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ABSTRACT

Traditionally, audio recordings are edited through digital audio workstations

(DAWs), which give users access to different tools and parameters through

a graphical user interface (GUI) without prior knowledge in coding or sig-

nal processing. The complexity of working with DAWs and the undeniable

need for strong listening skills have made audio editing unpopular among

novice users and time consuming for professionals. We propose an intelligent

audio editor (EBAE) that automates major audio editing routines with the

use of an example sound and efficiently provides users with high-quality re-

sults. EBAE first extracts meaningful information from an example sound

that already contains the desired effects and then applies them to a desired

recording by employing signal processing and machine learning techniques.
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CHAPTER 1
EXAMPLE-BASED AUDIO EDITING

1.1 Introduction

This chapter motivates example-based audio editing (EBAE) with numerous

examples and analogies. In Chapter 2, we review common audio signal pro-

cessing tools that are frequently used in this thesis. In Chapters 3, 4, and 5,

we discuss background work on equalization, noise, and reverberation as well

as proposing the example-based editing scheme for each, respectively. Each

chapter begins by reviewing the classical and the state-of-the-art algorithms

in enhancing audio recordings in the mentioned criteria. We then discuss

how those techniques can be modified and applied for the proposed example-

based editing. In Chapter 6, details of a user study that was conducted

for evaluating the example-based audio editor subjectively is discussed. In

Chapter 7, we conclude this thesis and discuss possible ways for continuing

and improving this work.

1.2 What Is Example-Based Editing?

Taking pictures and recording sounds have never been easier. Nowadays,

most people are equipped with smart phones, tablets, and various wearable

technologies that can perform specific tasks very efficiently. For example,

most smart phones have options for applying different types of image filters

to any photo that has been taken or saved on the device. These filters are

usually depicted on other pictures as a demo, along with a reference picture

that has no filter applied to it (see Fig. 1.1). The user does not need to

understand the signal processing behind designing the image filters or have

man of steel’s eyes to find a filter that creates the desired effect. The user
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can select a filter by simply trying out different filters and comparing the

result with the example reference picture. What if the device or the App

does not have the desired filter? What if there is another picture that has

the desired filter embedded within it? Is there a way to extract that filter

from this picture (i.e. the user provided example picture) and use it to induce

the desired filter into the input picture? Can we do that efficiently and in a

user-friendly manner?

Figure 1.1: An image editing App on iPhone 3 and later models [1].

Yes, there is a way to do this efficiently and accurately with an example-

based editing interface. Here is how an example-based image editing could

work. The user provides the system with two images: an input image and

an example image. The example-based editor decomposes the filtered/wet

images into clean/dry images (i.e. the image before it was filtered) and their

corresponding filters. The example-based editor then mixes the example filter

with the clean input image. This procedure is described in Fig. 1.2 where

the user gives the editor a regular image as the input image and a blurry

image as the example image. The blurry effect in the example image is the

desired filter. The desired output image would be the input image blurred
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with the example picture blurry effect.

Figure 1.2: Matching the blurry effect of the input image to that in an
example image [2].

Now, replace images with audio recordings and the blurry effect with re-

verberation and you have an example-based audio editor (EBAE).

1.3 Acoustics Matching

An idea similar to example-based audio editing is matching the acoustics of

multiple recordings. The goal of an acoustic matching system is to match

the acoustics of an input recording to that in an example sound. That is, you

place an input recording in the acoustical conditions of an example recording.

In essence, you modify the input recording as if it were recorded with the

same microphone and equalizer settings used to record the example sound,

and under the same background noise and room acoustics.

To motivate the idea behind acoustics matching, consider the following

example: Pocasters [3], documentary makers, etc. usually combine multi-

ple recordings which are made in different environments and with different

devices. When stitching these recordings into one piece, the change in rever-

beration, equalization, and background noise from one recording to another

becomes more noticeable. This inconsistency can be distracting to the listen-

ers. Manually matching the reverberation, equalization, and noise is humanly
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impossible. Our proposed system allows a recording creator to choose one of

the recordings as an example sound and automatically match the equaliza-

tion, noise, and reverberation characteristics of all the other recordings.

Acoustics matching can be used to match the acoustics of a recording to

an example sound with a click of a button. The advantages of such a system

is that it is very efficient and the need for prior knowledge is minimal.

Consider another scenario for an acoustics matching system in the movie

production scheme. Sounds from two consecutive scenes could sound very

different [4]. Usually, big movies have enough budget to hire professional

audio editors to edit each recording to create consistent, intelligible, and

appropriate recordings for each scene. The editing process, however, is very

time consuming and unavailable to independent productions and novice users

who do not have years of experience in editing audio recordings. An acous-

tics matching system could help these users to produce acoustically consistent

sounds efficiently and accurately. An acoustic matching system can also pro-

vide a good starting point for professional audio editors. Figure 1.3 depicts

a block diagram for the proposed acoustic matching system. Our proposed

acoustic matching system uses the techniques in EBAE to first decompose

the sounds into dry sounds and the corresponding equalization, noise, and re-

verberation effects. The proposed acoustic matching system then transforms

these effects on the input sounds to match those in the example sounds. Fi-

nally, an input sound is constructed using the example sound effect and the

dry input sound.

1.4 Digital Audio Workstations

Consider the graphical equalizers commonly found in Digital Audio Work-

stations (DAWs) like Adobe Audition, iZotope, Garageband, Reaper, and

Audacity as well as home audio systems. As shown in Fig. 1.4, a graphic

equalizer consists of a set bars at selected frequencies. The user can adjust

the gain for each bar by moving the bar up and down. The gain is in decibels,

dB, as shown in Eq. 1.1.

GaindB = 20 ∗ log10(
V

V0

) (1.1)
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Figure 1.3: Block diagram for the proposed acoustic matching system. A dry
sound denotes a recording that has no effects.

where V is the voltage being measured at a microphone which is related to

the sound pressure level captured at the microphone, and V0 is a reference

voltage defined for a specific standard (the reference voltage is assumed to

be 1 in this thesis).

Figure 1.4: The graphic equalizer in GarageBand [5].

The graphical equalizer, one of simplest toolbox found in DAWs, makes

a number of assumptions about the user’s background. The user needs to

be able to detect sounds at different gains and frequencies, either by hearing
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it or by analyzing the sound using another toolbox. In order to achieve an

appropriate equalizer, it is necessary to understand the exact gain that needs

to be adjusted at each selected frequency. In Chapter 6, we discussed that

most users struggle with adjusting the equalizer settings even with undoing

simple digital filters. Example-based editing can match the equalizer settings

of an input sound more efficiently and accurately, given an example sound

that has the desired equalizer settings already contained.

In additions to editing the equalization of a recording, other areas of audio

editing such as noise and reverberation can also be greatly simplified using

the proposed example-based editing system.

1.4.1 How Does Example-Based Audio Editing Work?

Example-based audio editing has three stages:

1. Loading input and example sounds

2. Extracting features (i.e. effects)

3. Matching features

EBAE requires two recordings: an input sound and an example sound. Once

the recordings are given to the system, the user can choose one of the available

matching schemes (e.g. equalization, noise, and reverberation) to edit the

input recording. EBAE prepares the recordings automatically (e.g. voice

activity detection, normalizing the gain, click removal) and then extracts

corresponding features. The input sound is then modified accordingly to

re-create the example feature in the input sound. The user can then hear

the final matched sound concatenated with the example sound and choose a

different example sound until the desired effect is achieved.
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CHAPTER 2
FOUNDATION

2.1 Introduction

This chapter covers some background information on signal processing in

a more intuitive manner. This chapter reviews techniques for visualizing

sounds in different domains, signal processing concepts such as linear time-

invariant (LTI) systems, convolution, aliasing, filtering, and discrete Fourier

transforms.

2.2 Visualizing Sound

The first step in analyzing any signal is to visualize it. Sound pressure is a

continuous quantity that needs to be sampled by an analog-to-digital con-

verter (ADC) before it can be manipulated on a computer. Sampling is an

important step in collecting sound samples and if it is not done correctly the

recording could be damage permanently. Waveform is perhaps the most com-

mon way of depicting audio recordings digitally. Waveforms represent audio

as sound pressure amplitudes sampled in time. Time-domain representations

like waveforms are hard to interpret because they do not convey meaningful

information about the signal. Consider Fig. 2.1. Both waveforms represent

the same speech recordings of “I do!”, but they look different.

2.3 LTI Systems

Engineers usually employ LTI systems to model physical systems. An LTI

system consists of an input signal, an impulse response, and an output signal.

LTI systems have attractive qualities that make them easy to work with, as
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Figure 2.1: These waveforms corresponds to two recordings of “I do!”.

described in Eq. 2.1.

H{x1[n]} = y1[n]

H{x2[n]} = y2[n]

H{a · x1[n]} = a · y1[n]

H{a · x1[n] + b · x2[n]} = a · y1[n] + b · y2[n]

(2.1)

where x, y, and H{.} correspond to the input, output, and the LTI system

response (i.e. impulse response), respectively.

A system is linear if it meets the following criterion:

H{x1[n] + x2[n]} = y1[n] + y2[n] (2.2)

A system is time-invariant if delaying the input signal delays the output

signal by the same number of time samples, as shown in Eq. 2.3.

H{x[n− r]} = y[n− r] (2.3)

For the rest of this thesis, we assume an LTI system can describe the

proposed models unless otherwise noted.
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2.4 Convolution

Convolution is perhaps the most important concept in signal processing. We

can predict the output to an LTI system by analyzing its impulse response

using convolution. Convolution is defined as follows:

y[n] =
L∑
k=0

x[n]h[n− k]

y = x ∗ h

(2.4)

where x is the input, h is the impulse response, y is the output, n is the time-

domain sample, and k is a time shift sample. For convenience, we denote

convolution as ∗.
When convolving an input signal with an impulse response, the input signal

is copied at each time index and each copy is multiplied by the amplitude of

the impulse response. The final result is achieved by summing up all of the

resulting copies.

Convolution is a linear, commutative, associative, and distributive opera-

tion. The commutative property states:

x[n] ∗ v[n] = v[n] ∗ x[n] (2.5)

The associative property denotes:

x[n] ∗ (v[n] ∗ w[n]) = (x[n] ∗ v[n]) ∗ w[n] (2.6)

Finally, the distributive property expresses the following:

x[n] ∗ (v[n] + w[n]) = (x[n] ∗ v[n]) + (x[n] ∗ w[n]) (2.7)

2.5 Frequency Domain

As depicted in Fig. 2.1, the representation for the speech recording “I do!”

made it hard to analyze the recordings. Frequency domain representation

delivers more meaningful information about the contents of these recordings.

A frequency domain representation can depict the energy of the sound at dif-

ferent frequencies, and tell us about the vowels and consonants in a speech
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recording as well as the frequency content about the background noise, har-

monics, artifacts etc. Frequency domain representation can represents an

audio recordings more uniquely and compactly. For example, a sinusoidal

signal in the time domain is represented by many time domain samples,

whereas in the frequency domain, a signal can be represented using only

frequency, amplitude, and phase information.

Fourier and Z transforms can be used to convert the time domain signals,

such as waveforms, into the frequency domain. Throughout this thesis, up-

percase letters are used to denote frequency domain signals and lowercase

letters to denote time domain signals. Signals with a [.] extension denote

discrete time and those with a (.) denote continuous time signals.

2.6 Discrete Fourier Transform

In this thesis, we focus on the Discrete Fourier Transform (DFT) which is

discrete in both time and frequency. Although using discrete time eliminates

the complexity of integrals, it brings periodicity in the other domain which

brings many potential artifacts. The DFT of a time domain signal and an

inverse DFT of a frequency domain signal are shown in Eq. 2.8.

X[k] =
N∑
n=0

x[n]e(−2πjkn
N

) , N − 1 ≤ k ≤ 0

x[n] =
1

N

N−1∑
k=0

X[k]e( j2πkn
N

) , N − 1 ≤ n ≤ 0

(2.8)

where k, n, and N denote the frequency bin, the sample index, and the total

number of time samples, respectively.

DFT is periodic due to the exponential term in Eq. 2.8. The periodicity

of an exponential term is shown in Eq. 2.9.

exp(j2π) = exp(j2πk) (2.9)

More intuitively, DFT reveal the frequency components of a signal by

correlating a time-domain signal with real and complex sinusoidal signals of

different frequencies and presents the corresponding correlation value at each

10



frequency. A good question is to ask where these sinusoidal signals are in

Eq. 2.8. They are inside the exponential term. This exponential term can

be expressed as a combination of sinusoidal signals using the Euler’s formula

as follows:

exp(
−2πjkn

N
) = cos(

−2πjkn

N
) + jsin(

−2πjkn

N
) (2.10)

Another way of representing DFT is by multiplying the DFT basis with the

time domain signal. The DFT basis (both real and imaginary basis) for a

64-points DFT are shown in Fig. 2.2. Notice two things about these bases:

their symmetry (conjugate symmetry for imaginary basis) and the oscillation

between white and black colors that represents frequencies. The first row is

the DC component; it is consistently white. Progressing down the rows, you

see a more rapid pattern of whites and blacks (i.e. higher frequencies) until

the middle row, which is the point of symmetry.

Figure 2.2: DFT basis - real and imaginary components.

