities of the combined PSO and ICP algo-

rithm, with different cost functions E and Ev, we considered the problem of

registering (i.e. finding the optimal translation tx) a 1D curve (in blue in

Figure 3.6a) with a set of sampled noisy points (in red in Figure 3.6a). The

first term of our cost function, Ev(tx), contains many local minima (Figure

3.6b). Consequently ICP, which only optimizes Ev(tx), quickly converges

toward one of these, depending upon the initialization. The trajectories for

two different initializations are shown in red in Figure 3.6b.

The overlap term Ec(tx) in our cost function, on the other hand, is quasi-

convex (Figure 3.6c). Although Ev +Ec is still non-convex, adding Ec makes

the global optimum more evident and local minima less pronounced (Figure

3.6d); this explains the worse results reported in Table 3.1 (fifth row) for the

use of Ev alone. Nonetheless, optimization with PSO remains problematic:

particle 1 in Figure 3.6d (on the right) moves towards particle 0 and misses

the global optimum, leading to premature convergence into a local minimum

of Ev + Ec. Additionally, since PSO randomly samples the cost function

without using the gradient, convergence towards the global optimum is gen-

erally slow. This explains the poor accuracy for head pose estimation that

we observed when we employed PSO only (Table 3.1).

Figure 3.6e shows the trajectories of the combined PSO and ICP algorithm,

where we apply ICP to each particle before the PSO update. ICP moves each

particle to a local minimum of Ev (green triangle), thus making it less likely

for PSO to skip over the basin of attraction of the global optimum. Note

that, assuming that ICP converges, each particle is then constrained to lie

in a local minimum of Ev. Since the local minima of Ev are generally only

slightly offset with respect to the corresponding local minima of Ev + Ec,

the combined optimization is generally more efficient and effective than PSO

alone, as measured for our head pose estimation algorithm in Table 3.1.

It is in fact sufficient for a particle to lie in the basin of attraction of the

global optimum of Ev to quickly converge towards it (see the left particle

in Figure 3.6e). We also noted that the basins of attraction for Ev and

Ec +Ev are slightly different; as a consequence, ICP may contribute to move

a particle out of a local basin of attraction of Ec+Ev (see the right particle in

Figure 3.6f), thus potentially preventing premature convergence, increasing
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the overall mobility of the particles and favoring a wider exploration of the

parameter space. On the other hand, we also noted that, because of ICP,

the left particle in Figure 3.6e oscillates around the same local minimum for

two consecutive generations. This represents a potential drawback of any

hybrid PSO algorithm, that can be mitigated by modifying the α, β and γ

parameters in PSO.

3.5 Concluding Remarks

We introduced a head pose estimation method for commodity depth cameras

that results in best-in-class accuracy on benchmark datasets. It requires no

initialization, handles extreme rotations and partial occlusions, and efficiently

registers facial surfaces. Numerous factors contribute to the success of our

algorithm: the overlap term (Ec) in the cost function, the combined PSO and

ICP algorithm, dynamically adapting the weights of the face model, and the

adoption of a morphable face model. While these concepts have each been

introduced individually in previous studies, the contribution of our work

lies in combining these disparate ideas in an effective manner to significantly

improve the accuracy of 3D head pose estimation. Our work also presents for

the first time a systematic quantitative assessment of the contribution of each

of these various factors in improving the accuracy of head pose estimation.

Building upon the work of Qian et al. [39] we also provide deeper insights

into the workings of the combined PSO and ICP optimization for 3D surface

registration.
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(a) (b)

(c) (d)

(e) (f)

Figure 3.6: (a) A simple 1D registration problem: the reference model
(shifted) and noisy sampled data. (b) ICP minimization of Ev = Ev(tx) (2
runs); tx is the model shift along the x axis. Local minima are indicated by
circles, the boundaries of the basins of attraction by vertical lines. (c) The
overlap term Ec = Ec(tx). Optimization of Ev(tx) + Ec(tx) with (d) PSO
only, and with (e) the combined PSO and ICP algorithm. (f) ICP moves
the left particle to the local minimum of Ev; the right one is moved away
from the local basin of attraction of Ev + Ec.
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CHAPTER 4

FACE VERIFICATION

4.1 Introduction

Face verification and recognition has been an active research topic for the

past several decades [48]. Face verification is still a difficult problem due

to the wide range of possible head poses and facial expressions. There has

been a wealth of 2D face verification methods proposed over the years [49,

50, 51, 52, 53], and there have been some recent advancements using deep

convolutional neural networks [54, 55]. However, 2D methods are still not

widely used for authentication since they are easily fooled with a photograph.

