
c© 2016 Philip B. Miller

REDUCING SYNCHRONIZATION IN
DISTRIBUTED PARALLEL PROGRAMS

BY

PHILIP B. MILLER

DISSERTATION

Submitted in partial fulfillment of the requirements
for the degree of Doctor of Philosophy in Computer Science

in the Graduate College of the
University of Illinois at Urbana-Champaign, 2016

Urbana, Illinois

Doctoral Committee:

Professor Laxmikant V. Kalé, Chair
Dr. Anshu Dubey, Argonne National Laboratory
Professor William D. Gropp
Associate Professor Luke Olson

Abstract

Developers of scalable libraries and applications for distributed-memory par-

allel systems face many challenges to attaining high performance. These

challenges include communication latency, critical path delay, suboptimal

scheduling, load imbalance, and system noise. These challenges are often

defined and measured relative to points of broad synchronization in the pro-

gram’s execution. Given the way in which many algorithms are defined and

systems are implemented, gauging the above challenges at synchronization

points is not unreasonable. In this thesis, I attempt to demonstrate that

in many cases, those synchronization points are themselves the core issue

behind these challenges. In some cases, the synchronizing operations cause a

program to incur the costs from these challenges. In other cases, the presence

of synchronization potentially exacerbates these problems.

Through a simple performance model, I demonstrate that making synchro-

nization less frequent can greatly mitigate performance issues. My work and

several results in the literature show that many motifs and whole applications

can be successfully redesigned to operate with asymptotically less synchro-

nization than their näıve starting points. In exploring these issues, I have

identified recurrent patterns across many applications and multiple environ-

ments that can guide future efforts more directly toward synchronization-

avoiding designs. Thus, I attempt to offer developers the beginnings of a

high-level play-book to follow rather than having to rediscover application-

specific instances of the patterns.

ii

In memory of Daniel Harry Schreiber.

iii

Table of Contents

Chapter 1 Introduction . 1

Chapter 2 Modeling the Performance Impact of Desynchronizing
Execution . 5

Chapter 3 Patterns for Reducing Synchronization in Distributed-
Memory Parallel Programs . 12

Chapter 4 Atmospheric Data Input in ISAM 30

Chapter 5 Desynchronizing Parallel File Output 38

Chapter 6 Dense LU Factorization 51

Chapter 7 Tree-Structured Adaptive Mesh Refinement 73

Chapter 8 Desynchronizing and Optimizing the
Chombo AMR Framework . 95

Chapter 9 Conclusion . 129

References . 131

iv

Chapter 1

Introduction

Developers of scalable libraries and applications for distributed-memory par-

allel systems face many challenges to attaining high performance. These

challenges include communication latency, critical path delay, suboptimal

scheduling, load imbalance, and system noise. A wide range of tools and

techniques have been developed to analyze and address these concerns.

Among the various responses, these problems are often defined and mea-

sured relative to points of broad synchronization in the program’s execution.

As many algorithms are defined and systems are implemented, this is not

an unreasonable approach. In this thesis, I attempt to demonstrate that

in many cases, those synchronization points are themselves the flip side of

the coin behind these challenges. In some cases, the synchronizing opera-

tions themselves cause a program to incur the costs from these challenges.

In other cases, the presence of synchronization potentially exacerbates these

problems.

1.1 Load Imbalance

A great deal of work in the parallel computing literature references load im-

balance to synchronization [1]. For an explicit instance, we find the definition

“In the most general sense, a load imbalance in a parallel code is the differ-

ence in work on two or more processes between two of their synchronization

points” [2]. In contrast, other areas of distributed computing use measures

of load, such as time-averaged processor utilization or service response time,

that do not reference coordinated activities between separate processes. This

distinction is quite natural, since parallel computing of the kind under con-

sideration is often applied to problems and solution methods that involve

tightly coupled interactions among various parts of the computation. Mea-

1

sures of utilization and responsiveness thus do not capture the effects of load

imbalance in this setting1.

In two limit cases, the time-averaged view and the synchronized view inher-

ently coincide. In an embarrassingly parallel application, all processors work

independently, but the job is incomplete until the last processor produces its

final results; there is effectively synchronization at the very beginning and

end of execution, but at no other points in between. The other case arises

when examining load at the finest resolution between consecutive synchro-

nization points with nothing intervening.

Over multiple points of global synchronization, aggregate utilization will

equal a load measure from the bounding synchronization points if relative

load among the processes is equal between each pair of consecutive synchro-

nization points - i.e. if the load pattern repeats itself. If the load pattern

varies, utilization less than 100% can reflect load imbalance even if the total

work in each process is equal when summed between the two end points.

Absent the intermediate synchronization, the processes would perform their

equal work in equal time. Thus, we can say that the synchronization itself

caused the program to incur a cost of load imbalance.

1.2 Noise

Petrini et al. related the impact of noise in an application with regular syn-

chronization [3]. In that paper, they cited an earlier observation of noise in

NAMD as a curiosity that did not impact performance as substantially [4],

because at the time NAMD didn’t have the global FFTs in PME for long-

range force calculation that would impose global synchronization. Once that

was added, noise became a much greater concern for NAMD, and usage has

shifted toward leaving a processor core idle on most systems where interfer-

ence cannot be avoided.

More recent work on modeling and simulating the impact of noise is

specifically geared toward capturing the implementation details of heavily-

synchronizing collective operations, because that is where noise is felt most

severely [5].

1At a suitable level of measurement, e.g. neglecting polling/spinning on communica-

tion, utilization level does capture many other performance effects.

2

1.3 Fault Recovery

Another problem facing large-scale parallel systems is efficiently addressing

system faults. One way of tolerating faults is through message-logging pro-

tocols [6, 7]. These protocols replace expensive rollback of the entire system

to a global checkpoint with local recovery and re-execution of just a single

failure domain, such as a hardware node or group of nodes [8]. With sufficient

information about applications’ control flow and communication structure,

they can run with low additional memory demands and minimal execution

overhead [9, 10]. More sophisticated protocols can even omit re-execution of

some tasks if the underlying environment can prove that their results have

been fully communicated [11].

During recovery, unaffected processes can continue execution independent

of the failed process(es) up to a point where they depend (possibly transi-

tively) on re-executed work from the recovering process. The extent to which

this is possible depends on both the application’s point-to-point communica-

tion structure and the frequency with which it calls for global synchronizing

operations. When live processes reach a point in their execution where they

wait for the completion of such operations, they must idle until the failed pro-

cess(es) catch up and fulfill those dependencies. Thus, looser synchronization

can reduce the impact of faults.

1.4 Summary

The preceding observations have been previously offered to motivate the

use of asynchronous and task-based programming and execution models. In

as much as these models avoid creating inadvertent program-order depen-

dencies among logically independent computations, they reduce instances of

synchronization that are irrelevant to correct execution. This thesis focuses

at a higher level, examining the synchronization presented by algorithms and

applications themselves.

My work and several results in the literature show that many motifs and

whole applications can be successfully redesigned to operate with asymptot-

ically less synchronization than their näıve starting points. The adaptations

I’ve contributed to include

• per-step input of atmospheric forcing data in the Integrated Science

3

Assessment Model (ISAM), used to study land-surface/atmosphere in-

teractions (Chapter 4),

• parallel output of particle trajectories in NAMD and ChaNGa (Chap-

ter 5),

• dense LU factorization (Chapter 6),

• unknown-count uses of the TRAM framework for streaming many-to-

many communication, used in EpiSimdemics ([12, 13, 14], described in

Chapter 3),

• a tree-structured AMR mini-application (Chapter 7), and

• the Chombo framework for patch-structured AMR (Chapter 8).

We see varying degrees of performance improvement from implementing these

changes. We also see that in systematically reducing synchronization, a

specifically asynchronous environment is neither necessary (Chapter 4) nor

sufficient (Chapter 8).

In exploring these issues, I have identified recurrent patterns across many

applications and multiple environments that can guide future efforts more

directly toward synchronization-avoiding designs. These are described in

Chapter 3. Thus, I attempt to offer developers the beginnings of a high-

level play-book to follow rather than having to rediscover application-specific

instances of the patterns.

4

Chapter 2

Modeling the Performance Impact of
Desynchronizing Execution

Motivated by the connection of synchronization to the costs of load imbal-

ance, noise, and critical path delays, this chapter explores a simple perfor-

mance model to demonstrate that less frequent synchronization can mitigate

these problems.

Consider an iterative parallel program running on p processors. In each

step, every processor typically executes a basic work unit of length w. Some

fraction f of the work units, evenly distributed across time and processors,

take longer than w by a ratio r = 1 + ∆ > 1. The processors must synchro-

nize their execution every k steps (e.g. in a convergence test, or the data

distribution seen in ISAM in Chapter 4). Unlike Valiant’s Bulk Synchronous

Parallel model [15], the synchronizing operation itself is taken to be free,

and communication cost is neglected. The application will run for s steps in

total, which is assumed to be large. An intuitive illustration of this model,

with varying k, can be seen in Figure 2.1.

In all cases, the total work is given by the expression

spw(1 + f∆)

Given the uniform distribution of overload, the ideal execution time simply

divides the work by the processor count:

Tideal = sw(1− f + fr) = sw(1 + f∆) (2.1)

Since we are primarily concerned with large-scale parallel systems, assume

that p � 1/f , so that some processor can be expected to experience an

overload in each step.

5

Figure 2.1: An illustration of the intution behind this model’s predictions
that eliminating synchronization can mitigate performance impacts of load
imbalance, noise, and other undesirable effects. The rows of blue boxes
represent work on separate processors, and red bars represent points of
global synchronization among them. As synchronization is eliminated, less
time is lost.

6

In the case where the application synchronizes at every step, k = 1, the

elapsed time per step is simply the maximum over all processors, wr, and so

the total elapsed time is

Tk=1 = swr = sw(1 + ∆) (2.2)

Effectively, the program behaves as if f = 1 in Equation 2.1.

Next, we consider the case where synchronization is slightly less frequent:

k = 2. In very unlucky windows, some processor will have two long steps

back to back, making the window take 2wr time1. Except at processor counts

that are large relative to f 2, the majority of windows can be expected to take

time w(1 + r) and thus the total elapsed time (with 2 steps in each window)

is approximately

Tk=2 = s
w(1 + r)

2
(2.3)

= sw
1 + (1 + ∆)

2
(2.4)

= sw
2 + ∆

2
(2.5)

= sw

(
1 +

∆

2

)
(2.6)

We can see that just widening the synchronization window by one step nearly

halves the effect of the overload, relative to Equation 2.2.

In the limit where k > s, every processor is expected to experience fs

long steps of time wr and (1 − f)s steps of time w. Thus the total time to

completion is given by

Tk>s = fswr + (1− f)sw (2.7)

= sw(1− f + fr) (2.8)

= sw(1 + f∆) (2.9)

This matches the ideal time given by Equation 2.1. Entirely removing mid-

run synchronization thus fully mitigates any excess cost of the intermittent

overload.

1This probability may not be entirely negligible at k = 2, but it decreases geometrically

as fk, with larger k being of greater interest

7

More generally, we can compute the expected time for any value of k.

The program will execute s/k synchronization windows each encompassing

k steps. Of those, dkfe will be long, and the rest normal. Thus, the total

time will be approximately

s

k
· (dkfewr + (k − dkfe)w) (2.10)

In the limit as k grows large in this equation, we can again see that it con-

verges to the ideal time given in Equation 2.1. This formula as a function of

k is plotted in Figure 2.2. As a speedup relative to k = 1, we find that

speedupf,∆(k) =
1 + ∆

1 + dkfe
k

∆
(2.11)

This is illustrated in Figure 2.3.

The overall effect of fully eliminating synchronization in this model is to

provide a maximum speedup of

speedup∆,k≥s(f) =
1 + ∆

1 + f∆
(2.12)

Since noise is typically observed to occur in a time-dependent manner

rather than a step-dependent manner, the model requires some adaptation2.

Consider unsynchronized noise occuring with a period t and amplitude a. If

t ≤ w, then it is high enough frequency to affect essentially all processors

equally from this model’s perspective. Thus, f = 1 and ∆ = w
t
· a.

In the lower-frequency case, where t > w, then f ≈ t/w and ∆ ≈ a/w.

These are approximate values, because the stretching of a step on one pro-

cessor may delay others enough that they suffer noise as well, or noise may

occur when the processor was idle waiting for a message to arrive [5].

The model as described above assumes that the relevant synchronization

is global among all processors. When synchronization is not global, but in-

volves only a subset, the model must be adjusted accordingly. The fraction of

2Trace-based performance instrumentation with fixed output buffers is an exception to

this. In Charm++, event logs for the Projections tool get flushed to disk after a fixed

number of entries. Since steps of execution typically generate similar numbers of events

repeatedly, but in different volumes on different processors, flushing acts like step-based

noise.

8

0 20 40 60 80 100
Synchronization interval k

0

50

100

150

200

To
ta

l r
un

 ti
m

e

Time with synchronization
Ideal time

Figure 2.2: Predicted running time of a program of 100 steps, with ∆ = 1
and f = 0.1 as a function of k. We can see that as the synchronization
window k increases, the running time converges to the total workload.

9

20 40 60 80 100
k

1.0

1.5

2.0

2.5

3.0

Sp
ee

du
p

f=0.02,∆ =2

f=0.05,∆ =1.5

f=0.1,∆ =1

Figure 2.3: Speedup provided by widening the synchronization window
from k = 1. Essentially ideal speedup is reached when k ≥ 1/f .

10

processors that synchronize at any given point can be used to scale the value

f . This reflects that in any given synchronization group, a processor will

be overloaded proportionately less often as in the entire system. This struc-

ture may be found in neighbor exchange operations, especially where each

processor is responsible for more than one independent unit of computation.

Programs that exhibit ‘phased’ behavior within larger steps should ap-

proximately follow this model. This is observed, for instance, in the original

version of Chombo, with updates to each level of refinement constituting

a phase. At different levels, different processors are over- or under-loaded,

but across phases they partially average out. As described in Section 8.2,

desynchronizing those phases improved overall performance.

11

Chapter 3

Patterns for Reducing Synchronization in
Distributed-Memory Parallel Programs

Looking at the applications described in this thesis and elsewhere, we can

identify several common patters for weakening or eliminating synchronization

in distributed-memory settings:

• Batch (blocking on / waiting for) collectives (§ 3.1)

• Communicate more with each collective, to reduce frequency (§ 3.2)

• Send and consume data expected from a collective incrementally (§ 3.3)

• Separate communication from coordination (§ 3.4)

• Replace synchronizing collectives with coordination schemes (§ 3.5)

• Replace synchronizing collectives with p2p messages that achieve the

desired effect (§ 3.6)

• Semantic object naming (§ 3.7)

This chapter characterizes these patterns, and attempts to generalize and

abstract them so that they can potentially be applied more broadly and

consciously.

This effort is in the spirit of various design pattern and pattern language

efforts, originating in the work of (building) architect Christopher Alexan-

der [16], imported into computer science and software engineering by the

‘Gang of Four’ Gamma, Helm, Johnson, and Vlissides [17] and broadly

explored in the ‘Pattern Languages of Programs’ (PLoP) conference, and

specifically introduced to parallel programming by Tim Mattson et al. in a

book [18] and the ParaPLoP workshop series.

A common characteristic in many parallel applications is that broad syn-

chronization is typically associated with calls to collective operations. This

is partially inherent in the natural dependences those operations express,

12

such as in all-to-all communication patterns. It can also result from depen-

dences introduced by the algorithms used in the implementation of those

operations [5]. Thus, many of the patterns illustrated in this thesis involve

modifying or replacing collective communication operations with various al-

ternatives.

In some cases, an operation causing synchronization conveys additional

semantic information relevant to the applications control flow beyond any

direct payload of data that it transfers. In the limit of operations that carry

no payload, such as MPI barriers and Charm++ quiescence detection, the

only purpose they can serve is to transfer this more abstract state across

processes and objects. In those cases, if we wish to weaken or eliminate

synchronization, we must find other ways to let applications draw the same

conclusions.

At the level of implementation considerations, synchronization often con-

veys useful information that cannot be overlooked. At the point of the call,

the posting of a send operation indicates several facts:

1. the payload data has been fully computed

2. the payload data is available in a specific designated buffer

3. the sender is willing and able to commit network resources to that

transfer

Analogous versions of the latter two points also apply to explicit receive

operations.

1. a specific designated buffer is available to receive the payload data

2. the receiver is willing and able to commit network resources to the

transfer

Since collectives generally combine sending and receiving data, both sets of

facts apply, among all participants in the collective. These facts are essen-

tial to the efficient execution of optimized collective algorithms that rely on

cooperation of processes between the originator of some input data and its

final recipient.

In one-sided operations, these necessary facts must be handled very dif-

ferently, essentially with coordination schemes of various sorts. Readiness

13

of data must be conveyed through synchronization separate from the com-

munication operation, such as fences or barriers. Buffer addresses must be

negotiated in advance or explicitly communicated. Network resource commit-

ment, where taken into consideration, also requires explicit synchronization

aside from the transfer.

Consider an MPI application that wants to ensure that all of a set of re-

ceives are posted before their corresponding sends, or vice versa, to ensure

that it does not fail or suffer performance penalties due to implementation or

hardware limits. This is a fundamental example of synchronization for coor-

dination without any payload or higher-level semantic content. It’s solved by

posting a set of non-blocking operations all in one direction (e.g. all sends),

calling for a barrier, and then posting all of the opposite operations (e.g. all

receives).

In general, we informally consider synchronization as a third factor along-

side communication and computation when analyzing the design and deploy-

ment of various parallel algorithms. An algorithm or configuration that can

achieve its desired result by reducing one of these terms either without in-

creasing the others or by limiting the increase to a reasonable tradeoff can

be expected to offer better overall performance. Similarly, with increasing

processor count or problem size, slower growth in the synchronization term

will predict lower overall cost. Thus, although applicable in different con-

texts and applied in different forms, the patterns below all aim at reducing

synchronization relative to other elements of a parallel program’s execution.

3.1 Batch (Blocking On / Waiting For) Collectives

AKA Use synchronization from one collective to avoid incurring synchro-

nization penalties from subsequent collectives.

Applicability There is a large interval between when data to be commu-

nicated is or can be ready to send, and when it must be available to consume.

There is a large portion of available data whose communication can be shifted

substantially earlier or later to be communicated in bulk. The synchroniza-

tion associated with the unit collectives does not provide useful information

to the rest of the application.

14

Description Consider an application that performs several collective op-

erations interspersed with its computation in each step. For instance, the

application may execute in several delineated phases, with some of those

phases calling collectives. If the result of those collectives isn’t immediately

needed to continue work within that phase, nor does the fact of their comple-

tion provide semantic information, then the synchronization those collectives

impose may incur avoidable costs as described in Chapter 2.

To avoid those costs, it’s preferable to rearrange execution (and potentially

program structure, as necessary) so that as many collective operations as pos-

sible are performed back-to-back, rather than interspersed with computation.

After one synchronizing operation, batching more in a ‘convoy’ avoids intro-

ducing opportunities for imbalanced load, noise, or extra critical path delays

to intervene and delay completion of later operations. Even with nominally

uniform work for every process to perform between synchronizing operations,

increasingly variable processor clock speeds across individual chips and nodes

means that any extraneous work will likely be imbalanced [19].

With non-blocking collectives, this pattern is still potentially relevant. Bar-

ring specialized hardware, interrupt-driven operation, or a dedicated thread,

processor time must still be made available to allow non-blocking collectives

to make progress. Batching uses the synchronization of one operation to

guarantee the necessary resource availability for however many follow it in

(ideally) quick succession.

Known Uses

CharmLU: The exclusive scheduling of active panel factorization updates

and reductions ensured that other operations would not interfere with this

highly-synchronous work on the critical path. Essentially, from the perspec-

tive of the active panel, the large-block DGEMMs in trailing updates acted

as noise lasting several times the duration of each column’s work. The op-

timization to batch up the synchronous active panel work is described in

Sections 6.2.5 and 6.2.6.

Chombo: Though not its logical endpoint, the work on Chombo’s stable

timestep calculations described in Section 8.2 shows the effect of batching

reductions. By doing all of a timestep’s reductions at its end, and then

combining them, we obtained better performance than running separate re-

ductions between timestepping of each level of refinement.

15

Related Concepts This pattern will tend to appear in concert with explic-

itly increased concurrency and parallelism in nearby portions of execution.

In Chombo, application of this pattern exposed latent concurrency among

computation on multiple levels of refinement.

3.2 Communicate More With Each Collective, To

Reduce Frequency

AKA Condensing collectives

Applicability The same general conditions as in batched collectives apply.

Additionally, the communication and computation to be performed must fit

in a single defined operation.

Description Abstractly, the idea of this pattern is to rearrange commu-

nication, and possibly the computation to feed that communication, so that

more communication occurs in association with each synchronizing operation.

If that synchronization was not otherwise informative, then this rearrange-

ment should lead to a proportionate decrease in how often synchronizing

operations must occur.

One instance of this pattern would be replacing repeated gather or scatter

operations over a common set of processes but with varying roots with fewer

all-to-all or all-gather operations.

This pattern is something of an anomaly. Where other patterns suggest

to replace or weaken collectives, this one proposes to strengthen them. The

tradeoff is that a single heavy-weight operation may carry a great deal of

synchronization (in the form of excess dependencies), but much of that syn-

chronization can be overlapped within a single narrow window of execution,

leaving a many times broader window of execution between synchronization.

Known Uses

A clear example of this pattern is seen in optimizations of the ISAM land

surface modeling code, described in Chapter 4. In that setting, repeated

scatter operations occurring every k steps were transformed to much rarer

all-to-all operations every kp steps, whose period scales with the number

16

of processors used in a given run. The total set of true dependences and

which processor provided the data to satisfy them was unchanged by this

transformation. However, all computational steps beyond the first one after

the collective have their dependences satisfied much earlier.

Meanwhile, many false dependences between independent computational

steps were broken apart. In this case, the frequent synchronization from scat-

ter calls provided no extra information that the application itself actually

needed. However, the coordination of network resource usage those synchro-

nized collectives provided avoided creating network hotspots that would have

appeared in a näıve use of one-sided operations instead. Using an all-to-all

operation preserved the communication efficiency benefits of synchronized

network resource allocation.

Ultimately, by applying the transformation from frequent iterated scatter

operations to rare all-to-all operations, the synchronization window was dras-

tically widened. As predicted by the model described earlier and observed in

experiments, this had the effect of fully mitigating periodic load imbalance.

In the Chombo AMR framework, the time-advancing operation on each

level is expected to globally reduce and return a stable timestep value usable

for the following step. As described in Section 8.2, all of the per-level stable

timestep reductions ultimately fed into a single reduction of the value to

use across all levels of refinement. By forcing synchronization between the

updates of separate levels, the framework incurred the costs of load imbalance

and communication latency at every level. Moving all of these reductions

to the end of each whole step eliminated that excess synchronization, and

allowed all the reductions to be consolidated into a single operation.

Charm++ has recently implemented a consolidated ‘summary statistics’

reduction operation. It takes multiple inputs, and computes all of the mini-

mum, maximum, mean, and standard deviation. It is built on a more general

tuple reduction design that would allow condensation of arbitrary related re-

ductions, though that has not yet found other uses.

As described in Section 6.3, the ‘tournament pivoting’ algorithm used in

Communication-Avoiding LU factorization also demonstrates this pattern.

Related Concepts As in the previous pattern, condensed collectives will

tend to appear in concert with explicitly increased concurrency and paral-

17

lelism in nearby portions of execution. Cause and effect in this relationship

can flow in either direction, depending on details of the application. In

ISAM, parallelization of the atmospheric input reading and pre-processing

was necessary to subsequently make this pattern applicable.

Alternatives Non-blocking collectives are applicable in circumstances very

similar to this pattern - a substantial time interval between availability of

some data and the demand for it. When applied exactingly, they have the

advantage of more precisely expressing the dependencies of related compu-

tation on the data they convey. They have the prospective disadvantage

of increasing the necessary amount of control flow and volume and lifetime

of state necessary to manage them. This contrast is particularly noticeable

when the combined data grows with one of the application’s scaling factors,

such as processor or step count. This is the case in ISAM, which would call

for up to O(P) non-blocking scatters to be in flight at once. Non-blocking

collectives also require an effort to ensure their progress, which may not be

trivial if the application otherwise does little or no communication.

3.3 Avoid Collective Synchronization by Sending and

Consuming Data Incrementally

Applicability The data to be communicated by a collective can be broken

down into independent units, and the computation can incrementally gener-

ate and/or consume those units in coarse enough work grains to not suffer

high relative overhead from fine-grained communication.

Description As noted by Hoefler et al. [5], various collective operations

encode different dependency patterns among participating processes. By us-

ing a collective to communicate the data to fulfill those dependencies, an

application is saying that all data to be sent depends on all preceding com-

putation, and all subsequent computation depends on all data received. In

some cases, such as transpose-based parallel FFT implementations [20], this

is a very practical choice.

In many cases, however, each unit of data to send might be generated by an

independent unit of computation, and each unit of data received may expose

18

independent units of computation. This pattern suggests that the program

should be structured to allow those computations to occur incrementally,

with data tansfer interleaved. Thus, the program can avoid the strong syn-

chronization entailed by using a collective to transfer it all at once.

Known Uses

CkIO, an implementation of parallel output in Charm++, demonstrates

this pattern [21]. As data fills a buffer representing a write stripe, the write

operation can be initiated immediately, independent of any other data that

may be expected. This is described further in Chapter 5.

CharmLU also exhibits a variant of this pattern, as described starting

in Section 6.2.1. Due to its memory scheduling, blocks of matrix data are

not transferred in conventional multicast operations to be consumed at some

point later. Rather, they’re transferred when there is space set aside for them.

Computation proceeds according to priority, and releases storage holding

input blocks as the need for those blocks on a given process ends.

EpiSimdemics: Another Charm++ application demonstrating this pat-

tern is EpiSimdemics [14]. This is an agent-based code for simulation of

contagion phenomena in semi-discrete time. Typical simulations focus on

the spread of infectious diseases in day-long steps. The simulation is mod-

eled by a bipartite graph of objects. The objects on one side of the graph

represents groups of individual agents. The objects on the other side of the

graph represent groups of locations where those agents may interact over the

course of each simulated day. In each day, the agents dynamically generate

a schedule of locations they will visit, and transmit the times they will be

at each of those location to the location objects. When the location objects

have received the full set of visits, they compute the interactions between

agents who were present at overlapping times during that day, and send the

interactions back to the agent objects. When the agents have received the

full set of interactions they experienced during the day, they update their

state (e.g. become infected) and prepare for the next simulated day.

The initial implementation of EpiSimdemics in MPI executed each day

in a cycle of compute-communicate phases. Each communication was im-

plemented as a variable all-to-all collective. For various reasons, this design

encountered scaling limits at approximately 512 cores. Allowing for incre-

19

mental communication and processing in the Charm++ port (along with

other changes) improved scalability to thousands of processors. Ultimately,

subsequent optimizations enabled it to scale to hundreds of thousands of

cores on Blue Waters and various Blue Gene Q installations.

Chombo: A mild example of this pattern can be seen in the MPI im-

plementation of Chombo. Its standard communication pattern for block-

to-block boundary exchange, interpolation, and down-sampling uses a loop

of point-to-point nonblocking send and receive operations between proces-

sors holding neighboring or overlapping boxes, followed by waiting for all

of those operations to complete. This behavior is precisely modeled by the

neighborhood all-to-all operations added in the MPI-3 standard. However,

by treating each message independently, receivers are able to do necessary

processing on each one (e.g. copying from the communication buffer into

its final location; accumulating the received values with existing data; in-

terpolating the received data in time or space either alone or with existing

data) as it arrives, rather than waiting for all of the messages expected by

the collective that could nominally replace these individual operations.

