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Abstract	

	

repABC	plasmids	are	ubiquitous	in	the	α-proteobacteria	and	are	important	to	the	

biology	of	the	bacteria	that	harbor	them	for	several	reasons.		First,	they	can	carry	

large	amounts	of	DNA,	thereby	conferring	a	wide	variety	of	important	

characteristics.		Some	of	these	traits	are	important	for	the	biology	of	the	bacteria	

that	harbor	them.		For	example	the	repABC	plasmids	in	species	of	Agrobacterium	can	

encode	virtually	all	of	the	genes	responsible	for	inducing	crown	gall	tumors	and	

hairy	roots	on	susceptible	plant	hosts.		These	plasmids	also	encode	the	genes	

required	for	production	by	the	plant,	and	utilization	by	the	bacteria	of	unique	

carbon	conjugates	called	opines.		Similarly,	repABC	plasmids	in	species	of	Rhizobium	

confer	nodulation	and	nitrogen	fixation	when	the	bacteria	are	in	symbiosis	with	a	

suitable	plant	host.		Second,	the	repABC	replicons	have	a	broad	host-range,	and	a	

subset	of	these	plasmids	encode	a	conjugative	transfer	system	allowing	these	

biologically	relevant	elements	to	transfer	between	and	among	species	of	bacteria.		

Perhaps	the	best-studied	transfer	system	of	the	repABC	plasmids	is	the	Class	I	

system	composed	of	a	type	four	secretion	system	encoded	by	the	traI/trb	operon	

and	a	DNA	metabolism	system	encoded	by	the	two	tra	operons.		These	operons	are	

regulated	by	a	quorum-sensing	system	involving	three	proteins:	TraR,	TraI,	and	

TraM.		TraR	directly	activates	the	transfer	regulon	but	needs	its	ligand,	an	acyl-

homoserine	lacone	quorum-sensing	signal	synthesized	by	TraI,	to	be	active.		One	

additional	component,	TraM,	binds	to	TraR	directly	and	inactivates	the	quorum-

sensing	protein	when	the	signal	for	transfer	is	absent.	

	

The	octopine-type	Ti	plasmids	in	A.	tumefaciens	strains	15955	and	R10	are	inducible	

for	conjugative	transfer	by	octopine	because	traR	is	the	distal	member	of	an	operon	

inducible	by	the	conjugative	opine.		However,	a	second	non-functional	allele	of	traR,	

called	trlR,	is	present	in	the	mannopine	transport	operon,	an	operon	that	is	

inducible	by	the	opine	mannopine.		Based	on	the	location	and	inducibility	of	trlR	by	

mannopine,	we	hypothesized	that	there	would	be	a	functional	allele	of	traR	that	is	
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similarly	located	in	a	mannopine-inducible	operon	and	that	mannopine	would	

induce	transfer	of	a	plasmid	in	a	wild-type	isolate	of	Agrobacterium.		To	this	end	we	

characterized	and	analyzed	a	collection	of	mannopine-utilizing	field	isolates	for	the	

ability	of	mannopine	to	induce	transfer.		We	found	five	such	isolates.		Further	

characterization	of	the	mannopine-utilizing	plasmids	in	these	strains	indicated	that	

these	plasmids	all	are	highly	related.		We	analyzed	and	sequenced	one	such	element,	

pAoF64/95.		First,	pAoF64/95	is	not	a	virulence	element;	it	does	not	contain	the	

genes	for	virulence	or	a	T-region.		Instead	pAoF64/95	is	an	opine-catabolic	plasmid	

and	encodes	all	of	the	genes	for	utilization	of	three	of	the	four	mannityl	opines-	

mannopine,	mannopinic	acid	and	agropinic	acid-	as	well	as	the	agrocinopines.		

Indeed,	strains	harboring	pAoF64/95	can	utilize	these	three	mannityl	opines	and	

are	also	sensitive	to	agrocin	84,	an	indication	that	the	strain	can	utilize	the	

agrocinopine	opines.		Second,	an	otherwise	plasmid-less	strain	harboring	

pAoF64/95	transfers	the	mannopine-utilizing	trait	to	a	recipient	when	grown	with	

mannopine.		Moreover,	mutational	analysis	of	traR	and	traM	encoded	by	pAoF64/95	

suggests	that	the	functions	of	TraR	and	TraM	as	activator	and	antiactivator	are	

conserved.		Finally,	the	genes	involved	in	Class	I	transfer	of	pAoF64/95	are	not	

organized	as	they	are	in	Ti	plasmids.		For	all	repABC	plasmids	with	Class	I	transfer	

systems,	the	traI/trb	operon	is	always	adjacent	and	divergently	oriented	to	the	

repABC	operon.		In	the	Ti	plasmids,	the	tra	region	along	with	traR	and	traM	are	

located	distantly	from	the	trb-repABC	region	and	more	often	are	located	near	the	

genes	for	uptake	and	catabolism	of	the	conjugative	opine.		Additionally,	in	the	Ti	

plasmids	known	to	be	conjugative,	traR	is	invariably	located	in	an	operon	inducible	

by	the	conjugative	opine.		This	organization	of	the	genes	for	conjugative	transfer	we	

call	Group	I	organization.		However,	in	pAoF64/95,	like	the	Ri	plasmids	of	A.	

rhizogenes	and	many	plasmids	in	species	of	Rhizobium,	the	location	of	the	tra	genes	

is	contiguous	with	the	trb-repABC	region	and	traR	is	monocistronic,	an	organization	

we	name	Group	II.	
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Based	upon	these	two	modes	of	organization	of	plasmids	with	Class	I	transfer	

systems	(Group	I	and	Group	II),	we	hypothesized	that	the	component	gene	systems	

represent	divergent	evolutionary	lineages.		We	assessed	the	evolution	of	the	

transfer,	quorum-sensing,	and	replication	and	partition	proteins	and	found	that	the	

quorum-sensing	and	transfer	proteins	form	two	clades	that	are	consistent	with	the	

two	modes	of	plasmid	organization,	indicating	that	the	two	organizational	groups	of	

plasmids	are	evolving	divergently.		Despite	the	obligatory	linkage	of	the	repABC	

operon	with	the	traI/trb	operon,	the	repABC	proteins	evolve	independently	of	the	

transfer	and	quorum-sensing	proteins.		Moreover,	while	RepA	and	RepB	coevolve,	

RepC	evolves	independently.		Functional	analysis	indicates	that	TraR	can	dimerize	

and	activate	tra	box-containing	promoters	of	members	within	a	clade,	but	not	

between	clades.		This	is	further	evidence	that	proteins	within,	but	not	between	

clades	are	cross-functional.		In	contrast,	the	oriT	regions	are	highly	conserved	and	

do	not	form	two	major	clades.		Consistent	with	the	phylogeny,	cloned	oriT	regions	

are	processed	and	mobilized	by	members	of	either	clade.		We	conclude	that	Group	I	

and	Group	II	plasmids	diverged	based	upon	where	the	cargo	DNA	is	located	and	

moreover	that	this	divergence	in	organization	extends	to	function.	
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Chapter	1:	Introduction	and	Literature	Review	

	

1.1	repABC	plasmids	are	ubiquitous	in	the	Rhizobiales	and	confer	defining	
characteristics	to	the	bacteria	that	harbor	them	
	

The	α-proteobacteria	are	a	diverse	group	of	bacteria,	that	includes	Brucella,	which	

are	pathogenic	to	humans	and	other	animals;	Agrobacterium,	which	are	pathogenic	

to	plants;	Rhizobium	and	Bradyrhizobium,	which	are	plant	symbionts;	and	

Nitrobacter	and	Oligotropha,	organisms	that	grow	both	lithoautotrophically	and	

chemoorganotrophically.		Many	members	of	the	α-proteobacteria	harbor	secondary	

chromosomes	or	large	plasmids	that	encode	a	repABC	replication	and	partitioning	

system	(21,	25,	188).		This	replication	system	is	remarkable	in	that	it	can	stably	

maintain	large	quantities	of	genetic	information.		Some	of	the	repABC	replicons	are	

nearly	as	large	as	the	primary	chromosome	of	the	bacteria	that	harbor	them.		

Moreover,	these	repABC	replicons	often	define	the	bacteria	that	harbor	them.		For	

example	the	virulence	genes	of	some	species	of	Brucella	are	encoded	on	a	repABC	

secondary	chromosome.		Likewise,	the	virulence	traits	of	Agrobacterium	and	the	

genes	for	plant	symbiosis	and	nitrogen	fixation	found	in	some	species	of	Rhizobium	

are	encoded	on	large	repABC	plasmids	(92,	93,	260).		

	

The	repABC	genes	generally	are	organized	into	a	single	operon	that	has	a	complex	

regulatory	system	(188).		Both	RepA	and	RepB	are	related	to	members	of	the	Par	

family	of	proteins	involved	in	segregation	of	chromosomes	and	other	replicons	

(188).		RepA	and	RepB	are	responsible	for	the	stable	maintenance	and	partitioning	

of	the	low	copy-number	plasmids.		While	RepC	has	no	known	homologues,	it	is	

required	for	and	believed	to	initiate	plasmid	replication	(6,	195).		Moreover,	the	oriV	

lies	within	the	coding	sequences	of	repC	[reviewed	in	(188)].		Most	repABC	replicons	

are	maintained	at	a	copy	number	of	only	one	or	two	under	normal	growth	

conditions	(25,	188).	
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The	repABC	plasmids	often	play	a	crucial	role	in	the	biology	of	the	bacteria	that	

harbor	them.		In	addition	to	encoding	the	genes	that	define	some	of	the	bacteria	that	

harbor	these	replicons,	plasmids	in	the	RepABC	family	are	known	to	recombine	and	

form	cointegrates	(122,	159,	255),	thereby	swapping	or	deleting	gene	cassettes	and	

increasing	the	diversity	of	these	replicons	and	the	bacteria	that	harbor	them.		

Furthermore,	many	of	these	plasmids	also	encode	a	conjugative	transfer	system	

responsible	for	transfer	of	the	plasmid	from	one	bacterium	to	another,	thereby	

horizontally	spreading	the	repABC	plasmids	and	the	traits	they	encode.	

	

1.2	There	are	3-4	classes	of	transfer	systems	

	

There	are	at	least	four	classes	of	conjugative	transfer	systems	associated	with	the	

repABC	family	of	plasmids	in	the	Rhizobiales	[(89)	and	reviewed	in	(59)].		Many	

transfer	systems	are	encoded	by	two	functional	units:	mating	pair	formation	(Mpf)	

and	DNA	metabolism	(Dtr).		In	the	most	well-studied	of	these,	the	Class	I	transfer	

systems,	the	Mpf	is	an	IncP-like,	type	four	secretion	system	encoded	by	the	12	gene	

traI/trb	operon	(142).		The	Dtr	system	is	composed	of	two	divergently	oriented	

operons,	traAFBH	and	traCDG,	and	has	a	chimeric	phylogeneny,	encoding	IncQ-like	

and	IncP-like	DNA	metabolism	genes	and	oriT	sites	(41,	73).		The	Class	I	system,	

which	is	a	regulated	by	a	quorum-sensing	system,	will	be	described	in	greater	detail	

later.	

	

The	Class	II	transfer	system	is	composed	of	a	virB-like	type	four	secretion	system,	

called	avhB,	and	an	IncQ-like	DNA	metabolism	system	that	is	similar	to	the	Class	I	

Dtr	system,	but	lacks	three	of	the	tra	genes,	traF,	traB	and	traH	(31).		Class	II	

systems	are	regulated	by	an	rtcA/rtcB-like	system	(59,	183,	208).		The	inducing	

signal(s)	for	Class	II	transfer	systems,	if	any,	has	not	been	determined.	

	

The	Class	III	transfer	system,	like	the	Class	II	system,	lacks	traFBH	and	additionally	

is	missing	traC	and	traD	(59).		While	traA	and	traG	homologues	are	still	present	in	



	
	
	
	

3	

the	Class	III	system,	traG	is	preceded	by	a	putative	mobC	gene	that	encodes	an	

additional	oriT-nicking	enzyme	(59).		Class	III	transfer	systems	seemingly	lack	a	trb-	

or	virB-type	Mpf	system	and	the	plasmids	are	presumably	not	self-conjugative,	but	

appear	to	be	mobilizable	via	an	Mpf	system	encoded	elsewhere	in	the	donor	

bacterium	(59).	

	

Class	IV	transfer	systems,	like	the	Class	III	system,	lack	the	Mpf	functions	(89).		The	

Dtr	system	includes	a	mobC-like	relaxase	gene	similar	to	the	Class	III	system	and	

additionally	contains	a	mobZ-like	relaxase	(89).		Furthermore,	Class	IV	Dtr	systems	

contain	a	gene	similar	to	the	partitioning	gene,	parA	(89).		This	system	utilizes	trans-

encoded	Mpf	functions	for	mobilization	to	a	recipient	(89,	105).	

	

1.3	The	Class	I	conjugative	transfer	system	is	conserved	in	many	
megaplasmids	in	the	Rhizobiales	
	

The	most	well	studied	transfer	systems	in	the	Rhizobiales	fall	into	Class	I.		The	type	

IV	Mpf	system	is	encoded	by	the	traI-trbBCDEJKLFGHI	operon	which	may	be	

transcribed	as	a	single	unit	(142).		However	while	only	one	promoter	element	has	

been	described	upstream	of	traI,	there	is	evidence	that	there	may	be	an	additional	

transcriptional	start	site	within	the	operon	(10,	141).		TraI	encodes	an	acyl-

homoserine	lactone	synthase	that	is	involved	in	regulation	of	transfer	by	quorum-

sensing	(QS)	(115,	142).		Most	of	the	remaining	genes	encode	putative	structural	

components	of	the	Mpf	system.		For	example,	TrbC	is	a	homologue	of	the	IncP	Mpf	

pilin	precursor	protein	(63,	96).		However,	two	of	the	proteins	encoded	by	the	

operon,	TrbJ	and	TrbK,	are	involved	in	entry	exclusion	and	function	in	a	synergistic	

fashion	(37).		While	most	of	the	genes	are	required	for	transfer,	two	genes	are	not.		

Mutations	in	trbK	do	not	affect	transfer	frequencies	while	mutations	in	trbI	decrease	

transfer	frequency	by	3-4	orders	of	magnitude	(144).		The	traI/trb	operon	is	located	

directly	adjacent	and	divergently	oriented	to	the	repABC	operon	in	all	such	plasmids	

examined	to	date.	
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The	two	divergently	oriented	tra	operons,	traAFBH	and	traCDG,	and	the	origin	of	

transfer	(oriT),	located	in	the	intergenic	region	between	the	traA	and	traC,	are	

involved	in	the	Dtr	functions	of	transfer.		TraA,	TraC,	and	TraD	are	believed	to	be	

components	of	the	relaxosome	that	binds	to	and	nicks	at	the	oriT	site	(38).		TraA	is	

the	strand	transferase	that	nicks	oriT	and	is	an	essential	component	of	transfer	(38,	

73).		TraC	and	TraD	are	not	essential;	however,	these	two	proteins	increase	the	

frequency	of	both	oriT	processing	and	transfer	(38).		TraF,	another	essential	protein,	

is	the	putative	pilin	processing	protein	required	for	cleaving	the	TrbC	pre-pilin	

proteins	to	form	the	final	pilin	subunits	(63,	73,	96).		TraG	is	an	essential	protein	in	

the	Dtr	system	and	is	predicted	to	be	the	coupling	factor	that	interfaces	the	

relaxosome	components	with	the	T4SS	encoded	by	the	trb	operon	(73,	98).		The	

TraB	protein	is	a	predicted	amidohydrolase,	and	while	it	is	not	essential,	it	increases	

the	efficiency	of	transfer	(73).		TraH	is	member	of	the	lysozyme-like	superfamily	and	

is	not	required	for	transfer.		Table	1.1	lists	the	proteins	and	their	functions	involved	

in	Class	I	conjugative	transfer	and	replication	system.	

	

1.4	A	quorum-sensing	system	regulates	transfer	of	Class	I	plasmids	

	

The	conjugation	of	plasmids	with	Class	I	transfer	systems	is	directly	regulated	by	a	

LuxR-type	quorum-sensing	(QS)	system	(83,	189,	264).		The	key	protein,	the	

activator	TraR,	binds	to	an	inverted	repeat	sequence	approximately	18	nt	in	length	

called	a	tra	box	and	promotes	transcriptional	activation	of	all	three	operons	of	the	

transfer	(tra)	regulon	(82,	83,	151,	268).		There	typically	are	at	least	three	tra	boxes,	

named	tra	box	I,	II,	and	III	[(81,	83)	and	reviewed	in	(253)].		tra	box	I	is	located	in	

the	intergenic	region	between	the	traAFBH	and	traCDG	operons,	while	tra	box	II	is	

upstream	of	the	traI/trb	operon.		tra	box	III	lies	between	tra	box	II	and	the	repABC	

operon	[reviewed	in	(253)],	and	consistent	with	this	location,	TraR	also	influences	

plasmid	copy	number	(143,	160,	181).	
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Table	1.1	The	known	or	putative	functions	of	repABC	Class	I	transfer	and	
replication	proteins	and	DNA	elements	
Protein Essential For Transfera Functional Classb  Function 

TraI Yes Regulation Acyl-homoserine lactone synthase, 
produces the acyl-homoserine 
lactone ligand of TraR 	   

TrbB Yes Mpf Involved in the Type IV secretion 
system 

TrbC Yes Mpf Putative pilin precursor 

TrbD Yes Mpf Involved in the type IV secretion 
system 

TrbE Yes Mpf Involved in the type IV secretion 
system 

TrbJ Yes Mpf Involved in entry exclusion 

TrbK No Mpf Involved in entry exclusion 

TrbL Yes Mpf Involved in the type IV secretion 
system 

TrbF Yes Mpf Involved in the type IV secretion 
system 

TrbG Yes Mpf Involved in the type IV secretion 
system 

TrbH Yes Mpf Involved in the type IV secretion 
system 

TrbI No, but increases frequency of 
transfer 

Mpf Involved in the type IV secretion 
system 

   
TraR Yes Regulation 

Quorum-sensing activator, binds to 
tra box DNA in an acyl-homoserine 
lactone dependent manner    

   
TraM No, TraM mutants are constitutive 

for transfer Regulation Anti-activator, antiactivates by 
binding to TraR 

TraA Yes Dtr Relaxosome component, strand 
transferase, recognizes and nicks 
the oriT     

TraF Yes Dtr Pilin processing protease 

TraB No, but increases frequency of 
transfer 

Dtr Predicted amidohydrolase 

   
TraH No Dtr Predicted lysozyme-like superfamily  

TraC No, but increases efficiency of 
transfer and oriT processing 

Dtr Putative relaxosome component 

   
TraD No, but increases efficiency of 

transfer and oriT processing 
Dtr Putative relaxosome component 

   
TraG Yes Dtr Coupling factor, interfaces the 

relaxosome with the type IV 
secretion system    

TrlR No Regulation Dominant-negative mutant of TraR, 
contains functional ligand and 
dimerization domains, but lacks the 
DNA binding domains 

   

	 	 	

RepA Yes Plasmid replication/ 
partitioning 

Plasmid partitioning 
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TraR,	like	most	LuxR	homologues,	requires	an	acyl-homoserine	lactone	(acyl-HSL)	

quorum-sensing	signal	to	activate	transfer	(189,	262,	264).		The	acyl-HSL	signal,	

invariably	N-3-oxo-octanoyl-L-homoserine	lactone	(AAI,	3-oxo-C8),	is	synthesized	

by	the	product	of	traI,	the	first	gene	in	the	traI/trb	operon	(115,	142).		TraI	is	

expressed	at	a	very	low	but	detectable	level	and	small	amounts	of	the	acyl-HSL	are	

always	produced	(82,	115).		When	the	population	density	has	reached	a	critical	

threshold	and	enough	of	the	acyl-HSL	has	accumulated,	TraR	is	able	to	bind	its	

ligand,	form	stable	dimers	and	activate	transcription	of	the	tra	regulon	(194,	268,	

269).	

	

The	quorum-sensing	system	in	many	of	the	plasmids	in	the	Rhizobiales	has	one	

additional	component,	TraM.		In	several	tested	systems	in	which	conjugation	is	

strongly	repressed,	mutations	in	traM	result	in	constitutive	transfer	(81,	114,	191).		

TraM	binds	to	TraR,	thereby	inactivating	it	and	targeting	TraR	for	proteolysis	(30,	

43,	116,	152).		TraM	thereby	serves	as	an	antiactivator	and	inhibits	premature	

activation	of	the	transfer	genes	by	TraR	in	the	absence	of	the	conjugative	signal	(44,	

81,	82,	114).		When	the	conjugative	signal	is	present	the	levels	of	activated	TraR	

 
Table	1.1	(cont.)	
 

 
 
 
 
Plasmid replication/ 
partitioning 

 
 
 
 
Plasmid partitioning  

RepB Yes 

RepC Yes Plasmid replication/ 
partitioning 

Plasmid replication 

  
DNA elements    
tra box NA Regulation Inverted repeat sequence, TraR 

binding sequence 
   
oriT NA Dtr 

Origin of transfer, conserved DNA 
sequences that is recognized by the 
relaxosome and nicked by TraA    

      

a. NA, not applicable. 

b Dtr, DNA metabolism; Mpf, mating pair formation. 
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overcome	the	effects	of	TraM.		TraM	is	expressed	at	relatively	high	levels	and,	at	

least	among	some	of	the	large	plasmids	of	Agrobacterium,	expression	of	TraM	

increases	when	TraR	is	active	(81).		Such	a	feedback	loop	could	serve	to	decrease	

the	expression	levels	of	the	tra	regulon	when	the	population	density	drops	(81).	

	

1.5	Conjugative	plasmids	in	the	family	Rhizobiaceae	and	their	regulation	

	

Members	of	the	Rhizobiaceae,	including	the	genera	Rhizobium	and	Agrobacterium,	

harbor	Class	I	repABC	family	plasmids	that	are	known	to	transfer	to	a	recipient.		For	

some	of	these	plasmids,	the	regulatory	mechanisms	and	inducing	signals	have	been	

described.		We	will	first	discuss	conjugative	plasmids	in	species	of	Rhizobium	and	

then	discuss	the	more	intensely-studied	transfer	systems	of	plasmids	in	species	of	

Agrobacterium.		

	

1.5.1	Plasmids	of	Rhizobium	spp.	

	
Strains	of	Rhizobium	spp.	are	known	for	their	ability	to	induce	root	nodules	in	

plants,	some	of	which	fix	nitrogen.		Genes	for	induction	of	the	nodules	(nod)	and	

nitrogen	fixation	(nif/fix)	usually	are	carried	by	repABC	family	Sym	plasmids.		

Several	of	these	plasmids	also	carry	the	Class	I	conjugative	transfer	and	quorum-

sensing	genes.	

	

1.5.1.1	pRL1JI-	a	plasmid	that	expresses	transfer	functions	in	the	
presence	of	a	suitable	recipient	

	

Rhizobium	leguminosarum	bv.	viciae	strain	A34	establishes	symbiosis	with	legumes	

and	provides	the	plant	with	forms	of	fixed	nitrogen	(60).		The	genes	required	for	

nodulation	and	nitrogen	fixation	are	encoded	on	a	large	repABC	plasmid	called	

pRL1JI	(60).		Intriguingly	this	plasmid	also	encodes	a	Class	I	conjugative	transfer	

and	QS	system.		The	traI	gene	encodes	an	acyl-HSL	synthase	that	produces	(3-oxo-

octanoyl)-L-homoserine	lactone	(3-oxo-C8-HSL)	and	the	TraR	ortholog	responds	to	
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the	TraI-produced	3-oxo-C8	HSL	signal	(44).		TraMpRL1JI	reduces	TraR	mediated	

transcription	in	the	absence	of	the	appropriate	signal	(44).	

	

Transcription	of	the	monocistronic	traRpRL1JI	is	activated	by	a	second,	in	this	case	

orphaned,	LuxR	protein	called	BisR,	also	encoded	by	pRL1JI	(257).		BisR,	in	turn,	

activates	transcription	in	response	to	a	second	acyl-HSL,	N-(3-hydroxy-7-cis-

tetradecenoyl)-L-homoserine	lactone	(3-OH-C14:1-HSL)	(257).		Interestingly,	strain	

A34	does	not	produce	this	second	signal.		Rather	induction	of	transfer	requires	a	

recipient	strain	that	produces	the	quormone	(44,	149,	257).		Therefore	an	acyl-HSL	

signal	produced	by	the	recipient	induces	transfer	of	pRL1JI	from	the	donor.	

	

1.5.1.2	p42a-	a	plasmid	that	expresses	transfer	functions	at	a	
high	constitutive	level	

	

Rhizobium	etli	strain	CFN42	harbors	six	plasmids	(93).		One	of	these,	p42a,	is	self-

conjugative	at	high	frequencies	(18).		Expression	of	the	tra	regulon	and	concomitant	

transfer	of	p42a	is	positively	regulated	by	two	LuxR	QS	regulators,	TraR	and	CinR	

(243).		Both	TraR	and	CinR	positively	regulate	expression	of	traI	(243).		

Furthermore,	TraIp42a	is	required	for	transfer	and	produces	3-oxo-C8-HSL	(243).		

While	expression	of	cinR	is	dependent	upon	TraI,	expression	of	traR	is	constitutive	

(243).		The	authors	propose	that	3-oxo-C8	HSL	is	the	ligand	for	both	CinR	and	TraR	

and	that	these	two	LuxR	quorum-sensing	proteins	act	in	parallel	to	directly	activate	

the	three	operons	of	the	tra	regulon	(243).	

	

Interestingly	TraM	of	p42a,	unlike	orthologs	in	other	well-studied	systems,	does	not	

influence	transfer	(243).		Furthermore,	expression	of	traMp42a	was	not	detected	

(243).		Considering	that	transfer	of	p42a	is	constitutive	and	not	strongly	dependent	

on	population	size,	it	is	likely	that	this	phenotype	results	from	a	lack	of	a	functional	

TraM.	
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1.5.2	Plasmids	of	Agrobacterium	spp.	

	

1.5.2.1	A	bacterium	that	induces	neoplasias	on	plants	

	

Species	of	Agrobacterium	cause	crown	gall	and	hairy	root	diseases	on	susceptible	

plants.		A.	tumefaciens	was	first	isolated	from	crown	gall	tumors	and	described	as	

the	causative	agent	of	the	disease	in	1907	by	Smith	and	Townsend	(215).		The	plant	

neoplasias	are	the	result	of	true	transformation	of	the	plant	cells	and	do	not	require	

the	continued	presence	of	the	bacteria	(15,	16,	256).	

	

The	crown	gall	tumors	themselves	synthesize	novel	low	molecular	weight	carbon	

compounds,	now	known	as	opines	(146,	147,	170).		Furthermore,	the	types	of	

opines	present	in	the	tumor	are	not	dependent	upon	the	type	of	plant,	but	rather	

upon	the	strain	of	A.	tumefaciens	that	induced	the	tumor	(90,	186).		The	observation	

that	bacteria	are	only	required	for	the	initial	inducing	step	of	infection	and	that	

crown	galls	produce	opines	specific	to	the	strain	of	bacterium	inducing	the	tumor	

led	to	the	proposal	that	a	genetic	component	of	the	bacterium	is	transferred	to	the	

plant	during	infection	(186).	

	

1.5.2.2	Large	plasmids	are	the	infectious	component	

	

Two	lines	of	evidence	further	supported	the	idea	that	a	genetic	component	of	the	

bacterium	is	involved	in	tumorigenesis.		The	first	involved	loss	of	virulence	of	a	

particular	isolate	of	A.	tumefaciens,	strain	C58,	when	the	strain	was	grown	at	

elevated	temperatures	(99).		Second,	Kerr	demonstrated	that	the	virulence	trait	

could	be	transferred	to	an	avirulent	strain	of	Agrobacterium	in	planta	(128,	129).		

These	two	sets	of	experiments	suggested	that	the	virulence	trait	is	associated	with	

an	epigenetic	element	and	that	this	element	is	transmissible	between	bacteria.		In	

1974,	the	Schell	group	correlated	virulence	of	agrobacterial	strains	with	the	

presence	of	large	plasmids	and	conversely	found	that	the	avirulent	strains	examined	
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were	missing	these	elements	(246,	261).		Furthermore,	Watson	et.	al.	demonstrated	

that	transfer	of	the	virulence	trait	between	bacteria	in	planta	involved	transfer	of	

the	plasmid	from	the	pathogen	to	the	recipient	(251).		The	transmissible	plasmid	

responsible	for	the	induction	of	crown	galls	was	called	the	tumor	inducing	(Ti)	

plasmid.	

	

1.5.2.3	Ti	plasmid:	virulence	and	T-DNA	

	

The	Ti	plasmids	characterized	to	date	all	are	large	repABC	elements,	generally	in	

excess	of	150	kb.		They	encode	both	a	segment	of	DNA	(T-region)	that	is	transferred	

to	the	plant	during	the	infection	(33)	and	all	of	the	trans-acting	machinery	that	

mediates	such	transfer.		During	infection,	the	T-region	is	nicked;	displaced,	

presumably	by	strand	replacement;	and	processed	into	a	single	stranded	

intermediate	called	the	T-strand	(2,	120,	217,	239).		The	T-strand	and	several	trans-

encoded	virulence	proteins	are	transferred	into	the	wounded	plant	cell	through	the	

virB-encoded	type	four	secretion	system	(T4SS).	Once	there,	the	T-strand	

translocates	into	the	plant	nucleus	where	it	integrates	in	a	semi-random	fashion	into	

the	plant	genome	(135,	237).	

	

The	type	four	secretion	system	that	transfers	the	T-strand	to	the	plant	cell	is	a	

modified	conjugative	transfer	system	encoded	by	the	virulence	(vir)	regulon	of	the	

Ti	plasmid.		The	vir	regulon	is	composed	of	several	operons,	including	the	virB	and	

virD	operons.		The	T4SS	consists	of	12	proteins,	VirB1-VirB11	and	VirD4.		The	VirB	

proteins	are	most	closely	related	to	those	of	the	IncN	plasmids	that	are	involved	in	

conjugative	transfer	between	bacteria	(140,	192,	211).		VirD4,	another	essential	

component	of	virulence,	is	distantly	related	to	the	coupling	protein	TraG	of	RP4	(98,	

138,	140,	145,	193).		This	family	of	proteins	is	thought	to	interface	the	relaxosome	

components	with	the	type	four	secretion	system	(98).	The	virB2-virB11	genes	are	

essential	for	pilus	formation	and	virulence.		virB1	is	not	required	for	virulence,	

although	a	virB1	mutant	is	severely	attenuated	(12,	80).	
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1.5.2.4	Oncogenes	

	

The	T-regions	from	various	Ti	plasmids	can	be	divided	into	two	functional	regions:	

those	that	are	highly	homologous	between	all	Ti	plasmids	and	those	that	are	more	

variable	(32,	53,	107).		The	conserved	regions,	which	confer	the	oncogenic	

properties	to	the	plant	host	(49,	53,	68,	107),	encode	three	important	genes.		The	

first	gene,	iaaM,	codes	for	tryptophan	2-monooxygenase	which	converts	tryptophan	

into	indole-3-acetamide	(IAM)	(236,	247).		The	second	gene,	iaaH,	codes	for	indole-

3-acetamide	hydrolase	which	hydrolyzes	IAM	into	indole-3-acetic	acid	(IAA),	a	

phytohormone	in	the	auxin	class	(117,	206,	235).		A	third	gene,	ipt,	encodes	

dimethylallylpyrophosphate	(DMAPP)	transferase	(also	called	isopentenyl	

transferase,	ipt),	which	converts	DMAPP	and	AMP	into	isopentenyl-AMP,	a	product	

that	can	be	converted	by	the	host	plant	cell	into	various	cytokinins	(1,	5,	19).		In	

normal	plant	cells	auxins	and	cytokinins	act	together	to	regulate	cell	growth	and	

division,	and	when	produced	together	at	high	levels	in	transformed	plant	cells,	

cause	the	uncontrolled	proliferation	of	the	transformed	cells	characteristic	of	crown	

gall	disease.	

