
c© 2016 Haitong Tian

LAYOUT DECOMPOSITION FOR TRIPLE PATTERNING LITHOGRAPHY

BY

HAITONG TIAN

DISSERTATION

Submitted in partial fulfillment of the requirements
for the degree of Doctor of Philosophy in Electrical and Computer Engineering

in the Graduate College of the
University of Illinois at Urbana-Champaign, 2016

Urbana, Illinois

Doctoral Committee:

Professor Martin D.F. Wong, Chair
Professor Deming Chen
Professor Rob A. Rutenbar
Professor Wen-mei Hwu

ABSTRACT

Nowadays the semiconductor industry is continuing to advance the limits of

physics as the feature size of the chip keeps shrinking. Products of the 22 nm

technology node are already available on the market, and there are many on-

going research studies for the 14/10 nm technology nodes and beyond. Due

to the physical limitations, the traditional 193 nm immersion lithography

is facing huge challenges in fabricating such tiny features. Several types of

next-generation lithography techniques have been discussed for years, such

as extreme ultra-violet (EUV) lithography, E-beam direct write, and block

copolymer directed self-assembly (DSA). However, the source power for EUV

is still an unresolved issue. The low throughput of E-beam makes it imprac-

tical for massive productions. DSA is still under calibration in research labs

and is not ready for massive industrial deployment.

Traditionally features are fabricated under single litho exposure. As fea-

ture size becomes smaller and smaller, single exposure is no longer adequate

in satisfying the quality requirements. Double patterning lithography (DPL)

utilizes two litho exposures to manufacture features on the same layer. Fea-

tures are assigned to two masks, with each mask going through a separate

litho exposure. With one more mask, the effective pitch is doubled, thus

greatly enhancing the printing resolution. Therefore, DPL has been widely

recognized as a feasible lithography solution in the sub-22 nm technology

node. However, as the technology continues to scale down to 14/10 nm and

beyond, DPL begins to show its limitations as it introduces a high num-

ber of stitches, which increases the manufacturing cost and potentially leads

to functional errors of the circuits. Triple pattering lithography (TPL) uses

three masks to print the features on the same layer, which further enhances

the printing resolution. It is a natural extension for DPL with three masks

available, and it is one of the most promising solutions for the 14/10 nm

technology node and beyond.

ii

In this thesis, TPL decomposition for standard-cell-based designs is exten-

sively studied. We proposed a polynomial time triple patterning decomposi-

tion algorithm which guarantees finding a TPL decomposition if one exists.

For complex designs with stitch candidates, our algorithm is able to find a

solution with the optimal number of stitches. For standard-cell-based de-

signs, there are additional coloring constraints where the same type of cell

should be fabricated following the same pattern. We proposed an algorithm

that is guaranteed to find a solution when one exists. The framework of the

algorithm is also extended to pattern-based TPL decompositions, where the

cost of a decomposition can be minimized given a library of different patterns.

The polynomial time TPL algorithm is further optimized in terms of runtime

and memory while keeping the solution quality unaffected. We also studied

the TPL aware detailed placement problem, where our approach is guaran-

teed to find a legal detailed placement satisfying TPL coloring constraints as

well as minimizing the half-perimeter wire length (HPWL).

Finally, we studied the problem of performance variations due to mask

misalignment in multiple patterning decompositions (MPL). For advanced

technology nodes, process variations (mainly mask misalignment) have sig-

nificant influences on the quality of fabricated circuits, and often lead to

unexpected power/timing degenerations. Mask misalignment would compli-

cate the way of simulating timing closure if engineers do not understand the

underlying effects of mask misalignment, which only exists in multiple pat-

terning decompositions. We mathematically proved the worst-case scenarios

of coupling capacitance incurred by mask misalignment in MPL decomposi-

tions. A graph model is proposed which is guaranteed to compute the tight

upper bound on the worst-case coupling capacitance of any MPL decompo-

sitions for a given layout.

iii

To my parents, for their love and support.

iv

ACKNOWLEDGMENTS

Firstly I would like to express my special thanks to my adviser Prof. Martin

D.F. Wong. You have been a tremendous mentor for me. I would like to

thank you for giving me a lot of insightful advice on my research and helping

me to grow as a research scientist. This dissertation would not be possible

without your advice and wisdom.

I am also very thankful to all my doctoral committee, Prof. Deming Chen,

Prof. Wen-mei Hwu and Prof. Rob Rutenbar. Their constructive comments

and suggestions have proven to be extremely useful for this thesis.

I am extremely grateful for all my labmates in UIUC, who have always been

supportive in both my research and my life. I want to thank Dr. Hongbo

Zhang for helping with my research topics and sharing much career advice.

I want to thank Dr. Qiang Ma for discussing exciting research ideas, and

teaching me to drive when we were in UIUC. I want to thank Dr. Yuelin

Du for giving insightful comments for several of my research topics, and

kindly accommodating me when my temporary housing expired while I was

interning in the Bay Area. I want to thank Dr. Zigang Xiao for helping with

my research topics. We have had the same adviser ever since we were masters

in Hong Kong, and you have always been of tremendous help for both my

research and my life endeavors. I also want to thank my labmates Prof.

Fan Zhang, Dr. Pei-Ci Wu, Dr. Ting Yu, Ms. Leslie Hwang, Mr. Daifeng

Guo, Mr. Tsung-Wei Huang, Mr. Chun-Xun Lin, Ms. Tin-Yin Lai and Mr.

Iou-Jen Liu. You have made my PhD life more colorful and enjoyable.

I am extremely lucky for meeting lots of friends in UIUC. My roommate

Dr. Mingcheng Chen has been extremely helpful during my ups and downs

throughout my PhD life. I also want to thank my friends Mr. Jian Guan, Mr.

Xiufu Wang, Mr. Yi Song, Dr. Jialu Liu, Mr. Xiang Ren, Mr. Zhuotao Liu,

Mr. Zhenhuan Gao, Mr. Yi Liang, Mr. Zelei Sun, Ms. Shiya Liu, Dr. Qingxi

Li, Mr. Zhenqi Huang, Dr. Dong Ye, Ms. Ying Chen, Ms. Mengjia Yan,

v

Ms. Wenting Hou, Ms. Xueman Mou, Mr. Shuai Tang and many others.

I am proud to be a member of Chinese Students and Scholars Association

(CSSA) when I was at UIUC. I am honored to work with all the folks in

CSSA including Dr. Jiansong Zhang, Ms. Yuwei Chen, Ms. Yingqi Zhou,

Ms. Yitang Guo, Mr. Lizi Zhang, Mr. Jing Jiang, Mr. Donghai Gai, Mr.

Jin Xing, Ms. Jiahui Yu, Mr. Yuxiang Zhu, Mr. Wanlin Kong, Ms. Sujin

Shi, Ms. Shiyan Zhang, Mr. Ti Xu, Ms. Ziqi Tang, Mr. Junfeng Guan, Ms.

Xuran Peng, Ms. Zhenni Wang, Mr. Xuan Lv, Ms. Xuan Liu, Ms. Jinglin

Zhong, Ms. Miaoyan Li, Ms. Yuan Liao, Mr. Cheng Wan and many others.

Finally, I give my deepest gratitude to my parents and my two sisters, Jing

Tian and Cui Tian, who have always been supportive throughout my whole

life. Words cannot express my love and gratitude for them.

vi

TABLE OF CONTENTS

LIST OF ABBREVIATIONS . ix

CHAPTER 1 A POLYNOMIAL TIME TRIPLE PATTERNING
ALGORITHM FOR CELL-BASED ROW-STRUCTURE LAYOUT 1
1.1 Introduction . 1
1.2 Preliminaries . 3
1.3 A Polynomial Time Algorithm 5
1.4 TPL Incorporating Stitches 15
1.5 Experimental Results . 18
1.6 Conclusions . 21

CHAPTER 2 CONSTRAINED PATTERN ASSIGNMENT FOR
STANDARD-CELL-BASED TRIPLE PATTERNING LITHOG-
RAPHY . 22
2.1 Introduction . 22
2.2 Preliminaries . 25
2.3 Problem Definition . 28
2.4 A Hybrid Approach . 29
2.5 Approach for Local Color Balancing 37
2.6 Experimental Results . 39
2.7 Conclusions . 42

CHAPTER 3 TRIPLE PATTERNING AWARE DETAILED PLACE-
MENT WITH CONSTRAINED PATTERN ASSIGNMENT 43
3.1 Introduction . 43
3.2 Preliminaries . 45
3.3 CPA-Friendly Detailed Placement 47
3.4 CPA-Friendly Refinement with Optimal HPWL 56
3.5 Experimental Results . 59
3.6 Conclusions . 62

CHAPTER 4 AN EFFICIENT LINEAR TIME TRIPLE PAT-
TERNING SOLVER . 63
4.1 Introduction . 63
4.2 Preliminaries . 65

vii

4.3 An Optimal Algorithm . 67
4.4 Hierarchical Approach . 74
4.5 Experimental Results . 76
4.6 Conclusions . 78

CHAPTER 5 PERFORMANCE EVALUATION CONSIDERING
MASK MISALIGNMENT IN MULTIPLE PATTERNING DE-
COMPOSITION . 79
5.1 Introduction . 79
5.2 Preliminaries . 81
5.3 Problem Description . 84
5.4 Algorithm . 85
5.5 Experimental Results . 93
5.6 Conclusions . 95

CHAPTER 6 FUTURE DIRECTIONS ON TRIPLE PATTERN-
ING DECOMPOSITION . 96
6.1 Pattern-Based Triple Patterning Decomposition 96
6.2 Color Balancing for Triple Patterning Lithography 103
6.3 Hybrid Lithography for Triple Patterning Decomposition

and E-beam Lithography . 109
6.4 Conclusions . 117

REFERENCES . 118

viii

LIST OF ABBREVIATIONS

AG Adjacency Graph

AU Atomic Unit

BCP Boundary Conflicted Polygon

BCG Boundary Conflicted Graph

BP Boundary Polygon

CD Critical Dimension

CG Constraint Graph

CPA Constrained Pattern Assignment

DSA Directed Self-Assembly

DOF Depth of Focus

DPL Double Patterning Lithography

EUV Extreme Ultra-Violet

HPWL Half-Perimeter Wire Length

IC Integrated Circuit

ICL Influenced Cutting Line

ILP Integer Linear Programming

LUT Look-Up Table

MPL Multiple Patterning Lithography

SADP Self-ALigned Double Patterning

SAT Boolean Satisfiability Problem

ix

SDP Semi-Definite Programming

SG Solution Graph

SPC Solutions Per-Cell

STD Standard Deviation

TPL Triple Patterning Lithography

VSB Variable Shaped Beam

x

CHAPTER 1

A POLYNOMIAL TIME TRIPLE
PATTERNING ALGORITHM FOR
CELL-BASED ROW-STRUCTURE

LAYOUT

1.1 Introduction

As technology advances, the feature size of chips continues to scale down.

However, advancements in lithography technology have been slow and lagged

behind. Due to the limitation of current 193 nm ArF immersion lithogra-

phy, advancing the IC industry towards the 14/10 nm technology node has

become a challenge. Although different types of next-generation lithogra-

phy techniques have been discussed for years, such as extreme ultra-violet

(EUV) [1, 2, 3, 4, 5, 6] lithography, E-beam direct write [7, 8, 9, 10, 11, 12]

and nano-imprint techniques [7, 13], the most promising printing technique

that will be used in the 14/10 nm technology node is still the 193 nm im-

mersion lithography with multiple patterning techniques.

The key idea of multiple pattering lithography is to use several expo-

sure processes for a single layer. Typically, the patterning techniques can

be classified as: double patterning lithography (DPL, also known as litho-

etch-litho-etch technique), triple patterning lithography (TPL, also known

as litho-etch-litho-etch-litho-etch technique) and self-aligned double patter-

ing (SADP). Due to the difficulties of bridging the mask rules and design

rules in SADP [14, 15], DPL is now considered the key enabling technique

for the 20 nm technology node. In DPL, patterns on one layer would be as-

signed to two different masks to double the printing pitch. In DPL, the color

assignment is usually done by applying a minimum spacing rule, and any

features that are closer than dmin (the minimum spacing) must be assigned

different colors. Figure 1.1(b) shows an example of DPL decomposition. Be-

cause every two of them conflict with each other, a stitching is needed and

feature a has to be further sliced into two parts, a1 and a2, to resolve coloring

conflicts. Although it is always preferred to minimize the stitch number dur-

1

ing the DPL decomposition process, stitches in DPL are usually inevitable,

especially in the circumstances of a high density layout. Those stitches po-

tentially cause yield lost and increase manufacturing cost [16, 17, 18].

a

b

c
(a) (b)

a1

b

c a2

a

b

c
(c)

Figure 1.1: (a) A simple layout. (b) Patterning solution using double
patterning lithography. (DPL) (c) Patterning solution using triple
patterning lithography (TPL). Polygons with different colors mean that
they appear in different masks.

DPL has been extensively studied in the literature. An ILP-based algo-

rithm is proposed by Kahng et al. [17] to minimize the number of stitches. Xu

and Chu [19] presented a graph reduction algorithm to minimize the number

of stitches. A min-cut algorithm is proposed by Yang et al. [20] to minimize

stitches, balance density and compensate overlay simultaneously. Xu and

Chu [21] proved that the conflict graph used to model DPL is planar and

introduced a matching based decomposer to simultaneously minimize the

number of stitches and conflicts. Some DPL algorithms also consider layout

modification to resolve the native conflicts [22, 23, 24]. Self-aligned double

patterning is another choice for the future technology node. However, due

to the decomposition difficulties and the big gaps between design rules and

mask rules, it still requires further research before being massively adopted

in the IC industry [14, 15].

Compared to DPL, TPL uses three masks for pattern assignment. There-

fore, we can have more flexibility with color assignment and fewer conflicts

among features. For the same layout in Fig. 1.1 (a), a stitch-free decomposi-

tion can be easily achieved using TPL as shown in Fig. 1.1 (c). Using different

colors representing different masks, the TPL layout decomposition problem

can be formulated as a 3-coloring problem, which is NP-complete. Yu et

al. [25] made the first contribution in TPL decomposition with an ILP-based

approach, and further proposed a semidefinite programming approximation

algorithm to deal with dense layouts. However, the ILP-based algorithm is

2

expensive while the modified semidefinite programming is losing the opti-

mality. A graph-based heuristic is proposed in [26], but it cannot guarantee

to find a solution without resorting to an exponential algorithm. The TPL

problem is also studied in [27]. However, it also failed to guarantee to find a

solution if one exists. Moreover, more stitches are introduced compared with

the results in [25].