A more fully elaborated form of this pattern appears in porting Chombo

to Charm++, described in Chapter 8. Each high-level communication op-

eration in the original Chombo code was treated as a collective. In this

design, computation on any box on a processor is made to wait on complet-

ing the communication for all other boxes also assigned to that processor.

By running the control flow of Chombo for each box independently, we

gain incremental processing of communicated data. As soon as each box’s

dependencies are satisfied, its computation proceeds.

An implementation of parallel sorting in Charm++ by Solomonik [22]

exhibits this pattern. Earlier implementations identify ‘splitter’ or ‘separator’

keys that would produce a sufficiently uniform distribution of values across

processors, redistribute all of the data according to those distinguished keys

in a bulk all-to-all operation, and only then rearrange the data locally on

each process to its final sorted order. In the newer implementation, data

is partitioned and transferred incrementally as acceptable splitter keys are

identified, and each recipient starts merging partial results into locally sorted

order as the rest of the data moves and the sorting process proceeds.

20

Related Concepts Streaming communication and computation is a more

general idea that somewhat subsumes this one. The distinction is that in-

crementalizing a collective is based on having a pattern of communication

that has inherent uniformity in what data is being communicated, and what

entities are sending and receiving it. Streaming deals with data that would

not have generally been transferred through collectives, except in artificial

attempts to follow a bulk-synchronous design.

After all the individual units of data have been received and processed,

there may be subsequent work dependent on the whole set. If the count of

messages to be received is known a priori, then that computation can be

locally triggered. If not, the next pattern is applicable as well.

3.4 Separate Communication from Coordination

Applicability The application gains useful semantic information from the

communication operation beyond the content explicitly passed by the op-

eration. That semantic information is not inherently necessary for efficient

implementation of the communication itself.

More concretely, this patterns applies when there is uncertainty in the

number or size of messages being sent and received. One example would be

a scalar MPI_Alltoall to form the receive counts and displacements argu-

ments to a subsequent variable MPI_Alltoallv. Another would be a reduce-

scatter to indicate how many messages each process must wait to receive in

a communication phase before moving on.

A more general scenario with uncertainty of both sends and receives is

where receiving one message may lead to the generation of others. Thus, the

program requires some consensus mechanism to ensure that each process can

tell when it has received every message that has been or will be sent to it.

Description Send messages using elementary point-to-point mechanisms,

or using optimized schemes such as routing and aggregation [13]. These can

be fairly general, and non-specific to the application. Separately, identify the

characteristics of the communication pattern or the algorithm it supports

that need to be signalled. Implement or deploy a mechanism to detect that

characteristic. If a more general mechanism doesn’t entail an excess cost in

efficiency, it is likely suitable.

21

Implementation Mechanisms

Nonblocking Barrier or Reduction: This simplest mechanism can be light-

weight and very efficient, since it requires only a simple, bounded communica-

tion pattern to implement. However, it is limited in that it requires message

senders to be identified before communication starts, and message senders

to know idependently when they have sent all of their traffic. An implemen-

tation of this pattern, Dynamic Sparse Data Exchange [23], was offered as

motivation to add non-blocking barrier collectives to the MPI standard.

Quiescence Detection (QD) is one of the most general mechanisms to fill

this role. It detects when all messages sent within a parallel program have

been received and processed, and no further messages remain in transit in the

network or queued on any processor. Thus, it can support use cases with un-

predictable senders, variable message counts, and dependent messages gen-

erated as a result of receiving previous messages. Charm++ includes a

highly efficient implementation [24]. A potential downside of its use, noted

below, is that by detecting a global property, it conflicts with concurrent

composition of multiple modules the idependently need to know when their

own communication has finished, without regard to activity in the others.

Modular Quiescence Detection: ‘Completion Detector’ (CD) One means of

providing this out-of-band coordination is the ‘Completion Detector’ library

in Charm++ [25]. This library uses waves of reductions and broadcasts over

a spanning tree of the system to count senders finished and messages sent

and received, signaling completion when all messages from all senders have

been delivered. It is similar in design to Charm++’s quiescence detection

module, except that it has been made modular to not require that the rest

of the program fall idle for it to make progress.

Parental Responsibility ‘Termination Detection’ (TD) is a design for rec-

ognizing the completion of ‘diffusing computations’ on a distributed system,

originally developed by Djikstra [26]. It builds a spanning tree over pro-

cessing elements that have sent messages, with responsibility for detecting

the end of all activity within a subtree lying with its root. As processors

receive messages, they send acknowledgments to the sender, except for the

first message they receive which is not acknowledged until all messages they

have sent get back acknowledgments.

22

Known Uses

EpiSimdemics ([14], also described in § 3.3) illustrates this pattern. Specif-

ically, the number of messages each communication end-point will send or

receive in a step is not known a priori, since it is entirely data dependent.

As noted above, setup work can occur as messages are delivered, but each

timestep cannot be processed by an object until it knows that it has received

all of the messages sent to it for that step. In this case, each sender knows

when it has sent all of its messages for a step. Thus, senders can potentially

tell a coordination mechanism when they are done, and how many messages

they sent.

As the communication pattern in EpiSimdemics is an instance of dynamic

sparse data exchange [23], that design would have been applicable to the MPI

implementation. The same design is possible in Charm++, but with much

greater syntactic and runtime overhead.

Quiescence detection worked well for this purpose in early versions of

EpiSimdemics. However, its global nature was problematic when the appli-

cation evolved to run multiple instances of the simulation within each job to

allow dynamic scenario testing. At that point, QD coupled progress of the

independent scenarios, and hence synchronized them. Substituting an in-

stance of the Completion Detector for QD in each instance of the simulation

resolved this difficulty.

Topological Routing and Aggregation of Messages (TRAM [13]): While

the basic mechanisms of TRAM can convey the data in question from sender

to receiver, both TRAM and the application need additional coordination

information for correctness. TRAM needs to know when all messages gener-

ated by a step have been sent, so that it can start to flush its buffers. TRAM

must also know when all messages at a given layer of its routing system have

been received, so that that layer can proceed to flush its buffers to the next

layer. Finally, the application needs to know when it has received all of the

messages that were sent, so that it can proceed to compute on the entire set.

TreeAMR: In the TreeAMR code described in Chapter 7, we initially

replaced global collective communication with point-to-point messages car-

rying all of the data, and a separate synchronization mechanisms to indicate

when consensus on how to adjust the mesh was reached. This stage of evo-

lution does not eliminate synchronization, but it weakens the dependencies

23

carried by it, and enabled further adaptations that do eliminate broad syn-

chronization. A second stage of evolution in TreeAMR carried this further:

by carefully coordinating object insertions and subsequent control flow, one

of two synchronizations at each regridding step was further eliminated.

DSDE: Another example can be seen in recent solutions to the ‘dynamic

sparse data exchange’ problem [23] that helped justify the non-blocking bar-

rier operation added to MPI-3. A naive implementation of this communica-

tion pattern uses a variable all-to-all operation (possibly preceded by a simple

all-to-all to convey buffer sizes), with many send/receive counts set to zero.

To replace the sparse all-to-all operations with lighter weight communication

patterns, Hoefler et al. combined non-blocking synchronous sends with a

non-blocking barrier used to indicate that all messages had been delivered,

and so no process would need to wait on the chance that more would arrive.

Related Concepts Valiant’s Bulk Synchronous Parallel model [15] as-

sumes that all communication is uncoordinated, and uses separate global syn-

chronization for receivers to know that messages have arrived. This pattern

partially mimics BSP, with major caveats. Relative to BSP, the presumed

ability of modern systems to process messages as they arrive offers substantial

‘extra’ expressive power within each superstep, since each received message

can potentially generate subsequent dependent messages. Thus, more pow-

erful mechanisms than barriers are necessary, but not necessarily any more

costly.

Standalone communication without conveying broader coordination is likely

to also be received incrementally, and hence available to process incremen-

tally as well. Thus, this pattern is closely related to the pattern of replacing

collectives with incremental communication and processing, described in Sec-

tion 3.3.

24

3.5 Replace Synchronizing Collectives with

Coordination Schemes

Applicability The application gains useful semantic information from the

synchronizing operation beyond the content explicitly passed by the opera-

tion. That semantic information is not necessary for efficient implementation

of the communication itself.

Description The semantic information provided by synchronization can

be obtained by some other application-specific means, or the application can

profitably be adapted to use a substitute for or alternative form of that

information.

Known Uses

CharmLU: HPL, the reference LINPACK implementation used for Top500

benchmarking [27], uses synchronized multicasts over rows and columns of

a ‘process grid’ to transmit factored blocks for use in further computation.

The synchronization in these broadcasts effectively coordinates two kinds of

resources: communication bandwidth and progress, and available memory.

CharmLU (described in Chapter 6) does not use synchronized multicasts,

and thus coordinates these resources through other means [28, 29, 30].

HPL has a configurable fixed ‘lookahead depth’ that controls how many

steps ahead of computation data can be distributed. By doing so, it limits

the memory footprint of remote data that each process holds as input for

local computations. CharmLU replaces the fixed lookahead depth with a

dynamic per-process value based on actual available memory. Within the

bounds of available memory, each processor sends explicit requests for blocks

of data that it will need in the near future. How it does this, efficiently and

without creating deadlock situations, is described in Section 6.2.2.

Because a given factored block is needed by all blocks beyond it in the

factorization, the request scheme created hotspots of injection bandwidth on

the nodes holding each block as many requests arrived in close succession.

This revealed the value of coordinating network resource usage from the

synchronized multicasts. Since the set of processors with a pending request

at any given time is dynamic, we implemented a scheme to send the message

via dynamic spanning trees by appending the destination list to the block

25

message to a few processors, and have them each forward the message to

further subsets. This is described in more detail in Section 6.2.4.

CkIO also demonstrates this pattern. Collective output has been used

to synchronize processes to ensure that the recipient of data to be written

would be ready to handle it when provided. With message driven asyn-

chronous execution, concurrent composition, and suitable coordination, the

synchronization becomes unnecessary. The results of this work are described

in Chapter 5.

Related Concepts Alpert and Philbin described an analog of this concept

for a Bulk Synchronous Parallel setting, which they call ‘Counting BSP’ [31].

They observe that if receivers can anticipate the number of messages they

will receive in a superstep and count them as they arrive, then no actual

barrier to synchronize the end of the superstep is necessary.

3.6 Replace Synchronizing Collectives with

Point-to-Point Messages That Achieve the Desired

Effect

Applicability The application gains useful semantic information from the

synchronizing operation beyond the content explicitly passed by the opera-

tion. That semantic information is not necessary for efficient implementation

of the communication itself. Enough data is available locally in each process

to form a substitute through targeted point-to-point messages.

Description When the coordination information drawn from synchroniza-

tion is not necessarily global, individual processors can communicate directly

with each other to synthesize a local substitute. This may imply changes in

the higher-level algorithm’s operation to use that local information rather

than the global version previously available.

Known Uses

CharmLU’s use of directed request messages to indicate memory availabil-

ity for specific blocks on particular processors demonstrates this pattern, as

described in Section 3.5 and Section 6.2.2.

26

In concert with ‘separating communication from coordination’ (Section 3.4),

broad synchronization in the mesh evolution phase of TreeAMR ([32], Chap-

ter 7) can be eliminated entirely. Both the first and last stages stages of

optimizations to mesh evolution push the knowledge of general state from

broadly interdependent collective operations about regions to be refined or

coarsened, objects to be created or destroyed, and neighbors added or re-

moved into local point-to-point messages with narrow dependencies. The

first stage replaces collectives that described mesh evolution globally with

locally consistent and stable mesh evolution marked by consensus detection.

The last stage replaces globally detected and signaled consensus with locally

provable consensus based on convergence of lower and upper bounds.

This pattern is potentially applicable to numerically stable time step cal-

culation in any simulation of a system in which computed effects have fi-

nite propagation speed through the simulation domain. For instance, com-

pressible fluid flows satisfy this, while incompressible models do not. They

can achieve this by locally computing and applying stable time step lengths

within each portion of the domain, and coordinating values at interfaces

where the time step differs. The impact this approach would have over the

prevalent global reduction method in Chombo is explored in Section 8.2.3.

Implementation of this new design is on the roadmap for the Enzo-P AMR

cosmology/astrophysics application using the Cello framework [33].

3.7 Semantic Object Naming

AKA Unique global names, coordinate-based indexing

Applicability The application requires a dynamically evolving set of ob-

jects that must be generally reachable for communication. These objects

are counted, numbered, sorted, placed, or located. The application is built

to run in an environment that provides fully distributed and asynchronous

location metadata lookup (e.g. Chare Arrays in Charm++ [34]).

Description Every object to be created has its identifier constructed based

on some inherent characteristic of its place or role in the application. How

that identifier is formed may be very application-dependent. For instance:

27

• a spatial coordinate within the simulation domain,

• the path to or position of the object in some distributed structure

representing the computation

• the object’s unit of responsibility in a data decomposition

• how much progress the computation has made

This obviates the need for globally synchronizing steps to do things like

counting the objects to create, scanning that count across processors, num-

bering the objects, sorting the object list, or mapping object-level neighbor

lists to processor-level communication lists.

Known Uses

There are two implementations of tree-based structured AMR in Charm++

that apply this pattern. Both implement bit-vector indices for boxes giving

the path from the tree root to the named node, as described in Section 7.2.4 in

the context of a tree AMR mini-application. The Cello framework extends

the scheme to a forest-of-trees structure, by prepending the top-level index

of each box’s containing tree to the bit-vector. A similar design is on the

roadmap for ChaNGa’s Barnes-Hut tree.

In CharmLU, matrix blocks are indexed by their position in the matrix.

This enabled easy experimentation on their mapping [35], and would sup-

port the request-driven dynamic multicasts described in Section 6.2.4 even if

blocks were dynamically relocated (such as for load balance) during execu-

tion.

The port of Chombo to Charm++ partially implements this pattern.

It encodes the generation and refinement level of each box into parts of

their index, as described in Section 8.1.3. The final element of each box’s

index that’s currently generated by global numbering could be replaced with

coordinate-based indices to avoid global numbering and sorting.

Bock and Challacombe’s implementation of Sparse Approximate Matrix-

Matrix Multiplication, SpAMM [36], logically extends the 3D parallel matrix-

multiplication of Agarwal et al. [37]. They use the sparsity structure to omit

computing portions of the block-wise convolution space that will not make

28

noticeable contributions to the final product. The basic 3D algorithm could

be implemented to apply this pattern both in 2D to blocks of the input and

output matrices, and in 3D to the intermediate blocks summed to form the

product. SpAMM implements a recursive tree structure within these indices,

representing subdivisions of the matrix that it will actually operate on.

Alternative: In applications with well-defined and smoothly-evolving neigh-

borhood structure, process-local object numbering and distributed update

protocols can similarly avoid global operations to name and connect objects

(at least after initialization). AMR simulations can be made to fit this case,

and can be implemented as such [38]. The challenge of this approach as

opposed to pure semantic naming and distributed location lookup is that

it requires more specialized application logic to implement. In both cases,

each application must invent its own means to label relevant and potentially

evolving entities. Without distributed lookup for unique global names, appli-

cations must also define its own algorithms for locating and connecting those

objects, rather than relying on a common synchronization-avoiding infras-

tructure. Since a universal implementation of that infrastructure exists [34],

it can be effectively used with this pattern in all but extraordinary cases.

29

Chapter 4

Atmospheric Data Input in ISAM

List of Patterns Illustrated:

3.1 Batch (blocking on / waiting for) collectives (§ 4.1)

3.2 Communicate more with each collective, to reduce frequency (§ 4.3)

The Integrated Science Assessment Model (ISAM) is a whole-Earth and

single-site land surface model code used to study biogeophysical and bio-

geochemical phenomena and their interaction with the larger climate and

ecosystem. It couples fluxes of carbon, nitrogen, water, and energy between

the near-surface atmosphere, plant growth, and material accumulation above

and below ground. ISAM has been used extensively in various modeling and

synthesis studies.

In previously published work in collaboration with Michael Robson [39]1,

we adapted ISAM to substantially improve its performance and scalability

on large supercomputers. Relative to the performance of a suitable baseline

version of the code at its peak of 1k cores, we obtained a 6.6× speedup on

the Hopper Cray XE6 system and a 2.8× speedup on the Edison Cray XC30

system, both hosted at NERSC. These same changes also enabled strong

scaling up to 32k cores on each of these systems, with efficiency limited

only by a documented serial bottleneck described by Amdahl’s Law. This

chapter reviews the portion of the previously published work relating to the

model’s atmospheric data input (also called the ‘climate forcing’), describes

the substantial excess synchronization that our improvements removed, and

reanalyzes the results obtained in light of the model presented in Chapter 2.

1The text and figures of this chapter are adapted from the cited paper with permission.

c©2014 IEEE

30

Read

Interpolate

Distribute

Calculate

*

Baseline

Read

Interpolate

Distribute

Calculate

1/r

*

V-A

Read

Interpolate

Distribute

Calculate

1/rP

*

V-C

Read

Interpolate

Distribute

Calculate

1/rP

*

1/r

V-B

Figure 4.1: An illustration of the process by which various versions of
ISAM acquire and consume atmospheric input data. Each flow chart
represents one version of the code, with various optimizations implemented.
The optimizations are described in the section corresponding to the label
on each flow chart. In the baseline version, input is read, interpolated, and
distributed in each step (shown by ‘*’ loops). Later versions reduce
redundant work by a factor of 3 ≤ r ≤ 12, the ratio of model time steps to
atmospheric input time resolution (1/r loops). Finally, non-computational
work is parallelized and desynchronized in two stages (1/rP loops).

The basic structure of the climate forcing data input procedure involves

three steps. A process reads the appropriate point in the time series provided

by the input files, using the NetCDF library [40, 41]. It then computes

the spatial interpolation to the simulated land surface points. Finally, the

interpolated data are distributed to the processes according to which grid

points they are responsible for. The mapping of points to processors is done

in a round-robin fashion to obtain rough load balance. This structure, and

the changes to it described in this chapter, are illustrated in figure 4.1.

The initial design of this input presented many impediments to scalability.

The remainder of this chapter discusses how these limitations have been

largely eliminated. All data are shown in figures 4.2 and 4.3. The individual

curves and bars are keyed ‘A’, ‘B’, and ‘C’ by the successive optimizations

they depict, and ‘R’ denotes the baseline with no input optimizations, but

with the round-robin mapping described in the original paper.

In collecting the data reported here, we coarsely separated time spent on

collectives from idle time waiting at collectives. For each dynamic instance

of a collective operation, we recorded the time elapsed from call to return

in each process. We record the minimum observed time across all processes

as the actual collective time of each instance, and the excess time beyond

that minimum on each process as idle time. Given the approximate nature of

31

this methodology, it may be more appropriate for present purposes to simply

consider collective and idle time in combination, rather than independently.

4.1 Matching Atmospheric Timestep with Model

Timestep

The ISAM model is typically run with a timestep of 30–60 minutes. The

atmospheric data are provided at time intervals of 3–6 hours. In the initial

implementation of ISAM developed by our collaborators, every step con-

tained a call to the input procedure, which read the most recent atmospheric

data from the source files on rank 0, interpolated it, and distributed it. Thus,

the latency of filesystem access, interpolation, and MPI Scatterv was on the

critical path of successive model timesteps. Given that the same data would

be provided for 3–12 steps in a row, this repetition was both redundant and

created excess synchronization.

By modifying ISAM to reuse already-prepared data, we improved perfor-

mance by a factor of 1.7× on 1024 ranks of Hopper and 1.2× on 1024 ranks of

Edison. This improvement comes from both reduced time spent performing

collectives, and reduced imbalance time waiting on heavily-loaded cores to

reach each collective.

On 1024 cores of Hopper, where the round-robin and present optimized

versions of the code obtain their best performance, the optimized code spends

88% less CPU time performing collectives and 24% less CPU time idling.

The decline in collective time accounts for 62% of the 1.7× speedup and the

decline in idle time accounts for a further 34% of the speedup.

On 1024 cores of Edison, where the round-robin and present optimized

versions of the code also obtain their best performance, the optimized code

spends 30% less CPU time performing collectives and 18% less CPU time

idling. The decline in collective time accounts for 64% of the 1.2× speedup

and the decline in idle time accounts for a further 33% of the speedup.

In as much as the work of several collectives was consolidated in time into

a single one, this can be seen as an instance of the ‘batch collectives’ pattern

(§ 3.1). The effect on execution structure is precisely analogous: widening

the window between synchronizing collectives.

32

256 512 1024 2048 4096 8192 16384 32768
Cores

1

10

100

1000

Si
m

ul
at

ed
 y

ea
rs

 p
er

 h
ou

r

16.1 y/h
88 %

28.3 y/h
77 %

33.2 y/h
45 %

48.5 y/h
33 %

75.0 y/h
25 %

Ideal
C
B
A
Round Robin

(a) Hopper XE6

256 512 1024 2048 4096 8192 16384 32768
Cores

1

10

100

1000

Si
m

ul
at

ed
 y

ea
rs

 p
er

 h
ou

r

34.3 y/h
91 %

62.4 y/h
82 %

105.9 y/h
70 %

156.0 y/h
51 %

186.8 y/h
31 %

Ideal
C
B
A
Round Robin

(b) Edison XC30

Figure 4.2: Overall scaling of ISAM as successive optimizations are applied
to the input process for the climate forcing data. The graphs show years of
simulated time per hour of execution wall time. Higher is better. Runs
were for 5 years of simulated time. Labeled points show precise
performance values and parallel efficiency relative to the most optimized
code version ‘C’ on 256 cores.

33

(a) Hopper XE6

0.0 0.5 1.0 1.5 2.0 2.5
Core Seconds 1e7

256-C
256-B
256-A
256-R
512-C
512-B
512-A
512-R

1024-C
1024-B
1024-A
1024-R
2048-C
2048-B
2048-A
2048-R

Work
Collective
Idle
Read

0 1 2 3 4 5 6 7 8
Core Seconds 1e6

256-C
256-B
256-A
256-R
512-C
512-B
512-A
512-R

1024-C
1024-B
1024-A
1024-R
2048-C
2048-B
2048-A
2048-R

Work
Collective
Idle
Read

(b) Edison XC30

Figure 4.3: Breakdown of core-seconds spent by ISAM on different
activities, as a function of scale and applied optimizations of the climate
forcing data input process. Runs were for 5 years of simulated time. Lower
is better.

34

4.2 Parallel-In-Time Reading and Interpolation

With input data read from the filesystem every few steps, the time per step

scales poorly due to an Amdahl’s law bottleneck on the time to access the

filesystem and interpolate the data. Additionally, contemporary supercom-

puters offer high-bandwidth parallel filesystems to support their computa-

tional capabilities. By reading input data using only a single rank, ISAM

was limited to the bandwidth of a single node.

Thus, our next optimization to ISAM’s input procedure is to read and

interpolate many steps worth of input data in parallel. At model timesteps

where data must be read, each process reads and interpolates data for a

step computed by incrementing the current timestep by its rank. At each

subsequent step, the responsibility for distributing data cycles across the

ranks until every rank has served as the root once.

In theory, this can reduce the elapsed wall time spent on reading and

interpolation by O(P), since P such steps are performed in parallel. This

is potentially limited by available bandwidth both in accessing the file data

from the filesystem and in interpolating it in memory. It also presents the

potential for interference and contention between these processes or other

jobs on resources such as the Lustre metadata server. At larger scales, we

observe these effects as decreasing average bandwidth per core and node and

increased variability, as described in the original paper.

Note that the memory load imposed by this adaptation scales with the

number of ranks per node, rather than the number of ranks in the entire

job. The code does not distinguish between rank 0 and all other ranks; thus

they all have the capacity to read and interpolate input. In a setting where

the total memory on a node is insufficient to buffer a step’s input per rank,

we could adjust the scheme to only read and interpolate on every kth rank

instead. This simply adjusts the above theoretical impacts by a constant

factor of k, without changing the conclusion of improved scalability.

The improvement provided by this optimization over that described in

section 4.1 is 2.76× on 1024 cores of Hopper and 1.3× on 1024 cores of

Edison. In both cases, the reduction in idle time accounts for the bulk of

the improvement. On both systems, this optimization allows the code to

continue to gain performance at scales up to 2k cores, with efficiencies of

39% and 34% respectively, relative to the 256 core baseline.

35

4.3 Simultaneous Distribution of Multiple Steps

Having minimized wasted CPU time by fully parallelizing the reading and

interpolation steps, the largest non-work portion of the execution time at the

scaling limit of the code from section 4.2 is spent in collectives. On 2048 cores,

these consume 46% of CPU seconds on Hopper and 57% of CPU seconds on

Edison. On both systems, the increases in collective times account for the

bulk of increased time relative to runs on 1024 cores.

To overcome this impediment, we observe that at the first scatter oper-

ation after climate forcing data is read and interpolated, the P processors

each have data available for an upcoming timestep. However, in each scatter,

only the cyclically selected root processor actually provides it. This misses

a substantial opportunity for increased parallelism in usage of network re-

sources.

We take advantage of this opportunity by replacing the per-step calls to

MPI_Scatterv with an MPI_Alltoallv operation performed every P time

steps. Rather than spatially scattering data representing the climate forcing

at a single point in time, we now transpose the data from its provided tem-

poral distribution (each core sends a distinct timestep for every point) to a

spatial distribution (each core receives the time series for the points it owns).

Once this is done, each core can independently execute P time steps with no

communication. Thus, we note that this transformation is an application of

the ‘do more with each collective operation’ pattern described in Section 3.2.

At first glance, this pre-distribution of input data may seem to dramatically

increase memory usage on every node. However, this is not the case. To see

why, we first observe that the additional memory consumption is a constant,

independent of P . Suppose there are n points in total, and each one requires b

bytes of memory for a single time step’s climate data. Each core is responsible

for n/P of those points. The data each core reads from disk as in section 4.2

is bn. In the transposition, each core receives the bn/P bytes for one future

time step from each of the P cores. Thus, the total received data is just bn

– exactly as much as every core read from disk. For the NCEPQ climate

data set, b = 24 and n = 192 × 94 = 18, 048, totaling 423 kilobytes. For

the CRU NCEP data set, b = 32 and n = 720 × 360 = 259, 200, totaling 8

megabytes.

36

Lines Lines
Optimization added deleted Total

(A) Matching input steps 53 35 88
(B) Parallel input 133 53 188
(C) Simultaneous distribution 68 12 80

Table 4.1: Volume of code change required to implement each optimization

The effects of this optimization are striking. Where previously roughly half

the execution time was spent in collectives at just 2k cores, this optimization

reduces that time to less than 1% on both systems. Additionally, idle times

also fell by over 50% on both systems, due to the longer period between

synchronization points and greater opportunity for dynamic load variation

to average out. Moreover, read times (though representing only a small pro-

portion of execution) also fell substantially because of this optimization. We

conjecture that this decrease is due to reduced contention when accessing the

filesystem, since different cores can reach this phase across a wider timespan,

as opposed to nearly simultaneously. Overall, this provides a 2.4× speedup

on 2k cores of Hopper, and a 2.9× speedup on 2k cores of Edison. It also

allows us to scale with continued speedups to 32k cores.