	

1.5.2.5	Opine	synthesis	

	

The	variable	segments	within	the	T-regions	(32,	107)	encode	functions	that	are	

responsible	for	synthesis	of	the	opines	(ops)	characteristic	of	a	tumor	induced	by	a	

given	strain	of	A.	tumefaciens	(17,	107,	113,	121,	137,	201,	207,	258).		Among	the	

first	opines	identified	were	nopaline	and	members	of	the	octopine	family:	lysopine,	

histopine,	octopine,	and	octopinic	acid	(13,	91,	161,	162).		Both	the	octopine	and	

nopaline	families	are	imine	derivatives	of	an	α-ketoacid.		Nopaline	is	a	conjugate	of	

α-ketoglutarate	and	arginine,	while	the	members	of	the	octopine	family	are	imines	

of	pyruvic	acid	and	the	amino	acids	arginine	(octopine),	lysine	(lysopine),	and	

histidine	(histopine)	(Table	1.2).		The	four-member	mannityl	family	of	opines-	

agropine,	mannopine,	mannopinic	acid,	and	agropinic	acid-	were	later	detected,		 	
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Table	1.2	Opines	and	opine	families	and	their	chemical	characteristicsa	

Chemical Bond 
Substitution on 
the Imine Group 

        
Opine Family Opine Name Moiety A Moiety B 

Sugar 
Phosphodiesters 

NAb Agrocinopines Agrocinopine A Sucrose Arabinose 

  
Agrocinopine B Fructose Arabinose 

   
Agrocinopine C Sucrose Glucose 

   
Agrocinopine D Glucose Glucose 

Imine linkage Sugars Mannityl Opines Agropine (lactone) Mannose Glutamine 

   
Mannopine Mannose Glutamine 

   
Mannopinic acid Mannose Glutamate 

   
Agropinic acid 
(lactam) 

Mannose Glutamate 

   	 	

  
Chrysopine Deoxy-fructosyl-

glutamine 
Deoxy-fructose Glutamine 

     

   

Chrysopine 
(lactone) Deoxy-fructose Glutamine 

   
Isochrysopine 
(lactam) 

Deoxy-fructose Glutamine 

   	 	
   

Deoxy-fructosyl-5-
oxyproline (lactam) 

Deoxy-fructose Proline 

     

	
α-Ketoacids Octopine Octopine Pyruvic acid Arginine 

   
Octopinic acid Pyruvic acid Ornithine 

   
Lysopine Pyruvic acid Lysine 

   
Histopine Pyruvic acid Histidine 

  
Heliopine Heliopine Pyruvic acid Glutamine 

   
Heliopine lactam Pyruvic acid Glutamine 

  
Nopaline Nopaline α-Ketoglutarate Arginine 

   
Nopalinic acid α-Ketoglutarate Ornithine 

  
Succinamopine Succinamopine α-Ketoglutarate Asparagine 

   
Succinamopine 
lactam 

α-Ketoglutarate Asparagine 

     

   
Leucopine α-Ketoglutarate Leucine 

   
Leucopine lactam α-Ketoglutarate Leucine 

  
Cucumopine/ 
Mikimopine 

Cucumopine/ 
Mikimopine 

α-Ketoglutarate Histidine 

    

   
Cucumopine/ 
Mikimopine lactam 

α-Ketoglutarate Histidine 

     

  
Ridéopine Ridéopine α-Ketoglutarate Putracine 

      Ridéopine lactam α-Ketoglutarate Putracine 
a This table is a modification and expansion of Table 1 in (56).  
b NA, not applicable. 
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purified,	and	characterized	as	being	imines	of	mannose	and	glutamine,	or	mannose	

and	glutamate	(Table	1.2)	(78,	226,	228).	While	most	opines	are	imine	derivatives	of	

either	a	sugar	or	α-ketoacid	and	an	amino	acid,	the	four	opines	of	the	agrocinopine	

family,	agrocinopine	A+B	and	agrocinopines	C+D,	are	composed	of	two	sugars	

linked	by	phosphodiester	bonds	(Table	1.2)	(65,	197).		To	date,	over	20	different	

opines	have	been	identified	that	fall	into	nine	families	(Table	1.2).	

	

1.5.2.6	Ti	plasmid-	catabolism	of	opines	and	the	opine	concept	

	

There	is	a	correlation	between	the	opines	produced	by	tumors	and	the	ability	of	the	

strain	of	Agrobacterium	that	induces	the	tumor	to	utilize	specific	opines	(148).		For	

example,	strains	that	induce	crown	gall	tumors	that	synthesize	nopaline	also	utilize	

nopaline	(148).		Such	correlations	are	a	function	of	the	Ti	plasmid;	while	there	are		

many	different	kinds	of	opines,	any	given	Ti	plasmid	encodes	both	the	genes	for	

synthesis	by	the	plant	and	utilization	by	the	bacterium	of	only	two	or	three	families	

of	opines.		For	example,	the	T-regions	of	the	octopine-type	Ti	plasmid	code	for	the	

genes	for	synthesis	by	the	tumors	of	all	four	members	of	the	octopine	family	and	all	

four	members	of	the	mannopine	family	of	opines	(50,	67).		Encoded	elsewhere	on	

this	megaplasmid	are	the	genes	for	both	uptake	and	utilization	by	the	bacterium	of	

these	two	families	of	opines	(39,	57,	76,	109,	133,	134,	155,	205,	244).		Moreover,	

other	bacteria	in	the	rhizosphere	generally	cannot	utilize	opines	[reviewed	in	(56,	

232)].		The	ability	of	the	bacteria	to	engineer	the	plant	to	produce	opines	from	plant	

metabolites	and	the	ability	of	the	bacteria	to	utilize	the	opines	as	a	source	of	carbon	

and/or	nitrogen	led	to	the	opine	concept	(229)	and	the	related	genetic	colonization	

theory	(204).		These	concepts	essentially	state	that	bacteria	genetically	engineer	

their	plant	hosts	to	provide	a	nutritional	niche	that	provides	a	selective	advantage	

when	in	competition	with	other	rhizosphere	microflora	(204,	229).	

	

The	opine	concept	was	extended	to	include	other	species	of	Agrobacterium,	

including	A.	rhizogenes,	the	causative	agent	of	hairy	root	disease.		Like	A.	
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tumefaciens,	virulence	of	isolates	of	A.	rhizogenes	is	due	to	the	oncogenes	encoded	

on	a	large	repABC	plasmid	called	the	root	inducing	(Ri)	plasmid	(254).		These	

plasmids	are	functionally	similar	to	the	Ti	plasmid;	however,	based	on	plasmid	

homology	and	virulence	functions,	the	Ri	plasmids	and	Ti	plasmids	represent	two	

evolutionary	lineages	(255).		Similar	to	crown	gall	tumors	induced	by	A.	tumefaciens,	

hairy	roots	induced	by	A.	rhizogenes	produce	opines.		For	example,	tumors	induced	

by	A.	rhizogenes	strain	A4	produce	all	four	mannityl	opines	and	agrocinopines	A+B	

(185,	234).		Tumors	induced	by	other	strains	of	A.	rhizogenes	produce	mikimopine,	

which	is	an	imine	derivative	of	α-ketoglutarate	and	histidine	(Table	1.2)	(47,	48,	

118,	119).		In	summary,	as	with	the	Ti	plasmids,	the	Ri	plasmids	encode	the	genes	

for	opine	synthesis	in	transformed	plant	cells	and	the	genes	for	opine	catabolism	by	

the	bacterium	(185,	214).	

	

Opine-like	compounds	have	been	identified	in	plant	root	nodules	induced	by	certain	

species	of	Rhizobium	(230,	231).		These	compounds,	called	rhizopines,	are	nodule-

specific	compounds	that	can	be	catabolized	by	the	bacterium	that	induced	the	root	

nodule.		The	genes	encoding	both	the	synthesis	and	catabolism	of	the	rhizopines	are	

located	on	the	large	repABC	Sym	plasmid	responsible	for	plant	symbiosis	and	

nitrogen	fixation	(172,	199).	However,	the	genes	for	synthesis	of	the	rhizopines	are	

not	integrated	into	the	plant	genome.		Rather,	they	are	expressed	in	bacteroids	in	

the	root	nodule	and	the	compounds	are	synthesized	from	host	plant	metabolites	and	

made	available	to	the	free-living	rhizobia	on	the	surface	of	the	nodule	(173).	

	

1.5.2.7	Ti	plasmids	are	transferred	to	recipient	strains	in	plant	
tumors	

	

While	Kerr	demonstrated	that	the	Ti-plasmid	could	be	transferred	to	a	recipient	

strain	in	planta	(128,	129),	his	early	experiments	attempting	to	demonstrate	such	

transfer	ex	planta	in	laboratory	media	failed	(129).		Two	lines	of	evidence	suggested	

that	a	compound	from	the	plant	neoplasias	induced	transfer	of	Ti	plasmids	between	
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bacteria.		First,	Ti	plasmids	were	transmissible	only	when	the	crosses	were	done	in	

the	environment	of	the	plant	tumor.		Second,	transfer	efficiency	increases	over	the	

course	of	crown	gall	development,	which	suggests	a	compound	unique	to	the	tumor	

is	accumulating	and	thereby	increasing	transfer	efficiencies	(130).	

	

1.5.2.8	Opines	induce	conjugative	transfer	of	Ti	plasmids	

	

Following	these	studies,	two	groups	determined	that	growth	with	a	particular	opine,	

octopine,	stimulated	transfer	of	an	octopine-type	Ti-plasmid	to	an	avirulent	

recipient	(88,	130).		There	is	strong	specificity	to	the	particular	opine	that	induces	

transfer.		For	example,	tumors	induced	by	strains	harboring	the	octopine-type	Ti	

plasmid	also	produce	the	four	mannityl	opines,	but	none	of	these	opines	induces	

transfer	of	this	Ti	plasmid	(187).		In	a	similar	fashion,	nopaline-type	Ti	plasmids	

encode	catabolism	of	the	nopaline	family	of	opines,	as	well	as	agrocinopines	A+B.		

Ellis	and	colleagues	demonstrated	that	while	nopaline	does	not	induce	transfer	of	

such	plasmids,	agrocinopines	A	and	B	are	the	conjugative	opines	(64).		The	

agropine-type	Ti	plasmid,	pTiBo542,	which	encodes	genes	for	utilization	of	

succinamopine,	all	four	members	of	the	mannityl	opine	family,	and	agrocinopines	

C+D,	is	inducible	for	transfer	only	by	agrocinopine	C	and	D	(64).	

	

1.5.2.9	Genes	involved	in	conjugative	transfer	are	organized	
based	on	plasmid	type	

	

As	noted	previously,	the	traI/trb	operon	involved	in	the	Mpf	functions	of	transfer	is	

invariably	located	adjacent	and	divergently	oriented	to	the	repABC	operon.		The	

traAFBH	and	traCDG	operons	encoding	the	Dtr	functions	are	always	divergently	

oriented	with	respect	to	each	other	and	the	oriT	is	located	in	the	ca.	200	bp	

intergenic	region	between	these	two	operons.		However,	as	first	noted	by	Moriguchi	

et.	al.,	the	location	of	the	Dtr	genes	with	respect	to	the	traI/trb-repABC	locus	varies	

based	on	plasmid	type	(171).		In	the	case	of	the	large	plasmids	of	Rhizobium	and	the	
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Ri	plasmids	of	A.	rhizogenes	the	tra	and	trb	operons	are	contiguous.		In	these	

plasmids	traR	is	monocistronic	and	located	downstream	of	the	last	gene	in	the	

traI/trb	operon,	while	traM	is	located	distal	to	traR	and	near	the	last	gene	of	the	

traA	operon	(Figure	1.1).		However,	in	the	Ti	plasmids	and	at	least	one	plasmid	of	

Rhizobium	spp.,	the	two	tra	operons	along	with	traR	and	traM	are	not	closely	linked	

to	the	traI/trb	operon	(Figure	1.1).		Furthermore,	at	least	where	transfer	has	been	

demonstrated,	traR	is	always	in	an	operon,	the	expression	of	which	is	controlled	by	

an	external	signal	(84,	177,	178,	190).	

	

1.5.2.10	Conjugative	transfer	of	Ti	plasmids	is	inducible	by	an	
opine	because	traR	is	a	member	of	an	opine-inducible	operon	

	

traR	of	Ti	plasmids	is	always	located	in	an	operon	that	is	controlled	by	the	

conjugative	opine.		Under	most	circumstances	traR	is	expressed	at	a	relatively	low	

basal	level	(82,	177,	178,	190).		However,	the	presence	of	the	conjugative	opine	

induces	transcription	of	this	operon,	including	traR	(82,	177,	178,	190).		Once	traR	is	

translated,	the	QS	activator	is	made	in	sufficient	quantities	that	it	titrates	the	effects	

of	the	antiactivator,	TraM.		Free	TraR	can	then	bind	the	quormone,	form	stable	

dimers,	and	activate	expression	of	the	tra	regulon.		In	this	manner,	the	presence	of	

the	conjugative	opine	is	responsible	for	inducing	conjugative	transfer.	

	

1.5.2.11	Examples	of	opine-controlled	conjugative	transfer	

	

When	this	study	began,	only	four	opines	were	known	to	induce	conjugative	transfer	

of	plasmids	harbored	by	strains	of	Agrobacterium:	octopine,	agrocinopines	A+B,	

agrocinopines	C+D	and	nopaline	[reviewed	in	(72)].	
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Figure	1.1	There	are	two	organizational	patterns	of	repABC	plasmids	with	
Class	I	transfer	systems.		The	genes	involved	in	quorum-sensing	regulation	are	
colored	black	while	the	DNA	metabolism	functions	and	mating	pair	formation	
systems	are	pictured	in	light	and	medium	grey	respectively	and	the	repABC	operon	
is	pictured	in	dark	grey.	 	
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1.5.2.11.1	Octopine-type	Ti	plasmids	

	

Several	independent	isolates	of	A.	tumefaciens	harbor	essentially	identical	octopine-

type	Ti	plasmids	(266).		pTi15955	and	pTiR10,	which	confer	utilization	of	octopine	

and	all	four	of	the	mannityl	opines,	are	the	most	well	studied	of	these	elements,	and	

transfer	of	these	Ti	plasmids	is	induced	by	octopine	(82,	187).		For	both	pTi15955	

and	pTiR10,	traR	is	the	distal	member	of	the	occ	operon	that	encodes	transport	and	

catabolism	of	octopine	(Figure	1.2)	(82,	85).		This	operon	is	regulated	by	OccR,	a	

LysR-type	activator	that	responds	to	octopine;	when	the	opine	is	present,	OccR	

binds	the	opine	and	activates	the	occ	operon,	and	traR	is	expressed	yielding	levels	of	

the	activator	that	can	overcome	the	effect	of	the	antiactivator,	TraM	(82,	84,	97).	

	

1.5.2.11.2	pTiC58	and	agrocinopines	A+B	

	

Classic	nopaline-type	Ti	plasmids	such	as	pTiC58	confer	utilization	of	both	nopaline	

and	agrocininopines	A+B.		However,	only	agrocinopines	A	and	B	induce	transfer	of	

this	plasmid	(64).		Two	closely	linked	and	divergently	oriented	operons	encoded	by	

pTiC58	are	inducible	by	the	agrocinopines:	acc,	which	encodes	the	agrocinopine	

uptake	and	catabolism	functions,	and	arc,	of	which	traR	is	a	member	(Figure	1.2)	

(190).		A	FucR-like	repressor,	called	AccR,	represses	both	of	these	operons,	and	

repression	is	relieved	in	the	presence	of	the	agrocinopines	A	and	B	(8,	190).		As	with	

the	octopine-type	Ti	plasmids,	expression	of	arc	results	in	levels	of	TraR	that	titrate	

TraM	and	activate	the	tra	regulon	(190).	

	

1.5.2.11.3	pTiBo54	and	pTiChry5	and	agrocinopines	C+D	

	

As	described	above,	conjugative	transfer	of	the	agropine	plasmid	is	induced	by	

agrocinopines	C	and	D	(64).		A	second	related	plasmid,	pTiChry5,	induces	tumors	

that	produce	a	set	of	three	mannityl	opine-type	compounds	called	chrysopine,	

deoxy-fructosyl	glutamine	(Dfg)	and	isochrysopine,	as	well	as	agrocinopines	C+D	 	
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Figure	1.2	Opines	induce	transfer	because	traR	is	a	member	of	an	opine-
inducible	operon.		The	genes	for	DNA	metabolism	and	mating	pair	formation	are	
colored	in	blue,	while	traR	and	traM	are	colored	in	yellow	and	pink	respectively.		
Genes	for	opine	uptake	and	catabolism	are	pictured	in	green	while	genes	that	are	
known	or	putative	regulators	of	the	opine	catabolic	operons	are	in	red.		All	other	
genes	are	pictured	in	black.	 	
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(36,	177,	249).		As	with	pTiBo542,	only	agrocinopines	C	and	D	induce	transfer	of	

pTiChry5	(177).		Sequence	analysis	of	both	pTiBo542	and	pTiChry5	revealed	that	

traR	is	located	in	an	operon	that	is	related	to	the	arc	operon	of	pTiC58	(Figure	1.2)	

(177).		Moreover	both	plasmids	encode	a	repressor	that	is	orthologous	to	AccR	from	

pTiC58	(177).	

	

1.5.2.11.4	pAtK84b-	some	plasmids	are	“cheaters”	that	do	
not	encode	virulence,	but	code	for	opine	utilization	and	
transfer	to	a	recipient	

	

The	opine	concept	states	that	virulent	strains	of	Agrobacterium	spp.	and	perhaps	

related	organisms	engineer	their	environment	to	produce	a	niche	in	which	the	

bacteria	enjoy	a	selective	advantage	(204,	229).		Ti	plasmids	are	the	classic	example	

of	this	model,	where	the	plasmid	encodes	the	functions	for	virulence	and	production	

by	the	plant	and	catabolism	by	the	bacteria	of	specific	opines.		However,	non-

pathogenic	strains	of	Agrobacterium	spp.	are	easily	isolated	from	plant	tumors,	and	

many	of	these	can	utilize	opines	(127,	163).		Furthermore,	most	of	these	strains	

contain	large	plasmids,	some	of	which	contain	regions	of	homology	with	Ti	plasmids	

(163).		Agrobacterium	radiobacter	K84,	an	avirulent	strain,	harbors	a	large	repABC	

plasmid,	pAtK84b,	that	confers	utilization	of	nopaline	and	agrocinopines	A+B	but	

does	not	encode	any	virulence	functions	(40,	213).		In	addition,	pAtK84b	encodes	all	

the	genes	involved	in	a	Class	I	QS-regulated	conjugative	transfer	system	(213).	

	

1.5.2.11.5	pAtK84b-	some	plasmids	have	more	than	one	
copy	of	traR	and	more	than	one	opine	induces	transfer	

	

Plasmid	pAtK84b	is	self-transmissible	and,	unlike	Ti	plasmids,	transfer	is	induced	by	

both	nopaline	and	agrocinopine	A+B	(64,	178).		Sequence	analysis	revealed	that	

pAtK84b	encodes	two	copies	of	traR	(178,	213).		The	first,	traRacc,	is	located	in	an	

operon	similar	to	the	arc	operons	of	pTiC58,	pTiBo542,	and	pTiChry5	(Figure	1.2)	

(178).		Transcription	of	traRacc	is	inducible	by	growth	with	agrocinopines	A+B,	but	
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not	nopaline	(178).		Furthermore,	transfer	of	a	traRacc	mutant	is	no	longer	inducible	

by	agrocinopines	but	is	still	inducible	by	nopaline	(178).		The	second	copy	of	traR,	

traRnoc,	is	located	within	the	noc	operon	responsible	for	transport	and	utilization	of	

nopaline	(Figure	1.2)	(178).		The	noc	genes	as	well	as	traRnoc	are	inducible	by	

nopaline	but	not	the	agrocinopines	(178).		Likewise,	a	traRnoc	mutant	only	transfers	

when	cells	are	grown	with	agrocinopines	A+B	(178).		A	double	traRacctraRnoc	mutant	

fails	to	transfer	pAtK84b	when	grown	with	either	opine	(178).	

	

1.6	The	octopine-type	Ti	plasmids	encode	a	mutant	allele	of	traR	inducible	by	
mannopine	
	

While	octopine	serves	as	the	conjugative	opine	for	the	octopine-type	Ti	plasmids,	

pTi15955	and	pTiR10,	these	plasmids	also	encode	a	second	allele	of	traR	associated	

with	the	genes	for	uptake	and	catabolism	of	the	mannityl	opines	(179,	267).		This	

allele,	called	trlR,	is	the	distal	gene	of	the	mannopine	transport	operon,	

motABCDtrlR,	and	encodes	a	frame-shifted	mutant	of	the	QS	activator	that	contains	

functional	ligand-binding	and	dimerization	domains	but	lacks	the	C-terminal	DNA	

binding	domain	(Figure	1.2)	(179,	267).		Growth	of	strains	harboring	either	of	these	

Ti	plasmids	with	mannopine	induces	transcription	of	trlR	but	does	not	induce	

transfer	(179,	267).		Indeed,	growth	of	strains	harboring	these	Ti	plasmids	with	

both	octopine	and	mannopine	results	in	transfer	at	lower	frequencies	compared	to	

growth	with	octopine	alone	(179,	267).		Restoring	the	frame-shift	allowed	the	

protein	to	activate	a	TraR-dependent	promoter	(267).		TrlR	binds	to	AAI,	similar	to	

TraR,	and	purified	TrlR	inhibits	TraR-dependent	DNA	binding	and	activation	(28).		

Moreover,	TrlR	forms	inactive	heterodimers	with	TraRoctopine	(28,	179,	267).	
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1.7	Purposes	of	this	study	

	

This	thesis	began	with	two	objectives	that	stem	from	the	observation	that	the	

octopine-type	Ti	plasmids	encode	a	nonfunctional	allele	of	TraR	that	is	inducible	by	

MOP.		

	

1.	Are	there	wild-type	plasmids	in	which	MOP	can	induce	conjugative	

transfer?	

2.	If	so,	does	this	induction	by	MOP	involve	a	functional	allele	of	trlR	

that	is	associated	with	the	mannopine	transport	operon?		

	

We	screened	a	number	of	wild-type	isolates	of	Agrobacterium	spp.	for	MOP-

inducible	conjugative	transfer	of	the	MOP	catabolism	trait	and	found	five	isolates	

that	are	capable	of	transfer	when	grown	with	the	mannityl	opine.		We	genetically	

isolated	and	sequenced	one	of	the	plasmids,	pAoF64/95,	responsible	for	MOP-

dependent	transfer.		This	plasmid	does	not	encode	any	virulence	genes	or	T-region,	

which	is	consistent	with	fact	the	parental	isolate	is	not	pathogenic.		Furthermore	

this	plasmid	encodes	a	full	set	of	Class	I	transfer	and	QS	genes	organized	in	one	

contiguous	unit	with	a	monocistronic	copy	of	traR.		This	organization	is	similar	to	

that	of	the	Ri	plasmids	of	A.	rhizogenes	and	other	plasmids	harbored	by	spp.	of	

Rhizobium	(Figure	1.1).		This	plasmid	also	carries	a	full	set	of	genes	required	for	the	

transport	and	catabolism	of	three	of	the	four	mannityl	opines.		However,	traR	is	not	

associated	with	the	genetic	loci	involved	in	uptake	and	catabolism	of	the	

mannopine.		So	while	we	identified	plasmids	in	which	MOP	serves	as	the	conjugative	

opine,	the	organization	of	the	relevant	genes	is	not	like	that	of	trlR	of	the	octopine-

type	Ti	plasmids.	

	

We	then	addressed	regulation	of	transfer	of	pAoF64/95	using	standard	molecular	

genetics.		Consistent	with	the	well-studied	systems,	TraR	and	TraM	are	the	activator	

and	antiactivator	of	conjugative	transfer.	
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We	were	intrigued	by	the	observation	that	in	the	large	repABC	plasmids	with	Class	I	

QS	transfer	systems	the	genes	involved	in	transfer	and	replication	are	organized	

either	as	one	contiguous	unit,	as	seen	in	pAoF64/95,	most	of	the	plasmids	of	

Rhizobium,	and	the	Ri	plasmids	of	A.	rhizogenes,	or	as	two	separate	units	as	in	the	Ti	

plasmids	of	A.	tumefaciens	(Figure	1.1).		We	hypothesized	that	the	proteins	of	the	QS	

and	transfer	systems	from	plasmids	with	an	Ri-like	organization	would	be	more	

closely	related	to	their	orthologous	proteins	from	other	plasmids	with	an	Ri-like	

organization.		Moreover	we	hypothesized	that	the	same	proteins	from	plasmids	

organized	like	Ti	plasmids	would	be	more	closely	related	to	their	orthologs	from	

plasmids	with	similar	genetic	organization.		Considering	that	the	traI/trb	operon	is	

invariably	located	adjacent	to	the	repABC	operon	we	also	examined	the	evolution	of	

RepA,	RepB,	and	RepC	to	see	how	their	evolutionary	histories	compare	with	the	

evolutionary	histories	of	the	transfer	and	QS	proteins.		This	led	to	the	third	aim	of	

this	thesis:	

	

3.	Evolution	of	the	Rep,	QS,	and	Class	I	transfer	systems	of	plasmids	in	

the	Rhizobiales.	 	

	

We	used	both	in	silico	and	in	vivo	approaches	to	assess	several	of	the	conjugative	

transfer	and	QS	proteins,	along	with	RepA,	RepB,	and	RepC	to	determine	their	

evolutionary	relationships.		First,	despite	close	linkages,	the	replication	system	does	

not	coevolve	with	the	transfer	and	quorum-sensing	systems.		Second,	the	genes	of	

the	QS	and	transfer	systems	generally	coevolve	within	a	particular	plasmid.		

Moreover,	the	regulatory	and	transfer	genes	of	the	plasmids	that	are	organized	like	

Ti	plasmids	form	one	clade,	while	plasmids	that	have	the	QS	and	transfer	genes	

organized	into	one	contiguous	unit,	as	seen	in	the	Ri	plasmids	and	plasmids	of	

Rhizobium	spp.	form	a	separate	clade.		The	two	organizational	types	of	the	tra	

regulon	represent	both	evolutionary	and	functional	divergences	of	the	Class	I	QS	

and	transfer	systems	of	the	large	plasmids	in	the	Rhizobiales.	

	 	



	
	
	
	

24	

Chapter	2:	Quorum-Dependent	Mannopine-Inducible	Conjugative	Transfer	of	
an	Agrobacterium	Opine-Catabolic	Plasmid	

	

2.1	Notes	and	acknowledgments	

	

This	chapter	was	adapted	from	a	paper	published	in	the	Journal	of	Bacteriology	

entitled	“Quorum-dependent	mannopine-inducible	conjugative	transfer	of	an	

Agrobacterium	opine-catabolic	plasmid,”	March	2014,	Volume	196,	Pages	1031-

1044,	with	authors	Margaret	E.	Wetzel,	Kun-Soo	Kim,	Marilyn	Miller,	Gary	J.	Olsen,	

and	Stephen	K.	Farrand.		Kun-Soo	Kim	originally	screened	the	11	field	isolates	for	

mannopine-inducible	conjugative	transfer.		I	repeated	these	experiments	with	three	

of	the	isolates	that	were	found	to	be	inducible	for	transfer	by	MOP.		All	transfer	

values	located	in	Table	2.2	were	the	result	of	Kun-Soo’s	experiments.		Marilyn	Miller	

sent	us	the	collection	of	wild-type	field	isolates	(the	Corvallis	isolates)	collected	by	

Larry	Moore’s	laboratory	at	Oregon	State	University.		She	did	the	initial	strain	

characterizations,	including	opines	utilized,	host	plant,	location,	tumorigenicity,	

agrocin	sensitivity,	and	biovar	determination.		I	repeated	the	tumorigenicity,	agrocin	

sensitivity,	and	biovar	determinations	for	a	select	set	of	the	isolates.		Gary	J.	Olsen	

helped	with	analyzing	plasmid	sequences	and	wrote	a	program	to	illustrate	the	map	

of	the	plasmid.		Finally	we	dedicated	this	paper	and	chapter	to	the	late	Larry	Moore.	

	

2.2	Summary	

	

The	Ti	plasmid	in	Agrobacterium	tumefaciens	strain	15955	encodes	two	alleles	of	

traR	that	regulate	conjugative	transfer.		The	first	is	a	functional	allele,	called	traR,	

that	is	transcriptionally	induced	by	the	opine	octopine.		The	second,	trlR,	is	a	

nonfunctional,	dominant-negative	mutant	and	is	located	in	an	operon	that	is	

inducible	by	the	opine	mannopine	(MOP).		Based	on	these	findings	we	predicted	

there	exist	wild-type	agrobacterial	strains	harboring	plasmids	in	which	MOP	

induces	a	functional	traR,	and	hence	conjugation.		We	analyzed	11	MOP-utilizing	
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field	isolates	and	found	five	where	MOP	induced	transfer	of	the	MOP	catabolic	

element	and	increased	production	of	the	acyl-homoserine	lactone	(acyl-HSL)	

quormone.		The	transmissible	elements	in	these	five	strains	represent	a	set	of	highly	

related	plasmids.		Sequence	analysis	of	one	such	plasmid,	pAoF64/95,	revealed	that	

the	176	kb	element	is	not	a	Ti	plasmid	but	encodes	genes	for	catabolism	of	MOP,	

mannopinic	acid	(MOA),	agropinic	acid	(AGA)	and	the	agrocinopines.	The	plasmid	

additionally	encodes	all	of	the	genes	required	for	conjugative	transfer	including	the	

regulatory	genes	traR,	traI	and	traM.		The	traR	gene,	however,	is	not	located	in	the	

MOP	catabolism	region.		The	gene	instead,	is	monocistronic	and	located	within	the	

tra-trb-rep	gene	cluster.		A	traR	mutant	failed	to	transfer	the	plasmid	and	produced	

little	to	no	quormone,	even	when	grown	with	MOP	indicating	that	TraRpAoF64/95	is	

the	activator	of	the	tra	regulon.		A	traM	mutant	was	constitutive	for	transfer	and	

acyl-HSL	production	indicating	that	the	anti-activator	function	of	TraM	is	conserved.	

	

2.3	Introduction	

	

Ti	plasmids	found	in	members	of	the	genus	Agrobacterium	encode	two	conjugative	

transfer	systems,	both	of	which	are	regulated	at	the	transcriptional	level	in	response	

to	compounds	produced	by	the	host	plant.		The	vir	system,	responsible	for	transfer	

of	the	T-strand	of	the	Ti-plasmid	to	plant	cells	is	induced	by,	among	other	factors,	

phenolic	compounds	produced	by	wounded	plant	cells	[reviewed	in	(29,	112,	259)].		

The	transferred	strand	subsequently	is	integrated	into	the	plant	cell	nuclear	genome	

[reviewed	in	(87)]	and	results	in	production	of	plant	growth	hormones	responsible	

for	the	crown	gall	tumors	[reviewed	in	(266)].		Additionally,	the	integrated	T-DNA	

encodes	the	genes	for	synthesis	by	the	neoplasias	of	novel	compounds	called	opines	

[reviewed	in	(232,	266)].		Opines	are	specific	conjugates	of	sugars	or	more	

frequently,	amino	acids	and	α-ketoacids	or	sugars	and	they	serve	as	carbon	and	

sometimes	as	nitrogen	or	phosphorus	sources	for	the	bacterium	that	induced	the	

tumor	[reviewed	in	(232)].		Remarkably,	the	Ti	plasmid	also	encodes	the	genes	for	

uptake	and	catabolism	by	the	bacteria	of	the	specific	opines	produced	by	the	tumor.		
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The	second	transfer	system,	encoded	by	the	tra	regulon,	is	induced	by	certain	

opines	that	are	produced	by	the	tumors	induced	by	the	bacterium.		This	system	is	

responsible	for	conjugative	transfer	of	the	plasmid	from	one	bacterium	to	another	

(72,	74).	

			

Ti	plasmids	generally	code	for	uptake	and	catabolism	of	two	or	three	of	the	eight	

known	opine	families	(35,	55,	56,	72).		However,	in	the	vast	majority	of	such	

Agrobacterium	megaplasmids	studied	to	date,	only	one	opine	type	induces	transfer	

and	thus	is	dubbed	the	conjugative	opine	(72).		For	instance	pTiC58	codes	for	the	

uptake	and	catabolism	of	two	opine	types,	nopaline	and	agrocinopines	A+B,	but	only	

the	agrocinopines	induce	plasmid	transfer	(64).		The	conjugative	opines,	however,	

do	not	directly	induce	transfer	of	pTiC58;	rather	they	control	transcription	of	traR,	

which	codes	for	the	quorum-sensing	(QS)	activator	TraR	(8,	190).		TraR	directly	

activates	the	Ti	plasmid	tra	and	trb	operons	responsible	for	DNA	metabolism	and	

mating	pair	formation	respectively	(42,	71,	83,	142-144).	

	

In	the	studied	systems,	the	link	between	the	opine	signal	and	the	quorum-sensing	

system	results	from	the	inclusion	of	traR	in	an	operon	whose	expression	is	itself	

regulated	by	the	conjugative	opine.		For	example,	traR	of	pTiC58	is	located	in	the	arc	

operon,	which	is	adjacent	and	in	opposite	orientation	to	the	agrocinopine	A+B	

uptake	and	catabolism	operon	(acc)	(190).		The	divergently	oriented	acc	and	arc	

operons	are	both	transcriptionally	repressed	by	the	opine-responsive	repressor,	

AccR	(8,	190).		When	the	agrocinopines	are	available,	repression	by	AccR	is	lifted	

and	traR,	as	part	of	the	arc	operon,	is	expressed	(190).		Opine-mediated	expression	

of	TraR,	however,	is	not	sufficient	for	induction	of	conjugative	transfer.		The	active	

form	of	TraR	requires	its	ligand,	N-(3-oxo-octanoyl)-L-homoserine	lactone	(3-oxo-

C8-HSL),	the	Agrobacterium	autoinducer	(AAI)	(189,	262,	264).		This	acyl-HSL	

quormone	is	synthesized	by	TraI,	which	is	encoded	by	the	first	gene	of	the	Ti	

plasmid	trb	operon	(115,	142).		QS-dependent	induction	of	transfer	is	additionally	
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modulated	by	TraM,	an	anti-activator	that	interacts	with	TraR,	thereby	inhibiting	

activation	of	the	tra	regulon	(81,	114,	116).		