Face verification using 3D sensors has the potential to be a more secure and

reliable mode of authentication, and a variety of 3D face verification methods

have been proposed [56, 57, 58, 59]. Unfortunately, these methods often

require high-quality 3D data captured from a high-end 3D sensor, which

is not always practical for real-world situations where noisy low-cost depth

cameras are utilized.

We propose a method that uses a consumer-grade depth camera, such as

Microsoft’s Kinect, to perform online face verification. To be able to verify

the identity of a subject, we first construct a reference model by fitting a

3D morphable face model [19]. Given a novel depth image and a reference

model, we can authenticate the user by aligning the reference to the image,

densely extracting facial features, and computing a similarity metric. To

handle a wide variety of situations, we learn our similarity metric using a

random decision forest [60]. Since the Kinect can capture depth images at

video rate, and our method runs at near real-time rates, we can continuously

authenticate a person while he/she uses his/her device.

We evaluate our method using a combination of three datasets. We com-

bine the Biwi Kinect dataset [45] and the Eurecom Kinect dataset [12], as
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well as a dataset we collected ourselves. On this hybrid dataset, we demon-

strate superior results compared to existing state-of-the-art 2D and 3D face

verification methods.

4.2 Related Work

A wide variety of 2D and 3D face verification methods have been proposed

over the decades [48].

A large portion of the proposed techniques perform face verification on 2D

images [49, 50, 51, 52, 53, 54, 55]. Savvides et al. [49] utilized minimum

average correlation energy filters for 2D face verification. For each subject,

they have a set of 2D images of the subject’s face with different expressions,

and they used a set of correlation filters to compare the database to a novel

image. Jonsson et al. [50] represent a 2D face image as a linear combination

of basis images, also known as Eigenfaces [61], and trained a support vector

machine (SVM) to determine whether or not two face images match. Zhou

and Wei [51] represent the face with a set of Gabor wavelet features. They use

the AdaBoost algorithm to select the best wavelet features for distinguishing

a subject from other subjects, and they train an SVM using these features.

Chopra et al. [52] utilize a convolution neural network to map a face image

to a feature space, such that the Euclidean distance between feature vectors

represents how similar two faces are to each other. Kumar et al. [53] learned

two separate classifiers to perform face verification. One classifier recognizes

attributes such as gender, race, age, physique, hair style, eye-wear, etc. The

presence or absence of these features is used to verify a person’s identity. The

second classifier measures the similarity of facial regions. They combine the

results of both classifiers to verify the identity of a subject. Taigman et al.

[54] proposed a similar method to [52], but uses a deep network to map an

image to a feature vector, and they train an SVM using these features. Most

recently, [55] proposed another approach that uses a deep neural network to

learn a Euclidean embedding of face images for recognition, verification, and

clustering. Taigman et al. [54] and Schroff et al. [55] leverage deep convo-

lutional neural networks to sufficiently outperform all previous 2D methods.

Face verification techniques that utilize 2D images typically work well under

ideal lighting conditions and when the face is viewed from a frontal position,
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and their accuracy can degrade when this is not the case. Leveraging 3D

data for face verification has the potential to overcome these limitations. 3D

sensors often emit their own light, so they are less affected by external light-

ing conditions. In addition, by leveraging a full 3D model of the face, it is

possible for 3D methods to be less influenced by changes in head pose.