4.4 Summary

From our baseline code, we have obtained speedups of 6.58× on 1024 cores

of Hopper and 2.78× on Edison. With all of the optimizations applied, we

strong scale from 256 cores to 2048 process with an efficiency of 88% on

Hopper and 91% on Edison. We accomplished this dramatic performance

improvement through transformations that

• removed redundant collective calls (§ 4.1),

• parallelized input to use all processors instead of just one (§ 4.2), and

• exploited the parallel availability of much more input data to asymptot-

ically reduce the frequency of calls to synchronizing collectives (§ 4.3).

In doing so, we also enabled essentially perfect strong scaling to more than

an order of magnitude more processors than the code had previously been

able to use.

37

Chapter 5

Desynchronizing Parallel File Output

List of Patterns Illustrated:

3.3 Send and consume data expected from a collective incrementally

(§ 5.1)

3.4 Separate communication from coordination (§ 5.1)

3.5 Replace synchronizing collectives with coordination schemes (§ 5.3)

3.7 Semantic object naming (§ 5.2, 5.3)

Parallel file systems, such as Lustre and GPFS, are common to large scale

parallel computers. They offer very high write bandwidth to keep up with

the data generation of applications running on those systems. To obtain

good bandwidth, applications and their supporting libraries must arrange

operations so that each ‘stripe’ unit of a file is only written to by a single

processor, ideally in large, aligned block units. Typically, computations are

not structured so that the resulting data will be arranged this way naturally.

Thus, in line with the description in Chapter 3, the code must at a minimum

1. have a means to designate the block-processor mapping,

2. ensure buffers are allocated on each such processor to hold pending

data, and

3. communicate that the writing processors are ready to receive the data

from the processors generating it.

MPI collective write operations satisfy these needs through synchronized op-

eration. For the cost of that synchronization, they offer very high perfor-

38

mance in relocating the provided data and delivering it to the parallel file

system.

The CkIO library was developed to provide Charm++ applications with

parallel filesystem support comparable to MPI-IO. This library has been

through two full design generations to improve its performance and imple-

mentation flexibility. The later generation design is in production use in the

ChaNGa N-body particle simulation code used for cosmology and astro-

physics. It is also in beta use for the NAMD classical molecular dynamics

code for biomolecular research.

In the design progression of CkIO, we can see the incremental application

of several patterns described in Chapter 3. In the first generation [21]1, the

library separated communication from coordination (§ 3.4) and processed

data incrementally (§ 3.3). The second generation partially applied semantic

naming (§ 3.7), but not to the extent that it could eliminate coordination

through synchronized operations. After describing the two generations of

CkIO that have been built so far, the final section of this chapter outlines a

potential future design that fully applies these lessons to eliminate the need

to synchronizing operations when performing parallel output.

5.1 Initial Design

We have implemented an output forwarding layer for parallel applications

written on top of the Charm++ parallel runtime system. As shown in Fig-

ure 5.1, the application’s work is divided among several objects on each pro-

cessor. The objects communicate with each other by asynchronous method

invocation in an active-messaging scheme. Each processor can be execut-

ing work in one object while transmitting or receiving messages for others.

This overlap of communication and computation is important for high per-

formance.

Normal application development practices in Charm++ suggest the use of

numbers of objects that correspond to a ‘natural’ decomposition of the prob-

lem being solved or the system being simulated, without direct regard for the

number of processors in the system. The runtime can then map these objects

1The text and figures describing this design in Section 5.1 are adapted from the cited

paper with permission. c©2011 IEEE

39

Parallel File System

...

ProcessorApplication Object

Parallel I/O Proxies

Figure 5.1: Architecture: Application objects communicate with local IO
proxy objects, which exchange data amongst themselves and interact with
the filesystem.

to optimize for load balance and communication patterns. However, for an

I/O library, the many considerations of process- and node-level buffering,

connection and contention limiting, and others drive toward an implemen-

tation that explicitly considers how many processors are available and how

work is distributed among them.

The central element of our implementation is a one-per-processor collection

of objects (known as a Chare Group in Charm++) that we will interpose be-

tween application-level objects that own the data and the underlying parallel

filesystem. Groups communicate by the same asynchronous mechanisms as

other Charm++ objects, but are addressed by the processor on which they

reside, rather than by an abstract index. The ‘Parallel I/O Proxy’ objects

of Figure 5.1 are implemented as a chare group, instantiated at application

startup. The interface to this group, including the message entry points and

sequencing logic, can be seen in Figure 5.2. The corresponding implementa-

tion code can be seen in Figure 5.3.

When the application wants to perform output, it signals the chare group

to prepare for that process (Manager::prepareOutout()). The group signals

its readiness to the application through a callback (ready), through which

it delivers an opaque handle that the application should pass in along with

the data. That handle acts as a ‘parallel file descriptor,’ allowing the proxy

40

1 group Manager {

2 entry void prepareOutput_central(std:: string name , size_t bytes ,

3 CkCallback ready , CkCallback complete ,

4 Options opts);

5 entry void prepareOutput_distrib(int handle , std:: string name ,

6 size_t bytes , Options opts);

7 entry void prepareOutput_readied(CkReductionMsg *m);

8
9 /// Serialize setting up each file , so that all PEs have the same sequence

10 entry void run() {

11 for (filesOpened = 0; true; filesOpened ++) {

12 if (CkMyPe () == 0)

13 when prepareOutput_central(std:: string name , size_t bytes ,

14 CkCallback ready , CkCallback complete ,

15 Options opts) atomic {

16 // Default setting and error checking omitted

17
18 nextReady = ready;

19 thisProxy.prepareOutput_distrib(nextHandle , name , bytes , opts);

20 files[nextHandle] = FileInfo(name , bytes , opts);

21 files[nextHandle]. complete = complete;

22 }

23
24 when prepareOutput_distrib[filesOpened](int handle , std:: string name ,

25 size_t bytes , Options opts) atomic {

26 if (CkMyPe () != 0) {

27 files[handle] = FileInfo(name , bytes , opts);

28 }

29
30 // Open file if we’re one of the active PEs

31 if ((CkMyPe () - opts.basePE) % opts.skipPEs == 0 &&

32 CkMyPe () < lastActivePE(opts)) {

33 int fd = open(name.c_str(),

34 O_WRONLY | O_CREAT , S_IRUSR | S_IWUSR);

35 if (-1 == fd)

36 CkAbort (" Failed to open a file for parallel output ");

37 files[handle].fd = fd;

38 }

39
40 contribute(CkCallback(CkIndex_Manager ::prepareOutput_readied (0),

41 thisProxy [0]), filesOpened);

42 }

43
44 if (CkMyPe () == 0)

45 when prepareOutput_readied[filesOpened](CkReductionMsg *m) atomic {

46 delete m;

47 nextReady.send(nextHandle ++);

48 }

49 }

50 };

51
52 entry void write_forwardData(int handle , const char data[bytes],

53 size_t bytes , size_t offset);

54 entry void write_dataWritten(int handle , size_t bytes);

55 };

Figure 5.2: The interface definition and coordination code for the I/O
proxy group

41

1 struct Options {

2 /// How much contiguous data (in bytes) should be assigned to each active PE

3 size_t peStripe;

4 /// How much contiguous data (in bytes) should a PE gather before writing it out

5 size_t writeStripe;

6 /// How many PEs should participate in this activity

7 int activePEs;

8 /// Which PE should be the first to participate in this activity

9 int basePE;

10 /// How should active PEs be spaced out?

11 int skipPEs;

12 };

13
14 struct FileInfo {

15 std:: string name;

16 Options opts;

17 size_t bytes , total_written;

18 int fd;

19 CkCallback complete;

20 };

21
22 class Manager : public CBase_Manager {

23 /// Application -facing methods , invoked locally on the calling PE

24 void prepareOutput(const char *name , size_t bytes ,

25 CkCallback ready , CkCallback complete ,

26 Options opts = Options ()) {

27 thisProxy [0]. prepareOutput_central(name , bytes , ready , complete , opts);

28 }

29
30 void write(int handle , const char *data , size_t bytes , size_t offset) {

31 Options &opts = files[handle].opts;

32 do {

33 size_t stripe = offset / opts.peStripe;

34 int pe = opts.basePE + stripe * opts.skipPEs;

35 size_t bytesToSend = min(bytes , opts.peStripe - offset % opts.peStripe);

36 thisProxy[pe].write_forwardData(handle , data , bytesToSend , offset);

37 data += bytesToSend;

38 offset += bytesToSend;

39 bytes -= bytesToSend;

40 } while (bytes > 0);

41 }

42
43 /// Internal methods , used for interaction among IO managers across the system

44 void write_forwardData(int handle , const char *data , size_t bytes , size_t offset) {

45 // Omitted error checking and interruption handle code for simplicity

46 pwrite(files[handle].fd, data , bytes_left , offset);

47 thisProxy [0]. write_dataWritten(handle , bytes);

48 }

49
50 void write_dataWritten(int handle , size_t bytes) {

51 files[handle]. total_written += bytes;

52
53 if (files[handle]. total_written == files[handle].bytes)

54 files[handle]. complete.send();

55 }

56
57 int filesOpened;

58 int nextHandle;

59 std::map <int , FileInfo > files;

60 CkCallback nextReady;

61
62 int lastActivePE(const Options &opts) {

63 return opts.basePE + (opts.activePEs -1)*opts.skipPEs;

64 }

65 };

Figure 5.3: The implementation of the I/O proxy group

42

objects to look up the parameters (which processors, stripe size, offsets, etc.)

associated with each particular target file. Once the system is ready, the

application objects will pass their portions of the data to the local element of

the group (Manager::write()), which will redistribute the data according

to the plan and perform write operations as whole stripes are assembled.

Let us consider how this design fits the the patterns of separating commu-

nication from coordination and transferring data incrementally. The methods

named prepareOutput_* provide all of the necessary coordination in a non-

blocking fashion, with no dependence on the data to be written. Thus, file

handles and buffers can be prepared while the computation generates the

data. Then, the write methods transfer the data between the processor on

which it’s generated and the processor that will be responsible for writing

it. For a processor that will write data, any chunk received is sufficient to

write it out. There is no dependence on that processor receiving other data,

or acting as an intermediary for data transfers to other processors.

Control Flow For each file, our IO forwarding layer takes as parameters

a stripe size, a number of processors to use, a starting processor, and a

numeric separation between those processors. It applies these parameters in

a straightforward fashion to direct data provided by the application to the

processor that will eventually pass it to the filesystem.

When application code is ready to write data to persistent storage, it calls

the IO forwarding layer with a file name, size, and the parameters listed

above. It also passes two callbacks, for signaling readiness and completion.

These callbacks can represent a function to call or, more commonly, the tar-

get of a subsequent message send. The IO forwarding layer communicates

internally to ensure that all processors know how that file is to be handled.

Every processor acknowledges these instructions by contributing to a paral-

lel reduction operation. When the reduction reaches the root processor, it

triggers the ready callback, passing a handle object used to look up the file.

These steps are illustrated in Figure 5.4.

As shown in Figure 5.5, the application code sends this handle to any ob-

jects with data to be written. Each of these objects call the IO proxy object

local to the processor on which they reside, passing the handle along with

their data buffers. The local proxies forward data to proxies on other proces-

sors as needed, via the Manager::write_forwardData() method. From the

43

Figure 5.4: Flow of execution to prepare for writes to a file

Figure 5.5: Flow of execution once a file is ready to be written

44

Figure 5.6: Mapping chunks of a file from different processors to whole
stripes

application’s point of view, the forwarding process completes immediately,

and buffers can be reused or discarded without delay. When an IO proxy

has written all the data it is responsible for, it notifies the master. When

the master has heard from the IO proxies on every processor writing data, it

signals the completion callback.

Striping Given the substantial documented effect of matching application

writes to filesystem striping, the optimization priority is to constrain each

output processor’s writes to distinct stripes. For each segment of data that

the application wishes to write, we compute which stripes it intersects based

on the stripe size parameter (Figure 5.3 line 33), as shown in Figure 5.6.

Then, for each stripe, we compute which processor is responsible for writing

that stripe to the filesystem (line 34). We send messages containing each

stripe chunk to the IO proxy on its respective processor (line 36). When the

IO proxy receives the data, it passes it to the filesystem (line 46), secure in

the knowledge that it will not contend with other processors for access to

that stripe, and notifies the root processor (line 47) so that we can tell when

the process is complete (lines 50-55).

5.1.1 Evaluation

In order to evaluate the effectiveness of our approach, we have adapted

NAMD, an existing Charm++ application, to use our output framework.

NAMD is a popular (> 40, 000 users) code for classical (i.e. Newtonian)

simulation of large (up to 100 million atoms) biomolecular systems at atomic

45

(a) Multiple files, dummy scheme

(b) Single file, one at a time

(c) Single file, simultaneously

Figure 5.7: Execution timelines of unmodified NAMD performing an output
step generated by the Projections tool (with comparable time scales).

0 50 100 150 200 250 300

Cores performing output

0

100

200

300

400

500

600

B
a
n
d
w

id
th

 (
M

iB
/s

)

BW 480 New
BW 240 New
BW 480 Old

Figure 5.8: NAMD’s output bandwidth on 240 and 480 processors of
Jaguar and Kraken, with varying numbers of processors touching a single
output file.

46

scale. Its behavior of periodically dumping the state of the computation (i.e.

the positions and velocities of all particles) to disk is typical of many scientific

applications.

In its present version, NAMD contains mechanisms to do parallel output.

Specifically, the particles’ positions are collated on a subset of the processors,

which coordinate to write their data to the filesystem. This coordination

amounts to a control on how many of them will actually make write() calls

simultaneously. This scheme was implemented to enable scalability to large

target systems without exceeding the available memory on individual nodes.

It makes some expedient choices to attain acceptable performance, and leaves

several knobs for the user to set ‘appropriately’. It takes no account of the

type or parameters of the filesystem on which it runs.

NAMD’s parallel output scheme [42] introduces a layer of indirection be-

tween the application objects and the IO processors, to balance the IO and

memory load among the processors performing IO. Depending on how many

processors are involved in output and when they perform their operation,

performance can vary wildly. Figure 5.7 shows execution traces of NAMD

for simulating a 2.8-million-atom virus molecule on 32 nodes of Jaguar PF

(using 10 cores/node and one output processor per node) before our modi-

fications. In the figure, the highlighted dark yellow bars represent the time

spent on output, while bars in other colors represent the time of different

types of force computation. Figure 5.7a shows each processor writing to a

separate file, a scheme not supported by surrounding tools or NAMD’s own

input reader, as a point of reference; Figure 5.7b shows all writes going to one

file one after another while figure 5.7c shows all writes going to one file but

simultaneously. Note that these traces are presented on approximately the

same timescale, illustrating that an incautious ‘all-at-once’ mode of output

can be disastrous.

The disappointing performance in NAMD’s working output code can be

explained by the various kinds of contention that it creates in the storage

subsystem. Among the processors performing output, data is divided among

them evenly, for the sake of load balance. Since the simulation data set

does not precisely divide into neat power-of-two size chunks, this means

that there is no alignment of each processor’s writes to filesystem or storage

hardware boundaries. Additionally, because each processor’s responsibility

crosses stripe boundaries, there are substantially more connections to the

47

storage nodes than are necessary.

In Figure 5.8, we present measurements of the average bandwidth obtained

by coordinate outputs from a 10-million atom simulation on Jaguar, a Cray

XT5 with a Lustre-based storage system. Each output step wrote 283MiB

of data, and the data presented are the average of 8 output steps each. We

can see that NAMD’s existing implementation peaks around 220MiB/s using

36 out of 480 processors for output, and falls off rapidly. In contrast, when

NAMD is adapted to use our library, it sees substantially better performance

on both 240 and 480 processors. Measured bandwidth ranges from 305MiB/s

to 580MiB/s. Moreover, our attained bandwidth does not decay as rapidly

as one leaves the ‘sweet spot’ of output processor count. Thus, it is less

reliant on the user to choose a good value for the number of output proces-

sors. Finally, because it successfully uses a larger number of cores, we are

able to run much larger simulations (with a correspondingly larger memory

footprint) without output times increasing sharply.

Measurements by the machine’s operators [43] suggest that the underlying

Lustre filesystem can offer bandwidth of at least 1.5 GiB/s to hundreds of

processors used here. Thus, there is still a long ways to go in minimizing

time spent performing output.

5.2 Deployed Design

The second generation design for CkIO introduces several improvements. It

implements configurable stripe buffering so that blocks of file data filling a

whole stripe of the underlying file system get aggregated and written in full,

rather than as each increment of data arrives. This trades some pipelining

for lower overhead interaction with the backing storage system (particularly,

avoidance of a read-modify-write cycle of partial stripes on RAID volumes).

The later design demonstrated early examples of a few patterns from Chap-

ter 3. It separates coordination from communication at two levels. Files can

be opened once, with many subsequent sessions writing to disjoint offsets

within them. Each session only needs to declare its offset and length within

the target file to obtain a handle that the application can use to submit data.

Thus, the session setup (object construction, buffer allocation, etc.) can oc-

cur before any data to be written has even been computed, or concurrent

48

with its computation. It also moves more toward semantic naming of the

objects that will aggregate the output data into aligned stripes and write it

to the file system.

This version of the library’s design has not yet been published. It was

studied in a performance modeling report for a class project by Ronak Buch

and Sam White [44]. Their experiments found that the library was capable

of transferring data at several gigabytes per second. The results presented

likely underestimate its performance in actual usage, because they timed the

entire operation, including all setup, as the denominator for the measured

bandwidth. As noted earlier, it is in use by ChaNGa and will shortly be

integrated for use in NAMD to replace the lower levels of its current parallel

output implementation [42].

5.3 Design for Fully Desynchronized Coordinated

Output

CkIO synchronizes to coordinate initial offset and total data size for each

write session on a given file. Data transfer is then incremental and indepen-

dent. Final flushing and outcome reporting is again synchronized.

Taking an asynchronous execution model as a pre-requisite, we can go

further. With better object naming (absolute file offset rather than session-

relative) and completion detection, the size and offset of a session would

not need to be provided up front. With that modification, session initiation

would not need to be synchronized across callers or the backing callee ob-

jects. Instead, independent writers could indicate a logical session sequence

number that each write contributes to. All data filling in whole blocks could

be written out opportunistically. The system could then use the mechanisms

described in Section 3.4 to detect when the full data of the session has been

transferred, ensure the potentially incomplete boundary blocks get written

out, call suitable filesystem flush operations, and optionally report comple-

tion.

In the case of variable amounts of data from each contributor, or a number

of contributors or size of contributions that is not known to other contrib-

utors, the standard strategy is to perform a reduction and/or scan (parallel

prefix) as necessary to obtain that information, prior to submitting the data.

49

An alternative could have processors submit data independently with suit-

ably generated ordered keys, using termination detection of some form (as

described in Section 3.4), and do the necessary coordination independent of

the specific processors providing the data to be written.

50

Chapter 6

Dense LU Factorization

List of Patterns Illustrated:

3.1 Batch (blocking on / waiting for) collectives (§ 6.2.5–6.2.6)

3.2 Communicate more with each collective, to reduce frequency (§ 6.3)

3.3 Send and consume data expected from a collective incrementally

(§ 6.2.4)

3.5 Replace synchronizing collectives with coordination schemes

(§ 6.2.2)

3.6 Replace synchronizing collectives with p2p messages that achieve

the desired effect (§ 6.2.4)

Dense LU factorization is commonly used as a means to solve dense linear

systems. A set of n linear equations in n variables is solved by performing LU

factorization and solving the resulting triangular systems. The algorithm has

a few different variants, one of which is Crout’s algorithm which performs an

in-place factorization. Numerical stability is achieved via partial pivoting.

Most parallel formulations of LU are blocked algorithms with underlying

sequential operations delegated to a high performance linear algebra library

(e.g. an implementation of BLAS). The matrix is typically decomposed into

square blocks of size b2 (shown in Figure 6.1) and distributed across a set of

processors.

51

A0

A1

A2

A3

A4

U0

T0,0

T1,0

T2,0

T3,0

U1

T0,1

T1,1

T2,1

T3,1

U2

T0,2

T1,2

T2,2

T3,2

U3

T0,3

T1,3

T2,3

T3,3 Column being
factored

AkActive panel block

UiU block

Tm,nTrailing submatrix block

Previously factored block

Figure 6.1: The matrix is decomposed into square blocks, which take on
different roles as the factorization proceeds.

6.1 Background

This section provides background information on the problem of parallel

dense LU factorization.

6.1.1 Algorithm

The parallel factorization process can be described as follows:

1. for step in 0..
n

b
− 1:

Active panel blocks are those at/below diagonal block step

(a) Partial Pivoting for column in 0..b: (on each active panel block)

i. Each block identifies its maximum value below the diagonal

in the current column within that block and contributes to a

reduction among the active panel blocks.

ii. The result of the reduction identifies the pivot row, which is

swapped to the diagonal position and broadcast to all of the

active panel blocks.

iii. Each active panel block performs a rank-1 update of the sec-

tion after column with multipliers from column and the pivot

row.

(b) The sequence of pivot exchanges is broadcast to the blocks of U

52

and the trailing submatrix, which communicate to apply the same

swaps as the active panel.

(c) Active panel blocks send their contents, each a portion of L, to

the blocks to their right.

(d) U blocks to the right of the diagonal each perform a triangular

solve, and send the result to the blocks below them.

(e) Blocks in the trailing submatrix each compute a trailing update as

the product of the L and U blocks they have received.

6.1.2 Granularity Spectrum

The factorization presents a challenging spectrum of computation and com-

munication grain sizes. The trailing updates comprise the bulk of the compu-

tation in a dense LU solver. Each trailing update is an O(b3) matrix-matrix

multiplication (i.e. a call to the dgemm() level-3 BLAS routine). The trian-

gular solves (via dtrsm()) are of similar computational cost. Each trailing

update or triangular solve takes tens of milliseconds for the block sizes com-

mon on today’s architectures. Large messages drive the heavy computation

kernels. In contrast, the active panel is communication intensive, with b

small-message pivot reductions and broadcasts occurring in rapid succession,

interspersed with smaller computations. Each of these fine-grained steps on

the active panel take hundreds of microseconds to single digit milliseconds.

6.1.3 Lookahead

Ideally, every processor would remain busy during the entire factorization

process. However, in each step, only a subset of processors own blocks that

participate in the active panel. Thus, to avoid idling processors, work from

multiple steps must be overlapped. The extent of the overlap (specifically,

the number of steps that the active panel runs ahead of trailing updates) in

an implementation of dense LU is known as its lookahead depth [45].

53

6.2 Charm++ Implementation

In our Charm++ implementation of dense LU factorization, each block is

placed in a message-driven object, driven by coordination code written in

Structured Dagger [46]. The coordination code describes the message de-

pendencies and control flow from the perspective of a block. Thus, every

block can independently advance as it receives data and bulk synchrony is

avoided by allowing progress in the factorization when dependencies have

been met. With many blocks per processor, the Charm++ [47] runtime

system inherently provides dynamic overlap of communication and compu-

tation by scheduling blocks that have received the necessary data. In gen-

eral, the system ensures high utilization, since some blocks on each processor

should always have work. Others implementations dynamically interleave

the work performed on various blocks, either by introducing task parallelism

to HPL [48] or by spawning many light-weight threads in UPC [49].

This style of message-driven programming allows a clear and concise rep-

resentation of the algorithm without explicit buffering of messages. When

a message arrives, the Charm++ runtime system invokes a method on an

object or buffers it if the object is not ready to process the message.

By representing each matrix block as a separate object, the description of

the parallel algorithm is separated from the particular details of its execution.

Additionally, the control flow executed for each block is directly visible in

the code; it is linear and effectively independent of other activity on its host

processor.

Due to the simplicity of expression in the locally message-driven style, the

source code for our implementation of the factorization library is approxi-

mately 1,650 lines long [30].1 This is shorter than HPL, which is around

12,000 lines and the UPC implementation [49], which is around 4,000 lines

of code. Furthermore, the distribution of blocks to processors is not embed-

ded in the expression of the parallel factorization algorithm, but is instead

localized to discrete mapping functions. The flexibility this provides was

previously used to study some atypical mappings in an earlier non-pivoting

version of this code [50] and to study optimized mappings of pivoting LU

factorization on modern multicore cluster and supercomputer nodes [35].

1As counted by David Wheeler’s SLOCcount.

54

Prioritization

On each processor, the work units for which input data has arrived are placed

in a priority queue. The priorities are set by the type of work a unit represents

and the index of its target block in the matrix. The basic priority scheme

gives high priority to active panel work and U triangular solves (to generate

work quickly), and lower priority to trailing updates.

6.2.1 Dynamic Lookahead for Greater Overlap

Bulk synchronous implementations, such as HPL [51], require a fixed looka-

head depth and restrict the overlap of steps to that amount. This restriction

is due to memory limits of the machine; delaying the computation by increas-

ing the lookahead depth means that memory for input blocks accumulates

and then must be controlled. Due to implementation complexity and per-

formance portability issues, the ScaLAPACK library [52] does no lookahead

(i.e. its lookahead depth is 0).

In an asynchronous, dataflow parallel programming model, the availabil-

ity of input data immediately triggers the next steps in the algorithm that

depend on it. For typical, iterative, scientific algorithms, the amount of par-

allelism in the computations remains more or less steady as the algorithm

progresses. Such algorithms can be expressed in pure dataflow semantics and

can exploit asynchronous execution models without other concerns. However,

the LU factorization has varying amounts of parallelism at different stages

of the computation. When expressed in the dataflow model, it can cause un-

bridled spikes in memory usage because early steps in the algorithm trigger

large amounts of data movement to feed the subsequent steps. For factoriza-

tions involving large matrices relative to the size of available memory, this

can cause premature and unsuccessful termination of the execution. Hence,

although lookahead is a natural consequence of using the dataflow model,

it still needs to be moderated by a continuous awareness of memory and

bandwidth utilization. This leads to a reality where the dataflow semantics

are adaptively throttled by a system that monitors memory usage and other

system parameters.

In a message-driven, asynchronous environment, LU can be implemented

to allow dynamic lookahead: the diagonal can progress without a bound

55

before the rest of the matrix finishes updating. Our solver implements dy-

namic lookahead, using a dynamic pull-based scheme to constrain memory

consumption below a given threshold.

To implement the pull-based scheme, each processor has a distinguished

scheduler object in addition to its assigned blocks. The scheduler maintains

a list of the blocks assigned to its processor, and tracks what step they have

reached. Within the bounds of the memory threshold, it requests blocks from

remote processors that are needed for local triangular solves and trailing up-

dates. To eliminate the possibility of deadlock, the order in which operations

are executed, and hence remote blocks requested, must be carefully selected.

Husbands and Yelick point out [49] that selecting updates in step order is

deadlock-free, but suggest that there may be a general solution for finding

a deadlock-free selection order of trailing updates using the dependencies

between blocks.

In an instance of the ‘coordination schemes instead of synchronizing collec-

tives’ pattern (§ 3.5), Section 6.2.2 describes the dependencies between the

blocks and how our implementation uses this structure to safely reorder the

selection of trailing updates to execute. We paired this with an instance of

the P2P replacement (§ 3.6) and incremental transfer (§ 3.3) patterns in the

form of on-the-fly dynamic multicast operations to transfer the large matrix

blocks, described in Section 6.2.4.

6.2.2 Dependence Scheduling of Large Block Operations

To achieve high machine utilization, and hence good performance, the active

panel and trailing update calculations must be overlapped. Specifically, the

active panel for a step t should finish early enough before the trailing updates

from step t− 1 such that no processor idles while waiting for input data for

step t’s trailing updates. In strong scaling scenarios and in the large weak-

scaled runs, each active panel may take longer to factor than all of the trailing

updates it generates. Thus, to maintain overlap throughout the factorization,

active panels should be executed as eagerly as possible while staying within

memory limits.