	

Although	in	most	cases	only	one	opine	serves	as	the	conjugative	signal,	this	is	not	

always	the	case.		For	instance,	A.	radiobacter	strain	K84	harbors	an	opine-catabolic	

megaplasmid,	pAtK84b,	that	is	inducible	for	transfer	by	two	opine	types;	

agrocinopine	A+B	and	nopaline	(64,	178).		This	plasmid	encodes	two	copies	of	traR	

and	each	is	independently	transcribed.		One,	traRnoc,	is	in	an	operon	induced	by	

nopaline,	while	the	other,	traRacc,	is	in	an	operon	similar	to	arc	of	pTiC58	and	is	

inducible	by	agrocinopines	A+B	(178).		The	two	alleles	function	independently.		For	

example,	in	a	traRnoc	mutant,	conjugative	transfer	is	still	inducible	by	agrocinopines.		

Likewise	if	traRacc	is	mutated	conjugative	transfer	remains	inducible	by	nopaline,	

but	not	by	the	agrocinopines	(178).	

	

The	octopine-mannityl	opine	type	Ti	plasmids,	pTi15955	and	pTiR10,	provide	

another	example	of	opine-inducible	conjugative	transfer.		Tumors	induced	by	

strains	harboring	these	Ti	plasmids	produce	two	opine	types,	octopine	and	the	

mannityl	opines.		In	turn,	the	bacteria	can	catabolize	octopine	and	all	four	of	the	

mannityl	opines:	agropine,	mannopine,	mannopinic	acid	and	agropinic	acid	

[reviewed	in	(72)].		These	plasmids	encode	two	alleles	of	traR.		One,	traRoct,	is	a	

member	of	an	operon	that	is	activated	by	octopine,	and	this	opine	induces	

conjugative	transfer	(82).		The	second	called	trlR,	is	the	terminal	gene	in	the	

mannopine	(MOP)	transport	operon,	motABCDtrlR,	located	in	the	mannityl	opine	

catabolic	region	of	these	Ti	plasmids	(179).		Expression	of	this	operon,	including	

trlR,	is	inducible	by	MOP,	but	not	by	octopine	(179,	267).		Importantly,	the	trlR	gene	

is	a	dominant-negative	frame-shifted	mutant	of	traR	and	encodes	a	protein	with	

functional	N-terminal	dimerization	and	AAI-binding	domains,	but	not	the	C-terminal	

DNA-binding	domain	(179,	267).		The	protein	product	can	dimerize	with	the	full-

sized,	functional	TraR,	induced	by	octopine,	thereby	inhibiting	octopine-inducible	

conjugative	transfer	(28,	179,	267).	



	
	
	
	

28	

Based	on	the	presence	of	trlR	in	an	operon	inducible	by	MOP,	we	hypothesized	that	

there	exist	in	nature	Agrobacterium	plasmids	in	which	conjugative	transfer	is	

induced	by	this	mannityl	opine.		We	also	hypothesized	that	in	such	plasmids,	the	

functional	traR	gene	would	be	associated	with	the	mot	operon.		In	this	study,	while	

we	provide	evidence	concerning	a	family	of	plasmids	that	supports	the	first	

hypothesis,	the	allele	of	traR	associated	with	quorum-dependent	transfer	is	not	

associated	with	a	mot-like	operon.	

	

2.4	Materials	and	methods	

	

2.4.1	Bacterial	strains	and	plasmids	

	

Strains	and	plasmids	used	in	this	study	are	listed	in	Table	2.1.		The	mannopine-

utilizing	field	isolates	of	Agrobacterium	spp.	were	obtained	from	the	laboratory	of	

the	late	Dr.	Larry	Moore,	Oregon	State	University,	and	have	not	been	previously	

described	in	the	literature.		Methods	for	collection	of	the	field	tumors,	isolation	of	

bacteria,	determination	of	opine	catabolism,	and	pathogenicity	testing	all	were	

described	in	Moore,	Chilton	and	Canfield	(168).	

	

2.4.2	Media	and	growth	conditions	

	

Strains	of	Escherichia	coli	were	grown	in	L	broth	(Fischer	Scientific),	and	in	SOB	or	

SOC	media	(100).		Strains	of	Agrobacterium	spp.	were	grown	in	L	broth	(Fisher	

Scientific),	MG/L	(20),	or	on	Nutrient	Agar	(Difco).		Stonier’s	medium	(218)	was	

used	for	agrocin	84	sensitivity	assays	and	AB	(20)	and	AT	(233)	were	used	as	

minimal	media.		Liquid	AB	medium	was	supplemented	with	0.005%	yeast	extract	

(Difco)	unless	otherwise	noted.			Minimal	media	were	supplemented	with	mannitol	

to	0.2%,	or	with	mannopine	or	mannopinic	acid	at	500	μg/ml	as	carbon	sources.		

Mannopine	and	mannopinic	acid	were	the	kind	gifts	of	Dr.	Yves	Dessaux,	Institut	des		 	
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Table	2.1	Bacterial	strains	and	plasmids	

Strain or Plasmid Relevant characteristic(s)a 
Source or 
referenceb 

Agrobacterium sp. 
  AF1/95 Wild-type mannopine utilizing strain L. Moore 

AR11N/71 Wild-type mannopine utilizing strain L. Moore 
B24/93 Wild-type mannopine utilizing strain L. Moore 
B26/94 Wild-type mannopine utilizing strain L. Moore 
B98/94 Wild-type mannopine utilizing strain L. Moore 
B155/93 Wild-type mannopine utilizing strain L. Moore 
F64/95 Wild-type mannopine utilizing strain L. Moore 
F265/93 Wild-type mannopine utilizing strain L. Moore 
J62/95 Wild-type mannopine utilizing strain L. Moore 
J84/95 Wild-type mannopine utilizing strain L. Moore 
M200/94 Wild-type mannopine utilizing strain L. Moore 
15955 Wild-type octopine strain; MOP+ MOA+ AGR+ AGA+ OC 
C58 Wild-type nopaline strain; pAtC58 pTiC58 OC 
C58C1RS Ti plasmidless derivative of C58; pAtC58 Smr Rifr OC 
NTL4 Ti plasmidless derivative of C58; pAtC58 ΔtetAR  (150)	

NTL6 Plasmidless derivative of NTL4 OC 
E. coli 

  DH5α λ- ϕ80dlacZΔM15 Δ(lacZYA-argF) U169 recA1 endA1 
hsdR17(rk

–, mk
-) supE44 thi-1 gyrA relA1 

Invitrogen 

  LE392 hsdR514(rk
–, mk

+) glnV(supE44) tryT (supF58) lacY1 
or Δ(lacIZY)6 galK2 galT22 metB1 trpR55 

Promega 

  S17-1 λpir Tpr Smr recA thi pro hsdR-M+ RP4::2-Tc::Mu::Km Tn7 
λpir 

(212) 

  Plasmids 
  pAgK84-A1 Agrocin 84 producer (75) 

pArA4 MOP+ MOA+ AGA+ J. Tempe' 
pCP13/B Deletion derivative of pCP13; Tcr (45) 
pKD46 Ampr; λ Red helper plasmid (46) 
pSRKGm Gmr; IPTG-inducible expression vector (131) 
pViK107 Kanr; promoterless lacZY; pir dependent (124) 
pWM91 Ampr sacB (164) 
pZLR4 Gmr; indicator for detection of acyl-HSL  (209) 
a Abbreviations: MOP, mannopine; MOA, mannopinic acid; AGA, agropininic acid; AGR, 
agropine; TraI+, production of AAI; Ampr, ampicillin resistance; Gmr, gentamicin resistance; 
Kanr, kanamycin resistance; Rifr, rifampicin resistance; Smr, streptomycin resistance; Tcr, 
tetracycline resistance; Tpr, trimethoprim resistance.                                                                                                                                                                                                                                                 
b OC, our collection. 
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Sciences	du	Végétal,	Gif-sur-Yvette,	France.		Antibiotics	were	used	at	the	following	

concentrations	in	μg/ml:	rifampicin	50	or	100,	streptomycin	100,	kanamycin	25	or	

50,	ampicillin	100,	carbenicillin	50	or	100,	and	gentamicin	25.		Cultures	of	E.	coli	

were	incubated	at	30	or	37°C,	and	cultures	of	Agrobacterium	spp.	were	incubated	at	

28°C.		

	

2.4.3	Biovar	determination	

	

The	biovar	assignments	of	the	wild-type	strains	were	provided	to	us	by	the	Moore	

laboratory.		We	verified	these	assignments	for	strains	F64/95,	F265/93,	J62/95,	

J84/95	and	M200/94	using	three	tests	described	in	Moore,	Kado	and	Bouzars	(169):	

3-ketolactose	production,	growth	on	AB	agar	with	erythritol	as	the	primary	carbon	

source,	and	growth	on	Nutrient	Agar	supplemented	with	0.25%	glucose	and	2%	

NaCl.	

	

2.4.4	Virulence	assays	

	

The	Moore	laboratory	described	the	virulence	properties	of	all	wild-type	strains	as	

tested	on	tomato	plants	(Table	2.2).		We	repeated	these	assays	with	the	five	MOP-

inducible	strains	using	the	stem-wound	inoculation	method	on	tomato	plants	

essentially	as	described	previously	(67,	180).		

	

2.4.5	Monitoring	growth	

	

Strains	F64/95	and	NTL6(pAoF64/95)	were	precultured	by	growth	in	LB.		In	the	

morning,	the	cells	were	collected	by	centrifugation,	washed	three	times	with	0.9%	

NaCl	and	suspended	in	1	ml	of	sterile	0.9%	NaCl.		Washed	cells	were	inoculated	into	

liquid	AB	mannitol	(ABM),	AB	+	MOP	or	AB	with	no	additional	carbon	source	to	a	

population	density	of	about	107	cells/ml.		Strains	were	monitored	for	growth	by	

turbidity	as	measured	with	a	Klett	colorimeter	using	a	red	filter.		Periodically,	 	
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Table	2.2	Characteristics	of	MOP-utilizing	wild-type	isolates		
    Conjugation frequencyc   Isolation       

Straina Opine(s) 
Utilizedb Uninduced Induced 

with MOP 
 Host Location Tumorigenic Agrocin 

sensitivity Biovar 
  

AF1/95 MOP, OCT <10-8 <10-8 
 

Lilac Visalia, CA Yes No 2 

AR11N/71 
MOP, NOP, 
OCT <10-8 <10-8 

 
Apple Canby, OR Yes NDd ND 

B24/93 MOP 3.3 X 10-6 9.0 X 10-7 
 

Quince 
Portland, 
OR No No 2 

B26/94 MOP, NOP <10-8 <10-8 
 

Walnut 
Portland, 
OR Yes No 2 

B98/94 MOP 1.5 X 10-5 2.6 X 10-6 
 

Walnut Gridley, CA Yes No 2 

B155/93 MOP, NOP <10-8 <10-8 
 

Quince 
Portland, 
OR No Yes ND 

F64/95 MOP <10-8 6.6 X 10-5 
 

Apple 
Modesto, 
CA No Yes 2 

F265/93 MOP <10-8 4.4 X 10-5 
 

Apple Yamhill, OR No Yes 2 

J62/95 MOP, NOP <10-8 4.6 X 10-5 
 

Apple 
Modesto, 
CA Yes Yes 2 

J84/95 MOP, NOP <10-8 3.1 X 10-5 
 

Apple 
Modesto, 
CA Yes Yes 2 

M200/94 MOP <10-8 3.6 X 10-5 
 

Apple 
Woodburn, 
OR No ND 2 

a Wild-type isolates listed here all utilize mannopine and were obtained from Larry Moore, Department of Botany and Plant 
Pathology, Oregon State University, Corvallis, OR.                                                                                                                                                                          
b Opines that were tested are MOP, mannopine; NOP, nopaline; OCT, octopine.                                                                            
c Conjugation frequency is measured as transconjugates recovered/input donor cell.                                                                       
d ND, not determined. 

	

volumes	were	removed,	a	part	of	which	was	frozen	at	-20°C	and	used	later	for	AAI	

detection	and	quantification.		The	remainder	was	immediately	used	for	conjugative	

transfer	assays	and	viable	cell	determinations.	

	

2.4.6	Conjugative	transfer	efficiency	

	

Conjugative	transfer	of	the	Agrobacterium	plasmids	to	strain	C58C1RS	(Table	2.1)	

was	determined	using	the	drop	plate	method	(10,	74,	191).		Transconjugants	were	

selected	for	using	opine	catabolism	or	resistance	to	an	appropriate	antibiotic	and	

donors	were	counterselected	using	rifampicin	and	streptomycin.		
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2.4.7	Detection	and	quantification	of	AAI	

	

AAI	was	extracted	from	culture	supernatant	essentially	as	described	previously	(74,	

154,	209).		For	chromatographic	analysis,	the	concentrated	samples	were	spotted	

on	a	C18	reverse-phase	thin-layer	chromatography	plate	and	separated	using	

methanol-H2O	(60:40	vol/vol)	(74,	209).		For	quantification,	5	μl	volumes	of	a	two-

fold	dilution	series	of	each	sample	were	spotted	in	a	grid	pattern	onto	a	TLC	plate.		

The	samples	were	allowed	to	dry,	the	plates	were	overlaid	with	1%	agar	containing	

40	μg/ml	X-gal	(5-bromo-4-chloro-3-indolyl-β-D-galactopyranoside)	and	the	acyl-

HSL	indicator	strain	NTL4(pZLR4)	(74,	209),	and	incubated	overnight	at	28°C.		The	

plates	were	dried,	scanned,	and	ImageJ	(version	1.44o;	National	Institute	of	Health	

[http://imageJ.nih.gov/ij])	(196)	was	used	to	measure	the	area	of	the	blue	spots.		

These	values	were	compared	to	those	of	a	dilution	series	of	an	AAI	standard	(Sigma)	

spotted	on	the	same	plate	(74).		

	

2.4.8	Agrocin	84	sensitivity	assays	

	

A	modified	version	of	the	procedure	of	Hayman	and	Farrand	(102)	was	used	to	

assess	sensitivity	to	agrocin	84.		Briefly,	two	colonies	of	the	agrocin	84	producer	

strain,	NT1(pAgK84-A1)	(Table	2.1),	were	suspended	in	0.25	ml	of	0.9%	NaCl	and	

15	μl	of	this	suspension	were	spotted	onto	the	center	of	Stonier’s	agar	(1.5%	agar)	

plates	(218)	and	incubated	at	28°C	for	three	days.		The	producer	strain	was	killed	by	

exposure	of	the	plate	to	chloroform	vapors	for	15	minutes.		The	cultures	to	be	tested	

for	sensitivity	were	inoculated	into	MG/L	for	overnight	growth.		Two	or	three	drops	

of	these	overnight	cultures	were	mixed	with	3	ml	of	melted	0.7%	agar	and	overlaid	

onto	the	plates.	The	cultures	were	incubated	at	28°C	and	zones	of	growth	inhibition	

were	assessed	daily.	
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2.4.9	Isolation	of	mannityl	opines	from	tumors	

	

Crude	preparations	of	the	mannityl	opines	were	isolated	from	plant	tumors	as	

described	previously	(56,	177).		Briefly,	tomato	tumors	induced	by	A.	tumefaciens	

strain	15955	were	minced	and	placed	in	50	ml	sterile	conical	tubes.		Enough	Milli	Q	

water	was	added	to	cover	the	tops	of	the	minced	tissue	and	the	tubes	were	placed	in	

boiling	water	for	10	minutes.		The	mixture	was	ground	with	mortar	and	pestle	and	

the	solids	were	removed	by	decanting	the	mixture	over	cheese-cloth.		The	

remaining	particulate	matter	was	removed	by	centrifugation	and	the	tumor	extract	

was	sterilized	by	passage	through	a	0.22	μm	filter.		

	

2.4.10	Separation	and	detection	of	mannityl	opines		

	

Samples	containing	mannityl	opines	were	spotted	on	a	pencil	line	drawn	across	the	

middle	of	a	sheet	of	Whatman	3MM	paper	and	allowed	to	dry.		The	opines	were	

separated	by	high-voltage	electrophoresis	(HVPE)	using	an	acetic	acid-formic	acid	

buffer	with	a	pH	between	1.7	and	1.9	according	to	the	methods	described	previously	

(56,	67,	185).		The	opines	were	visualized	using	the	alkaline	silver	nitrate	reagent	as	

described	previously	(20,	67,	241).		

	

2.4.11	Mannityl	opine	utilization	studies	

	

Growth	on	solid	medium	was	assessed	by	visual	inspection	of	strains	inoculated	on	

AB	agar	media	with	MOP	or	MOA	as	the	sole	source	of	carbon.		The	plates	were	

observed	daily	over	a	seven-day	period.		Growth	was	compared	to	appropriate	

positive	and	negative	controls	and	recorded	as	-,	no	growth;	+/-,	very	poor	growth;		

+,	good	growth;	and	++,	very	good	growth.		Growth	in	liquid	medium	was	assessed	

turbidimetrically	as	described	above.		We	additionally	assessed	mannityl	opine	

utilization	by	the	disappearance	of	opines	from	liquid	culture	media	(34).		Sterilized	

tumor	extract	prepared	as	described	above	was	added	to	2×	AT	media	in	a	1:1	
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volume	ratio.		Volumes	of	0.5	ml	were	inoculated	with	a	single	colony	of	the	strain	to	

be	tested,	or	left	uninoculated.		The	cultures	were	incubated	at	28°C	with	shaking	

for	five	days,	at	which	time	the	cells	were	removed	by	centrifugation.		A	6	μl	volume	

of	each	of	the	culture	supernatants	was	spotted	onto	Whatman	paper	and	analyzed	

for	the	disappearance	of	mannityl	opines	by	high-voltage	paper	electrophoresis	as	

described	above.	

	

2.4.12	MOP	cyclase	activity		

	

Five	microliter	volumes	of	ABM	were	inoculated	with	a	single	colony	of	the	strain	to	

be	tested	and	allowed	to	grow	overnight	with	aeration	at	28°C.		Subsequently	MOP	

was	added	to	the	cultures	at	a	concentration	of	20	μg/ml.		After	incubation	for	an	

additional	three	hours,	cells	were	harvested	by	centrifugation	and	MOP	cyclase	

activity	was	determined	by	the	conversion	of	MOP	to	agropine	as	assessed	by	high-

voltage	paper	electrophoresis	as	previously	described	(109).	

	

2.4.13	Preparation	and	purification	of	plasmid	DNA		

	

Small-scale	plasmid	isolation	from	E.	coli	was	done	by	the	alkaline	lysis	methods	of	

Sambrook	and	Russell	(203).		Large	Agrobacterium	plasmids	to	be	used	for	

restriction	enzyme	analysis	were	isolated	and	purified	using	ethidium	bromide	

(EtBr)	and	phenol	as	described	by	Zhang	and	Kerr	(263).		In	all	other	cases,	large-	

and	small-scale	isolations	of	plasmids	from	Agrobacterium	strains	were	performed	

as	described	by	Hayman	and	Farrand	(103).		Plasmid	preparations	for	DNA	

sequence	analysis	were	further	purified	by	two	rounds	of	centrifugation	in	cesium	

chloride-EtBr.		The	EtBr	was	removed	by	extraction	with	equal	volumes	of	

isopropanol	saturated	with	20×	SSC	(1×	SCC	is	0.15	M	NaCl	plus	0.015	M	sodium	

citrate)	and	the	samples	were	dialyzed	against	LTE	(10	mM	Tris,	1	mM	EDTA,	pH	

8.0).	
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2.4.14	Sequencing	of	plasmid	DNA	

	

The	complete	nucleotide	sequence	of	pAoF64/95	was	determined	at	the	Keck	

Center	for	Comparative	and	Functional	Genomics	at	the	University	of	Illinois	at	

Urbana	Champaign	(UIUC).		Briefly,	the	purified	plasmid	DNA	was	sheared	with	a	

nebulizer	and	the	ends	were	repaired	and	dephosphorylated.		The	fragmented	DNA	

was	separated	on	an	agarose	gel	and	fragments	with	sizes	between	1.5	and	5.0	kb	

were	selected	for	and	cloned	into	pCR-Blunt	II-TOPO	(Invitrogen).		Sequencing	was	

done	from	both	ends	of	the	insert	in	vectors	using	the	Sanger	dideoxy	method.		

Sequences	were	assigned	a	quality	score	with	Phred	(69,	70)	and	clean	sequences	

were	assembled	using	PHRAP	(51,	95).		After	final	assembly,	open	reading	frames	

were	called	using	Glimmer	[(version	3.02)	(52,	202);	

http://www.ncbi.nlm.nih.gov/genomes/MICROBES/glimmer_3.cgi].		We	used	

BLAST	to	search	the	NCBI	non-redundant	protein	sequence	database.		All	other	

sequencing	was	done	by	the	UIUC	Core	sequencing	facility,	or	by	ACGT,	Inc.		Primers	

were	ordered	from	Integrated	DNA	Technologies,	Inc.	or	from	the	UIUC	Core	

sequencing	facility.		

	

2.4.15	DNA	manipulations	

	

Agrobacterium	strains	were	transformed	using	the	freeze-thaw	method	(106)	and	E.	

coli	was	made	competent	using	the	calcium	chloride	method	(203).		Occasionally,	

plasmids	were	mobilized	from	E.	coli	into	Agrobacterium	using	a	filter-mating	

technique	(74).		An	overlapping	cosmid	bank	of	pAoF64/95	was	constructed	by	

cloning	a	Sau3AI	partial	digest	of	purified	plasmid	DNA	into	the	cosmid	vector	

pCP13b	(45)	digested	with	BamHI	and	calf	intestinal	alkaline	phosphatase	(CIP).		

The	clones	were	then	packaged	into	λ	using	the	Packagene	λ	DNA	packaging	system	

(Promega)	and	transfected	into	E.	coli	strain	LE392.		Cosmid	clones	were	mapped	by	

restriction	digest	and	the	ends	of	appropriate	inserts	were	sequenced	using	primers	

complementary	to	vector	sequences.	
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2.4.16	Construction	of	mutant	strains	

	

All	PCR	reactions	described	here	used	Pfu	polymerase	(Stratagene).		An	in-frame	

deletion	of	traR	was	constructed	on	cosmid	clone	pMWS110	by	the	method	of	

Datsenko	and	Wanner	(46).		The	kanamycin	cassette	of	pKD4	was	amplified	using	

the	following	primers	that	contained	5ʹ	overhang	sequences	of	traR:	Forward	

primer-	5ʹ	GTGGACGGTGACCTTCGCTCACTCATCGACATGACAGAAGTGTAGGCTGGAG	

CTGCTTCG	3ʹ,	Reverse	Primer-	5ʹ	CTACAGCAGGCCGTGGTCCTTGGCGATCGCGACGAG	

GTGCATATGAATATCCTCCTTAGT	3ʹ.		The	PCR	product	was	transformed	into	E.	coli	

(pKD46,	pMWS110)	following	the	published	protocol	(46)	and	alleles	of	traR	in	

which	the	cassette	was	inserted	in	pMWS110	were	selected	for	by	resistance	to	

kanamycin.		Mutations	were	confirmed	by	restriction	analysis	and	PCR	amplification	

from	the	regions	upstream	and	downstream	of	traR	using	the	following	primers:	

traRcheckup-	5ʹ	AGCTCGCGAGGACTTGAATACCCGG	3ʹ	and	traRcheckdwn-	5ʹ	

GATCGCTGCGATCAGAGAGCACCG	3ʹ.		Cosmid	clone	pMWS110	contains	repABC	of	

pAoF64/95,	which	poses	a	plasmid	incompatibility	problem	with	pAoF64/95.		

Therefore,	a	6.9	kb	SpeI	fragment	containing	the	kanamycin-marked	indel	mutation	

of	traR	was	subcloned	into	pWM91	(164).		This	resulting	plasmid	was	transformed	

into	E.	coli	S17-1/λpir	and	the	plasmid	was	transferred	into	NTL4(pAoF64/95)	by	

filter	mating	(74).		Transconjugants	were	selected	on	solid	ABM	medium	containing	

kanamycin.		Strains	with	double	crossovers	were	screened	for	by	their	ability	to	

grow	on	sucrose	and	by	sensitivity	to	carbenicillin	while	retaining	resistance	to	

kanamycin.		Mutants	were	confirmed	by	PCR	amplification	using	the	traRcheckup	

and	traRcheckdwn	primers.		The	mutant	megaplamid,	pAoF64/95ΔtraR,	was	

genetically	purified	by	isolation	and	subsequent	transformation	into	strain	NTL4.	

	

The	traM	mutant	was	constructed	using	vectors	described	by	Kalorgeraki	and	

Winans	(124).		Briefly,	an	internal	fragment	of	traM	was	amplified	by	PCR	using	

primers	that	contained	EcoRI	and	SalI	sites	(underlined):	traMleft:	5ʹ	
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GATCCAGAATTCGTCAGAACTGGAGGCTCTGG	3ʹ	and	traMright:	5ʹ	

GATCCAGTCGACTACAGAACTCGACACCGCAG	3ʹ.		The	PCR	fragment	was	

directionally	cloned	into	pVik107,	resulting	in	an	internal	portion	of	traM	fused	in-

frame	to	lacZ	on	pVik107.		This	construct	was	transformed	into	E.	coli	strain	S17-

1/λpir,	and	the	resulting	strain	was	mated	with	NTL4(pAoF64/95)	to	yield	

NTL4(pAoF64/95::traMpVik107).		The	single	crossover	mutation	was	confirmed	by	

sequence	analysis	and	the	mutated	plasmid	was	genetically	isolated	by	

transformation	into	NTL4.	

	

To	complement	the	mutant	strains,	traR	was	amplified	by	PCR	with	

traRpSRKGmsense	(5ʹ	GCCGGAATTCATATGGACGGTGACCTTCGCTC	3ʹ)	and	

traRpSRKGmantisense	(5ʹ	CGCGAATTCGGATCCTACAGCAGGCCGTGGTCCT	3ʹ).		The	

traM	gene	was	separately	amplified	by	PCR	using	the	following	primers:	

traMpSRKGmsense	(5ʹ	GCCCGAGCTCATATGAGCGACGTGAACTCGTCTG	3ʹ)	and	

traMpSRKGmantisense	(5ʹ	GCGGAGCTCGGATCCTCAATCACCGACTTCGGGGGC	3ʹ).		

The	traR	and	traM	genes	were	directionally	cloned	into	pSRKGm	(131)	using	NdeI	

and	BamHI	(the	sites	are	underlined).		In	each	case,	the	cloning	results	in	fusion	of	

the	native	start	codon	of	the	gene	to	the	start	codon	of	lacZα	in	the	vector.		This	

arrangement	puts	expression	of	the	cloned	gene	solely	under	control	of	LacI.		

Cloning	was	confirmed	by	sequence	analysis	and	the	constructs	were	transformed	

into	the	appropriate	mutant	strain.		In	complementation	experiments,	expression	of	

the	cloned	gene	was	induced	by	adding	IPTG	at	a	final	concentration	of	1	mM	to	the	

cultures.	

	

2.4.17	Nucleotide	sequence	accession	number	

	

The	full	sequence	of	pAoF64/95	is	available	in	the	GenBank	database	

(http://www.ncbi.nlm.nih.gov/genbank/)	under	accession	number	JX683454.	
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2.5	Results	

	

2.5.1	Identification	and	characterization	of	Agrobacterium	isolates	in	
which	mannopine	induces	conjugation	

	

We	assessed	a	collection	of	mannopine-utilizing	field	isolates	of	Agrobacterium	spp.	

for	strains	in	which	MOP	induced	conjugative	transfer	of	the	opine-utilization	trait.		

Of	the	isolates	we	tested,	five	transferred	the	trait	to	A.	tumefaciens	C58C1RS	in	an	

opine-inducible	manner	(Table	2.2).		These	strains	were	part	of	a	collection	of	11	

isolates	obtained	mostly	from	apple	and	nut	orchards	in	California	and	Oregon	(the	

Corvallis	strains).		Two	of	the	remaining	six	strains	exhibited	constitutive	low-

frequency	transfer	of	MOP	utilization,	while	four	strains	failed	to	transfer	the	trait	

under	the	culture	conditions	tested	(Table	2.2).	

	

All	but	two	of	the	11	Corvallis	isolates	classified	as	biovar	2	agrobacteria.		Six	of	the	

isolates	induced	tumors	on	at	least	one	of	three	plant	hosts	tested	(Table	2.2).		Of	

the	nine	isolates	tested,	five	were	susceptible	to	agrocin	84,	an	antiagrobacterial	

antibiotic	to	which	susceptibility	is	conferred	by	particular	plasmid-encoded	opine	

catabolic	systems	(Table	2.2)	(132,	227).		Detailed	growth	studies	of	the	five	MOP-

inducible	isolates	indicated	that	all	of	them	also	utilize	mannopinic	acid	(MOA)	and	

agropinic	acid	(AGA),	but	none	utilize	agropine	(AGR)	(Figure	2.1	A).		Consistent	

with	this	pattern,	none	of	these	five	isolates	expressed	detectable	levels	of	

mannopine	cyclase	activity	(Figure	2.1	B).	

	

2.5.2	Mannopine	catabolism	and	its	inducible	transfer	is	associated	
with	a	family	of	closely	related	plasmids	

	

Gel	electrophoretic	analysis	indicated	that	all	five	strains	in	which	MOP	induces	

conjugative	transfer	harbor	at	least	one	plasmid	between	150	and	200	kb	in	size	

(Figure	2.2	A).		Given	the	possibility	that	one	or	more	of	the	isolates	harbors	more	
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Figure	2.1	The	Corvallis	isolates	and	their	transformants	can	utilize	MOP,	
MOA,	and	AGA,	but	not	AGR.		A.	Strains	were	cultured	in	AB	minimal	medium	
supplemented	with	extracts	from	tumors	induced	by	strain	15955.		Following	
growth,	the	cells	were	removed	and	the	culture	supernatants	were	analyzed	for	the	
mannityl	opines	by	high-voltage	paper	electrophoresis	(HVPE)	all	as	described	in	
materials	and	methods	section	2.4.10.		Supernatants	are	from	cultures	of	1,	F64/95;	
2,	F265/93;	3,	J62/95;	4,	J84/95;	5,	M200/94;	6,	Uninoculated;	7,	15955;	8,	NTL6;	
11,	NTL6(pAoF64/95);	12,	NTL6(pAoF265/93);	13,	NTL6(pAoJ62/95);	14,	
NTL6(pAoJ85/95);	15,	NTL6(pAoM200/94).		Lanes	9	and	10	contain	mannopine	
and	fructose	standards	respectively.		B.	The	Corvallis	isolates	were	analyzed	for	
MOP	cyclase	activity	as	described	in	materials	and	methods.		Opines	were	separated	
by	HVPE	and	visualized	using	an	alkaline	silver	nitrate	stain.		Lanes	contain	the	
reaction	products	from	incubation	with:	2,	NTL4(pTiC58);	3,	15955;	4,	M200/94;	5,	
J84/95;	6,	J62/95;	7,	F265/93;	and	8,	F64/95.	Lane	1	contains	a	MOP	standard.	
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Figure	2.2	Isolates	that	transfer	MOP	catabolism	harbor	a	related	plasmid.			
A.	Plasmid	profiles	of	the	MOP-inducible	isolates.		Plasmid	DNA	was	isolated	from	
the	wild-type	isolates.		Lanes	contain	DNA	from	1,	NTL4	(pTiC58);	2,	F64/95;	3,	
F265/93;	4,	J62/95;	5,	J84/95;	6,	M200/94;	and	7,	15955.		The	standards	are	
pAtC58	(543	kb)	and	pTiC58	(214	kb)	of	strain	C58	(lane	1)	and	pTi15955	(194	kb)	
of	strain	15955	(lane	7).		B.	BamHI	fragment	patterns	of	total	plasmid	DNA	isolated	
from	the	wild-type	isolates	and	the	genetically	isolated	MOP	catabolism	plasmid	
from	each	wild-type	strain.		Total	plasmid	DNA	was	extracted	from	each	wild-type	
isolate	and	an	NTL6	transformant	of	the	MOP	catabolism	plasmid	from	each	strain,	
digested	with	BamHI,	and	the	fragments	were	separated	on	a	0.8%	agarose	gel.		
Lanes	contain:	M.	1	kb	ladder	(Invitrogen);	1,	NTL4(pAoF64/95);	2,	
C58C1RS(pArA4);	3,	F64/95;	4,	NTL6(pAoF64/95);	5,	J84/95;	6,	NTL6(pAoJ84/95);	
7,	F265/93;	8,	NTL6	(pAoF265/93);	9,	J62/95;	10,	NTL6(pAoJ62/95);	11,	M200/94;	
12,	NTL6(pAoM200/94).	 	
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than	one	plasmid	migrating	in	a	single	band,	we	genetically	isolated	the	plasmids	

responsible	for	MOP	catabolism	by	transforming	strain	NTL6,	a	plasmidless	

derivative	of	A.	tumefaciens	strain	NTL4	(Table	2.1),	with	total	plasmid	DNA	isolated	

from	each	strain,	selecting	directly	for	MOP	utilization.		MOP-utilizing	transformants	

were	isolated	in	each	case,	and	individual	colonies	from	each	transformation	tested	

also	utilized	MOA	and	AGA,	but	not	AGR	(Figure	2.1	A).		