In this chapter, we propose a polynomial time algorithm to find triple

patterning decompositions of a standard-cell-based layout. Our contributions

can be summarized as follows:

• We propose a polynomial time algorithm to solve the standard-cell-

based row-structure TPL layout decomposition problem, and our algo-

rithm has the capability to find all stitch-free decompositions.

• Color balancing is considered to achieve a balanced layout decomposi-

tion.

• We further improve our algorithm by first preprocessing each standard

cell and then decomposing the whole layout on cell level. Experimental

results show that this improved algorithm reduces the runtime by 34.5%

on average without sacrificing the optimality.

• To deal with more complex designs, we further extend our approach to

accommodate stitches. Our extension is very efficient, and guarantees

to find an optimal solution using the minimum number of stitches.

• Our approach is highly scalable, and can be easily migrated to parallel

implementations to further reduce the runtime.

The rest of the chapter is organized as follows: some preliminaries of the

TPL problem are discussed in Section 1.2. Our basic algorithm will be pre-

sented in Section 1.3. The extended algorithm with stitches is discussed

in Section 1.4. Section 1.5 shows the experimental results, followed by a

conclusion in Section 1.6.

1.2 Preliminaries

Preliminaries of standard-cell-based layout decomposition are introduced here,

including introductions to the standard-cell-based layout and the problem

3

definition.

1.2.1 Standard-Cell-Based Row-Structure Layout

In standard-cell-based designs, designers are given a library of pre-designed

standard cells. All standard cells in the library have the same height, with

power and ground tracks going from the far left to the far right. A layout

consists of multiple rows, and in each row, the cells are aligned with power and

ground connecting each other. The same type of cells may appear multiple

times within a standard cell row.

Power

track

A B C
Poly

layer

Figure 1.2: Layout of part of a standard cell row. Three cells, A, B, and C
lie in the standard cell row. Only the poly layer and metal 1 layer are
shown here for simplicity.

In the 14/10 nm technology node, TPL is only need for the densest layer

with finest features – most likely including gate, low-level interconnect layers.

For the gate and low-level interconnect layers except metal 1 (M1) which have

preferred/required directions defined, solving triple patterning problem could

be trivial by modified track-coloring assignment. The most difficult part of

TPL decomposition comes from the M1 layer. For the M1 layer, the most

commonly seen properties are as follows:

• Power and ground tracks connect all cells in the M1 layer in a row from

left to right. A limited number of tracks is available between the power

and ground tracks.

• Power and ground tracks are usually several times thicker than the

finest features in the M1 layer, which can perfectly isolate the influences

between different rows.

4

• Wires have no preferred directions.

• Most wires are defined locally inside the cells, with few connecting

different cells in the same row.

A sample standard-cell-based circuit layout is shown in Fig. 1.2. There are

three cells in the layout. Power track, which refers to the power and ground

connections, is on the M1 layer. Higher metal layers are not shown here for

simplicity.

1.2.2 Color Balancing

Among all legal decompositions, the ones where the features are evenly dis-

tributed on the three masks are more favorable. These well-balanced decom-

positions fully take advantage of each mask, and maximally benefit from the

manufacturing process. This issue can be easily addressed in our framework

as our algorithm has the capability to find all legal solutions of a layout.

As we will explain in Section 1.3.6, our algorithm is able to find a balanced

layout decomposition by scanning our solutions only once.

For a layout, there could be many legal decompositions. Although all solu-

tions satisfy the minimum distance constraint, people in practice want to find

a relatively balanced solution, in which none of the three masks dominates

other ones. This concept can be efficiently incorporated into our framework

as our algorithm is able to find all legal solutions of a layout.

1.2.3 Problem Definition

Given an M1 layer layout and minimum colorable distance dmin, our objective

is to find a legal triple patterning decomposition for the M1 layer layout while

balancing the area utilization in the three masks.

1.3 A Polynomial Time Algorithm

In the following ,we use different colors to denote different masks. Polygons

with the same color will appear in the same mask. In this section, we will

introduce our polynomial time triple patterning algorithm. Based on coloring

5

of standard cell rows, we also proposed a hierarchical approach to further

accelerate our algorithm.

a

b

c
d

{a} {a,b} {b,c} {d}

Cutting line sets

Cutting lines

L1 L2 L3 L4

S1 S2 S3 S4
Cutting line sets:
S1={a}

S2={a,b}

S3={b,c}

S4={d}

Figure 1.3: Cutting lines and cutting line sets.

1.3.1 Basic Terminologies

Some terminologies used in the algorithm are first introduced here.

Definition 1 (cutting line): A cutting line is defined as a vertical line

going from the top of the standard cell row to the bottom of it.

Definition 2 (cutting line set): A cutting line set is defined as the set

of polygons which intersect with the same cutting line.

Let us associate each polygon in one row with a cutting line with the same

x coordinate of its left boundary, and eliminate the redundant ones. We then

obtain a set L of n cutting lines with L = {L1, L2, ..., Ln}. Note that n is at

most the number of polygons in this row. Let us assume the cutting lines in

L are sorted in nondecreasing order with respect to their x coordinates, i.e.

x(Li) ≤ x(Lj) if i ≤ j. Each cutting line Li is associated with a cutting line

set Si, which consists of all polygons intersecting with cutting line Li.

Consider the example shown in Fig. 1.3, there are four cutting lines L1, L2,

L3 and L4, which are shown in red dashed lines. Their corresponding cutting

line sets are S1 = {a}, S2 = {a, b}, S3 = {b, c}, and S4 = {d} respectively.

To capture all coloring conflicts among the polygons and all legal solutions

of a layout, two graphs, constraint graph and solution graph, are used in our

6

a

b

c
d

1

2

3

{a}

1,2

1,3

2,1

2,3

3,1

3,2

{a,b}

1,2

1,3

2,1

2,3

3,1

3,2

{b,c}

1

2

3

{d}

(c)(b)

a

b

c
d

(a)

a

b

c
d

1

2

3

{a}

1,2

1,3

2,1

2,3

3,1

3,2

{a,b}

1,2

1,3

2,1

2,3

3,1

3,2

{b,c}

1

2

3

{d}

(c)(b)

a

b

c
d

(a)

a

b

c
d

a

b

c
d

Figure 1.4: (a) Input layout. (b) Constraint graph. (c) Solution graph
(different numbers here denote different colors).

algorithm.

Definition 3 (constraint graph): The constraint graph is defined as

an undirected graph where the nodes represent polygons in a given layout,

and where an edge means that the distance of the two polygons it connects

are within the distance threshold dmin (the minimum spacing rule).

Figure 1.4(a) shows a simple layout with four polygons, and the corre-

sponding constraint graph is shown in Fig. 1.4(b). If two nodes are connected

in the constraint graph, they cannot be assigned the same color in a legal

layout decomposition.

Definition 4 (solution graph): The solution graph is a directed graph

where each node records a legal coloring solution of a cutting set, and where

an edge exists between two nodes which belong to adjacent cutting lines if

the coloring solutions of the two nodes are compatible to each other.

For each cutting line set Si, all the coloring solutions can be generated by

simply enumerating all possible coloring assignments. For each of the coloring

solution of Si, a node is created in the solution graph. Denote the set of nodes

generated from the coloring solutions of Si as Ni, and Ni = {N1
i , N

2
i , ..., N

q
i },

where q ≤ 3t, and t is the maximum number of tracks in this row. For any

node N j
i and Nk

i+1, an edge is added to connect the two nodes if the two

coloring solutions do not conflict with each other.

A simple example is shown in Fig. 1.4. There are four polygons in the

layout. The constraint graph is shown in Fig. 1.4(b). There are four cutting

7

lines in the layout, which are shown in red dotted lines. For the first cutting

line, which is the leftmost one, the cutting line set includes only polygon

a. It has three coloring solutions: 1, 2, and 3, which are denoted by three

nodes in the solution graph. For the second cutting line, the cutting line set

includes polygons a and b. Similarly, its coloring solutions are denoted as six

nodes. Edges are added if two nodes are compatible with each other. The

same thing is done for the third and fourth cutting lines. Figure 1.4(c) shows

the solution graph of the layout in Fig. 1.4(a).

1.3.2 Polygon Dummy Extension

In the constraint graph, a polygon may conflict with several other polygons.

It is necessary to consider all conflicting polygons together to ensure a valid

decomposition. However, those polygons are usually distributed in different

cutting lines.

For the example shown in Fig. 1.5(a), there is only one polygon intersect-

ing with each cutting line. The corresponding solution graph is shown in

Fig. 1.5(c). A path from the leftmost to the rightmost of the solution graph

corresponds to a patterning solution. For example, path (1,2,1,2) means that

polygons a and c can be colored using color “1”, while b and d can be colored

using color “2”. This solution is illegal since polygons a and c cannot be

assigned the same color, which can be clearly seen from the constraint graph

shown in Fig. 1.5(b). This is because conflicts between non-adjacent cutting

lines are neglected, which leads to color assignment violations.

Based on the constraint graph, we propose a polygon dummy extension

method to capture the conflicts of the polygons between multiple cutting

lines. For each polygon in the layout, we locate its conflicting polygon that

has the largest left x coordinate. Denote its left x as x0. Then, the right

boundary of the current polygon is virtually extended to x0− δ, where δ is a

very small value and is used to ensure that the new right boundary does not

intersect with the cutting line x = x0. After extending the right boundaries of

the polygons, it is guaranteed that for any polygon in a cutting line set Si, all

its conflicting polygons (with smaller x coordinates) appear in the previous

cutting line set Si−1. Based on the modified layout, we go through each

cutting line Li and find the corresponding cutting line set Si. The solutions

8

a

b

c

d

a

b

c

d

(a) (b)

(d)

1

2

3

{a}

1,2

1,3

2,1

2,3

3,1

3,2

{a,b}

1,2

1,3

2,1

2,3

3,1

3,2

{b,c}

1

2

3

{d}

(e)

a

b

c

d

Cutting

line

Extended

area

1

2

3

1

2

3

1

2

3

1

2

3

{a} {b} {c} {d}

(c)

Figure 1.5: (a) Input layout. (b) Constraint graph. (c) Solution graph
without polygon dummy extension. (d) Input layout after polygon dummy
extension. (e) Solution graph with polygon dummy extension.

of Si can be computed. For each solution of Si, which is represented by a

node in the solution graph, its compatible nodes in the solution graph are

identified and an edge is added between the two nodes. Repeating the above

steps, we can build a solution graph for a given layout.

For polygon a in Fig. 1.5, its conflicting polygons are polygons b and c.

Denote the x coordinates of polygon b and c as xb and xc respectively. Since

the left boundary of polygon c has a larger x coordinate, the right boundary

of polygon a is virtually extended to xc − δ, where δ is chosen to be small

enough such that polygon a intersects with the second cutting line, but not

the third one. Figure 1.5(c) is the layout after polygon dummy extension,

and Fig. 1.5(d) is the corresponding solution graph. We can see that based

on the modified layout, every path in Fig. 1.5(d) is guaranteed to be a valid

solution.

Theorem 1. There is a valid triple patterning decomposition if and only if

there is a path going from the leftmost of the solution graph to the rightmost

of it.

Proof. We prove the theorem by mathematical induction. The base case is

that for the first cutting line L1, all paths reaching nodes in N1 in the solution

9

Algorithm 1: Coloring of a Standard Cell Row

1 begin
2 Initialize solution graph G to be empty;
3 P ← all polygons in a standard cell row;
4 X ← x coordinates of the left boundaries of all polygons in P ;
5 Sort X in increasing order;
6 w ← size of X;
7 for i← 1 to w do
8 Set cutting line x = Xi;
9 Find all polygons intersecting with x = Xi;

10 Compute solutions for these polygons;
11 Add the solutions into the solution graph G;

12 end
13 Find a path from the leftmost side to the rightmost side of G;

14 end

graph are legal, since these paths contain only one node, which must be legal.

Now assume for cutting line Li, all paths reaching nodes in Ni in the solution

graph are legal. Consider the next cutting line Li+1, the set of solution nodes

are Ni+1. For the set of solution nodes in Ni and Ni+1, edges are only added

when two nodes are compatible with each other. Using polygon dummy

extension, it is guaranteed that for any polygon in cutting line set Si+1, all

its conflicting polygons appear in the previous cutting line set Si. This means

that the solutions nodes in Ni+1 are only affected by the nodes in Ni. Since

all paths reaching nodes in Ni are already legal, adding one more legal edge

to those paths guarantees that the new paths are legal.

Similarly, the reverse case can also be proved by mathematical induction.

Assume triple patterning solutions exist for a given layout. For any known

solution, the coloring of all the polygons are known. The base case is that

for the first cutting lines L1, we can always find a node Nk1

1 from the node

sets N1, in which all polygons in the cutting line sets S1 are assigned the

same color as they are in the legal TPL solution. Now consider the cutting

lines Li and Li+1. Denote the compatible node we find in Ni and Ni+1 as Nki

i

and Nki+1

i+1 respectively. Since the solutions of Nki

i and Nki+1

i+1 are contained

in the legal TPL solution, by definition, there must be an edge connecting

the two nodes in the solution graph. All connecting nodes form a path in

the solution graph. The proof is complete.

10

a

b

c

d

g

e

f

1

2

3

{a}

1,2
1,3
2,1
2,3
3,1
3,2
{a,b}

1,2
1,3
2,1
2,3
3,1
3,2
{b,c}

1

2

3

{d}

(a)

(c)

1

2

3

{g}

1,2
1,3
2,1
2,3
3,1
3,2
{g,e}

1,2
1,3
2,1
2,3
3,1
3,2
{e,f}

(b)

d

g

e

(d)

d

g

e

1

2

3

{d}

1,2
1,3
2,1
2,3
3,1
3,2
{d,g}

1,2
1,3
2,1
2,3
3,1
3,2
{g,e}

1

2

3

1,2
1,3
2,1
2,3
3,1
3,2

1,2
1,3
2,1
2,3
3,1
3,2

1

2

3

1,2
1,3
2,1
2,3
3,1
3,2
{d,g}

1,2
1,3
2,1
2,3
3,1
3,2
{g,e}

1,2
1,3
2,1
2,3
3,1
3,2
{e,f}

(e)

A B
BCP BCP BCP

d

g

e

BCP

a

b

c

d

A g

e

f

B

(f)
{a} {a,b} {b,c} {d}

Figure 1.6: Illustration of BCP without connections. “SG” denotes
“solution graph”. (a) Three polygons, d, e, and g, appear in the BCP. (b)
Solution graph of cells A, B, and the BCP. (c) Final solution graph and a
sample solution path, which is shown in red color.