In a matrix decomposed into N×N blocks, the factorization of active panel

t enables (N − t)2 trailing updates. However, only N − t of those updates

must complete before the factorization of active panel t+1 can start. Despite

56

this, the UPC implementation allocates memory for these updates in strict

step order, as a conservative means to avoid deadlock. Thus, with a matrix

that is large relative to available memory, it must execute most of each step’s

updates before making space for the next step, and lookahead is very limited

until late in the factorization, when little of the matrix remains to be updated.

In order to explore less conservative scheduling policies, we formalize the

dependence structure in terms of planned operations, those for which memory

has been reserved. These include both triangular solves and trailing updates,

but not pivoting, since it consumes a minimal amount of memory.

For each block (x, y), major operations on it are denoted as a triple (x, y, t).

Every block will go through trailing updates

(x, y, t) | 0 ≤ t < min(x, y).

Blocks below the diagonal, x > y, become part of the active panel after

their last trailing update and so have no more operations to plan. Blocks

above the diagonal, x < y, complete their trailing updates and then perform

a triangular solve, whose triple will always be of the form (x, y, x). For

simplicity, this formulation conservatively subsumes pivoting operations into

whatever major operation follows them, since they consume little additional

memory (obviating the need to plan them explicitly).

A triangular solve (x, y, x) depends on its final trailing update

(x, y, x− 1) ≺ (x, y, x)

the final trailing updates to its associated active panel

(i, x, x− 1) ≺ (x, y, x) | x ≤ i < N

and (due to pivoting) the previous step’s trailing updates on the column

below it

(i, y, x− 1) ≺ (x, y, x) | x ≤ i < N.

A trailing update (x, y, t) directly depends on the previous update to that

block

(x, y, t− 1) ≺ (x, y, t) | t > 0

57

and the triangular solve of its U input

(t, y, t) ≺ (x, y, t).

The dependence on U creates a transitive dependence on the corresponding

block of L, and so need not be considered explicitly.

If operations are planned strictly in step order, with triangular solves pre-

ceding trailing updates, these dependencies are effectively expanded to in-

clude the entire trailing submatrix at step t − 1 for every step t triangular

solve. Under that policy, it is clear that all dependencies will be planned

before their dependents, and this will create a deadlock-free schedule. More-

over, this is a policy that every processor can follow independently, without

communication to coordinate decision-making. This is the policy followed by

the UPC implementation.

We have two desiderata for a less conservative scheduling policy. First,

it should enable overlap to the greatest extent possible. Second, it should

require little or no non-local information to operate correctly, because co-

ordinating multiple processors operating asynchronously can be expensive,

error-prone and difficult to reason about.

Given a set of operations S that can be considered done or planned at some

point in time, the operations E(S) eligible for planning can be determined

by which dependencies are satisfied:

E(S) = {(x, y, t)| t < min(x, y) ∧
((x, y, t− 1) ∈ S ∨ t = 0) ∧
(t, y, t) ∈ S} ∪

{(x, y, x)| x < y ∧ (x, y, x− 1) ∈ S ∧
({(i, x, x− 1), (i, y, x− 1)|x ≤ i < N}
⊆ S ∨ x = 0)}

(6.1)

If these precise dependencies are applied on a local, per-processor basis,

deadlock can result, as shown in figure 6.2. This occurs because the trailing

updates necessary to pivot data for some triangular solve can be mutually

blocked by other trailing updates across two or more processors. Step-order

planning does not give rise to cases like this; specifically, it guarantees that

the trailing updates on one processor needed to generate pivots for a trian-

58

𝝰𝝰

0

1

0

𝝰

𝝩

𝝱p

𝝩p1

0

1

𝝰

𝝩𝝩

𝝱p

𝝩p𝝰

𝝰

𝝰

Block completed

0,1 Assigned processor

𝝩 Triangular solve

Xp Planned operation

𝝰,𝝱 Trailing update

Figure 6.2: Possible deadlock situation if only local dependencies are
considered. This is an example with two processors and an allowed
planning depth of two. The two processors that try to execute βp are
dependent on their Tp triangular solves. These two solves are dependent for
pivoting on the two non-local blocks that have not completed α. Since
these blocks are not planned, deadlock ensues.

gular solve would be planned before any trailing updates that may depend

on that triangular solve’s output.

Suppose that processor has the information that the triangular solve (t+

1, y, t+ 1) has completed, despite some of its blocks in column y not having

been updated to step t, and thus unable to pivot with (t+ 1, y). This means

that those blocks contained no pivot rows for that step. The completion of

the triangular solve with no contribution from those blocks lets that processor

delay planning updates to those blocks, in favor of step-wise later updates

that might be closer to critical for the active panel.

Our baseline implementation follows the conservative step order that avoids

the possibility of deadlock. However, we deviate from step order by exploiting

the information about finished triangular solves in a limited fashion. When a

U block on the first super-diagonal does its triangular solve, it broadcasts a

notice of this progress to the scheduler objects on all of the processors. That

broadcast is used to release conservatively set dependences that would hold

back the next active panel. In its limited form, the benefits of this are modest:

about a 0.5% increase in throughput as a fraction of the system’s peak.

A more complete implementation would make the same release notification

from every triangular solve, allowing columns that are a few steps away from

being on the active panel to run further ahead of other columns further to

59

the right in the matrix. The challenge, then, would be for each scheduler

to determine how much memory to allocate to updates on which part of the

matrix, given a need to balance fastest immediate progress with having work

to do when otherwise idle.

6.2.3 Experimental Setup

The experiments described in the remainder of this section were performed

on two supercomputers.

The first was the the Intrepid Blue Gene/P system at Argonne National

Laboratory. Each node of Intrepid had 4 PowerPC 450 cores running at 850

MHz. The peak performance of each core is 3.4 GFLOP/s. On Intrepid,

we used matrix blocks of 300× 300 doubles up to 1k cores on Intrepid, and

150× 150 doubles at larger scales, where not otherwise specified.

The second was the Jaguar Cray XT5 system at Oak Ridge National Lab-

oratory. Each node of Jaguar had a pair of 6-core AMD Opteron ‘Istanbul’

processors running at 2.6 GHz. The peak performance of each core is 10.4

GFLOP/s. We used matrix blocks of 500 × 500 doubles for experiments on

Jaguar where not otherwise specified.

Experiments to study the impact of particular optimizations were per-

formed with all other optimizations described here and in a paper on map-

ping this code [35] enabled. Thus, the results present the criticality of each

optimization to the overall performance obtained.

6.2.4 Limiting Network Contention with Dynamic Multicasts

Dense LU factorization is not generally considered a network-intensive paral-

lel operation, since its computation asymptotically dominates its communica-

tion. However, it presents communication patterns that involve moving large

volumes of data (matrix blocks) in a ‘bursty’ fashion from a few source pro-

cessors to many recipients. In a synchronous implementation, these bursts

of communication can be implemented as efficient collective broadcasts to

statically known subsets of processors (e.g. the ‘process rows’ and ‘process

columns’ in HPL). In a pull-based implementation, however, recipient pro-

cessors may request blocks at any time, and the owner of a block will need

to respond quickly, so that the requester does not run out of work and idle.

60

Testing shows that responding to these requests one-by-one as they arrive

leads to network saturation on processors owning blocks that are in high

demand. This saturation stretches the time the sender spends responding,

and delays arrival of the response on requesting processors.

To address network saturation, we dynamically batch block requests to

efficiently multicast blocks and spread the network load. Requests for a block

arriving before that block is ready are batched and sent in a single multicast

when the block’s computation is complete. However, requests arriving later

have no inherent method for batching into multicast groups. Thus, we limit

the number of large outgoing messages that each processor may have in flight

at a time. When a request for a block arrives, the requesting processor is

put on a list of requesters for the block, and the block puts itself in a send

queue. Eventually, as sends complete, each queued block will reach the head

of the queue.

When a block reaches the head of the send queue, it will have accumu-

lated a list of several processors that have requested the block since the last

time that block was sent. The list of requesting processors participating in

a multicast is transmitted by constructing a binary spanning tree on the fly.

This enables dynamic, asynchronous collective communication with negligi-

ble additional latency and little message size overhead.

Figure 6.3 shows that our multicast scheme substantially outperforms

point-to-point responses to each request. This scheme illistrates the pat-

terns of replacing synchronous collections with a purpose-specific coordina-

tion scheme and point-to-point messages. It avoids making processors that

would be near the leaves of a static broadcast tree wait for interior nodes of

that tree. Thus, we avoid paying for late arrival and noise on those interme-

diate processors.

6.2.5 Exclusive Scheduling Classes

In applications that mix large grains of sequential execution with latency-

sensitive communication operations, there is a tension between computa-

tional throughput and responsiveness: a single processor’s work tends to

execute most efficiently when presented in large chunks; however, when such

compute kernels are running, reacting to incoming messages is difficult or

impossible.

61

 3.5

 4

 4.5

 5

 5.5

 6

 6.5

 7

 7.5

 132 528 2112

G
F

lo
p
/s

/c
o
re

Number of Cores

Multicast
No multicast

Figure 6.3: Performance effects of agglomerating work and multicasting it
on-the-fly to destinations. The 2112 point of the no multicast curve did not
finish in the allotted time; hence it represents the maximum performance
that configuration could have achieved.

In many asynchronous programming models, work is decomposed into

units and each processor draws from a local queue of available work units.

When a processor finishes executing a work unit, it will select the highest

priority work unit available in its queue as the next. In general, as long as

work units are available it is beneficial to execute them to avoid idle time and

maintain high utilization. However, if the highest priority work unit avail-

able is not on the critical path and is relatively long, it may delay execution

of a critical work unit that will arrive soon. Therefore, it may be beneficial

for that processor to idle briefly, waiting for the higher priority in-flight work

unit, rather than opportunistically executing the already available work unit.

In any asynchronous execution model that is opportunistic, ensuring that

specific classes of work execute uninterrupted is a challenging problem. The

problem is exacerbated if there are large grain size variations across these

classes. Decreasing the interleaving of a critical class with grains from other

classes may be important for ensuring that the critical path computation or

communication proceeds quickly.

Existing applications and runtime environments resolve this tension using

a variety of methods:

• Interrupts/Preemption: Long stretches of execution can be interrupted

when a latency-sensitive event occurs, with the reaction preempting

the ongoing computation. This method can achieve excellent respon-

siveness, but requires low-level hardware or runtime support, may be

62

overhead prone, and is difficult to program.

• Polling : The code for a long stretch of work can be adapted to explic-

itly poll for the arrival of a critical message and respond to it before

resuming execution. This in-line interruption introduces overhead, but

it also presents deeper issues of determining polling frequency. More-

over, it is not always desirable or possible to poll from within optimized

compute kernels like those found in BLAS libraries.

• RDMA: If the critical operation is purely a data transfer operation on

precomputed data, this problem can be resolved using remote direct

memory access. With hardware support, this can be very efficient, since

the ongoing computation can continue executing unaffected. However,

only very simple operations are possible. Hardware and programming

environment support are also necessary, limiting its portability

A straightforward message-driven implementation of dense LU factoriza-

tion exhibits this problem because it carries a mix of latency-sensitive mes-

sages on the active panel, and mostly latency-insensitive work in the trailing

submatrix. The former take microseconds to single-digit milliseconds per

matrix column, whereas the latter take tens of milliseconds each.

When work on the active panel is available on a processor, it is given pri-

ority over all other parts of the factorization process. However, because new

active panel work only arrives after the previous one has been completed,

the intervening gap between these units gives the processor an opportunity

to schedule large grain trailing updates or triangular solves. If such large

grains are scheduled, the processor’s participation in the next unit of active

panel work is delayed, affecting all the processors involved in the panel fac-

torization. This considerably slows down this class of work which lies on the

critical path. With sufficient delays, processors will exhaust their backlog of

trailing updates before the current panel is factorized and data for the next

batch becomes available.

The synchronous execution structure of HPL prevents this problem from

arising. Based on lookahead depth, all processors know what work they are

expected to complete before participating in the next row/column broadcast

or active panel factorization. Until recent hardware generations, this work-

load was naturally balanced, since the operation counts and processor speeds

63

Time

Proc 1

Proc 2

Proc n

...

(a)

Trailing Update Active Panel Contribute to
reduction Reduction up tree

Rank 1
update

Reduction
root

Proc 1

Proc 2

Proc n

...

(b)

Figure 6.4: Two different time progressions of dense LU: 6.4a displays
execution with interleaving of various grain sizes; 6.4b shows execution with
isolation. If the smaller grains are interleaved with larger grains, the critical
path is prolonged.

were uniform. With variable processors now becoming ubiquitous [19], that

can no longer be relied upon to maintain high utilization. Thus, this syn-

chronization will cause faster processors to wait when they could have done

more work without causing a delay.

A possible method to decrease this interference is to separate work units

into exclusive scheduling classes. During execution, the scheduler is set to

some exclusive scheduling class. Work units of lower classes in the local queue

will be held back in favor of higher class work units. Such stratification of

work units allows the scheduler to selectively choose only the work units that

are suitable for execution, depending on the currently active scheduling class.

The active scheduling class is determined by the application; it instructs the

scheduler to transition to a different scheduling class when appropriate.

This methodology has the advantage of maintaining the desired variation

in grain sizes while using a general scheduling methodology to solve the

problem, thereby improving performance. Moreover, the intricacies of using

application-specific polling or interruption/preemption can be avoided by

segmenting work into scheduling classes.

To achieve high overall performance in dense LU, we simulate a scheduling-

64

class scheme on top of the Charm++ runtime’s priority-based scheduler.

When work of one class is selected for execution on a processor, other work

in lower scheduling classes is held back to avoid introducing unnecessary

latency. This technique is analogous to scheduling classes in realtime sys-

tems and microprocessor interrupt levels: the delay or preemption of the

latency-sensitive factorization is prevented by temporarily disabling execu-

tion of lower-class coarse grain work. Figure 6.4 shows two different possible

executions, both with and without isolation using exclusive scheduling classes

enabled.

6.2.6 Isolation of Active Panel

The most apparent class distinction in dense LU is between the active panel

factorization and the bulk work (triangular solves and trailing updates). This

separation is enforced by keeping a processor-local counter of the blocks cur-

rently participating in the active panel. When this counter is non-zero, bulk

work is not enqueued into the runtime scheduler’s queue. Instead, it is placed

into an application-level queue, to be re-scheduled when the active panel com-

pletes. Bulk work units that are waiting in the runtime’s queue are removed

and placed in the same application-level queue. To maintain this counter,

each block on the active panel increments this counter after contributing to

the first column’s pivot reduction and receiving the broadcast that results.2

They decrement the counter when active panel work is complete.

The benefits of isolating the active panel from the bulk work can be seen

in figure 6.5. As the application weak scales with the active panel isolated,

performance remains consistently high. However, without isolation, perfor-

mance drops sharply.

6.2.7 Isolation of Triangular Solves

Among the larger work units, there are two different tasks: triangular solves

on U blocks and trailing updates. Because triangular solves generate ad-

ditional concurrent work, we generally prefer to perform triangular solves

2The increment must wait for the first column to finish to prevent deadlock: some other

block on a processor may need to perform a trailing update before it can participate in

the active panel.

65

 5

 5.5

 6

 6.5

 7

 7.5

 132 528 2112

G
F

lo
p
s
/c

o
re

Number of processors

Active panel and reduction callback isolated
Active panel isolated

Active panel and U triangular solves isolated
No isolation

Figure 6.5: Performance effects of enforcing various exclusive scheduling
classes on XT5 with weak scaling.

 0.5

 1

 1.5

 2

 2.5

 256 512 1024 2048

T
o
ta

l
T

F
lo

p
/s

Number of Cores

Active panel and pivot reduction isolated
Active panel isolated

Figure 6.6: Performance effects of enforcing the pivot reduction exclusive
scheduling class on BG/P with strong scaling from 256 to 2048 processors.
As we scale, isolation has a greater impact on performance.

66

before trailing updates. Thus, we have also considered delaying trailing up-

dates when the data to perform triangular solves is expected to be available.

This occurs when an active panel is completed, and the diagonal block and all

pivoting instructions have been broadcast. As figure 6.5 shows, this separa-

tion is actually slightly detrimental to performance. Performance degrades in

this configuration because each triangular solve depends on pivot data from

one or more blocks in the trailing submatrix below it, some of which may

not have completed their updates for the previous step. Thus, the triangular

solves wait longer than the execution time of several trailing updates before

becoming ready to execute, and the processor idles.

Instead of a class separation, simple prioritization of ready-to-execute tri-

angular solves ahead of any trailing updates provides the best performance.

A more elaborate prioritization scheme might still prefer some trailing up-

dates, such as to blocks that are in the next active panel, over triangular

solves, especially those far to the right in the matrix.

6.2.8 Isolation of Asynchronous Reductions

The final work class distinction considered in this paper lies within each

active panel process. Our steps for the factorization of each column of the

matrix include: pivot identification via asynchronous reduction amongst all

the participants in the active panel factorization; broadcast of a fragment

of the pivot row to all participants; and a rank-1 update of the remaining

unfactorized sub-blocks that are on the active panel. Performance gains were

realized by splitting the rank-1 update into two separate updates: one for

the immediate next matrix column and the other for the remaining sub-

block. This allows earlier participation in the next pivot identification which

is critical to progress and overlaps this communication with the rank-1 update

computations.

The runtime performs the pivot reductions by constructing a spanning

tree amongst the participant processors. These reduction operations along

the spanning tree are fine-grain, while the rank-1 updates are large in com-

parison. When these rank-1 updates were scheduled on a processor before

the reduction moved past it along the spanning tree, the overall progress was

impaired by the delay in the reduction (inset of figure 6.4a). Thus, we place

the reductions in a higher class than the rank-1 updates.

67

We modified Charm++’s reduction mechanism to signal a callback on

each processor after a reduction has propagated past that processor’s position

in the tree. This signals a transition out of the pivot identification work class,

and pending rank-1 updates can then be executed (inset of figure 6.4b).

Figure 6.6 shows that this yields an increasing performance improvement

as we strong-scale. This gulf appears because strong scaling LU leads to a

growing proportion of execution time spent in active panel factorizations.

We believe such a notification mechanism can be a general technique for

scheduling around asynchronous sender-driven collectives. This directly aids

in transitioning between exclusive scheduling classes.

6.2.9 Synchrony Amidst Asynchrony

By partitioning work into exclusive scheduling classes, we demonstrate that

ideally highly synchronous workflows can run without interference from large-

grain latency-insensitive asynchronous computation. Moreover, by placing

an asynchronous collective in a separate scheduling class, fine-grained crit-

ical path work runs unaffected by larger grains, which are deferred by the

scheduler’s transition into a higher scheduling class. For dense LU, we de-

scribe an application-specific implementation of such a scheme and show that

it substantially improves performance.

Our methodology attempts to increase the efficiency of synchronous oper-

ations in an asynchronous programming model. This suggests that for some

parallel algorithms, purely asynchronous programming models may have dis-

advantages. For instance, if highly synchronous work is on the critical path,

ensuring that it executes early, uninterrupted by other work, may be essential

to obtaining high performance. Hence, it seems that while asynchrony may

be required to effectively program on the next generation of supercomputers,

methodologies and runtime tools that increase the efficiency of synchronous

operations, allowing them to execute without interruption, will also be nec-

essary for the programming models of the future.

Essentially, the techniques described here recognizes and accounts for the

fundamentally synchronization-heavy nature of active-panel factorization with

columb-by-column partial pivoting. By having the runtime system build a

fence around phases of execution involving intense synchronization, we allow

it to pro-actively mitigate some of the downsides of that synchronization.

68

 0.1

 1

 10

 100

 128 1024 8192

T
o
ta

l
T

F
lo

p
/s

Number of Cores

Theoretical peak on XT5
Weak scaling on XT5

Theoretical peak on BG/P
Strong scaling on BG/P

Figure 6.7: Weak scaling (memory usage of matrix is constant around 75%)
from 120 to 8064 processors on Jaguar, a Cray XT5 machine with 12 cores
per node. Strong scaling (n = 96, 000) from 256 to 4096 processors on
Intrepid, an IBM BG/P machine with 4 cores per node.

If the concern to be managed around that synchronization were not primar-

ily the internal interference of coarser-grained work, other responses would

have been necessary. For instance, system noise or inter-processor perfor-

mance variation [19] would cause some processors to make their reduction

contributions later than others. Since the active panel factorization process

on each node is memory-bandwidth bound, threads on some cores in each

node would not participate, and continue to work on more cache-friendly

trailing updates instead [35]. Thus, in a case with extrinsic timing variation,

it may be more appropriate for threads not participating in the active panel

factorization to sleep for that interval. Sleeping would leave ample power

available for the active panel cores to run at top speed, and potentially allow

interfering processes to be scheduled there and avoid creating interruptions.

69

Arch. Cores N b P Q r s Peak

XT5 120 126K 504 24 5 6 5 67
XT5 132 132K 500 22 6 11 6 67.1
XT5 528 264K 500 44 12 22 6 67.4
XT5 1296 420K 500 72 18 24 3 66.2
XT5 2112 528K 500 88 24 44 3 67.4
XT5 8064 1048K 500 192 42 64 3 65.7
BG/P 256 96K 300 64 4 8 3 60.2
BG/P 1024 96K 300 128 8 8 3 45
BG/P 2048 96K 150 128 16 16 2 40.7
BG/P 4096 96K 150 256 16 16 2 31.6

Table 6.1: Highest performing runs plotted on Figure 6.7.

Block size 450 500 504 525 560 700

DGEMM (%) 78.2 81.9 82.3 81.8 81.6 83.6
LU (%) 65.5 66.6 67.0 66.5 65.5 65.0

Table 6.2: Percent of peak achieved by DGEMM and LU factorization on
Cray XT5 with 120 cores and n = 126000.

Library Peak Cores n Arch.

UPC [49] 76.6 512 229K XT3
DPLASMA [53] 58.3 3072 454K XT5
ScalaPack [52] 59 3072 454K XT5
HPCC [54] HPL 65.8 224220 3936K XT5
Jaguar top500 [27] 75.5 224162 5474K XT5
CharmLU 67.4 2112 528K XT5

Table 6.3: Percent of peak achieved by various linear algebra libraries.
CharmLU is the implementation presented in this paper.

70

6.2.10 Performance

DGEMM Performance

The peak performance obtained by an LU solver is bounded by the perfor-

mance of the DGEMM implementation that it invokes. The performance of

a DGEMM often varies with the size of the matrix on which it operates; a

larger DGEMM generally executes more efficiently than a smaller one. The

tradeoff between coarse grain sizes that aid in higher DGEMM efficiency and

fine grain sizes that allow greater overlap of communication and computation

is shown in Table 6.2.

Table 6.3 compares our implementation with other dense LU solvers. Note

that the architectures and matrix sizes vary, so it is difficult to provide an

exact comparison, but the values imply that our implementation is compet-

itive.

Scaling

To demonstrate the scalability of the dense LU solver described in this chap-

ter, it was weak scaled to 8064 processors on the Jaguar Cray XT5 using ap-

proximately 75% of memory. This represents about 530 blocks of 500× 500

doubles for each processor. The solver obtains over 67% of peak on XT5

machines. Additionally, we also demonstrate the capabilities of the solver in

the strong scaling regime up to 2048 processors on the Intrepid IBM Blue

Gene/P, achieving over 50% parallel efficiency. Figure 6.7 and Table 6.1 show

both sets of results.

6.3 Related Work

Communication-avoiding algorithms have been developed to reduce the mes-

sage count and data volumes involved in various computations. In the process

of reaching toward communication lower bounds on solutions to the various

problems, some of these new algorithms also drastically change the synchro-

nization structure relative to traditional methods.

One clear example of this is seen in the ‘tournament pivoting’ technique

in communication-avoiding LU factorization [55, 56]. Conventional partial

71

pivoting requires a reduction for each column of the matrix to be factored,

and that reduction is dependent on results of the reduction immediately

preceding it. As illustrated in Section 6.2.6, this tight synchronization makes

it very sensitive to interference. Tournament pivoting uses only a single large-

block reduction for each block of k columns, thus synchronizing k times less

often. This can be seen as an instance of pattern 3.2, doing more with each

collective to make them less frequent.

6.4 Summary

Scalable implementations of dense LU factorization have generally relied

heavily on synchronizing collectives to coordinate availability of limited net-

work and memory resources. The work described above shows that it is

possible to unload this coordination to other mechanisms. Thus, the syn-

chronizing operations can be replaced with narrower communication that’s

responsible only for the payload data and not any other implicit state.

72

Chapter 7

Tree-Structured Adaptive Mesh Refinement

List of Patterns Illustrated:

3.4 Separate communication from coordination (§ 7.2.2)

3.6 Replace synchronizing collectives with p2p messages that achieve

the desired effect (§ 7.4)

3.7 Semantic object naming (§ 7.2.4)

Tree-structured adaptive mesh refinement (AMR) is implemented in sim-

ulation frameworks such as Flash [57] and Enzo-P/Cello [58]. It offers a

highly-regular mesh structure, compared to the relative freedom offered by

patch-structured AMR. The difference in structural regularity between the

two styles offers a tradeoff. On the one hand, patch-based meshes can of-

fer high efficiency of deploying fine-resolution grid points to regions of the

problem domain that truly demand them for an accurate solution, keeping

the direct operation counts low. On the other hand, tree-based meshes offer

lower execution overhead and much simpler implementation.

This chapter describes work on remeshing algorithms for a tree-structured

AMR mini-application in Charm++. This mini-app was originally imple-

mented by Akhil Langer, and optimized, scaled, and benchmarked by me and

Jonathan Lifflander [32]1. It replaces global collectives seen in the remesh-

ing algorithms of other AMR frameworks with point-to-point messages and a

pair of termination detection operations to determine when algorithm phases

have been completed across all objects. Later work built upon improvements

1The text and figures of Sections 7.1–7.3 are adapted from the cited paper with per-

mission. c©2012 IEEE.

73

in Charm++ and SDAG to reduce that to one termination detection dur-

ing remeshing [59]. The present work, discussed starting in Section 7.4, de-

scribes how to bring that to a logical conclusion, in which synchronization is

entirely localized among nearby objects, and no global termination detection

is needed.

This design evolution applies several of the patterns described in Chapter 3.

By using bitvector coordinates of the blocks as semantic names, we avoid the

need for the mesh construction algorithm to number blocks or communicate

their location. This means that mesh refinement only needs to communicate

each blocks’ local conditions to its neighbors for all blocks to determine the

future structure of their neighborhood. The cascading nature of these com-

munications meant that some mechanism was needed to detect convergence,

but the synchronization that implies could be separated from the individual

messages. Finally, by defining a purely local convergence mechanism, the

convergence-signaling synchronization could be eliminated.

7.1 Related Work

We use a block-structured AMR scheme that has similar refinement struc-

ture to [60, 61]. PARAMESH [62], Burstedde et al [63] implement a design

that requires each process to store the mesh structure, which requires O(p)

memory per process and O(log p) time per lookup of a neighboring leaf block.

Burstedde et al. [64] describe a distributed AMR strategy that uses a parallel

prioritized ripple propagation algorithm for mesh restructuring, causing the

number of communication rounds to grow with the number of refinement

levels. Each round involves message exchanges between processors and an

equivalent of a system reduction to indicate the beginning of the balancing

at the next level of refinement. This approach is also limited because it does

not allow coarsening of sibling quadrants that are distributed across separate

processors. The SAMRAI framework [65] incurs significant overhead creat-

ing a ‘communication schedule’ during remeshing that also involves multiple

collective communication rounds.