	

To	gauge	the	plasmid	complement	of	the	field	isolates,	and	the	nature	of	the	

plasmids	encoding	opine	utilization	and	MOP-inducible	conjugation,	we	subjected	

plasmid	samples	from	each	of	the	five	field	isolates	and	one	corresponding	NTL6	

transformant	of	each	to	restriction	enzyme	analysis.		In	all	cases	the	plasmids	in	the	

transformants	yielded	a	fragment	pattern	that	formed	a	subset	of	the	pattern	seen	

in	the	plasmid	preparations	from	the	corresponding	field	isolates	(Figure	2.2	B,	

compare	odd-	and	even-numbered	lanes).		Moreover,	the	fragment	patterns	of	

plasmids	from	the	five	different	transformants	were	very	similar	to	each	other	

(Figure	2.2	B,	odd-numbered	lanes).		These	results	strongly	suggest	that	most,	if	not	

all,	of	the	five	field	isolates	tested	harbor	at	least	two	plasmids	of	about	the	same	

size	and	that	one	of	these	plasmids,	which	is	strongly	conserved	among	the	five	

isolates,	is	conjugative	and	encodes	utilization	of	MOP,	MOA	and	AGA.		

	

Given	the	apparent	relatedness	of	the	mannopine-catabolic	plasmids,	we	focused	on	

one	wild-type	field	isolate	F64/95,	and	its	MOP-catabolic	plasmid,	which	we	named	

pAoF64/95.	

	
2.5.3	Growth	with	mannopine	induces	production	of	an	acyl-
homoserine	lactone,	as	well	as	conjugative	transfer	of	pAoF64/95	

	

In	all	conjugative	Ti	and	opine-catabolic	plasmids	studied	to	date,	transfer	is	

controlled	by	opines	through	regulation	of	an	acyl-homoserine	lactone-dependent	

quorum-sensing	system	(82,	177,	178,	189,	262).		Preliminary	studies	indicated	that	

growth	of	strain	F64/95	with	mannopine	resulted	in	the	production	of	an	acyl-HSL		
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that	has	the	chromatographic	properties	of	N-(3-oxo-octanoyl)-L-homoserine	

lactone	(3-oxo-C8-HSL)	(Figure	2.3).		We	assessed	the	conjugative	transfer	

characteristics	of	pAoF64/95	and	whether	opine-induced	transfer	was	associated	

with	induction	of	production	of	this	acyl-HSL	quormone.		The	field	isolate,	as	well	as	

one	NTL6	transformant	harboring	pAoF64/95	were	cultured	in	minimal	medium	

containing	either	mannitol	or	MOP	as	the	primary	source	of	carbon.		At	intervals,	

samples	were	removed,	assayed	for	growth	by	viable	counts,	and	the	cells	were		

tested	for	conjugative	competence.		In	addition,	the	culture	supernatants	were	

assayed	quantitatively	for	acyl-HSLs,	as	described	in	materials	and	methods.	

	

Strain	NTL6	lacking	pAoF64/95	grew	well	with	mannitol	but	failed	to	grow	with	

MOP	(data	not	shown).		In	contrast,	the	field	isolate	and	NTL6(pAoF64/95)	grew	

almost	as	well	with	MOP	as	with	mannitol	(Figure	2.4).		Either	plasmid-containing	

strain	produced	only	barely	detectable	levels	of	3-oxo-C8-HSL	when	grown	with	

mannitol,	but	accumulated	steadily	increasing	amounts	of	the	quormone	as	growth	

proceeded	in	medium	containing	MOP	(Figure	2.4).		Concomitant	with	the	

increasing	levels	of	the	acyl-HSL	signal,	donors	grown	with	MOP	transferred	

pAoF64/95	at	increasing	frequencies	as	growth	continued	(Figure	2.4).		Donors	

grown	with	mannitol	failed	to	transfer	the	plasmid	at	a	detectable	level	at	any	stage	

of	growth	tested.	

	

2.5.4	Plasmid	pAoF64/95	is	an	opine	catabolic	element	

	

We	determined	the	nucleotide	sequence	of	pAoF64/95.		The	plasmid,	with	a	size	of	

176,574	bp,	codes	for	178	annotatable	open	reading	frames	(Figure	2.5).		We	also	

constructed	an	overlapping	cosmid	clone	bank	of	the	plasmid	(Figure	2.5).		Like	

most	if	not	all	large	plasmids	in	the	family	Rhizobiaceae,	pAoF64/95	encodes	a	

repABC-type	replication	system.		Consistent	with	our	observation	that	F64/95	fails		

to	induce	tumors,	pAoF64/95	lacks	a	T-region	and	all	known	components	of	the	vir	

regulon.	 	
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Figure	2.3	Production	of	AAI	by	F64/95	is	induced	by	growth	with	MOP.		
Cultures	grown	in	AB	minimal	medium	supplemented	with	0.005%	yeast	extract	
and	either	mannitol	(ABM)	or	mannopine	(MOP)	as	the	primary	carbon	source	were	
sampled	approximately	every	eight	hours	for	24	hours.		Samples	of	each	culture	
were	extracted	with	ethyl	acetate,	and	the	extracts	were	assayed	for	acyl-HSLs	by	
reverse-phase	thin-layer	chromatography	as	described	in	material	and	methods	
section	2.4.7.		S,	authentic	N-3-oxo-ocatanolyl-L-homoserine	lactone	(Sigma).	
	

	

Consistent	with	the	observation	that	pAoF64/95	confers	catabolism	of	three	of	the	

four	mannityl	opines,	the	plasmid	contains	a	contiguous	approximately	30-kb	

region,	encoding	22	genes	organized	in	six	groups,	that	is	closely	related	to	regions	

of	Ti	plasmids	known	to	confer	catabolism	of	MOP,	MOA	and	AGA	(Figures	2.5	and	 	
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Figure	2.4	Growth	with	mannopine	induces	production	of	AAI	and	conjugative	
transfer	of	pAoF64/95.		Strains	F64/95(A)	and	NTL6(pAoF64/95)	(B)	were	
grown	in	AB	medium	with	0.005%	yeast	extract	and	mannitol	(open	triangles	and	
open	bars)	or	MOP	(open	circles	and	grey	bars).		Growth	was	followed	
turbidometrically	using	a	Klett	colorimeter.		At	approximately	eight-hour	intervals	a	
portion	of	each	culture	was	removed	and	assayed	for	conjugative	transfer	efficiency	
(black	circles)	and	accumulation	of	AAI	(bars).		The	amount	of	extractable	AAI	in	the	
culture	supernatant	is	indicated	over	the	corresponding	bar.		Transfer	frequency	is	
expressed	as	transconjugates	recovered	per	input	donor	cell.	 	
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Figure	2.5	Physicogenetic	map	of	pAoF64/95.		The	complete	176,574	bp	
sequence	of	pAoF64/95	was	determined	and	the	sequence	was	annotated	as	
described	in	materials	and	methods	section	2.4.14.		Significant	open	reading	frames	
are	shown	as	boxes,	with	those	on	the	outside	oriented	in	the	clockwise	direction	
and	those	on	the	inside	oriented	in	the	counterclockwise	direction.		The	genes	are	
color-coded	with	respect	to	known	or	putative	functions	as	follows:	yellow,	
replication;	violet,	uptake	and	catabolism	of	MOA;	magenta,	uptake	and	catabolism	
of	AGA;	cyan,	uptake	and	catabolism	of	MOP;	orange,	uptake	and	catabolism	of	
agrocinopines;	blue,	conjugative	transfer;	red,	regulation	of	MOP	catabolism	or	
conjugative	transfer;	green,	three	putative	integrase	genes;	lavender,	a	segment	that	
is	largely	syntenic	in	gene	composition	and	order	with	similarly	sized	regions	of	two	
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Figure	2.5	(cont.)	
Ri	plasmids,	pRi1724	and	pRi2659;	grey,	other	genes	that	have	a	returned	hit	in	the	
BLAST	database;	black,	ORFs	with	no	significant	similarities	in	the	data	bases.		The	
extent	of	the	inserts	in	each	cosmid	in	the	ordered	library	is	represented	by	the	arcs	
within	the	rings.		The	annotated	sequence	is	available	in	GenBank	accession	number	
JX683454.	
	

	

2.6).		The	plasmid	does	not	contain	agcA,	encoding	catabolic	mannopine	cyclase	(54,	

108,	110),	or	the	four-gene	agt	operon	required	for	agropine	uptake	(109,	110),	

consistent	with	our	observation	that	strains	harboring	pAoF64/95	do	not	catabolize	

the	lactone	opine.		The	organization	of	the	two	aga	operons	is	virtually	identical	to	

those	of	pTi15955	and	pTiBo542	(Figure	2.6).		However,	the	region	comprising	the	

moa	transport	genes	and	moaR	is	inverted	in	comparison	to	that	of	the	two	Ti	

plasmids.		The	10	genes	of	pTi15955	comprising	the	MOP	catabolic	regulon	all	are	

present	in	pAoF64/95.		However,	while	they	are	grouped	in	similar	units,	their	

orientations	and	fine-structure	differ	(Figure	2.6).		In	pAoF64/95	the	mocDE	gene	

pair,	which	is	organized	as	a	two-gene	operon	in	pTi15955,	comprises	the	distal	

portion	of	the	four-gene	mot	operon	that	encodes	the	MOP	transporter.		Notably,	the	

mocDE	gene	pair	replaces	trlR	at	the	end	of	the	mot	operon,	and	there	is	no	other	

gene	encoding	a	full	sized	TraR	homolog	in	this	region	of	the	plasmid.		Moreover,	

while	the	moc	region	of	pTi15955	encodes	two	closely	related	putative	regulatory	

genes,	mocR	and	mocS,	(123,	133)	the	corresponding	region	of	pAoF64/95	encodes	

only	one	such	gene	we	call	mocR	(Figure	2.6).	

	

We	confirmed	that	this	region	of	pAoF64/95	is	responsible	for	catabolism	of	the	

mannityl	opines	by	analysis	of	the	cosmid	clone	bank	using	two	strategies.		In	the	

first,	we	electroporated	an	unordered	pool	of	the	cosmid	bank	into	A.	tumefaciens	

NTL4	and	selected	for	progeny	that	could	utilize	MOP.		Such	transformants	

contained	one	of	three	cosmids,	pMWS112,	pMWS114,	or	pMWS115	(Figure	2.5	and	

2.6	B).		Restriction	enzyme	and	sequence	analysis	showed	that	these	three	cosmids	

overlap	the	putative	moc	and	mot	genes	and	part	of	the	AGA	transport	and	 	
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Figure	2.6	The	mannityl	opine	catabolism	region	of	pAoF64/95	is	related	to	
those	of	other	Agrobacterium	plasmids.		A.	The	regions	coding	for	the	catabolism	
of	the	mannityl	opines	from	two	Ti	plasmids,	pTi15955	and	pTiBo542,	and	from	
pAoF64/95	are	aligned.		Orthologous	genes	and	gene	systems	are	depicted	as	
arrows	with	identical	fill	patterns.		Genes	with	common	shading	are	involved	in	the	
same	opine	catabolic	pathways.		mot,	mannopine	transport;	agt,	agropine	transport;	
acgA,	mannopine	cyclase;	moc,	mannopine	catabolism;	aga,	transport	and	
catabolism	of	agropinic	acid	and	mannopinic	acid;	moa,	transport	of	mannopinic	
acid.		All	genes	not	directly	involved	in	the	catabolism	and	transport	of	the	mannityl	
opines	are	in	black.		 ;	mrtR,	a	novel	gene	in	pAoF64/95,	codes	for	a	member	of	the	
GntR	family	of	regulators.		 ;	trlR,	a	frame-shifted	allele	of	traR	in	pTi15955	(179,	
267).		B.	A	set	of	cosmids	with	overlapping	inserts	define	the	catabolic	region	of	
pAoF64/95.		Derivatives	of	strain	NTL4	harboring	each	cosmid	were	tested	for	their	
ability	to	grow	on	AB	minimal	agar	containing	either	MOP	or	MOA	as	the	sole	carbon	
source.		++,	growth	as	good	as	a	known	mannityl	opine	utilizer;	+/-,	very	poor	
growth;	-,	no	significant	growth.		The	dotted	lines	indicate	where	the	cosmid	extends	
beyond	the	scope	of	the	map.	
	

	

catabolism	operons	(Figure	2.6	B).		In	the	second	strategy,	we	transformed	a	

cosmid,	pMWS100,	in	which	the	insert	overlapped	the	putative	MOA	catabolic	

region	and	part	of	the	AGA	transport	and	catabolism	operons,	but	not	the	MOP	

catabolism	region	(as	depicted	in	figure	2.6	B),	into	strain	NTL4	selecting	for	
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resistance	to	tetracycline.		We	screened	these	transformants	for	their	ability	to	

utilize	MOP	and	MOA.		NTL4(pMWS100)	utilized	MOA	but	not	MOP	(Figure	2.6	B),	

which	is	consistent	with	our	bioinformatics	predictions	of	this	cosmid	clone.	

	

Plasmid	pAoF64/95	encodes	a	second	putative	opine	catabolic	region,	acc,	mapping	

between	coordinates	77	and	84	kb	(Figures	2.5	and	2.7).		On	certain	Ti	and	Ri	

plasmids	orthologous	loci	code	for	uptake	and	catabolism	of	the	agrocinopines,	a	

family	of	sugar	phosphodiester	opines	(65,	132),	as	well	as	susceptibility	to	agrocin	

84,	the	unique	antiagrobacterial	antibiotic	(132,	227).		Of	the	five	strains	with	

pAoF64/95-like	plasmids	four	were	described	to	us	as	being	susceptible	to	agrocin	

84,	while	one	was	not	tested.		In	our	assays	the	field	isolate	F64/95	showed	weak	

susceptibility	to	the	antibiotic,	only	sometimes	giving	cloudy	zones	of	growth	

inhibition	(Figure	2.7	B).		Strain	NTL4(pAoF64/95)	gave	similar,	although	often	

more	defined,	zones	of	growth	inhibition	(Figure	2.7	B).	

	

2.5.5	pAoF64/95	encodes	a	Ti	plasmid-like	conjugative	transfer	system	
and	all	of	the	components	of	a	TraR-TraI	quorum-sensing	regulatory	
system	

	

By	bioinformatic	analysis,	pAoF64/95	encodes	a	single	identifiable	conjugative	

transfer	system,	and	this	system	is	virtually	identical	in	gene	content	and	operonal	

organization	to	those	of	other	Ti,	Ri,	and	opine	catabolic	plasmids	(Figure	2.8).		The	

12-gene	trb	operon,	encoding	an	IncP-like	type	IV	secretion	system,	is	adjacent	to	

and	oriented	divergently	to	the	repA	gene	of	the	replication	operon	(Figures	2.5	and	

2.8).		The	two	DNA-processing	operons,	traAFBH	and	traCDG	are	adjacent	to	and	

divergently	oriented	with	respect	to	each	other,	although	the	latter	encodes	an	

additional	putative	small	open	reading	frame,	orf155,	not	present	in	the	traCDG	

operons	of	other	Ti	plasmid-like	systems	(Figure	2.5).		The	traA	and	traC	genes	are	

separated	by	a	254	bp	intergenic	region	that	contains	a	sequence	similar	to	that	of	

the	oriT	regions	of	pTiC58	and	pTiR10	(38,	41)	(Figure	2.9).	
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Figure	2.7	pAoF64/95	encodes	a	locus	related	to	the	agrocinopine	A+B	
catabolism	operon.		A.	Alignment	of	the	acc	operons	from	pTiC58,	pTiBo542	and	
pAoF64/95.		accR	of	pTiC58	and	pTiBo542	encode	the	repressor	that	coregulates	
opine	catabolism	and	conjugative	transfer.		Genes	encoding	orthologous	functions	
are	shown	with	the	same	fill	pattern	while	genes	not	directly	involved	in	catabolism	
and	transport	are	black.		B.	Agrocin	84	sensitivity	assays.		Strains	were	assessed	for	
sensitivity	to	agrocin	84	as	described	in	materials	and	methods	section	2.4.8.		1,	
C58;		2,	NTL4;	3,	F64/95;	4,	NTL4(pAoF64/95).	 	
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Figure	2.8	The	tra	and	trb	operons	of	Ti,	Ri,	and	opine	catabolic	plasmids	are	
conserved.		The	regions	coding	for	DNA	metabolism	(tra)	and	mating-pair	
formation	(trb)	from	three	Ti	plasmids	(pTiC58,	pTiBo542	and	pTi15955)	two	Ri	
plasmids	(pRiA4b	and	pRi1724),	and	pAoF64/95	were	aligned.		Orthologous	genes	
and	gene	systems	are	depicted	as	arrows	with	identical	fill	patterns.		Genes	known	
to	be	involved	in	regulation	of	Ti	plasmids	transfer	are:	traM,	 	;	traR,	 ;	traI,	 .		
The	plasmid	replication	genes	are	denoted	rep.		In	pTiC58	and	pTiBo542	the	
product	of	accR,	 ,	represses	the	acc	and	arc	operons	(8).		The	two	Ri	plasmids	and	
pAoF64/95	encode	a	small	helix-turn-helix,	xre	family	gene,	 .		Novel	genes	not	
characterized	to	date	are	filled	in	black.		The	double	slash	lines	on	the	Ti	plasmids	
indicate	where	the	tra	and	trb	regions	are	separated	on	those	plasmids.	
	

	

	
	
Figure	2.9	The	oriT	region	of	pAoF64/95	is	strongly	conserved	with	those	of	
two	Ti	plasmids,	pTiC58	and	pTiR10.		Nucleotides	identical	in	all	three	regions	
are	black	with	white	lettering.		Nucleotides	conserved	in	two	of	the	three	regions	
are	grey	with	white	lettering.		The	nic	site	of	pTiR10	(38)	is	indicated	by	an	
arrowhead.	
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The	conjugative	transfer	region	also	encodes	the	three	genes,	traR,	traI,	and	traM,	

which	in	studied	Ti,	opine-catabolic,	and	some	Rhizobium	plasmids,	are	responsible	

for	regulating	conjugative	transfer	in	a	quorum-dependent	manner	(Figure	2.8).			

Moreover,	the	general	locations	and	orientations	of	these	three	genes	in	pAoF64/95	

closely	resemble	those	in	other	known	conjugative	elements.		traI,	which	encodes	

the	acyl-HSL	synthase	(115),	is	the	first	gene	of	the	trb	operon,	and	traR	and	traM,	

encoding	the	activator	and	antiactivator,	are	closely	linked,	convergently	oriented,	

and	located	just	distal	to	the	traAFBH	operon.		However,	unlike	the	gene	

organization	in	systems	in	which	conjugative	transfer	is	opine-inducible,	traR	

appears	to	be	monocistronic	and	certainly	not	a	member	of	a	plasmid-specific	

opine-regulated	operon	(Figure	2.8).	

	

We	assessed	the	activity	of	traI	by	examining	a	set	of	overlapping	cosmid	clones	that	

comprise	the	tra,	trb,	traI	and	repABC	regions	of	pAoF64/95	for	production	of	the	

acyl-HSL	quormone.		Derivatives	of	strain	NTL4	harboring	cosmids	pMWS106	and	

pMWS110,	both	of	which	encode	traI,	produced	low	but	detectable	levels	of	the	

signal,	while	the	strain	harboring	pMWS109,	which	maps	to	the	same	region	but	

does	not	overlap	traI,	failed	to	produce	the	acyl-HSL	(Figure	2.10).	

	

2.5.6	The	traR	gene	product	is	required	for	the	MOP-dependent	
induction	of	AAI	production	and	conjugative	transfer	

	

In	the	known	Ti	plasmid	conjugative	transfer	systems	TraR	directly	activates	

transcription	of	the	traI/trb	operon	and	the	two	divergently	oriented	tra	operons	

(42,	71,	83,	142-144).		We	constructed	a	traR	mutant	by	creating	an	in-frame,	

kanamycin-marked	deletion	derivative	of	the	gene	on	the	megaplasmid.		Donors	

harboring	this	construct	failed	to	transfer	the	plasmid	at	detectable	frequencies,	

even	when	grown	with	MOP	(Figure	2.11	A).		Moreover,	these	donors	failed	to	

produce	elevated	levels	of	the	acyl-HSL	signal	under	any	growth	conditions	tested		
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Figure	2.10	Cosmid	clones	of	pAoF64/95	with	inserts	that	contain	traI	code	for	
production	of	an	acyl-HSL.		Overnight	cultures	of	NTL4	harboring	cosmid	clones	of	
pAoF64/96	that	overlap	the	tra/trb	region	were	grown	in	L	broth.		The	cells	were	
removed	by	centrifugation	and	40	μl	of	the	culture	supernatants	were	spotted	
directly	onto	the	surface	of	a	soft	agar	layer	of	AB	medium	supplemented	with	
mannitol	and	X-gal	containing	the	indicator	strain,	NTL4(pRKLH4141)	(153).		
Supernatants	are	from	overnight	cultures	of:	A.	NTL4(pAoF64/95::traMpVik107),	
an	AAI	overproducing	strain;	B.	NTL4(pMWS109),	(traI-);	C.	NTL4(pMWS106),	
(traI+);	D.	NLT4(pMWS110),	(traI+);	and	E.	NTL4.	
	

	

(Figure	2.11	B).		These	results	suggest	that	a	functional	TraR	is	required	to	express	

traI	and	the	tra	and	trb	genes.	

	

The	traR	mutation	was	fully	complementable	with	the	wild-type	allele	cloned	into	

pSRKGm.		When	this	merodiploid	construct	was	pre-grown	with	MOP	as	the	

primary	carbon	source	and	expression	of	the	recombinant	traR	was	induced	with		
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Figure	2.11	TraR	is	essential	for	induction	of	acyl-HSL	production	and	
conjugative	transfer.		A	and	B.	NTL4(pAoF64/95)	and	the	traR	mutant,	
NTL4(pAoF64/95ΔtraR),	were	grown	in	AB	medium	containing	mannitol	or	MOP	as	
primary	carbon	sources.		After	overnight	growth,	samples	were	removed	and	tested	
for	conjugative	transfer	using	A.	tumefaciens	strain	C58C1RS	as	the	recipient	(A)	and	
levels	of	AAI	accumulation	(B).		C	and	D.	The	traR	mutant	was	complemented	with	a	
wild-type	copy	of	traR	cloned	into	pSRKGm.		The	resulting	strain,	
NTL4(pAoF64/95ΔtraR,	pSRKGm::traR),	was	grown	in	AB	minimal	medium	
containing	mannitol	or	MOP	each	with	and	without	IPTG	and	assessed	for	
conjugative	transfer	(C)	and	AAI	accumulation	(D).		The	experiment	was	done	two	
or	three	times	and	the	mean	and	standard	deviation	for	each	culture	condition	are	
shown.	
	

	

IPTG,	conjugative	transfer	and	acyl-HSL	production	were	restored	to	approximately	

wild-type	frequencies	(Figure	2.11	C	and	D).		Surprisingly,	when	the	strain	was	
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grown	on	mannitol	and	traR	was	induced	with	IPTG,	conjugative	transfer	and	

induction	of	AAI	production	remained	undetectable	(Figure	2.11	C	and	D).	

	

2.5.7	TraM	negatively	regulates	conjugative	transfer	of	pAoF64/95	

	

In	the	known	conjugative	transfer	systems	of	Agrobacterium,	TraM	inhibits	the	

activity	of	TraR	by	directly	binding	to	the	activator	(116,	152).		We	created	a	

disruption	mutant	of	traM	on	pAoF64/95	[strain	NTL4(pAoF64/95::traMpVik107)]	

as	described	in	materials	and	methods,	and	assayed	the	mutant	for	AAI	production	

and	conjugative	transfer	following	growth	with	MOP	or	with	mannitol	as	the	

primary	carbon	source.		Consistent	with	its	role	as	an	anti-activator,	the	traM	

mutant	produced	high	levels	of	AAI	and	transferred	the	plasmid	at	high	frequency,	

even	when	grown	with	mannitol,	a	noninducing	substrate	(Figure	2.12	A	and	B).	

	

In	initial	studies	an	IPTG-inducible	copy	of	traM	cloned	into	pSRKGm	did	not	fully	

complement	the	traM	mutant	(data	not	shown).		We	reasoned	that	since	the	mutant	

is	constitutive	for	transfer,	that	to	abolish	transfer,	traM	would	have	to	be	expressed	

over	many	generations	to	dilute	out	the	donors	that	had	already	produced	fully	

active	conjugative	transfer	systems	(220).		To	test	this,	we	passaged	the	

complemented	mutant	in	AB	minimal	media	with	either	mannitol	or	mannopine	

through	sequential	subcultures	either	continually	with	or	without	IPTG.		We	tested	

samples	for	conjugative	competence	before	each	dilution	step.		When	no	IPTG	was	

added,	transfer	and	AAI	levels	remained	high	regardless	of	whether	the	cells	were	

grown	with	mannitol	or	MOP	(Figure	2.12	C	and	D).		Donor	cells	grown	with	IPTG	

continued	to	transfer	the	plasmid,	though	at	lower	frequency	over	the	first	10	to	20	

generations.		However,	after	passage	of	the	strain	through	approximately	20	to	30	

generations	with	inducing	levels	of	IPTG,	conjugative	transfer	was	reduced	to	

undetectable	levels,	even	when	cells	were	grown	with	MOP	(Figure	2.12	C	and	D).		

We	reasoned	that	overexpressing	TraM	should	keep	conjugative	transfer	repressed,	

even	in	cells	grown	with	the	inducing	opine	(Figure	2.12	C).	 	
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Figure	2.12	TraM	inhibits	TraR-dependent	induction	of	AAI	production	and	
conjugative	transfer.		The	traM	mutant,	NTL4(pAoF64/95::traMpVik107),	was	
assessed	for	conjugative	transfer	(A)	and	AAI	accumulation	(B)	when	grown	on	AB	
medium	supplemented	with	either	mannitol	or	MOP.		The	mutant	was	
complemented	in	trans	with	a	wild-type	copy	of	traM	cloned	into	pSRKGm.		This	
strain,	NTL4(pAoF64/95::traMpVik107,	pSRKGm::traM),	was	continuously	cultured	
in	AB	minimal	medium	supplemented	with	either	mannitol	or	MOP	and	with	or	
without	IPTG	to	induce	expression	of	traM	as	described	in	materials	and	methods	
section	2.4.16.		Samples	were	removed	after	the	indicated	numbers	of	cumulative	
generations	and	the	cells	were	tested	for	conjugative	competence,	(C),	and	AAI	
accumulation,	(D),	as	described	in	materials	and	methods	section	2.4.7.		Numbers	of	
generations	indicated	at	the	bottom	of	C	and	D	are	approximate.		Each	experiment	
was	done	two	or	three	times	and	the	mean	and	standard	deviation	are	shown.	 	



	
	
	
	

56	

2.6	Discussion	

	

2.6.1	Five	independently-isolated	opine-catabolic	plasmids	confer	MOP	
utilization	and	are	highly	similar	to	each	other	

	

The	existence	of	trlR,	a	mutant	allele	of	traR	associated	with	the	mot	operon	of	

octopine-type	Ti	plasmids,	led	us	to	the	hypothesis	that	Agrobacterium	plasmids	in	

which	quorum-dependent	conjugative	transfer	is	induced	by	MOP	would	exist.		The	

prediction	proved	accurate;	of	11	wild	isolates	of	mannopine-utilizing	

Agrobacterium	spp.	obtained	from	Oregon	State	University,	five	conjugatively	

transferred	the	catabolic	trait	only	when	grown	with	MOP	(Table	2.2).		In	all	five	

cases	the	transmissible	trait	is	associated	with	a	large	conjugative	plasmid	and,	as	

judged	by	restriction	enzyme	analysis	(Figure	2.2),	these	five	MOP-inducible	

plasmids	are	closely	related.		All	five	of	these	isolates	are	biovar	2	strains,	but	only	

two	are	demonstrably	pathogenic	(Table	2.2).		Of	the	remaining	six	isolates	

examined,	four	failed	to	transfer	MOP-utilization	at	a	detectable	frequency	under	

the	culture	conditions	tested	and	two	transferred	the	trait	at	a	low	opine-

independent	constitutive	level	(Table	2.2).	

	

2.6.2	pAoF64/95	is	an	opine	catabolic	plasmid	that	encodes	a	conserved	
set	of	genes	for	transport	and	catabolism	of	the	mannityl	opines	
	

Consistent	with	the	phenotype,	sequence	analysis	of	one	such	opine-inducible	

plasmid,	pAoF64/95,	indicates	that	these	elements	are	not	Ti	plasmids;	pAoF64/95	

lacks	a	T-region	and	the	genes	of	the	vir	regulon	(Figure	2.5).		Instead,	it	is	an	opine-

catabolic	plasmid	and	encodes	genes	for	the	uptake	and	catabolism	of	at	least	two	

families	of	these	tumor-specific	substrates,	the	agrocinopines,	and	three	of	the	four	

mannityl	opines.		Both	loci	confer	the	expected	phenotypes;	the	acc	operon	confers	

sensitivity	to	agrocin	84,	a	marker	for	catabolism	of	the	agrocinopine	opines	(Figure	

2.7)	(132)	while	the	moc	locus	confers	utilization	of	MOP,	MOA	and	AGA	(Figures	2.1	

and	2.6).		Strain	F64/95	does	not	utilize	agropine,	the	fourth	member	of	the	
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mannityl	opine	family	(Figure	2.1).		Consistent	with	this	observation,	pAoF64/95	

lacks	agcA,	which	codes	for	the	enzyme	that	converts	agropine	to	MOP	(54,	108,	

110),	and	also	the	agt	operon	that	encodes	the	agropine	transporter	(109,	110).		

While	the	overall	organization	of	the	moc	locus	is	similar	to	that	of	the	octopine-type	

Ti	plasmids,	there	are	some	rearrangements	(Figure	2.6).		Most	significantly,	the	

mocDE	genes	in	pAoF64/95	are	coupled	with	the	3ʹ	end	of	the	mot	operon,	and	

instead	of	two	mocR-like	genes	there	is	only	one	(Figure	2.6).		pAoF64/95	encodes	

an	additional	novel	gene	in	the	mannopine	catabolism	region,	mrtR,	which	codes	for	

a	product	that	aligns	to	the	GntR	family	of	transcriptional	regulators.		Perhaps	MrtR	

contributes	to	the	regulation	of	mannopine	catabolism,	MOP-inducible	transfer,	or	

both.	

	

Given	that	growth	with	MOP	induces	transfer,	we	expected	that,	like	trlR,	traR	of	

pAoF64/95	would	be	linked	to	the	mot	operon.		However	on	pAoF64/95	traR	is	

monocistronic,	is	located	between	the	contiguous	tra	and	trb	regions,	and	is	

approximately	66	kb	removed	from	the	closest	gene	in	the	moc	operon	(Figure	2.5	

and	2.8).		The	absence	of	a	functional	traR	linked	to	a	MOP-associated	operon	on	

pAoF64/95	does	not	preclude	the	existence	of	a	plasmid	with	a	gene	organization	

similar	to	the	motABCDtrlR	operon	of	octopine-type	Ti	plasmids.		However,	there	

currently	is	no	evidence	of	such	a	mot-associated	functional	form	of	the	traR	gene	on	

an	Agrobacterium	megaplasmid.	

	

2.6.3	pAoF64/95	encodes	a	conserved	conjugative	transfer	system	that	
is	most	similar	in	gene	organization	to	Ri	and	Rhizobium	plasmids	

	

The	plasmid	additionally	shares	a	set	of	core	genes	that	are	strongly	conserved	in	a	

large	group	of	plasmids	found	in	Agrobacterium	and	Rhizobium	isolates.		These	

genes	code	for	replication	and	conjugative	transfer	as	well	as	components	

associated	with	the	quorum-dependent	regulation	of	these	functions.		In	a	typical	Ti	

plasmid,	the	two	tra	operons,	oriT,	traR,	and	traM,	are	located	near	a	conjugative	
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opine	catabolism	region	of	the	plasmid.		In	these	plasmids,	traR	is,	without	

exception,	located	in	an	opine-inducible	operon	[(178)	and	reviewed	in	(72)].		The	

trb	operon,	which	codes	for	the	Type	IV	mating	bridge,	as	well	as	TraI,	the	acyl-HSL	

synthase,	is	invariably	directly	linked	and	divergently	oriented	to	repA	of	the	repABC	

operon	[reviewed	in	(72)].		Moreover,	in	Ti	plasmids,	the	tra	complex	and	the	trb-

rep	locus	are	separated	by	60-85	kb	of	sequence.	

	

The	organization	of	these	loci	in	pAoF64/95	more	closely	resembles	that	of	

megaplasmids	from	A.	rhizogenes	isolates	including	pRi1724,	pRiA4	(Figure	2.8)	and	

pRi2659,	as	well	as	some	Rhizobium	plasmids	including	pRL1JI	(44)	and	p42a	(243).		

In	these	plasmids	the	trb-repABC	complex	and	the	two	divergently	oriented	tra	

operons	all	are	located	in	close	association,	with	traM	and	a	monocistronic	traR	

located	between	the	two	conjugative	transfer	regions	(Figure	2.8).	