1.3.3 Power and Ground Connections

For standard-cell-based designs, each cell has its power and ground connec-

tions on the top and bottom that goes from the far left to the far right. Since

the power and ground connections appear in all cutting lines, we can pre-

color them before processing other polygons. They can either be assigned

the same color, or different colors. There is no need to try all combinations,

since we can generate other solutions from existing ones by rotating colors.

For example, if we already get a solution graph G, we can easily get an-

other solution graph G′ by changing color 1 to color 2, color 2 to color 3

and color 3 to color 1. In the algorithm, both ways of pre-coloring by as-

signing the same and different colors to the power track are tried, and for

each way of pre-coloring, the algorithm is able to find all possible coloring

solutions. Therefore, the pre-coloring step does not affect the optimality of

11

our approach. Our row-based algorithm is shown in Algorithm 1.

Solution graphs of adjacent rows can be combined together based on the

power and ground connections. If two rows share the same power connections,

we require the coloring of the power connections in the two solution graphs

to be the same. The same principle applies for ground connections.

1.3.4 Algorithm Complexities

Assume that there are n polygons in a standard cell row, and there are at

most t horizontal tracks available for routing per standard cell row. Note that

t can be regarded as constant under a particular manufacturing technology.

Thus, each cutting line intersects at most t polygons. Due to the dummy

extension of polygons, we need to enumerate the solutions of at most 2t

polygons per cutting line. The number of solutions is thus upper bounded by

32t. Since the cutting lines are based on the left boundaries of the polygons,

there are at most n cutting lines. For the solution nodes of two successive

cutting lines, 34t operations are needed to connect the compatible nodes. The

overall time complexity of our approach is O((34t+32t)n). Note that 34t+32t

is constant here. Therefore, the overall complexity is O(n). This shows that

the standard-cell-based TPL problem is polynomial time solvable.

Note that this is a very pessimistic upper bound. In practice, there are

seldom 2t polygons intersecting with a cutting line. Even there are 2t poly-

gons, the number of solutions are far less than 32t, as many solutions can be

pruned away based on the constraint graph. Moreover, different rows can

be solved independently. For each row, our algorithm is guaranteed to find

all possible solutions. Therefore, the parallel implementation does not affect

the optimality of our algorithm, and the solution graph will be the same as

that without parallel implementation.

1.3.5 Hierarchical Speedup Approach

For standard-cell-based circuit designs, millions of elements in a chip are

typically composed of hundreds of basic cells in the standard cell library. If

the solution graphs of all basic cells are precomputed, they can be reused

in the higher hierarchy to color a given layout. In practice, the number

12

a

b

c

d

g

e

f
d

g

e

(a) BCP with

connections

1

2

3

1,2

1,3

2,1

2,3

3,1

3,2

1,2

1,3

2,1

2,3

3,1

3,2

1

2

3

1,2

1,3

2,1

2,3

3,1

3,2

1,2

1,3

2,1

2,3

3,1

3,2

1

2

3

1,2

1,3

2,1

2,3

3,1

3,2

1,2

1,3

2,1

2,3

3,1

3,2

1,2

1,3

2,1

2,3

3,1

3,2

A B

BCP BCP

d

g

e

{d,g} {g,e} {e,f}{a} {a,b} {b,c} {d} {d} {d,g} {g,e}

Boundary

connection

(b) Final SG &

solution path

SG of BCP

BCG

Figure 1.7: Illustration of BCP with connections. “SG” denotes “solution
graph”. (a) Three polygons, d, e, and g, appear in the BCP. (b) Final
solution graph and a sample solution path, which is shown in red color.

of elements in a chip usually overwhelms the number of basic cells in the

standard cell library. Thus, cell based hierarchical approach is expected to

greatly accelerate the runtime compared with coloring a given layout as one

large graph.

For each cell in the cell library, the constraint graph and solution graph

are constructed. These two graphs can be constructed the same way as that

for the standard cell rows. To connect different cells in a standard cell row,

connections between cells are considered.

Boundary Polygons between Adjacent Cells

Adjacent cells in a standard cell row may introduce additional coloring con-

flicts. If polygons of adjacent cells are within the distance dmin, they have to

be assigned different colors. To capture such constraints, we introduce ad-

ditional conflicting edges recording all coloring conflicts between these poly-

gons. Define boundary conflicting polygons (BCP) as the set of polygons

within a distance of dmin from the boundaries of the adjacent cells. For the

BCPs of two adjacent cells, all conflicting edges are identified. Based on the

constraint graphs of the two cells and these conflicting edges, a boundary

constraint graph (BCG) is constructed, which represents all conflicting rela-

13

tions between the BCPs. Polygon dummy extension is performed based on

BCG. After that, we go over the left boundaries of polygons in BCP, and

compute a solution graph for BCP. By combining the solution graphs of the

two standard cells and the solution graph of BCPs, we can build a larger

solution graph, which contains all possible legal patterning solutions for the

adjacent cells.

A simple example with two cells is illustrated in Fig. 1.6. For cell A and cell

B, their BCPs are first identified. Based on the BCPs and their constraint

graph, polygon dummy extension is performed. Then, the solution graph

for BCPs can be computed. By combining the solution graphs for cells A,

B, and the BCPs, the final solution graph can be computed as shown in

Fig. 1.6(c).

Connections between Cells

Additional coloring conflicts also include connections between different cells.

If there are connections between two polygons for adjacent cells, they should

be assigned the same color. Note that a BCP also contains all connecting

polygons in adjacent cells. When enumerating solutions for BCPs, connected

polygons are assigned the same color. For a connection that goes across

several cells, we can group the cells it covers and treat them as one large cell.

The row-based method can be used directly to compute the constraint graph

and solution graph of the large cell. Then, the cell is treated as a regular cell

in the algorithm.

An example of boundary connection between adjacent cells is shown in

Fig. 1.7 to illustrate the above ideas. For the two connecting polygons d and

e, they are assigned the same color in the solution graph. The flow of our

hierarchical approach is shown in Algorithm 2.

1.3.6 Color Balancing

For a good TPL layout decomposition, the area utilization of the three masks

should be balanced so that none of them dominate the other ones. These well-

balanced decompositions fully take advantage of each mask, and maximally

benefit from the manufacturing process. The area of polygons on each mask

is used as the metric to evaluate the quality of a patterning solution. After

14

Algorithm 2: Hierarchical Speedup Approach

1 begin
2 Clib ← all standard cells in the library;
3 Crow ← all standard cells in a row;
4 foreach Cell Ci in Clib do
5 Build constraint graph Gi;
6 Build solution graph Si;

7 end
8 m← number of long connections in Crow ;
9 for j ← 1 to m do

10 Cnew ← all the cells the jth connection covers;
11 Build its constraint graph Gnew;
12 Build its solution graph Snew;
13 Clib ←Cnew;

14 end
15 w ← size of Crow ;
16 for j ← 1 to w do
17 Build partial solution graph G for the first jth cells in Crow;
18 end
19 Find a path from the leftmost side to the rightmost side of G;

20 end

obtaining the solution graph, a balanced patterning solution is chosen as

follows.

Three variables are used here, each representing the total area of polygons

with the same color. The solution graph is scanned from the leftmost cutting

line to the rightmost cutting line. In each step, the color with the largest

polygon areas is assigned the lowest priority, while the color with the smallest

polygon areas has the highest priority. New polygons will be assigned the

color that is legal and has the highest priority. Note that new polygons can

only be assigned the color that is compatible with the color assignments of

previous polygons.

1.4 TPL Incorporating Stitches

Since stitches potentially introduce many undesirable effects and will increase

the manufacturing cost, it is always preferable to design a circuit layout which

is 3-colorable. However, in practice, there may be complex cell layouts which

are impossible to decompose into three masks without introducing stitches.

For those layouts, we first find a set of legal stitch positions and decompose

the original polygons into a set of smaller stitch polygons. Then, a modified

15

solution graph is constructed based on our previous optimal TPL algorithm.

Lastly, a shortest path algorithm is invoked to get an optimal solution with

the minimum number of stitches.

1.4.1 Stitch Position Identification

The same method is adopted as what is used in [25] to identify all stitch

candidate positions. For a given layout, the layout graph simplification tech-

nique [25] is first performed to find the polygons that potentially require

stitches. Then, node projection is invoked to find all projected segments on

those polygons. Based on the projection results, all legal stitch positions are

computed. Note that a stitch position is legal if it does not intersect with

any projected segments. If the vertical stitch is illegal, the horizontal one will

be tried. The original polygons are decomposed into a set of new polygons

by the stitches. The constraint graph can be constructed based on those

decomposed polygons. Besides the constraint edges, there also exists stitch

edges in the constraint graph. There is a stitch edge connecting two nodes if

a stitch candidate exists between the two corresponding polygons.

A simple example is shown in Fig. 1.8. Obviously, the layout shown in

Fig. 1.8(a) is not 3-colorable since the constraint graph of the four nodes

forms a complete graph, which is shown in Fig. 1.8(b). The node projection

result is shown in Fig. 1.8(c). Two legal stitch positions are computed based

on the node projection results, which are shown in Fig. 1.8(d). We can see

that after adding the two stitches, legal triple patterning decompositions can

be achieved.

1.4.2 Coloring a Standard Cell Row

After finding all stitch positions, coloring of the new layout is similar to the

TPL algorithm without stitches. The solution graph here is different from

that without stitches. Weights are assigned to edges in the solution graph. If

two nodes corresponding to cutting line set Si and Si+1 requires c stitches,1

the weight of the edge will be assigned as c. Similarly, a hierarchical approach

can also be adopted to further reduce the runtime.

1c is an integer, which reflects how many stitches are needed from one coloring solution
to another.

16

(a)
c

b d

a

(b)
c

b d

a

(c)

c

b d

a

(d)

b

d

a1

a2

c2

c1

Figure 1.8: (a) Input layout. (b) Constraint graph of the input layout in
(a). (c) The node projection. Projection edges are shown in bold brown
lines. (d) Constraint graph after stitch decomposition. Polygon a is
decomposed into polygons a1 and a2. Polygon c is decomposed into
polygons c1 and c2. The stitch positions are shown using bold red lines.
Stitch edges are shown in bold green lines.

1.4.3 Finding an Optimal Decomposition

Once we construct the solution graph, finding an optimal solution is quite

straightforward. A shortest path algorithm can be employed to get an op-

timal decomposition with the minimum number of stitches. Note that the

way we construct the solution graph is intrinsically beneficial for the short-

est path formulation. If we go through the solution graph from left to right

based on the cutting lines, all the nodes we visited are already in topological

order. Unlike the ILP formulation which is very slow and the semidefinite

programming formulation which loses its optimality in [25], the shortest path

formulation is very fast and guarantees finding an optimal solution.

Similar to the TPL algorithm without stitches, the TPL algorithm with

stitches also runs in polynomial time. The time complexity is O(n+s), where

n is the number of polygons and s is the number of stitch candidates in a

give layout.

17

1.5 Experimental Results

The algorithm is implemented in C++ and run on a Linux server with 4GB

RAM and a 2.8 GHZ CPU. NanGate FreePDK45 Generic Open Cell Li-

brary [28] is used to generate all benchmarks. We randomly select the stan-

dard cells in the cell library, and align them adjacently in different rows of a

chip. The size of the standard cells are proportionally scaled down to reflect

a 14 nm technology node. Connections between adjacent cells are randomly

generated between their boundary constraint polygons. dmin is set to be 82

nm. Wires on the M1 layer are used for all experiments, as more wires in-

cluding power tracks are on layer 1 and they also have more complex shapes

compared with other layers.

1.5.1 Results of the Basic TPL Algorithm

Five benchmarks, C1 to C5, are generated with increasing number of poly-

gons. The detailed results of our approach are shown in Table 1.1. For the

largest benchmark with over 26 million polygons, the runtime is within an

hour.

Table 1.1: Triple Patterning Decomposition Results

Test
Cases

n
Balanced

Area Ratio
Random

Area Ratio
T (s)

C1 106690 1 : 1 : 1 1 : 0.27 : 0.23 10

C2 674841 1 : 1 : 1 1 : 0.26 : 0.24 66

C3 2695803 1 : 1 : 1 1 : 0.25 : 0.24 264

C4 10782073 1 : 1 : 1 1 : 0.25 : 0.24 1062

C5 26949406 1 : 1 : 1 1 : 0.26 : 0.24 2655

Note 1: “n” denotes the number of polygons in the benchmark.
Note 2: “T (s)” here is the results of our hierarchical algorithm.
Note 3: The area of the power track is subtracted.

The third column shows the results using our color balancing technique,

while the results of a random color selection approach is shown in column

four. For the random color selection approach, we go through the solution

graph once and randomly assign the polygons a valid color. With the col-

oring balancing technique, we can achieve a much balanced decomposition

compared with the result of a random color selection approach. Runtime is

18

Table 1.2: Runtime Comparisons

Test
Cases

n Tracks T1 (s) T2 (s)
Improve

(%)

C1 106690 143 10 16 35.6

C2 674841 358 66 101 34.2

C3 2695803 715 264 403 34.4

C4 10782073 1429 1062 1610 34.0

C5 26949406 715 2655 4028 34.1

Ave. 8241763 672 812 1232 34.5

Note: Column of “T1” shows the runtime of our hierarchical algorithm, while
column “T2” shows the results of our row-based algorithm.

shown in the last column in Table 1.1. We can see that the runtime is lin-

early correlated to the number of polygons in the benchmark, which further

verifies that the algorithm is a polynomial time algorithm.

We also compare the runtime between our basic approach and our hi-

erarchal approach, and the results are shown in Table 1.2. Our proposed

hierarchal cell based algorithm can further improve the runtime by 34.5%

on average without affecting the optimality of our algorithm. This clearly

verifies the effectiveness of the hierarchical cell based algorithm.

1.5.2 TPL Algorithm with Stitches

Five benchmarks, C6 to C10, are also generated using more complex standard

cells. The results shown in Table 1.3 are based on the hierarchical implemen-

tation. The number of polygons, the number of tracks, the number of stitch

candidate, the number of final stitches, and the runtime are shown in column

2, 3, 4, 5, and 6 respectively. For the largest benchmark with over 17 million

polygons, the runtime is within three hours. Note that with our shortest path

formulation, we guarantee that the number of stitches computed is minimum.