Bangerth at el. [66] describe a scalable design for the parts of a parallel

AMR calculation other than the mesh generation/restructuring effort. They

explicitly delegate maintenance and distribution of the mesh structure to an

‘oracle’ which must be able to answer queries akin to what the algorithms

74

described in this paper provide, for which they give p4est [67] as an ex-

ample. They describe a hierarchical mesh point identification scheme as a

requirement of said oracles that matches the one we describe for mesh blocks.

Our mapping scheme explicitly uses these identifiers to generate a roughly

balanced mapping of mesh blocks to processors.

Our bitvector indexing and mapping scheme pushes the simplicity benefits

of the forest-of-trees decomposition used by p4est [67, 68] into each tree, cre-

ating a completely uniform representation of element identity. Rather than

splitting the elements along a Peano-Hilbert space-filling curve (or Z-order

curve) [69] to load balance, which requires expensive collective communi-

cation and synchronization and imposes substantial memory usage require-

ments (at least one entry per rank on every rank), we use these identifiers to

generate a mapping that provides a large degree of natural balance. Where

that is insufficient, the Charm++ [47] runtime system underlying our im-

plementation provides efficient object migration, hash-based lookup of mi-

grated objects, and application-transparent forwarding and new-location no-

tification when migrations occur. These support a wide variety of dynamic

load-balancing and mapping schemes which can be applied in concert with

our algorithms.

Load balancing has been studied extensively for AMR, ranging from us-

ing graph partitioning techniques [70, 71, 72], to other more AMR-specific

methods [73]. We focus on building a locally computable mapping strategy

for mesh blocks that localizes work and evenly distributes it without any

synchronization or periodic redistribution of work.

7.2 Algorithm Description

Traditional AMR algorithms are designed in terms of processors that con-

tain many blocks. In contrast, blocks in our design are first-class entities that

operate as if each resides on its own virtual processor (§ 7.2.1). As the compu-

tation proceeds, refinement and coarsening operations expand and contract

the collection of blocks. The refinement decisions are made locally by each

block and then are propagated to affected neighboring blocks recursively to

keep blocks within one refinement level of their neighbors (§ 7.2.2). Because

remeshing is constrained to occur at discrete points in simulation time, we

use a scalable termination detection mechanism (§ 7.2.3) to globally deter-

75

Figure 7.1: Propagation of refinement decision messages, based on local
error criteria and near-neighbor communication. Shaded blocks have
concluded that they must refine, and send messages (solid arrows)
accordingly (a-c). The path and effects of this rippling message chain are
shown by dashed lines and arrows (b-d). Eventually, all the blocks reach a
consensus state (e).

mine when all refinement decisions have been finalized. Besides this, blocks

synchronize with each other only by the communication of boundary cells,

and otherwise execute completely asynchronously.

Each block is addressed by its location in the refinement tree. The underly-

ing runtime system provides direct communication between arbitrary blocks.

We describe a mapping from block addresses to processors that provides rea-

sonable load balance and locality under the dynamic workload evolution that

AMR presents (§ 7.2.4). This avoids the need for explicitly redistributing the

load during the computation.

7.2.1 Distributed Parallel Objects

To obtain high performance, AMR implementations typically partition work

into k blocks for p processor cores, where k > p. Existing algorithms and

implementations treat processors as fundamental first-class entities that ex-

plicitly manage k
p

blocks. However, the computation is local to each block

or between neighboring blocks, so processor-centricity obscures the funda-

mental character. Our design treats each block as the basic element of a

medium-grained parallel execution. Each block is expressed as an uniquely

addressable object within a parallel collection that encapsulates data and

methods. By taking a dynamic collection of blocks as our fundamental en-

tity, we enable straightforward expression of the new algorithms described

later in this section.

Each block in our design is a virtual endpoint of communication. In-

stead of addressing messages to a system rank, each message is addressed

to an object that is managed by the runtime. The runtime ensures that

76

each message is delivered to the appropriate processor where the object cur-

rently resides. Directly addressing blocks requires that they have distinct,

processor-independent names that can be efficiently mapped (and possibly

remapped) to a host processor. This requirement turns out to lead to other

algorithmic improvements relative to existing implementations (§ 7.2.4) and

it takes only O(N/P) memory per process where N is the total number of

blocks and P is the total number of processes.

The block-centric formulation of our design offers several algorithmic ad-

vantages: firstly, the updates on a block’s zones can begin as soon as it

receives the necessary halo data from that block’s neighbors. Secondly, the

computation of each block’s update steps can overlap with communication

for all the other blocks on the same processor. Finally, a great deal of imple-

mentation complexity is spared in the application code.

Our novel algorithm relies on efficient, asynchronous messages between

block objects. Each block can send a message to another block by remotely

invoking a method on it with some associated data. The data is sent as a

message to the appropriate processor by the runtime and executed in turn on

the targeted block. Messages can be sent to currently nonexistent objects:

because the block-to-processor mapping is deterministic given the block’s

unique address, messages can be simply buffered by the runtime on the pro-

cessor where the block will be dynamically constructed. This behavior allows

us to limit the amount of synchronization that is required in our algorithm.

7.2.2 Mesh Restructuring Decision Algorithm

During the course of execution, the simulated domain is expected to evolve

such that some zones require finer resolution to obtain accurate results, while

other zones can be safely simulated more coarsely. Like other AMR imple-

mentations, we currently make these adjustments periodically between steps

of the simulation. The defining features of our algorithm are that it uses

only point-to-point messages between spatially-neighboring blocks to com-

municate remeshing decisions, and that it synchronizes through a lightweight

termination detection mechanism (§ 7.2.3) only to determine when all blocks

have reached consensus on their remeshing decisions.

When a block reaches the point in simulation time at which mesh resolution

is to be reconsidered, it must decide whether it will refine, stay at its current

77

Stay Refine

d d + 1

Coarsen

d - 1

Coarsen
d - 1 d

Stay

d + 1

Sibling d

d + 2

d - 1 d d + 1

Refined + 2

Initial state

Received message

d

dRequired depth

Decision

Local error condition

Termination detection

*

Refine

Coarsen,
Stay

*

Figure 7.2: The finite state machine describing each block’s decision process
during the original mesh restructuring algorithm. A block’s decision can
change as a result of receiving messages from neighbors or siblings and as a
result of evaluating its local error condition. When termination is detected
all decisions are finalized.

resolution, or coarsen before subsequent time steps. Each block can assume

as a precondition that all of its neighbors and siblings (i.e. its communication

partners) start off at a refinement depth that differs from its own by at most

one. To minimize the overall computational load, every block should be

coarsened as much as possible. The requirement for accuracy means that

any block’s decision to refine or maintain its resolution will constrain its

neighbors and siblings to maintain or increase their own resolution.

Figure 7.1 illustrates an example of how this process might proceed. Part (a)

shows that a single block decides to refine (shown as shaded) based on its

local error estimate and all the other blocks locally decide to maintain their

current resolution. The shaded block sends messages (drawn as solid arrows)

to its communication partners indicating that it intends to increase its re-

finement depth, and they must adjust accordingly to keep the invariant of at

most one level of difference between neighbors. Parts (b) and (c) depict how

this decision’s effect ripple out to nearby blocks, with affected blocks down-

stream (those whose resolution changes) shaded, and the path of affected

blocks shown by dashed lines and arrows.

The overall algorithm that each block executes can be described by the

finite state machine illustrated in Figure 7.2. Each d state represents a

possible refinement depth for the block relative to its current depth. All of

the blocks move from a d state to a decision state when termination detection

indicates that they have reached consensus. The primary transitions from

78

one state to another are driven by the receipt of messages from neighbors and

siblings indicating their intended depth. Each time a block moves from one

d state to another, it sends messages to each of its communication partners

indicating the state that it has entered, possibly causing them to transition

and communicate as well. Although blocks will try to coarsen themselves

by default, any stimulus (message or local error condition) indicating a need

for higher resolution will take precedence. This can be seen in the state

machine’s monotonic flow from coarser states toward more refined states.

Each block’s machine is initialized to a state that would have it coarsen

(indicated by the large triangle) as soon as its execution passes the previous

cycle of remeshing decision-making. Because the blocks do not execute in lock

step with one another, a block may receive messages that advance its state

machine to d+1 and thereby constrain its decision even before it has finished

timestepping to the remeshing point. This allows for a small optimization

in which a block need not evaluate its local error condition if its neighbors’

decisions dictate that it must refine. If a block does finish timestepping while

in a state other than d + 1, it evaluates its local error condition and follows

the appropriate transition as indicated by the dotted arrows.

Note that there are no transitions that move into the d − 1 state from

another state. As a result, no block will ever send a message indicating its

own intention to coarsen, and no block will receive a message indicating that

a less-refined neighbor wishes to change to level d − 2. Thus, there are no

d− 2 transitions in the state machine.

After all the decisions are finalized, blocks are created or destroyed as a

result. A block that has decided to coarsen (in concert with its siblings)

sends its downsampled data to its parent block and then destroys itself. A

block that has decided to refine constructs new child blocks and sends the

corresponding portion of its data to each of them.

7.2.3 Termination Detection

Because refinement decisions are determined and further propagated based

on distributed mesh data, detecting the global property of consensus requires

termination detection. Termination is the state when no messages are in

flight and all processes are idle. Many different varieties of algorithms for

detecting termination are well-established in the literature [74].

79

For this application, we use a wave-based four-counter termination de-

tection algorithm that propagates waves of total send and receive message

counts up and down a spanning tree that includes all the processors. When

the send and receive message counts for two consecutive waves are identi-

cal, termination is detected [24]. Because waves are only propagated when a

processor is otherwise idle, two identical consecutive counts indicate that no

messages are in flight that could spawn more work. Only propagating waves

when a processor is otherwise idle heavily reduces the number of waves that

are ever started, because any busy processor will block the progression up the

spanning tree. For AMR, the delay time between the last block reaching its

decision and termination detection is low (empirical results are in § 7.3.3).

7.2.4 Block-to-processor Mapping and Load Balancing

In AMR, the collection of objects expands and contracts unpredictably over

time, causing dynamic load imbalances to arise. Synchronized redistribution

of blocks is expensive because of the high frequency of growth and shrinkage.

Hence, it is important to consider locality and load balance when initially

placing new objects. Because we seek to limit synchronization, the seeding

function must be locally computable on any processor and deterministic, so

that addressing a block is inexpensive and possible before block construction.

Each block’s address is a bit-vector b that represents its location in the

distributed refinement tree. A block of depth d in a quad-tree (oct-tree, re-

spectively) will require an address of 2d (3d) bits, in which each pair (triplet)

of bits b2d+1b2d maps the block to a sector of the tree at depth d relative to its

parent. In other words, it describes the path taken by a recursive traversal

through the tree from a nominal root to the block in question. The function

we define takes this sequence of bits and maps it to a host processor.

The AMR computation initially starts with a collection of blocks at a

constant depth c. Because block refinements tend to be spatially correlated,

we initially seed the set of blocks with a uniform random distribution (using

an inexpensive hashing function) over the set of processors. The mapping

function takes the first c bits, applies the hash, and uses this value as the

base processor for this block and all its descendents. The remaining d−c bits

are then used as an integer offset from the base processor. The algorithm is

detailed in Figure 7.3a.

80

Input: blockAddress, a bitvector of length 2d
nproc, the total number of processors
prime = 0x9e37fffffffc0001

Output: The processor proc it is mapped to
let bitvector base = blockAddress[1 : c];
let int basePE = (prime * base) >> (64 - lg(nproc));
let bitvector remainder = blockAddress[c+ 1 : 2d];
return (basePE + remainder) % nproc

(a) Mapping algorithm

{
{ { {

P0 PnP1 P2
. . .

(b) Mapping visualization: in the example shown, the block on P1 chooses not to
refine.

Figure 7.3: The description and visualization of our block-to-processor
mapping algorithm, which maps all the descendents from a base block to
distinct processors (until they wrap around).

81

By treating the d− c bits as an integer offset from the base processor, all

the descendents of a base block will be mapped to different processors until

this offset wraps around. Figure 7.3b visualizes this effect.

7.3 Experimental Results

To empirically test our AMR remeshing algorithm, we benchmark a finite-

difference simulation of advection, described by the following hyperbolic par-

tial differential equation:
∂u

∂t
+ v∇u = 0 (7.1)

The advection equation is common in chemistry and describes the advection

of a tracer along with the fluid. The density (or concentration) u is the

conserved quantity with a bulk motion speed v. In our simulation, v is held

constant. We solve the advection equation using a first-order upwind method

in two-dimensional space. Although our algorithm is applied to a first-order

scheme, our AMR framework can easily be adapted to higher-order multi-

dimensional schemes and other hyperbolic problems.

We initialize the simulation with a circular region of density u = 2, ambient

density u = 1, and bulk velocity v = 1, with periodic boundary conditions.

The error is estimated using the second derivative of the density u, as de-

scribed by Löhner [75].

7.3.1 Experimental Setup

The experiments were performed on two systems: Cray XK6 ‘Titan’ and IBM

Blue Gene/Q ‘Vesta’. Each node of Titan consists of one sixteen-core 2.2GHz

AMD ‘Bulldozer’ processor and 32GB DDR3 memory. Only the CPU part

of Titan was used for our runs, with no GPU acceleration. Nodes of Titan

are connected by the Gemini interconnection network with a 9.8GB/s peak

bandwidth per Gemini chip. Our experiments ran with 16 ranks on each node

of Titan. Each node of Vesta consists of one 1.6 GHz PowerPC A2 processor

with 16 application cores supporting 4-way simultaneous multithreading and

16 GB DDR3 memory. Our experiments ran with 32 ranks on each node of

Vesta, using 2-way SMT per core.

Our code uses the Charm++ runtime system [47], which supports dynamic

collections of parallel objects in the form of chare arrays [34]. We used the

82

Gemini machine layer in Charm++ for Cray XK6 and the PAMI (Parallel

Active Messaging Interface) machine layer for BG/Q. Our code was compiled

with the GNU compiler suite version 4.6.2 on Titan and version 4.4.6 for

Vesta (Blue Gene/Q release BGQ-V1R1M1-120628).

7.3.2 Overall Performance and Scalability

Our benchmark application performs relatively little calculation in each time

step, and remeshes in a cycle of every two timesteps. We chose this configu-

ration in order to both highlight and stress test the remeshing algorithm.

Our benchmark results can be seen in Figure 7.4, which plots the time

taken for each cycle over the course of a run. As one would expect, step

times scale down with processor count. The upward trend in cycle time seen

on the smaller runs can be attributed to slowly-growing load imbalance as the

highest-resolution zones shift across the problem domain. The smaller runs

are more severely impacted by this because of the effect of blocks descended

from different roots being mapped to overlapping processors. At larger scales,

where the root blocks are more widely spread over the whole system, this

overlap effect diminishes. An explicit dynamic load balancing mechanism

could be run periodically to mitigate this effect. However, in the current

work, we have found this to not provide sufficient benefits.

An overall view of our code’s strong scaling behavior can be seen in Fig-

ure 7.4. We depict strong scaling curves, each representing a dynamic range

of refinement. A minimum depth of 4 represents a coarsest mesh dimension of

2562, which quadruples to 5122 and 10242 at depths 5 and 6 respectively. The

black lines indicate ideal scaling on each machine relative to the performance

of a whole single node. The ideal scaling lines for Blue Gene/Q are drawn

through the 32-core point to reflect the higher-performance 2-way symmetric

multi-threaded mode in which that and all larger runs were performed.

When scaling from 16 ranks on Cray XK6 with a minimum depth of 5 and

maximum depth of 11 (as shown in Figure 7.4c), we are able to achieve 80%

parallel efficiency up to 1024 ranks (up to 30 ms/cycle), and 64% parallel

efficiency at 2048 ranks (up to 19 ms/cycle). Note that we run with a wide

range of refinement levels and increasing dynamic range does not reduce effi-

ciency. Instead, for a given minimum depth, increasing the maximum depth

actually increases efficiency: on 2048 ranks our code attains 36% parallel effi-

83

(a) Max-depth = 9

 0.1

 1

 10

 100

 1000

 16 32 64 128 256 512 1k 2k 4k 8k 16k 32k

T
im

es
te

ps
 /

se
c

Number of Ranks

Cray XK6 Min−depth 4
Cray XK6 Min−depth 5
Cray XK6 Min−depth 6

IBM BG/Q Min−depth 4
IBM BG/Q Min−depth 5
IBM BG/Q Min−depth 6

(b) Max-depth = 10

 0.1

 1

 10

 100

 1000

 16 32 64 128 256 512 1k 2k 4k 8k 16k 32k

T
im

es
te

ps
 /

se
c

Number of Ranks

Cray XK6 Min−depth 4
Cray XK6 Min−depth 5
Cray XK6 Min−depth 6

IBM BG/Q Min−depth 4
IBM BG/Q Min−depth 5
IBM BG/Q Min−depth 6

(c) Max-depth = 11

 0.1

 1

 10

 100

 1000

 16 32 64 128 256 512 1k 2k 4k 8k 16k 32k

T
im

es
te

ps
 /

se
c

Number of Ranks

Cray XK6 Min−depth 4
Cray XK6 Min−depth 5

IBM BG/Q Min−depth 4
IBM BG/Q Min−depth 5
IBM BG/Q Min−depth 6

(d) Max-depth = 15

 0.1

 1

 10

 100

 256 512 1k 2k 4k 8k 16k 32k

T
im

es
te

ps
 /

se
c

Number of Ranks

IBM BG/Q Min−depth 4
IBM BG/Q Min−depth 5

(e) Cray XK6

 0

 10

 20

 30

 40

 50

 60

 70

 80

 0 500 1000 1500 2000

Ite
ra

tio
n

T
im

e
(m

s)

Iteration

128 ranks
256 ranks
512 ranks

1024 ranks
2048 ranks

(f) IBM BG/Q

 0

 50

 100

 150

 200

 250

 300

 350

 400

 0 500 1000 1500 2000

Ite
ra

tio
n

T
im

e
(m

s)

Iteration

128 ranks
256 ranks
512 ranks

1024 ranks
2048 ranks
4096 ranks

Figure 7.4: Rows 1 & 2: timesteps per second strong scaling on Cray XK6
and IBM BG/Q with various minimum depths; row 3: the duration in
milliseconds for each cycle with a max-depth = 10 (each composed of two
timesteps and a remeshing operation).

84

ciency with a depth ranging from 5–9 and increases to 64% parallel efficiency

with a depth ranging from 5–11. Although our remeshing scheme requires

deeper propagation with a wider depth range, it does not dominate and the

increase in work leads to an increase in efficiency.

On IBM BG/Q, scaling from 64 ranks to 2048 with a depth range of 6–11,

our code achieves 76% parallel efficiency (up to 182 ms/cycle), and when it’s

pushed to the limit of machine size to 32768 ranks (one rack of BG/Q at

SMT 2), it attains 23% parallel efficiency (up to 28 ms/cycle). Upon scaling

from 512 to 32k ranks and allowing the depth range to vary from 5–15, we

get much higher efficiencies of 99%, 95%, 65%, 55% at 2k, 8k, 16k and 32k

ranks, respectively (Figure 7.4d).

7.3.3 Remeshing Performance

In Figure 7.5, we graph the distribution of remeshing latencies, that is the

time interval between the last processor beginning remeshing and the start

of the next timestep. This measures the duration spent in remeshing with no

overlapping computation. The general trend is that remeshing latency scales

down with the number of processors out to a strong scaling limit (about 256

ranks on XK6, and 1024 ranks on BG/Q).

Its performance is actually bounded by two different factors: the com-

munication necessary to make all of the remeshing decisions, and the delay

in synchronizing through termination detection after consensus is reached.

The first factor dominates at low processor counts, but scales downward as

it gets distributed over a larger number of processors. This is easiest to see

in Figure 7.5b, where the maximum, 95th percentile, and median times all

descend smoothly from 16 ranks to 1024 ranks. To examine the cross-over

behavior into the second factor dominance, Figure 7.6 shows the trend in

median remeshing times for each set of runs in solid lines, starting from a

slightly higher core count to make the slow increase at larger scales apparent.

The wave-based termination detection algorithm as described in § 3.4 has a

theoretical upper-bound delay time that scales logarithmically with the num-

ber of processors, because it uses broadcasts and reductions over a spanning

tree. We measure the delay time as the time interval between the last proces-

sor processing an application message and it receiving a broadcast indication

that consensus has been reached. This duration is graphed in Figure 7.7.

85

 0

 2

 4

 6

 8

 10

 12

 16 32 64 128 256 512 1k 2k

R
em

es
hi

ng
 L

at
en

cy
 T

im
e

(m
s)

Number of Ranks

Depth Range 4−9
Depth Range 4−10
Depth Range 4−11

(a) Cray XK6

 0

 5

 10

 15

 20

 25

 30

 35

 16 32 64 128 256 512 1k 2k 4k 8k 16k 32k

R
em

es
hi

ng
 L

at
en

cy
 T

im
e

(m
s)

Number of Ranks

Depth Range 4−9
Depth Range 4−10
Depth Range 4−11

(b) IBM BG/Q

Figure 7.5: The remeshing latency in milliseconds: the non-overlapped
delay that remeshing causes in the computation, i.e. the time from the end
of non-remeshing work on the last processor to the beginning of the next
timestep. The vertical lines stretch between the minimum and maximum
values; the box spans between the 5th and 95th percentile; the horizontal
line spanning the box indicates the median.

86

 0

 200

 400

 600

 800

 1000

 32 64 128 256 512 1k 2k

M
ed

ia
n

R
em

es
hi

ng
 L

at
en

cy
 (

µs
)

Number of Ranks

Depth Range 4−9
Depth Range 4−10
Depth Range 4−11

RM−TD w/Depths 4−9
RM−TD w/Depths 4−10
RM−TD w/Depths 4−11

(a) Cray XK6

 0

 500

 1000

 1500

 2000

 64 128 256 512 1k 2k 4k 8k 16k 32k

M
ed

ia
n

R
em

es
hi

ng
 L

at
en

cy
 (

µs
)

Number of Ranks

Depth Range 4−9
Depth Range 4−10
Depth Range 4−11

RM−TD w/Depths 4−9
RM−TD w/Depths 4−10
RM−TD w/Depths 4−11

(b) IBM BG/Q

Figure 7.6: The median remeshing latencies (mid-points from Figure 7.5) in
microseconds are graphed as the upper three solid lines. The latency scales
down with processor count until it becomes synchronization bound by
termination detection. The lower three dotted lines represent the difference
between the median remeshing latency and median termination detection
delay, demonstrating that remeshing time is dominated by termination at
larger scales.

87

 0

 1

 2

 3

 4

 5

 6

 16 32 64 128 256 512 1k 2k

T
D

 D
el

ay
 T

im
e

(m
s)

Number of Ranks

Depth Range 4−9
Depth Range 4−10
Depth Range 4−11

(a) Cray XK6

 0

 1

 2

 3

 4

 5

 6

 16 32 64 128 256 512 1k 2k 4k 8k 16k 32k

T
D

 D
el

ay
 T

im
e

(m
s)

Number of Ranks

Depth Range 4−9
Depth Range 4−10
Depth Range 4−11

(b) IBM BG/Q

Figure 7.7: The delay time in milliseconds for termination detection. This
is measured as the duration between the last work unit executed on any
core and the start of the next timestep. The vertical lines stretch between
the minimum and maximum values; the box spans between the 5th and
95th percentile; the horizontal line spanning the box indicates the median.

88

The median remeshing times at larger scale approach a constant offset above

the median termination detection delay times as shown by the dotted lines in

Figure 7.6. This demonstrates that termination accounts for the slight trend

upward in remeshing latency at larger scales.

Overall, these trends show that our remeshing algorithm is not limited

by the performance of collective data exchange and has no readily apparent

dependence on the depth of the refinement.

7.4 Remeshing With No Global Synchronization

The goal of each member of this collection of algorithms is to incrementally

adapt a new or existing mesh to satisfy two constraints. The first constraint

is that every point in the problem domain be simulated with at least as much

resolution as the application demands for it (e.g. based on accuracy estimates

such as bounds on local finite difference truncation error). The second con-

straint, the ‘balance condition,’ requires that neighboring units of the mesh

not differ by more than one level of refinement. Within those constraints,

the algorithms should then not otherwise demand excess resolution at any

unit of the mesh structure.

The original algorithm seen in earlier work abstractly kept a finite state

machine (shown in figure 7.2) in each tree node representing the adaptation

decision that node would take if the decision process ended with no more

messages delivered to that object. The possible transitions in that finite

state machine are monotonically increasing in resulting mesh resolution –

incoming messages from neighbors could keep a node in its current state,

or call for more resolution, but never less. Thus, each state could be seen

as representing a lower bound on the resolution a node could have when

remeshing finished.

My new algorithm (illustrated in figure 7.8) extends the node state and

communication to carry upper bounds on necessary resolution as well as lower

bounds. These upper bounds are based on each node’s local calculation of

the resolution needed by points it contains, and knowledge of the state of

its neighbors. As in the earlier algorithm, each node sends its state to its

neighbors any time that state changes. The intuition of the algorithm is that

with suitable logic, we can ensure that each node’s lower and upper bounds

will eventually converge. When that occurs, the node can conclude that it

89

α β

γ

δ ε

η

d-1, d+1

d-1, d-1

d, dd-1, d

d+1,d+1d, d+1

d-1, d+1Lower bound d-1
Upper bound d+1

d-1, d+1Initial state

d, dFinal state

Coarsen

Maintain

Refine

Figure 7.8: The finite state machine describing the new, purely-local
converging bounds decision algorithm used by each node in the AMR tree
during the remeshing process. The rightward edges increase the node’s
lower bound based on a local calculation or the increased lower bound of a
neighbor (α, β), or increased lower bound of a sibling (α, γ), as in the
earlier algorithm. The downward edges decrease the node’s upper bound
based on a totality of local and surrounding conditions: neighbors and local
calculation all releasing a need for greater or current resolution (ε and δ,
respectively), and siblings all releasing the need for their current resolution
(η). Note that a single event, such as a received message, can spur two
successive transitions, analogous to the two-step transitions seen in
figure 7.2.

90

has all the information necessary to decide the level of refinement to provide

during the subsequent interval of simulation. Thus, convergence of these

bounds takes the place of the global synchronization of termination/quies-

cence detection used in the the earlier algorithms. This design follows the

pattern described in Section 3.6, ‘replacing synchronizing collectives with

point-to-point messages that achieve the desired effect.’

Ideally, each node would see its bounds converge independently and be

able to continue execution immediately afterwards. However, there are two

reasons this is not the case. First, even if a node can decide its resolution for

the next timestep based on its own bounds, it must still know the outcomes

of its neighbors to efficiently communicate ghost cells. The second reason is

that a decision for a node to coarsen requires consensus among four or eight

‘sibling’ nodes to all coarsen and consolidate their data to their less-refined

parent in the tree structure. In this case, several nodes will reach a state

in which their upper bound says they might hold their current resolution,

and their lower bound says nothing has forced them to rule out coarsening.

When a full set of siblings see each other in the (d− 1, d) state, they can all

transition in unison to the state where they conclude that they will coarsen

(following the edge labeled η in figure 7.8).