	

2.6.4	TraR	is	an	activator	but	may	be	regulated	differently	from	TraR	in	
the	Ti	plasmid	systems	

	

Like	the	identified	conjugative	transfer	systems	of	the	Ti	plasmids,	transfer	of	

pAoF64/95	is	regulated	by	a	TraR-dependent	mechanism.		Mutational	analysis	

clearly	indicates	that,	as	in	Ti	plasmid	systems,	traR	is	required	for	opine-mediated	

induction	of	conjugative	transfer	(Figure	2.11).		However,	complementation	analysis	

showed	some	differences	in	comparison	to	opine-mediated	regulation	of	traR	in	Ti	

plasmids.		When	their	cognate	traR	genes	are	overexpressed	in	strains	harboring	Ti	

plasmids,	the	opine	signals	are	no	longer	required	to	induce	transfer	(82,	177,	189).		

Intriguingly,	donors	containing	pAoF64/95ΔtraR	were	complemented	in	trans	with	

a	cloned,	fully-induced	copy	of	wild-type	traR,	but	only	when	grown	with	MOP	

(Figure	2.11).		This	continued	requirement	for	the	conjugative	opine	suggests	that	

the	opine-dependent	regulatory	system	that	controls	TraR-mediated	activation	of	

conjugative	transfer	is	novel	and	may	require	an	additional	MOP-dependent	

element.	
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2.6.5	Activation	of	pAoF64/95	is	further	modulated	by	the	antiactivator,	
TraM	

	

In	strains	harboring	the	archetypical	Ti	plasmids	pTiC58	and	pTiR10,	the	product	of	

the	traM	gene	modulates	TraR	activity.		TraM	functions	as	an	antiactivator	by	direct	

interaction	with	TraR	(116,	152);	mutants	lacking	traM	transfer	constitutively	but	at	

frequencies	lower	than	those	observed	in	wild-type	strains	induced	by	growth	with	

their	conjugative	opine	(81,	114).		Apparently,	TraR	expressed	at	its	basal	level	is	

sufficient	to	induce	transfer,	albeit	at	a	low	frequency.		One	role	of	TraM,	then,	is	to	

sequester	this	low	level	of	TraR,	thereby	preventing	plasmid	transfer	in	the	absence	

of	the	conjugative	opines	(81,	114).	

	

pAoF64/95	also	encodes	a	traM	gene	and	a	traM	mutant	of	this	plasmid	is	

constitutive	for	transfer	(Figure	2.12).		When	this	mutant	is	complemented	by	

overexpression	of	traM,	transfer	is	abolished,	even	when	the	cells	are	grown	with	

mannitol	(Figure	2.12).		These	results	support	a	role	for	TraM	as	an	antiactivator	of	

TraR.		In	contrast	to	the	Ti	plasmid	system,	the	traM	mutant	of	pAoF64/95	exhibits	

constitutive	transfer	at	higher	than	anticipated	frequencies	(Figure	2.12).		This	

observation	coupled	with	the	data	concerning	complementation	of	the	traR	mutant	

(Figure	2.11)	discussed	above,	suggest	that	TraR	is	expressed	at	a	basal	level	higher	

than	that	of	the	Ti	plasmid	systems	and	that	perhaps	the	ratio	of	TraM	to	TraR	is	

higher	in	pAoF64/95	than	it	is	in	strains	harboring	the	Ti	plasmids.	

	

2.6.6	The	pAoF64/95	group	of	plasmids	and	pArA4	of	A.	rhizogenes	A4	
are	related	

	

Based	on	our	restriction	enzyme	analysis,	pAoF64/95	defines	a	family	of	closely	

related	opine	catabolic	plasmids	that	are	widely	distributed	among	the	agrobacteria.		

In	addition	to	their	presence	in	the	subset	of	the	Corvallis	isolates	in	which	MOP	

induces	transfer,	our	results	suggest	that	the	members	of	this	group	are	distributed	

among	the	classical	mannityl-opine	utilizing	strains	of	A.	rhizogenes.		Wild-type	
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strain	A4,	isolated	from	hairy	roots	of	naturally	infected	rose	plants	(167)	in	

California	(14),	has	three	well-studied	plasmids:	pRiA4,	pArA4,	and	a	cointegrate	of	

the	two	(255).		Based	on	restriction	enzyme	cleavage	patterns,	pArA4	is	similar,	but	

not	identical	to	pAoF64/95	and	the	other	four	MOP-inducible	plasmids	in	this	family	

(Figure	2.2).		Consistent	with	this	physical	relatedness,	like	pAoF64/95	this	plasmid	

codes	for	catabolism	of	MOP,	MOA	and	AGA,	but	not	agropine	(185)	as	well	as	

utilization	of	agrocinopines	(103).	

	

These	related	plasmids	all	are	found	in	independent	isolates	of	Agrobacterium	spp.		

While	these	plasmids	are	not	virulence	elements,	based	on	the	pathogenicity	

properties	of	the	host	isolates	(Table	2.2)	they	are	present	in	strains	that	harbor	Ri	

plasmids,	Ti	plasmids,	and	possibly	other	opine	catabolic	plasmids.		In	strain	A4,	

whose	two	plasmids	have	been	studied	in	detail,	the	T-right	region	of	the	Ri	plasmid	

encodes	the	genes	for	synthesis	by	the	plant	neoplasia	of	all	four	mannityl	opines	

and	the	agrocinopines	(182,	214).		pRiA4,	however,	only	confers	utilization	of	AGR	

while	pArA4	codes	for	the	uptake	and	catabolism	of	AGA,	MOA,	MOP	and	the	

agrocininopines	(185).		Thus,	the	catabolic	properties	of	pArA4	expand	the	range	of	

the	mannityl	opines	utilizable	by	strains	harboring	pRiA4.		Additionally,	opine	

catabolic	plasmids	can	provide	an	advantage	to	avirulent	Agrobacterium	strains,	

such	as	F64/95,	by	enabling	these	bacteria	to	utilize	opines	produced	by	neoplasias	

induced	by	a	virulent	strain	of	Agrobacterium.		Such	opine-utilizing,	nonpathogenic	

isolates	of	Agrobacterium	repeatedly	have	been	cultured	from	pathogen-induced	

neoplasias	(3,	126,	127,	169,	175).		That	these	opine	catabolic	plasmids	responsible	

for	the	cheater	phenotype	of	these	strains	so	closely	resemble	Ti	and	Ri	plasmids	of	

the	pathogen	illustrates	the	genetic	plasticity	of	the	core	replicon	structure	of	these	

rhizobial	elements.	
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2.6.7	A	large	region	of	pAoF64/95	is	syntenic	with	a	region	from	two	Ri	
plasmids,	indicating	that	pAoF64/95	is	chimeric	and	that	this	region	
may	encode	advantageous	functions	

	

Including	the	core	replication	and	transfer	regions,	a	large	portion	of	pAoF64/95	is	

highly	syntenic	with	regions	of	two	Ri	plasmids,	pRi1724	and	pRi2659	(Figure	2.5,	

lavender	colored	genes).		This	region,	about	94	kb	in	size,	includes	ORFs	that	are	

annotated	as	putative	unknown	opine	transport	and	metabolic	genes	(158,	171).		

Likewise,	the	region	contains	sequences	that	align	to	sugar	transporters	and	

glycerol	metabolism	genes	(158,	171),	as	well	as	a	large	number	of	hypothetical	

genes	or	genes	of	unknown	function.	

	

An	8.8	kb	region	located	in	the	middle	of	this	syntenic	region	is	unique	to	

pAoF64/95.		This	segment	consists	mainly	of	ORFs	coding	for	hypothetical	proteins	

and	two	putative	phage	integrase	proteins	(Figure	2.5,	genes	in	green	around	140	

kb	on	the	map).		The	presence	of	such	genes	in	pAoF64/95	suggests	that	this	small	

region	was	acquired	by	an	insertion	event.	

	

All	told,	fully	one	half	of	pAoF64/95	is	synonymous	with	syntenic	regions	of	two	Ri	

plasmids.		The	conservation	of	this	large	region	is	particularly	interesting	

considering	the	varied	nature	of	the	plasmids	and	the	geographical	locations	from	

which	the	parental	strains	were	isolated.		MAFF	301724,	a	biovar	1	strain	from	

which	pRi1724	was	identified,	was	isolated	in	Japan	from	a	melon	plant	with	hairy	

root	disease	(136,	210).		The	parental	strain	of	pRi2659,	also	a	biovar	1	strain,	was	

isolated	in	the	UK	from	a	similarly	diseased	cucumber	plant	(158).		Based	on	

sequence	analysis,	pRi1724	and	pRi2659	are	closely	related	plasmids	(171).		Strain	

F64/95,	on	the	other	hand,	is	a	nonpathogenic	biovar	2	isolate	that	was	cultured	

from	an	apple	crown	gall	in	California	(Table	2.2).		The	varied	locations	and	strain	

backgrounds	of	the	three	isolates	and	the	fact	that	this	region	is	located	on	Ri	and	

opine	catabolic	plasmids	suggest	that	the	genes	located	on	this	segment	confer	some	

unknown,	but	advantageous	functions	in	the	habitats	occupied	by	these	bacteria.		
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Additionally,	the	fact	that	this	region	is	conserved	in	three	different	plasmids	with	at	

least	two	different	gene	contexts	supports	the	notion	that	the	large	megaplasmids	in	

both	Rhizobium	and	Agrobacterium	are	chimeric	and	evolve	by	recombination	with	

other	rhizobial	plasmids	(22,	79,	92,	171,	219).	

	

2.6.8	The	mechanism	of	opine-inducible	transfer	of	pAoF64/95	may	be	
novel	

	

In	Ti	plasmid	systems,	traR	is	transcriptionally	controlled	by	opines	through	the	

simple	fact	that	it	is	a	member	of	an	operon	that	is	regulated	by	the	opine-

responsive	regulatory	element.		However,	in	pAoF64/95,	traR	is	monocistronic	and	

is	not	located	near	the	mannopine	catabolism	region.		In	addition,	our	mutational	

and	complementation	analyses	of	traR	and	traM	suggest	that	traR	expression	may	

not	be	controlled	directly	at	the	transcriptional	level	by	a	MOP-responsive	

regulatory	element.		It	is	possible,	for	example,	that	MOP	controls	expression	of	

some	other,	to	date	unidentified	component	of	the	regulatory	circuitry.	

	

This	accumulating	evidence	supports	a	novel	mode	of	regulation	of	transfer	of	

pAoF64/95,	and	perhaps	other	plasmids	of	Agrobacterium	spp.	with	transfer	and	

regulatory	genes	organized	in	a	similar	fashion.		A	more	detailed	understanding	of	

the	regulation	of	the	quorum-sensing	system	of	pAoF64/95	may	be	useful,	for	

example,	in	understanding	the	regulation	of	conjugative	transfer	among	the	Ri	

group	of	plasmids,	which	have	all	of	the	components	of	other	conjugative	plasmids.	
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Chapter	3:	The	repABC	Plasmids	with	Quorum-Regulated	Transfer	Systems	in	
Members	of	the	Rhizobiales	Divide	into	Two	Structurally	and	Separately	

Evolving	Groups	
	

3.1	Notes	and	acknowledgments	

	

This	chapter	was	adapted	from	a	paper	published	in	Genome	Biology	and	Evolution	

entitled	“The	repABC	plasmids	with	quorum-regulated	transfer	systems	in	members	

of	the	Rhizobiales	divide	into	two	structurally	and	separately	evolving	groups,”	

December	2015,	Volume	7,	Pages	3337-3357,	with	authors	Margaret	E.	Wetzel,	Gary	

J.	Olsen,	Vandana	Chakravartty,	and	Stephen	K.	Farrand.		Gary	J.	Olsen	conferred	

with	the	authors	on	phylogenetics	and	wrote	a	program	that	resulted	in	the	heat	

map	shown	in	Figure	3.8.		Vandana	Chakravartty	constructed	the	traRpRi1724	

expression	vector	and	the	cloned	oriT	and	traA	promoter	reporter	system	for	

pRi1724.		Vandana	did	the	initial	testing	of	TraRpRi1724	activation	of	the	traApRi1724	

promoter	fused	to	lacZ,	which	I	later	repeated.		The	authors	would	also	like	to	thank	

Clay	Fuqua	of	Indiana	University	for	providing	them	with	the	strain	containing	the	

traM	mutant	of	pTiR10	and	Rachel	J.	Whitaker	for	her	input	on	this	chapter.	

	

3.2	Summary	

	

The	large	repABC	plasmids	of	the	order	Rhizobiales	with	Class	I	quorum-regulated	

conjugative	transfer	systems	often	define	the	nature	of	the	bacterium	that	harbors	

them.		These	otherwise	diverse	plasmids	contain	a	core	of	highly	conserved	genes	

for	replication	and	conjugation	raising	the	question	of	their	evolutionary	

relationships.		In	an	analysis	of	18	such	plasmids	these	elements	fall	into	two	

organizational	classes,	Group	I	and	Group	II,	based	on	the	sites	at	which	cargo	DNA	

is	located.		Cladograms	constructed	from	proteins	of	the	transfer	and	quorum-

sensing	components	indicated	that	those	of	the	Group	I	plasmids,	while	coevolving,	

have	diverged	from	those	coevolving	proteins	of	the	Group	II	plasmids.		Moreover,	

within	these	groups	the	phylogenies	of	the	proteins	usually	occupy	similar,	if	not	
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identical,	tree	topologies.		Remarkably,	such	relationships	were	not	seen	among	

proteins	of	the	replication	system;	while	RepA	and	RepB	coevolve,	RepC	does	not.		

Nor	do	the	replication	proteins	coevolve	with	the	proteins	of	the	transfer	and	

quorum-sensing	systems.		Functional	analysis	was	mostly	consistent	with	

phylogenies.		TraR	activated	promoters	from	plasmids	within	its	group,	but	not	

between	groups	and	dimerized	with	TraR	proteins	from	within	but	not	between	

groups.		However,	oriT	sequences,	which	are	highly	conserved,	were	processed	by	

the	transfer	system	of	plasmids	regardless	of	group.		We	conclude	that	these	

plasmids	diverged	into	two	classes	based	on	the	locations	at	which	cargo	DNA	is	

inserted,	that	the	quorum-sensing	and	transfer	functions	are	coevolving	within	but	

not	between	the	two	groups,	and	that	this	divergent	evolution	extends	to	function.	

	

3.3	Introduction	

	

Most	of	the	large	plasmids	native	to	members	of	the	Rhizobiales	share	in	common	a	

repABC-type	replication	system	(21,	25,	188).		This	system	is	remarkable	in	that	it	

can	acquire,	stably	maintain,	and	vertically	transfer	large	amounts	of	genetic	

information	thereby	conferring	a	large	number	and	wide	variety	of	functions	to	its	

host.		The	best	described	of	these	plasmids	carry	genes	that	are	involved	in	plant-

microbe	interactions,	the	functions	of	which	often	confer	the	defining	characteristic	

to	the	host	bacterium.		For	example	the	Ti	(tumor	inducing)	and	Ri	(root	inducing)	

plasmids	of	Agrobacterium	spp.	encode	most	of	the	virulence	genes	responsible	for	

plant	diseases	correspondingly	called	crown	gall	and	hairy	root	[reviewed	in	(232)].		

In	addition,	Ti	and	Ri	plasmids,	as	well	as	the	Ao	(Agrobacterium	opine	catabolic)	

and	accessory	plasmids	of	pathogenic	and	nonpathogenic	isolates	of	Agrobacterium	

spp.,	may	encode	genes	for	ancillary	traits	including	uptake	and	catabolism	of	

opines,	unique	organic	conjugates	that	are	produced	by	crown	gall	tumors	and	hairy	

roots	[reviewed	in	(55)].		Other	members	of	the	Rhizobiales	including	species	of	

Rhizobium,	Ensifer	and	Sinorhizobium	also	harbor	such	repABC	plasmids,	the	most	

recognizable	of	these	being	the	Sym	plasmids	that	confer	nodulation	and	nitrogen	
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fixation	when	the	bacteria	are	in	symbiosis	with	a	suitable	plant	host	(24,	86).		In	

some	cases	these	large	repABC	plasmids	have	evolved	or	are	evolving	into	second	

chromosomes,	now	called	chromids	(101).		For	example,	the	1.7	Mb	repABC	element	

in	Sinorhizobium	meliloti	and	the	0.5	Mb	repABC	replicon	in	Rhizobium	etli	are	

chromids	(58,	101,	139).	

	

Many	of	these	repABC	family	plasmids	also	encode	a	conjugative	transfer	system	

responsible	for	horizontal	transfer	of	the	plasmid	among	and	between	bacterial	

species.		There	are	at	least	four	classes	of	such	transfer	systems	associated	with	the	

repABC	plasmids	(Figure	3.1	A)	[(89)	and	reviewed	in	(59)],	two	of	which	are	well-

characterized.		The	Class	I	system	is	composed	of	a	chimeric	IncQ-	and	IncP-like	

DNA	metabolism	(Dtr)	and	oriT	region	(41,	71),	the	former	of	which	is	encoded	by	

the	traAFBH	and	traCDG	operons.		The	mating	pair	formation	(Mpf)	system	is	

composed	of	an	IncP-like	type	IV	secretion	system	(T4SS)	(142).		The	Class	II	system	

is	composed	of	an	IncQ-like	oriT	region	and	a	Dtr	system	similar	to	that	of	the	Class	I	

system,	but	lacking	the	traF,	traB	and	traH	genes	(31).		The	Mpf	system	of	Class	II	

transfer	systems,	called	avhB,	is	similar	to	the	pathogenesis-associated	VirB	type	IV	

secretion	systems	of	the	Ti	and	Ri	plasmids	and	of	species	of	Brucella	and	Bartonella	

(31).		The	large	genetic	carrying	capacity	and	relatively	broad	replication	host	range	

lends	an	overarching	level	of	importance	of	these	transfer	systems	to	the	evolution	

of	traits	carried	by	these	plasmids,	as	well	as	the	host	bacteria	that	harbor	them.	

Classes	I	and	II	transfer	systems	have	known	regulatory	mechanisms;	the	former	

being	controlled	by	a	quorum-sensing	mechanism	while	the	latter	is	regulated	by	a	

rctA/rctB-like	mechanism	[reviewed	in	(59)].		While	the	nature	of	the	inducing	

signal,	if	any,	for	Class	II	systems	remains	unknown,	the	genes	and	regulation	of	

Class	I	transfer	systems	are	well-studied.	

	

Perhaps	the	best-characterized	Class	I	repABC-associated	transfer	systems	are	those	

of	the	Ti	plasmids	of	A.	tumefaciens.		These	plasmids	encode	most	of	the	cis-	and	

trans-acting	functions	required	by	the	bacterium	to	induce	crown	gall	tumors	on	 	
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Figure	3.1	The	repABC	plasmids	with	Class	I	conjugative	transfer	systems	in	
Agrobacteria	and	Rhizobium	divide	into	two	organizational	groups.		A.	Flow	
chart	categorizing	repABC	plasmids	with	Class	I	conjugative	transfer	systems.		
Plasmids	with	Class	I	transfer	and	regulatory	genes	have	two	distinct	organizations	
of	the	genes	involved	in	transfer	and	QS	regulation,	which	can	be	further	divided	
into	three	evolutionary	clades.		B.	Examples	of	the	two	organizational	Groups.		Left:	
pTiC58	from	A.	tumefaciens	strain	C58,	a	representative	of	plasmids	with	Group	I	
organization.		Right:	p42a	from	R.	etli	strain	CFN	42,	a	representative	of	plasmids	
with	Group	II	organization.		The	traI,	traR	and	traM	genes	are	in	black,	the	repABC	
genes	are	in	dark	grey,	and	the	tra	and	trb	genes	are	in	medium	grey.		On	pTiC58,	
genes	involved	in	regulation	of	transfer	of	pTiC58	include	accR	in	light	grey,	and	the	
genes	for	catabolism	of	agrocinopines	A+B,	the	conjugative	opine,	in	white.	
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susceptible	host	plants.		It	has	been	known	for	more	than	40	years	that	conjugative	

transfer	of	the	Ti	plasmids	is	highly	regulated,	and	is	strongly	inducible	by	one	or	

more	of	the	opines	produced	by	the	crown	gall	tumors	induced	by	the	bacterium	

[reviewed	in	(55,	72)].		Thus,	induction	of	the	transfer	system	of	these	elements	is	

intimately	linked	to	the	habitats	resulting	from	the	pathologies	induced	by	the	

bacteria.	

	

Although	opines	induce	transfer	of	Ti,	and	some	Ao	and	accessory	plasmids,	in	all	

studied	cases	transcription	of	the	genes	of	the	Class	I	transfer	systems	of	these	

plasmids	is	directly	regulated	by	a	LuxR-family	quorum-sensing	(QS)	system	

composed	of	the	transcriptional	activator	TraR	and	an	acyl-homoserine	lactone	

(acyl-HSL)	quormone	(189,	264).		The	acyl-HSL	is	a	population-dependent	QS	signal	

and	is	a	product	of	TraI,	the	acyl-HSL	synthase	encoded	by	traI,	the	first	gene	of	the	

plasmid	trb	operon	(115,	142).		The	acyl-HSL,	in	this	case	N-(3-oxooctanoyl)-L-

homoserine	lactone	(3-oxo-C8-HSL),	is	bound	by	TraR,	where	it	promotes	

dimerization	and	stability	of	the	activator	(194,	268,	269).		The	dimerized	form	of	

TraR	directly	activates	transcription	of	the	tra	and	trb	operons	(83,	104).	

	

One	additional	component,	TraM,	is	common	to	these	QS	systems,	and	serves	to	

inhibit	premature	activation	of	the	tra	regulon	by	basal	levels	of	TraR	when	the	

appropriate	signal	is	absent	(44,	81,	114).		TraM,	an	antiactivator,	functions	by	

binding	to	TraR,	thereby	inhibiting	the	transcription	factor	(152).		In	the	Class	I	

systems	described	to	date,	this	effect	is	overcome	and	transfer	is	induced	by	an	

increase	in	the	transcription	of	traR	in	response	to	some	specific	external	signal.		

Such	signals	include	opines	produced	by	the	plant	neoplasias	induced	by	pathogenic	

Agrobacterium	spp.	(114,	178,	191)	and	in	the	case	of	R.	leguminosaurum,	an	orphan	

LuxR	homolog	that	responds	to	an	acyl-HSL	produced	by	an	appropriate	recipient	

(44).	
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Although	the	tra,	trb,	rep	and	QS	genes	are	conserved	among	the	Class	I	group	of	

these	large	plasmids	in	the	Rhizobiales,	as	first	noted	by	Moriguchi,	et.	al.	(171),	the	

organization	of	these	genes	and	operons	can	be	divided	into	two	categories.		Here	

we	denote	these	categories	as	Group	I	and	Group	II	(Figure	3.1	A).		In	both	groups	

the	traI/trb	operon	is	invariably	adjacent	and	divergently	oriented	to	the	canonical	

repABC	operon.		In	Group	I	plasmids,	a	locus	encoding	traR,	traM,	the	two	

divergently	oriented	tra	operons,	and	the	cis-acting	oriT	is	separated,	often	by	more	

than	60	kb,	from	the	traI/trb	genes	(Figures	3.1	B,	left	side	and	Figure	3.2,	left	side).		

Moreover,	traR	generally	is	located	in	an	operon	the	expression	of	which	can	be	

regulated	by	a	specific	external	signal	(Figure	3.1	B,	left	side	and	Figure	3.2,	left	

side).		In	the	Group	II	plasmids	the	traI/trb	operon	again	is	divergently	linked	to	

repABC,	but	the	tra	locus	is	contiguous	to	the	trb	region	with	traM	and	traR	located	

between	these	two	components	(Figure	3.1	B,	right	side	and	Figure	3.2,	right	side).		

Moreover,	unlike	the	Group	I	plasmids,	traR	appears	to	be	monocistronic	in	the	

Group	II	plasmids.		

	

That	these	groups	of	otherwise	conserved	genes	are	organized	in	two	different	

patterns,	raises	the	question	of	whether	the	component	gene	systems	represent	

divergent	evolutionary	lineages,	and	if	so,	whether	within	a	lineage,	the	genes	are	

coevolving	in	a	given	plasmid	or	group	of	plasmids.		In	this	study,	we	analyzed	the	

evolutionary	and	functional	relationships	of	select	genes	of	these	core	systems	

encoded	by	18	plasmids	from	members	of	the	families	Rhizobiaceae	and	

Bradyrhizobiaceae.		Here	we	report	that,	based	on	amino	acid	sequence	

comparisons,	the	QS	and	transfer	proteins	belonging	to	plasmids	within	Group	I	

cluster	together	but	separately	from	the	orthologous	proteins	encoded	by	Group	II	

plasmids.		Additionally,	in	any	given	plasmid	the	QS	and	transfer	proteins	appear	to	

evolve	together,	but	separately	from	their	adjacent	Rep	proteins.		The	cis-acting	oriT	

sequences	are	highly	conserved	among	all	of	the	analyzed	plasmids,	and	unlike	the	

proteins,	they	do	not	neatly	separate	into	two	major	clades.		Functionally,	TraR	

activates	tra	box-containing	promoters	within,	but	not	between	the	two	major	 	
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Figure	3.2	
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Figure	3.2	(cont.)	The	repABC	plasmids	with	Class	I	conjugative	transfer	
systems	in	Agrobacteria,	Rhizobium	and	Sinorhizobium	divide	into	two	
organizational	groups.		On	the	left	are	three	Group	I	plasmids;	two	are	Ti	plasmids	
from	A.	tumefaciens	strains.		The	first	was	isolated	from	strain	Bo542,	while	the	
second	is	a	composite	sequence	from	several	virtually	identical	Octopine-type	Ti	
plasmids.		The	third	Group	I	plasmid,	pCB782,	is	a	Sym	plasmid	from	R.	
leguminosaurum	bv.	trifolii.		Pictured	on	the	right	are	Group	II	plasmids	from	A.	
radiobacter	F64/95,	A.	rhizogenes	strain	MAFF03	01724	and	S.	fredii	strain	NGR234.		
The	traI,	traR	and	traM	genes	are	in	black,	the	repABC	genes	are	in	dark	grey,	the	tra	
and	trb	genes	are	in	medium	grey,	other	regulators,	accR,	occR	and	mrtR	that	are	
involved	in	regulating	conjugative	transfer	are	pictured	in	light	grey	and	the	
catabolism	region	for	the	conjugative	opine,	where	known	or	relevant,	is	in	white.	
	

	

clades.		On	the	other	hand,	recombinant	plasmids	containing	different	oriT	regions	

can	be	mobilized	by	plasmids	from	either	group,	but	the	efficiency	of	transfer	is	

dependent	upon	how	related	the	oriT	is	to	the	oriT	that	is	cognate	to	the	trans-acting	

tra	system.	

	

3.4	Materials	and	methods	

	

3.4.1	Strains,	media,	and	growth	conditions	

	

Bacterial	strains	and	plasmids	used	in	this	study	are	listed	in	Table	3.1.		Cultures	of	

Agrobacterium	tumefaciens	strain	NTL4	(150)	and	its	derivatives	were	grown	with	

shaking	at	30°C	in	liquid	MG/L	(20)	or	in	AB	minimal	medium	(20)	supplemented	to	

0.2%	with	mannitol	as	the	sole	source	of	carbon	(ABM)	and	0.005%	yeast	extract	or	

on	solid	2%	agar	medium	using	either	Nutrient	both	(Difco)	or	ABM	media	at	28°C.		

Strains	of	Escherichia	coli	were	grown	in	L	broth	(Fischer	Scientific)	at	30°C	or	37°C.		

When	required	for	selection,	antibiotics	were	added	at	the	following	concentrations	

(μg/ml):	ampicillin,	100;	carbenecillin,	50	or	100;	gentamicin,	25;	kanamycin,	25	or	

50;	rifampicin,	50;	spectinomycin,	50	or	100;	streptomycin,	50	or	100;	tetracycline,	

5	or	10.		X-gal	(5-bromo-4-chloro-3-indolyl-β-D-galactopyranoside)	was	used	at	a		
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Table	3.1	Bacterial	strains	and	plasmids	

Strain or plasmid Relevant characteristicsa 
Source or 
referenceb 

Agrobacterium sp. 
  NTL4 Ti-plasmidless derivative of C58; pAtC58 ΔtetAR (150) 

C58C1RS Ti-plasmidless derivative of C58; pAtC58 Rifr Smr OC 

Escherichia coli 
  DH5α λ- ϕ80dlacZΔM15 Δ(lacZYA-argF) U169 recA1 
endA1 hsdR17(rk

–, mk
-) supE44 thi-1 gyrA relA1 

Invitrogen 

  Plasmids 
  

pKD4 Frt flanked Kanr cassette; Ampr (46) 
pKD46 λ Red helper plasmid; Ampr (46) 
pMWS112 Cosmid clone of pAoF64/95 containing mrt; Tetr (252) 
pMWS109 Cosmid clone of pAoF64/94 containing the tra 

operons through part of the trb operon; Tetr 
(252) 

  pRG970b Transcriptional lacZY and uidA fusion vector; Spr 
Ampr/Carbr 

(245) 

  pRG970b::traApAoF64/95 traA-traC intergenic region of pAoF64/95 cloned 
into pRG970b; traA::lacZ; Spr Ampr/Carbr 

This work 

  pRG970b::traApRi1724 traA-traC intergenic region of pRi1724 cloned into 
pRG970b, traA::lacZ; Spr Ampr/Carbr 

This work 

  pZLb251 traA-traC intergenic region of pTiC58 cloned into 
pRG970b; traA::lacZ; Spr Ampr/Carbr 

(151) 

  pSRKGm pBBR1MCS derived controlled expression cloning 
vector; Gmr 

(131) 

  pSRKGm::traRpAoF64/95 traRpAoF64/95 cloned into pSRKGm; Gmr (252) 
pSRKGm::traRpTiC58 traRpTiC58 cloned into pSRKGm; Gmr (131) 
pZLQ pBBR1MCS-2 derived cloning vector; Kanr (151) 
pZLQ::traRpRi1724 traRpRi1724 cloned into pZLQ; Kanr This work 
pKK38 Broad host-range cloning vector; Tetr (179) 
pPOKKTrlRA trlRpTi15955 cloned into pKK38; Tetr (179) 
pAoF64/95ΔmrtR Transfer constitutive mutant of pAoF64/95; Kanr This work 
pTiC58ΔaccR Transfer constitutive mutant of pTiC58 (8) 
pAoF64/95ΔtraM Transfer constitutive mutant of pAoF64/95; Kanr (252) 
pTiC58ΔtraM Transfer constitutive mutant of pTiC58; Kanr (114) 
pTiR10ΔtraM Transfer constitutive mutant of pTiR10; Kanr (82) 

a Rifr, rifampicin resistance; Smr, streptomycin resistance; Tetr, tetracyclin resistance; Spr, 
spectinomycin resistance; Ampr, ampicillin resistance; Carbr, carbenecillin resistance; 
Gmr, gentamicin resistance; Kanr, kanamycin resistance.                                                                                                                                                                                           
bOC, our collection.  
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concentration	of	40	μg/ml,	while	isopropyl-β-D-thiogalactopyranoside	(IPTG)	was	

used	at	1	mM	unless	otherwise	stated.	