1.5.3 Comparisons with Previous Works

We also compared our results with the previous works in [25] and [27] using

the ISCAS-85 & 89 benchmarks provided by the authors of [25]. The same

settings are used as those used in [27]. The detailed results are shown in

Table 1.4.

19

Table 1.3: Triple Decomposition Results with Stitches

Test
Cases

n Tracks
Stitch

Candidates
Stitches T (s)

C6 179201 143 78102 3420 80

C7 904292 322 394349 17146 388

C8 4449681 715 1940587 83916 1900

C9 10031115 1072 4382524 188854 4277

C10 17813611 1429 7778321 334642 7613

Table 1.4: Comparisons with Previous Works

SDP
Based [25]

Algorithm
in [27]

Ours

Test
Cases

C S C S C S

C432 3 1 # 0 6 ! – – #

C499 0 0 ! 0 0 ! 0 0 !

C880 1 6 # 1 15 # 0 7 !

C1355 1 6 # 1 7 # 0 3 !

C1908 0 1 ! 1 0 # 0 1 !

C2670 2 4 # 2 14 # 0 6 !

C3540 5 6 # 2 15 # – – #

C5315 7 7 # 3 11 # – – #

C6288 82 131 # 19 341 # – – #

C7552 12 15 # 3 46 # – – #

S1488 1 1 # 0 4 ! 0 2 !

S38417 44 55 # 20 122 # – – #

S35932 93 18 # 46 103 # – – #

S38548 63 122 # 36 280 # – – #

S15850 73 91 # 36 201 # – – #

Note: “C” means the number of conflicts. If C 6= 0, no legal solutions are found
(marked with #). “S” denotes the number of stitches.

Note that if the number of conflicts (shown in column named “C”) is not

zero, it means that the algorithm fails to find a legal decomposition. For

all solved benchmarks in [25], we are able to find legal decompositions with

optimal number of stitches. Our algorithm further solved four more bench-

marks which the SDP-based algorithm cannot handle. For the algorithm

in [27], they use a different stitch identification method, thus solving bench-

mark C432. However, the stitch identification method in [27] can be easily

20

incorporated into our framework to compute the optimal solutions. More-

over, we can solve four benchmarks where their approach fails. This clearly

verifies the effectiveness of our approach.

1.6 Conclusions

In this chapter, we proposed a polynomial time algorithm to solve the standard-

cell-based TPL problem. Our approach is highly scalable and can be imple-

mented in parallel. Color balancing is considered to achieve a valid and

balanced solution. Our approach has the capability to find all stitch-free de-

compositions for a standard-cell-based layout. To further reduce the runtime,

we propose a hierarchical approach, which can reduce the runtime by 34.5%

on average without sacrificing the optimality of the algorithm. To cope with

more complex designs, we extended our approach to allow stitches. Our ap-

proach guarantees finding a solution with the minimum number of stitches.

Our approach is expected to bring convenience to industry on the TPL prob-

lem and relieve the manufacturing bottlenecks on 14/10 nm technologies.

21

CHAPTER 2

CONSTRAINED PATTERN ASSIGNMENT
FOR STANDARD-CELL-BASED TRIPLE

PATTERNING LITHOGRAPHY

2.1 Introduction

As the technology continues to advance into 14/10 nm technology node,

people are facing more and more challenging process requirements to print

these small features. Double patterning technology (DPL) [17, 22, 29, 30, 31,

32, 33] is already reaching its limit at 20 nm technology node [34]. Beyond 20

nm technology node, next-generation lithography such as extreme ultra-violet

(EUV) lithography and E-beam, or multiple patterning techniques have to

be utilized to conquer these manufacturing difficulties. EUV [35, 36, 37, 38]

has drawn plenty academic and industry attention as a viable candidate for

the 14/10 nm technology node. However, the source power for EUV is still

an unresolved issue, which delays its usage as a practical industry solution.

DSA [39, 40, 41, 42, 43, 44, 45, 46] is still under calibration in research

labs and is not ready to be deployed in industry as a feasible lithography

technique. The low throughput of the E-beam [8, 9, 47] makes it unpractical

for massive productions. TPL is a natural extension for double patterning

lithography, which uses three masks to accommodate all the features in a

layout. With one more mask than DPL, TPL provides more flexibilities

for pattern assignment and is able to resolve most of the coloring conflicts.

It serves as one of the most promising techniques for future lithography

solutions.

For standard-cell-based designs, the designers are not only interested in

achieving legal TPL decompositions, but also concerned with the quality of

a TPL decomposition. There are many practical coloring constraints for

TPL decompositions, among which the following two aspects are of great

importance. Firstly, the same type of standard cells are preferred to be as-

signed the same color. This will best guarantee that the same type of cells

22

eventually have similar physical and electrical characteristics. Secondly, it

is preferred to balance the usage of different colors during TPL decomposi-

tions. The solutions with better color balancing are more welcomed in small

regions as well as in a full chip range. In this chapter, the color balancing

scheme defined in a small region is called local color balancing; the color bal-

ancing scheme defined in a full chip range is called global color balancing. In

practice, local color balancing is usually more important than globally bal-

ancing different masks, since the printability is more influenced by adjacent

features. The well-balanced masks both locally and globally can be better

utilized, and maximally benefits the manufacturing process.

Cell A Cell B Cell A Cell B

mask 1

mask 2

mask 3

(a)

(b)

Figure 2.1: Illustration of the constrained pattern assignment problem. (a)
Input layout. (b) TPL decomposition for the input layout. Note that the
same type of standard cells are colored in the same way in this TPL
decomposition. Different colors denote different masks.

For most of the triple patterning works, there is a minimum coloring dis-

tance dmin. Features within the distance dmin have to be assigned to different

masks to resolve the coloring conflicts. With three masks, we can triple the

23

effective pitch distance and effectively improve the resolutions for printing.

Many research efforts have been devoted to TPL [25, 26, 27, 48, 49, 50, 51,

52, 53, 54]. Bei Yu et al. showed that the general TPL decomposition prob-

lem is NP-hard, and further proposed an ILP-based algorithm to compute

legal TPL solutions [25]. A semidefinite programming technique is also pro-

posed to reduce the runtime. However, the ILP formulation is slow and the

semidefinite formulation sacrifices the optimality. Moreover, the approach is

not handling the above two coloring constraints. It has no control of assign-

ing the same patterns for the same type of standard cells. Color balancing

is also neglected in their formulation. Therefore, their algorithm cannot be

directly used in the constrained pattern assignment problem. A graph-based

heuristic is proposed in [27], which fails to capture the coloring requirements

to assign the same pattern for the same type of cells. Moreover, color bal-

ancing is neglected in the approach, which could lead to very unbalanced

TPL decompositions. Recently, Tian et al. [48] proposed a polynomial time

triple patterning algorithm for standard-cell-based designs. A simple color

balancing scheme is also proposed to achieve globally balanced decomposi-

tions. However, the proposed algorithm has no control of assigning the same

patterns for the same type of cells. Moreover, the greedy method in [48]

for global color balancing does not necessarily leads to a locally balanced

decomposition.

We illustrate the idea of constrained pattern assignment problem using a

simple example in Fig. 2.1. There are four cells in the layout, two cells of type

A and two cells of type B. Based on the requirement from the constrained

pattern assignment problem, a solution is shown in Fig. 2.1 (b). We can see

that in the decomposition, the same type of cell is colored exactly the same

way. Assigning the same pattern for the same type of cells gives the cell more

predictable and consistent performance, and is more favorable in practice.

One straightforward approach to ensure identical pattern assignment for

the same type of cells is to fix the colors of all the standard cells before

placement and routing. However, it is not practical due to the adjacency

and local interconnects of different standard cells in a layout. They possibly

introduce additional coloring conflicts, thus rendering the fixed TPL decom-

position approach ineffective. In this chapter, we proposed a novel hybrid

approach to compute a constrained pattern decomposition for standard-cell-

based designs. The main contributions of this chapter can be summarized as

24

follows.

• We proposed a novel hybrid approach to efficiently compute a con-

strained pattern decomposition for standard-cell-based designs. The

approach guarantees finding a solution if one exists.

• When no solution exists for the constrained pattern assignment prob-

lem, we proposed another hybrid approach by solving a partial Max-

SAT problem, which guarantees finding a legal decomposition if one

exists, and tries to assign the same coloring solutions for as many cells

as possible.

• To find a more balanced decomposition, a sliding window scheme is

used to effectively compute locally balanced decompositions.

The rest of the chapter is organized as follows. Some preliminaries are

introduced in Section 2.2. The constrained pattern assignment problem is

formally defined in Section 2.3. The first step of our hybrid algorithm is

discussed in Section 2.4, followed by second step which is a path-finding

scheme based on sliding windows in Section 2.5. Experimental results are

shown in Section 2.6. Finally, we conclude the chapter in Section 2.7

2.2 Preliminaries

In the following sections, we will briefly introduce the standard-cell-based row

structure designs, the previous TPL algorithm, and the coloring constraints

in the constrained pattern assignment problem.

2.2.1 Standard-Cell-Based Designs

In this chapter, we are focusing on the standard-cell-based row structure

layout, which is also used in [48]. All the standard cells in the cell library

have the same height, with power and ground rails going from the leftmost

of the cell to the rightmost of it. Typical layout consists of multiple standard

cell rows, with each row exactly the same height as the standard cell. The

same type of cell may corresponds to many instances in a layout.

25

A1 B1 C1

A2 B2 C2

Figure 2.2: Example of standard-cell-based row structure layout. All the
cells have exactly the same height. The same type of cell appears multiple
times in the layout.

TPL is needed for the most dense layer in the 14/10 nm technology node,

which is M1 in practice. For upper metal layers, preferred routing directions

are given, where all the wires are either horizontal or vertical. In this chapter,

we are focusing on TPL decompositions with coloring constraints for the M1

layer.

A simple example of standard-cell-based layout is shown in Fig. 2.2, where

we have six instances. The six instances are composed from three types of

cells in the cell library.

2.2.2 Previous TPL Algorithm

A TPL algorithm for standard-cell-based designs is proposed in [48]. Given a

layout, its constraint graph (CG) is first computed. In the constraint graph,

every polygon is represented as a vertex and an edge connects two vertexes if

their distance is less than dmin. A solution graph (SG) is also defined in [48],

in which every legal TPL solution corresponds to a path in SG and every

path in SG corresponds to a legal TPL solution.

26

(a)

1

2

3

{a}

1,2

1,3

2,1

2,3

3,1

3,2

{a,b}

1,2

1,3

2,1

2,3

3,1

3,2

{b,c}

1

2

3

{d}

(b)

a

b

c

d

(d)

mask 1

mask 2

mask 3

(c)

a

b

c

d

Figure 2.3: A simple example of the previous TPL algorithm in [48]. (a)
The input layout with four features. (b) Solution graph of this layout.
Different numbers here denote different masks. The path highlighted in red
is a legal TPL solution. (c) Constraint graph of the input layout. (d) Final
solution corresponding to the highlighted path, with different colors
representing different masks.

For a standard cell row, a set of cutting lines are first derived based on the

left boundaries of the features within the row. Every cutting line intersects

with several features, whose TPL decompositions are enumerated and added

into the solution graph. By sequentially processing all the cutting lines, a

complete solution graph is constructed. A greedy color balancing approach

is also proposed, which achieves good results for global color balancing. In-

terested readers please refer to [48] for a more detailed description of the

algorithm.

Figure 2.3 gives a simple example to illustrate the previous TPL algo-

rithm. Given a standard-cell-based layout, a solution graph is computed

27

which incorporates all legal coloring solutions. However, their approach has

no control of assigning the same type of patterns for the same type of cells.

The proposed greedy color balancing method is also too simple to achieve

locally balanced decompositions.

2.3 Problem Definition

In this section, we will introduce the coloring constraints for TPL decompo-

sitions, and formally define the constrained pattern assignment problem.

2.3.1 Coloring Constraints

For standard-cell-based designs, millions of the elements on a chip are com-

posed of hundreds or thousands of cells in the cell library. The same type of

cells are preferred to be colored in the same way to achieve similar physical

and electrical characteristics. However, no existing algorithms are able to

handle this coloring constraint.

Properly balancing the usage of the three masks is another important

coloring constraint for TPL decompositions. While there could be many legal

TPL decompositions for a layout, the ones with balanced features both locally

and globally are always more favorable. These well-balanced decompositions

fully take advantage of each mask, and maximally benefits the manufacturing

process.

For color balancing, locally balancing the features are more important

than globally balancing the features within different masks. In practice,

the printing quality of a feature are more affected by the features nearby

rather than the features far away. Local color balancing best captures the

local environment that affects printability, and therefore guarantees more

favorable and meaningful decompositions.

2.3.2 Constrained Pattern Assignment

Constrained Pattern Assignment Problem: Given a standard-cell-

based row structure layout, our objective is to find a legal TPL decomposi-

28

tion in which the same type of standard cells has exactly the same coloring

solution, and features in different masks are locally balanced with each other.

2.4 A Hybrid Approach

Our algorithm can be divided into two steps. Firstly, fixing the cell bound-

aries and computing a solution graph for each standard cell. Secondly, uti-

lizing the sliding window approach to compute a locally balanced decompo-

sition. These two steps can be solved sequentially, and the algorithms are

discussed as follows.

To compute the solution graph for each type of cell in the given layout,

all the constraints within the layout have to be properly captured. The first

step of our hybrid approach is to solve a small SAT problem to fix the cell

boundaries, followed by computing a solution graph for each type of cell in

the library. The details are discussed as follows.

2.4.1 Variable Notations

Given a feature, three binary variables are used to represent its mask assign-

ment. For example, if we have a feature xi, three variables, xi1, xi2, xi3, are

used to denote its coloring solutions. If xi is assigned to mask 1, we have

xi1 = 1, xi2 = 0 and xi3 = 0 respectively. The same principle applies when

xi is assigned to mask 2 or mask 3. Note that at any time, exactly one of

the three variables is true.

2.4.2 Boundary Polygons

We first define some terminologies used in our algorithm. We reuse the defini-

tions of constraint graph (CG) and solution graph (SG) in [48] for consistency.

Besides that, we have one more technical term defined as follows.

Boundary Polygon : It is defined as a polygon within a standard cell

that conflicts or connects with another polygon in any other standard cell in

a given layout.