The complexity of DFT is O(N2), the same as convolution. The DFT’s

symmetric property, however, can be used to speed up the Fourier transform.

This faster DFT is called the Fast Fourier Transform, FFT. FFT does not

approximate DFT; it is exactly DFT. The complexity of FFT turns out to be

O(Nlog(N)). This reduction in the number of operations is very noticeable

when dealing with a large number of samples. This is achieved by dividing

the signal to half and taking the DFT of the smaller segments. Since the

signals are halved, FFT works best with signals that are a power of two in
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size. To take advantages of FFT efficiency, signals that are not a power of

two in size are padded with zeros. For more information on FFT refer to

Chapter 12 in [6].

2.7 DFT and Convolution

It can be shown that multiplication in the DFT domain is equivalent to

circular convolution in the time domain (i.e. you need to use DTFT if you

want to use linear convolution directly in the time domain) [7]. Circular

convolution performs a periodic linear convolution, as shown in Eq. 2.11.

x[n]⊗ h[n] =
N−1∑
m=0

x[m]h[n−m]N ⇔ X[k]H[k] (2.11)

where ⊗ denotes circular convolution and [.]N denotes modulo integer N .

DFT requires a circular convolution in the time domain. DFT is periodic,

and that is due to the nature of sampling. Sampling in one domain causes

periodicity in the other domain. Think of sampling a continuous signal as

multiplying it by a set of pulse trains that are spaced by one period. This is

equivalent to convolving a set of pulse trains (i.e. DFT of a pulse train is still

a pulse train) that are spaced by one sampling frequency. The resulting signal

contains the copies of the frequency domain replicas that are one sampling

frequency apart. This spacing has to be big enough so that the periodic

components do not overlap (e.g. avoiding aliasing). To avoid this problem,

we use circular convolution. Circular convolution, however, can be made

equivalent to the linear convolution if both input and impulse responses are

zero padded to the linear convolution length before taking their DFTs.

2.8 Aliasing

Aliasing in audio describes an artifact that can take place in both the time

and frequency domains. Aliasing permanently damages the information con-

tained in the signal and cannot be recovered once it occurs. Again, the

periodicity nature of DFT has to be taken into account, or there will be

aliasing in both the time and frequency domains. That is, if the modified
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time domain or frequency domain signal does not fit in the space provided,

it will alias (i.e. replica in the other domain will overlap).

The most popular case of aliasing is breaking the Nyquist criterion. If the

sampling rate is less than half the highest frequency (i.e. bandwidth) in a

signal, then the low-frequency components leak into the higher frequencies.

bandwidth >
sr

2
→ aliasing

where sr denotes the sampling rate. As mentioned earlier, aliasing can also

occur if the the input and impulse response are not zero padded before taking

their DFT (i.e. converting circular convolution to linear convolution). For

more information on aliasing refer to Chapters 3 and 11 in [6].

2.9 Windowing

Windowing was a great area of research in signal processing. Nowadays, a

window that is already optimized for a particular application can be chosen

off the shelf. Nonetheless, it is important to know a little bit about them.

2.9.1 Rectangular Window

Truncating a signal is the same as windowing it with a finite rectangular

window. There are many variations of the rectangular windows. We discuss

a zero-phase, center about zero, odd-length rectangular window shown in Eq.

2.12.

w[n] =

{
1, |n| < M/2

0, else
(2.12)

A rectangular window has a very narrow main lobe (see Fig. 2.3) and a

sharp transition band. Rectangular windows, however, have high side lobes

right next to the main lobe, which causes spectral leakage, meaning that

some information outside the pass-band leaks inside the main lobe.

The larger the size of the window, the more localized its spectral peaks

are going to be (i.e. narrower main lobe). Side lobes do not change with the
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size of the window and are more closely related to the transition band. For

more information on rectangular window refer to “The Effect of Windowing

on DFT” in [8] and Chapter 16 in [6].

2.9.2 Hanning Window

Hanning windows are commonly used in speech and audio processing. The

Hanning window has a main lobe twice as wide as the one in the rectangular

window. Hanning windows can be calculated using Eq. 2.13. Side lobes are

about -32 dB and decay at 60 dB. The trade-off is between the width of the

main lobe and the energy of the side lobes; the narrower the main lobe, the

higher the energy of the side lobes.

w(n) = 0.5(1− cos( 2πn

N − 1
)) (2.13)

The square root of the Hanning window has a sharper main lobe at the

cost of having slightly higher side lobes. The square root of the Hanning

window is commonly used to re/construct the short-time Fourier transform

of a recording.

2.9.3 Hamming Window

The Hamming window is similar to the Hanning window. The Hamming

window’s first side lobe is at -43 dB which is smaller than for the Hanning

window, but it decays slower than Hanning window at 20 dB. You may not

care about the average magnitude of the side lobes, but only the side lobes

closest to the main lobe. Hamming windows can be designed using Eq. 2.14.

0.54− 0.46 cos(
2πn

N − 1
) (2.14)

Figure 2.3 compare rectangular, Hamming, and Hanning windows in the

frequency domain.
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Figure 2.3: The rectangular window has the narrowest main lobe and the
highest side lobe. The Hamming window has a narrower main lobe in the
frequency domain due to the slower roll off in time domain. The Hamming
window’s first side lobe is smaller than that of the Hanning window.

2.10 Phase

The DFT of a signal is complex valued. There are a number of ways to

denote the DFT of a signal, such as follows:

X[k] = |X[k]| X[k]

|X[k]|
= |X[k]|ej∠X[k] = |X[k]|ej·tan

−1 imag(X[k])
real(X[k]) (2.15)

where ∠X[k], imag, and real denote the phase, imaginary, and real part of

the DFT of a signal. tan−1 imag(X[k])
real(X[k])

also denotes the phase of the signal.

Studying the phase of a signal can reveal how different frequencies are

delayed relative to each other and how it affects an LTI system. It is well

known that human hearing is not sensitive to the phase of a sound (at least

in speech and audio enhancement applications), as discussed in Chapter 3

of [9]. Sign changes in the amplitude of a signal are captured by the phase

as a discontinuity. Keep in mind that this type of discontinuity does not

make the phase non-linear. Phase is 2π periodic. Phase is usually wrapped

between −π <ARG{X[k]} < π to make it easier to visualize. A wrapped

phase is called the principle phase. The unwrapped phase is usually denoted

as arg{X[k]}.
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Figure 2.4: Tolerance diagram of a selective filter.

2.11 Selective Filters

Filters are used to select frequencies in a signal to operate on. Some of the

common frequency selective filters are low-pass (i.e. pass low-frequencies),

high-pass (i.e. pass high-frequencies), band-pass (i.e. pass mid frequencies),

and band-stop (i.e. reject mid-frequencies). As shown in Fig. 2.4, prac-

tical filters have ripples in both the pass-band and stop-band regions, and

a transition band. Figure 2.4 is called a tolerance diagram (i.e. denoting

the magnitude response of a filter). The filter’s phase, as discussed earlier,

is not as important for speech and enhancement applications. We discuss

zero-phase filtering in Section 2.11.1. Zero-phase filtering technique is used

to removes any concerns regarding phase from non-real-time audio enhance-

ment applications. In a nutshell, zero-phase filtering does not change the

phase of the LTI system, but makes it non-causal.

There are two main categories for designing selective filters: FIR (finite

impulse response) and IIR (infinite impulse response) filters. FIR filters are

easier to implement. As a filter designer, you have control over the magnitude

and the phase of FIR filters. FIR filters require a lot of coefficients, and they

usually end up having wider main lobes with a lot of ripples. IIR filers are

harder to implement, as they involve recursion (you can design FIR filters

using recursion, too, but that is just making a simple design complicated).

The phase response of an IIR filter cannot be specified, only the magnitude

can be specified. IIR filters can have a sharp transition band using only a

few coefficients.
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Mathematically, FIR and IIR filters can be represented as expressed in Eq.

2.16.

y[n] =
L−1∑
l=0

x[n− l]b[l]−
M−1∑
m=1

y[n−m]a[m] (2.16)

where b and a are the filter coefficients. For FIR filters a = 0 (i.e. FIR

filters do not depend on the past output values). Table 2.1 compares the

characteristics of FIR and IIR filters.

Table 2.1: Comparison of FIR and IIR filters.

Filter FIR IIR

Design Optimization based Analog transformation based

Magnitude No constraint Only frequency selective gain

Phase Linear- full control Non-linear - no control

Coefficients Large number of coefficients Few number of coefficients

2.11.1 Zero-Phase Filtering

Phase is an important characteristic of an impulse response that can be

ignored in most enhancement applications, due to its complexity and the

fact that change in phase is usually inaudible. There are, however, cases

where the phase is important (e.g. dereverberation and virtual reality audio

applications for 3D audio [10]). As mentioned earlier, linear phase filters are

designed using an FIR filters, but consider what happens if we want to use

an IIR filter. Another option to get a linear phase filter is to use a zero-phase

filter. Zero-phase filters do not distort the phase or even introduce delays.

Zero-phase filters can be obtained from any filters. In order to make an LTI

system insensitive to the filter’s phase, the following steps are performed:

1. W (z) = X(z) ·H(z)

2. W ∗(z) = H∗(z) ·X(z)∗

3. V (z) = H(z) ·H∗(z) ·X(z)∗

4. V ∗(z) = X(z) ·H2(z)

Hzero-phase = H2(z)
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The zero-phase filter is squared in magnitude (i.e. no imaginary compo-

nent, no phase), which also doubles the cut-off frequency and squares the

magnitude of the ripples. Zero-phase filtering is a non-causal operation, be-

cause it requires time reversing the signal.

2.12 Resampling

EBAE requires two sounds, an input sound and an example sound. In order

to be able to transfer the information from an example sound to the input

sound, they need to be sampled at the same sampling rates. The same

sampling rate can be achieved by resampling the signals using downsampling

and upsampling techniques.

2.12.1 Downsampling

Downsampling, as the name suggests, decreases the sampling rate. Down-

sampling is achieved by simply removing some of the samples. Downsampling

a signal of length L by a factor M means removing L
M

samples in between

each sample, specifically those that are not indexed at multiples of ML. For

example, downsampling a signal by 2 is equivalent to removing every other

samples. This corresponds to expanding the frequency domain replicas by

two. If the signal is not filtered properly before downsampling, the periodic

component will overlap (i.e. aliasing). A low-pass filter with a cut-off at π/M

can be used to cut the aliasing frequencies before the signal is downsampled.

The expansion in the frequency brings the ending frequencies closer to each

other, as shown in Eq. 2.17 [11].

ω = ΩT → ω = ΩMT (2.17)

where Ω is the analog frequency. Downsampling stretches and squashes the

signal in frequency domain.
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2.12.2 Upsampling

Upsampling a signal of length M by a factor L adds L − 1 zeros between

each sample. Fortunately, there is no aliasing associated with upsampling.

Upsampling compresses the frequency domain replicas (i.e. put more spacing

between the replicas). After upsampling the signal, a low-pass filter can be

used to smooth (i.e. interpolate) the signal in the time domain (i.e. pick one

of the replicas in the frequency domain). Upsampling can be expressed as

convolving a signal with delta functions located at multiples of L with zeros

in between them as shown in Eq. 2.18 [11].

x[n] =
N∑
0

x[n]δ[n− kL] (2.18)

Taking the DFT of Eq. 2.18 gives:

X[k] =
K∑
0

x[n]e−j2πfnL/N = X[kL] (2.19)

2.13 Trimming

Most digital recorders tend to leave artifacts upon starting and finishing the

recording (e.g. clicking noise). In EBAE, we automatically trim the sound

to remove these artifacts. We applied a strong (i.e. big cut-off frequency),

zero-phase, low-pass filters on the absolute value of the time-domain signal,

as shown in Eq. 2.20.

y = |x| ∗ h (2.20)

where x is the input signal, h is a zero-phase low-pass filter, and y is the

resulting signal. We then took the gradient of y. We then track two major

peaks, where the voice activity begins and ends, and extract all the samples

in between the indexes of the two peaks as the trimmed signal.
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2.14 Scaling

Input and example sounds might have different volumes. The volume dif-

ference is going to be problematic if it influences the estimated filters which

could result in clipping the matched sound (i.e. a signal is said to be clipped

when the volume of the signal goes over the highest possible value defined

in the system). We scaled both recording after they are trimmed to be in a

range between −1 to 1 before processing them using Eq. 2.21.

t =
y

std(y)

z =
y

max(|y|)

(2.21)

where y is the normalized recordings in the time domain and z is the nor-

malized recording between −1 and 1.
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CHAPTER 3
EQUALIZATION MATCHING

3.1 Introduction

In this chapter, we discuss graphical equalizers, power spectra, short-time

Fourier transforms, and the proposed example-based equalizer matching to

automate the equalization matching process.

3.2 Graphic Equalizer

Graphic equalizers, also known as a parametric equalizer, let the user adjust

the gain on selected frequencies either through knobs on a hardware, digitally

in a DAW, or a media player.

Graphic equalizers, interpolate the user-selected gains over all possible

frequencies in the recording and then create a filter that adjusts the frequency

gains of the recording. Alternatively, one can look at equalizers as a filter

bank. Each selected frequency represents a frequency band, and changing

the gain in each selected frequency denotes a change in the gain for all of the

frequencies in that frequency band.