	

3.4.2	Alignments	and	phylogenies	

	

The	GenBank	accession	numbers	and	information	concerning	the	parental	strains	

for	the	18	plasmids	investigated	in	this	study	are	presented	in	Table	3.2.		Plasmid	

pTiBo542	contains	two	complete	copies	of	repABC	in	tandem	direct	repeat.		We	used	

the	protein	sequences	of	repA,	repB	and	repC	of	the	first	repeat,	which	is	directly	

linked	to	the	traI/trb	operon.		Plasmid	pAtK84b	encodes	two	opine-inducible	copies	

of	traR.		The	first	is	inducible	by	agrocinopines	A+B	(traRacc)	and	is	located	in	close	

proximity	to	traM	and	the	two	tra	operons.		The	second	copy	of	traR	is	located	near	

the	nopaline	catabolic	operon	and	is	inducible	by	nopaline	(traRnoc)	(178).		We	used	

the	sequence	of	traR	that	is	most	closely	linked	with	the	Dtr	system	(traRacc).		All	

protein	and	nucleotide	sequences	used	in	this	study	(Table	1.1)	were	annotated	by	

hand.		The	TrbK	protein	sequence	of	pRi1724	appears	to	have	a	premature	stop	

codon	with	a	conserved	downstream	sequence	of	DNA.		For	this	study,	this	stop	

codon	was	annotated	as	unknown	amino	acid,	X,	and	the	downstream	sequence	was	

translated	and	included	in	the	protein	sequence.		pNGR234a	is	annotated	as	having	

two	consecutive	reading	frames	containing	portions	of	TrbE.		Further	analysis	of	the	

nucleotide	sequence	suggested	to	us	that	this	was	due	to	the	addition	of	an	extra	

nucleotide	which	changed	the	reading	frame	of	this	protein.		For	the	purposes	of	this	

study,	we	removed	the	extra	nucleotide	and	reannotated	TrbEpNGR234a.		Protein	

sequences	were	aligned	using	three	programs,	MAFFT	(125),	ClustalW	(238)	and	

Muscle	(61,	62).		As	MAFFT	gave	alignments	with	the	best	likelihood	scores,	all	

sequence	alignments	were	conducted	using	this	program.		We	tested	five	phylogeny	

programs	in	MEGA	6.06	(225)	to	construct	trees	for	each	MAFFT	alignment:	the	

Neighbor-Joining	(NJ)	method	(200)	using	the	bootstrap	test	(77)	with	1000	

replicates,	the	Minimum	Evolution	method	(198)	using	1000	replicates	of	the	

bootstrap	test	(77),	and	the	UPGMA	method	(216).		These	three	programs	used	the	 	



	
	
	
	

73	

Table	3.2	Descriptions	and	Genbank	accession	numbers	for	plasmids	or	
contigs	used	in	this	studya	
Genus/species Strain(s) Plasmidb Typec Groupd Genbank 

number 
Agrobacterium radiobacter F64/95 pAoF64/95* OC II JX683454.1 

Agrobacterium radiobacter K84 pAtK84b* OC I CP000630.1 

Agrobacterium rhizogenes A4 pRiA4b (replication) VR II X04833.1 

Agrobacterium rhizogenes A4 pRiA4b (transfer) VR II AB050904.1 

Agrobacterium rhizogenes K599 pRi2659 VR II EU186381.1 

Agrobacterium rhizogenes MAFF03-
01724 pRi1724 VR II AP002086.1 

Agrobacterium tumefaciens Bo542 pTiBo542* VT I DQ058764.1 

Agrobacterium tumefaciens Composite pTiOctopine* VT I AF242881.1e 

Agrobacterium tumefaciens C58 pTiC58* VT I AE007871.2 

Agrobacterium tumefaciens MAFF 
301001 pTi-SAKURA VT I AB016260.1 

Agrobacterium vitis S4 pTiS4* VT I CP000637.1 

Agrobacterium vitis S4 pAtS4c TC I CP000636.1 

Ensifer adhaerens OV14 pOV14c CR I CP007238.1 

Nitrobacter hamburgensis X14 pB11 CR II CP000322.1 

Oligotropha carboxidovorans OM5 pHCG3 CC II CP002827.1 

Rhizobium etli CFN 42 p42a* CR II CP000134.1 
Rhizobium leguminosaurum 
bv. trifolii CB782 pCB782 SM I CP007070.1 

Sinorhizobium fredii GR64 pSfr64a* CR II CP002245.1 

Sinorhizobium fredii NGR234 pNGR234a SM II U00090.2 
a The plasmids were originally identified in the species and strain indicated. 
b *: Plasmids experimentally known to be self-conjugative. 
c Abbreviations are: CC, carbon monoxide utilization; CR, cryptic; OC, opine catabolism; SM, symbiosis; TC, tartrate 
utilization; VR, virulence-rhizogenic; VT, virulence-tumorigenic. 

d Based on the organization of the rep, tra and trb genes as described in the text. 
e The sequence of the octopine-type Ti plasmid is an assembly of sequences from several virtually identical Ti plasmids 
including pTiR10, pTi15955, pTiA6NC, pTiAch5 and pTiB6S3 (Zhu, et al. 2000).  

	

	

Poisson	(270)	and	γ	correction	implemented	in	MEGA	6.06.		The	Maximum	

Likelihood	method	using	a	Poisson	correction	(270)	and	the	Maximum	Parsimony	

method,	which	uses	the	Subtree-Pruning-Regrafting	algorithm	(174)	also	were	

assessed	using	MEGA	6.06.		The	majority	of	the	trees	were	either	identical	or	highly	

similar	and	so	only	the	trees	constructed	using	the	Neighbor	Joining	(NJ)	method	

are	shown.	
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Nucleic	acid	sequences	were	aligned	using	MAFFT	and	are	visualized	using	the	

TEXshade	(11)	program	in	the	SDSC	biology	workbench	

(http://workbench.sdsc.edu,	last	accessed	December	1,	2015)	alignment	suite	

(221).		The	tra	box	and	oriT	trees	were	constructed	using	the	NJ	method	with	1000	

bootstrap	replicates	implemented	in	MEGA	6.06	(77,	200,	225).	

	

3.4.3	Cloning	

	

All	polymerase	chain	reactions	(PCR)	preformed	for	cloning	purposes	used	either	

Pfu	DNA	polymerase	(Promega)	or	Phusion	DNA	polymerase	(NEB).		traRpTiC58	and	

traRpAoF64/95	were	cloned	into	the	pBBR1MCS	derivative	pSRKGm	as	previously	

described	(131,	252).		traRpRi1724	was	amplified	by	PCR	using	the	following	primers:	

traRpRi1724-F	(5’-GCCGAATTCATATGGACGGTGACTTTCGTTCT-3’)	and	

traRpRi1724-R	(5’-CGCAAGCTTTCAAACCAAGCCGTGATCTTTAGCG-3’).		We	

directionally	cloned	the	PCR	product	into	pBBR1MCS	derived	vector	pZLQ	(151)	

using	the	NdeI	and	HindIII	sites	underlined	in	the	primer	sequences.		To	construct	

the	traA::lacZ	fusions	and	the	oriT	mobilization	vectors,	the	traA-C	intergenic	region	

containing	tra	box	I	and	the	oriT	sequence	from	each	plasmid	tested	was	amplified	

by	PCR.		The	traA-C	intergenic	region	of	pAoF64/95	was	amplified	using	primers	

traCpAoF64XmaI	(5’-CAGATAACCCGGGATCGTCTCCTGGGTGAGAAAG-3’)	and	

traApAoF64BamHI	(5’-CGAGTCCGGATCCGGTTGCGAACAATATCAAAGGG-3’),	while	

the	traA-C	intergenic	region	from	pRi1724	was	amplified	using	the	primers	

traCpRi1724XmaI	(5’-CGCCCCGGGTCCGTCTGTCTCCTTGGGTG-3’)	and	

traApRi1724BamHI	(5’-CGCGGATCCGGTTGCAAACGAAATCAATG-3’).		These	

products	were	subsequently	directionally	cloned	into	pRG970b	(245)	using	XmaI	

and	BamHI	(underlined	in	the	primer	sequence),	such	that	the	traA	promoter	was	

transcriptionally	fused	to	lacZ.		pZLb251	which	contains	the	traA-C	intergenic	region	

from	pTiC58	cloned	into	pRG970b	is	described	elsewhere	(151).	
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3.4.4	Construction	of	mutant	strains	

	

All	PCR	reactions	used	to	construct	mutant	strains	were	carried	out	with	either	Pfu	

DNA	polymerase	(Promega)	or	Taq	DNA	polymerase	(NEB).		In-frame	deletion	

mutants	of	traM	and	mrtR	on	pAoF64/95	were	constructed	using	the	method	of	

Datsanko	and	Wanner	(46).		Briefly,	the	kanamycin	resistance	cassette	of	pKD4	was	

amplified	using	the	following	primers	which	contained	5’	overhang	sequences	for	

traM:	Forward	primer,	5’-CTTGAGCGTGGGGTTTTCGAAAAAAGGGAGGAGAATGGTGT	

GTAGGCTGGAGCTGCTTCG-3’,	Reverse	primer,	5’-CCTCGTCGCGATCGCCAAGGACCAC	

GGCCTGCTGTAGCGCATATGAATATCCTCCTTAGT-3’.		The	PCR	product	was	

transformed	into	Escherichia	coli	(pKD46)	carrying	a	cosmid	clone	of	the	

appropriate	region	of	pAoF64/95	(252).		λ	red-mediated	replacement	of	traM	with	

the	kanamycin	cassette	was	confirmed	in	the	cosmid	by	PCR	analysis	using	the	

traMcheckdown	(5’-CTATGATGTTGACGTTTGCATCTT-3’)	and	traMcheckup	(5’-

GATCGCCATGACCTCTTTGA-3’)	primers.		The	mutant	allele	of	traM	was	marker	

exchanged	into	pAoF64/95	in	strain	NTL4	as	described	previously	(252).		The	same	

method	was	used	to	construct	the	indel	mutation	in	mrtR.		The	kanamycin	cassette	

of	pKD4	was	amplified	with	the	following	primers:	forward,	5’-TTGGACACCGAGCCA	

ATGTACATCCAACTGCAGCAAGATGTGTAGGCTGGAGCTGCTTCG-3’,	and	reverse,	5’-

CTAGCCACCTTTGTGTGGTGTCCTACCGCCCATCATCATCATATGAATATCCTCCTTAGT-

3’.		The	λ	red-mediated	mrtR	mutation	in	the	cosmid	was	confirmed	by	PCR	using	

the	mrtRcheckup	primer	(5’-GCCCTCCGCTCCCAGTTAAA-3’)	and	the	mrtRcheckdwn	

primer,	(5’-AGCGGCTACAATCTTCCTTG-3’),	and	the	mutant	allele	of	mrtR	was	

marker	exchanged	into	pAoF64/95	as	described	previously	(252).	

	

3.4.5	β-galactosidase	assays	

	

The	traApTiC58::lacZ,	traApAoF64/95::lacZ	and	traApRi1724::lacZ	reporter	vectors	

described	above	were	electroporated	into	A.	tumefaciens	strain	NTL4.		Strain	NTL4	

harboring	the	empty	vector	pRG970b	(245)	also	was	constructed	as	a	control.		We	
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subsequently	electroporated	pSRKGm,	pSRKGm::traRpTiC58,	pSRKGm::traRpAoF64/95,	

or	pZLQ::traRpRi1724	individually	into	each	of	the	four	traA::lacZ	reporter	strains.		

The	resulting	16	strains	were	assessed	for	β-galactosidase	activity	on	solid	medium.		

Briefly,	single	colonies	of	each	strain	were	individually	suspended	in	250	μl	of	0.9%	

NaCl	and	5	μl	volumes	of	each	suspension	were	spotted	onto	ABM	media	containing	

X-gal,	spectinomycin	and	IPTG	to	induce	expression	of	TraR.		Strains	were	tested	on	

medium	both	with	and	without	50	nM	N-(3-oxooctanoyl)-L-homoserine	lactone,	

Agrobacterium	autoinducer	(AAI,	Sigma-Aldrich).		β-galactosidase	activity	was	

assessed	visually	after	48	hours	of	incubation	at	28°C.	

	

3.4.6	Mobilization	experiments	

	

Empty	vector	pRG970b	(245),	or	pRG970b	containing	the	traA-C/oriT	region	from	

pAoF64/95,	pTiC58	or	pRi1724	was	electroporated	into	strains	

NTL4(pTiC58ΔaccR)	(66)	and	NTL4(pAoF64/95ΔmrtR)	(unpublished	data,	see	

above).		The	repABC	plasmids	in	these	strains	are	constitutive	for	conjugative	

transfer	(traC).		The	resulting	traC	donor	strains	carrying	the	oriT	vectors	and	the	

recipient	strain,	C58C1RS,	were	grown	in	liquid	MG/L	medium	overnight.		Filter	

matings	were	conducted	as	described	previously	(74).		Briefly,	donor	and	recipient	

strains	were	mixed	together	in	a	10:1	volume/volume	ratio	and	cells	in	50	μl	

volumes	of	each	mixture	were	collected	by	vacuum	filtration	onto	a	sterile	0.22	μm	

filter	disc.		The	filter	was	then	placed	bacterial	side	up	onto	solid	media	and	

incubated	at	28°C	for	22-24	hours.		The	cells	were	collected	by	vortexing	each	disk	

in	a	one	milliliter	volume	of	0.9%	NaCl.		Volumes	of	100	μl	of	a	decade	dilution	

series	of	each	mating	then	were	plated	onto	solid	medium	supplemented	with	

rifampicin,	streptomycin,	carbenecillin	and	spectinomycin.		Rifampicin	and	

streptomycin	select	for	the	recipient	strain,	while	carbenecillin	and	spectinomycin	

select	for	the	mobilized	oriT	plasmid.		Colonies	of	transconjugates	were	enumerated	

after	5	to	6	days	of	incubation	at	28°C.		Frequencies	of	transfer	are	expressed	as	

transconjugates	per	input	donor	(74).	
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3.4.7	TrlR-TraR	cross-dimerization	

	

To	assess	the	ability	of	TraR	to	cross-dimerize	with	orthologous	proteins,	we	

utilized	pPOKKTrlRA	(179),	a	vector	expressing	a	cloned	copy	of	trlR	from	

pTi15955,	or	pKK38	as	an	empty	vector	control.		These	plasmids	were	

electroporated	into	A.	tumefaciens	strain	NTL4	harboring	the	traC	traM	deletion	

derivatives	of	pTiC58	(114),	pTiR10	(81)	and	pAoF64/95,	all	of	which	confer	

resistance	to	kanamycin.		If	TrlR	cross-dimerizes	with	the	TraR	cognate	to	the	

system,	then	transfer	frequencies	of	these	traC	plasmids	should	decrease.		The	

resulting	strains	were	assessed	for	conjugative	transfer	frequency	using	the	drop-

plate	mating	technique	described	previously	(74,	252).		Transconjugates	were	

selected	on	medium	containing	rifampicin,	streptomycin	and	kanamycin.		Transfer	

frequencies	are	expressed	as	the	number	of	transconjugates	obtained	per	input	

donor.	

	

3.4.8	Analysis	of	protein	coevolution	

	

Analysis	of	trees	constructed	from	the	RepA,	RepB,	RepC,	TrbE,	TrbK,	TraI,	TraR,	

TraM,	TraG	and	TraA	protein	alignments	compared	to	the	MAFFT	alignments	of	

each	protein	was	accomplished	by	using	the	likelihood	scores.		We	used	the	formula:		

	

(	LnLikelihood(	Data	|	GivenTree	)	-	LnLikelihood(	Data	|		RandomTree	)	)	/	(	

LnLikelihood(	Data	|	OwnTree	)	-		LnLikelihood(	Data	|	RandomTree	)	)	

	

This	formula	essentially	compares	the	fit	of	the	sequence	data	in	an	alignment	to	the	

trees	constructed	from	different	protein	alignments,	with	each	adjusted	for	the	

component	of	the	score	attributable	to	random	similarity	of	trees.		Proteins	that	are	

coevolving	have	a	score	close	to	1.00,	while	proteins	that	are	not	coevolving	have	

scores	closer	to	0.00	(negative	values	are	possible	because	a	tree	can	be	worse	than	

random	for	the	given	data).		The	data	were	entered	into	a	program	written	to	
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display	output	values	on	a	grey	scale	heat	map,	with	values	closer	to	1.00	being	

white	and	values	closer	to	0.00	being	black.	

	

We	noticed	that	using	relatedness	values	from	proteins	from	plasmids	that	are	

highly	similar	skewed	the	entire	data	set	toward	coevolution	since	proteins	from	

those	plasmids	will	always	group	closely	together.		We	therefore	excluded	results	

from	analysis	of	pTi-SAKURA,	which	is	highly	similar	to	pTiC58	(94,	222),	and	

pRi1724,	which	is	highly	similar	to	pRi2659	(171).	

	

3.5	Results	

	

3.5.1	The	two	distinct	organizations	of	the	genes	involved	in	
conjugative	transfer	and	its	regulation	correspond	to	plasmid	type	

	

Structurally,	all	18	of	the	Class	I-type	repABC	plasmids	studied	divide	into	two	

distinct	genetic	organizations,	Group	I	and	Group	II	(see	Figure	3.1	B,	Table	3.2	and	

Figure	3.2).		Common	to	all	of	the	plasmids	examined,	the	traI/trb	operon	is	

invariably	adjacent	to	the	divergently	oriented	repABC	operon.		However,	in	the	

Group	I	plasmids	such	as	pTiC58,	pTiBo542,	pTiOctopine	and	pCB782	(Figure	3.1	B,	

left	side,	Figure	3.2,	left	side	and	Table	3.2),	as	well	as	in	at	least	one	opine	catabolic	

plasmid	(pAtK84,	Table	3.2)	the	two	tra	operons,	along	with	traR	and	traM,	are	

located	near	the	region	encoding	catabolism	of	the	conjugative	opine	and	are	

separated	by	a	large	but	variable	distance	from	the	traI/trb	region.		In	the	Group	II	

plasmids,	such	as	the	auxiliary	plasmid	p42a	of	Rhizobium	etli	(Figure	3.1	B,	right	

side	and	Table	3.2),	pAoF64/95,	pRi1724,	pNGR234a	(Figure	3.2,	right	side	and	

Table	3.2),	two	sinorhizobial	plasmids,	pSfr64a	and	pNGR234a,	and	the	two	

bradyrhizobial	plasmids,	pHCG3	and	pB11	(Table	3.2),	the	tra	and	trb	regions	are	

contiguous	and	traR	and	traM	are	located	between	the	traI/trb	operon	and	the	last	

gene	of	the	traAFBH	operon.		Moreover,	unlike	in	the	Group	I	plasmids	where	traR	

generally	is	a	member	of	an	operon,	in	the	Group	II	plasmids	examined	to	date	traR	
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is	monocistronic	(Figure	3.1	B,	right	side	and	Figure	3.2,	right	side).		Remarkably,	all	

of	the	Ti	plasmids	characterized	to	date	fall	into	Group	I,	while	all	of	the	

characterized	Ri	plasmids	fall	into	Group	II	(Table	3.2).		Two	of	the	Class	I-type	

plasmids	from	species	of	Rhizobium,	Ensifer	and	Sinorhizobium	(pOV14c	and	

pCB782)	fall	into	Group	I,	while	three	(p42a,	pSfr64a	and	pNGR234a)	fall	into	Group	

II	(Table	3.2).		The	two	bradyrhizobial	plasmids	(pHCG3	and	pB11)	fall	into	Group	II	

(Table	3.2).	

	

3.5.2	Proteins	of	the	quorum-sensing	systems	of	plasmids	from	
members	of	the	Rhizobiales	form	two	major	clades	that	correspond	to	
plasmid	organization	

	

The	observation	that	traR	is	organized	either	as	a	member	of	an	operon,	as	seen	in	

the	Group	I	plasmids,	or	is	monocistronic,	as	in	Group	II	plasmids,	along	with	the	

bimodal	organization	of	the	tra-trb	regulon	(Figure	3.1	B	and	Figure	3.2),	led	us	to	

hypothesize	that	TraR	proteins	that	regulate	conjugative	transfer	could	be	

divergently	evolving	between	the	two	groups	of	plasmids.		In	addition,	considering	

that	TraM	interacts	with	TraR,	and	that	the	acyl-HSL	produced	by	TraI	is	the	ligand	

of	TraR,	we	postulated	that	these	three	QS	proteins	would	evolve	together.		To	test	

these	two	hypotheses,	we	assessed	amino	acid	sequence	relatedness	of	the	TraR,	

TraM,	and	TraI	proteins	derived	from	the	Class	I	plasmids	described	in	Table	3.2.	

	

Figure	3.3	A-C	shows	the	phylogenetic	trees	of	the	three	QS	proteins	for	the	18	

plasmids	examined,	all	determined	as	described	in	materials	and	methods.		The	

trees	built	from	these	three	proteins	overall	are	topologically	consistent.		Sixteen	of		

the	protein	sets	divide	into	two	major	clades	while	two,	those	from	the	plasmids	of	

Oligotropha	carboxidovorans	and	Nitrobacter	hamburgensis,	divide	as	distant	

relatives	to	both	of	the	two	major	clades.		Whether	either	of	these	plasmids	is	

conjugative	remains	to	be	determined.		The	members	of	the	two	major	clades	divide	

precisely	by	plasmid	organization.		The	three	proteins	from	Group	I	plasmids,	in	

which	traR	is	polycistronic	and	where	the	tra	and	trb	regions	are	physically	 	
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Figure	3.3	 	
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Figure	3.3	(cont.)	TraR,	TraI	and	TraM,	and	the	tra	box	I	sequences	divide	into	
three	clades.		Neighbor-Joining	trees	constructed	from	MAFFT	alignments	for	A.	
TraR,	B.	TraM	and	C.	TraI	proteins	and	D.	tra	box	I	nucleotide	sequences	from	18	
plasmids	in	the	Rhizobiales.		Bootstrap	values	from	1000	replicates	are	located	next	
to	the	branches.		The	evolutionary	distances	were	computed	with	the	Poisson	
correction.		The	asterisks	(*)	denote	plasmids	that	are	known	to	be	conjugative,	
while	the	underscores	indicate	plasmids	with	a	Group	II	organization	as	described	
in	the	text.		E.	Alignment	of	tra	box	I	nucleotide	sequences	from	the	16	Group	I	and	
Group	II	plasmids.		F.	The	consensus	sequences	of	tra	box	I	from	Group	I	and	Group	
II	plasmids,	excluding	the	two	plasmids	from	Clade	III,	pB11	and	pHCG3.		Capital	
letters	in	the	consensus	sequences	indicate	invariant	bases,	while	lower	case	letters	
are	conserved	nucleotides.		The	black	color	indicates	invariant	bases	and	grey	
indicates	conserved	bases.	
	

	

separate	on	the	plasmid,	form	one	clade	while	the	three	proteins	from	Group	II		

plasmids,	in	which	traR	is	monocistronic	and	the	tra	and	trb	regions	are	adjacent	to	

one	another,	group	together	as	the	second	clade.	

	

3.5.3	The	tra	box	sequences,	while	having	a	small	core	set	of	
nucleotides	in	common,	divide	into	two	distinct	conserved	sequences:	
Group	I-	and	Group	II-like	

	

TraR	binds	to	an	inverted	repeat	sequence,	called	the	tra	box,	from	which	it	

activates	transcription	from	the	promoters	of	the	associated	operons	(151,	268).		

The	Class	I	rhizobial	and	Ti	plasmids	typically	contain	between	two	and	four	such	

boxes	(44,	81,	83,	104,	253).		tra	box	I,	located	in	the	intergenic	region	between	and	

controlling	transcription	of	the	divergently	oriented	traAFBH	and	traCDG	operons,	is	

the	most	highly	conserved	of	these	sequences	[reviewed	in	(253)].		tra	box	II	is	

located	upstream	of	and	controls	transcription	of	the	traI/trb	operon,	while	tra	box	

III,	when	present,	is	located	just	upstream	of	tra	box	II	and	contributes	to	the	

control	of	transcription	of	the	divergently	oriented	repABC	operon	(143,	181).		A	

fourth	and	less	conserved	tra	box,	tra	box	IV,	was	described	in	the	Ti	plasmids	and	is	

located	in	the	promoter	region	of	traM	(81).		We	aligned	the	nucleotide	sequences	of	

the	putative	tra	box	I	from	each	of	the	18	plasmids	examined	in	this	study.	
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Like	TraR,	TraM	and	TraI,	the	putative	tra	boxes	divide	into	two	distinct	sets	of	

sequences	corresponding	to	the	Group	I	and	Group	II	clades	(Figure	3.3	D	and	E).		

The	tra	box	I	sequences	from	six	of	the	Group	II	plasmids	are	virtually	identical	with	

one	sequence,	that	from	p42a,	differing	by	a	single	nucleotide	and	that	from	pSfr64a	

differing	at	eight	nucleotides	(Figure	3.3	E).		On	the	other	hand,	the	sequences	of	the	

Group	I	clade	subdivide	into	groups	that	represent	changes	to	five	separately	

located	bases	(Figure	3.3	D	and	E).		The	Group	I	tra	box	I	consensus	sequence	and	

the	Group	II	tra	box	I	consensus	sequence	share	in	common	only	four	fully	

conserved	bases,	while	three	additional	bases	are	conserved	in	the	tra	box	I	

sequences	of	most	of	the	Rhizobial	plasmids	examined	(Figure	3.3	F).		Additionally,	

the	Group	I	sequences	form	a	considerably	more	perfect	inverted	repeat	in	

comparison	to	the	Group	II	sequences	(Figure	3.3	E	and	F).		Consistent	with	the	

divergence	of	their	TraR	proteins,	the	putative	tra	box	I	sequences	of	pB11	from	N.	

hamburgensis	and	pHCG3	from	O.	carboxidovorans	are	more	distantly	related	to	the	

boxes	of	Group	I	and	Group	II	plasmids,	and	most	closely	related	to	each	other	

(Figure	3.3	D).	

	

3.5.4	TraR	activates	transcription	from	a	tra	box-dependent	promoter	
among	members	of	the	same	clade,	but	not	between	members	of	the	
other	clade	

	

Given	the	division	of	TraR	and	its	DNA	binding	site	into	two	major	groups,	we	tested	

the	ability	of	activators	of	each	of	the	two	major	clades	to	induce	transcription	from	

cognate	and	noncognate	tra	boxes.		This	was	accomplished	by	assessing	activation	

of	cognate	and	noncognate	promoters	from	the	traAFBH	operon	by	alleles	of	traR	

from	different	sources.		We	cloned	traR	from	pTiC58	(traRpTiC58),	pAoF64/95	

(traRpAoF64/95)	and	pRi1724	(traRpRi1724)	into	pBBR1MCS-derived	vectors	(131,	151),	

and	constructed	ptraA::lacZ	transcriptional	fusions	that	contain	the	entire	traA-traC	

intergenic	regions,	including	the	tra	box	I	sequences,	from	pTiC58	(ptraApTiC58),	

pAoF64/95	(ptraApAoF64/95)	and	pRi1724	(ptraApRi1724),	all	as	described	in	materials	

and	methods.		The	three	TraR	orthologs	were	tested	for	their	ability	to	activate	
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transcription	of	the	three	traAFBH	promoters	as	assessed	by	β-galactosidase	activity	

in	cultures	grown	with	and	without	3-oxo-C8-HSL	(AAI).	

	

In	cells	grown	in	the	absence	of	the	quormone,	TraRpTiC58	minimally	activated	only	

its	cognate	promoter	(Figure	3.4	A).		When	AAI	was	added	to	the	medium,	TraRpTiC58	

strongly	activated	only	ptraApTiC58	(Figure	3.4	B).		No	significant	levels	of	β-

galactosidase	activity	were	detected	in	any	growth	condition	from	strains	in	which	

TraRpTiC58	was	paired	with	the	traA	promoter-reporters	from	pAoF64/95	or	from	

pRi1724	(Figure	3.4	A	and	B).		In	cells	grown	in	the	absence	of	AAI,	TraRpAoF64/95	

failed	to	activate	expression	of	β-galactosidase	from	any	of	the	three	ptraA	

promoters	(Figure	3.4	A).		However,	when	grown	with	the	acyl-HSL,	the	strain	

expressing	TraRpAoF64/95	strongly	activated	its	cognate	promoter	and	to	a	lesser	

extent	ptraApRi1724	(Figure	3.4	B).		TraRpAoF64/95	also	activated	ptraApTiC58	in	an	AAI-

dependent	manner,	but	at	only	a	barely	detectible	level	(Figure	3.4	B).		

Unexpectedly,	when	grown	with	AAI,	TraRpRi1724	did	not	activate	any	of	the	

reporters,	including	its	cognate	promoter,	ptraApRi1724	(Figure	3.4	B).		However,	in	

strains	grown	without	AAI,	TraRpRi1724	activated	ptraApAoF64/95,	and	to	a	lesser	extent	

its	cognate	promoter,	and	very	minimally	ptraApTiC58	(Figure	3.4	A).	

	

3.5.5	TraR	exhibits	dimerization	specificity	delineated	by	the	Group	I-	
and	Group	II-like	clade	structure	

	

The	N-terminal	region	of	TraR	contains	both	a	quormone	-binding	domain	and	the	

primary	dimerization	domain	(248,	265).		We	assessed	whether	the	proteins	from	

different	clades	can	cross-dimerize	by	using	TrlR,	a	dominant-negative	mutant	of	

TraR	encoded	by	the	octopine-type	Ti	plasmids	pTi15955	and	pTiR10	(179,	267).		

TrlR	has	functional	ligand-binding	and	dimerization	domains,	but	lacks	the	C-

terminal	DNA-binding	domain	(28,	179,	267).		When	coexpressed	TrlR	strongly	

inhibits	the	activity	of	TraROctopine	by	forming	inactive	heterodimers	(28,	179,	267).	
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Figure	3.4	TraR	activates	transcription	of	the	traAFBH	promoters	within	but	
not	between	clades.		Derivatives	of	strain	NTL4	carrying	a	traA::lacZ	
transcriptional	fusion	from	one	of	three	plasmids	(labeled	on	the	vertical	axis)	and	
one	of	three	TraR	orthologs	(labeled	on	the	horizontal	axis)	were	assessed	for	β-
galactosidase	activity	on	solid	ABM	media	supplemented	with	X-gal	and	IPTG	to	
induce	expression	of	traR.		The	growth	medium	in	plate	B	is	additionally	
supplemented	with	AAI	at	50	nM.	 	
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We	assessed	the	ability	of	different	TraR	proteins	to	cross-dimerize	indirectly	by	

evaluating	conjugative	transfer	frequencies	of	derivatives	of	A.	tumefaciens	strain	

NTL4	expressing	both	TrlRpTi15955	and	TraR	of	the	native	plasmid.		We	utilized	

transfer-constitutive	(traC)	strains	(see	Table	3.1)	harboring	either	pTiC58ΔtraM	or	

pTiR10ΔtraM	as	representatives	of	the	Group	I	plasmids	and	pAoF64/95ΔtraM	as	a	

representative	of	the	Group	II	plasmids.		We	constructed	these	three	strains	to	

additionally	carry	a	plasmid	with	either	a	cloned	wild-type	copy	of	trlR	

(pPOKKtrlRA)	or	the	empty	vector,	pKK38	(179).		If	transfer	frequencies	decrease	in	

the	traC	strain	harboring	pPOKKtrlRA	in	comparison	to	the	traC	strain	harboring	

pKK38,	then	TrlR	is	functionally	dimerizing	with	the	native	TraR	thereby	inhibiting	

activation	of	the	tra	regulon.	

	

In	the	donor	harboring	pTiR10ΔtraM,	a	Group	I	plasmid	essentially	identical	to	

pTi15955,	expression	of	TrlR	inhibited	the	transfer	frequencies	of	the	megaplamid	

by	about	5,500-fold	in	comparison	to	the	same	traC	strain	harboring	the	empty	

vector	(Table	3.3).		Transfer	frequency	of	the	donor	harboring	pTiC58ΔtraM,	

another	Group	I	plasmid,	decreased	by	approximately	140-fold	when	TrlR	was	

expressed	in	comparison	to	the	same	strain	without	TrlR	(Table	3.3).		In	donors	

harboring	the	Group	II	plasmid	pAoF64/95ΔtraM	expression	of	TrlR	had	only	a	

negligible	effect	on	the	transfer	frequency	of	the	opine-catabolic	plasmid	when	

compared	to	the	same	strain	without	TrlR	(Table	3.3).	

	

3.5.6	Structural	genes	of	the	conjugative	transfer	system	divide	into	
Group	I	and	Group	II	clades	

	

To	assess	whether,	like	the	quorum-sensing	proteins,	the	proteins	of	the	conjugative	

transfer	systems	of	Group	I	and	II	plasmids	have	divergently	evolved	we	included	in	

our	study	sequence	comparisons	of	the	products	of	three	essential,	and	one	

nonessential	transfer	genes,	two	from	the	DNA	metabolism	(Dtr)	operons	and	two	
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Table	3.3	TrlR	dimerizes	with	TraR	from	Group	I,	but	not	Group	II	
plasmids	

TraC plasmida Plasmidb trlR Conjugation 
frequencyc Fold inhibitiond 

pTiR10ΔtraM None - 1.5 × 10-4 NAe 
pTiR10ΔtraM pKK38 - 8.2 × 10-5 1.8	
pTiR10ΔtraM pPOKKtrlRA + 1.5 × 10-8 5,500 
pTiC58ΔtraM pKK38 - 8.0 × 10-5 NA	
pTiC58ΔtraM pPOKKtrlRA + 5.8 × 10-7 140 
pAoF64/95ΔtraM pKK38 - 1.2 × 10-2 NA 
pAoF64/95ΔtraM pPOKKtrlRA + 7.7 × 10-3 1.6 
a All in A. tumefaciens strain NTL4. 
b trlR was expressed from pPOKKtrlRA (Table 3.1). 
c Expressed as the number of transconjugates recovered per input donor cell.  Each cross 
was performed in duplicate and the values presented are the mean of each cross. 

d Calculated by dividing the transfer frequency of the traC strain harboring an empty vector by 
the transfer frequency of the donor harboring the trlR expressing vector, or by dividing the 
traC strain by the same traC strain harboring an empty vector. 

e NA: Not applicable. 
	