Figure 2.4 shows a simple example of boundary polygons. There are two

adjacent cells, A and B, in the layout. As polygon x1 connects to x3, x1

29

x1

x2

x3

Cell A Cell B

Figure 2.4: Boundary polygons in two adjacent cells, A and B, in a layout.
For cell A, the boundary polygon is x1. For cell B, the boundary polygons
are x2 and x3 respectively. Note that the distance between polygon x1 and
x2 is within dmin. The red polygon denotes the interconnect between the
two polygons.

becomes a boundary polygon in cell A and x3 becomes a boundary polygon

in cell B respectively. Polygon x2 is also a boundary polygon in cell B since x2

conflicts with x1 in the given layout. We can see that the boundary polygons

for a standard cell are layout-dependent. For example, x3 is a boundary

polygon in cell B in the layout shown in Fig. 2.4. However, it is possible that

x3 does not correspond to a boundary polygon in cell B in another layout.

A simple case is when there is no local interconnect between x1 and x3, x3

will not be a boundary polygon in cell B.

For each adjacent cell boundary, we compute its constraint graph and get

its local connection information. Based on the local connection information

and the constraint graph, the boundary polygons for each standard cell can

be computed. Therefore, after traversing the whole layout, all boundary

polygons in the layout can be identified.

30

2.4.3 Capturing Boundary Constraints

After computing the boundary polygons for all standard cells in the cell

library, we are ready to formulate the constraints among these polygons

using SAT. Three types of boundary constraints are captured here.

• Boundary conflict: Due to the adjacency of different cells, polygons

within different cells may conflict with each other. Let us use the

polygons x1 and x2 shown in Fig 2.4 as an example. For each polygon,

we have three binary variables representing the three masks. x11, x12

and x13 denote the three masks for the polygon x1. Similarly, x21,

x22 and x23 denote the three masks for the polygon x2. If x11 is true,

which means that x1 is assigned to mask 1, x21 cannot be true since x1

and x2 conflict with each other. Similarly, if x12 is true, x22 should be

false. If x13 is true, x23 needs to be false. The above constraints can

be formulated as follows:

(¬x11 ∨ ¬x21) ∧ (¬x12 ∨ ¬x22) ∧ (¬x13 ∨ ¬x23) (2.1)

For any of two boundary polygons with distance less than dmin, we

can formulate their constraints using SAT clauses similar to the above

equation.

• Boundary connection: Boundary connections between two adjacent

cells also impose constraints for constrained TPL decompositions. Again,

the example in Fig. 2.4 can be used to illustrate the idea of how to for-

mulate boundary connections based on SAT. For x3, we have three

variables x31, x32 and x33 to denote its pattern assignment. As x1 con-

nects with x3, they have to be assigned to the same mask. This means

that if x11 is true, x31 has to be true. If x12 is true, x32 has to be

true. Similarly, if x13 is true, x33 has to be true. The constraints are

formulated into the following clauses using SAT:

(¬x11 ∨ x31) ∧ (¬x12 ∨ x32) ∧ (¬x13 ∨ x33) (2.2)

Similar with boundary conflicts, all boundary connections can be for-

mulated into SAT clauses based on the above principle.

• Native constraint: This is a quite straightforward constraint. For each

31

polygon, we have three variables representing its coloring solutions. At

any time, exactly one of the three variables has to be true. We will

use Fig. 2.4 again to illustrate how to formulate the constraint. For

x1, if x11 is true, then both x12 and x13 have to be false. If x12 is

true, both x11 and x13 have to be false. Similarly, if x13 is true, both

x11 and x12 are set to be false. It is well known that if a statement is

true, its contrapositive is also true (vice versa). It means that the two

constraints, x11 → ¬x12 and x12 → ¬x11, are equivalent. Therefore,

the above six constraints can be reduced into three clauses as follows:

(¬x11 ∨ ¬x12) ∧ (¬x11 ∨ ¬x13) ∧ (¬x12 ∨ ¬x13) (2.3)

Similarly, the constraints for x2 and x3 can be written as:

(¬x21 ∨ ¬x22) ∧ (¬x21 ∨ ¬x23) ∧ (¬x22 ∨ ¬x23) (2.4)

(¬x31 ∨ ¬x32) ∧ (¬x31 ∨ ¬x33) ∧ (¬x32 ∨ ¬x33) (2.5)

The above constraints are not enough to ensure a valid solution. A

trivial solution would be setting all variables to be 0. We need one

more clause to ensure that for each polygon, at least one of its three

binary variables is true. For the example in Fig. 2.4, we can formulate

the constraints as:

(x11 ∨ x12 ∨ x13) ∧ (x21 ∨ x22 ∨ x23) (2.6)

∧(x31 ∨ x32 ∨ x33)

2.4.4 Capturing Cell Inner Constraints

All boundary constraints have been incorporated into our SAT formulation

based on the discussion in Section 2.4.3. However, the above formulation

does not guarantee that the solution computed will eventually lead to a valid

solution. Now look at the example shown in Fig. 2.5. For cell E, there

are two boundary polygons, x1 and x4 respectively. For cell F, there are

two boundary polygons, x2 and x3 respectively. Based on the previous SAT

32

Cell E Cell F Cell E

(a)

(c)

x1 x2 x3 x4

(b)

2

1

3

1,2

1,3

2,1

2,3

3,1

3,2

2

1

3

(d)

2

1

3

1,2

1,3

2,1

2,3

3,1

3,2

2

1

3

(e)

Cell E Cell F Cell E

(a)

(c)

x1 x2 x3 x4

(b)

2

1

3

2

1

3

(d)

2

1

3

1,2

1,3

2,1

2,3

3,1

3,2

2

1

3

(e)

2

1

3

Figure 2.5: (a) Input layout. There are two cells, E and F, in the layout.
(b) Constraint graph of cell E. (c) Constraint graph of cell F. Polygons
conflicting with each other are connected with solid lines. (d) Solution
graph of cell E. (e) Solution graph of cell F.

formulation, one possible solution would be x1 is assigned to mask 1, x2 is

assigned to mask 2, x3 is assigned to mask 3, and x4 is assigned to mask 2

respectively. If x2 is on mask 2 and x3 is on mask 3, one can easily verify

that there is no path connecting x2 = 2 and x3 = 3 in the solution graph of

cell F shown in Fig. 2.5 (e). The problem for the above SAT formulation is

that cell inner constraints are neglected. To capture this kind of constraints,

we proposed the following technique.

For any cell Ci in the cell library, its constraint graph and solution graph

are first computed. After we identify its boundary polygons, all possible

coloring combinations for these polygons can be enumerated. Based on the

33

solution graph of cell Ci, one can easily verify whether a particular combina-

tion is feasible. For any combination that is illegal, one clause is added into

the SAT formulation to forbid it. For example, for cell F shown in Fig. 2.5,

there are two boundary polygons, x2 and x3 respectively. Based on the solu-

tion graph shown in Fig. 2.5 (e), one can easily verify that x2 = 1 and x3 = 2

does not correspond to any path in the graph, which means that this is not

a valid combination. Therefore, we can add a clause as (¬x21 ∨ ¬x32). The

same procedure is applied for all the cells in the standard cell library. After

adding the cell inner constraints, any solution computed by a SAT solver is

guaranteed to be legal.

2.4.5 Computing the Solution Graph

1

2,3

3,2

1

(a) (b)

2

1,3

3,1

2

(c)

mask 1

mask 2

mask 3

1 1

(a) (b)

2

1,3

3,1

2

(c)

mask 1

mask 2

mask 3

2

3

Figure 2.6: (a) Updated solution graph of cell E. (b) Updated solution
graph of cell F. (c) Final coloring solution. The highlighted path is the
coloring solution for cells E and F.

Based on the above formulations, solving the SAT problem will give us

a solution for cell boundaries that guarantees to be legal. For any cell Ci

in the cell library, the coloring assignments of all its boundary polygons are

fixed after we solve the SAT formulation. After that, the algorithm in [48] is

invoked to compute the updated solution graph of all cells in the cell library.

For any cell Ci, its boundary polygons serve as the anchor polygons, whose

coloring assignments have already been determined by the SAT solution.

One possible SAT solution for the example shown in Fig. 2.5 is x1 = 1,

34

x2 = 2, x3 = 2, and x4 = 1 respectively. The updated solution graphs for cell

E and F are shown in Fig. 2.6 (a) and (b) respectively. After updating the

solution graph for a cell in the library, we can traverse the graph and make

any of the path to be its TPL decompositions. Note that any path in the

solution corresponds to a legal TPL solution, which has been proven in [48].

A sample TPL solution for the layout in Fig. 2.5 is shown in Fig. 2.6 (c).

2.4.6 Power Tracks

For standard-cell-based designs, there are power tracks going from the left

end of the cell to the right end of it. Power tracks of adjacent cells always

connect with each other. Therefore, the power tracks always appear in a

cell’s boundary polygons.

Cell A Cell B Cell A Cell B Cell A

Original cell Library: {A , B}

Collection of the instance: {A1 , B1, A2, B2, A3}

Figure 2.7: Example of creating a collection of instances.

Power tracks can be assigned to the same mask, or different masks. In

practice, the power tracks are preferred to be on the same mask. In the

experiments, we assume that the power tracks are on mask 1.

2.4.7 An Extended Partial Max SAT Approach

When no solution exists for the above SAT formulation, it means that not

all the same type of cell can be colored the same way. By removing the

constraint of enforcing the same color for the same type of cell, we can

convert the constrained pattern assignment problem into a partial Max-SAT

problem. In the partial Max-SAT problem, there are two type of clauses:

hard clause and soft clause. The objective is to find a feasible assignment

35

that satisfies all the hard clauses together with the maximum number of soft

ones.

A collection of all the instances is created based on the given layout. For

each cell in the layout, we create an instance in the instance collections. For

example, if cell A is repeated three times in the layout, three instances, A1,

A2, and A3 will be created in the instance collection. A1, A2, and A3 are said

to be of the same base type, since they are derived from the same type of cell

in the cell library. After creating the instance collection, we eventually have

the same number of instances in the collection as that in the given layout.

We illustrate the idea using the example in Fig. 2.7. Originally there are two

types of cells in the library. Based on the given layout, there will be five

instances in the instance collection.

For each instance in the collection, its boundary polygons are identified and

all the SAT clauses discussed above are added. These clauses are classified as

hard clauses. Besides that, if two cells are of the same base type and the same

boundary polygon appear in both cells, we add some soft clauses to make

them on the same mask. For example, assume polygon x1 is a boundary

polygon in cell A1 and polygon x2 is a boundary polygon in cell A2, and x1

and x2 correspond to the same polygon x in cell A, we prefer the polygons x1

and x2 to be on the same mask. If x11 is true, x21 is preferred to be true. If

x12 is true, x22 is preferred to be true. Similarly, if x13 is true, x23 is preferred

to be true. Therefore, we can add the following soft clauses into out partial

Max-SAT formulation:

(¬x11 ∨ x21) ∧ (¬x12 ∨ x22) ∧ (¬x13 ∨ x23) (2.7)

Utilizing a partial Max-SAT solver, all the hard clauses and a maximum

number of the soft clauses are satisfied. Based on the partial Max-SAT

formulation, we can guarantee to compute a legal TPL decomposition if one

exists, and tries to achieve the same coloring solution for the same type of

cell for as many cells as possible.

2.4.8 Analysis of the Algorithm

The size of the SAT formulation is analyzed here to give some insights of the

problem. Assume there are totally n boundary polygons. For each boundary

36

polygon, four clauses are added to represent the native constraints. There are

4n clauses for native constraints in total. For either boundary connection or

boundary conflict, three clauses are added into the SAT formulation. If two

boundary polygons does not conflict or connect with each other, no clauses

are introduced. The worst case is that any two boundary polygons either

conflict or connect with each other. In this case, there are at most 3n(n−1)
2

clauses. Additional clauses are introduced by the cell inner constraints. Note

that in each cell, the number of boundary polygons is very small. The number

of clauses contributed by cell inner constraints is also limited.

In practice, the total number of boundary polygons are small, and conflicts

between these boundary polygons are sparse. Local interconnects can also be

enforced to be on other metal layers. The clauses contributed by boundary

conflicts and boundary connections are far less than 3n2. The number of

boundary polygons in a cell is also limited, which is usually far smaller than

the number of features in the cell. Therefore, the size of the SAT problem is

small and can be solved efficiently.

2.5 Approach for Local Color Balancing

In practice, designers are more interested in achieving a TPL decomposition

where features on the three masks are both locally and globally balanced.

Local color balancing is more important since the printability of a feature is

mostly affected by the features nearby. Decomposition with locally balanced

features everywhere usually means that the decomposition is roughly globally

balanced. Local color balancing can be defined as follows.

Local Color Balancing: Given a user specified distance d and the bound-

ing box of a feature, the bounding box is first extended towards all direc-

tions by d. Denote the area on the three masks within the bounding box B

as a1, a2, and a3 respectively. The objective of local color balancing is to

MIN(MAX(ai − aj)) where 1 ≤ i ≤ 3, 1 ≤ j ≤ 3, and i 6= j.

None of the previous TPL works explicitly consider the issue of color bal-

ancing, except the work in [48]. They proposed a simple greedy heuristic

targeting on globally balancing the area usage on the three masks. How-

ever, globally balancing the area usage on different mask does not necessarily

leads to locally balanced decompositions. In the second step of our hybrid

37

approach, we propose a sliding window scheme which explicitly targets on

locally balancing different masks. Only features within a certain distance

range are considered when assigning masks for a feature. The sliding win-

dow scheme best captures the local environment that affects printability,

and therefore generates more accurate and meaningful decompositions. This

approach works as follows.

(a) (b) (c)

X

mask 1

mask 2

mask 3

undecided

Bounding box

Sliding window

mask 1

mask 2

mask 3

undecided

X

(a)

(b)

m*dminm*dmin

m*dmin

m*dmin

Bounding box

Sliding window

mask 1

mask 2

mask 3

undecided

X

(a)

(b)

m*dmin

m*dmin

m*dmin

m*dmin

Figure 2.8: Illustration of the generation of a sliding window. Grey
polygons mean that their colors have not been decided yet. (a) Bounding
box of polygon X, shown in black dashed lines, and sliding window for X,
shown in red dashed lines. (b) Coloring solution of polygon X.

The sliding window scheme is applied on all cells in the cell library. For

any cell Ci, denote its jth polygon as Pij. After computing the solution graph

of cell Ci, we traverse the graph from its left boundary to its right boundary.