3.3 User Story

Adjusting the gain on a graphic equalizer by moving a bar up and down

might seem easy, but getting the right gain at the right frequency is difficult.

Some DAWs provide the user with a real-time listening tool so the user can

hear the change in the equalizer while adjusting the gains. This procedure

makes for an iterative process where a user employs listening skill to interpret

how the frequency content in a desired recording is changing and uses these
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cues to try to do better at the next iteration. Most DAWs provide the users

with a spectrogram of the recording as well to help the more experienced

users to detect the area of interest faster.

My imaginary friend, Jimmy, is going to help us motivate the propose

of equalization matching further. Jimmy made a recording with his smart

phone, but while recording, his phone was facing away from the sound source

and the equalizer setting on the phone was also set to some unknown default.

As a result, some frequencies are not getting the full gain they should be

receiving. In signal processing terms, his recording has inappropriate gains at

different frequencies. Depending on the situation, we might say the recording

is, muffled or squeaky. Let us assume that Jimmy’s recording sounds like it

was passed through a band-pass filter. Jimmy detects an abnormality in the

frequency content of his recording; however, detecting the exact frequencies

that needs adjusting is difficult. This makes sense because detecting the

exact frequencies and the amount of gains requires strong listening skills.

Jimmy has poor listening skills, and frankly, does not have the time to use

a graphical equalizer to iteratively solve this problem, as he has made this

problem with all the recordings he has made over the past few months.

Jimmy and many other users do not have all the necessary knowledge

or the patience to learn the ways of a DAW. Editing the equalization of a

recording could be a very slow optimization problem, in a sense; the user

needs to adjust the parameters on an equalizer until convergence of the true

equalization setting is achieved. In the next section, we discuss a system that

helps Jimmy fix the equalization on his recordings with a touch of a button.

3.4 Equalization Matching

Example-based equalizer matching is going to help relax some of these re-

quirements, like strong listening skills, prior knowledge on using a DAW, and

prior background in signal processing.

In order to understand how an example-based equalization matching works,

consider Jimmy’s case. Jimmy has another recording made using profes-

sional equipment and it has already been edited by a professional recording

engineer. EBAE takes advantage of this recording to edit the equalization

on Jimmy’s previous recording automatically (i.e. undo the inappropriate
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band-pass gains). In a nutshell, Jimmy provides his bad recording as an

input sound and the better recording as an example sound, and then clicks

on a button called “Match Equalization”. EBAE automatically matches the

equalization of the input sound to that in the example sound.

Before discussing the details on the proposed equalization matching, we

must first have a good understanding of power spectra and how sound is

represented in the time-frequency domain.

3.5 Power Spectral Density

Power spectral density or power spectra represents the power of a signal

at each frequency bin. There are parametric and non-parametric ways of

estimating the power spectra.

3.5.1 Parametric Spectrum Estimation

Parametric estimations are model based. They need data. Some parametric

models that are used often with speech recordings are the moving average

and the autoregressive models (i.e. all-pole model). The parameters for the

autoregressive models are usually estimated based on some observed data.

For more information, refer to “Parametric vs. Nonparametric Spectrum

Estimation” in [8].

3.5.2 Non-Parametric Estimation

Periodogram is computed based on the magnitude squared of the DFT coef-

ficients. It can also be calculated by taking the DFT of the autocorrelation

vector in the time domain, where autocorrelation is defined in Eq. 3.1.

rxx[k] =
1

m

L−1∑
n=0

x[n]x[n−m]

S[z] = DFT(rxx) =
1

L
|X(z)|2

(3.1)

where rxx and S[z] denote the autocorrelation vector and power spectra,

respectively. A more familiar approach is to window the signal, take its
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DFT, and then square it. It can be shown that the mean of a periodagram

approaches the true value as the length of the data increases to infinity, but

that also increases the variance of the estimation. For more information refer

to the chapter “The Periodogram” in [8] and [12].

3.5.3 Average Periodogram

Welch’s method can be used to calculate an average periodagram. Welch’s

method alleviates the poor variance of the periodagram dicussed earlier. In

Welch’s method, the signal is divided into overlapping segments. The pe-

riodagram of overlapping segments are then calculated and averaged. The

more segments, the less is the variance. We used a similar approach to

Welch’s method when calculating the power spectrum of a sound using the

Short-Time Fourier Transform (STFT).

3.6 Short-Time Fourier Transform

Speech signals are non-stationary. That means their first- and second-order

statistics (e.g. mean and autocorrelation) change over time. A signal is

said to be stationary if its frequency content does not change with time [13].

Taking a Fourier transform of a speech recording ignores its non-stationary

nature and it is also inefficient. It is inefficient because if you have a lengthy

signal, the FFT size is also large. STFT attacks both the non-stationary and

inefficiency by dividing the audio recording into overlapping time frames and

operating at one time-frame at a time. Audio signals are generally assumed

to be quasi-periodic (i.e. almost stationary) in a 20-30 ms time frame [14].

The DFT of these time frames are then aligned next to each other. The

magnitude DFT of these time frames can then be mapped to a colormap.

This visualization is called the spectrogram of the sound. STFT is defined

in Eq. 3.2.

X[n, k] =
M∑
m=0

x[m]w[n−m]e(−j2πkn
N

) (3.2)
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Figure 3.1: The spectrogram represents information about the vowels and
consonants in a speech recording. The vowels in “I do!” are clearly repre-
sented here. We can also see that speech signals are more active in the lower
frequencies.

where w is a sliding window of size M . Hamming and Hanning windows

taper the signal at the edge of each time frame to make overlapping time

frames. The tapering effect can be undone by dividing each time frame by

that window function. That is, however, a computational hazard, as we are

dividing the time frames by zero or smaller values. A more common way of

recovering the time domain information is to use overlap-add and overlap-

save methods.

In this thesis spectrograms are represented in a false colormap unless oth-

erwise noted (i.e. black colors denotes higher energy). Figure 3.1 depicts a

spectrogram for the waveforms in Fig. 2.1.

Overlap-Add

Overlap-add can be used to take the STFT and covert it back to time domain

by using the following steps:

1. Divide the input signal in the time domain into blocks of size L tailed

with M zeros, length of the impulse response, to avoid the need for

aliasing later.
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2. Apply a window to each segment before it is zero padded.

3. Take the DFT of each segment (and multiply them with the frequency

domain of the window function).

4. Take the IDFT of the resulting segments.

5. Add all segments together. The zero tailed of the first segments is added

to the first M samples of the second segment. If a perfect reconstruction

window is used, then the tapering effect is neutralized.

The overlap-add method can also be mathematically defined as follows [15,

16]:

y(n) =
M∑
r=0

1

N

N−1∑
k=0

X(rR, k)e( j2πkn
N

) (3.3)

where R is the number of samples in each window and r is the frame index.

x is the time domain signal and w is the window function [17].

Overlap-Save

Overlap-save is similar to overlap-add with one difference. The first segment

is zero padded at the beginning of the recording by M zeros. The first M

samples of all other segments contain the last M samples of the previous

segment. The rest of the steps are similar to overlap-add until the recon-

struction. Before summing all the segments the first M samples of the signal

is discarded.

Perfect Reconstruction

In order to be able to perfectly reconstruct a time domain signal from its

STFT, the overlapping windows must meet the perfect reconstruction crite-

ria. Otherwise, the synthesized time domain signals suffer from amplitude

modulation, which, if excessive, can turn into very audible artifacts. Let us

now look at the overlapping windows in the time domain as follows:

y(n) =
M∑
r=0

yr(n) = x(n)
M∑
r=0

w(rR− n) (3.4)
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where r denotes the frame number. In order for overlap-add and overlap-save

to achieve perfect reconstruction, the overlap between time frames should

meet the following constraint [18]:

M∑
r=0

w(rR− n) = C (3.5)

where C is a constant. Equation 2.32 is also known as the Constant Overlap-

Add (COLA) condition [17]. In the context of speech enhancement, a 50%

overlap between each time frame using Hamming windows makes for a perfect

reconstruction [17]. Another case of perfect reconstruction of windows is

that of Weighted Overlap-Add (WOLA) windows, where the synthesis and

analysis windows are the same. WOLA windows are used commonly in audio

compression applications [18]. The WOLA constraint is expressed in Eq. 3.6.

M∑
r=0

w2(rR− n) = C (3.6)

One example of a WOLA window is a 75% overlapping square root Hanning

window. In Matlab, the periodic option for Hanning window must be used

to assure that the overlapping windows sum to a constant value [19]. One

easy way to know if the STFT can perfectly reconstruct the time domain

signal is to apply the overlapping window on a sequence of ones, take its

STFT, and then its I-STFT. If a sequence of ones (or constant multiplies of

it) is retrieved then the COLA condition is met. Figure 3.2 shows the COLA

condition.

3.7 How to Match?

Our example-based equalization matching first extracts the power spectra

from input and example sounds. EBAE then calculates an equalization filter

using the estimated power spectra to manipulate the input sound frequency

content such that its power spectrum matches the example sound power
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Figure 3.2: COLA - Hamming windows with 50% overlap [15].

spectrum. The equalization filter is expressed in Eq. 3.7.

E[k] =
Pex[k]

Pin[k] + β[k]
(3.7)

where in, ex, P (.), k, and E denote input, example, power spectra, frequency

index, and the time-invariant equalization filter, respectively. The β[k] is a

regularization parameter to avoid introducing ill-conditioned frequencies to

the equalization filter (e.g. dividing by a small value). The equalization filter

is then element-wise multiplied by every time frames in the input sound power

spectrogram as follows:

Ymat[t, k]2 = E[k] ·Xin[t, k]2 (3.8)

where Ymat and Xin denote the equalized matched sound and input sound

spectrogram, respectively. t denotes the time frame index. The time domain

signal is retrieved using the input sound phase through inverse STFT (I-

STFT) using Eq. 3.9 and Eq. 3.10.

φY mat[t, k] =
Xin[t, k]

|Xin[t, k]|
(3.9)
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Time domain signal is shown in Eq. 3.10.

ymat = I-STFT(|Ymat[t, k]|φYmat [t, k]) (3.10)

Figure 3.3 depicts the block diagram for the proposed equalizer matching

system.

Figure 3.3: Equalization matching block diagram.

3.7.1 The Importance of the Example Sound

Is matching the power spectra going to fix the maladjusted frequencies in

all scenarios? What if the user only wants to adjust the higher frequencies

rather than adjusting the gains in all the frequency bins, as suggested in Eq.

3.7 and Eq. 3.8? These are reasonable critiques on equalization matching.

We suggest two solutions for such issues.

1. Find an example recording that has frequencies similar to the input

sound in the area we do not want to change, but the desired gain at fre-

quencies we would like to change. This may seem like an unreasonable

requirement, but for most scenarios an exact match is not necessary. For

example, using a recording of a guitar as an example sound to adjust the

low-frequencies of a speech recording does not work. Example sounds should

be similar in their contents to the input sounds. If the input sound is a

speech recording, then the example sound should be a speech recording.

2. A more advance solution on the back-end is to employ multiple equal-

izers for each frequency band and provide the user with multiple matched

sounds (e.g. one with low-frequencies matched, one with mid-frequencies

matched, etc.). We can still use Eq. 3.8 to apply the equalization filter.

However, after finding the equalization filter using Eq. 3.6, all frequency bins

29



that are going to stay unchanged should be replaced with ones, as shown in

Eq. 3.11.

Emod[k] = 1 bi < k < ci

Emod[k] = E[k] di < k < ei
(3.11)

where Emod is the modified equalization filter. The bi and ci are the begin-

ning and ending frequency bins for those frequencies that are going to stay

unchanged, and di and ei are those that needs to be modified. It is then up

to the user which recording sounds better. As discussed in Chapter 7, EBAE

can be improved by learning from the user’s common editing routines.

Another critique to equalization matching is the problem of sampling

rates. What if the sampling rate of the example sound is lower than the

input sound? Should we upsample the example sound or downsample the

input sound? A similar solution is to, again, provide the users with multi-

ple matched sounds that cover different scenarios and let the user select the

desired recording.

3.8 Toy Example

A toy example (i.e. Jimmy’s recordings discussed in Section 3.3) for equaliza-

tion matching is shown Fig. 3.4. The input sound has noticeably higher gain,

around 500− 1500 Hz. The example sound has a more consistent frequency

content. As shown in Fig. 3.4, the matched sound was successful in undoing

the maladjusted frequencies in the mid-frequency region and created a more

consistent frequency content in the equalized matched sound.
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Figure 3.4: Toy example for the proposed equalization matching.

31



CHAPTER 4
NOISE MATCHING

4.1 Introduction

We live in a noisy world. Many efforts have gone toward denoising audio and

speech recording using signal processing, and, more recently, using machine

learning methods. In this chapter, we discuss the current noise reduction

toolbox in DAWs, a high-level description of the EBAE noise matching sys-

tem, and how current speech enhancement algorithms can be used in EBAE

to estimate noise and clean sources in a noisy recording for the purpose of

noise matching.