Several methods that utilize 3D information have been proposed for face

verification [56, 57, 58, 59]. Beumier and Acheroy [56] align the profiles of

two 3D facial surfaces, and use the residual error after alignment to compare

the similarity of the two faces. In addition, they compare the difference in

the intensity images, which were used to reconstruct the geometry of the

face. Pan et al. [57] use the Hausdorff distance to compare two aligned 3D

face models. Conde and Serrano [58] use spin images [62] to detect facial

features. The location of the features are used to create a normalized depth

image of the face. Principal component analysis (PCA) is used to project

the depth images to an eigenvector subspace. An SVM classifier is trained to

verify faces within this eigenspace. Lu et al. [59] construct a 3D model of a

person’s face by merging a set of depth images captured by a laser scanner.

Given a novel depth image, they align the image to a 3D model using iterative

closest point (ICP), and the residual error after alignment is used to verify

the subject. Like [56], [59] also considers the 2D appearance of the user by

comparing an intensity image to an image synthesized by rendering the 3D

model. Previous 3D face verification methods often require high-quality 3D

data and/or both 2D and 3D data to accurately identify a user. We propose a

method for 3D face verification using only low-quality depth images captured

by a consumer-grade camera.

4.3 Method

4.3.1 Model Fitting

Before we can attempt to verify the identity of a subject, we must create a

reference model of person for comparison. We create a reference model of the

person’s face by fitting a 3D morphable face model to a set of depth images.

A morphable model consists of an average 3D face shape µ and a set of 3D

face shape bases S = (s1, s2, . . . , sM) where M = 199 [19]. A novel face
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shape is produced through a linear combination of the mean face and face

bases,

Ŝ = µ+
M∑
m=1

αmsm = µ+ Sα. (4.1)

To fit the morphable model we need to identify the coefficientsα = (α1, α2, . . . ,

αM), such that the face shape Ŝ best matches our subject.

A single depth image is too noisy to accurately fit a model; therefore, we

capture a video sequence of the subject’s head in a variety of poses. We fit

the model to a subset of depth images from the video sequence selected at

uniform intervals. For each depth image i, we identify a set of corresponding

points Ci by finding the closest points between the image and the model. We

jointly solve for the coefficients of the morphable model α and the pose of

each depth image {Ri, ti} by minimizing the following objective function:

min
α,{Ri,ti}

∑
i

∑
j∈Ci

(
wij ‖(Rivij + ti)− (µij + Sijα)‖2

)
+ λ ‖α‖2 , (4.2)

where (i, j) is the j-th corresponding point from the i-th image, vij is a 3D

measurement from the i-th depth image, and µij and Sij are the mean and

bases of a single vertex from the morphable model corresponding to vij. To

reduce the effect of outliers, the point correspondences are weighted inversely

proportional to the distance between them, wij. Also, we use a stiffness term

λ to control how much the morphable model is allowed to deform.

We repeatedly solve Eq. (4.2) to refine our estimate of the coefficients

α and the poses {Ri, ti}. For each iteration, we update our point corre-

spondence between the images and the model. In addition, we will reduce

the stiffness term λ if the previous iteration did not significantly change the

coefficients. We iterate until λ below a certain threshold.

We use Ceres Solver’s [63] implementation of conjugate gradient method

to solve Eq. (4.2). For all of our experiments, we use 25 images as a trade-off

between quality and computational complexity. Examples reference models

are shown in Figure 4.1.
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Figure 4.1: Example reference models (right column) constructed by fitting
a 3D morphable face model [19] to a point cloud (middle column)
assembled from set of depth images. Color images (left column) are shown
only for demonstration purposes, and they are not used by our system.
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4.3.2 Feature Extraction

To verify whether or not a depth image matches a reference model, we first

need to align the model to the image. We use the method described in

Chapter 3 to estimate the pose of the head in the depth image. Once we

align the reference model to the image, we can extract features which will be

used to measure the similarity between the faces. We project every vertex

from the reference model into the depth image,

v̂i = Rvi + t,

xy
1

 = Kv̂i, (4.3)

where vi is the i-th vertex in the reference model, R and t are the rotation

matrix and translation vector that align the reference model to the image, K

is the camera’s intrinsic calibration matrix, and (x, y) is the corresponding

pixel coordinate in the depth image. Assuming a vertex is not self-occluded

and the image is not missing data, we can compute the difference between a

vertex and its corresponding depth measurement,

δi = |D(x, y)− v̂zi | , (4.4)