7.4.1 Convergence

To be sure that every node will reach a definitive decision as a result of the

remeshing process described, we must show that the algorithm satisfies the

following:

Theorem: Every object will eventually reach a converged condition

where the lower and upper bounds on its necessary resolution in the

subsequent step are equal.

Proving this theorem intuitively rests on the notion that objects that are

more refined than any others around them create their own destiny – no other

node can drive them to increase their resolution. We define these maximally

refined objects (MRO) as nodes at level d that have no neighbors at a level of

resolution greater than d. We define maximally refined unconverged objects

(MRUO) as nodes at level d for which all neighbors at level d+ 1 have equal

91

lower and upper bounds. We will prove that each MRUO converges based

on its own error condition and the bounds of its neighbors and siblings, and

then inductively prove the theorem by showing that every object eventually

becomes an MRUO.

Lemma 1: Every MRUO will eventually have its upper and lower

bounds on necessary resolution converge to equality.

If an MRUO at level d has neighbors at level d + 1, by definition those

neighbors have converged. Among those neighbors, suppose at least one of

them has decided not to coarsen to level d, but will remain at d+ 1 or refine

to d + 2. That neighbor with maxmimum converged result will drive the

MRUO’s lower bound to d or d + 1 to maintain the balance condition. If it

is d + 1, the MRUO has converged to a decision to refine. If it is d, then

the MRUO will decide based on its local error condition whether to further

increase its lower bound to d + 1 and refine, or to decrease its upper bound

to d and maintain its present resolution.

Consider an MRUO m at level d that has no more-refined neighbors at

level d+ 1, or whose more-refined neighbors have all converged on a decision

to coarsen down to level d. In the next step, m would be an MRO. Thus,

call m a nascent MRO. The neighbors of nascent MRO m as such have no

influence on m’s bounds. Thus, if the local error condition for m says it must

increase or maintain its current resolution, that result is definitive, and both

bounds can be set accordingly.

If the local error condition of a nascent MRO m will allow it to coarsen,

its upper bound can be decreased to d. At this point, m must compare its

bounds and state with those of its siblings. If any sibling indicates that it

must maintain or refine and thus raises its lower bound to d, then the nascent

MRO m raises its own lower bound to d and has converged on a decision to

maintain its present resolution. Otherwise, all of the siblings will become

apparent as nascent MROs in state (d−1, d) whose local error condition

will allow coarsening. When this is the case, then the nascent MRO m can

decrease its upper bound to d−1 in concert with its siblings, and m has thus

converged on a decision to coarsen.

92

Lemma 2: Every object eventually becomes an MRUO.

This can be proven by induction on each object’s level of refinement. We

can take MROs at global maximum level dmax as a base case. MROs have no

neighbors at a greater resolution than their own, and so they trivially have

no such neighbors with unconverged bounds. Therefore, MROs are MRUOs

at the beginning of the remeshing process.

An object m at level d can have neighbors at levels d − 1, d, or d + 1.

The state of neighbors at levels d − 1 and d do not affect whether m is an

MRUO. Only the neighbors at level d + 1 are relevant. By induction, we

assume that all neighbors at level d+ 1 already became MRUOs. By Lemma

1, all MRUOs eventually converge. Thus, all neighbors of m at level d + 1

converge, and thus m must eventually become an MRUO.

Proof: By Lemma 2, every object eventually becomes an MRUO, and

by Lemma 1, every MRUO eventually has its lower and upper bounds

converge to equality. Thus, every object has its lower and upper bounds

converge to equality.

7.4.2 Bounded Message Count

We wish to show that this new algorithm does not send excessive messages

beyond those that would have been sent in the earlier algorithms. The origi-

nal algorithm using termination detection guaranteed a bound of O(N) mes-

sages sent as part of each remeshing step. We can see this by noting that

each object has at most a constant number of neighbors, that an object

sends a message to each of its neighbors when its remeshing state changes,

and that each object can experience at most two of these state changes due

to the monotonicity of the algorithm’s state machine. Essentially the same

argument applies to this new algorithm.

In the new algorithm, the lower and upper bounds are initially separated

by two steps, and move toward each other but cannot cross. This gives three

cases, one for each outcome, that can experience up to two transitions and

consequently send at most two sets of messages:

93

1. Coarsen: Upper bound steps from refine to maintain, and from main-

tain to coarsen;

2. Maintain: Upper bound steps from refine to maintain, and lower bound

steps from coarsen to maintain (or vice versa);

3. Refine: Lower bound steps from coarsen to maintain, and from main-

tain to refine

There is a degenerate variation on the Refine case, where a level-d object

has a more refined level d + 1 neighbor declare that it is refining. When

this happens, the first intermediate step is skipped, and the object’s lower

bound jumps from coarsen directly to refine. In this case, because the object

experienced fewer state transitions, it sends only one set of messages, but

with the same cumulative effect on its neighbors and siblings.

7.5 Future Work

Implementation Validation We can validate the newly described global-

synchronization-free algorithm by comparison to the results of its prede-

cessor. Specifically, we can extend the code to run both the quiescence-

based algorithm and the convergence-based algorithm concurrently. When

the quiescence-based algorithm reaches completion, we can then assert that

each object has lower and upper bounds that converged to equal both each

other and the conclusion of the original algorithm.

Performance Evaluation By benchmarking on systems with and without

substantial noise or other variation (e.g. a commodity cluster and a Blue

Gene), we can separate some of the hypothetical effects of removing the

synchronization imposed by quiescence detection. Thus, we can take any

performance difference measured on the quiet system to be indicative purely

of the saved cost of the synchronizing operation itself and any rapidly-varying

load imbalance. We would then expect to find an additional advantage of

the new algorithm over the old on a noisier system to reflect its mitigation

of noise as well.

94

Chapter 8

Desynchronizing and Optimizing the
Chombo AMR Framework

List of Patterns Illustrated:

3.3 Send and consume data expected from a collective incrementally

(§ 8.1.6)

3.7 Semantic object naming (§ 8.1.3)

3.1 Batch (blocking on / waiting for) collectives (§ 8.2)

3.6 Replace synchronizing collectives with p2p messages that achieve

the desired effect (§ 8.2.3)

Chombo is a framework for the construction of structured mesh AMR algo-

rithms and applications. It presents a single-program, multiple-data (SPMD)

programming model to developers using it. Each process executes a common

control flow, which can call on the framework to provide iterators over boxes

of the overall mesh that reside on that process. The base version of the

framework provides serial and MPI implementations. In the MPI implemen-

tation, execution follows the BSP model, in that each process repeatedly does

all necessary computations on all owned boxes during a phase, and then all

communication relating to those boxes. The strict synchronization of every

increment of computation or communication imposed substantial costs of

load imbalance, network latency, and noise.

Like many AMR frameworks, Chombo decomposes its work so that there

are typically many units on each processor. Thus, one would hope that this

overdecomposition could be exploited to let units that have their necessary

inputs make progress while others wait for incoming messages. However, its

95

SPMD/BSP implementation paradigm ran counter to any mode of oppor-

tunistic execution. Instead, it synchronized progress of all units on a proces-

sor to each other, even when they could have made independent progress.

The initial goal of the present work on the Chombo framework was to

introduce asynchronous execution on the level of each box. After implemen-

tation using the Charm++ programming model and runtime system, it was

found that this shift alone was insufficient to substantially mitigate the scal-

ability concerns mentioned above. These problems remained because even

common hyperbolic PDE demonstration codes in Chombo retained frequent

synchronization in the form of global reductions to compute maximum wave

speeds and associated safe timestep lengths. By restructuring when and how

these reductions were performed, the global synchronization became much

less frequent, and the pattern of execution became much more favorable.

An additional goal of this effort was to re-engineer Chombo in such a way

that applications would require only minimal modifications to benefit from

the revised execution model. This goal was largely met. Meeting this goal

required the development of new techniques for encapsulating the execution

of existing SPMD ‘legacy’ code to run asynchronously, and associated im-

provements in the Charm++ runtime system infrastructure used in place

of MPI in the revised implementation.

8.1 Transparent Asynchronous Execution of Existing

SPMD Application Code

One of the desires in approaching this project was that existing applications

built on the Chombo framework benefit from this work with little or no

modification to code outside the framework. In principle, the sharply delin-

eated interface between driver code in the framework and application logic

and user provided classes was expected to facilitate this goal. By and large

that expectation was met, but with caveats coming from the ‘layer cake’ call

graph structure of the Chombo code – framework and client code alternates

several times, as shown in figure 8.1.

Unsurprisingly, accomplishing this task required modifications at several

points in this stack. The individual pieces of code affected are enumerated

in figure 8.2. Nodes in this graph represent logical units of work on the code.

96

Key
Main

AMR

AMRLevel
Implementations

BoxLayout
LayoutData
LevelData

LDOperator

SPMD

Client
Code

Chombo
Framework

Code

Figure 8.1: Chombo’s ‘layer cake’ structure of alternating layers of client
and framework code. The work described in this chapter took great care to
isolate changes inside the framework code, to minimize the impact of
porting on application code.

97

Edges in the graph depict conceptual dependences in developing and under-

standing the revised implementation. Changes to the individual components

are described in the remainder of this section.

8.1.1 Application Initialization

The modifications to top-level application code to enable asynchronous exe-

cution were truly minimal. The entire patch necessary for a typical example

is shown in Listing 8.1. The common header for Charm++-MPI interop-

eration gets included. Since Chombo applications can be configured entirely

through an input file, command-line arguments get adapted so they can pri-

marily be passed through to the Charm++ runtime system. Calls to addi-

tional initialization and finalization routines are added. All of these changes

are essentially the same as in any code that wishes to deploy Charm++-MPI

interoperation. Compiling the application code depends only on the added

header, and not on any part of the Charm++ toolchain or any generated

files.

8.1.2 Encapsulating Per-Box Independent Execution

The control flow involves communication operations that express true data

dependencies. In the original MPI implementation of Chombo, these are

thus receives that have to be waited on before the operation returns. Because

multiple boxes assigned to a processor share a single flow of control, waiting

to satisfy all of these dependencies effectively synchronizes execution across

all of the boxes on each processor. To break down this synchronization, we

provide an independent flow of control for each box, in the form of user-level

threads. Every processor will host several of these threads rather than the

single master thread it had previously.

To preserve existing logic, each of these threads needs to execute essen-

tially the entire control flow. Thus, the present design replicates that control

flow for each box, as if it were running alone on a dedicated processor. Each

of those threads must be able to identify the box it serves, have its own

instance of notionally “global”, or “per process” state, especially state de-

scribing simulation progress, and carry meta-data sufficient to control when

98

Object
Identity

Thread
Pause/

Resume
Initialization

Broadcast

Communication
Engine

(All)Reduce

initialGrid

BoxLayoutElement
Creation

Regrid dT

Thread
Safety

Chare

Run
timestep()
advance()

Global
Privatization

Migratability

Figure 8.2: The portions of code changed in the course of adapting
Chombo from BSP execution on MPI to asynchronous execution on
Charm++. Arrows indicate dependencies in understanding the changes in
each component.

99

releasedExamples/AMRGodunov/execPolytropic/amrGodunov.cpp

@@ -37,7 +37,9 @@

#include <mpi.h>

+#include <mpi -interoperate.h>

+

@@ -106,18 +109 ,25 @@ int main(int a_argc , char* a_argv [])

// Parse the command line and the input file (if any)

- ParmParse pp(a_argc -2,a_argv+2,NULL ,inFile);

+ ParmParse pp(0, NULL , NULL , inFile);

+

+ a_argv [1] = a_argv [0];

+ a_argv ++;

+ a_argc --;

+ AMR:: charmInit(a_argc , a_argv);

+

// Run amrGodunov , i.e., do the computation

amrGodunov ();

// Exit MPI

CH_TIMER_REPORT ();

dumpmemoryatexit ();

+ CharmLibExit ();

MPI_Finalize ();

}

Listing 8.1: Minimal application code changes necessary to run on the
framework adapted to Charm++

100

module ChomboCharm {

include "REAL.H";

namespace ChomboCharm {

initproc registerCharePointer ();

message AMRData {

char buffer [];

};

// Indexed by generation , level , index in box vector

array [3D] AMRChare {

entry AMRChare ();

entry [threaded] void initialGrid(int e_generation ,

int e_level_limit , bool e_provisional);

entry [threaded] void initialDt ();

entry [threaded] void run(Real e_max_time ,

int e_max_step);

entry AMRChare(int e_finest_level ,

vector <int> e_definingGenerations ,

Vector < Vector <Box > >& e_oldBoxes ,

vector <int> e_steps_since_regrid);

entry [threaded] void continueFromRegrid(

int e_regridBaseLevel ,

Vector < Vector <Box > >& e_new_grids ,

Real e_max_time , Real e_cur_time , Real e_dt_base ,

int e_max_step , int e_cur_step);

entry void postInsertion(CkReductionMsg *m);

entry void moveData(AMRData* e_data);

entry void allReduce(CkReductionMsg *m);

entry void broadcast(AMRData* e_data);

};

}

};

Listing 8.2: Charm++ interface definition file for ported Chombo

101

namespace ChomboCharm {

CtvDeclare(AMRChare *, runningChare);

class AMRChare : public CBase_AMRChare {

// Other members elided

enum SleepReason {NONE , COMM , ALLREDUCE , BROADCAST ,

INSERTION };

SleepReason m_sleepReason = NONE;

CthThread m_thread = NULL;

void pause(const char *a_cause , const SleepReason

a_reason) {

CkAssert(m_sleepReason == NONE);

CkAssert(m_thread == NULL);

m_sleepReason = a_reason;

m_thread = CthSelf ();

CthSuspend ();

CkAssert(m_thread == NULL);

CkAssert(m_sleepReason == NONE);

}

void resume(const char *a_cause , const SleepReason

a_reason) {

if (a_reason != m_sleepReason) {

chout() << "Mismatched pause/resume reasons: "

<< "expecting " << m_sleepReason

<< ", got " << a_reason << " / " << a_cause

<< endl;

CkAbort("bad resume from pause");

}

CthAwaken(m_thread);

m_thread = NULL;

m_sleepReason = NONE;

}

};

}

Listing 8.3: Definitions for the user-level thread constructs used to
encapsulate control flow of existing Chombo code

102

its execution should block or resume. We encapsulate all of this state and

stop/start control logic in a Charm++ chare array element identified with

each box. These distinct elements also serve as the endpoints for communica-

tion between boxes, since threads in Charm++ are not directly addressable.

The chare definition code is shown in listing 8.2, and the associated user-

level thread logic can be found in listing 8.3. In the chare definition, the

[threaded] attribute on some entry methods indicates that the runtime

system should spawn a user-level thread in which to run the call to that

method from start to finish. Methods so marked contain direct transplants

of previous Chombo code, which contain calls into client application code,

which may call for blocking communication. The thread control code pro-

vides the bi-directional binding between a running thread and the chare

within which it runs. Code lower in the stack can reference the thread-local

variable runningChare to get a pointer to the encapsulating chare. Using this

pointer, it can then record the thread’s identity in the chare before pausing.

Subsequently, code in the chare that detects that it has satisfied the reason

for the thread to pause can use the stored reference to awaken it.

Contrast with other dynamic tasking parallel runtime systems

This design present a strong contrast with that of the Uintah AMR frame-

work and other dynamic tasking parallel runtime systems. Per-box threaded

Chombo represents its entire dynamic task DAG in the compiled control

flow of the framework and application code. Uintah constructs a run-time

representation of its entire task DAG, and explicitly numbers and sequences

the nodes and data dependence edges within that graph. This scheduling step

has been observed to represent a major bottleneck in Uintah development

and usage, since its performance does not scale as well as the computation

that it orchestrates. Other dynamic tasking parallel runtime systems range

between these extremes.

KAAPI [76] uses an explicit representation of the data dependence graph

generated by application code. The representation is possibly made succinct

by parameterization. It does no global scheduling, and so avoids such a

bottleneck. It exploits this explicit representation for unique rapid-recovery

fault tolerance support [11]. In contrast, message-logging fault tolerance in

Charm++ must record more information by observing runtime communi-

103

cation traffic and replay more of execution during recovery [77].

OmpSs uses an explicit in-memory representation of task dependencies.

These dependencies are implicitly derived from dependences on units of data

described by the code. The derivation of data dependencies in OmpSs can

come either from programmer-provided annotations or compiler analysis.

8.1.3 Uniquely Identifying Chare Array Elements

Each chare array element must have a distinct index, for the RTS to man-

age it, to identify itself, and for other objects to interact with it. For many

Charm++ applications, this index represents each element’s logical “place”

or “coordinate” in the computational structure. For instance, applications

using spatial decomposition naturally map spatial coordinates to and from

array indices [78]. Applications using structured data decomposition often

index by the corresponding unit of data; e.g. linear algebra computations

indexing by matrix block [50]. Other applications use their array elements as

undistinguished members of a set, for which indices carry no semantic con-

tent. One example of this structure is ChaNGa’s array of ‘bucket’ objects,

each of which owns an arbitrary set of pieces of the Barnes-Hut tree [79]. An-

other example is EpiSimdemics’ partitioning of people and places among col-

lections of PeopleManager and LocationManager objects, respectively [14].

The present Charm++ implementation of Chombo uses a hybrid of the

approaches described above, and introduces an additional new approach of

its own. Each element index is a 3-vector of integers. One integer represents

the generation of the chare and encapsulated box, meaning the number of

regridding cycles that have been performed up to the point where the present

set of boxes for the designated level was formed. This introduces a temporal

aspect of object identification, corresponding to simulation progress, that is

novel among Charm++ applications. Another integer represents the level

of refinement of the box for which the chare is responsible, following the

structure-representation style. The third integer represents the the index of

the box within that level of refinement in Chombo’s structural metadata,

following the set indexing style. The code defining this relation is shown in

Listing 8.4.

The process of globally sorting and numbering all of the boxes making

up a given level has been shown to be a scalability bottleneck in several

104

class AMRChare : public CBase_AMRChare {

// Other members elided

int getGeneration () { return thisIndex.x; }

int getLevel () { return thisIndex.y; }

int getIndex () { return thisIndex.z; }

int m_definingGeneration;

int m_definingLevel;

std::vector <int> m_definingGens;

// During regrid operations , the defining generation of any

// BoxLayout instances defined prior to the actual

regrid () call is

// at least one less than the generation of any new objects

int definingGen ()

{

int g = m_definingGens[m_definingLevel];

if (g == getGeneration ())

return g-1;

else

return g;

}

Vector <AMRLevel *> m_amrlevels;

};

Listing 8.4: Declarations for basic members of the chare objects to identify
themselves, and the levels of the mesh being defined during execution

105

Chombo applications. In line with the ‘semantic naming’ pattern described

in Section 3.7, it would be desirable to replace the index component with

something that does not require these steps. Within a level, boxes at a given

position within the domain are unique. Additionally, any reference one box

makes to another is based on knowing that other box’s position. Thus, that

position could itself be used as the final part of a generated unique identifier.

8.1.4 Aligning BoxLayout with Chares for Allocation and
Computation

Chombo uses the BoxLayout abstraction to represent a collection of boxes

at a common level of refinement. This abstraction lets each process allocate

space and construct the objects for which it’s responsible. It also provides

iterators over local boxes used to guide the actual computation work to be

applied to each box.

Adaptation of Chombo to Charm++ required modifying BoxLayout to

map boxes to objects rather than processors. Each instance identifies with

a generation and level being formed at the time of its construction or defi-

nition, based on the chare-level control variables set in the scaffolding built

around calls to user code. This usage is shown in Listing 8.5. The control

variables are set in constructors and other methods supporting initialGrid

and regrid operations.

If the defined generation and level variables match the chare’s identity,

then the BoxLayout instance allocates data for a single box whose position

and dimensions are determined by indexing into the layout description with

the chare’s index identity element. If these variables do not match the chare’s

identity, then the BoxLayout instance can conclude that it is not responsible

for any underlying data or computation. This is shown in Listing 8.6.

8.1.5 Initial Grid Construction

The logic of Chombo’s original implementation of AMR::initialGrid()

has ported somewhat directly into the Charm++ implementation. The

defining difference is the introduced separation between the top-level logic

and the per-object logic. The top-level logic runs in the SPMD mode, and

106

diff a/lib/src/BoxTools/BoxLayout.H

@@ -651,6 +662,8 @@ protected:

RefCountedPtr <DataIterator > m_dataIterator;

RefCountedPtr <Vector <LayoutIndex > > m_indicies;

+ RefCountedPtr <int > m_level;

+ RefCountedPtr <int > m_generation;

diff a/lib/src/BoxTools/BoxLayout.cpp

@@ -68,8 +70 ,11 @@ BoxLayout :: BoxLayout ()

m_sorted(new bool(false)),

m_dataIterator(RefCountedPtr <DataIterator >()),

- m_indicies(new Vector <LayoutIndex >())

+ m_indicies(new Vector <LayoutIndex >()),

+ m_level(new int(CtvAccess(runningChare) ?

CtvAccess(runningChare)->m_definingLevel : -1)),

+ m_generation(new int(CtvAccess(runningChare) ?

CtvAccess(runningChare)->m_definingGeneration : -1))

{ }

@@ -639,6 +639 ,17 @@ class BoxLayout {

+

+ int getLevel () const { return *m_level; }

+ int getGeneration () const { return *m_generation; }

+

@@ -237,6 +229,8 @@

void BoxLayout :: define(const Vector <Box >& a_boxes , const

Vector <int >& a_procIDs)

{

+ m_level = RefCountedPtr <int >(new

int(CtvAccess(runningChare) ?

CtvAccess(runningChare)->m_definingLevel : -1));

+ m_generation = RefCountedPtr <int >(new

int(CtvAccess(runningChare) ?

CtvAccess(runningChare)->m_definingGeneration : -1));

checkDefine(a_boxes , a_procIDs);

const int num_boxes = a_boxes.size();

Listing 8.5: Changes to Chombo’s BoxLayout class to identify itself with
the generation and level of the layout being defined. This listing elides copy
operations and other duplicative changes that provide no additional insight.

107

diff a/lib/src/BoxTools/BoxLayout.cpp

@@ -121,32 +128 ,17 @@

void BoxLayout :: buildDataIndex ()

{

- std::list <DataIndex > dlist;

- unsigned int index = 0;

- unsigned int datIn = 0;

- unsigned int p = CHprocID ();

- int count =0;

- const Entry* box;

-

- while (index < size()) {

- box = &(*(m_boxes))[index];

- if (box ->m_procID == p) {

- DataIndex current(index , datIn , m_layout);

- dlist.push_back(current);

- count ++;

- datIn ++;

- }

- ++index;

- }

-

- m_dataIndex = RefCountedPtr <Vector <DataIndex > >(new

Vector <DataIndex >(count));

- std::list <DataIndex >:: iterator b=dlist.begin();

- for (int i=0; i<count; ++i, ++b) {

- m_dataIndex ->operator [](i) = *b;

- }

+ AMRChare* chare = CtvAccess(runningChare);

+ if (chare &&

+ chare ->getGeneration () == *m_generation &&

+ chare ->getLevel () == *m_level)

+ {

+ m_dataIndex = RefCountedPtr <Vector <DataIndex > >(new

Vector <DataIndex >(1));

+ (* m_dataIndex)[0] = DataIndex(chare ->getIndex (), 0,

m_layout);

+ } else {

+ m_dataIndex = RefCountedPtr <Vector <DataIndex > >(new

Vector <DataIndex >(0));

+ }

}

Listing 8.6: Changes to Chombo’s BoxLayout class to allocate data and
assign computation by containing object instead of host processor

108

is now responsible for iteratively inserting chare objects for each box, and

running the Charm++ scheduler to ask those objects to do the prior per-

box work. The individual objects assume responsibility for constructing and

initializing the client-defined AMRLevel objects. The ported code inside each

chare is show in listing 8.7. A key point to note is that it sets the variables m -

definingGeneration and m definingLevel which are used to communicate

across framework layers of the stack to any BoxLayout objects defined by the

client code run within each virtual method call on the AMRLevel objects.

The code, run in SPMD mode, that constructs the chare objects and calls

the initialGrid() method on them can be seen in listing 8.8. It takes the

vector of boxes in each level being formed, and inserts an element corre-

sponding to each of them. This work is distributed in a round-robin fashion

over the processors in the job, to avoid a sequential bottleneck in either the

iteration over a large number of boxes, or the message injection to create each

object. This bottleneck was apparent in earlier versions of the adaptation.

8.1.6 Communication Engine

The bidirectional mapping between box ownership and object identity serves

to simplify the communication engine in Chombo. When determining which

boxes to communicate with, iteration over ‘all the boxes on this processor’

becomes the trivial ‘my box’ if the layout involved in communication matches

the containing chare, or else none at all. The subsequent transformation of

box-to-box interactions to messages between their assigned processors also

becomes trivial. Messages are directed or waited upon in literal terms of the

partner object’s identity. The concern of locating that object on a particular

processor and directing messages here is delegated to existing components of

the Charm++ RTS infrastructure [80].

The code for initiating the communication engine can be seen in listing 8.9.

It begins by passing all necessary parameters through to the running chare

object. The object is then responsible for generating messages to send and

setting up the list of messages it expects to receive before execution can

continue. The send and receive enumeration can be seen in listing 8.10.

Code for the receive path can be seen in listing 8.11. This illustrates

how messages are matched between sends and corresponding receives. The

code counts how many communication operations have been performed, and

109

void AMRChare :: initialGrid(int e_generation ,

int e_level_limit , bool e_provisional) {

Running running(this);

// Refinement replaced this generation of objects , so

destroy this object rather than doing work.

if (getGeneration () < e_generation) {

thisProxy[thisIndex]. ckDestroy ();

return;

}

m_definingGeneration = e_generation;

m_finest_level = e_level_limit;

AMR *amr = CsvAccess(g_local_amr);

int &defLevel = m_definingLevel;

for (defLevel = 0; defLevel <= e_level_limit; ++ defLevel)

m_amrlevels[defLevel]

->initialGrid ((*amr ->c_old_grids)[defLevel]);

for (defLevel = e_level_limit; defLevel >= 0; --defLevel)

m_amrlevels[defLevel]->postInitialGrid(false);

for (defLevel = 0; defLevel <= e_level_limit; ++ defLevel)

m_amrlevels[defLevel]->initialData ();

if (e_provisional) {

// Initialization isn’t done yet , so tag for refinement

for (defLevel = 0; defLevel <= e_level_limit;

++ defLevel) {

IntVectSet ivs;

m_amrlevels[defLevel]->tagCellsInit(ivs);

(*amr ->c_tags)[defLevel] |= ivs;

}

} else {

// Initialization is done , so finish setting up the

extra levels

for (defLevel = e_level_limit + 1;

defLevel <= amr ->m_max_level; ++ defLevel) {

m_amrlevels[defLevel]->initialGrid(Vector <Box >());

m_amrlevels[defLevel]->initialData ();

}

// call post -initialize once all the levels have been

defined

for (defLevel = e_level_limit; defLevel >= 0; --defLevel)

m_amrlevels[defLevel]->postInitialize ();

}

m_communicationOperations = 0;

m_finest_level_old = m_finest_level;

if (getLevel () == 0 && getIndex () == 0)

CkStartQD(CkCallback(CkCallback :: libCkExit));

}

Listing 8.7: Adaptation of the code from AMR::initiaGrid() to run
encapsulated in each object, setting the definingLevel variable to inform
BoxLayout definition as it goes

110

for (int level = 0; level <= top_level; ++level) {

m_amrlevels[level]->initialData ();

// Round -robin insertions across processors to avoid

bottleneck

for (int i = procID ();

i < old_grids[level].size();

i += numProc ()) {

// Generation is given by the ‘top_level ’ loop counter

chares(top_level , level , i).insert ();

}

}

if (procID () == 0) {

// Broadcast to all chares from just one processor

chares.initialGrid(top_level , top_level , true);

chares.doneInserting ();

}

// Switch from SPMD MPI execution into Charm++

CsvAccess(isCharmRunning) = true;

StartCharmScheduler ();

CsvAccess(isCharmRunning) = false;

Listing 8.8: Code to insert new chare array element objects and call
initialGrid() on them

during each operation, how many messages have been sent between each pair

of senders and recipients. These counters take the place of MPI’s message

matching logic.