4.2 Modeling a Noisy Recording

A noisy signal can be represented as the summation of the clean and noise

signals, as shown in Eq. 4.1.

y[n] = x[n] + v[n]

Y [k, t] = X[k, t] + V [k, t]
(4.1)

where n, t, and k denote time sample, time frame, and frequency bin, respec-

tively. The x, v, and y denote time domain clean, noise, and noisy signals,

respectively. X, V , and Y denote the corresponding spectrograms. In this

model, noise is assumed to be an additive white Gaussian noise (AWGN).

Most noise reduction systems estimate the noise by making statistical as-

sumptions about the nature of the noise and the clean signal (e.g. speech

recordings have been studies for decards). Later in this chapter, we cover

spectral subtraction [20] and Wiener filtering [21]. We also briefly discuss

a non-ngative matrix factorization [22, 23] framework for removing non-
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stationary noise signals.

4.3 Noise Reduction in Audition

Consider Adobe Audition’s noise reduction toolbox. The first step in remov-

ing noise in Audition is to capture a noise profile. A noise profile summarizes

the statistics of a background noise of a noisy recording. In order to capture

the noise profile, the user is asked to highlight a few time frames, either in

a time domain or a time-frequency domain, that represents the background

noise. This could be time frames where there are no voice activities, such as

the first few frames of the noisy recording. After selecting these time frames,

the user is asked to adjust a number parameters, such as noise reduction gain,

spectral decay, and smoothing, to adjust the parameters of the noise profile

(i.e. how much of the noise is going to be subtracted from the noisy record-

ing). The user can adjust these parameters while listening to the captured

noise (or the estimated clean signal if desired) to optimize these parameters.

Figure 4.1 depicts a snapshot of the Adobe Audition noise reduction toolbox

[24].

Figure 4.1: Adobe Audition noise reduction toolbox.
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4.4 User Story

Most noise reduction algorithms leave behind some type of artifacts, and the

final clean recording might not still sound natural. This is due to the fact

that the algorithm is designed to remove all the noise. Therefore, the user

is usually provided with numerous parameters to alleviate the artifacts by

keeping some of the noise. The proposed noise matching system embraces

noise, and as a result, the recording sounds more natural without the artifact.

Consider my imaginary friend Jimmy again. Jimmy is in charge of the

sound production for an independent movie. In one of the scenes, the sound

scene changes from a room with an air conditioner on (e.g. input sound

with AWGN) to another room that has minor band-pass noise around 3-5

kHz (e.g. example sound) (see Fig. 4.3). Jimmy is asked to remove the air

conditioner noise from the input sound and re-create the band-pass noise from

the example recording to create consistency between the different scenes. The

matched sound is created by adding the clean input sound with the example

noise. Jimmy, however, is unable to find all the right parameters to estimate

the clean and noise components and has many other scenes that require

the same attention. Next, we discuss a number of denoising techniques for

automatically extracting the clean and noise signals from a noisy recording.

4.5 Spectral Subtraction

Spectral subtraction subtracts an estimated noise profile from the noisy signal

spectrum to estimate the clean sound spectra, as shown in Eq. 4.2 [25].

|X̂[t, k]| = |Y [t, k]| − |V̂ [t, k]| (4.2)

where .̂ depicts an estimated quantity. Spectral subtraction estimates the

magnitude spectrogram of the clean signal; as a result, it is important to

avoid negative values when subtracting the noise spectrum from the noisy

signal spectrum, as shown in Eq. 4.3.

|X̂[k]| =

0 , |Y [k]| < |V̂ [k]|

|Y [k]| − |V̂ [k]| , else
(4.3)
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There are better ways for ensuring these non-negativity constraints as oppose

to zeroing all the negative values. It turns out that Eq. 4.6 introduces a very

annoying and audible artifact, called musical noise, at low SNR regions. We

will discuss an algorithm for removing musical noise in the next section. It is

easier to work with the power spectra as opposed to the magnitude spectra,

so we rewrite Eq. 4.2 as the following:

|X̂[k]|2 = |Y [k]|2 − α∆|V̂ [k]|2 (4.4)

where α is an over-subtraction factor which is usually necessary to account for

the underestimation in the noise profile. ∆ is an additional over-subtraction

factor which is usually provided to users for customization. Where are the

cross-terms in Eq. 4.7? We assume that the clean and noise signals are

uncorrelated (this assumption is not true for all SNRs). Equation 4.5 can

also be written in the time domain as follows:

rxx = ryy − rvv (4.5)

where r is the autocorrelation vector of a signal. We do not like subtracting

terms in signal processing. We like multiplication and convolutions, since

DSP processors are optimized for these type of operations. Therefore, we

express Eq. 4.5 as the following:

|X̂[t, k]|2 = H[t, k]|Y [t, k]|2 (4.6)

where Y and X are the STFT of the noisy and clean signals, respectively. H

is the noise suppression transfer function shown in Eq. 4.7.

H[t, k] =

√
1− |V̂ [t, k]|2
|Y [t, k]|2

(4.7)

The block diagram for spectral subtraction is shown in Fig. 4.2.

The time domain signal can then be reconstructed by taking the I-STFT of

X[t, k] using the noisy signal phase, φY . Even though human hearing is not

sensitive to the change in phase, using the noisy signal phase could introduce

artifacts. The noisy phase is only accurate to use in the higher SNR regions

(e.g. if SNR > 10 dB regions, then the difference between noisy and clean
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Figure 4.2: Spectral subtraction block diagram. Note that this diagram
denotes the estimated noise as D̂. p is set to 2 [26].

signal phase should not exceed π
10

or there will be artifacts) [27]. There are

several ways for estimating the clean signal phase [27]; however, in this thesis

we assume that the noisy recording phase is going to provide the estimated

clean recording with an accurate phase information.

4.5.1 Musical Noise Suppression

As it turns out, the cross-term product is not zero [26], and that introduces

musical noise to the enhanced recording. Geometric spectral subtraction is

a variation of spectral subtraction that consider the cross-terms and oper-

ates on the complex values as oppose to the magnitude values. Since geo-

metric spectral subtraction is a complex-valued algorithm, the phase of the

estimated clean signal is also embodied in the estimation. The details of

geometric spectral subtraction can be found in [20]. Subjective results do

not, however, show any noticeable improvement using geometrical spectral

subtraction in suppressing musical noise.

As shown in Fig. 4.3, musical noise looks like random frequencies scattered

in time, especially in the low SNR regions. Musical noise is a very audible

artifact, and most listeners prefer the noisy signal over the enhanced record-

ing. Luckily, there are post-processing methods for removing the musical
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noise [28, 29].

The musical noise reduction system used in EBAE is implemented based

on the algorithm discussed in [28]. This algorithm starts by detecting the

low SNR regions. The next step is to create a post-filter for smoothing the

gain of the spectral subtraction algorithm result. In order to do that, two

different SNRs are estimated: a posteriori SNR γ(t, k) and a priori SNR

ζ(t, k), as shown in Eq. 4.8.

γ[t, k] =
|Y [t, k]|2

|V̂ [t, k]|2

ζ[t, k] =
|X̂[t, k]|2

|V̂ [t, k]|2

(4.8)

where X̂ is the spectral subtraction result from Eq. 4.6. The next step is

to detect the low SNR regions in the noisy recording. The following power

ratio is used to detect these regions:

η(k) =

∑K−1
k=0 |X̂[t, k]|2∑K−1
k=0 |Y [t, k]|2

(4.9)

The low SNR regions can then be found by setting a threshold on ηthr, as

depicted in Eq. 4.10.

ηT [k] =

1, if η(k) ≥ ηthr

η[k], else
(4.10)

Now that we detected the low SNR regions, we can calculate a postfilter

using Eq. 4.11.

G[t, k] =


1

round[(1− ηT [k]

ηthr
).β]
, if |X̂[t, k]|2 ≤ ηT (k)

0, else
(4.11)

where β is an extra gain smoothing factor that could be provided to the user.

The final post-filtered signal is expressed in Eq. 4.12.

|Ŝ[t, k]|2 = |X̂[t, k]|2G[t, k] (4.12)

where Ŝ is the post-filtered enhanced recording. A block diagram for spectral
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Figure 4.3: Typical enhanced speech recording using spectral subtraction.
Musical noise is highlighted. Spectral subtraction with musical noise sup-
pression post-filtering is shown in the bottom image.
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Figure 4.4: Spectral subtraction with musical noise suppression post-filtering
block diagram. The ξ̂ in the block diagram is denoted as ζ in the text. We
dropped the (̂.) for simplicity [28].

subtraction with the musical noise post-processing filter is shown in Fig. 4.3.

Once the clean input sound and example noise are estimated Eq. 4.3 can

be used to perform noise matching.

4.5.2 Multiband Spectral Subtraction

In order to better estimate the noise profile at each frequency band, we

extended the spectral subtraction and the musical noise post-filter to multiple

frequency bands. The mathematics for the multiband spectral subtraction

is similar to the earlier method. The only difference is that quantities such

as SNRs, noise profile, and enhance recordings are calculated individually

for each frequency band. This technique is useful if the background noise is

more stationary within each frequency band as opposed to a whole.

4.6 Wiener Filtering

Wiener filtering undoes the effect of an LTI system from an output signal

in order to estimate the input signal by minimizing the error between the
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estimated and the true input signals. A Wiener filter can be as simple as

predicting the coefficients for an FIT filter, as shown in Eq. 4.13.

d̂[n] =
M−1∑
k=0

hky[n− k] (4.13)

where hk represents the FIR filter coefficients (i.e. Wiener coefficients), M

is the number of coefficients, y is the output signal, and d̂ is the estimated

input signal.

4.6.1 Wiener Filter in Time Domain

The difference between the true and the estimated input signal is calculated

in Eq. 4.14.

e[n] = d[n]− d̂[n] = d[n]− hTy (4.14)

where y contains the past M samples and h contains M FIR coefficients that

we would like to find. The mean squared error (MSE) cost function is shown

in Eq. 4.15.

J = E(e2[n]) = E(d2[n])− 2hT ryd + hTRyyh (4.15)

where ryd ∈ RM×1 is the cross-correlation vector between y and the desired

signal and Ryy ∈ RM×M is the autocorrelation matrix. E(.) is the expectation

operator. In order to find the optimal filter coefficient, we take the gradient

of the cost function and set it equal to zero as follows:

dJ

dh
= −2ryd + 2hTRyy = 0

→ h∗ = R−1
yy ryd

(4.16)

where h∗ is the optimal FIR coefficients also known as the Wiener-Hopf

solution [21, 30]. Keep in mind that, in most applications, we do not have

access to the true desired signal, and consequently, ryd.
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4.6.2 Wiener Filters in Frequency Domain

Wiener filter can also be expressed in frequency domain, as shown in Eq.

4.17.

d̂[n] = h[n] ∗ y[n]↔ D̂(z) = H(z)Y (z) (4.17)

The estimated error in the frequency domain is shown in Eq. 4.18.

E(z) = D(z)−H(z)Y (z) (4.18)

Taking the gradient of the MSE in frequency domain and setting it equal to

zero, we have:

H(z) =
Pdy(z)

Pyy(z)
(4.19)

where Pdy denotes cross-power spectrum between the noisy signal and true

clean signal, which is generally complex. We generally do not have access to

Pyd. For more information refer to Chapter 6 of [9].

4.6.3 Wiener Filters for Noise Reduction

Wiener filter can be modified to reduce noise in noisy recordings. Autocor-

relation of the noisy recording is shown in Eq. 4.20.

Ryy = E(yyT ) = E((x+ v)(x+ v)T ) = Rxx +Rnn (4.20)

We assume that the clean and noise signals are uncorrelated. The optimal

filter can then be calculated as follows [31]:

h∗ = (Rxx +Rvv)
−1rxx (4.21)

The noise reduction Wiener filter in frequency domain is:

H(z) =
Pxx(z)

Pxx(z) + Pnn(z)
(4.22)
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We can rewrite Eq. 4.25 using a priori SNR as the following:

ζz =
Pxx(z)

Pnn(z)

→ H(z) =
ζz

ζz + 1

(4.23)

H(z) is directly proportionate to the SNR (i.e. at low SNR, the Wiener

filter is almost zero and at high SNR is almost 1). That is the “attenuation

portion of the spectrum is where the SNR is low” [31]. The musical noise re-

duction algorithm discussed earlier can also be applied to the Wiener filtered

enhanced sound as well. Figure 4.4 depicts a block diagram for creating a

Wiener filter for noise reduction.

Figure 4.5: Wiener filter block diagram for noise reduction. The enhanced
signal is denoted as Z(t) in this diagram [32].

For more information about the performance of spectral subtraction and

Wiener filtering, along with other classical speech enhancement algorithms,

see [33].

4.6.4 Noise Estimation

There are several ways to estimate the noise profile, some which can be found

in Chapter 3 of [9] and in [34]. One simple way is by averaging the power

spectrum of the first few frames in a recording or more accurately detecting

silence frames in a recording using voice activity detection techniques [35].

In this thesis, we calculated the 10-20th percentile of the power spectrogram

and assign that as the noise profile. Next, we discuss a framework for de-

noising non-stationary noise from noisy recording. In order to understand

this framework, we first need to have a good understanding of under- and
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over-determined system among a few other background works discuss in the

next few sections.