For any polygon Pij encountered, its bounding box is computed. After that,

the bounding box is uniformly extended toward all directions by a distance

of m ∗ dmin, where m is a user specified parameter. The expanded bounding

38

box is defined as a sliding window for polygon Pij, which is denoted as Wij.

Three variables, a1, a2 and a3, are associated with each sliding window.

The variable a1 represents the total area of the polygons that are assigned

to mask 1 covered by the sliding window. Similarly, the variables a2 and a3

represent the total area of the polygons that are assigned to masks 2 and

3 and covered by the sliding window respectively. For a polygon partially

covered by a sliding window, only the area covered is counted.

For each sliding window Wij, we update the values of the above three

variables. The mask with the smallest area is given the highest priority,

whereas the mask with the largest area is assigned the lowest priority. The

polygon Pij is always assigned to a legal mask with the highest priority.

A sliding window example is shown in Fig. 2.8, where the color of the

polygon X is to be decided. The bounding box of X is shown in Fig. 2.8

(a). After uniformly extending the bounding box, we get its sliding window

shown in red dashed lines. Based on the values of a1, a2 and a3 within the

sliding window,1 polygon X is assigned to mask 3, which is shown in Fig. 2.8

(b).

By enforcing a local sliding window, all nearby features that potentially

affects the printability are captured. In each sliding window, the approach

balances the utilizations of the three masks. As we traverse the solution

graph from left to right, the sliding window is recomputed for every polygon

in the layout, and the three variables are updated accordingly. The color

that best balances the local area utilizations is assigned to the new polygon.

In this way, the approach generates a locally balanced TPL decomposition.

2.6 Experimental Results

The algorithm is implemented in C++ and run on a Linux server with 8GB

RAM and a 2.8 GHZ CPU. All benchmarks are generated using NanGate

FreePDK45 Generic Open Cell Library [28], which is available online. The

standard cells are randomly selected from the cell library, and are aligned

adjacently in different rows of a chip. Local interconnects are assumed to

be on higher mental layers. dmin is set to be 82 nm, and m is set to be 5.

Wires on the M1 layer are used for all experiments. The Linux version of

1The variable a3 equals to 0 for this particular example.

39

MiniSat-V1.14 is used in the experiments [55].

2.6.1 Constrained Pattern Assignments Results

We compare our hybrid approach with the previous work in [48], which also

focuses on standard-cell-based designs. Five benchmarks are generated with

increasing number of cells in the layout. The detailed results are shown in

Table 2.1. The number of polygons and the number of boundary polygons

in the benchmark are detailed in columns 2 and 3 respectively. Column 4

shows the average number of coloring solutions for a cell in the cell library

generated by the algorithm in [48].

Solution
A1

Solution
B1

Solution
A2

Solution
B2

Solution
A3

Cell A Cell B Cell A Cell ACell B

Figure 2.9: Calculating the average number of solutions per cell.

The average number of solutions per cell is computed as follows. Given a

layout, we first run the algorithm in [48] to get its solution graph. After that,

the color balancing heuristic in [48] is applied to get a TPL decomposition

for the layout. For each type of cell in the layout, we count the number of

distinct solutions based on the TPL decomposition computed. The average

number of solutions per cell is obtained by adding the numbers together and

dividing them by the number of different cells in the layout.

A simple example is shown in Fig. 2.9, where we have two types of cells

in the layout. There are three distinct solutions for cell A, while there are

two different solutions for cell B. The average number of solutions per cell

is calculated as 3+2
2

= 2.5. This analysis indicates the necessity to use our

method for the constrained pattern assignment problem. Note that the SAT

algorithm guarantees that each type of cell has exactly the same decompo-

sition, which means the average number of solutions per cell is 1. For the

previous algorithm, there are usually multiple coloring solutions for a cell in

the same layout. The larger the layout is, the more solutions there will be.

This clearly shows the effectiveness of our approach.

The runtime of our hybrid approach stays almost unchanged for different

40

benchmarks, as there are limited number boundary polygons in the layout.

Since the number of cells in the cell library is small, the number of boundary

polygons is also limited. This enables us to utilize the SAT based algorithm

in our hybrid approach. As shown in Table 2.1, the runtime of the SAT

occupies a very small portion of the overall runtime.

Table 2.1: Comparisons with Previous Work in [48]

Test Cases # P # BP
Average
SPC [48]

Runtime
(s)

SAT
Time (s)

test1 945 6 1.5 6.9 < 0.01

test2 3727 12 2.7 6.9 < 0.01

test3 7055 16 3.2 6.9 < 0.01

test4 14825 23 3.5 7.0 < 0.01

test5 31823 30 3.8 7.1 0.01

Note: SPC denotes number of solutions per cell.

2.6.2 Local Color Balancing

As the sliding window approach is seeing all the local information, more

locally balanced decompositions can be achieved for a given layout. In the

previous work [48], the authors propose a color balancing strategy to compute

globally balanced decompositions. We compare our sliding window results

with the results obtained by the previous algorithm in [48]. Our results

are calculated by running the algorithm in [48] first, and then applying our

sliding window scheme to compute a locally balanced solution.

Table 2.2: Local Color Balancing Results

Test Cases # P # BP
STD Ratio
[48]/Ours

Runtime
Ours (s)

Runtime
[48] (s)

test1 945 6 1.21 8.1 6.5

test2 3727 12 1.19 12.4 6.8

test3 7055 16 1.21 18.0 7.3

test4 14825 23 1.21 31.7 8.3

test5 31823 30 1.21 62.1 10.1

Note: STD denotes standard deviation.

For any feature in the layout, its sliding window can be calculated. Based

on the sliding window, the three variables, a1, a2, and a3 are computed. These

41

three variables denote the area of the features on the three masks covered

current sliding window respectively. The standard deviation of these three

variables are also computed. For each feature in the layout, the standard

deviation based on its sliding window is computed. For all the features, their

standard deviations are accumulated. The ratio of the previous results over

ours is showed in Table 2.2. We can see that the sliding window approach

can achieve more balanced decompositions with less deviations compared

with previous algorithm. The sliding window approach is slower compared

with the previous approach. This is reasonable since more computational

efforts are needed to obtain locally balanced decompositions. The runtime is

acceptable in practice.

2.7 Conclusions

In this chapter, we propose a novel hybrid approach to solve the constrained

pattern assignment problem for standard-cell-based TPL decompositions.

Our algorithm efficiently solves this problem, and guarantees to find a so-

lution if one exists. Our proposed sliding window approach also effectively

computes locally balanced TPL decompositions, and gives superior locally

balanced decompositions compared with the previous work in [48]. Experi-

mental results show that the algorithm solves all the benchmarks in a very

short runtime.

42

CHAPTER 3

TRIPLE PATTERNING AWARE
DETAILED PLACEMENT WITH

CONSTRAINED PATTERN ASSIGNMENT

3.1 Introduction

With the fast development of the semiconductor industry, products are al-

ready available using the 22 nm technology node, and the 14/10 nm technol-

ogy node is also coming near. For such small features, traditional immersion

lithography are facing great challenges, as the features are so small and close

to each other that they cannot be well printed in one exposure. Double

pattering lithography (DPL) is proposed to conquer the physical limitations,

mostly diffractions, in the 22 nm technology node. However, they cannot

be further extended to the 14/10 nm technology node. extreme ultra-violet

(EUV) Lithography [35, 37] and E-beam [9] are also proposed to conquer

the manufacturing difficulties and have drawn lots of research attentions re-

cently. Problems still exist for these technologies, such as the demanding

source power for EUV, and the low productivity for E-beam. These unre-

solved issues make them unpractical to be massively used in industry. Triple

pattering lithography (TPL), which uses three masks to print the features in

a layout, is a natural extension for DPL. Many of the research efforts have

been devoted to TPL, and it is one of the most promising solutions for the

14/10 nm technology node.

Most of the existing works [25, 27, 48, 53, 56] focus on devising algorithms

for TPL decompositions without modifying the layout, which are typically

after placement and routing. There has been extensive research on the place-

ment problem in the literature [57, 58, 59, 60, 61]. These works all focused

on minimizing the HPWL/congestions of the final placement result with-

out considering the manufacturing requirements, as double/triple patterning

lithography are typically needed for the advanced technology node. In this

chapter, we integrate the flow of detailed placement and TPL decompositions,

43

which simultaneously optimize the placement and decomposition processes.

Cell A Cell B Cell A Cell B

mask 1

mask 2

mask 3

(a)

(b)

Figure 3.1: (a) Input layout. (b) TPL decomposition. The same type of
cells are colored in the same way. Different colors denote different masks.

For the general TPL problem, legal decompositions have to be guaran-

teed. For standard-cell-based designs, there are more requirements besides

achieving a legal TPL decomposition. One practical concern for designers

is to assign the same patterns for the same type of standard cell. How to

assign the same pattern for the same type of cells is called a constrained

patterning assignment (CPA) problem. An example is shown in Fig. 3.1

where there are four cell instances composed from two types of cells. The

TPL decomposition is shown in Fig. 3.1 (b), where the same type of cells

are colored exactly in the same way. The additional coloring constraint is

more robust for process variations, and gives the same type of cells similar

physical and electrical characteristics, more predictable performance, and is

44

more favorable in practice.

As modifying the layout after the placement stage is extremely costly and

inefficient, it is highly preferred to refine the layout during the detailed place-

ment stage to make it CPA-friendly. In this chapter, we integrate the flow of

detailed placement and TPL decomposition, and propose a hybrid approach

to simultaneously optimize the placement and decomposition process. We

formulate the problem into a weighted partial Max-SAT problem with a lim-

ited number of clauses, which guarantees finding a solution while minimizing

the area overhead. An efficient graph model is also proposed to compute

the exact locations of the cells with optimal HPWL. For each standard cell,

our algorithm computes a CPA-friendly solution graph, which essentially ex-

plores all legal solution space for the cell. The contributions of this chapter

can be summarized as follows:

• We propose an approach to effectively deal with the TPL aware detailed

placement problem with CPA coloring constraints. Our algorithm is

guaranteed to generate a legal detailed placement layout while mini-

mizing the total area overhead.

• We propose an efficient graph model to compute the exact locations of

the cells with optimal HPWL. The generated layout is guaranteed to

be CPA-friendly.

• Instead of fixing the TPL decomposition after the integrated flow, a so-

lution graph which explores all legal solution space is computed, giving

the designers the freedom to choose desired TPL decompositions.

The rest of the chapter is organized as follows. Preliminaries of the CPA

problem are introduced in Section 3.2. The CPA aware detailed placement

problem is formally defined in Section 3.2.3. Our hybrid algorithm is dis-

cussed in Section 3.3 and 3.4. Experimental results are shown in Section 3.5

followed by conclusions in Section 3.6.

3.2 Preliminaries

A brief discussion about the characteristics of the cell-based row structure

layout, the previous TPL algorithm in [48] and the CPA-friendly detailed

placement problem are presented here.

45

3.2.1 Standard-Cell-Based Row Structure Layout

We assume that the layout is composed from limited types of standard cells

from the cell library. All the cells are of exactly the same height, with power

rails going from the leftmost of the cell to the rightmost of it. For different cell

instances, they are placed in different standard cell rows. Within a standard

cell row, the cells are aligned adjacently to each other, with all the cells

sharing power and ground tracks. Features in different rows are isolated by

the power tracks, which do not have coloring conflicts to each other. Similar

assumptions have been made in previous papers [48, 62] as well.

3.2.2 Previous TPL Algorithm

The previous TPL algorithm in [48] is briefly introduced here, which is used

to formulated some of the constraints in our problems. In their algorithm,

a swiping line is utilized to scan the layout, where the solution graph is in-

crementally updated based on all the features that intersect with current

swiping line. Some techniques are used to guarantee the legality of the solu-

tion graph. There is a nice property for the solution graph. Every path in

the solution graph is guaranteed to be a legal TPL decomposition, and every

legal TPL decomposition corresponds to a path in the solution graph.

3.2.3 CPA-Friendly Detailed Placement

For standard-cell-based designs, there are usually several hundreds types of

cells while there could be millions of cell elements in a typical circuit nowa-

days. For the standard-cell-based designs, the designers are not only inter-

ested in computing legal TPL decompositions, but also concerned with the

quality of a decomposition. One of the practical concern is to color the same

type of standard cell in the same way to achieve similar physical and electrical

characteristics, which is the nice property of a CPA-friendly layout.

To guarantee a feasible CPA solution for a layout, it is preferred to refine

the layout during the placement stage to be CPA-friendly before doing TPL

decompositions. A straightforward approach is to fix the colors of all cells in

the library beforehand. Whenever two adjacent cells have coloring conflicts,

they need to be placed further away from each other. As long as there is no

46

coloring conflicts between any two adjacent cells in the layout, there will be

conflicts in the whole design space. It is obvious that a feasible CPA solution

exists since there are no coloring conflicts between any two adjacent cells.

However, as we show later in Section 3.5, the simple method suffers from

high area overhead.

The CPA-friendly detailed placement problem is described as follows.

CPA-Friendly Detailed Placement: Given a legalized standard-cell-

based detailed placement layout and a minimum conflicting distance dmin, our

objective is to compute a CPA-friendly placement layout while minimizing

the total area and HPWL overhead.

The CPA-friendly means that there are feasible TPL solutions where the

same type of cells are colored exactly the same way in a layout. Refining the

layout to be CPA-friendly can be effectively incorporated into the detailed

placement stage after performing legalization, global and local swapping and

flipping. By restricting all the cells to be shifted within the same row only,

CPA-friendly layout can be achieved while minimizing the area overhead and

pertaining the relative orders of all the elements in the layout.

3.3 CPA-Friendly Detailed Placement

In the following sections, we will introduce our weighted partial Max-SAT

based algorithm, which guarantees to obtain a CPA-friendly placement layout

while minimizing the area overhead. The size of the Max-SAT problem is

also analyzed to give more insights into the problem.

3.3.1 Weighted Partial Max-SAT Variables

Denote C = {c1, c2, ..., cn} as the set of cells in the cell library. We reuse

the definitions of constraint graph (CG) and solution graph (SG) in [48], and

boundary polygons (BP) in [63] for consistency. In the following, we briefly

review the three terminologies used here.

In the constraint graph, each node represents a polygon in the layout, with

an edge connecting two vertices if the corresponding polygons are within the

conflicting distance dmin. In the solution graph, the authors in [48] proved

that every legal TPL solution corresponds to a path in the graph, and every

47

path is a legal TPL decomposition. The boundary polygon refers to the

polygons within a standard cell that conflicts with another polygon in other

standard cells in a given layout.

x1

x2

x3

Cell A Cell B

Figure 3.2: Layout with two cells ci and cj. There are three boundary
polygons, x1, x2, and x3, which are highlighted in blue color.