where D(x, y) is the (x, y)-th measurement in the depth image and v̂zi is the

z-component of vertex v̂i. Often, measurements are missing from the depth

image due to sensor noise and inaccuracies, and model vertices can be self-

occluded due to head pose. In these situations, we set the difference value

δi to positive infinity. To reduce noise in the difference values, we take the

average over neighboring vertices,

δ̄i =

∑
k∈Ni

δk · 1δk<∞∑
k∈Ni

1δk<∞
, (4.5)

whereNi is the 1-ring neighborhood of vertex vi defined by the mesh topology

of the reference model and 1δk<∞ is an indicator function. The aggregate of

all the difference values forms our feature vector δ = (δ̄1, δ̄2, . . . , δ̄N), where

the length of the vector is N = 53490.

We use a morphable model to create our reference models; therefore, all

subjects will have the same set of vertices with the same topology and only

41



the position of these vertices will change between subjects. If for example

vertex vj is located on the tip of the nose, then δj represents the difference

between the nose in the model and the nose in the image regardless of the

subject in question. This enables us to learn a sophisticated similarity metric

to accurately verify the identity of a user, which is our primary motivation

for using the morphable model. Figure 4.2 renders the features extracted by

our proposed method.

4.3.3 Similarity Metric

There are a variety of ways to compute a similarity metric based on our

feature vector δ. The simplest approach is to compute the mean or medium

of all the finite elements in δ. However, due to occlusion, changes in pose or

expression, and alterations in hair style or eye-wear, this simple metric may

not be sufficient to accurately measure the similarity between our reference

model and a depth image. Instead, we chose to learn our similarity metric.

Several of the elements in our feature vector may contain infinite values due

to self-occlusion of the reference model or missing data in the depth image;

for this reason, we decided to use a non-linear classifier. Specifically, we chose

a random forest classifier [60] for its simplicity to train, and its past success

in 3D vision [11, 17].

A random forest classifier consists of an ensemble of decision trees. Each

tree in the forest is trained using a set of training examples. The examples

are selected randomly from the data set with replacement. A training exam-

ple consists of a reference model and a depth image, and a label indicating

whether or not the model and the image represent the same person. There

are significantly more negative examples (the reference model and the depth

image are different people) than positive examples (the reference model and

the depth image are the same person), and this imbalance can pose a problem

for training. Therefore, we re-weight the examples so that positive examples

have a p probability of being drawn and negative examples have a chance

of (1 − p). A natural choice for p is 0.5, but we experimentally found that

p = 0.25 produces better results.

To train a decision tree, we begin by extracting all the features from its

set of training examples S = {δn}. For each non-leaf node in the tree, we
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Figure 4.2: Our features (fourth column) are computed by aligning and
projecting our reference model (third column) into a depth image (second
column) and calculating the difference. These features are used by our
learned similarity metric to authenticate a subject. The first three rows
depict positive examples where the reference model and the depth image
share the same identity. The remaining rows illustrate negative examples.
Color images (first column) are only shown for demonstration purposes,
and they are not used by our system.
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randomly select a subset of features and corresponding thresholds {δi, τi},
and determine which feature/threshold pair provides the most information

gain,

max
{δi,τi}

G(S ′, δi, τi) = H(S ′)−
(
|SL|
|S ′|

H(SL) +
|SR|
|S ′|

H(SR)

)
, (4.6)

where H(·) is the class uncertainty measure of a set, | · | is the size of a

set, S ′ ⊂ S is the subset of training examples that reach the node, SL =

{δn | δni < τi, δ
n ∈ S ′} is the subset of training examples in S ′ with feature

δi less than τi, and SR = S ′ \ SL [60]. The class uncertainty measurement or

entropy of the set is defined as follows:

H(S) = −
(
|S|+

|S|
log2

|S|+

|S|

)
−
(
|S|−

|S|
log2

|S|−

|S|

)
, (4.7)

where | · |+ and | · |− are the number of positive and negative examples in

a set, respectively. When a leaf node is reached, either due to reaching the

maximum depth of the tree or too few training examples at the node, then

the probability of an positive example reaching this node, p = |S ′|+/|S ′|, is

recorded.