4.7 Non-Negative Matrix Factorization

There are number of techniques to discover latent structures in data, such

as Principle Component Analysis (PCA), Independent Component Analysis

(ICA), and Non-Negative Matrix Factorization (NMF). For example, ICA

maximizes the statistical measure between different components [36] to re-

veal indpendant latent components. In order to approximate distinct sound

sources in a recording, a number of constraints can be enforced on each hid-

den source for estimating sound sources more accurately [37, 23, 22]. The

empirical results shows that NMF works better than ICA in source separa-

tion [38], and that is why we used it in this thesis to separate noise from a

clean sound source.

NMF does not make statistical assumptions about latent sound sources;

it only enforces non-negativity on the hidden components to achieve more

meaningful results. Figure 4.5 depicts face decomposition using PCA and

NMF [23]. As you can see, the eigen faces [39] achieved using PCA, all

look like faces, some with negative values; however, NMF components depict

actual face parts like nose and eyebrows due its non-negativity constraints.

NMF has interesting properties that makes it applicable to audio signals.

Since NMF expects positive values, we used the magnitude spectrogram of

the recording as the input to NMF (i.e. ignoring the phase of the recording).

NMF has been used in the audio field in many different applications, such as

automatic music separation, denoising, and dereverberation [37, 40, 41, 42].

NMF approximates a non-negative matrix, V ∈ RM×N , as a product of

two other matrices, W ∈ RM×K which contains the basis for the data and

H ∈ RK×N , which contains the activation matrix for each basis [43].

V ≈ W ·H (4.24)

In order to approximate W and H, we need to minimize a cost function
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Figure 4.6: PCA vs. NMF in face decomposition [23].

between the true signal and its approximation, as shown in Eq. 4.25.

D(V ||W,H) = ||W � log V

W ·H
− V +W ·H|| (4.25)

where D denotes the Kullback-Leibler divergence (KLD). Division is an

element-wise operation here. In order to approximate W and H, a varia-

tion of gradient descent [43, 23] is used to update W and H individually.

The multiplicative update rules for W and H are shown in Eq. 4.26. This

update rule is convex in W and H individually [43].

H = H �
W T · V

WH

W T · 1

W = W �
V
WH
·HT

1 ·HT

(4.26)

where 1 ∈ RM×N is a matrix with all its elements equal to one. W and H

are usually initialized with positive matrices.

A great example for how NMF can separate sources in an audio recording is
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Figure 4.7: NMF decomposition for non-varying frequencies for the recording
shown in the top image [43].

mentioned in [44], which we used here to motivate the application of NMF in

separating audio sources in a recording. Consider having an audio recording

with two bursts at 2 kHz and 6 kHz, as shown in Fig. 4.6. The goal here is

to extract these two burst using NMF. If we set the number of components,

K = 2, and perform the update rules in Eq. 4.26, we get the results shown

in Fig. 4.6. The basis matrix has captured the frequency for each source and

the activation matrix expresses when each frequency is activated throughout

the recording. In this example, the number of sources are assumed to be

known. There is, however, a way to estimate the number of components in

an NMF framework when the number of sources is unknown to us [45].

Now, consider a more practical audio recording where the frequency sweeps

over time, as shown in Fig. 4.7. Using the same parameters for the toy

example mentioned in Fig. 4.6 gives the results shown in Fig. 4.7. The

estimated W and H, however, do not capture the bursts. “NMF is not
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Figure 4.8: NMF decomposition for a recording with sweeping frequencies
for the recording shown in the top image [43].

expressive enough to reveal this temporal structure” [43].

4.7.1 NMF for Speech Denoising

We discussed two algorithms for removing stationary noises. What if the

noise is non-stationary (e.g. phone ringing in the middle of a concert record-

ing). NMF can be used to attack non-stationary noises by separating the

noise and clean sounds [40, 46, 47]. Speech enhancement algorithms in an

NMF framework consist of two steps: training and denoising. Training is

done on only clean speech and only noise recordings. This is done by mini-

mizing the cost functions in Eq. 4.27.

D(Yspeech||WspeechHspeech)

D(Ynoise||WnoiseHnoise)
(4.27)
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where D is KLD between the true magnitude spectrogram and its NMF re-

construction. Yspeech ∈ RM×S is the clean speech magnitude spectrogram,

Wspeech ∈ RM×Sb is the clean speech basis, and Hspeech ∈ RSb×S is the

corresponding clean activation matrix. Sb is the number of components.

Ynoise ∈ RM×N is the only noise magnitude spectrogram, Wnoise ∈ RM×Nb is

the noise basis, Hnoise ∈ RNb×S is the activation matrix for noise signals, and

Nb is the number of components. Once the training stage is completed, the

denoising stage can begin. Wspeech and Wnoise are fixed and assumed to be

good bases for factorizing the noisy signal. For simplicity, we represented

this process as follows:

Hnoisy = NMF(Ynoisy, [Wclean,Wnoise]) (4.28)

where the items on the right-hand side are known and fixed during the fac-

torization and items on the left-hand side are estimated. The estimated clean

sound is then reconstructed using Eq. 4.29.

Ŷclean = WcleanHnoisy,1:Sb (4.29)

4.8 How to Match?

After estimating the noise and clean components of a noisy signal from Eq.

4.1, we can match the background noise of two noisy recordings. In this work,

we used spectral subtraction with musical noise suppression from Section 4.5

to match noisy recordings as it provided better quality results in comparison

to other methods.

A simple way is to add the estimated example noise the estimated clean

input sound as follows:

ymat = xin + vex (4.30)

A good estimation of a clean input and example sound’s noise are, therefore,

required. Both clean and noise components might contain some residue from

their counter components, which could introduce some artifacts to the final

matched sound based on the severity. In order to avoid these artifact, we

propose matching the equalization on the estimated input noise to that in the
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example noise and use the equalized matched noise instead, as shown in Eq.

4.31. The reason we can employ the equalization matching here is because

the noise is stationary. This procedure can also be extended to matching

noisy recordings by matching the equalization on the clean recordings as

well.

vmat = EQ(vin, vex)

ymat = SNRin xin + vmat
(4.31)

where EQ is the equalization algorithm discussed in Chapter 3 (Eq. 3.1 and

Eq. 3.2). SNR denotes the signal to noise ratio. We decided to use the input

SNR, but based on the application, one can use the example SNR in the

same fashion. SNR is calculated using Eq. 4.32.

SNR =
σ{x}
σ{v}

(4.32)

where σ{.} denotes the standard deviation. Keep in mind that both x and

v are estimated through speech enhancement algorithms that are discussed

later in this chapter. A block diagram for the proposed matching system is

shown in Fig. 4.8.

Figure 4.9: Noise matching block diagram.

The procedure for matching the noise in NMF framework is slightly dif-

ferent as we are attacking non-stationary noise signals. The matched noise
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Figure 4.10: Speech enhancement with NMF. Clean speech training is not
shown in this figure [47].

signal can then be estimated as follows:

Ŷmat = (Wclean,in +Wnoise,ex)Hnoisy,in,1:Sb (4.33)

The phase of the matched recording for taking the signal back to time domain

is shown in Eq. 4.34.

φŶclean =
Ynoisy,cpx

Ŷnoisy

(4.34)

where cpx denotes a complex-valued signal and Ŷnoisy denotes the NMF re-

construction of the noisy signal. This trick is useful in compensating for any

misestimation in the magnitude spectrogram that might have occurred when

factorizing the signal. Figure 4.9 depicts how NMF is used to denoise a noisy

speech.

4.9 Toy Example

Figure 4.10 depicts Jimmy’s input and matched recordings concatenated with

the example recording from Section 4.4. The proposed noise matching system
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Figure 4.11: Noise matching toy example.

was successful in transforming the input noise to that in the example sound.
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CHAPTER 5
REVERBERATION MATCHING

5.1 Introduction

The noisy world we live in is also surrounded by trees, walls, and objects.

Sounds bounce of objects in a room and scattered through the air before

reaching us. Researchers have spent decades working on algorithms for dere-

verberating speech recording and developing acoustic echo cancellation tech-

niques to make recordings more intelligible. Signal processing community

along with the musicians have spent decades finding ways to reverberate

recordings synthetically for aesthetic reasons or blending musical notes. In

this chapter, we will first discuss echo cancellation techniques, acoustical

properties of reverberation (reverb), dereverberation techniques, and finally

the proposed acoustic matching system for matching the reverb on multiple

recordings.

5.2 Echo

Echo is the reflection of sounds from objects that arrive in smaller amplitude

after the direct sound has arrived at the listener’s ears, as shown in Fig. 5.1.

In signal processing terms, echo is an impulse response with a set of delayed

and decayed delta functions, as shown in Eq. 5.1.

y = (x ∗ h) + v (5.1)

where x, h, y, v and ∗ are the direct sound, echo response, wet sound (i.e.

sound that contains the echo), noise, and the convolution operator, respec-

tively. An arbitrary echo impulse response is depicted in Fig. 5.2. In this
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Figure 5.1: Demonstration of reflective and directive sounds in a classroom
[48].

Figure 5.2: Echo impulse response [49].

chapter, we assume that there is no noise (i.e. v = 0).

Acoustic echo cancellation is a popular area in the speech recognition and

telecommunication communities. Echo can distort speech recordings and

degrade computer listening applications and video conferencing performance.

The goal of echo cancellation is to estimate the direct sound, x̂, by undoing

the echo response from the echoed sound. Next, we discuss a few methods

on echo cancellation and a scheme for matching the echos automatically.
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Figure 5.3: Wiener deconvolution vs. normal deconvolution [54].

5.3 Wiener Deconvolution

Wiener deconvolution is a technique for deconvolving an impulse response

from a wet sound in frequency domain. Wiener deconvolution is commonly

used for deblurring blurry images. Blurring an image is similar to adding

reverb to a sound in a sense that they both involve convolution of a kernel

with a signal [50, 51]. Figure 5.3 depicts the result of deblurring a blurry

image using Wiener deconvolution and the regular division in frequency do-

main (i.e. impulse response deconvolution without regularization) [52, 53].

As shown in Fig. 5.3, the normal deconvolution is unable to restore the orig-

inal image. This is due to the small noise components in the blurry image.

These components turn into very large values when inverted (i.e. resulting

in an unstable numerical situation).

Equation 5.2 expresses the Wiener deconvolution filter in frequency do-
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main.

G(z) =
H∗(z)Px(z)

|H(z)|2X(z) + Pv(z)

G(z) =
1

H(z)
[

|H(z)|2

|H(z)|2 + 1
SNR(z)

]
(5.2)

where Px and Pv are the power spectral density for the dry and the noise

signals and SNR(z) = Px(z)
Pv(z)

. The estimated dry sound is shown in Eq. 5.3.

X̂(z) = G(z)Y (z) (5.3)

The derivation of Wiener deconvolution is similar to the Wiener denoising

derived in Chapter 4. The first step is to find the error between the true and

the estimated signal as follows:

e(z) = E|X(z)− X̂(z)|2

= E|X(z)−G(z)[H(z)X(z) + V (z)]|2
(5.4)

where E denotes expectation. The error is then differentiated with respect

to G(z) and set equal to zero which gives us the result in Eq. 5.2.

5.4 Least Mean Squares

Least Mean Square (LMS) is a form of adaptive filtering that is commonly

applied toward echo cancellation [55]. LMS is a gradient descent-based al-

gorithm that converges to the optimal Wiener solution shown in the last

section. The filter coefficients for LMS are updated according to Eq. 5.5.

w[n+ 1] = w[n] + 2µe[n]x[n], n = 0, 1, ..., N (5.5)

where µ is the step size, w is the adaptive FIR coefficient, and x is the

input vector. The derivation for the LMS algorithm is similar to the gradi-

ent descent approach shown earlier [55]. Within each iteration of the LMS

algorithm, three steps are performed:
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1. Find the output of the echo cancellation system at each iteration.

y = w ∗ x (5.6)

2. Estimate the error between the desired and the estimated signals.

e[n] = d[n]− y[n] (5.7)

3. Update the filter coefficient using Eq. 5.5 and repeat until convergence.

One important assumption that was made using both Wiener deconvolution

and LMS is having access to the echo response or the desired signal. However,

in most practical cases, we only have access to the wet sound.

5.5 Echo Matching

The purpose of echo matching is to extract the echo response from an ex-

ample sound and apply it to the dry input sound. Since EBAE does not

have access to the echo response and there are no reliable techniques to

extract only the echo response from a recording in a blind fashion, we em-

ployed a user interface to provide a solution to echo matching. EBAE re-

quires the user to mimic the echo using short sounds or words (e.g. saying

“Hello.....Hello...Hello” where the first sound is used as a reference sound for

normalization purposes and the second two sounds are the actual echos). In

order to extract the echo response from the example sound, we use a simple

peak tracking algorithm [56] on the log power spectrum of the recording. We

determined the loudness and the time index of each echo normalized by the

amplitude and the index of reference sound. We then synthesize an echo

response using decayed and delayed delta functions.

5.6 Reverberation

Reverb is a similar concept to echo. Reverb is created when many reflections

are build up in an environment, some may be absorbed by surface objects

in the space. Echos can be heard distinctly (each echo separated by about
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50− 100 ms). Reverb, on the other hand, is usually perceived as a decaying

white noise [57, 58]. Reverberation can be represented using Eq. 5.1 as well,

where h is the reverberation kernel (also known as the room response) instead

of the echo response.