Chombo’s original MPI implementation of its communication engine effec-

tively modeled the MPI-3 neighborhood variable-length all-to-all collective

communication operation. Thus, the adaptation to per-box asynchronous

execution in Charm++ represents an instance of the pattern of incremen-

tally producing, communicating, and consuming data that would have been

passed through a synchronizing collective (described in Section 3.3).

It’s possible to apply an additional optimization to short-circuit data trans-

fer between objects assigned to the same processor, rather than allocating

a message buffer and copying the data into and back out of that buffer.

This would also avoid an extraneous trip through the Charm++ scheduler.

Current benchmarks seemed unlikely to benefit substantially from this op-

timization. Thus, this optimization is not implemented in the adaptation

presented here.

111

template <class T>

void BoxLayoutData <T>:: makeItSoBegin(Args ... args) const {

CtvAccess(runningChare)->beginCommunication(

auto_ptr <CommOp > (new CommOpT <T>(args ...)));

}

void AMRChare :: beginCommunication(

std::auto_ptr <CommOp > a_commOp) {

m_commOp = a_commOp;

m_communicationOperations ++;

const int srcGeneration = m_commOp ->getSrcGeneration ();

const int srcLevel = m_commOp ->getSrcLevel ();

const int destGeneration = m_commOp ->getDestGeneration ();

const int destLevel = m_commOp ->getDestLevel ();

// Enumerate receives

if (destGeneration == getGeneration () && destLevel ==

getLevel ()) {

m_recvMessageCounts.clear(); // Sequence number counters

CopyIterator it{m_commOp ->getCopier (), CopyIterator ::TO};

enumerateReceives(it, srcGeneration , srcLevel);

it = CopyIterator(m_commOp ->getCopier (),

CopyIterator :: LOCAL);

enumerateReceives(it, srcGeneration , srcLevel);

}

// Send stuff

if (srcGeneration == getGeneration () && srcLevel ==

getLevel ()) {

m_sendMessageCounts.clear(); // Sequence number counters

CopyIterator it{m_commOp ->getCopier (),

CopyIterator ::FROM};

enumerateSends(it , destGeneration , destLevel);

it = CopyIterator(m_commOp ->getCopier (),

CopyIterator :: LOCAL);

enumerateSends(it , destGeneration , destLevel);

}

}

template <class T>

void BoxLayoutData <T>:: makeItSoEnd(Args ...) const {

AMRChare* chare = CtvAccess(runningChare);

chare ->processMessages ();

if (chare ->m_expectedMessages.size() != 0) {

chare ->pause("comm", AMRChare ::COMM);

}

}

Listing 8.9: Logic to set up a communication operation

112

void AMRChare :: enumerateReceives(CopyIterator& it,

const int srcGeneration , const int srcLevel) {

for (; it.ok(); ++it) {

const MotionItem& item = it();

CkIndex3D sender = {srcGeneration ,

srcLevel ,

item.fromIndex.intCode ()};

m_expectedMessages.push_back(

ExpectedMessage(sender ,

m_communicationOperations ,

m_recvMessageCounts[sender]++,

item.toIndex ,

item.toRegion));

}

}

void AMRChare :: enumerateSends(CopyIterator& it,

const int destGeneration , const int destLevel) {

for (; it.ok(); ++it) {

const MotionItem& item = it();

int size = m_commOp ->getSize(item);

AMRData* message = new (size)

AMRData(thisIndex ,

m_communicationOperations ,

m_sendMessageCounts[item.toIndex.intCode ()],

size);

m_commOp ->linearOut(item , message ->buffer);

thisProxy(destGeneration ,

destLevel ,

item.toIndex.intCode ()

).moveData(message);

m_sendMessageCounts[item.toIndex.intCode ()]++;

}

}

Listing 8.10: Code to enumerate messages to send and messages expected
to be received

113

void AMRChare :: moveData(AMRData* e_message) {

m_messages.push_back(e_message);

processMessages ();

// No more expected messages , and . . .

if (m_expectedMessages.size() == 0

// . . . the chare had a thread blocked , waiting for

messages

&& m_thread != NULL && m_sleepReason == COMM) {

resume("comm", COMM);

}

}

void AMRChare :: processMessages () {

for (ExpectedMessage expectation : m_expectedMessages) {

auto messageIter = find_if(m_messages.begin (),

m_messages.end(),

messageMatches (* expectation));

if (messageIter != m_messages.end()) {

AMRData* message = *messageIter;

m_commOp ->linearIn(expectation ->m_toIndex ,

expectation ->m_toRegion ,

message ->buffer);

// XXX Does not handle dynamic allocation case

expectation = m_expectedMessages.erase(expectation);

m_messages.erase(messageIter);

delete message;

} else {

expectation ++;

}

}

}

struct messageMatches {

AMRChare :: ExpectedMessage expectation;

messageMatches(AMRChare :: ExpectedMessage e) :

expectation(e) {}

bool operator() (AMRData* message) {

return

expectation.m_sender == message ->sender &&

expectation.m_communicationStep ==

message ->communicationStep &&

expectation.m_sequence == message ->sequence;

}

};

Listing 8.11: The message receive path, which runs outside thread control.
Hence, when all messages have been received, it must awaken the blocked
thread

114

8.1.7 Collective Implementation

Due to the implementation’s use of MPI/Charm++ interoperability and

mode-switching execution [81], the implementations of some collective oper-

ations have to be adapted to be aware of which mode is active, and call the

underlying system accordingly. Since Chombo presents a fairly narrow API

to applications, the only operations that needed adaptation were broadcasts

and all-reduce.

Broadcast

The modifications to broadcast() are shown in Listing 8.12. The corre-

sponding Charm++ code that the common function calls when execution

is running in Charm++ mode is shown in Listing 8.13.

The Charm++ code begins by looking up the operating chare as de-

scribed in Section 8.1.3, and passes the necessary broadcast arguments to its

AMRChare::beginBroadcast() method. As with other communication op-

erations described in Section 8.1.6, the method begins by incrementing the

chare’s communication operation sequence number to be used for matching

and storing a buffer pointer to indicate where the received data should be

made available. If the chare is the designated ‘root’ object, based on owning

box 0 of level 0 in the current generation, then it constructs and sends the

broadcast message to all chares in the array. All chares check whether the

broadcast message has arrived before their own control flow was ready to

receive it; if it hasn’t, they block their individual execution until the message

is delivered, as described in Section 8.1.2.

The receive path for broadcasts mimics that of other box-to-box communi-

cation operations described in Section 8.1.6. The AMRChare::broadcast()

entry method saves the delivered message in its chare object’s matching

buffer. Then it checks if the chare was blocked waiting for a broadcast,

and if so, whether this broadcast was the one expected. If so, its execution

through the primary control flow is resumed, as described in Section 8.1.2.

Message matching and processing follows a similar control flow to normal

box-to-box messages. It looks for a message from the root with the right

sequence number. If that message is found, its payload is copied out to the

receive buffer, the message is discarded, and the method returns success. If

not, it returns failure.

115

diff --git a/lib/src/BaseTools/SPMDI.H

b/lib/src/BaseTools/SPMDI.H

index 9d31d3b ..5586502 100644

--- a/lib/src/BaseTools/SPMDI.H

+++ b/lib/src/BaseTools/SPMDI.H

@@ -123,45 +113 ,57 @@ gather(Vector <T>& a_outVec , const T&

a_input , int a_dest)

template <class T>

inline void

broadcast(T& a_inAndOut , int a_src)

{

+ bool isCharm = CsvAccess(isCharmRunning);

+ bool isRoot = isCharm ?

+ ChomboCharm :: isBcastRoot () :

+ procID () == a_src;

int isize;

- if (procID () == a_src)

+ if (isRoot)

isize = linearSize(a_inAndOut);

- MPI_Bcast (&isize , 1, MPI_INT , a_src , Chombo_MPI ::comm);

+ if (isCharm)

+ ChomboCharm :: broadcast ((char*)&isize , sizeof(isize));

+ else

+ MPI_Bcast (&isize , 1, MPI_INT , a_src , Chombo_MPI ::comm);

void* broadBuf = mallocMT(isize);

//take inAndOut from src and put it into broadBuf

- if (procID () == a_src)

+ if (isRoot)

linearOut(broadBuf , a_inAndOut);

- // broadcast broadBuf to all procs

- MPI_Bcast(broadBuf , isize , MPI_BYTE , a_src ,

Chombo_MPI ::comm);

-

+ if (isCharm)

+ ChomboCharm :: broadcast(broadBuf , isize);

else

+ MPI_Bcast(broadBuf , isize , MPI_BYTE , a_src ,

Chombo_MPI ::comm);

//take broadBuf and put back into inAndOut if not src

- if (procID () != a_src)

+ if (! isRoot)

linearIn(a_inAndOut , broadBuf);

// delete memory for buffer

freeMT(broadBuf);

}

Listing 8.12: Modifications to the broadcast implementation to switch
between MPI and Charm++ execution modes

116

void broadcast(char *a_buf , int a_size) {

AMRChare *chare = CtvAccess(runningChare);

CkAssert(chare);

chare ->beginBroadcast(a_buf , a_size);

}

bool isBcastRoot () {

AMRChare *chare = CtvAccess(runningChare);

return chare ->getLevel () == 0 && chare ->getIndex () == 0;

}

void AMRChare :: beginBroadcast(char *a_buf , int a_size) {

m_communicationOperations ++;

m_broadcastBuf = a_buf;

if (isBcastRoot ()) {

AMRData *msg = new (a_size) AMRData(thisIndex ,

m_communicationOperations , 0, a_size);

memcpy(msg ->buffer , a_buf , a_size);

// Entry method invocation broadcast to all elements of

the chare array

thisProxy.broadcast(msg);

}

if (! processBcastMsg ())

pause("broadcast", AMRChare ::BROADCAST , m_cur_step);

}

// Entry method called through thisProxy , above

void AMRChare :: broadcast(AMRData *e_msg) {

m_messages.push_back(e_msg);

if (m_thread != NULL && m_sleepReason == BROADCAST &&

processBcastMsg ())

resume("broadcast", BROADCAST);

}

bool AMRChare :: processBcastMsg () {

CkIndex3D root = {m_definingGens [0], 0, 0};

vector <AMRData *>:: iterator recvMsgIt =

find_if(m_messages.begin(), m_messages.end(),

messageMatches(ExpectedMessage(root ,

m_communicationOperations , 0)));

if (recvMsgIt != m_messages.end()) {

AMRData *recvMsg = *recvMsgIt;

memcpy(m_broadcastBuf , recvMsg ->buffer , recvMsg ->size);

m_messages.erase(recvMsgIt);

delete recvMsg;

m_broadcastBuf = NULL;

return true;

}

return false;

}

Listing 8.13: Charm++ implementation of broadcast to distribute a value
from the designated ‘root’ box to all other box chare objects.

117

Allreduce

The other commonly used collective operation in Chombo framework and

application code was MPI_Allreduce. The framework did not provide a

wrapper function for this, and so many places in the code called it di-

rectly. Adaptation to mixed MPI/Charm++ execution required an abil-

ity to choose which engine’s implementation to call. Thus, the first step of

adaptation was to implement a wrapper allReduce() routine for the types

required: float, double, int, IntVectSet. The implementation of this

wrapper and its backing Charm++ code can be seen in Listing 8.14. All

call sites of MPI_Allreduce in relevant portions of the Chombo repository

were replaced with calls to the wrapper. Some instances of a pattern im-

plementing the same effect through a sequence of gather/reduce/broadcast

were also replaced.

Because an all-reduce operation inherently depends on contributions from

every element before any element can receive the results and continue exe-

cution, its control flow is simplified relative to broadcasts. Specifically, no

sequence number or other matching construct is necessary, because no more

than one can be in flight at a time. Thus, each object makes its contribution,

and then pauses its execution until the result is available. The underlying

implementation for all types is effectively a reduce-broadcast algorithm using

the supporting Charm++ primitives.

The primary use of this operation was in determining allowable timestep

lengths, possibly through the intermediate calculation of maximum wave

speeds. As described in Section 8.2, this operation has been lifted from

application code into the adapted framework, allowing consolidated use of

the non-blocking implementation shown in Listing 8.15.

8.1.8 Collective Coordination

As noted above, each box object is also an independent participant in collec-

tive operations. As in MPI, Charm++ requires contribution to collectives

to follow the same sequence across all participants within a given group (MPI

communicator or chare array). In my modifications to Chombo, this posed

some trouble because new elements are created dynamically and expected to

consistently participate in collectives following their creation.

118

void AMRChare :: beginAllReduce(double& a_inAndOut , MPI_Op

a_op) {

// Start a global reduction , performing the specified

operation

CkCallback cb(CkIndex_AMRChare :: allReduce(NULL),

thisProxy);

contribute(sizeof(double), &a_inAndOut ,

a_op == MPI_MAX ? CkReduction :: max_double :

CkReduction ::sum_double ,

cb, m_cur_step);

// Wait for it to complete

pause("allreduce", ALLREDUCE , m_cur_step);

// Extract the resulting value

a_inAndOut = *(double *) m_reductionMsg ->getData ();

// Discard the message

delete m_reductionMsg;

m_reductionMsg = NULL;

}

void AMRChare :: beginAllReduce(IntVectSet& a_inAndOut) {

// Start a global gather

vector <Box > boxes = a_inAndOut.boxes().stdVector ();

contribute(sizeof(Box)*boxes.size(), &boxes [0],

CkReduction ::concat ,

CkCallback(CkIndex_AMRChare :: allReduce(NULL),

thisProxy));

pause("allreduce", ALLREDUCE , m_cur_step);

// Consolidate the results. NOTE: This should be a reducer

// running on the input once , not per recipient!

Box *b = (Box *) m_reductionMsg ->getData (),

*bend = b + m_reductionMsg ->getSize ()/sizeof(Box);

for (; b < bend; ++b)

a_inAndOut |= *b;

delete m_reductionMsg;

m_reductionMsg = NULL;

}

// Entry method target of the above contribute () calls

void AMRChare :: allReduce(CkReductionMsg *m) {

// Store the message received

m_reductionMsg = m;

// Resume execution if it was blocked waiting for this

if (ALLREDUCE == m_sleepReason)

resume("allreduce", ALLREDUCE);

}

Listing 8.14: Wrapper and Charm++ implementation of allReduce, using
a reduce-broadcast algorithm based on lower-level Charm++ primitives

119

void AMRChare :: beginIAllReduce(const double a_in) {

CkCallback cb(CkIndex_AMRChare :: allReduce(NULL),

thisProxy);

contribute(sizeof(double), &a_in , CkReduction ::max_double ,

cb);

}

double AMRChare :: endIAllReduce () {

if (NULL == m_reductionMsg)

pause("allreduce", ALLREDUCE , m_wake_prio);

Real out = *(double *) m_reductionMsg ->getData ();

delete m_reductionMsg;

m_reductionMsg = NULL;

return out;

}

Listing 8.15: Implementation of a non-blocking allReduce, used specifically
for global stable timestep calculation

The protocols for these operations in Charm++ are slightly deficient for

this purpose without additional synchronization [82]. The sequence numbers

used to match messages to operations are recorded by each object at the time

its insertion call is made from processor level state. That processor level state

reflects the furthest progress in the reduction sequence of any object in that

array residing on that processor. Thus, objects calling for new insertions

and then proceeding to make subsequent collective calls lead to later object

insertion calls on that processor to have their stamped sequence numbers

offset from the intended value. Without modifying this fundamental piece of

Charm++ infrastructure, I was forced to insert blocking synchronization

after existing objects’ calls to insert new objects for the next generation, to

enforce waiting until all insertion calls have been made, with the counters

in the same state. Since regridding itself remains both synchronous and

rare, and this additional synchronization comes as part of regridding, fixing

the infrastructure to avoid this was not a priority for gaining additional

performance or scalability.

120

8.2 Reducing Synchronization by Optimizing Global

Reductions for Stable Timestep Computation

Ghost cell exchanges and inter-level interpolation/averaging initially pre-

sented the most frequent synchronization in the original bulk-synchronous

MPI-based Chombo design. Those operations occur many times per step.

After that, the next most frequent source of synchronization is the global

computation of a stable timestep. In the baseline design of Chombo, this in-

volved application code performing a blocking all-reduce operation for each

level of refinement in every step. The framework logic would then compute

and apply the minimum value across all levels locally on each process.

Several steps of synchronization-weakening and -eliminating transforma-

tions are possible from this baseline. The first general transformation in-

volves lifting the multiple reduction operations into a single operation per

step. That single operation can then be made non-blocking, to provide over-

lap with end-of-step computations that do not depend on its output. Finally,

we can examine the potential impact of eliminating this reduction entirely.

Experiments to benchmark these modifications were performed on Edison,

using one PE per physical core. For each node count, all variations were run

in a common job allocation, to mitigate effects of network topology variation

across jobs. The overall performance effect of these steps can be seen in

Figure 8.3.

8.2.1 Consolidating Per-Level Reductions

A preliminary change in the AMRGodunov mini-app involved moving the

all-reduce calls so that they would occur in back-to-back calls from the

framework into application code, after all levels’ computations were com-

plete, rather than at the end of each level’s computations1. Moving the

reductions in this way is an application of the ‘batching collectives’ pattern.

This change drastically reduces the excessive dependencies of the original

implementation – the beginning of each level’s computation on each process

was made to wait for the end of the previous level’s computation on all pro-

cesses! This change allows overlap of work among objects at different levels

1Specifically, from AMRLevel::advance() to AMRLevel::computeDt().

121

2 4 8 16 32 40
Nodes

10-1

100

101

102

Run Time (s)

advance
computeDt
system
nonblocking
fixed

Figure 8.3: The effect of various optimizations to the process of computing
a globally stable timestep in the AMRGodunov benchmark. The original
code did a global ALL REDUCE at the end of each level’s advance() method.
Successive transformations moved those calls to the computeDt() method
after all advance() calls were complete; lifted them from a per-level call in
computeDt() to a single call by the system; made that single call
nonblocking; and elided that call when a fixed timestep value was set.

122

of refinement, including sending messages whose contents don’t depend on

data from earlier levels.

Given independent per-box asynchronous execution, the multi-level overlap

and early sends help mitigate per-level load imbalance. As soon as some boxes

at a level l have finished their computation and sent whatever messages they

will, the dependencies for overlapping boxes at level l + 1 can be satisfied,

letting them begin execution of that step.

This change widens the main synchronization window to encompass com-

putation at all levels. At the same time, the multiple reductions executed

in close succession remain more vulnerable to interference than would be

ideal. Overall, this change shows performance improvements across a range

of scales.

Surveying existing Chombo applications

The transformation described in this section was first identified and applied

the the AMRGodunov example provided with the Chombo framework. This

example is taken as a common starting point for writing other Chombo ap-

plication code, as suggested by the developers of Chombo. Furthermore, the

interface specification between the Chombo framework and its application

codes suggests a requirement for this mis-design, by demanding that a new

dT be returned from the AMRLevel::advance() method (“Return an esti-

mate of the new time step at this level.” [83]), even though the framework

discards this value! Thus, I surveyed other example code contained in the

Chombo distribution to determine the prevalence of this performance bug.

In the Chombo distribution, the following other codes exhibit this sub-

optimal structure:

1. lib/src/EBAMRTimeDependent/EBAMRGodunov

2. lib/src/MOLAMRTimeDependent/AMRLevelCons

3. releasedExamples/AMRGodunov/srcPolytropic

4. releasedExamples/AMRGodunov/srcAdvectDiffuse

5. releasedExamples/AMRINS/NavierStokes

6. releasedExamples/EBAMRCNS/src/EBAMRCNS

123

7. old/MoveToReleasedExamples/AMRClaw/src/AMRLevelClaw2

8. old/MoveToReleasedExamples/AMRSelfGravity/

charm/AMRLevelSelfGravity

9. old/fourthOrderHyperbolic/srcMapped/AMRLevelMappedCons3

10. old/fourthOrderHyperbolic/srcMappedAMR/AMRLevelMappedCons

On the other hand, old/fourthOrderHyperbolic/srcMappedAdvection/

AMRLevelAdvect uniquely does not.

8.2.2 Lifting Reduction Responsibility from Client
Application to Framework Code

We note that every application using Chombo’s AMRTimeDependent driver

must follow a similar structure of stable timestep calculation as described

above. Based on this observation, we can refactor to shift this responsibility

from the application to the framework. Originally, application code would

reduce over the locally-computed bounds and return the reduced value to the

framework from AMRLevel::computeDt(). Instead, the application code can

return the result of its purely local calculation at each level to the framework,

and let the framework perform the global reduction4. Since the framework

uses the minimum value obtained across all levels, it can do a single global

reduction rather than one per level. This provides only marginal performance

benefits, but it sets up opportunities for further optimizations.

The next optimization, now available to make in the framework code,

is to use a non-blocking reduction. Chombo applications offer a clear op-

portunity to overlap this operation with applications’ end-of-step work in

AMRLevel::postTimestep(). This work would typically comprise opera-

2This instance does even worse still - it gathers each process’s local value to a single
rank, does a local MIN-reduction, and then broadcasts the result. Thus, it adds an
additional serial bottleneck on top of the excess synchronization.

3This shares the noted additional deficiency with AMRClaw.
4For the sake of maintaining compatibility of the modified framework with

application code before and after this change, we add a new virtual method

‘bool AMRLevelFactory::amrlevel_compute_dt_is_local()’ to indicate whether the

application’s implementation of AMRLevel uses the old or new style. The base implemen-

tation of this new method returns ‘false’, to let existing code continue working without

modification.

124

tions like averaging field values down from fine levels to coarser levels, to

ensure consistent results. This provides further performance benefits.

8.2.3 Effect of Eliminating Timestep Reductions

Ideally, no global collective at all would be necessary to compute a timestep

that would produce a stable simulation. The inputs that determine it can

be computed locally within a ‘neighborhood’ of the simulation domain, and

each neighborhood’s value can then be used within that neighborhood, with

appropriate coordination at the boundaries. This would be an example of

the pattern ‘replace synchronizing collectives with p2p messages that achieve

the desired effect’ (§ 3.6). An implementation of this approach has been

independently proposed for development in Enzo-P.

We can model the performance impact of this situation by setting a fixed

timestep value for the entire simulation. Since the framework code is now re-

sponsible for computing the timestep reduction, a simple modification can be

made to let it skip that reduction when a fixed timestep is set. This provides

a best-case bound on the potential improvement of such a development.

Comparative execution performance in Figure 8.3 shows that this provides

a slight improvement in our microbenchmark, that becomes more marked

at larger scales. We can see in Figure 8.5 that this change sharply changes

the execution structure of this code. With a reduction at each level, sub-

stantial per-level load imbalance and small amounts of communication delay

are observed even at small scales. With no global reductions synchronizing

execution, load imbalance is less marked and becomes easier to address with

less finely-tailored mechanisms.

We can also see that this sharply changes the communication behavior of

the code. With global synchronization at the end of each step, most messages

between boxes were being sent during the narrow time window shortly after

the reduction completes and the next step starts. Without this reduction,

those same messages are generated incrementally over the course of the entire

step, as shown in Figure 8.4. This reduces the peak network injection rate

from 26 GB/s to 11 GB/s. By reducing peak network traffic, this transfor-

mation broadly applied can reduce the bandwidth requirements in the design

of future machines. More practically, it can reduce network contention and

hence network latency on recent supercomputer networks [84, 85, 86].

125

(a) With an allreduce in each step

(b) Without any global collective between steps

Figure 8.4: The effect of eliminating global synchronization on the
distribution of network traffic over time. Eliminating each object’s wait for
a reduction to complete allows them to begin sending their first round of
data for the subsequent step as soon as they are able to compute it. This
spreads the traffic over time, causing peak message rates to fall from 26
GB/s to 11 GB/s.

8.3 Design Alternatives

Rather than constructing a fresh object/thread association, it may have

been easier to use the existing TCharm framework within Charm++ or

the full Adaptive MPI implementation. Using Adaptive MPI would have ad-

ditionally allowed use of its message matching and sequencing logic, rather

than requiring bespoke redevelopment of the communication engine. The

downside of this approach is that it would require maintaining the logic

in Chombo to generate a sequential numbering of the boxes to map them

to ranks, and hence prevent subsequent application of the Semantic Nam-

126

(a) With an allreduce in each level

(b) Without any global collective between steps

Figure 8.5: The effect of eliminating global synchronization on execution
structure

127

ing pattern. An extension of AMPI to allow communicators with sparse or

arbitrarily-numbered ranks would resolve that concern.

A much less invasive design would be to make Chombo’s exchange()

and copyTo() communication operations non-blocking, have DataIterator

opportunistically return boxes in the order their dependences from preceding

communication are satisfied, and use iteration to drive the MPI progress

engine. This approach would allow asynchronous execution within each phase

or level of computation, but not beyond. Without capturing the code run

in the body of each iterator loop and detecting dependencies from the loop

body to code following it, each such loop essentially requires a barrier at its

end (as in OpenMP parallel for without the nowait directive) to ensure

correctness. The compiler-based analysis and transformation in OmpSs to

support dynamic task dependence inference and tracking would overcome

this impediment.

8.4 Future Work

The development and results described here do not fully exploit all features

of the Charm++ environment. In particular, it makes no use of object

migration for dynamic load balancing nor of dynamic redistribution of tasks

within shared-memory processes. The code necessary to enable use of these

features has been implemented in the modified version of Chombo. However,

their ramifications for the framework and application code have not been fully

worked out, and hence performance results are not yet available.

128

Chapter 9

Conclusion

In this thesis, we have seen that the broad synchronization behavior of

distributed-memory parallel programs can be a first-order concern for perfor-

mance and scalability, alongside the amounts and arrangement of computa-

tion and communication. Many challenging problems in parallel computing,

the subjects of years or decades of focused research, can be ameliorated or

eliminated by reducing synchronization. These include load imbalance, sys-

tem noise, and communication latencies.

The fundamental relationship between synchronization and the above chal-

lenges has been illustrated through a theoretical modeling effort. Relevant

effects described by the model are characterized by two traits. First, they

cause different processors in a parallel system to arrive at a synchronization

point at disparate times. Second, which processors are delayed relative to

others at those points varies between adjacent synchronization periods. In

the presence of these two traits, the model shows that removing synchroniza-

tion between adjacent windows allows the variable arrival times to partly or

wholly cancel each other out over the course of execution. Thus, the impact

of the underlying problem causing the variable timing is reduced.

Several applications presenting opportunities to restructure, reduce, or

eliminate synchronization were explored. The impacts on their performance

ranged from modest to momentous. In the course of this application work,

several patterns for improving synchronization structure emerged. These

patterns have been enumerated and characterized.

9.1 Future Work

It would be desirable to examine more applications in light of the ideas

presented in this thesis. This will potentially help solve existing scalability

129

problems faced by those applications with less work than tackling their ap-

parent source head on. It can also support expansion and refinement of the

set of patterns described so far.