To test whether or not a novel example is positive, i.e. verify a depth

image matches a reference model, we extract features from the example and

pass it to each tree in the random forest. At each non-leaf node, we use the

stored feature/threshold pair to determine our path through the tree. Once

we reach a leaf node in every tree, we average the stored probabilities to

produce an overall probability of the image and the model being the same

person. If the probability is above a threshold, we claim the image and the

model share the same identity.

4.4 Experimental Results

4.4.1 Data Sets

Our goal is to design an online method for face verification using low-quality

depth images from a consumer-grade depth camera. Therefore, we require

data sets that contain multiple video sequences of a variety of subjects cap-
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tured by a Kinect camera or similar device. We measure the performance of

our method, as well as that of existing state-of-the-art methods, using a com-

bination of three datasets: the Biwi Kinect dataset [45], the Eurecom Kinect

dataset [12], and a dataset we collected ourselves using the Kinect camera.

The hybrid dataset contains 102 subjects: 52 from the Eurecom dataset, 20

from the Biwi dataset, and 30 from our own dataset. The dataset comprises

80 males and 22 females with ethnicities including European, Asian, Indian,

African, and Hispanic. The majority of the dataset contains at least two

video sequences per subject captured during different sessions. For each se-

quence, the subjects are positioned approximately a meter from the camera.

The sequences exhibit a wide range of head poses with only moderate changes

in expression. The entire dataset contains over 87K RGB and depth images.

4.4.2 Testing Procedure

For our method and the existing methods we compare against, we use the

same procedure to evaluate an approach on the dataset. For each video

sequence of a subject, we define a model. The model could be an image,

a set of images, a 3D mesh, or some other representation of the subject’s

identity as specified by the method we are testing. Afterwards, we compare

the model to all other images in the dataset, and compute a value based

on the method’s similarity metric. It is important to note that we do not

compare the model to the sequence used to construct it. The output of the

method’s similarity metric is compared to a threshold to determine its true

positive and false positive rate. We vary the threshold to obtain the receiver

operating characteristic (ROC) of the approach.

4.4.3 Evaluation of Our Approach

To evaluate our proposed method on the combined dataset, we use 3-fold

cross validation. The dataset is randomly partitioned into three equal sub-

sets where each subset contains 34 subjects, and we perform three rounds of

training and testing. In each round, two subsets are used for training the

random decision forest and the remaining subset is used for testing. Each

subset contains approximately 15,000 positive examples and 2,500,000 nega-
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tive examples.

For each fold, we trained a random forest of T decision trees each with

50,000 randomly selected training examples to a depth of D. At each non-

leaf node we randomly select (100×d) feature/threshold pairs where d is the

depth of the node. We measure the performance of our method by averaging

the results across each fold.

We analyze the behavior of our approach using a variety of different con-

figurations. Figure 4.3 depicts the performance of our method when we vary

the number of trees T in the forest and fix the maximum depth to D = 20.

Beyond 100 trees, we experience diminishing gains in performance. Figure

4.4 shows the results when we fix the number of trees to T = 100 and vary

the maximum depth D. Allowing the depth of the trees to go beyond 20

levels does not change the output of the random forest because most of the

trees do not reach a depth greater than 20 levels. Notice the classifier does

not overfit the training data as the number of trees and maximum depth

increase; this is a benefit of using the random decision forest [60]. For all

the following experiments, we fix the number of trees to T = 100 and the

maximum depth to D = 20.

To support our use of the random decision forest, we compare our approach

to a straightforward method where we use the mean or medium of our fea-

ture vector δ as the measure of similarity between the model and the image.

Figure 4.5 demonstrates that a significant amount information is lost by per-

forming an average over the feature vector. Further investigation is required

to show that the random forest outperforms other types of classifiers.

To gain further insight into the similarity metric learned by the random

forest, we count the number of times an element of our feature vector δ is

used by a decision tree to classify an image. The frequencies are illustrated

in Figure 4.6. The random forest is learning to focus on the most visually

distinctive parts of the face, specifically the nose, brow, chin, and cheeks.