5.6.1 Reverb Kernel

Reverb kernel describes how sounds are going delayed and decayed in a spe-

cific space. Room response consists of the direct sound impulse, early reflec-

tion impulses (those in charge of creating the echos), and a tail that represents

a set of exponential decays commonly known as the reverb kernel. Figure

5.4 depicts a room response in the magnitude time domain. Early reflections

and the tail of the reverb can be separated to individual impulses, as shown

in Eq. 5.8. The phase response of the room is not studied in this thesis.

Figure 5.4: Room response consists of the direct sound, early reflections, and
the reverb tail [59].

y = x ∗ hi + hl ∗ x[n− nd] (5.8)

where hi and hl are the early reflection and the reverb tail responses (i.e. late

reflections), respectively. nd denotes the time sample index for the tail. Re-

verb kernel (also goes as kernel) is visualized in time-frequency using STFT,

as shown in Fig. 5.5.
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Figure 5.5: Reverb kernel spectrogram. Kernel decays faster in the higher
frequencies than in the lower-frequency region.

Reverberation Time

Reverberation time, T60, is traditionally known as the time it takes for a

reverb sound to decay below 60 dB. More intuitively, T60 is the when the

remained energy in the reverb sound is equal to the background noise. T60

is frequency-dependent (i.e. it takes longer for the sound to decay in lower

frequencies than in higher frequencies). As shown in Eq. 5.9, T60 can be

estimated using Sabine’s reverb equation.

T60 = 0.116
V

S · a
(5.9)

where V is the volume of the room in meter3, S is the total surface area

in meter2, and a is the average absorption coefficient for all room surfaces.

Keep in mind that Sabine’s T60 does not consider room temperature, objects

in the room, or the frequency-dependent nature of the room response.

A close concept to T60 is the critical distance. Critical distance is the

distance between the source and the listener at which the air pressure level of

the direct sound is equal to reverb sound. Critical distance can be calculated

using Eq. 5.10. If the listener is farther than this distance, then all they hear
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is reverb.

dc = 0.057

√
V

T60

(5.10)

Energy Decay Curve

A more practical way of estimating the T60 is by analyzing the room energy

decay curve (EDC).

Schroeder introduced EDC as the tail integral of the room response as

follows [60]:

EDC(t) =

∫ ∞
t

h2(τ)dτ (5.11)

EDC represents the total amount of energy remaining in the room response.

When EDC is represented in a time-frequency visualization such as spec-

torgram, the EDC is called the energy decay relief (EDR). EDR can be

calculated using Eq. 5.12 and shown in Fig. 5.6.

Figure 5.6: Energy decay relief of a dungeon.

EDR[t, k] =
M∑
m=n

|H[m, k]|2 (5.12)
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EDR can be used to estimate T60 at each frequency bands by calculating its

decaying slope over time.

There are also methods for blind estimation of T60 (i.e. without having

access to the kernel). One particular method model the reverb tail as de-

caying Gaussian white noise processes [61]. This model estimates T60 using

maximum-likelihood techniques by finding the most likely T60 that could

construct the estimated tail in a desired reverb sound.

5.7 Measuring Room Responses

We discussed different aspects of a room response, but how can we measure

a room response in an actual physical environment like a concert hall? We

consider the room to be an LTI system (Eq. 5.1); therefore, if we use a

delta function as an input to an LTI system (i.e. the room), then the output

should be the LTI system impulse response (i.e. room response). Delta

functions, however, are difficult to create in practice. We can approximate

delta functions by popping a balloon and recording it. As shown in Fig.

5.7, one way to estimate the reverb kernel of a concert hall is to pop a

balloon at different locations and average the extracted kernels. There are

multiple problems with this approach. For example, the dynamic range and

the frequency range of popping a balloon are not broad enough to represent

the kernel with a good amplitude and frequency resolution. Experimental

results also show that such methods are not robust and vary too much.

Another theoretical approach is to play the exponential function of dif-

ferent frequencies through a loudspeakers in a room and record them (i.e.

an exponential input to an LTI system also outputs an exponential func-

tion [63]). Exponential functions, however, are not realizable in practice (i.e.

exponential functions are unstable).

A practical approach to estimating the room response is to use chirp signals

(e.g. a sweeping sound over all frequencies and over time), as shown in Fig.

5.8. A maximum length sequence (MLS), a pseudorandom binary sequence,

can also be used. Chirp and MLS can cover a bigger range of frequencies

and amplitudes and work well in practice. In order to extract the room

response from MLS and chirp signals, the recorded signal is correlated with

the original signal (i.e. before recording). An impulse response can then

59



Figure 5.7: Measuring the impulse response of the Moss Art Center by pop-
ping a balloon [62].

extracted from the correlated result at each frequency band [10].

One problem still remains: it involves the amplifier, ADC, loudspeakers,

and the microphone frequency response included in measured response? Two

solutions can be provided: (1) use flat frequency response devices and (2)

undo the frequency response of each device using deconvolution methods.

This is usually done by comparing the frequency response of the devices

with a reference device that has a flat frequency response in the designated

region.

There are a number of online room response databases that have considered

many of these aspects when extracting the room response [65, 66].

5.8 Modeling Reverb Kernels

Reverb kernels can be modeled using a Gaussian noise and exponential de-

cays, as shown in Eq. 5.13 [67].
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Figure 5.8: Chirp signal sweeps from lowest to highest frequencies in 5 sec-
onds [64].

h[n] = b[n]e−ζn (5.13)

where b is coefficients for Gaussian noise, ζ = 3 ln(10)
T60·fs , and fs is the sampling

rate. The Polack model represents the kernel as exponentially decaying white

noise, which is more accurate for modeling the room response tail. We used

a similar model to match the reverberation kernels. A more accurate method

for modeling reverberation is the image method [68].

5.9 Dereverberation

As mentioned earlier, when a sound propagates in a room, the room linearly

distorts the sound. Too much reverb makes speech unintelligible. Specifically,

people with hearing loss have a hard time understanding speech in reverber-

ant environment. Regular hearing aids are unable to detect the direct sound

from all the reflections. Beamforming techniques have successfully been em-

ployed in a number of hearing aids and headsets to attack this problem in

real time [69]. Beamforming techniques use multiple microphones to form

a beam toward the sound source; therefore, suppressing the reflections from
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other directions [70, 71]. Reverb can also severely degrade speech recognition

and other computer listening tasks.

Researchers have spent decades finding ways to dereverberate single chan-

nel audio using signal processing and machine learning techniques [72, 73,

74, 75, 76, 77, 78, 79, 41, 80, 81]. We first discuss a number of dereverber-

ation techniques to dereverberate a wet sound, which is then escalated to

methods that are capable of decomposing a wet sound to its dry components

and kernel, therefore, capable of matching the reverberation between two wet

recordings.

5.9.1 Room Response Inversion

Good questions to ask are: “If we have access to the room response, can we

just invert it?” or “Can we use Wiener deconvolution to suppress reverbera-

tion?” The answer to each is no. Wiener deconvolution is only useful if the

room response is, minimum phase.

A room response is characterized in the frequency domain as follows:

H(z) = |H(z)|ejφ(z) (5.14)

An impulse response is said to be the minimum phase if all of its poles and

zeros are in a unit circle (i.e. stable and causal). A typical room response,

however, is not minimum phase. They can be factored into a minimum phase

and an all-pass filter, however, as shown in Eq. 5.15.

H(z) = M(z)A(z) (5.15)

where M(z) = |H(Z)|ejφm(z). φm is the minimum phase component of the

room response. A(z) = expjφa(z) is the all-pass component with its magni-

tude set to one for all frequencies; φa(z) is zero. Once the minimum phase

component of the room response is extracted [82], it can be used to per-

form deconvolution using Eq. 5.2 and Eq. 5.3. This is all nice, but room

responses are not accessible in most applications; as a result, blind derever-

beration techniques are highly desired.
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Figure 5.9: Noise gate compression.

5.9.2 Dynamic Multiband Noise Gate Compressor

Noise gates (also known dynamic range compressors) are traditionally used to

control the volume of an audio recording during transients [83]. We modified

noise gates to control the reverb in a recording. Figure 5.9 represents the

relationship between the input and output of a noise gate system. When the

amplitude of the recording crosses a threshold, the noise gates decrease the

amplitude by a fixed ratio. Equation 5.16 depicts the hypothesis function for

the noise gate used in Fig. 5.10. Figure 5.10 depicts the power spectrum of

a drum recording before and after the noise gate is applied.

Z =
X

1 + aXp
(5.16)

where X is the power spectrum for the input reverb sound. If a is set to zero,

input and output are equal to each other. p controls how much the input

is going to be decayed. In order to count for the room response frequency-

dependent decay rate, Eq. 5.16 can be customized and applied to individual

frequency bands. Figure 5.11 shows the STFT of the drum sounds shown

in Fig. 5.10. The dereverberated sound using the multiband noise gate

algorithm in Fig. 5.11 is shown on the right-hand side.

The resulting sound has a smaller reverb tail. The noise gate fails to reduce
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Figure 5.10: Input and output power spectra of drum sounds for the four-
band noise gate shown in Eq. 5.16.

reverb when the exponential decay is not visible in the power spectra (e.g.

speech recordings do not have the clear exponential decay of a drum sound).

The abrupt change in the EDC can also introduce pumping and phasiness

artifacts [84] to the reduced reverb recording.

5.9.3 Complex Cepstrum

Homomorphic Transform

As mentioned in Sections 2.3 and 2.4, the relationship between an input

and output of an LTI system is represented as linear convolution in the time

domain and as DTFT multiplication in the frequency domain. Homomorphic

(homomorphic means same structure) systems are useful when an interfering

signal is mixed with the source in a non-linear way. A non-linear system

processed through a homomorphic process can be treated as a regular LTI

system, as discussed in Chapter 34 of [6].

The non-linearity used in homomorphic systems is a complex logarithm.

A complex logarithm operates on the absolute value of the signal and then
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Figure 5.11: Drum sounds before and after the noise gate is applied.

the sign of the original signal is applied to the signal after filtering. Figure

5.12 depicts homomorphic transformation and its inverse.

Figure 5.12: Homomorphic system [85].

Homomorphism has interesting vocabularies such as cepstrum and que-

frency, which correspond to the spectra and frequency for an LTI system.

Cepstrum represents the variation in the frequency. The lower quefrencies

are associated with the lower variations, the envelop and the higher quefren-

cies are associated with the excitation signals. Cepstrums and their varia-

tions (e.g. Mel frequency cepstral coefficients known as MFCC) are used in

modern speech recognizer systems as speech features.
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Complex Cepstrum Dereverberation

Consider the following model for reverb:

Y (z) = X(z)H(Z) (5.17)

where X, H, Y are the Z transform of the dry sound, the room response,

and the reverb sound, respectively. H(z) can formulated as follows:

H(z) = 1 + αiz
−ti

where αi and ti control the gain and time delay of each decayed and delayed

copy of the original sound. Taking the log of both sides of Eq. 5.17 gives:

Ŷ (z) = X̂(z) + Ĥ(z) (5.18)

Taking the inverse Z transform of Eq. 5.18, we get:

ŷ(t) = x̂(t) + ĥ(t) (5.19)

where ŷ(t), x̂(t), and ĥ(t) are called the complex cepstra of y(t), x(t), and

h(t), respectively. It is believed that the low qufrencies correspond to the dry

speech components, whereas the room responses are the ripples and peaks

seen in the higher quefrencies. By low-time liftering (i.e log spectral filtering

in the low quefrencies) the complex cepstra of dry speech recording can be

estimated [86, 87, 88]). Deconvolution can then be done in the complex

cepstra domain by assigning a deconvolution filter as ŵ(t) = −ĥ(t) [88].

The time domain signal can then be synthesized by taking the Z transform,

undoing the complex log, and then taking the inverse Z transform. This

method, however, has little use in practical cases as it introduces too many

artifacts and is unable to effectively suppresses the kernel.

5.9.4 Linear Predictive Coding

Linear predictive (LP) coding was initially developed for modeling speech

[73, 74, 89]. It can be shown that there is a relationship between a reverb

speech and its residual LP coefficients. By modifying the LP residuals one
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can potentially dereverberate the recording [89]. The LP coefficients, b, of a

reverb speech, y, are obtain using Eq. 5.20.

b = R−1
yy rxx (5.20)

where Ryy is the autocorrelation matrix and rxx is the autocorrelation vector.

One method suggests computing the LP residuals of a complex cepstrum

representation and clipping peaks in the higher quefrency regions. The LP

residual-based dereverberation techniques suffer from the same problem as

the complex cepstra dereverberation.

5.10 NMF for Dereverberation

As mentioned earlier, reverberation can be modeled as a linear combination

of decayed and delayed copies of the dry sound using the convolution operator

as follows:

y(n) =
P−1∑
p=0

x(p)l(n− p)

y = x ∗ l

(5.21)

The variables x, l, and y represent the dry recording, reverb kernel, and

reverberated sound, respectively; p, n, and P are the time lag, time index,

and the length of the kernel (in samples). The operator ∗ denotes time

domain convolution.

Reverberation can also be approximated as the convolution between the

input and kernel spectra [77, 75, 41, 90, 81] (known as the non-negative

convolutive transfer function, N-CTF) using Eq. 5.22.