In support of further application work, it would be useful to have a software

tool to indicate when synchronization is exposing other problems. This could

be an online detection mechanism or library, or an offline analysis. The

primary trait for such a tool to seek would essentially be a generalization of

‘imbalance time’ [87], in which different processes incur different amounts of

idle time while waiting for a synchronizing operation to complete.

Separately, the presented performance model could be reformulated in

terms of turning execution-time variations into ‘noise’ of effectively ‘high

frequency’ relative to the synchronization points, such that it explicitly can

be expected to balance out. This would eliminate the analytical artifact in

the current algebraic formulation, that produces unrealistic patterns in the

expected benefit of reducing synchronization.

130

References

[1] N. R. Tallent, L. Adhianto, and J. M. Mellor-Crummey, “Scalable
identification of load imbalance in parallel executions using call
path profiles,” in Proceedings of the 2010 ACM/IEEE International
Conference for High Performance Computing, Networking, Storage and
Analysis, ser. SC ’10. Washington, DC, USA: IEEE Computer Society,
2010. [Online]. Available: http://dx.doi.org/10.1109/SC.2010.47 pp.
1–11.

[2] J. C. Linford, M.-A. é Hermanns, M. Geimer, D. Böhme, and F. Wolf,
“Detecting load imbalance in massively parallel applications,” FZ
Juelich, Tech. Rep. FZJ-JSC-IB-2008-09, 2009.

[3] F. Petrini, D. Kerbyson, and S. Pakin, “The Case of the Missing Super-
computer Performance: Achieving Optimal Performance on the 8,192
Processors of ASCI Q,” in ACM/IEEE SC2003, Phoenix, Arizona,
Nov. 10–16, 2003.

[4] J. C. Phillips, G. Zheng, S. Kumar, and L. V. Kalé, “NAMD: Biomolec-
ular simulation on thousands of processors,” in Proceedings of the 2002
ACM/IEEE conference on Supercomputing, Baltimore, MD, September
2002, pp. 1–18.

[5] T. Hoefler, T. Schneider, and A. Lumsdaine, “Characterizing the
influence of system noise on large-scale applications by simulation,” in
Proceedings of the 2010 ACM/IEEE International Conference for High
Performance Computing, Networking, Storage and Analysis, ser. SC
’10. Washington, DC, USA: IEEE Computer Society, 2010. [Online].
Available: http://dx.doi.org/10.1109/SC.2010.12 pp. 1–11.

[6] A. Bouteiller, F. Cappello, T. Hérault, G. Krawezik, P. Lemarinier, and
F. Magniette, “MPICH-V2: A fault tolerant MPI for volatile nodes
based on the pessimistic sender based message logging programming via
processor virtualization,” in Proceedings of SC’03, November 2003.

[7] S. Chakravorty and L. V. Kale, “A fault tolerance protocol with fast
fault recovery,” in Proceedings of the 21st IEEE International Parallel
and Distributed Processing Symposium. IEEE Press, 2007.

131

http://dx.doi.org/10.1109/SC.2010.47
http://dx.doi.org/10.1109/SC.2010.12

[8] E. Meneses, X. Ni, and L. V. Kale, “A Message-Logging Protocol for
Multicore Systems,” in Proceedings of the 2nd Workshop on Fault-
Tolerance for HPC at Extreme Scale (FTXS), Boston, USA, June 2012.

[9] E. Meneses and L. V. Kale, “CAMEL: Collective-aware message log-
ging,” 2015.

[10] J. Lifflander, E. Meneses, H. Menon, P. Miller, S. Krishnamoorthy, and
L. Kale, “Scalable Replay with Partial-Order Dependencies for Message-
Logging Fault Tolerance,” in Proceedings of IEEE Cluster 2014, Madrid,
Spain, September 2014.

[11] X. Besseron, S. Jafar, T. Gautier, and J. L. Roch, “CCK: An improved
coordinated checkpoint/rollback protocol for dataflow applications in
KAAPI,” in 2006 2nd International Conference on Information Com-
munication Technologies, vol. 2, 2006, pp. 3353–3358.

[12] L. Wesolowski, “Software topological message aggregation techniques
for large-scale parallel systems,” Ph.D. dissertation, Dept. of Computer
Science, University of Illinois, 2014.

[13] L. Wesolowski, R. Venkataraman, A. Gupta, J.-S. Yeom, K. Bisset,
Y. Sun, P. Jetley, T. R. Quinn, and L. V. Kale, “TRAM: Optimizing
Fine-grained Communication with Topological Routing and Aggrega-
tion of Messages,” in Proceedings of the International Conference on
Parallel Processing, ser. ICPP ’14, Minneapolis, MN, September 2014.

[14] J.-S. Yeom, A. Bhatele, K. R. Bisset, E. Bohm, A. Gupta, L. V. Kale,
M. Marathe, D. S. Nikolopoulos, M. Schulz, and L. Wesolowski, “Over-
coming the scalability challenges of epidemic simulations on Blue Wa-
ters,” in Proceedings of the IEEE International Parallel & Distributed
Processing Symposium, ser. IPDPS ’14. IEEE Computer Society, May
2014.

[15] L. Valiant, “A Bridging Model for Parallel Computation,” Communica-
tions of the ACM, vol. 33, no. 8, August 1990.

[16] C. Alexander, S. Ishikawa, and M. Silverstein, A pattern language:
towns, buildings, construction. Oxford University Press, 1977, vol. 2.

[17] E. Gamma, R. Helm, R. Johnson, and J. Vlissides, Design patterns:
Abstraction and reuse of object-oriented design. Springer, 1993.

[18] T. G. Mattson, B. A. Sanders, and B. L. Massingill, Patterns for parallel
programming. Pearson Education, 2004.

[19] B. Acun, P. Miller, and L. V. Kalé, “Variation among processors under
turbo boost in hpc systems,” in International Conference on Supercom-
puting (ICS). ACM, 2016.

132

[20] P. N. Swarztrauber, “Multiprocessor FFTs,” Parallel Computing, vol. 5,
no. 1, pp. 197–210, 1987.

[21] P. Miller, S. Li, and C. Mei, “Asynchronous collective output with non-
dedicated cores,” in Workshop on Interfaces and Architectures for Sci-
entific Data Storage, September 2011.

[22] E. Solomonik and L. V. Kale, “Highly Scalable Parallel Sorting,” in
Proceedings of the 24th IEEE International Parallel and Distributed Pro-
cessing Symposium (IPDPS), April 2010.

[23] T. Hoefler, C. Siebert, and A. Lumsdaine, “Scalable communication
protocols for dynamic sparse data exchange,” ACM Sigplan Notices,
vol. 45, no. 5, pp. 159–168, 2010.

[24] A. B. Sinha, L. V. Kale, and B. Ramkumar, “A dynamic and adap-
tive quiescence detection algorithm,” Parallel Programming Labora-
tory, Department of Computer Science , University of Illinois, Urbana-
Champaign, Tech. Rep. 93-11, 1993.

[25] P. Miller, “Distributed completion detection,” Charm++
Git Repository, Feb. 2011. [Online]. Avail-
able: https://charm.cs.illinois.edu/gerrit/gitweb?p=charm.git;a=
commit;h=3be1a5462d4e515ae5773cdc61327dd5afe137c1

[26] E. W. Dijkstra and C. S. Scholten, “Termination detection for diffusing
computations,” Inf. Proc. Letters, vol. 11, no. 1, pp. 1–4, 1980.

[27] “Top500 supercomputing sites,” http://top500.org, 2013.

[28] J. Lifflander, P. Miller, R. Venkataraman, A. Arya, T. Jones, and
L. Kale, “Exploring partial synchrony in an asynchronous environment
using dense LU,” Parallel Programming Laboratory, Tech. Rep. 11-34,
August 2011.

[29] B. Acun, A. Gupta, N. Jain, A. Langer, H. Menon, E. Mikida, X. Ni,
M. Robson, Y. Sun, E. Totoni, L. Wesolowski, and L. Kale, “Parallel
Programming with Migratable Objects: Charm++ in Practice,” ser.
SC, 2014.

[30] L. Kale, A. Arya, A. Bhatele, A. Gupta, N. Jain, P. Jetley, J. Lifflander,
P. Miller, Y. Sun, R. Venkataraman, L. Wesolowski, and G. Zheng,
“Charm++ for productivity and performance: A submission to the 2011
HPC class II challenge,” Parallel Programming Laboratory, Tech. Rep.
11-49, November 2011.

[31] R. Alpert and J. Philbin, “cBSP: Zero-cost synchronization in a modified
BSP model,” in Tech. Rept. NEC Research Institute, 1997.

133

https://charm.cs.illinois.edu/gerrit/gitweb?p=charm.git;a=commit;h=3be1a5462d4e515ae5773cdc61327dd5afe137c1
https://charm.cs.illinois.edu/gerrit/gitweb?p=charm.git;a=commit;h=3be1a5462d4e515ae5773cdc61327dd5afe137c1
http://top500.org

[32] A. Langer, J. Lifflander, P. Miller, K.-C. Pan, L. V. Kale, and P. Ricker,
“Scalable Algorithms for Distributed-Memory Adaptive Mesh Refine-
ment,” in Proceedings of the 24th International Symposium on Computer
Architecture and High Performance Computing (SBAC-PAD 2012),
New York, USA, October 2012.

[33] J. Bordner and M. L. Norman, “Using and developing Enzo-
P/Cello,” in Enzo Workshop, 2015. [Online]. Available: http:
//client64-249.sdsc.edu/cello/using-enzo-p.pdf

[34] O. S. Lawlor and L. V. Kalé, “Supporting dynamic parallel object ar-
rays,” Concurrency and Computation: Practice and Experience, vol. 15,
pp. 371–393, 2003.

[35] J. Lifflander, P. Miller, R. Venkataraman, A. Arya, T. Jones, and
L. Kale, “Mapping dense LU factorization on multicore supercomputer
nodes,” in Proceedings of IEEE International Parallel and Distributed
Processing Symposium 2012, May 2012.

[36] N. Bock, M. Challacombe, and L. V. Kalé, “Solvers for O(n) electronic
structure in the strong scaling limit,” SIAM Journal on Scientific Com-
puting, vol. 38, no. 1, pp. C1–C21, 2016.

[37] R. C. Agarwal, S. M. Balle, F. G. Gustavson, M. Joshi, and P. Palkar,
“A three-dimensional approach to parallel matrix multiplication,” IBM
Journal of Research and Development, vol. 39, no. 5, pp. 575–582, 1995.

[38] B. N. Gunney, Scalable Mesh Management for Patch-based AMR, Jan
2013. [Online]. Available: http://www.osti.gov/scitech/servlets/purl/
1068317

[39] P. Miller, M. Robson, B. El-Masri, R. Barman, G. Zheng, A. Jain, and
L. Kalé, “Scaling the ISAM land surface model through parallelization
of inter-component data transfer,” in Parallel Processing (ICPP), 2014
43rd International Conference on, Sept 2014, pp. 422–431.

[40] R. Rew and G. Davis, “NetCDF: an interface for scientific data access,”
Computer Graphics and Applications, IEEE, vol. 10, no. 4, pp. 76–82,
1990.

[41] S. A. Brown, M. Folk, G. Goucher, R. Rew, P. F. Dubois et al., “Software
for portable scientific data management,” Computers in Physics, vol. 7,
no. 3, pp. 304–308, 1993.

[42] O. Sarood, “Benfits of parallelizing IO of large data-intensive appli-
cations with a case study of NAMD,” M.S. thesis, Computer Science,
University of Illinois at Urbana-Champaign, 2009.

134

http://client64-249.sdsc.edu/cello/using-enzo-p.pdf
http://client64-249.sdsc.edu/cello/using-enzo-p.pdf
http://www.osti.gov/scitech/servlets/purl/1068317
http://www.osti.gov/scitech/servlets/purl/1068317

[43] “I/O tips – Lustre striping and parallel I/O,” http://www.nics.
tennessee.edu/io-tips, retrieved 2011-03-30.

[44] R. Buch and S. White, “Parallel I/O in Charm++ and AMPI,” Jan.
2016, Class project report for CS598WG.

[45] Y. Saad, “Communication complexity of the Gaussian elimination algo-
rithm on multiprocessors,” Linear Algebra and its Applications, vol. 77,
pp. 315–340, May 1986.

[46] L. V. Kale and M. Bhandarkar, “Structured Dagger: A Coordination
Language for Message-Driven Programming,” in Proceedings of Second
International Euro-Par Conference, ser. Lecture Notes in Computer Sci-
ence, vol. 1123-1124, September 1996, pp. 646–653.

[47] L. Kalé and S. Krishnan, “CHARM++: A Portable Concurrent Ob-
ject Oriented System Based on C++,” in Proceedings of OOPSLA’93,
A. Paepcke, Ed. ACM Press, September 1993, pp. 91–108.

[48] V. Marjanović, J. Labarta, E. Ayguadé, and M. Valero, “Overlapping
communication and computation by using a hybrid MPI/SMPSs
approach,” in Proceedings of the 24th ACM International Conference
on Supercomputing, ser. ICS ’10. New York, NY, USA: ACM, 2010.
[Online]. Available: http://doi.acm.org/10.1145/1810085.1810091 pp.
5–16.

[49] P. Husbands and K. Yelick, “Multi-threading and one-sided commu-
nication in parallel LU factorization,” in SC ’07: Proceedings of the
2007 ACM/IEEE conference on Supercomputing. New York, NY, USA:
ACM, 2007, pp. 1–10.

[50] I. Dooley, C. Mei, J. Lifflander, and L. Kale, “A study of memory-
aware scheduling in message driven parallel programs,” in Proceedings of
17th Annual International Conference on High Performance Computing,
2010.

[51] A. Petitet, R. C. Whaley, J. Dongarra, and A. Cleary,
“HPL - a portable implementation of the high-performance
linpack benchmark for distributed-memory computers,”
http://www.netlib.org/benchmark/hpl/.

[52] J. Choi, J. Dongarra, and D. Walker, “The Design of Scalable Soft-
ware Libraries for Distributed Memory Concurrent Computers,” in
Proc. Eighth International Parallel Processing Symposium, H. Siegel,
Ed. IEEE Computer Society Press, April 1994.

135

http://www.nics.tennessee.edu/io-tips
http://www.nics.tennessee.edu/io-tips
http://doi.acm.org/10.1145/1810085.1810091

[53] G. Bosilca, A. Bouteiller, A. Danalis, M. Faverge, A. Haidar, T. Herault,
J. Kurzak, J. Langou, P. Lemarinier, H. Ltaief, P. Luszczek, A. Yarkhan,
and J. Dongarra, “Distributed dense numerical linear algebra algorithms
on massively parallel architectures: DPLASMA,” University of Ten-
nessee, Tech. Rep. UT-CS-10-660, September 2010.

[54] B. Bland, “HPC challenge class I award G-HPL winning submission,”
2010. [Online]. Available: http://icl.cs.utk.edu/hpcc/hpcc record.cgi?
id=380

[55] L. Grigori, J. W. Demmel, and H. Xiang, “CALU: a communication
optimal LU factorization algorithm,” SIAM Journal on Matrix Analysis
and Applications, vol. 32, no. 4, pp. 1317–1350, 2011.

[56] L. Grigori, J. W. Demmel, and H. Xiang, “Communication avoiding
Gaussian elimination,” in Proceedings of the 2008 ACM/IEEE confer-
ence on Supercomputing. IEEE Press, 2008, p. 29.

[57] G. Weirs, V. Dwarkadas, T. Plewa, C. Tomkins, and M. Marr-Lyon,
“Validating the FLASH code: vortex-dominated flows,” in Astrophysics
and Space Science. Springer, 2005, vol. 298, pp. 341–346.

[58] M. Norman, “Cello: An extreme scale AMR framework, and Enzo-P,
an application for astrophysics and cosmology built on Cello,” in 17th
SIAM Conference on Parallel Processing for Scientific Computing, 2016.

[59] A. Langer and L. Kalé, “Scalable and asynchronous algorithms for block
structured adaptive mesh refinement,” 2013, poster presented at HiPC
2013.

[60] D. DeZeeuw and K. G. Powell, “An adaptively refined cartesian mesh
solver for the euler equations,” JCP, vol. 104, p. 56, 1993. [Online].
Available: http://hdl.handle.net/2027.42/31037

[61] P. MacNeice, K. M. Olson, C. Mobarry, R. de Fainchtein, and C. Packer,
“Paramesh: A parallel adaptive mesh refinement community toolkit,”
Computer Physics Communications, vol. 126, pp. 330–354, 2000.

[62] M. Parashar, X. Li, and S. Chandra, Advanced Computational Infras-
tructures for Parallel and Distributed Adaptive Application. Wiley-
Interscience, 2009.

[63] T. Tu, D. O’Hallaron, and O. Ghattas, “Scalable parallel octree meshing
for terascale applications,” in Supercomputing, 2005. Proceedings of the
ACM/IEEE SC 2005 Conference. IEEE, 2005, pp. 4–4.

136

http://icl.cs.utk.edu/hpcc/hpcc_record.cgi?id=380
http://icl.cs.utk.edu/hpcc/hpcc_record.cgi?id=380
http://hdl.handle.net/2027.42/31037

[64] C. Burstedde, O. Ghattas, M. Gurnis, G. Stadler, E. Tan, T. Tu,
L. Wilcox, and S. Zhong, “Scalable adaptive mantle convection simu-
lation on petascale supercomputers,” in High Performance Computing,
Networking, Storage and Analysis, 2008. SC 2008. International Con-
ference for. IEEE, 2008, pp. 1–15.

[65] A. Wissink, R. Hornung, S. Kohn, S. Smith, and N. Elliott, “Large scale
parallel structured AMR calculations using the SAMRAI framework,” in
Supercomputing, ACM/IEEE 2001 Conference, November 2001, p. 22.

[66] W. Bangerth, C. Burstedde, T. Heister, and M. Kronbichler,
“Algorithms and data structures for massively parallel generic
adaptive finite element codes,” ACM Trans. Math. Softw., vol. 38,
no. 2, pp. 14:1–14:28, Jan. 2012. [Online]. Available: http:
//doi.acm.org/10.1145/2049673.2049678

[67] C. Burstedde, L. C. Wilcox, and O. Ghattas, “p4est: Scalable algo-
rithms for parallel adaptive mesh refinement on forests of octrees,” SIAM
Journal on Scientific Computing, vol. 33, no. 3, pp. 1103–1133, 2011.

[68] C. Burstedde, O. Ghattas, M. Gurnis, T. Isaac, G. Stadler,
T. Warburton, and L. Wilcox, “Extreme-scale AMR,” in Proceedings of
the 2010 ACM/IEEE International Conference for High Performance
Computing, Networking, Storage and Analysis, ser. SC ’10. Washington,
DC, USA: IEEE Computer Society, 2010. [Online]. Available:
http://dx.doi.org/10.1109/SC.2010.25 pp. 1–12.

[69] C. Faloutsos and S. Roseman, “Fractals for secondary key retrieval,” in
Proceedings of the eighth ACM SIGACT-SIGMOD-SIGART symposium
on Principles of database systems. ACM, 1989, pp. 247–252.

[70] L. Oliker and R. Biswas, “PLUM: Parallel load balancing for
adaptive unstructured meshes,” Journal of Parallel and Distributed
Computing, vol. 52, no. 2, pp. 150 – 177, 1998. [Online]. Available:
http://www.sciencedirect.com/science/article/pii/S0743731598914691

[71] Ü. Çatalyürek, E. Boman, K. Devine, D. Bozdag, R. Heaphy, and
L. Riesen, “Hypergraph-based dynamic load balancing for adaptive sci-
entific computations,” in Parallel and Distributed Processing Sympo-
sium, 2007. IPDPS 2007. IEEE International, March 2007, pp. 1 –11.

[72] K. Schloegel, G. Karypis, and V. Kumar, “A unified algorithm
for load-balancing adaptive scientific simulations,” in Supercomputing,
ACM/IEEE 2000 Conference, November 2000, p. 59.

137

http://doi.acm.org/10.1145/2049673.2049678
http://doi.acm.org/10.1145/2049673.2049678
http://dx.doi.org/10.1109/SC.2010.25
http://www.sciencedirect.com/science/article/pii/S0743731598914691

[73] H. deCougny, K. Devine, J. Flaherty, R. Loy, C. Özturan, and
M. Shephard, “Load balancing for the parallel adaptive solution
of partial differential equations,” Applied Numerical Mathematics,
vol. 16, no. 12, pp. 157 – 182, 1994. [Online]. Available:
http://www.sciencedirect.com/science/article/pii/0168927494000395

[74] J. Matocha and T. Camp, “A taxonomy of distributed termination
detection algorithms,” Journal of Systems and Software, vol. 43, no. 3,
pp. 207 – 221, 1998. [Online]. Available: http://www.sciencedirect.
com/science/article/pii/S0164121298100341

[75] R. Löhner, “Finite elements in CFD: What lies ahead,” International
Journal for Numerical Methods in Engineering, vol. 24, no. 9, pp.
1741–1756, 1987. [Online]. Available: http://dx.doi.org/10.1002/nme.
1620240910

[76] T. Gautier, X. Besseron, and L. Pigeon, “KAAPI: A thread schedul-
ing runtime system for data flow computations on cluster of multi-
processors,” in Proceedings of the 2007 international workshop on Par-
allel symbolic computation. ACM, 2007, pp. 15–23.

[77] E. Meneses, G. Bronevetsky, and L. V. Kale, “Evaluation of simple
causal message logging for large-scale fault tolerant HPC systems,” in
16th IEEE Workshop on Dependable Parallel, Distributed and Network-
Centric Systems in 25th IEEE International Parallel and Distributed
Processing Symposium (IPDPS 2011)., May 2011.

[78] L. Kalé, R. Skeel, M. Bhandarkar, R. Brunner, A. Gursoy, N. Krawetz,
J. Phillips, A. Shinozaki, K. Varadarajan, and K. Schulten, “NAMD2:
Greater scalability for parallel molecular dynamics,” Journal of Compu-
tational Physics, vol. 151, pp. 283–312, 1999.

[79] F. Gioachin, A. Sharma, S. Chakravorty, C. Mendes, L. V. Kale, and
T. R. Quinn, “Scalable cosmology simulations on parallel machines,” in
VECPAR 2006, LNCS 4395, pp. 476-489, 2007.

[80] O. Lawlor and L. V. Kalé, “Supporting dynamic parallel object arrays,”
in Proceedings of ACM 2001 Java Grande/ISCOPE Conference, Stan-
ford, CA, Jun 2001, pp. 21–29.

[81] N. Jain, A. Bhatele, J.-S. Yeom, M. F. Adams, F. Miniati, C. Mei, and
L. V. Kale, “Charm++ & MPI: Combining the best of both worlds,” in
Proceedings of the IEEE International Parallel & Distributed Processing
Symposium (to appear), ser. IPDPS ’15. IEEE Computer Society, May
2015, lLNL-CONF-663041.

[82] Charm++ Issue Tracker, “Define and document semantics of dynamic
insertion in chare arrays wrt broadcasts and reductions.” [Online].
Available: https://charm.cs.illinois.edu/redmine/issues/49

138

http://www.sciencedirect.com/science/article/pii/0168927494000395
http://www.sciencedirect.com/science/article/pii/S0164121298100341
http://www.sciencedirect.com/science/article/pii/S0164121298100341
http://dx.doi.org/10.1002/nme.1620240910
http://dx.doi.org/10.1002/nme.1620240910
https://charm.cs.illinois.edu/redmine/issues/49

[83] “Chombo Software Package for AMR Applications,”
http://seesar.lbl.gov/anag/chombo.

[84] A. Bhatele, “Automating Topology Aware Mapping for Supercomput-
ers,” Ph.D. dissertation, Dept. of Computer Science, University of Illi-
nois, August 2010, http://hdl.handle.net/2142/16578.

[85] M. Besta and T. Hoefler, “Slim Fly: A Cost Effective Low-Diameter Net-
work Topology,” Nov. 2014, proceedings of the International Conference
on High Performance Computing, Networking, Storage and Analysis
(SC14).

[86] J. Kim, W. J. Dally, S. Scott, and D. Abts, “Technology-driven, highly-
scalable dragonfly topology,” SIGARCH Comput. Archit. News, vol. 36,
pp. 77–88, June 2008.

[87] L. DeRose, B. Homer, and D. Johnson, “Detecting application
load imbalance on high end massively parallel systems,” in Euro-
Par 2007 Parallel Processing, ser. Lecture Notes in Computer
Science, A.-M. Kermarrec, L. Boug, and T. Priol, Eds. Springer
Berlin Heidelberg, 2007, vol. 4641, pp. 150–159. [Online]. Available:
http://dx.doi.org/10.1007/978-3-540-74466-5 17

139

http://hdl.handle.net/2142/16578
http://dx.doi.org/10.1007/978-3-540-74466-5_17

	Chapter 1 Introduction
	Load Imbalance
	Noise
	Fault Recovery
	Summary

	Chapter 2 Modeling the Performance Impact of Desynchronizing Execution
	Chapter 3 Patterns for Reducing Synchronization in Distributed-Memory Parallel Programs
	Batch (Blocking On / Waiting For) Collectives
	Communicate More With Each Collective, To Reduce Frequency
	Avoid Collective Synchronization by Sending and Consuming Data Incrementally
	Separate Communication from Coordination
	Replace Synchronizing Collectives with Coordination Schemes
	Replace Synchronizing Collectives with Point-to-Point Messages That Achieve the Desired Effect
	Semantic Object Naming

	Chapter 4 Atmospheric Data Input in ISAM
	Matching Atmospheric Timestep with Model Timestep
	Parallel-In-Time Reading and Interpolation
	Simultaneous Distribution of Multiple Steps
	Summary

	Chapter 5 Desynchronizing Parallel File Output
	Initial Design
	Evaluation

	Deployed Design
	Design for Fully Desynchronized Coordinated Output

	Chapter 6 Dense LU Factorization
	Background
	Algorithm
	Granularity Spectrum
	Lookahead

	Charm++ Implementation
	Dynamic Lookahead for Greater Overlap
	Dependence Scheduling of Large Block Operations
	Experimental Setup
	Limiting Network Contention with Dynamic Multicasts
	Exclusive Scheduling Classes
	Isolation of Active Panel
	Isolation of Triangular Solves
	Isolation of Asynchronous Reductions
	Synchrony Amidst Asynchrony
	Performance

	Related Work
	Summary

	Chapter 7 Tree-Structured Adaptive Mesh Refinement
	Related Work
	Algorithm Description
	Distributed Parallel Objects
	Mesh Restructuring Decision Algorithm
	Termination Detection
	Block-to-processor Mapping and Load Balancing

	Experimental Results
	Experimental Setup
	Overall Performance and Scalability
	Remeshing Performance

	Remeshing With No Global Synchronization
	Convergence
	Bounded Message Count

	Future Work

	Chapter 8 Desynchronizing and Optimizing the Chombo AMR Framework
	Transparent Asynchronous Execution of Existing SPMD Application Code
	Application Initialization
	Encapsulating Per-Box Independent Execution
	Uniquely Identifying Chare Array Elements
	Aligning BoxLayout with Chares for Allocation and Computation
	Initial Grid Construction
	Communication Engine
	Collective Implementation
	Collective Coordination

	Reducing Synchronization by Optimizing Global Reductions for Stable Timestep Computation
	Consolidating Per-Level Reductions
	Lifting Reduction Responsibility from Client Application to Framework Code
	Effect of Eliminating Timestep Reductions

	Design Alternatives
	Future Work

	Chapter 9 Conclusion
	Future Work

	References