	

from	the	mating	pair	formation	(Mpf)	operon	(Table	1.1).		TraA,	an	essential	

representative	of	the	Dtr	system,	is	the	strand	transferase	responsible	for	nicking	

the	oriT	and	is	a	component	of	the	relaxosome	(38).		The	protein	contains	two	

conserved	motifs,	a	tyrosine-type	site-specific	recombinase	domain	and	a	helicase	

domain	(73).		The	second	protein,	TraG,	is	the	coupling	factor	that	is	believed	to	

interface	the	relaxosome	with	the	T4SS	(98).		TraG,	which	is	essential,	is	distantly	

related	to	VirD4,	a	component	involved	in	plant	virulence,	and	contains	two	

potential	nucleotide-binding	domains	(38,	73,	98).		TrbE,	an	essential	representative	

of	the	Mpf	system,	contains	a	Walker	type-A	nucleoside	triphosphate	binding	

domain	and	is	distantly	related	to	VirB4	of	the	T4SS	involved	in	plant	virulence	

(142,	144),	whereas	TrbK,	which	is	not	essential	for	transfer,	is	a	short	protein	and	

is	involved	in	entry	exclusion	(37).		TraA,	TraG	and	TrbE	are	large	multi-domain	

proteins	making	them	excellent	representatives	of	the	transfer	system.		Like	those	
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of	the	quorum-sensing	proteins,	trees	of	TraA,	TraG	and	TrbE	divide	into	two	major	

clades,	precisely	corresponding	to	the	Group	I	and	Group	II	organizational	patterns	

(Figure	3.5	A,	B	and	C).		Each	of	the	three	essential	transfer	proteins	from	

Oligotropha	and	Nitrobacter	are	related	to	each	other,	but	form	a	distinct	third	clade	

(Figure	3.5	A,	B	and	C).		TrbK	divides	into	two	major	clades	that	are	mostly	

consistent	with	the	two	organizational	types	(Figure	3.5	D).		However,	two	TrbK	

sequences,	those	from	pTiR10	and	pTiS4,	always	group	together	and	although	they	

most	often	form	a	clade	with	other	plasmids	in	Group	I	(Figure	3.5	D),	these	two	

proteins	occasionally	form	a	separate	branch	depending	upon	which	program	was		

used	to	align	the	amino	acid	sequences	and	which	program	was	used	to	construct	

the	cladograms	(data	not	shown).		Additionally	for	all	trees	constructed	with	the	

TrbK	alignments,	pSfr64a	always	groups	separately	from	the	other	Group	I	

plasmids,	and	most	often	groups	with	the	two	bradyrhizobial	plasmids,	pB11	and	

pHCG3	(Figure	3.5	D).	

	

3.5.7	The	Dtr	region	of	pTi-SAKURA	is	chimeric	

	

Although	the	trees	group	the	three	QS	proteins,	TrbE,	and	TrbK	of	pTi-SAKURA	and	

pTiC58	closely	together	(Figure	3.3	A,	B,	C	and	Figure	3.5	C	and	D),	the	cladograms	

constructed	using	TraA	and	TraG	sequences	indicate	that	these	proteins	of	pTi-	

SAKURA	are	not	most	closely	related	to	those	of	pTiC58	(Figure	3.5	A	and	B).		

Considering	the	incongruous	cladograms	for	TraA	and	TraG	and	the	proximal		

location	of	the	two	genes	encoding	these	protein	to	traM	and	traR	(Figure	3.6	A),	we	

hypothesized	that	this	region	of	the	two	Ti	plasmids	differs	in	its	phylogenies	due	to	

a	recombination	event.		To	examine	this	possibility,	we	constructed	phylogenetic	

trees	of	the	protein	products	of	the	remaining	tra	genes,	traF,	traB,	traH,	traC,	and	

traD	(Table	1.1).		In	comparing	these	proteins	from	the	entire	group	of	18	plasmids,	

the	trees	for	TraB,	TraH,	TraC,	and	TraF	yielded	Group	I-	and	Group	II-like	clades	

(Figure	3.6	E,	F,	C	and	D).		However,	the	cladogram	for	TraD	exhibited	anomalies	

(Figure	3.6	B);	the	tree	did	yield	Group	II-like	clades,	but	a	few	members	of	the	
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Figure	3.5	 	
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Figure	3.5	(cont.)	TraA,	TraG,	TrbE	and	TrbK	divide	into	two	major	clades,	
whereas	the	oriT	sequences	do	not.		Neighbor-Joining	trees	of	the	individual	
proteins	from	18	plasmids	constructed	from	MAFFT	alignments	are	shown.		
Bootstrap	values	from	1000	replicates	are	located	next	to	the	branches.		The	
evolutionary	distances	were	computed	with	the	Poisson	correction.		A.	TraA,	B.	
TraG,	C.	TrbE	and	D.	TrbK.		E.	The	nucleotide	sequences	of	the	oriT	region	of	the	18	
selected	Class	I	plasmids	were	aligned	with	MAFFT.		The	black	color	indicates	
invariant	bases,	while	the	bases	colored	dark	grey	are	highly	conserved.		
Nucleotides	colored	light	grey	and	white	show	less	conservation.		Capital	letters	in	
the	consensus	sequences	indicate	invariant	bases,	whereas	lower	case	letters	are	
bases	conserved	in	50%	or	more	of	the	sequences.		The	triangle	beneath	the	
consensus	sequence	indicates	the	location	on	the	complementary	strand	of	the	nic	
site	of	the	oriT	of	pTiR10	(38).		F.	A	Neighbor-Joining	tree	constructed	using	the	data	
from	the	MAFFT	alignment	of	the	oriT.		Bootstrap	values	located	next	to	the	
branches	are	from	1000	replicates.		The	asterisks	(*)	indicate	plasmids	that	are	
known	to	be	conjugative.		Plasmids	with	Group	II	organization	of	the	rep	and	Class	I	
transfer	genes	are	underlined.	
	

	

Group	I-like	clade,	including	pTi-SAKURA,	pTiS4,	pTiBo542,	pCB782	and	pOV14c		

were	more	distantly	related	to	their	orthologs	in	the	Group	I	clade	in	comparison	

with	the	other	proteins	analyzed	(Figure	3.6	B).		Examining	the	trees	for	the	two	

nopaline-type	Ti	plasmids,	the	cladograms	for	TraH	and	TraB,	like	the	trees	for	

TraM	and	TraR,	group	pTi-SAKURA	with	pTiC58	(Figure	3.6	F	and	E,	and	Figure	3.3	

A	and	B).		However,	the	trees	constructed	for	TraD	and	TraC,	like	the	tree	of	TraG,	

indicate	that	these	proteins	from	pTiC58	are	most	closely	related	to	the	orthologous	

proteins	of	pAtK84b,	while	those	of	pTi-SAKURA	are	on	a	separate	branch	(Figure	

3.6	B	and	C,	and	Figure	3.5	B).		The	cladogram	constructed	for	TraF	has	the	protein	

from	pTiC58	grouping	closely	with	pAtS4c	and	more	distantly	grouping	with	that	of	

pTi-SAKURA	(Figure	3.6	D).	

	

3.5.8	The	oriT	DNA	sequences	do	not	divide	into	clades	based	on	Group	
I	or	Group	II	plasmid	organization	

	

TraA	initiates	conjugative	transfer	by	introducing	a	single-strand	nick	(38)	at	the	

origin	of	transfer	(oriT)	site	(Table	1.1).		This	cis-acting	nucleotide	sequence	is	 	
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Figure	3.6	 	
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Figure	3.6	(cont.)	TraD,	TraC,	TraB,	TraF	and	TraH	cladograms	yield	similar	
Group	II	clades,	but	plasmids	with	the	Group	I	organization	show	more	
variability	between	proteins.		A.	The	organization	of	the	tra	region	of	pTiC58	and	
pTi-SAKURA.		The	tra	genes	are	in	medium	grey	and	the	genes	for	QS	regulation,	
traM	and	traR,	are	in	black.		accR,	which	regulates	transcription	of	the	arc	operon,	
including	traR	is	light	grey.		The	bar	beneath	pTi-SAKURA	represents	the	region	of	a	
putative	recombinational	alteration.		Neighbor-Joining	trees	constructed	from	
MAFFT	alignments	from	the	18	plasmids	are	shown	for	the	following	proteins:	B.	
TraD,	C.	TraC,	D.	TraF,	E.	TraB,	and	F.	TraH.		Bootstrap	values	from	1000	replicates	
are	located	next	to	the	branches.		The	evolutionary	distances	were	computed	with	
the	Poisson	correction.		The	asterisks	(*)	indicate	plasmids	known	to	be	conjugative,	
while	the	underscores	denote	plasmids	with	Group	II	organization	of	the	rep	and	
Class	I	transfer	genes.	
	

	

located	between	the	traAFBH	and	traCDG	operons,	and	the	core	DNA	sequence	

(Figure	3.5	E)	is	related	to	the	oriT	of	the	IncQ	plasmid	RSF1010	(41).		An	alignment	

of	the	nucleotide	sequences	of	the	known	and	putative	oriT	sites	from	the	18	

plasmids	shows	conserved	DNA	sequences,	especially	at	the	putative	nic	site	

indicated	by	the	open	triangle	in	Figure	3.5	E.		Although	the	cladal	structure	of	the	

TraA,	TraG,	and	TrbE	proteins	from	the	18	plasmids	correspond	precisely	to	their	

organizational	group,	the	nucleotide	sequences	of	the	putative	oriT	sites	do	not;	the	

sequences	of	Group	I	and	Group	II	plasmids	intermingle	within	the	tree	(Figure	3.5	

F).	

	
3.5.9	Recombinant	plasmids	with	cloned	oriT	regions	from	Group	I	and	
Group	II	plasmids	are	mobilizable	by	strains	harboring	plasmids	from	
like	and	unlike	groups	

	

That	the	oriT	sequences	are	highly	conserved	(Figure	3.5	E)	suggests	that	a	given	

cis-acting	site	may	be	recognized	by	the	relaxosome	components	from	both	clades.		

To	test	this	hypothesis,	we	determined	if	different	oriT	inserts	could	be	processed	

by	the	Dtr	systems	from	cognate	and	noncognate	plasmids.		The	three	pRG970b-

based	tra	box	I	clones	from	pTiC58,	pAoF64/95	and	pRi1724	described	previously	

also	encode	the	respective	oriT	sites.		The	three	oriT	vectors	were	transformed	into	
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two	transfer-constitutive	donors,	NTL4(pTiC58ΔaccR)	a	representative	of	the	Group	

I	clade	(8),	and	NTL4(pAoF64/95ΔmrtR),	from	the	Group	II	clade	(unpublished	

data).		We	then	determined	whether	these	transfer-constitutive	donors	could	

mobilize	each	oriT	plasmid	to	the	recipient	strain,	A.	tumefaciens	C58C1RS.	

	

Both	donors	mobilized	all	three	of	the	oriT	vectors	(Table	3.4).		Unsurprisingly,	both	

mobilized	the	vectors	containing	their	cognate	oriT	most	efficiently	(Table	3.4).		

Moreover,	the	donor	harboring	pAoF64/95	mobilized	the	plasmid	containing	

oriTpTiC58	almost	as	efficiently	as	its	cognate	oriT.		Although	the	Ao	plasmid-

containing	donor	mobilized	the	oriTpRi1724	plasmid,	the	efficiency	of	transfer	

dropped	by	about	one	order	of	magnitude	in	comparison	to	transfer	of	a	plasmid	

with	its	own	oriT	region	(Table	3.4).		Donors	harboring	pTiC58	mobilized	both	

oriTpAoF64/95	and	oriTpRi1724	at	similar	efficiencies,	but	at	frequencies	approximately	

70-fold	lower	in	comparison	to	mobilization	of	a	vector	with	the	cognate	oriT	(Table	

3.4).	

	

3.5.10	The	RepABC	plasmid	replication	and	partitioning	system,	while	
adjacent	to	the	trb	operon,	is	more	highly	divergent	than	the	QS	and	
transfer	systems	

	

All	18	plasmids	included	in	this	study	initiate	replication	from	a	repABC	system	that	

is	conserved	in	the	majority	of	large	plasmids	of	the	α-proteobacteria.		In	the	known	

Class	I	elements,	the	repABC	operon	is	invariably	adjacent	and	divergently	oriented	

to	the	traI/trb	operon	(Figures	3.1	and	Figure	3.2).		Moreover,	in	representatives	

from	both	organizational	types	transcription	of	the	repABC	operon,	and	concomitant	

increase	in	plasmid	copy	number,	is	positively	controlled	from	the	upstream	tra	box	

III	by	TraR	in	a	quorum-dependent	manner	(143,	160,	181).		Given	the	influence	of	

QS	on	expression	of	the	rep	genes	(143,	160,	181),	and	the	location	and	importance	

of	the	rep	system	for	stable	maintenance	of	the	plasmid,	we	assessed	all	three	Rep	

proteins	for	evolutionary	relatedness	as	we	did	with	the	proteins	of	the	QS	and	

conjugative	transfer	systems.		Even	though	the	repABC	genes	are	adjacent	to	the	 	
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Table	3.4	oriT	regions	are	recognized	by	cognate	and	
noncognate	trans-acting	transfer	functions	

TraC plasmida oriTb Mobilization frequencyc 
pTiC58ΔaccR pTiC58 2.89 × 10-3 
pTiC58ΔaccR pRi1724 4.25 × 10-5 
pTiC58ΔaccR pAoF64/95 4.55 × 10-5 
pTiC58ΔaccR None 6.30 × 10-6 
pAoF64/95ΔmrtR pTiC58 1.03 × 10-3 
pAoF64/95ΔmrtR pRi1724 3.53 × 10-4 
pAoF64/95ΔmrtR pAoF64/95 2.73 × 10-3 
pAoF64/95ΔmrtR None              < 10-7 
a All in A. tumefaciens strain NTL4. 
b The traA-C intergenic region, including the oriT region of three plasmids 
cloned in pRG970b and placed in trans to the traC strain. 

c Expressed as the number of transconjugates recovered per input donor 
cell.  Each cross was performed in duplicate or triplicate and the values 
presented represent the mean of each cross. 

	

	

conjugative	transfer	genes	in	these	plasmids,	the	RepA,	RepB	and	RepC	proteins	do	

not	divide	into	distinct	clades	corresponding	to	organizational	Groups	I	or	II	(Figure	

3.7	A,	B	and	C).		Furthermore,	although	the	cladograms	of	RepA	and	RepB	are	mostly	

congruous	with	each	other,	the	tree	for	RepC	is	not	(Figure	3.7).		Despite	their	close		

linkage,	the	cladograms	indicate	that	RepC	is	evolving	independently	from	the	

RepAB	pair.	

	

3.5.11	The	QS	and	transfer	proteins	are	coevolving	with	each	other	but	
separately	from	the	RepA,	RepB	and	RepC	proteins	

	

The	QS	proteins	and	the	conjugative	transfer	proteins,	with	the	possible	exception	

of	TrbK,	fall	into	two	major	clades	that	are	consistent	with	the	type	of	plasmid	

organization.		If	the	protein	sets	within	each	plasmid	are	coevolving,	in	comparison	

two	proteins	should	occupy	a	similar	position	on	the	phylogenetic	trees	in	relation	

to	the	other	branches.		However,	if	the	two	proteins	in	question	occupy	very	 	
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Figure	3.7	The	Rep	protein	sequences	do	not	divide	based	on	plasmid	
organization.	Trees	were	constructed	from	MAFFT	alignments	of	A.	RepA,	B.	RepB	
and	C.	RepC	proteins	using	the	Neighbor-Joining	methodology.		Evolutionary	
distances	were	estimated	using	the	Poisson	correction	implemented	in	MEGA	6.		
Underlined	plasmids	have	Group	II	organization.		Asterisks	(*)	indicate	plasmids	
that	are	known	to	be	conjugative.	
	

	

different	positions	on	the	cladograms	in	relation	to	the	other	branches,	then	the	two	

proteins	from	the	same	plasmid	have	not	evolved	together.		We	assessed	the	
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likelihood	of	how	well	the	phylogenies	agreed	between	protein	sequences	by	

comparing	how	well	the	data	for	one	protein	set	would	fit	on	a	tree	constructed	with	

the	data	from	a	second	protein	set.		Using	the	formula	described	in	materials	and	

methods,	each	comparison	between	protein	data	set	and	tree	was	given	a	score.		If	

the	trees	are	identical,	the	score	is	1.00	and	the	heat	map	color	is	white	(Figure	3.8	

A).		The	lower	the	level	of	relatedness	between	a	protein	data	set	and	the	tree	for	a	

different	protein	translates	to	a	lower	number	and	a	darker	color	on	the	heat	map.	

The	trees	of	the	QS	and	transfer	proteins	are	fairly	compatible	with	each	of	the	QS	

and	transfer	protein	data	sets	(Figure	3.8	A,	columns).		The	data	for	TraR	indicate	

that	the	trees	and	protein	alignments	are	most	compatible	with	the	trees	and	

alignments	of	TraM	and	TraI	(Figure	3.8	A,	TraR	rows	and	columns).		Although	the	

data	for	the	TraM	proteins	can	be	fitted	to	the	optimal	trees	constructed	from	each	

protein	data	set	(Figure	3.8	A,	TraM	row),	this	tree	best	fits	with	the	TraR	protein	

alignment	(Figure	3.8	A,	TraM	column).		The	TrbK	protein	alignment	fits	best	with	

the	tree	constructed	with	TrbE	(Figure	3.8	A,	TrbK	row).		The	TrbK	tree,	however,	

fits	best	with	TraR,	TrbE	and	TraM,	and	slightly	less	well	with	the	remaining	QS	and	

transfer	proteins	alignments	(Figure	3.8	A,	TrbK	column).	

	

Unlike	the	QS	and	transfer	proteins	RepA	and	RepB	share	nearly	identical	optimal	

tree	constructions	but	differ	from	any	of	the	other	trees.		However,	the	RepC	protein	

data	set	does	not	fit	well	with	any	of	the	other	protein	data	sets,	including	RepA	and	

RepB	(Figure	3.8	A,	RepC	row).		Among	all	of	the	other	proteins	the	RepC	tree	fits	

best	with	the	RepB	protein	data	set	followed	by	the	RepA	protein	alignment	(Figure	

3.8	A,	RepC	column).		Although	the	RepC	protein	alignment	fits	best	with	the	RepA	

and	RepB	trees,	the	values	are	low	(Figure	3.8	A,	RepC	row).	 	
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Figure	3.8	
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Figure	3.8	(cont.)	Overall,	the	QS	and	transfer	proteins,	but	not	the	Rep	
proteins,	are	coevolving	and	divide	into	three	separate	clades.		A.	A	heat	map	in	
which	alignments	for	ten	of	the	core	transfer,	QS,	and	Rep	proteins	(vertical	axis)	
were	given	a	score	based	on	how	well	they	fit	onto	the	trees	of	each	protein	
(horizontal	axis)	as	described	in	materials	and	methods.		The	shading	corresponds	
with	the	values;	identical	tree	topologies	give	scores	of	1.00	and	are	white,	whereas	
protein	alignments	that	fit	less	well	to	a	given	tree,	and	are	not	coevolving	have	
lower	numbers	and	are	darker	shades	of	grey	or	are	black.	B.	Neighbor-Joining	tree	
constructed	from	MAFFT	alignments	from	a	concatenated	sequence	of	the	Tra,	Trb,	
and	QS	proteins	from	the	18	plasmids.		The	concatenated	protein	contains	the	
following	proteins	in	order:		TraR,	TraM,	TraI,	TraA,	TraG,	TrbE,	TrbK,	TraC,	TraD,	
TraF,	TraH,	and	TraB.		Bootstrap	values	from	1000	replicates	are	located	next	to	the	
branches.		The	evolutionary	distances	were	computed	in	Mega	6	using	the	Poisson	
correction.		The	asterisks	(*)	denote	plasmids	that	are	known	to	be	conjugative,	
whereas	the	plasmids	with	a	Group	II	plasmid	organization	are	underlined.	
	

	

3.6	Discussion	

	

3.6.1	The	quorum-sensing	and	transfer	proteins	overall	form	three	
clades	associated	with	plasmid	organization	and	the	proteins	within	a	
particular	clade	are	coevolving	

	

All	of	the	18	repABC	plasmids	in	this	study	that	contain	Class	I,	QS-regulated	

conjugative	transfer	systems	fall	into	two	organizational	types	first	noted	by	

Moriguchi	et.	al.	(171).		Our	phylogenetic	analysis	indicates	that	evolution	of	the	QS	

and	transfer	proteins	correspond	to	organization;	those	from	the	Group	I	plasmids	

form	one	clade	(Clade	I),	whereas	the	same	proteins	from	plasmids	with	the	Group	

II	organization	subdivide	into	two	clades	(Figures	3.1	A	and	3.8	B),	one	from	

plasmids	found	in	the	family	Rhizobiaceae	(Clade	II),	the	other	from	plasmids	in	the	

family	Bradyrhizobiaceae	(Clade	III)	(Figure	3.8	B).	

	

Remarkably,	with	respect	to	the	virulence	elements	of	Agrobacterium,	the	

organizational	split	correlates	with	function.		We	know	of	no	Ri	plasmid	with	Group	

I	organization.		Nor	do	we	know	of	any	Ti	plasmid	with	Group	II	organization.		This	

observation	implies	that	all	of	the	Ti	plasmids	and	all	of	the	Ri	plasmids,	while	
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sharing	a	common	ancestor,	have	diverged	and	are	evolving	independently.		

However,	among	opine-catabolic	plasmids,	both	organizational	types	are	

represented	(see	Table	3.2).		We	conclude	that	this	“cheater”	class	of	opine-catabolic	

plasmids	can	evolve	from	either	Group	I	or	Group	II	elements.		The	two	Sym	

plasmids	examined,	pNGR234a	and	pCB782,	divide	between	Groups	I	and	II	(Table	

3.2	and	Figure	3.8	B).		This	observation	suggests	that	this	functional	group	of	

plasmids	is	less	constrained	in	its	evolution	as	compared	to	the	virulence	elements	

of	the	agrobacteria.	

	

The	trees	constructed	from	the	proteins	of	pHCG3	and	pB11	suggest	that	these	two	

Group	II	bradyrhizobial	plasmids	have	diverged	from	the	other	Group	II	elements	

and	now	constitute	an	independently	evolving	clade.		Although	only	sparsely	

described,	the	existence	of	Class	I	repABC	plasmids	in	these	diverse	and	ecologically	

distinct	bacteria	indicate	that	members	of	this	family	of	episomal	elements	have	

extended	their	genetic	range	beyond	bacteria	that	interact	with	plants.	

	

Although	there	is	a	clear	phylogenic	divergence	of	the	QS	and	transfer	proteins	into	

three	clades,	consistency	in	the	branch	structures	of	the	12	QS	and	transfer	proteins	

examined	indicates	that	these	proteins	have	not	only	evolved	into	separate	clades,	

but	are	also	coevolving	in	their	particular	plasmids	within	a	clade	(Figures	3.3,	3.5,	

and	3.6).		The	scores	in	the	heat	map	analysis	support	this	conclusion	(Figure	3.8	A).		

The	robustness	of	these	evolutionary	patterns	is	further	illustrated	by	the	structure	

of	a	cladogram	constructed	using	a	concatenated	protein	alignment	of	all	12	protein	

sequences	from	the	18	plasmids	examined	(Figure	3.8	B).	

	

Overall,	components	of	the	QS	and	transfer	systems	that	interact	with	each	other	or	

lie	in	the	same	operon	show	the	highest	degree	of	coevolution.		For	example,	TraM	

and	TraR	interact	with	each	other,	and	for	both	Group	I	and	Group	II	plasmids,	the	

traR	and	traM	genes	are	always	located	near	one	another	(Figures	3.1	and	3.2).		
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Concomitantly,	these	two	proteins	exhibit	largely	similar	trees	and	show	a	high	

degree	of	coevolution	in	the	heat	map	(Figures	3.3	and	3.8	A).	

	

3.6.2	The	highly	conserved	oriT	regions	can	be	recognized	and	nicked	
by	components	of	the	relaxosome	from	both	clades	

	

That	there	is	cross-cladal	functioning	between	the	trans-acting	tra	components	and	

cis-acting	oriT	sites	(Table	3.4)	raises	the	possibility	that	induction	of	transfer	by	a	

specific	signal	of	one	plasmid	may	stimulate	transfer	from	that	donor	of	a	

coresident,	noninduced	plasmid	with	an	appropriate	oriT	region.		Although	

cotransfer	of	plasmids	has	been	described	in	both	Rhizobium	and	Agrobacterium	

species,	most	studies	have	concluded	that	this	phenomenon	is	likely	the	result	of	

plasmid	cointegration	(18,	185).		However,	cotransfer	of	a	noninduced	megaplasmid	

by	trans-mobilization	has	been	reported	(240).		The	range	of	mechanisms	involved	

in	cotransfer	of	these	large	plasmids	merits	further	study.	

	

3.6.3	TraR	proteins	have	DNA	binding	and	dimerization	functions	that	
are	conserved	within,	but	not	between	clades	

	

Our	in	vivo	analysis	showing	that	TraR-dependent	promoters	are	activated	by	only	

cognate	and	closely	related	TraR	orthologs	is	consistent	with	the	in	silico	results	that	

the	QS	and	transfer	proteins	are	coevolving	with	each	other	within,	but	not	between	

clades	(Figures	3.4	and	3.8	A).		Our	results	extend	those	of	He,	et.	al.	(104)	showing	

that	TraR	of	pNGR234a,	with	a	Group	II	organization,	can	activate	transcription	of	at	

least	two	of	its	cognate	promoters,	but	does	not	activate	the	same	promoters	from	

pTiR10,	a	Group	I-type	plasmid	(104).		Moreover,	TraRpTiR10	activates	a	cognate	

TraR-dependent	promoter	but	not	the	orthologous	promoter	from	pNGR234a	(104).		

Coupled	with	our	observation	that	TraR	proteins	from	the	two	major	clades	cannot	

efficiently	cross-dimerize,	our	results	suggest	that	both	DNA	binding	and	

dimerization	domains	of	TraR	proteins	are	structurally	and	functionally	conserved	

within,	but	not	between	the	clades.	
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3.6.4	TraRpRi1724	functionally	differs	from	other	TraR	proteins	in	the	
repABC	family	of	plasmids	with	Class	I	transfer	systems	

	

Gene	activation	by	TraR	of	pRi1724	differs	remarkably	from	that	of	the	archetypical	

system.		The	TraR	proteins	from	pTiC58	and	pAoF64/95	strongly	activate	their	

cognate	traA	promoters,	but	only	in	cells	grown	with	the	appropriate	quormone	

(Figure	3.4	B).		TraR	from	pRi1724,	on	the	other	hand,	activates	its	cognate	traA	

promoter,	and	also	that	from	pAoF64/95,	but	only	in	cells	grown	in	the	absence	of	

the	QS	signal	(Figure	3.4	A).		Three	lines	of	evidence	indicate	that	the	anomalous	

behavior	of	TraRpRi1724	is	a	function	of	the	activator,	and	not	of	its	tra	box	binding	

site.		First,	the	tra	box	I	sequences	of	pRi1724	and	pAoF64/95	are	identical	(Figure	

3.3	E).		Second,	TraRpAoF64/95	activates	expression	from	the	traAFBH	promoter	from	

both	pAoF64/95	and	pRi1724	in	a	quormone-dependent	manner	(Figure	3.4	B).		

Third,	TraRpRi1724	activates	transcription	of	these	two	promoters	only	in	the	absence	

of	the	autoinducer	(Figure	3.4	A).		That	the	amino	acid	sequences	of	the	recognition	

helices	of	TraRpRi1724	and	TraRpAoF64/95	are	strongly	conserved	suggests	that	the	

anomalous	properties	of	TraRpRi1724	are	due	to	alterations	in	regions	of	the	protein	

other	than	those	involved	in	quormone	binding	or	DNA	site	recognition.	

	

The	anomalous	activity	of	TraRpRi1724	could	be	a	result	of	random	mutational	events	

or	could	represent	a	regulatory	divergence	where	transfer	is	induced	only	when	the	

acyl-HSL-producing	population	is	low.		Other	LuxR	homologs	such	as	EsaR	of	

Pantoea	spp.	and	YenR	of	Yersinia	enterocolitia	bind	to	their	target	DNA	sequence	in	

the	absence,	and	not	the	presence,	of	the	acyl-HSL	cognate	to	the	system.		Although	

apo-EsaR	represses	transcription	of	the	target	genes	when	the	population	density	is	

low	(9,	165),	apo-YenR	activates	transcription	of	a	target	gene,	yenS,	at	low	

population	densities,	a	regulatory	strategy	called	quorum-hindering	(242).	
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3.6.5	The	RepA,	RepB,	and	RepC	proteins	do	not	coevolve	with	the	
transfer	and	quorum-sensing	proteins	

	

RepA,	RepB,	and	RepC	comprise	a	well-characterized	family	of	replication	proteins	

that,	in	the	18	Class	I	plasmids	included	in	this	study,	are	located	adjacent	and	

divergently	oriented	to	the	traI/trb	operon.		The	fact	that	the	arrangement	of	the	rep	

genes	and	the	traI/trb	operon	is	obligatory	in	plasmids	with	the	Class	I	transfer	

system	raises	the	possibility	that	the	rep	system	is	coevolving	with	the	genes	of	the	

adjacent	transfer	systems	and	perhaps	even	the	QS	regulatory	system.		This	proved	

not	to	be	the	case;	the	trees	constructed	for	the	RepA,	RepB,	and	RepC	proteins	do	

not	divide	based	on	plasmid	organization	(Figure	3.7).		Moreover,	none	of	the	Rep	

proteins	are	coevolving	with	the	traI/trb	operon,	despite	their	close	physical	linkage	

as	divergently	oriented	operons	(Figures	3.3,	3.5	and	3.7).		This	divergent	evolution	

of	the	rep	and	transfer	genes	is	especially	striking	considering	that	the	repABC	and	

traI/trb	operons	share	a	region	containing	promoters	and	tra	boxes,	allowing	TraR-

mediated	regulation	of	transcription	of	not	only	the	genes	for	transfer,	but	also	the	

gene	system	for	plasmid	replication	and	partitioning	(143,	160,	181).	

	

Our	analyses	showing	that	RepA	and	RepB	proteins	coevolve	with	each	other	but	do	

not	strongly	evolve	with	RepC	confirm	previous	studies	of	the	coevolutionary	

relationships	of	these	three	proteins	[reviewed	in	(188)].		Although	the	RepABC	

proteins	have	been	extensively	studied,	to	our	knowledge,	ours	is	the	first	report	

comparing	the	phylogenies	of	the	RepA,	RepB,	and	RepC	proteins	with	the	proteins	

of	the	conjugative	transfer	and	QS	systems	encoded	by	these	plasmids.		This	

independent	evolution	makes	sense	considering	that	genetically	active	components	

within	the	repABC	operon	determine	plasmid	incompatibility	(7,	23,	26,	27,	156,	

157,	195,	250).		This	property	of	plasmids	is	often	determined	by	the	degree	of	

relatedness	of	the	replication	and	partitioning	functions	of	the	elements	(176).		The	

problem	of	incompatibility	is	of	considerable	interest;	some	isolates,	such	as	

Rhizobium	etli	strain	CFN	42,	stably	maintain	as	many	as	six	different	repABC	
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replicons	(93).		Clearly	the	components	of	the	replication	system	are	actively	

evolving	to	generate	different	incompatibility	properties.		Uncoupling	the	evolution	

of	the	replication	system	from	the	transfer	system	provides	these	plasmids	with	the	

ability	to	transfer	to	and	be	stably	maintained	in	a	variety	of	strains,	even	those	

harboring	other	repABC	replicons.	

	

The	three	Rep	proteins,	as	well	as	a	small	RNA	and	cis-acting	sites	within	the	operon	

are	involved	in	plasmid	incompatibility	(23,	184,	188,	195).		pTiC58,	pAtK84b,	and	

pTiR10	all	belong	to	the	IncRh-1	group	(40,	111,	166).		Strikingly,	for	the	trees	

constructed	with	the	RepA,	RepB,	and	RepC	protein	sequences,	these	plasmids	

group	within	the	same	subclade	(Figure	3.7).		The	tartrate-catabolism	plasmid	of	A.	

vitis	strain	S4,	pAtS4c,	belongs	to	the	IncRh-2	class	(224),	while	the	coresident	Ti	

plasmid,	pTiS4,	belongs	to	the	IncRh-4	class	(223).		Consistent	with	this	

compatibility,	the	RepA,	RepB,	and	RepC	proteins	of	pTiS4	and	pAtS4c	are	members	

of	separate	subclades.		These	two	examples	provide	phylogenetic	support	for	the	

role	of	divergent	evolution	of	these	proteins	in	determining	the	ability	of	the	repABC	

plasmids	to	coexist	in	the	same	host.	

	

3.6.6	Some	of	these	plasmids	are	highly	homologous	and	have	shared	
evolutionary	histories	

	

Several	of	the	plasmids	examined	in	this	analysis	share	significant	regions	of	

synteny.		For	example,	pRi1724	and	pRi2659	are	highly	homologous	over	their	

entire	lengths	(171).		Both	of	these	Ri	plasmids	were	isolated	from	biovar	1	strains	

of	A.	rhizogenes,	one	from	a	diseased	melon	plant	in	Japan	and	the	other	from	a	

diseased	cucumber	plant	in	the	United	Kingdom.		For	nearly	all	of	the	15	protein	

sequences	analyzed,	including	RepA,	RepB,	and	RepC,	the	proteins	of	pRi1724	and	

pRi2659	are	related	most	closely	to	each	other.		Considering	that	overall	the	Rep	

proteins	evolve	separately	from	the	transfer	and	QS	proteins,	the	fact	that	these	two	
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sets	of	proteins	of	pRi1724	and	pRi2659	are	evolving	together	indicates	that	the	

two	plasmids	share	a	very	recent	common	ancestor.	