Given a legalized detailed placement result, all cells in different rows are

sequentially parsed. Any polygon within one cell that conflict with other

polygons in other cells is classified as a boundary polygon. The boundary

polygons are represented as X = {x1, x2, ..., xm}, where m is the total number

of boundary polygons in a layout. An example is illustrated in Fig. 3.2, where

we have two cells ci and cj in the layout. Because the distance of x1 and x2

is within dmin, x1 and x2 are all boundary polygons. Similarly, x3 is also a

boundary polygon as the distance of x1 and x3 is within dmin.

Given any boundary polygon xi, we use three binary variables, xi1, xi2,

xi3, to represent its mask assignment. If xi is assigned to mask 1, we have

xi1 = 1, xi2 = 0 and xi3 = 0 respectively. When xi is assigned to mask 2, we

have xi1 = 0, xi2 = 1 and xi3 = 0 respectively. Similarly if xi is on mask 3,

we have xi1 = 0, xi2 = 0 and xi3 = 1 respectively. At any time, exactly one

of the three variables is true.

48

3.3.2 Hard Clauses

The hard clauses denote those constraints that must be satisfied. After iden-

tifying all boundary polygons, the hard clauses are formulated as follows.

At any time, exactly one of the three variables for each polygon has to

be true. Figure 3.2 is used to illustrate how to formulate the hard clauses.

For x1, if x11 is true which means that x1 is assigned to mask 1, then both

x12 and x13 have to be false. If x12 is true, both x11 and x13 have to be

false. Similarly, if x13 is true, both x11 and x12 are set to be false. The same

principle applies for x2 and x3. The hard clauses are formulated as follows:

(¬x11 ∨ ¬x12) ∧ (¬x11 ∨ ¬x13) ∧ (¬x12 ∨ ¬x13) (3.1)

(¬x21 ∨ ¬x22) ∧ (¬x21 ∨ ¬x23) ∧ (¬x22 ∨ ¬x23) (3.2)

(¬x31 ∨ ¬x32) ∧ (¬x31 ∨ ¬x33) ∧ (¬x32 ∨ ¬x33) (3.3)

The following hard clause is also added to avoid the trivial solution that

sets all variables to be 0. For the example in Fig. 3.2, the constraints are

formulated as follows:

(x11 ∨ x12 ∨ x13) ∧ (x21 ∨ x22 ∨ x23) (3.4)

∧(x31 ∨ x32 ∨ x33)

Hard clauses reflecting the coloring constraints within a cell are also added.

An example is shown in Fig. 3.3 (a) where there are two boundary polygons

x1 and x2 respectively. Its solution graph is shown in Fig. 3.3 (b). One can

easily verify that the coloring solution of x1 = 1, x2 = 2 is illegal. Therefore,

a hard clause ¬x11∨¬x22 is added to prevent such an illegal assignment. For

the example shown in Fig. 3.3, the hard clauses are formulated as follows:

(¬x11 ∨ ¬x22) ∧ (¬x11 ∨ ¬x23) ∧ (¬x12 ∨ ¬x21) (3.5)

∧(¬x12 ∨ ¬x23) ∧ (¬x13 ∨ ¬x21) ∧ (¬x13 ∨ ¬x22)

Note that all the hard clauses are on the cell level without considering the

inter-cell conflicts. If there is a solution satisfying all the hard clauses, it is

guaranteed that the cell has a legal TPL decomposition.

49

Cell E Cell F Cell E

(a)

(c)

x1 x2 x3 x4

(b)

2

1

3

1,2

1,3

2,1

2,3

3,1

3,2

2

1

3

(d)

2

1

3

1,2

1,3

2,1

2,3

3,1

3,2

2

1

3

(e)

Cell E Cell F Cell E

(a)

(c)

x1 x2 x3 x4

(b)

2

1

3

2

1

3

(d)

2

1

3

1,2

1,3

2,1

2,3

3,1

3,2

2

1

3

(e)

2

1

3

Figure 3.3: (a) Input layout with two boundary polygons x1 and x2. (b)
Solution graph of the layout.

3.3.3 Soft Clauses

After setting up all the hard clauses, a solution computed is guaranteed to

be legal at the cell level. At the layout level, the inter-cell constraints need

to be properly captured to reflect the CPA coloring requirements.

Similar approaches can be used to formulate the soft clauses for two con-

flicting boundary polygons. Denote all cell instances in the layout as S =

{S1, S2, ..., St} where t is the total number of standard cell rows in the layout.

Denote Si = {s1, s2, ..., sui}, where ui is the total number of cell instances in

row i and si is adjacent to si+1. For any two boundary polygons xi and xj,

dabij denotes the minimum number of placement sites needed to make them

conflict free to each other between cell instances sa and sa+1 in row b. If xi

or xj do not exist in the boundary between sa and sa+1, d
ab
ij is zero. Define

wij as follows, which is the total number of placement sites needed to make

50

all xi and xj conflict free to each other.

wij =
∑t

r=1

∑ur−1
λ=1 dλrij (3.6)

Use Fig. 3.2 as an example. For the two polygons x1 and x2, if x11 is true,

x21 must be false. If x12 is true, x22 must be false. Similarly, x13 is true,

x23 must be false. Weights are assigned to the clauses to reflect the area

penalties when they are violated. For two boundary polygons x1 and x2, w12

placement sites are needed to make them conflict free, the soft clauses will

have weight w12. Similarly, the weight for clauses between x1 and x3 is w13.

The soft clauses in Fig. 3.2 can be expressed as follows:

w12[(¬x11 ∨ ¬x21) ∧ (¬x12 ∨ ¬x22) ∧ (¬x13 ∨ ¬x23)] (3.7)

w13[(¬x11 ∨ ¬x31) ∧ (¬x12 ∨ ¬x32) ∧ (¬x13 ∨ ¬x33)] (3.8)

Definition 1 (Atomic Unit). For any two conflicting polygons xi and xj, the

Atomic Unit (AU) is defined as the following clauses:

((¬xi1 ∨ ¬xj1) ∧ (¬xi2 ∨ ¬xj2) ∧ (¬xi3 ∨ ¬xj3))

We can see that the AU refers to the soft clauses of two conflicting bound-

ary polygons. AU is empty for non-conflicting boundary polygons. When all

the hard clauses are satisfied, we have the following lemma.

Lemma 2. For any AU, at least two of its three clauses are satisfied.

Proof. When the hard clauses are satisfied, exactly one of the three variables,

xi1, xi2 and xi3, is true. The same principle applies for xj1, xj2 and xj3.

Without loss of generality, assume xis = 1 and xjt = 1 where s = {1, 2, 3}
and t = {1, 2, 3}. If s 6= t, one can easily verify that all three clauses in the

AU are satisfied. If s = t, all clauses except (¬xis ∨ ¬xjt) are satisfied. This

concludes our proof.

Denote the atomic unit of two boundary polygons xi and xj as AUij. The

soft clause for xi and xj can be denoted as wijAUij. Denote all the hard

clauses as Chard, and rewrite the soft clauses as Csoft =
∑

i

∑
j wijAUij,

where i = {1, 2, 3, ...,m} and j = {1, 2, 3, ...,m}, and m is the total number

of boundary polygons. Our objective is to minimize F while satisfying all

51

clauses in Chard where

F = 3
∑

i

∑
j wij −

∑
i

∑
j Tij (3.9)

Tij =

{
3wij If xi and xj are on different masks

2wij Otherwise
(3.10)

Note that minimizing F is exactly the same with solving the weighted

partial Max-SAT formulation. The formulation are composed of two parts:

hard clauses which must be satisfied and soft clauses where the clauses with

a maximum amount of total weight are satisfied. The problem remains of

how can we properly map the value of the objective function to the area

overhead for achieving a CPA-friendly layout.

3.3.4 Capturing Critical Polygons

The area overhead is not accurately captured by the above model. Fig-

ure 3.2 is used to illustrate the inaccuracies of the formulation. Assume the

constraints between x1 and x2, x1 and x3 cannot be resolved, and one place-

ment site is needed to resolve all the conflicts. Based on Lemma 2, the total

weight of the violated constraints will be w12 +w13. To remove the conflicts,

we need to move all adjacent cells of ci and cj one placement site away, which

in practice incurs an area overhead of w12 number of placement site. Thus,

the weight of the clauses no long reflects the area overhead to resolve these

conflicts.

Before introducing the approach to accurately capture the area overhead,

we first define some terminologies used here.

Definition 2 (X-Freedom). The X-Freedom of two boundary polygons xi and

xj is defined as the horizontal distance hij needed to move xi and xj further

apart from each other, such that the distance of xi and xj equals to dmin.

A simple example is shown in Fig. 3.4 to illustrate the concept of X-

Freedom. Here dmin is assumed to be 5. For x1 and x2, the X-Freedom is 2,

as it is the minimum horizontal distance to move x1 and x2 apart such that

their distance equals to dmin. Similarly, the X-Freedom of x1 and x3 is about

1.58.

52

2

3

3

2

x1

x2

x3

4

3

5

2

(a) (b)

x1

x2

x3

Figure 3.4: (a) Input layout with three boundary polygons. Distance of x1
to x2, and x1 to x3 are the same. (b) Critical polygons are x1 and x2.
h12 = 2, h13 = 1.58.

Definition 3 (Critical Polygons). The critical polygons between two types of

cells are defined as the pair of boundary polygons with the largest X-Freedom.

The key observation is that if the critical polygons for cell ci and cj are

conflict free, all boundary polygons within ci and cj are also conflict free.

One can easily verify this based on the definitions of X-Freedom and critical

polygons.

For any two adjacent cells ci and cj in the layout, the pair of critical

polygons are computed. The constraints of the critical polygons are treated

as soft clauses, while the remaining constraints of all other boundary polygons

are added into the hard clauses. For the example shown in Fig. 3.2, the

clauses in equation 3.8 will be added into the hard clauses. Finally, only

clauses of the critical polygons are included in the soft clauses. Note that

adding the constraints of other boundary polygons into the hard clauses

imposes more restrictions on the problem. Therefore, the formulation tries

to minimize the area overhead but may not necessarily lead to an optimal

value.

Lemma 3. The value of F equals to the area overhead to achieve a CPA-

friendly placement result.

53

Proof. From Lemma 2, for any violated AUij, it contributes wij to F . Other-

wise, it contribute 0 to F . Without loss of generality, assume AUij is violated,

where the two corresponding boundary polygons are xi and xj respectively.

According to the definition of wij, the total area overhead to remove all con-

flicts between xi and xj is exactly wij. Therefore, for any violated AUij,

the area overhead is exactly the same with the weight it contributes to the

objective function. This concludes our proof.

3.3.5 Excluding Native Conflicts

Figure 3.5: Layout with native conflict.

For non-critical boundary polygons, we need to be careful with the native

conflicts when adding them into the hard clauses. Native conflicts means that

there is no legal TPL decompositions for the features. As shown in Fig. 3.5

where there are native conflicts among the four polygons. If they are added

into the hard clauses, the weighted partial Max-SAT solver will return no

results even a solution exists. Therefore, a preprocessing step is incorporated

to detect the native conflicts among non-critical boundary polygons. If there

are native conflicts, they are not added into the hard clauses. Instead, we

locate all such boundaries and insert necessary placement sites to remove

these conflicts. Denote the area overhead incurred by the native conflicts as

Fnative, the final area overhead equals to F + Fnative.

3.3.6 CPA-Friendly Solution Graph

After solving the Max-SAT formulation, the coloring solutions of all bound-

ary polygons are known. The algorithm in [48] is applied to compute a solu-

tion graph for each type of cell in the cell library. The algorithm in [48] essen-

tially explores all the solution space that satisfies the Max-SAT constraints

which are solved in the SAT formulation. The solution graph incorporates all

54

Algorithm 3: CPA-Aware Layout Generation

1 begin
2 C ← All cells in the library;
3 Compute solution graph for all cells in C;
4 BP ← Boundary polygons in the layout;
5 CP ← Critical polygons in the layout;
6 Exclude naive conflicts;
7 Chard ← All hard clauses for BP ;
8 Csoft ← All soft clauses for CP ;
9 Solve Chard + Csoft;

10 Extract colors for BP ;
11 Update solution graph for all cells in C;

12 end

legal solutions for the cell. Instead of fixing the TPL decomposition, we leave

the designers the freedom to choose whichever decomposition that suits their

particular needs. The overall flow of the algorithm is shown in Algorithm 3.

3.3.7 Analysis of the Algorithm

The size of the Max-SAT formulation is analyzed here to give some insights

of the problem. Assume there are totally n boundary polygons. For each

boundary polygon, four clauses are added to represent the native constraints.

There are 4n clauses for native constraints in total. For boundary conflict,

three clauses are added into the Max-SAT formulation. If two boundary

polygons does not conflict with each other, no clauses are introduced. The

worst case is that any two boundary polygons conflict with each other. In

this case, there are at most 3n(n−1)
2

clauses. Additional clauses are introduced

by the cell inner constraints. Note that in each cell, the number of boundary

polygons is very small. The number of clauses contributed by cell inner

constraints is also limited.

In practice, the total number of boundary polygons are small, and conflicts

between these boundary polygons are sparse. The clauses contributed by

boundary conflicts and boundary connections are far less than 3n2. The

number of boundary polygons in a cell is also limited, which is usually far

smaller than the number of features in the cell. Therefore, the size of the

Max-SAT problem is small and can be solved efficiently.

55

s1 s2

f1
f2

f3f4

1

s

2

3

4

5

6

7

8

t

s1 s2

1

s

2

3

4

5

6

7

8

t

(a)

(b)

s1 s2

1 2 3 4 5 6 7 8 9

Figure 3.6: (a) Input layout with two cell instances s1 and s2, nine
placement sites, and four nets {s1f1}, {s1f2f4}, {s2f2f4}, and {s2f3}. The
graph model is shown on the right. Weight of the graph is not shown here
for simplicity. (b) Final solution of the placement with optimal HPWL.
The shortest path in the graph is highlighted in red.