Y [k] ≈
Lr−1∑
τ=0

X[τ, k]L[t− τ, k]

Y ≈ X ? L

(5.22)

The variables X, Y , and L represent the magnitude STFT of x, y, and l,

respectively. The t, τ , and Lr are the time frame index, time frame lag, and

the length of the kernel (in time frames). Operator ? denotes convolution
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between corresponding rows of X and L at each frequency bin for all time

frames.

Kumar et al. [77] proposed a dereverberation technique for estimating the

dry sound in an NMF framework by imposing sparsity on a Gammatone-

like spectrogram [91] of the reverberant speech recording and minimizing the

MSE between G(Y ) and G(X) ? G(L) using Eq. 5.23.

min(
∑
i

(G(Y [t, k])−
∑
m

(G(X[m, k])G(L[t−m, k]))2 + λ
∑
t

G(X[t, k])

(5.23)

where λ is an L1-norm sparsity parameter enforced on the estimated dry

speech recording. G represents the Gammatone transformation. Kumar et

al. show empirically that using customized kernels for different frequency

bands results in a better estimation of X [77]. The clean recording can be

synthesized in time domain using inverse Gammatone transformation and

the reverb sound phase.

More recent studies [75, 41] have extended Kumar’s approach one step

further by employing prior information on dry speech recordings (i.e. mini-

mizing D(Y ||(W ·H) ? L) in the STFT domain). These studies rewrote Eq.

5.22 as the following:

Y ≈ (Wd ·Hd) ? L = Ŷ (5.24)

where Wd ∈ R≥0,M×K is a set of non-negative dry speech bases of K com-

ponents, Hd ∈ R≥0,K×N is the corresponding non-negative activation matrix

(referred to as encoding), and L ∈ R≥0,M×Lr is the reverb kernel.

Mohammadiha et al. derived update equations for these matrices in an

NMF framework [41]. They proposed learning a dictionary of dry speech

sounds offline by imposing the low-rank structure model of speech to better

estimate the dry sound and the kernel.

Liang et al. employed a similar model with the addition of a stationary

noise to Eq. 5.24 [75]. They proposed a probabilistic version of NMF by

modeling Wd from dry speech recordings as exponential distributions. Liang

then derived update rules for all hidden components: clean speech, kernel,

and the noise parameters using a variational EM algorithm.

68



5.11 Reverberation Matching

We propose an algorithm that matches the reverberation of an input record-

ing to that of a reference recording such that the matched recording sounds

as if it is placed in the same room as the reference [92]. We propose a

convolutive non-negative matrix factorization scheme that decomposes a re-

verberated sound into a dry sound and a reverberation kernel, along with a

reconstruction scheme, for applying the example’s reverberation characteris-

tics onto the input recording.

5.11.1 Why and How to Match?

In reverb matching the goal is to change the room effect in a recording to

resemble the effect of a different room (e.g. editing a sound recorded in a

small room as if it was recorded in a concert hall). In a perfect world where

the estimations are exact, reverb matching can be done by simply convolving

a dereverberatd input sound with the example’s kernel, as shown in Eq. 5.25.

In most practical scenarios, however, we do not have access to the dry sound

or the example’s kernel, and estimating them reliably is hard.

ymat = xin ∗ rex (5.25)

5.11.2 Convolutive Non-Negative Matrix Factorization

In order to reveal the temporal structure in an audio recording (See Section

4.7) more accurately, NMF is extended to a convolutive model known as

Concolutive Non-Negative Matrix Factorization (CNMF). CNMF can be seen

as performing T number of NMFs, where T is the length of each spectrum of

W [44]. We would like the relationship between W and H to be convolutive

to capture the temporal relationship more expressively. If T = 1, CNMF

reduces to NMF [44]. That is, each basis gets scaled and shifted by the

activation pattern. CNMF can be expressed as follows:

V ≈
T−1∑
t=0

Wt ·H t→ = Λ (5.26)
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Figure 5.13: CNMF decomposition for the recording shown on the top image
[43].

where V ∈ RM×N , Wt ∈ RM×K and H ∈ RK×N . Wt at the ith column

denotes the spectrum at time t. The (.)t→ denotes a column shift operator

that moves the columns i places to the right and fill the leftmost columns

with zeros and (.)←t does the same thing in the opposite direction. The

resulting CNMF update rules are shown in Eq. 5.27.

H = H �
W T
t · VΛ

←t

W T
t · 1

Wt = Wt �
V
Λ
· (H t→)T

1 · (H t→)T

(5.27)

H is averaged to all of updates after updating all Wt’s. Consider the previous

example showed in Fig. 4.11 where NMF failed to factorize a sweeping fre-

quency signals correctly. We set R = 2 components and T = 2 seconds. The

CNMF results are shown in Fig. 5.13. W captures each time varying audio

object correctly and H identifies the beginning time index for each basis.

There are many variations of NMF and CNMF with additional constraints,

such as sparsity [93]. For example, one can enforce sparsity on an activation
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matrix by modifying the cost function as follows:

G(V ||Λ) = D(V ||Λ) + λ
∑
i,j

Hi,j (5.28)

New update rules can then be found for this cost function using variants of

gradient descent.

5.11.3 Proposed Decomposition Method

When a speech signal is reverberated, the reverberation process does not

occur during the production of the speech signal (i.e. through the speech

bases), but occurs when it resonates inside the recording space. We use this

fact to propose a model that applies the reverberation kernel solely in the

activation matrix using CNMF.

We can move the parentheses in Eq. 5.24, since convolution is an associa-

tive operator, as follows:

Y ≈ Wd · (Hd ? R) = Wd ·Hr (5.29)

where Wd ∈ R≥0,M×K and Hd ∈ R≥0,K×N are the dry speech bases and

dry activation matrix, respectively. R ∈ R≥0,K×Lr is the kernel and Hr ∈
R≥0,K×Lhr is the estimated reverberated signal’s activation matrix (note the

different dimension for L and R). Lhr = N+Lr−1 is the convolution length.

Equation 5.26 represents reverberation as the spectral convolution between

convolutive speech bases with its corresponding reverb activation matrix, Hr.

We propose the following steps for estimating the kernel and other hidden

components:

1. A dictionary of speech bases can be learned offline from dry speech

recordings. We can use NMF to represent these recordings as follows:

Yd ≈ Wd ·Hd = Ŷd (5.30)

where Yd is the magnitude STFT of multiple concatenated dry speech

recordings that we use as training examples. Wd and Hd are the

dry speech bases and its corresponding activation matrix, respectively.

These two matrices can be estimated iteratively using NMF update
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rules [37, 43, 44].

We enforced a low-rank structure of the speech bases through expo-

nentiating the activation matrix to α ∈ [0.9, 0.98] at each iteration (a

process that sparsifies the activations, thus making the basis set more

compact). For simplicity we will refer to this NMF update rule as

follows:

(Wd, Hd) = NMF(Yd, α) (5.31)

where the input Yd, sparsity factor α, and other fixed items are shown

on the right-hand side. The first item on the left-hand side corresponds

to the result of the update equation for the bases (Wd) and the second

item corresponds to the activation matrix (Hd).

2. Fix Wd from Eq. 5.31 and estimate the reverb encoding Hr for a desired

reverb sound Y .

Hr = CNMF(Y,Wd, α) (5.32)

where CNMF denotes the update rules for convolutive matrix factor-

ization [44] same format as Eq. 5.31.

3. Initialize R with monotonically decaying envelopes:

R(t, ki) = exp(λi · t)

Lr ≥ t ≥ 1 , bi ≤ ki ≤ ei
(5.33)

where k denotes the frequency bins between the beginning (bi) and

ending frequency (ei) bins in the ith frequency band. λi ∈ [−0.9,−1.5]

is an arbitrary decaying factor that can be adjusted to resemble how

fast the reverb decays at different frequency bands.

4. Estimate R and the clean activation matrix by factorizing Hr as follows:

(Hd, R) = CNMF(Hr, β) (5.34)

where β ∈ [0.8, 0.9] is the sparsity parameter enforced on the estimated

kernel iteratively. Hc and R are treated as Wd and Hd in the CNMF
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Figure 5.14: Example decomposition and reverb modification. The depicted
reverb sound is a 10 second long recording in a big lecture hall. We zoomed
in on the first 200 time frames for visual clarity. Hr was estimated by decom-
posing the reverberant speech sound using Eq. 5.32. CNMF is then applied
on Hr to estimate Hd and R using Eq. 5.34. For illustrative purposes, R was
averaged over all components. We reconstructed a less reverberated sound
by setting β = 2.7 in Eq. 5.37. For reverb matching with a reference sound,
we would estimate β from a another recording so that we can match the
reverberation amounts.

update rules, respectively. The size of the kernel can also be approx-

imated using blind T60 estimation techniques to get better prediction

accuracy [61].

Figure 5.14 depicts an illustrative example in which a reverberant sound

is decomposed to a reverb kernel and a dry sound, and is then modified to

have a different amount of reverberation.

5.12 How to Match?

Once the input and example sounds are decomposed we can start the match-

ing process. A naive way to match the reverb is to replace the input kernel
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with the example kernel, as suggested in Eq. 5.35.

Ymat ≈ Wd · (Hd,in ? Rex) (5.35)

where d, in denotes that H belongs to the dry estimate of the input sound.

However, Eq. 5.36 results in considerable artifacts in the output. This is pri-

marily an artifact of the decomposition process. The convolutions between

each component activation and its corresponding element in R are not guar-

anteed to be synchronized. As is visible in the right plots in Fig. 5.16, the

reverb kernels for each component are randomly staggered in time. This shift

is compensated by a tie-shifting of the activations, but this shifting will not

be the same for both decompositions making a reverb transfer infeasible. To

bypass this issue, we will instead attempt to transform the existing reverb to

the desired one.

This will be done by approximating the estimated reference kernel using

exponentiation on the estimated input kernel. The resulting matched kernel

is designed to have a similar decay rate as the reference kernel. Equation 5.36

depicts the cost function for finding the appropriate exponent for component

j, βj.

argminβjD(Rex,j||R
βj
in,j) (5.36)

where βj ∈ [0.5, 2]. The ex, j subscript on R denotes the example kernel

at component j, and D denotes the KL divergence distance. The matched

kernel for each component can be calculated as follows:

Rmat,j = R
βopt,j
in,j (5.37)

where βopt,j is the optimal exponent for the kernel in the jth component, as

determined by Eq. 5.37. The magnitude STFT of reverb matched sound can

then be constructed as follows:

Ymat ≈ Wd · (Hd,in ? Rmat) (5.38)
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The phase of the reverb matched sound is calculated in Eq. 5.39.

Φmat =
Yin,cpx

Ŷin
(5.39)

where cpx denotes the complex STFT of the reverb sound. We normalized

the STFT of the input reverb by its CNMF reconstruction to adjust the gains

in magnitude STFT more properly. The retrieval of the time domain sound

can be done using an inverse STFT. A general block diagram for matching

reverb is shown in Fig. 5.15.

Figure 5.15: Reverb matching block diagram.

5.13 Reverb Matching Results

We evaluated the algorithm on both real and synthesized recordings. We

collected 400 real recordings from the DAPS dataset [94] recorded in three

different environments: living rooms, bedrooms, and conference rooms. Real

recordings were contaminated with a stationary noise, so we used a varia-

tion of spectral subtraction [25, 26] (see Section 4.5) to denoise the record-

ings before decomposition. We synthesized 400 recordings using clean speech

recordings from DAPS that are convolved with the following kernels from the

AIR database [65, 66]: lecture halls, meeting rooms, and booths descending

in their T60, respectively. We then randomly assigned reverb sounds to input

and example sounds and created 300 different matching cases for evaluating

each real and synthesized set. Each recording is 10 seconds long. We resam-
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pled the recordings to 16000 Hz sampling rate. The STFT transformation

was done using a 513 samples square root Hanning window with 50% overlap.

We trained a 25 element dictionary and set the number of iterations to 500.

We used the true kernel size (Lr) for the synthetic dataset. For real record-

ings we set the bedroom, conference room and living room kernel sizes to 45,

65, and 85 frames, respectively. We generated ground truth recordings for

the synthesized dataset and found the corresponding ground truth in DAPS

for real recordings.

We evaluated the results using three metrics. We used Speech to Rever-

beration Modulation Energy Ratio (SRMR) [95] to measure the speech to

reverb ratio on one recording. A higher SRMR denotes a dryer sound. We

also employed the rating of Overall Quality (Covl) and Speech Distortion

(Csig) which are composite metrics [96]. In Csig and Covl, we assigned the

example sound as the clean recording and the input and matched sounds as

enhanced recordings. Higher Covl and Csig denote a higher quality and a

lower distortion in the enhanced file, respectively.

For a clearer representation we are depicting an improvement score for

all these metrics. A high positive value denotes higher improvement after

matching the kenrels. A negative value could denote that the algorithm has

introduced artifacts to the matched sound which could be due to a poor

estimate of the input or example kernel.

scoreCovl = Covlex,mat − Covlex,in

scoreCsig = Csigex,mat − Csigex,in

scoreSRMR = log
|SRMRin − SRMRex|
|SRMRmat − SRMRex|

(5.40)

The raw SRMR for each category is depicted in Fig. 5.17 as a reference.