Notice, the classifier is capable of learning to prioritize parts of the face that

are visible, as we can see in Figure 4.6ac. We believe this is a benefit of using

a forest of decision trees because of the many branching paths contained

within a tree. In the future, we plan to add dramatic facial expressions to

the dataset, and based on these results, we hope the classifier can learn to

focus on the non-expressive parts of the face.

For all of our experiments, we perform face verification using a single depth
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Figure 4.3: The ROC curves of our proposed method when we vary the
number of decision trees within the random forest.
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Figure 4.4: The performance of our approach when we change the
maximum depth of the decision trees.
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Figure 4.5: Our proposed method compared to two variants where instead
of training a random decision forest, we use the mean and medium value of
our feature vector δ to measure the similarity of faces. Clearly, there is a
benefit of using the random forest over averaging the feature vector.

(a) (b) (c)

Figure 4.6: A set of heat maps representing the prevalence of the features
within the random decision forest. The heat maps show the number of
times a feature is used by the random forest to classify an image when the
subject is looking (a) left (yaw angle is less than −30◦), (b) forward (yaw
angle is between −30◦ and 30◦), and (c) right (yaw angle is greater than
30◦). Notice the subtle difference between (a) and (c) where the classifier
learned to focus on the side of the face that is visible.
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Figure 4.7: The performance of our method when we use a sliding window
to combine the decision for a sequence of images. We show the results for
when the sliding window contains 30, 150, and 300 frames, which is
approximately 1, 5, and 10 seconds of video, respectively.

image; however, it is possible to improve our method’s performance by com-

bining the results from a series of images. To this end, we use a sliding

window to collect the output of our algorithm for a sequence of images, and

the majority decision is used as the decision for entire window. Figure 4.7

shows the results when the sliding window contains 1, 5, and 10 seconds of

video where the video is captured at 30 frames per second. These results

motivate a possible future extension of our work, where multiple depth im-

ages are combined together to improve accuracy. One approach could be to

integrate a sequence of depth images into a 3D model like in [64] and [65],

and perform verification using this model instead of an image. Although,

this approach would require more cooperation by the user.
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Figure 4.8: Our proposed method compared to existing state-of-the-art 2D
and 3D face verification methods [55, 57, 58].

4.4.4 Comparison with Existing Methods

We compare our method to existing state-of-the-art 2D and 3D face verifi-

cation methods on the hybrid dataset, and the results are shown in Figure

4.8.

For 2D methods, we compare against FaceNet [55]. FaceNet leverages a

deep convolutional neural network to map 2D face images to a Euclidean

space where distances can be used to measure face similarity [55]. We use

OpenFace [66], the open source implementation of FaceNet, to embed each

image in the dataset into this feature space. For each sequence, we hand

select an image to be used as the subject’s reference model. The squared L2

distance in the Euclidean space is used as the similarity metric between the

model and the dataset images. The performance of FaceNet using a single

image is depicted as the dashed red line in Figure 4.8.

Our proposed method uses multiple images from a video sequence to con-

struct the 3D reference model of a subject. In order to fairly compare our

method with FaceNet, we replace the single hand selected image with the
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same 25 images used to construct our 3D face model. We use the minimum

distance between all the reference images and a test image as the measure of

similarity. We also experimented with using the mean and medium distance,

but the minimum distance performed the best. The performance of FaceNet

using multiple images is shown as the solid red line in Figure 4.8.

To examine how our proposed method and FaceNet deal with variations

in head pose, we fix the false positive rate to 10−2 and compute the true

positive rate as a function of yaw and pitch. As shown in Figure 4.9, our

proposed method does well across a wide range of head poses, which is a

benefit of using a 3D method over a 2D method for face verification.

For 3D methods, we compare against [57] and [58]. Pan et al. [57] use the

partial Hausdorff distance to measure the similarity of two facial surfaces.

To evaluate [57], we compute the partial Hausdorff distance between our 3D

face models and the 3D point clouds generated by back-projecting the depth

images in the dataset. The results are illustrated as the green line in Figure

4.8.