	

Similarly,	pTiC58	and	pTi-SAKURA,	which	are	both	nopaline-agrocinopine-type	Ti	

plasmids	share	syntenic	regions	that	are	highly	homologous	(94,	222).		Despite	the	

apparent	recombination-generated	divergence	in	the	region	around	traF,	the	QS,	

conjugative	transfer,	and	Rep	proteins	of	pTiC58	most	closely	resemble	those	of	pTi-

SAKURA,	indicating	that	these	two	plasmids	share	a	recent	common	ancestor.		That	

such	a	recombination	even	has	occurred	is	not	surprising,	plasmids	in	the	repABC	

family	are	known	to	recombine,	often	by	forming	and	resolving	cointegrates	(18,	

122,	159,	255).	

	

3.6.7	Evolution	of	the	Class	I-repABC	family	of	plasmids	is	complex	

	

The	differences	in	organization	of	the	conjugative	transfer	genes	of	the	Group	I	and	

Group	II	plasmids	and	the	chimeric	nature	of	these	large	plasmids	make	the	

evolutionary	study	of	these	extrachromosomal	elements	intriguing	and	complex.		

The	two	types	of	plasmid	organization	suggest	that	expansion	of	a	conceptual	core	

plasmid	containing	the	QS,	rep,	and	transfer	genes	(pCORE,	Figure	3.9)	occurs	by	

inserting	new	DNA	primarily	in	two	locations.		The	first	and	perhaps	preferred	

location	occurs	between	the	repABC	and	traCDG	operons	(Figure	3.9,	Site	A).		The	

second	region	(Figure	3.9,	Site	B)	is	located	downstream	of	the	trb	genes	and	

separates	this	operon	from	the	traR-traM-tra	cluster.		Both	Group	I	and	II	plasmids	

exhibit	insertions	in	variable	region	A,	while	Group	I	plasmids	have	a	second	

variable	region	inserted	into	Site	B	(Figure	3.9).		Intriguingly,	Ti	plasmids,	which	all	

show	Group	I	organization,	differ	with	respect	to	which	of	the	two	variable	regions	

encoding	loci	important	for	tumor	induction	are	located.		For	example,	the	segment	

of	DNA	encoding	the	T-region	and	the	vir	regulon	of	the	Octopine-type	Ti	plasmids	is	

inserted	into	Site	A,	whereas	the	analogous	segment	of	pTiC58	is	inserted	in	Site	B.	

Of	significance	to	the	evolution	of	regulation	in	the	Group	I	Ti	plasmids,	insertions		 	
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Figure	3.9	Acquisition	of	additional	DNA	by	Class	I-repABC	plasmids	occurs	at	
two	favored	locations.		A	conceptual	repABC	plasmid,	pCORE,	containing	the	core	
Class	I	transfer	genes	(medium	grey	for	Mpf	genes	and	light	grey	for	Dtr	genes),	the	
QS	genes	traR,	traM	and	traI	(all	in	black)	and	the	rep	operon	(dark	grey).		The	
triangles	labeled	A	and	B	mark	the	sites	at	which	additional	sequence	is	found	in	the	
two	organizational	types,	Group	I	and	Group	II,	of	plasmids.	
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into	the	B	site	provide	a	mechanism	by	which	traR	can	be	fused	to	a	gene	system	

regulated	by	the	conjugative	signal.		Insertions	into	the	other	two	regions,	between	

the	two	tra	operons	and	between	traI/trb	and	repABC,	most	likely	is	restricted	by	

their	richness	in	cis-acting	promoter	and	regulatory	sequences.	

		

Despite	the	organizational	differences	and	the	role	of	recombination	and	horizontal	

gene	transfer	in	increasing	genetic	diversity,	overall	our	analysis	indicates	that	the	

genes	of	the	tra	and	trb	regions	of	a	particular	plasmid	are	coevolving.		Additionally,	

the	orthologous	genes	shared	by	these	plasmids	within	a	clade	coevolve	and	retain	a	

level	of	functionality	within,	but	not	between	clades.		Furthermore,	we	conclude	that	

the	QS	proteins	overall	are	coevolving	with	the	transfer	system.	

	

Although	the	evolution	of	these	plasmids	may	be	restricted	to	the	two	

organizational	groups,	it	is	most	probable	that	additional	clades	will	emerge	as	

more	sequence	becomes	available.		Even	now,	the	tree	structures	of	pHCG3	and	

pB11	suggest	that	these	two	plasmids	have	evolved	into	a	new	Group	II	clade	

(Figure	3.8	B,	Clade	III).		Evolution	of	these	plasmids	is	of	particular	importance	to	

the	order	Rhizobiales	for	several	reasons.		First,	the	repABC	family	of	plasmids	

exhibit	an	extended	conjugative	and	replicative	host-range	among	the	α-

proteobacteria.		Second,	the	repABC	elements	have	a	large	genetic	carrying	capacity	

and	the	genes	encoded	on	these	replicons	often	confer	defining	characteristics	to	

the	bacteria	that	harbor	them.		Third,	quite	clearly	some	of	the	repABC	plasmids	are	

evolving	into	chromids	in	a	range	of	genomes	within	the	order	Rhizobiales	(4,	101,	

139).		Considering	the	potential	for	conjugative	transfer	and	dissemination	of	these	

Class	I	plasmids,	the	large	genetic	carrying	capacity,	their	propensity	to	recombine,	

and	the	extended	host	range	encoded	by	repABC	lend	importance	to	the	study	of	the	

evolution	and	interactions	of	this	group	of	plasmids,	and	the	bacteria	that	harbor	

them.	
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Chapter	4:	Conclusions	

	

4.1	The	repABC	family	of	plasmids	with	Class	I	transfer	systems	is	important	to	
the	biology	of	the	bacteria	that	harbor	them	
	

The	repABC	plasmids	found	in	the	Rhizobiales	are	important	to	the	biology	of	the	

bacteria	that	harbor	them	for	several	reasons.		First,	replicons	that	replicate	and	

segregate	using	RepA,	RepB,	and	RepC	can	stably	carry	large	quantities	of	genetic	

information,	and	some	of	these	elements	are,	or	are	evolving	into,	secondary	

chromosomes,	now	called	chromids	(101).		Moreover	many	of	these	plasmids	

encode	functions,	such	as	virulence,	that	define	the	bacteria	that	harbor	them.		A	

subset	of	repABC	plasmids	encode	genes	for	horizontal	transfer	of	the	plasmid	from	

one	bacterium	to	another	[(89)	and	reviewed	in	(59)].		The	most	well-studied	of	

these	is	the	Class	I	transfer	system	that	is	encoded	by	the	tra	regulon.		In	all	cases	

known	to	date,	the	tra	regulon,	composed	of	the	two	tra	operons	and	the	traI/trb	

operon,	is	regulated	by	a	quorum-sensing	relay	involving	an	activator,	TraR,	an	

antiactivator,	TraM,	and	a	ligand	synthase,	TraI.	

	

4.2	There	are	two	distinct	genetic	arrangements	of	plasmids	with	Class	I	
transfer	systems	
	

Among	the	repABC	family	plasmids	with	Class	I	conjugative	transfer	systems	all	

genes	involved	in	transfer	and	regulation	of	transfer	are	conserved.		However,	

Moriguchi	et.	al.	first	noted	that	there	are	two	distinct	genetic	arrangements	of	the	

genes	involved	in	transfer	and	replication	(171).		Both	groups	invariable	have	the	

traI/trb	operon	adjacent	and	divergently	oriented	to	the	repABC	operon.		In	Group	I	

plasmids,	the	two	tra	operons,	along	with	traR	and	traM,	are	separated	from	the	trb	

operon,	often	by	more	than	60	kb.		Unlike	those	of	the	Group	I,	in	plasmids	with	

Group	II	organization	the	repABC-trb	region	is	contiguous	with	the	two	tra	operons,	

and	traM	and	traR	are	located	between	the	last	gene	of	the	traAFBH	operon	and	the	

end	of	the	traI/trb	operon.		In	cases	where	transfer	of	Group	I	and	Group	II	plasmids	
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has	been	demonstrated,	TraR	directly	activates	the	two	tra	operons	along	with	the	

traI/trb	operon	[reviewed	in	(59)]	.		In	Group	I	plasmids	found	in	the	agrobacteria,	

transfer	is	inducible	by	a	specific	opine	because	traR	is	a	member	of	an	operon	that	

is	inducible	by	the	conjugative	opine	(82,	177,	178,	190).		Unlike	the	Group	I	

plasmids,	traR	of	Group	II	plasmids	is	monocistronic	(44,	171,	257).		The	two	

different	modes	of	organization	of	the	QS	and	transfer	genes	suggested	to	us	that	

relevant	core	genes	in	plasmids	with	Group	I	and	Group	II	organization	are	evolving	

independently.	

	

4.3	The	transfer	and	quorum-sensing	proteins	along	with	the	tra-box	
sequences	from	plasmids	in	the	Rhizobiales	form	three	major	clades	
	

In	our	analysis	of	the	protein	sequences	of	the	tra,	trb,	and	adjacent	rep	genes	from	

18	different	plasmids,	nine	with	the	Group	I	organization	and	nine	with	Group	II	

organization,	the	gene	sets	all	form	three	major	clades	that	are	consistent	with	gene	

organization.		The	proteins	from	Group	I	plasmids	form	a	separate	tree	that	we	call	

Clade	I.		Proteins	from	plasmids	with	Group	II	organization	divide	into	two	

additional	clades,	Clades	II	and	III.		Clade	II	contains	sequences	from	plasmids	found	

in	the	Rhizobiaceae,	while	Clade	III	contains	sequences	from	plasmids	isolated	from	

members	of	Bradyrhizobiaceae.		Based	on	phylogenetic	and	heat	map	analyses,	it	is	

evident	that	the	QS	and	transfer	proteins	within	a	particular	plasmid	are	coevolving.		

Moreover	the	core	genes	are	coevolving	within	each	group	but	are	divergent	

between	the	two	groups.		Functional	analyses	are	consistent	with	the	organization-

associated	cladograms.		TraR	proteins	can	activate	transcription	from	tra	box-

containing	promoters	within,	but	not	between,	clades.		Moreover	TraR	proteins	can	

dimerize	within,	but	not	between,	clades.		The	analysis	of	promoter	activation	and	

TraR-dimerization	are	consistent	with	phylogenetic	analysis	of	TraR	and	the	tra	box	

DNA	sequences.		This	clearly	indicates	that	at	least	the	QS	and	transfer	genes	have	

diverged	and	that	this	divergence	coincides	with	the	two	different	organizations	of	

these	genes	on	repABC	plasmids.	
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4.4	oriT	sequences	are	highly	conserved	and	can	be	mobilized	utilizing	the	
transfer	functions	of	plasmids	from	either	clade	
	

While	the	protein	sequences	of	the	transfer	and	QS	proteins	and	the	tra	box	

sequences	indicate	that	there	is	a	phylogenetic	division	between	plasmids	with	

Group	I	and	Group	II	organization,	the	oriT	sequences	are	highly	conserved	and	

there	is	no	clear	cladal	division	of	these	DNA	sequences	based	upon	plasmid	

organization.		Functional	analysis	is	consistent	with	the	phylogeny;	plasmids	with	

cloned	oriT	regions	can	be	mobilized	using	the	transfer	systems	of	plasmids	with	

either	Group	I	or	Group	II	organization.		This	close	relatedness	suggests	that	the	oriT	

sequences	of	both	Group	I	and	Group	II	plasmids	are	sufficiently	conserved	to	be	

recognized	by	the	oriT	recognition	and	processing	relaxosome	proteins	of	both	

groups	of	plasmids.		Such	sequence	conservation	raises	the	interesting	possibility	

that	transfer	of	a	Class	I	replicon	could	be	mediated	by	the	trans-acting	tra	system	of	

a	coresident	Class	I	plasmid.		In	this	manner	trans-mobilization	of	plasmids	could	

increase	the	amount	of	horizontal	gene	transfer	of	these	elements	between	bacteria.		

Cotransfer	of	plasmids	has	been	documented,	but	most	studies	conclude	that	this	

results	from	cointegration	of	two	plasmids	followed	by	transfer	of	the	cointegrate,	

rather	than	true	trans-acting	mobilization	(18,	185).		However,	trans-mobilization	of	

at	least	one	plasmid,	pLPU83a,	has	been	reported	(240).	

	

The	oriT	sequences	of	the	Class	I	transfer	systems	are	related	to	those	of	IncQ	

plasmid	such	as	RSF1010	and	to	IncP-1α	plasmids,	such	as	RP4	(41).		While	an	

RSF1010	derivative	can	be	mobilized	by	the	transfer	system	of	RP4,	a	vector	

containing	the	oriT	region	from	RP4	or	the	oriT	region	from	RSF1010	cannot	be	

mobilized	by	a	Ti	plasmid	transfer	system	(41).		However	a	clone	containing	the	oriT	

of	RSF1010	can	be	mobilized	by	the	Ti	plasmid	MPF	system	if	the	coupling	factor,	

TraGRP4,	is	expressed	(98).		TraGRP4	cannot	substitute	for	TraGTi	to	mobilize	the	Ti	

plasmid	(98).		These	patterns	of	cross	functionality	indicate	that	the	coupling	factor	

is	specific	for	the	relaxosome	and	that	the	interaction	of	TraG	with	the	MPF	system	
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is	less	specific.		Taken	together	with	the	results	reported	by	us,	these	observations	

open	the	possibility	that	relaxosomes	of	both	Group	I	and	Group	II	plasmids	in	the	

Rhizobiales	can	be	recognized	by	TraG	from	either	group	of	plasmids,	a	hypothesis	

yet	to	be	tested.	

	

4.5	The	replication	and	partitioning	system	do	not	evolve	with	the	quorum-
sensing	and	transfer	systems	
	

Although	the	transfer	and	QS	systems	have	diverged	into	three	major	clades	closely	

associated	with	plasmid	organization,	the	genes	of	the	replication	and	partitioning	

system	evolve	independently	from	those	involved	in	transfer	and	its	regulation.		The	

RepA	and	RepB	proteins	coevolve	with	each	other,	but	RepC	evolves	independently	

from	both	RepA	and	RepB.		That	the	evolution	of	the	rep	system	is	unconnected	to	

the	adjacent	tra	system	is	interesting	given	that	the	repABC	system	confers	plasmid	

compatibility.		In	theory,	this	allows	different	repABC	plasmids	encoding	related	

Class	I	transfer	systems	to	be	harbored	by	the	same	bacterium.		In	practice,	there	

are	several	examples	of	such	plasmids	existing	within	the	same	bacterium.		

Moreover,	in	at	least	one	case	a	conjugative	repABC	plasmid	mobilizes	transfer	in	

trans	of	a	second	repABC	plasmid	(240).		Furthermore,	in	those	plasmids	tested	

TraR	upregulates	expression	of	the	repABC	operon,	thereby	increasing	plasmid	copy	

number	(143,	160,	181).		It	is	intriguing	that	TraR	and	the	tra	regulon	are	

coevolving,	but	that	TraR	and	the	rep	operon	invariably	adjacent	to	the	tra	regulon	

are	not	coevolving,	despite	the	fact	that	TraR	regulates	this	system.		It	is	also	

remarkable	that	the	traI/trb	operon	of	these	plasmids	does	not	coevolve	with	the	

repABC	operon,	despite	the	fact	that	they	are	invariably	tightly	linked	to	each	other.		

While	the	evolution	of	the	Rep	proteins	has	been	examined	in	some	detail	[reviewed	

in	(188)],	this	is	the	first	study	that	has	assessed	the	evolution	of	RepA,	RepB,	and	

RepC	in	the	context	of	coevolution	with	the	proteins	involved	in	the	Class	I	

conjugative	transfer	and	QS	systems.	
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4.6	Evolution	of	the	repABC	plasmids	with	Class	I	transfer	systems	is	complex	

	

The	analysis	of	the	genes	for	transfer,	QS	and	replication	presented	in	this	

dissertation	explore	several	other	themes.		Some	plasmid	pairs,	such	as	pTiC58	and	

pTi-SAKURA,	and	pRi1724	and	pRi2659,	share	large	regions	of	homology	and	

synteny.		Clearly	each	set	of	plasmids	has	a	common	recent	evolutionary	ancestor.		

However,	it	is	also	clear	that	evolution	of	these	plasmids	is	complex.		For	example,	

while	pTi-SAKURA	shares	a	recent	common	ancestor	with	pTiC58,	it	has	a	chimeric	

tra	region.		This	suggests	that	a	recombinational	event	has	occurred	that	has	led	to	a	

structural	divergence	of	pTiC58	and	pTi-SAKURA.		Many	plasmids	in	the	Rhizobiales	

are	chimeric	and	are	known	to	recombine	by	forming	and	resolving	cointegrate	

structures	(22,	79,	92,	171,	219,	255).		Conjugation	imports	new	genetic	material	

into	the	cell,	and	these	plasmids	have	the	potential	to	recombine	with	the	plasmids	

already	present	in	any	particular	host.		This	not	only	makes	the	evolution	of	these	

plasmids	more	complex,	it	also	increases	the	genetic	diversity	of	plasmids	and	the	

functional	diversity	of	their	host	bacteria.	

	

In	all	of	the	plasmids	examined,	the	Class	I	transfer	and	QS	genes	are	associated	with	

a	repABC	replication	and	partitioning	system	that	is	invariably	located	adjacent	and	

divergently	oriented	to	the	traI/trb	operon.		Based	on	these	similarities,	we	can	

imagine	a	hypothetical	plasmid	that	contains	only	the	core	transfer,	QS	and	

replication	systems	(Figure	3.9).		While	many	of	the	repABC	plasmids	with	Class	I	

transfer	systems	range	between	170-250	kb,	the	core	functions	are	encoded	by	only	

27	kb.		Considering	that	there	is	so	much	excess	variable	DNA	in	the	sequenced	

plasmids	in	comparison	to	this	core,	there	seem	to	be	two	regions	where	insertions	

typically	occur.		The	first	of	these	regions,	variable	region	A,	is	located	between	repC	

and	traH,	the	last	gene	of	the	traAFBH	operon	(Figure	3.9).		All	Class	I	plasmids	

known	to	date	harbor	insertions	in	this	site.		Considering	this	site	is	occupied	in	

both	Group	I	and	II	elements,	it	seems	this	is	the	preferred	location	for	genetic	cargo	

for	the	plasmids	in	the	Rhizobiales.		Insertions	in	the	second	site,	variable	region	B,	
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are	located	between	the	last	gene	of	the	traI/trb	operon	and	traR	and	are	found	only	

in	the	Group	I	plasmids	(Figure	3.9).		Insertions	in	site	B	can	also	account	for	the	

apparently	serendipitous	fusion	of	traR	to	a	genetically	active	gene	system.		Given	

that	site	B	is	located	just	upstream	of	traR,	insertions	into	the	B	site	provide	a	

mechanism	to	fuse	traR	to	an	operon	inducible	by	a	particular	signal,	such	as	an	

opine.		For	example,	traRpTiC58	is	the	distal	gene	of	the	arc	operon,	an	operon	

inducible	by	the	agrocinopines	(190),	while	traRpTi15955	is	the	distal	gene	in	an	

operon	inducible	by	octopine	(82)	(Figure	4.1).		At	least	two	Group	I	plasmids	

harbored	by	species	of	Rhizobium	and	Ensifer,	pCB782	and	pOV14c,	show	a	similar	

fusion	of	traR	to	gene	systems	potentially	involved	in	catabolic	functions.		traR	of	

pCB782	is	located	at	the	end	of	an	operon	that	could	encode	catabolism	of	an	

unknown	organic	compound,	while	traR	of	pOV14c	lies	downstream	of	an	operon	

encoding	a	putative	ABC-type	transporter	(Figure	4.1).		These	gene	organizations	

are	of	interest	from	two	perspectives.		First,	linkage	of	traR	to	genes	involved	in	

catabolism	of	exogenous	carbon	sources	opens	the	possibility	that	expression	of	

traR	and	the	induction	of	conjugation	by	exogenous	environmental	signals	extends	

beyond	the	well-studied	role	of	tumor-produced	opines	common	to	plasmids	of	the	

agrobacteria.		Second,	if	such	is	the	case,	then	this	suggests	that	such	plasmids	have	

evolved	a	specific	mechanism	to	couple	conjugation	to	environmental	conditions.	

	

While	the	regulation	of	transfer	has	been	well-documented	in	the	Group	I	Ti	

plasmids	(82,	177,	178,	190),	the	conjugative	properties	of	only	two	Class	I	plasmids	

with	Group	II	organization	have	been	examined	in	detail	(18,	44,	149,	243,	257).	

These	two	Group	II	plasmids,	pRL1JI	and	p42a,	exhibit	two	different	regulatory	

mechanisms.		p42a	is	constitutive	for	transfer	because	expression	of	traR	is	

constitutive	and	traM	,	the	TraR	antiactivator,	is	not	transcribed	(18,	243).		For	

pRL1JI,	expression	of	traR	is	induced	by	a	second,	orphaned	LuxR-type	activator	in	

response	to	a	second	acyl-HSL	signal	that	is	produced	by	the	recipient	(44,	149,	

257).		Considering	that	the	research	concerning	induction	and	regulation	of	transfer	

of	Group	II	plasmids	is	scant	and	that	the	two	described	systems	differ,	the	
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mechanisms	by	which	bacteria	harboring	Group	II	plasmids	respond	to	signals	in	

the	environment	to	move	these	genetic	element	between	themselves	merit	further	

study.	

	

	
	
	Figure	4.1	In	Group	I	plasmids	traR	can	be	fused	to	an	operon	involved	in	
catabolism	or	transport	of	an	organic	compound.		The	genes	for	DNA	
metabolism	and	mating	pair	formation	are	colored	in	blue,	while	traM	and	traR	are	
pink	and	yellow	respectively.		Known	or	putative	genes	involved	in	transport	
and/or	catabolism	of	organic	compounds	are	pictured	in	green.		Known	and	
potential	regulatory	genes	are	colored	in	red.		All	other	genes	are	pictured	in	black.	
	

	

All	Ti	plasmids	show	Group	I	organization,	whereas	all	Ri	plasmids	examined	show	

Group	II	organization.		This	remarkable	correspondence	of	structure	and	function	

implies	that,	while	the	Ti	and	Ri	plasmids	share	core	replication	and	transfer	genes,	
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they	arose	separately	and	the	two	plasmid	types	are	evolving	independently.		If	such	

is	the	case,	cargo	DNA	common	to	the	organizational	class,	the	genes	of	the	vir	

regulon,	for	example,	should	show	a	similar	evolutionary	divergence.		We	are	not	

aware	of	any	comprehensive	study	concerning	this	issue.		The	opine	catabolic	

plasmids	can	either	have	Group	I	or	Group	II	organization	indicating	that	these	

elements	can	evolve	from	either	group	of	plasmids.		One	can	imagine	that	this	

“cheater”	class	of	elements	evolves	from	the	Ti	or	Ri	virulence	elements	by	a	loss	of	

the	T-region,	and	the	vir	operons.		Such	a	path	could	account	for	retention	of	the	

genes	for	opine	catabolism.		While	most	plasmids	in	species	of	Rhizobium	and	

Ensifer	fall	into	Group	II,	at	least	two	Sym	plasmids,	pCB782	and	pOV14c,	exhibit	

Group	I	organization.		This	observation	implies	that	the	evolutionary	histories	of	the	

Sym	elements	are	less	constrained	than	that	of	the	Ti	and	Ri	plasmids	of	

Agrobacterium.		Finally,	the	two	representative	Class	I	plasmids	that	were	isolated	

out	of	bradyrhizobial	strains,	pHCG3	and	pB11,	demonstrate	a	Group	II	organization	

but	have	evolved	away	from	the	Group	II	elements	found	in	the	Rhizobiaceae	and	

form	a	separate	independently	evolving	linage,	Clade	III.		Clearly,	the	repABC	

elements	with	Class	I	transfer	systems	have	expanded	their	host	range	to	include	

bacteria	that	do	not	interact	with	plants.		Remarkably,	pHCG3	of	O.	carboxidovorans	

carries	the	genes	that	allow	this	bacterium	to	grow	autotrophically	on	CO	and	CO2.		

This	plasmid	represents	another	example	of	the	genetic	plasticity	of	the	repABC	

elements	and	how	they	evolve	to	confer	novel	traits	to	their	bacterial	host.		That	

plasmids	with	Group	II	organization	are	found	in	both	the	Rhizobiaceae	and	the	

Bradyrhizobiaceae	could	indicate	that	this	simpler	organization	is	ancestral	or	that	

the	Group	II	elements	are	more	efficient	at	transferring	and	replicating	in	a	variety	

of	host	backgrounds	in	comparison	to	plasmids	with	Group	I	organization.	
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4.7	pAoF64/95	is	a	Group	II	plasmid	inducible	for	transfer	by	the	opine	
mannopine	
	

Our	contribution	to	the	question	of	how	transfer	responds	to	environmental	cues	in	

Group	II	plasmids	with	monocistronic	traR	genes	took	a	serendipitous	start.		The	

octopine-type	Ti	plasmids	pTi15955	and	pTiR10	are	virtually	identical	elements	

that	encode	utilization	of	octopine	and	all	four	of	the	mannityl	opines.		Transfer	of	

these	plasmids	is	inducible	by	octopine	because	traR	is	in	an	operon	inducible	by	

the	opine	(82).		Later,	two	groups	identified	a	dominant-negative	frame	shifted	

allele	of	traR	on	pTi15955	and	pTiR10	called	trlR	that	is	located	in	an	operon	

inducible	by	mannopine	(MOP)	(179,	267).		Although	TrlR	was	expressed	when	the	

cells	were	grown	with	MOP,	transfer	was	not	induced	(179,	267).		We	reasoned	that	

there	must	be	a	field	isolate	that	harbors	a	plasmid	in	which	MOP	induces	

expression	of	traR	and	therefore	transfer,	and	that	traR,	like	trlR,	is	linked	to	the	

mannopine	transport	(mot)	operon.		In	an	assessment	of	a	number	of	MOP-utilizing	

wild-type	isolates	we	found	five	strains	in	which	the	opine	induced	transfer	of	the	

plasmid.		These	five	plasmids	all	were	highly	similar	so	we	focused	on	only	one,	

pAoF64/95.		This	plasmid	conferred	on	the	bacterium	the	ability	to	transfer	the	

MOP-utilization	trait	only	when	cells	were	grown	with	MOP.		Sequence	analysis	

revealed	that	this	plasmid,	while	not	a	virulence	element,	shows	a	Group	II	

organization	of	the	genes	involved	in	QS	and	transfer.		Of	considerable	interest,	traR,	

unlike	that	of	the	Group	I	plasmids,	is	monocistronic.		pAoF64/95	is	not	only	the	

first	plasmid	demonstrated	to	be	inducible	by	MOP,	but	it	is	also	the	first	Group	II	

plasmid	for	which	transfer	is	found	to	be	inducible	by	an	opine.	

	

4.8	pAoF64/95	is	an	opine-catabolic	plasmid	

	

In	addition	to	encoding	all	of	the	genes	involved	in	QS	and	Class	I	conjugative	

transfer,	pAoF64/95	encodes	all	the	genes	required	for	uptake	and	catabolism	of	

three	of	the	four	mannityl	opines-	mannopine,	mannopinic	acid,	and	agropinic	acid-	
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but	is	lacking	the	genes	for	uptake	and	utilization	of	agropine.		pAoF64/95	also	

encodes	the	acc	operon	responsible	for	uptake	and	utilization	of	the	agrocinopine	

opines	and	sensitivity	to	agrocin	84.		Consistent	with	sequence	analysis,	strains	

harboring	pAoF64/95,	in	addition	to	utilizing	MOP,	can	also	utilize	MOA	and	AGA	

and	are	susceptible	to	agrocin	84.		Considering	that	pAoF64/95	codes	for	utilization	

of	opines	but	does	not	encode	the	virulence	and	opine	synthesis	functions	of	the	Ti	

and	Ri	plasmids,	this	element	must	be	primarily	an	opine	catabolic	plasmid.		

Remarkably,	based	on	restriction	endonuclease	fragment	patterns,	pAoF64/95	is	

related	to	several	other	plasmids	in	the	Corvallis	collection	and	also	to	another	

opine	catabolic	plasmid,	pArA4	of	A.	rhizogenes	A4.		Like	pAoF64/95,	pArA4	confers	

utilization	of	MOP,	MOA,	AGA,	and	agrocinopines	to	its	bacterial	host.		Clearly	this	

conserved	opine-catabolic	plasmid	is	widely	disseminated	among	agrobacterial	

populations.		The	fact	the	opine	catabolic	plasmids	are	widely	distributed	and	confer	

utilization	of	the	opines	produced	by	plants	induced	by	virulent	agrobacterial	

strains	indicates	that	these	plasmids	likely	evolved	as	“cheaters”	by	uncoupling	a	

need	to	encode	functions	for	virulence	and	opine	synthesis	in	the	tumor	from	the	

functions	that	allow	their	bacterial	hosts	to	utilize	opines	in	the	rhizosphere.		

Therefore	these	plasmids	can	confer	the	selective	advantage	of	opine	utilization	to	

their	hosts	without	carrying	the	genetic	real	estate	that	encodes	the	vir	regulon	or	

the	T-regions	with	their	opine	synthesis	genes.		This	allows	the	bacteria	harboring	

the	“cheater”	plasmids	to	reap	the	benefits	of	carbon	sources	from	the	tumor	

environment	that	was	induced	by	another	strain	of	Agrobacterium.	

	

4.9	The	quorum-sensing	system	of	pAoF64/95	is	functional	

	

Much	of	what	is	known	about	regulation	of	transfer	of	Class	I	plasmids	has	come	

from	studies	of	the	Group	I	Ti	plasmids.		In	this	system,	opines	induce	transfer	by	

regulating	expression	of	traR.		Considering	that	the	inducing	signal	and	complete	

sequence	of	pAoF64/95	is	known	and	that	regulation	of	Group	II	plasmids	requires	

further	research,	pAoF64/95	is	an	excellent	choice	to	investigate	how	Group	II	
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plasmids	regulate	transfer.		Not	only	is	the	transfer	system	of	pAoF64/95	

conserved,	but	the	genes	for	QS	regulation-	traR,	traI,	and	traM-	also	are	conserved.		

Analysis	of	strains	harboring	pAoF64/95	and	cosmid	clones	encoding	traIpAoF64/95	

reveal	that	TraIpAoF64/95	produces	3-oxo-C8-HSL,	the	known	quormone	for	QS	

regulation	of	Class	I	plasmid	transfer.		We	also	constructed	and	analyzed	mutations	

in	both	traM	and	traR	of	pAoF64/95.		traM	mutants	are	constitutive	for	conjugative	

transfer,	indicating	that	the	role	of	TraM	as	an	antiactivator	is	conserved.		traR	

mutants	of	pAoF64/95	fail	to	transfer,	even	when	grown	with	MOP,	indicating	that	

TraRpAoF64/95	is	an	activator	of	conjugative	transfer.		However,	there	is	a	significant	

difference	between	the	regulatory	system	of	pAoF64/95	in	comparison	to	that	of	

the	Ti	plasmids.		In	all	Ti	plasmids	studied	to	date,	a	mutation	in	traR	is	

complementable	by	a	recombinant	clone	expressing	the	wild-type	allele.		Moreover,	

expression	of	the	cloned	traR	genes	obviates	the	need	for	the	conjugative	opine	(82,	

177,	189).		However,	although	a	cloned	wild-type	copy	of	traRpAoF64/95	complements	

the	traR	mutation,	it	does	so	only	in	cultures	grown	with	MOP.		This	observation	

suggests	that	regulation	of	transfer	of	pAoF64/95	is	more	complex	than	simple	

transcriptional	activation	of	traR.	

	

4.10	Future	research	will	assess	how	transfer	of	pAoF64/95	is	regulated	in	a	
mannopine-dependent	manner	
	

Although	traR	is	moncistronic	and	located	in	the	tra/trb	region,	which	is	distal	to	

the	MOP	catabolism	and	transport	genes,	the	gene	still	could	be	transcriptionally	

induced	by	a	MOP-responsive	regulator.		This	would	allow	levels	of	TraR	to	titrate	

the	inhibitory	effect	of	TraM.		This	model	is	similar	to	how	opines	induce	transfer	of	

the	Ti	plasmids	and	how	recipient-produced	acyl-HSL	induces	transfer	of	pRL1JI.		

However,	the	observation	that	expression	of	traRpAoF64/95	cannot	bypass	the	

requirement	for	MOP	implies	that	regulation	of	transfer	of	pAoF64/95	is	more	

complex	than	simple	transcriptional	control	of	traR.		Considering	this,	we	posit	a	

second	model	where	traR	is	expressed	at	a	low	constitutive	level,	similar	to	the	
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expression	of	traR	from	another	Class	II	plasmid,	p42a,	and	that	the	availability	of	

MOP	somehow	modulates	the	level	of	TraM,	thereby	allowing	accumulation	of	

sufficient	amounts	of	the	transcriptional	activator	to	activate	the	tra	regulon.		The	

cells	could	accomplish	this	in	at	least	two	ways.		First,	traM	could	be	

transcriptionally	controlled	by	MOP	such	that	reduced	quantities	of	the	

antiactivator	are	made	in	the	presence	of	the	conjugative	opine.		Alternatively,	TraM	

could	be	controlled	post	transcriptionally,	possibly	by	targeted	proteolysis	or	some	

mechanism	that	sequesters	the	antiactivator	in	cells	grown	with	the	conjugative	

opine.		Future	research	will	address	each	model	using	gene	reporter	systems	and	

targeted	mutational	analysis.	 	
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