As shown in Fig. 5.16, the proposed algorithm has done a good job in

matching the real and synthesized reverb when adding (e.g. BM, BL, and

ML in the synthesized set) and removing reverb (e.g. BC and LC in the real

set). SRMR score is improved over all synthesized recordings and most of

real recordings except those transitioning to a bedroom. Overall quality and

speech distortion metrics show improvements in most cases. Overall quality

and speech distortion seem to be more closely correlated with each other in
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Figure 5.16: Improvement scores. The first and second letters on the x-axis
of each bar denote the input and example sound environments, respectively.
Top row: Real recordings; B = Bedroom, C = Conference room, L = Living
room. Bottom row: Synthesized recordings; L = Lecture hall, B = Booth,
and M = Meeting room. As an example, the bar labeled BC on top fig-
ures denotes that this is the improvement score for matching input sounds
recorded in bedrooms to example sounds recorded in conference rooms.
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Figure 5.17: Raw SRMR measurements from the experiments shown in Fig.
5.16.

the synthesized dataset. We hypothesize that the negative metrics are due

to poor kernel estimations. Other artifacts can also be introduced due to

using the reverb sound phase when reconstructing the time domain matched

sound.
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CHAPTER 6
USER STUDY

6.1 Introduction

In this chapter, we discuss the user study that was conducted to evaluate

the proposed acoustic matching system (the algorithms behind the example-

based audio editing as well) subjectively.

6.2 User Study

The goal of this user study was to understand if an acoustics matching system

is useful in increasing the efficiency and the quality, as oppose to manually

editing the acoustics, of the recording. We interviewed 31 people. We catego-

rized the users into three categories: experts, mildly experienced, and novice

users. This was done through an initial interview with each user to identify

individual skills in music production and audio editing.

We introduced the concept of acoustics matching to each user and allowed

the users to get familiarized with the user interface through a set of tasks.

Visual and written aids were available to the users that provided direction for

completing each task. We used the Matlab Graphical User Interface (GUI)

toolbox [97] to design our proposed acoustics matching system, along with

a manual editor, to simulate the graphical equalizer and the reverberation

toolbox in current DAWs. Users performed the study on a Macbook Air

computer and listened to recordings using JVC headphones [98].
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6.3 Tasks

Each user was asked to perform 15 tasks manually using a prototype DAW

editor and then using the proposed acoustics matching system. Users were

given 3 minutes to complete each task. The goal of each task is to modify

the input recording until it acquires a specific quality in the example sound.

The first nine tasks involved adjusting the equalization, the next three dealt

with reverberation matching, and the last three involved both equalization

and reverberation. At the end of each task, the user was asked to rate the

tasks shown in Table 6.1.

Table 6.1: Metrics for evaluating each task.

Evaluate for / Rating 1 2,3,4 5

Ease of use-manual hard · · · easy

Contentment-manual frustrated · · · straightforward

Confidence in result-manual not at all · · · certain

Automatic quality bad · · · great

Automatic efficiency too much work · · · fast

Users were asked to performed the following steps for completing each task:

1. Load the noted input and example sounds from the manual.

2. Manually edit the input sound using the provided tools.

3. Listen to the input sound concatenated with the example sound.

4. Repeat steps 2 and 3 within 3 minutes or until desired result is achieved.

5. Answer the first three questions in the form (i.e. rows 1 to 3 in Table

6.1).

6. Reset the editor and load the sounds from step 1.

7. Automatically match the input sound acoustic to the example sound

by clicking the provided acoustics matching button.

8. Listen to the result and compare it with your manual result.

9. Answer the last two questions on the form (i.e. rows 4 and 5 in Table

6.1).
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To make sure exact results can be achieved manually, we used the same

content recordings for both the input and the example sounds. We used our

GUI to create the desired effects on the input and example sounds. Input

and example sounds were each 5 seconds long and were sampled at 1600

Hz. The STFT of the proposed acoustic matching system has the following

parameters: periodic square root Hanning window with 513 samples (1024

FFT points) and 75% overlap.

6.3.1 Task 1

In the first task, users were asked to perform equalization matching. We

increased the gain on the input sound to 16 dB, 10 dB, and 4 dB over the

following frequency regions: f < 500 Hz, f > 2000 Hz, and 1000 Hz <

f < 4000 Hz (nine recording in total). The example sounds have a regular

equalization pattern. Users were asked to undo the gain from the input

sound to match the one in the example sound. Users first started with

the boosted low-frequency recordings, starting from 16 dB down to 4 dB.

The user then followed the same procedure for the high-frequency and mid-

frequency affected recordings. Users were provided with a graphical equalizer,

shown in Fig. 6.1, to manually adjust the gain for selected frequencies. The

acoustic matching for this task was done by pressing a button called “Match

EQ”. Table 6.2 depicts the specification on the input recoding.

Table 6.2: Task 1.

Region Gain1 Gain2 Gain3

f < 500 Hz 16 dB 10 dB 4 dB

f > 2000 Hz 16 dB 10 dB 4 dB

1000 Hz < f < 4000 Hz 16 dB 10 dB 4 dB

The user first manipulated each recording using the graphical equalizer

shown in Fig. 6.1. Users employed their listening skills to manually adjust the

bars on the graphical equalizers until desired results are achieved. Acoustic

matching graphical equalizer interpolates selected frequencies and gain using

cubic interpolation. The interpolated filter is then applied to the input sound

using Eqs. 3.8-10.
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Figure 6.1: Acoustics matching system graphical equalizer.

The automatic equalization matching uses the algorithm described in Chap-

ter 3. The user can automatically match the equalization by pressing a but-

ton on the main page of the GUI called “EQ Match”, as shown in Fig. 6.2.

We counted the first six equalization recordings (i.e. low- and high-frequency

recordings) as practice tasks so the user can become familiarize with the inter-

face. We only evaluated the last three equalization recording (mid-frequency

recordings) when evaluating the proposed equalization matching.

6.3.2 Task 2

The goal of this task was to reverberate the input recordings (three recordings

total) until it contained the same amount of reverb in the provided example

sound. Users were asked to adjust the parameter ζ from Eq. 5.13 using a

bar called “Decay”, as shown in Fig. 6.1 until the desired reverb is achieved.

For simplicity other parameters in Eq. 5.13 were set to their true value.

We synthesized the kernel based on this parameter and convolved it with

the dry input recording to reverberate the sound. Example recordings were

reverberated in the same manner using a 0.8 second long room response

with ζ = [0.25, 0.91, 1.73], respectively. We employed the reverb matching

algorithm discussed in Section 5.11 to provide the user with matched results

upon pressing the “Reverb” button. Table 6.3 summarizes the recordings for
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Figure 6.2: Acoustics matching system GUI.

task two.

Table 6.3: Task 2.

Reverb Matching

ζ Translation

0.25 easy (lots of reverb)

0.91 medium (medium amount of reverb)

1.73 hard (low amount of reverb)

6.3.3 Task 3

The propose of this task was to test the users on more practical cases, where

both the equalization and reverb needed adjusting. Input recordings were

clean and dry. Users were asked to add equalization filters and reverberating

the recordings until they matched the ones in the example sound (three

recordings total). We first adjust the equalization for each of the frequency

regions in Table 6.2 to 10 dB. We then reverberate the resulting recordings by

fixing ζ to 0.6 from Eq. 5.13. We asked the user to use both the equalization

and reverberation toolbox at no particular order to recreate these effects in

the input sound.
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The guideline for automatically matching the equalization and reverb is as

follows:

1. Click on automatic equalization matching

2. Click on automatic reverberation matching

3. Click on automatic equalization matching again

Repeating the equalization matching at the end help with compensating for

any spectral changes that is caused by the reverb matching algorithm. Table

6.4 summarizes the recordings for task 3.

Table 6.4: Task 3.

Equalization and Reverb Matching

ζ Gain Frequency Regions Translation

0.6 10 dB f < 500 Hz easy

0.6 10 dB f > 2000 Hz medium

0.6 10 dB 1000 Hz < f < 4000 Hz hard

To summarize the user study, each user first performed three equaliza-

tion matching tasks, starting with more obvious ones, then go on to three

reverb matching cases, also starting from more obvious cases, and finally

performing both equalization and reverb matching, starting from editing the

reverberated low-, high-, and finally mid-frequency recordings.

6.4 Results

We evaluated the proposed acoustic matching system based on user’s per-

formance and their answers to Table 6.1 for each of the nine tasks. The

population of the user in each category is shown in Table 6.5.
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Table 6.5: User’s categories.

Users

Experts 29.03%

Some Experience 35.48%

Novice 32.26%

We evaluated the results of the study based on users’ performance and their

responses in the form. Figures 6.3-6.5 depicts the ease of use, contentment,

and the confidence for performing each task manually. Most users seemed

to think similarly of the complexity of each task. Having more experience

in audio editing seem to be correlated with more confidence for most of the

tasks. Users seem to find reverb matching easier to manipulate (i.e. less

complex) and more content (i.e. less frustrating) than other tasks, which,

as a result, increased their confidence. The final task seems to be the most

frustrating and complex, with the lowest confidence score.

Figures 6.6-6.7 represent the efficiency and the quality of the proposed

acoustic matching system. All users agree upon the higher quality and the

efficiency of the acoustic matching system over the manual editing. Experts

seem to rate the quality slightly lower than others.

We also depicted an improvement score in Figs. 6.8-6.10 by calculating the

difference between the Kullback-Leibler distance (KLD) between the normal-

ized power spectra (i.e. sum to one) of the recordings noted in Equation 6.13

for tasks 1 and 3 and the normalized power spectra of the synthesized kernels

for task 2 [99].

improvement =
D(in, ex)−D(mat, ex)

D(in, ex)
(6.1)

where D denotes the KLD distance. We depicted the improvement score for

completing each task manually for each category as well the acoustic match-

ing score. As expected, all users performed better when the effect was more

audible or less complex to work with (i.e. less parameters to control). More

experienced users performed better when matching the reverberation, but

struggled when matching both the equalization and reverberation. Experts

seem to be performing better than other users for all tasks. The acoustic

matching system outperformed users in all tasks.
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Figure 6.11 confirms that user found the reverb matching task easier than

the other two tasks. Figures 6.13-6.16 show that users thought the man-

ual editor was more complex to work with than they initially rated after

completing each task.

To summarize, all users perform better when the effect is more audible

or less complex to edit (e.g. recording numbers 1, 2, 4, 5, and 6). Users

perform better when matching the reverb, which also correlates with their

confidence in performing better, as shown previously in Fig. 6.5. Users seem

to struggle when adjusting both equalization and reverberation at the same

time. Some users, however, found out by the end of this task that reverber-

ating a recording could also affect its equalization and that was the reason

it made it harder for them to adjust. Most users, especially the novice and

mildly experienced users, struggled when the equalization filter was harder

to detect. Experts seem to perform better than other users overall.
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CHAPTER 7
RESULTS

7.1 Conclusion

In this thesis, we proposed a new approach to editing audio recordings

through example sounds. EBAE is an intelligent audio editor that learns

from an example that already contains the effect. EBAE automatically adds

user’s desired effects to any input recording with the touch of a button.

EBAE can also create higher-quality recordings more efficiently than the

manual editing procedures in current DAWs. EBAE focuses on automating

three tasks of equalization, noise, and reverberation which characterise the

acoustics of most audio recordings accurately.

In order to match the equalization, we proposed matching the estimated

power spectra of the recordings by manipulating their magnitude STFTs.

In order to match the noise, we proposed a decomposition technique using

classical denoising approach in signal processing and source separation using

NMF for non-stationary noise. The estimated noise components are then

matched and added to the clean input sound.

In order to match the reverberation, we employed CNMF to decompose

input and example sounds to dry activation matrix and a kernel. We then

reconstructed the match recording using an exponentiated input kernel.

We conducted a user study to evaluate the proposed audio editor subjec-

tively. Overall, regardless of their experience in the field of audio editing

and music production, most users agreed that EBAE creates higher-quality

results more efficiently when matching the acoustics between two recording.
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7.2 Future Work

There are a number of ways to improve upon EBAE. Besides the improve-

ments that can be made to the matching algorithms in terms of efficiency

for running on mobile devices and the user interface, we think the following

features could contribute to an improved user experience.

EBAE only focused on matching the acoustics of the recordings. There are,

however, a number of audio editing routines that can be easily automated

as well. For example, users can mimic an undesired noise in a recording

to be removed from a recording [100]. Another useful feature would be to

automatically match the dynamic range of two recordings [83].

We believe that using the input sound phase as the phase for the matched

sound is responsible for some of the artifacts introduced to the matched

sound when matching the noise and the reverb for some of the recordings.

Any improvement to on estimating the phase of the matched recording could

lead to better quality results.

Another improvement would be to automatically understand the features a

user would like to apply as oppose to having the user choosing which aspects

of the sound they would like to modify.

It would also be beneficial if the the example-based audio editor is able

to learn from user’s common editing routines and optimize the parameters

for matching the acoustics of the two recordings that is personalized for that

user.

We also think it would interesting if the user can provided the system

with input, example, and a desired edited input sounds and have the system

coming up with an automated procedure to perform that particular editing

task for other recordings as well.
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