Conde and Serrano [58] use the estimated head pose to frontalize the depth

images. Afterwards, the normalized depth images are converted to Gaussian

images, and principle component analysis (PCA) is performed on the entire

dataset. Each image is projected onto the vector space spanned by the top

K principal components, and Conde et al. train a support vector machine

(SVM) to distinguish between images of, and not of, the subject within

this vector space [58]. In this case, the SVM is both the reference model

and similarity metric. For our experiments, we used K = 2500 principal

components, and the results are shown as the magenta line in Figure 4.8.

Our approach outperforms existing state-of-the-art 2D and 3D face verifi-

cation methods on the hybrid dataset. We surpass existing 2D approaches

by leverages a full 3D face model; as a result, our method is more robust to

changes in head pose. We believe the strength of our approach over existing

3D methods is that we measure the difference between every point in the

model and the image, and we learn which of these points are important for

authentication. Additional work is required to compare our approach against

face verification methods that use both 2D and 3D information.
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Figure 4.9: The true positive rate as a function of head pose (yaw and
pitch) for our proposed method and FaceNet [55]. The false positive rate
for each method is fixed to 10−2.
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4.4.5 Runtime Performance

Our proposed method is designed to authenticate a user in an online fashion.

In other words, when a subject approaches a terminal, our method immedi-

ately verifies the user and grants them access. When the subject leaves the

terminal or an intruder is detected, our method automatically revokes access.

As a result, our system needs to run at near real-time rates.

Model fitting is an offline process, so performance is not a concern. Head

pose estimation, feature extraction, and verification need to be run online.

Pose estimation is run mostly on the GPU, whereas feature extraction and

verification run solely on the CPU. With an Intel Core i7 CPU and NVIDIA

GeForce GTX 660 GPU, our system runs at approximately 25 frames per

second, which is sufficient for online face verification.

4.5 Concluding Remarks

We proposed an online method for 3D face verification using a low-cost depth

camera. We authenticated a subject by comparing a novel depth image to

a 3D morphable model which was fit to their face. We trained a random

decision forest to learn what facial features are important for measuring the

similarity between the image and the reference model. Our proposed method

outperforms existing state-of-the-art 2D and 3D methods on a collection of

three datasets. Our system runs at 25 frames per second on commodity

hardware, so we can continuously verify a stream of depth images as a subject

uses his/her device.
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CHAPTER 5

CONCLUSION AND FUTURE WORK

In this thesis, we proposed a system for real-time 3D face localization and

verification. Our system consists of three parts: face detection, head pose

estimation, and face verification. Each part utilizes depth information from

a consumer depth camera.

In Chapter 2, we used the geometrical information within a depth image

to identify regions of a color image that may contain a face. As a result, we

avoid the exhaustive search over the entire image for faces, which is compu-

tationally expensive and prone to false detections. Our approach accelerates

the detection process by 3.5x and significantly reduces false detections.

In Chapter 3, we proposed a robust and precise 3D head pose estimation

method. Our approach uses a combination of PSO and ICP to register an

adaptive 3D face model to a depth image. We demonstrate best-in-class

accuracy on standard benchmark datasets.

In Chapter 4, we introduced an accurate method for 3D face verification.

Leveraging the techniques proposed in Chapters 2 and 3, we can align and

compare a reference 3D face model with a depth image. We learned a simi-

larity metric to determine whether the model and the image share the same

identity. Our proposed method exhibits higher accuracy than existing state-

of-the-art 2D and 3D methods on a combination of three datasets.

By combining all of these components, we establish a system for real-time

3D face verification using a low-cost depth camera. With our system, we can

continuously authenticate a user while he/she is using his/her device.

Several aspects of our work can be improved upon. We plan to explore

alternative methods for performing face detection on a depth image, which

will enable our system to operate when color information is unavailable.

We would like to evaluate our method when dramatic facial expressions

are present. The existing dataset only contains moderate changes in expres-

sions; therefore, we plan to capture additional video sequences with subjects
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performing different emotions.

Additionally, we observed that combining the results from a sequence of

images improves our system’s ability to accurately verify a person’s identity.

A possible extension of our work could be to explore different methods of

combining a sequence of depth images. For example, the depth images could

be registered and integrated into a 3D model, and our system could measure

the similarity between the reconstructed model and the reference model.
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