3.4 CPA-Friendly Refinement with Optimal HPWL

For both global and detailed placement, HPWL has always been a key metric

to evaluate the quality of a placement result. Minimizing HPWL is one of

the primary objectives for many state-of-the-art placement algorithms [57,

58, 59, 61, 64, 65]. In this section, we focus on computing the locations of

all the cells in a single row with optimal HPWL while satisfying the CPA

coloring constraints. Similar problems have been addressed in some previous

works [60, 62, 66, 67, 68]. Here we propose a graph model that correctly

captures our CPA coloring constraints, and solve the single row cell ordering

problem with optimal HPWL. The following discussions are for cell instances

in a single row, where each cell instance is uniquely identified by its lower

left coordinates. The same algorithm is applied for all rows in the layout

repeatedly until the total HPWL improvement is less than a user-specified

threshold.

For this problem, we have the following input:

• Standard cell library C = {c1, c2, ..., cn} with their length L = {l1, l2, ..., ln}
where n is the number of cells in the library. The width of the cell is

scaled as a multiple value of the width of a placement site.

• All cell instances in a row S = {s1, s2, ..., su}, where u is the number of

56

cell instances in the row.

• Net information of all cell instances in S.

• The solution of the previous partial weighted Max-SAT problem.

In the following, we will discuss the details of the proposed algorithm.

3.4.1 Capturing X-Scope of a Cell

Definition 4 (X-Scope). The X-Scope of a cell instance sj is defined as an

interval [Lj, Rj], where Lj and Rj represent the leftmost location and right-

most location respectively that we can place sj while satisfying CPA coloring

constraints.

A lookup table LUT is constructed with dimension n × n where n is the

number of cells in the library. For any two cells ci and cj, there are four types

of cell adjacency: left boundary of ci to left boundary of cj, left boundary

of ci to right boundary of cj, right boundary of ci to left boundary of cj,

and right boundary of ci to right boundary of cj. Denote them as ll, lr, rl, rr

respectively. Each entry LUT (i, j) includes four more entries LUT (i, j, 0),

LUT (i, j, 1), LUT (i, j, 2) and LUT (i, j, 3), which stores the CPA-friendly

distance needed for ll, lr, rl and rr boundary adjacency of cell ci and cj

respectively.

Given any two types of cells ci and cj, assume ll boundary adjacency

appears in the soft clauses and is satisfied in the SAT solution. Denote the

width a placement site is wp. Denote the minimum distance among all ll

boundary adjacency for ci and cj in the layout as dij0min. LUT (i, j, 0) is set to

be pd
ij0
min

wp
q. The same principle applies for lr, rl and rr boundary adjacency.

For all adjacency that are violated or not included in the soft clauses, the

values in LUT are set to be pdmin

wp
q, which means that all the cell instances

need to be conflict free to each other.

Intuitively, if we pack all the cell instances before sj as compact as possible,

we get Lj. Similarly, if we pack all the cell instances after sj as compact as

possible, we get Rj. Denote L as the length of the cell row and tj as the

type of cell instance sj in the cell library where tj ∈ {1, 2, ..., n}. Denote

the type of boundary adjacency of two instances sj and sj+1 as bj,j+1 where

57

bj,j+1 ∈ {0, 1, 2, 3}. The X-Scope can be computed as follows:

Lj =
∑j−1

m=1(ltm + LUT (tm, tm+1, bm,m+1)) (3.11)

Rj = L− ltu −
∑u−1

m=j(ltm + LUT (tm, tm+1, bm,m+1)) (3.12)

3.4.2 Constructing a Graph Model

After computing the X-Scope of all cell instances, a directed acyclic graph

model G = (V,E) can be constructed to compute the exact locations of

all the cell instances with optimal HPWL. The graph can be divided into u

columns, where the vertices in the jth column represent all possible locations

where we can place sj. The graph is constructed as follows.

For any cell instance sj with X-Scope [Lj, Rj], Rj−Lj+1 number of vertices

are created. Similarly, Rj+1 − Lj+1 + 1 number of vertices are created for

sj+1. Denote the ith vertex for cell instance sj as vji and its location as L(vji).

There is an edge connecting two adjacent nodes vji and vj+1
k if the following

condition holds:

L(vji) + ltj + LUT (tj, tj+1, bj,j+1) ≤ L(vj+1
k) (3.13)

where the weight of the edge is assigned to be the HPWL increase when

placing sj+1 at L(vj+1
k).

There is a source vertex s which connects to all the vertices that belongs to

s1. The weight of the edge connecting s and v1i is assigned to be the HPWL

increase when we place s1 at v1i . There is also a sink vertex t which connects

to all the vertices in the last column, where the weight of the edges are all 0.

After constructing the graph, a shortest path algorithm is applied to compute

the exact locations of all instances with optimal HPWL. The overall flow of

the refinement procedure with optimal HPWL is shown in Algorithm 4.

A simple example is shown in Fig. 3.6 to illustrate our approach. There are

two cell instances s1 and s2 and nine placement sites in the layout. The s1 is

involved with two nets, {s1f1} and {s1f2f4} respectively. The s2 is involved

with two nets, {s2f3} and {s2f2f4} respectively. The CPA-friendly distance

between s1 and s2 is one placement site. Based on the input layout, we can

compute the X-Scope of s1 as [1, 4], and X-Scope of s2 as [5, 8]. The graph is

constructed based on the X-Scope information of all cell instances. Finally,

58

Algorithm 4: CPA-Aware Refinement with Optimal HPWL

1 begin
2 Read Max-SAT solutions;
3 Initialize graph G as empty;
4 S ← All cell instances in a row;
5 LUT ← Update spacing for all cell adjacencies;
6 w ← size of S;
7 for i← 1 to w do
8 [Li, Ri]← X-Scope for instance si;
9 end

10 for i← 1 to w do
11 G← Add Ri − Li + 1 vertices;
12 end
13 G← Add source and sink vertices;
14 Find shortest path in G;
15 Update cell locations;

16 end

a shortest path algorithm is utilized to compute the solution with optimal

HPWL, which is shown in Fig. 3.6 (b).

3.4.3 Honoring Cell Displacement

In practice, minimizing the cell displacement is also one of the important

objectives during the detailed placement stage. To achieve this, we can

simply enforce a sliding window on each cell instance in the layout. The

length of the window is set to be Lw, with its center sitting at the location of

the cell instance. When constructing the graph model, the range that we can

place a cell instance is set to be the overlapping part between its X-Scope

and the sliding window.

3.5 Experimental Results

The algorithm is implemented in C++ and run on a Linux server with 4GB

RAM and a 2.53 GHZ CPU. All benchmarks are generated using NanGate

FreePDK45 Generic Open Cell Library [28], which is available online. The

standard cells are randomly selected from the cell library, and are aligned

adjacently in different rows of a chip. dmin is set to be 82 nm. Wires on

the M1 layer are used for all experiments. Nets for all cells are randomly

59

Table 3.1: Experimental Results

Test
#
P

#
BP

#
Clause

#
Nets

SAT
Runtime

(s)

Area Overhead
Area∗

(nm2)
Area

(nm2)
Improve

(%)

C1 6155 32 303 674 0.07 42160 3400 91.9

C2 24356 39 484 2880 0.25 122740 27200 77.8

C3 54033 39 529 6268 0.56 343400 86700 74.8

C4 96078 39 541 11147 0.94 473620 120700 74.5

C5 149951 39 541 17415 1.45 805913 178500 77.9

Ave. 66115 38 479.6 7677 0.65 357567 83300 79.4

Note: The column named “Area∗” shows the area overhead of the approach Fix-
Color, while the column named “Area” shows the results of our Max-SAT algo-
rithm.

Table 3.2: Experimental Results

Test
#
P

#
BP

#
Clause

#
Nets

SAT
Runtime

(s)

HPWL Compare
Initial
HPWL
(mm)

Final
HPWL
(mm)

Improve
(%)

C1 6155 32 303 674 0.07 23.43 23.41 0.10

C2 24356 39 484 2880 0.25 192.85 192.40 0.23

C3 54033 39 529 6268 0.56 634.08 631.93 0.34

C4 96078 39 541 11147 0.94 1504.87 1500.13 0.32

C5 149951 39 541 17415 1.45 2897.26 2890.97 0.22

Ave. 66115 38 479.6 7677 0.65 1050.50 1047.77 0.24

generated, where each cell is connected with three to ten nets. Each net

contains five cell instances. Width of the placement site is set to be 10 nm.

The Linux version of MSUncore Max-SAT solver is used in the experiments,

which is available online [69].

The results of constrained pattern assignment are shown in Table 3.1 and

Table 3.2. To give more insights of the effectiveness of our approach, the

approach named FixColor is also implemented. In this approach, the legal

TPL decompositions of all cells in the library are fixed before the placement

stage. The algorithm can be easily implemented since the solution graph

proposed in [48] explores all legal solution spaces for any cell. For each

cell, we randomly pick up a path in its solution graph, which guarantees

to correspond to a legal TPL decomposition, and set it as its initial TPL

decomposition. Once the TPL decompositions of all cells are known, the

60

layout is sequentially explored to identify the cell boundaries where coloring

conflict exists. For all such cell boundaries, a minimum number of placement

sites is inserted to remove the coloring conflicts. The final area overhead

equals to the total area of all inserted placement sites.

Since the initial coloring solutions are randomly picked, the FixColor al-

gorithm is invoked multiple times to capture the facts that different TPL

decomposition leads to different area overhead. In the experiments, the Fix-

Color algorithm is run 15 times for all benchmarks, and final area overhead

shown in column 7 is taken as the average of the 15 runs.

The total number of polygons, boundary polygons, clauses in the SAT for-

mulation, and nets are shown in columns 2, 3, 4, and 5 respectively. Column

6 shows the runtime for solving the weighted partial Max-SAT problem. The

comparisons between the area and HPWL are detailed in the last six columns.

The area of the baseline algorithm is shown in column named “Area∗”, while

the results of our approach is shown in the column “Area” in Table 3.1 and

Table 3.2 respectively. Compared with the baseline algorithm, our approach

achieves significant area overhead reductions by as much as 79.4% on aver-

age. The results suggest that fixing the cell colors beforehand could lead to

much inferior results. For our approach, the solution space of all cells are also

pertained, since a CPA-friendly solution graph is computed for each type of

cell respectively. This leaves more flexibilities to achieve a CPA-friendly lay-

out while simultaneously minimizing the area overhead during the detailed

placement stage.

As shown in column 2, the number of boundary polygons increases only

by a small amount as the layout grows. In practice, the number of boundary

polygons is limited since there are limited types of cells in the cell library.

Our proposed algorithm has the capability to handle very large layout as long

as the number of cells in the cell library is limited, which is true for many

industry designs. As shown in column 3, the number of clauses in the SAT

formulation is limited for all benchmarks. The runtime for all benchmarks

are within two seconds. As for the HPWL, our approach consistently reduces

the HPWL for all benchmarks. Overall, it achieves a 0.24% improvement on

HPWL on average. This clearly verifies the effectiveness of our algorithm.

61

3.6 Conclusions

In this chapter, we integrate the flow of detailed placement and TPL decom-

positions, which guarantees a CPA-friendly layout in the early design stage

and avoids costly modifications after placement and routing. We propose

a partial weighted Max-SAT based approach which guarantees to compute

a CPA-friendly layout while minimizing the area overhead. A novel graph

model is also proposed to find the exact locations of all cells with optimal

HPWL in a standard cell row. Compared with a the approach of fixing the

cell colors beforehand, the area overhead reduction is as much as 79.4% on

average for all the benchmarks. Better results are also reported on HPWL

for all benchmarks.

62

CHAPTER 4

AN EFFICIENT LINEAR TIME TRIPLE
PATTERNING SOLVER

4.1 Introduction

As the semiconductor industry is advancing to the 14/10 nm technology

node, numerous technology difficulties have to be resolved before turning the

technology into readily available products. Lithography is among one of the

most challenging difficulties. Double patterning lithography (DPL) [17, 29]

is already reaching its limit at the 20 nm technology node, and cannot be

further pushed to the next technology node. Several other techniques have

been proposed, such as extreme ultra-violet (EUV) [35] lithography, E-beam

direct write [10, 12] and DSA [70] techniques. For EUV, source power is

still an unresolved issue before making it happen. The low throughput of

the E-beam limits its ability to be massively used in industry. DSA is a

new emerging technique to conquer the physical limitation of traditional

lithography techniques. However, currently it can only handle 1 D patterns

and is not ready to be used in practice. TPL naturally extends the merits

of DPL with one more mask, which triples the printing resolution of the

widely used 193 nm immersion lithography. It is one of the most promising

techniques which enables 14/10 nm designs.

The general TPL problem is a 3-coloring problem, which is a well-known

NP-complete problem. There have been many research efforts on TPL prob-

lems [25, 27, 48, 53, 62, 63, 71, 72, 73]. An ILP based algorithm is proposed

in [25] to handle general TPL decompositions. A semidefinite programming

based approximation algorithm is also proposed to accelerate the runtime.

However, the ILP-based algorithm is difficult to scale up and the modified

semidefinite programming is losing the optimality. A graph-based heuristic is

proposed in [27], but it cannot guarantee finding a solution when one exists.

A TPL algorithm for standard-cell-based designs is proposed in [48], which is

63

guaranteed to find a solution when one exists. Nevertheless, their algorithm

involves an excessive amount of recomputations, which incurs significant run-

time penalties. Moreover, the algorithm utilizes stitch candidates which are

located at corners. In practice, corner stitches are not preferred since they

are highly vulnerable to process variations and could lead to functional er-

rors in the chip. Some graph heuristics are proposed in [53]. An approach

which finds all legal TPL stitch candidates is also proposed. Lookup tables

are constructed to improve the runtime of the algorithm. Similar to [27],

optimality is also not guaranteed in this approach.

In this chapter, we propose an integrated flow for standard-cell-based triple

pattering lithography, which guarantees to find a TPL decomposition if one

exists. Unlike the previous work which simply place stitch candidates on

corners, we seamlessly integrate the stitch identification method in [53] into

our algorithm, which enables us to compute a legal TPL decomposition with

optimal number of stitches. The contributions are summarized as follows:

• A TPL algorithm is proposed which essentially explores all solution

space incorporating all legal stitch candidates, and guarantees to com-

pute a TPL decomposition with the optimal number of stitches if one

exists.

• A novel graph model is proposed to minimize the number of vertices

in the solution graph. A fast approach is also proposed which achieves

simultaneous memory and runtime improvement compared with the

state-of-the-art TPL algorithm in [48].

• Our proposed algorithm is very efficient and achieves 39.1% runtime

improvement and 18.4% memory reductions compared with the state-

of-the-art TPL algorithm on the same problem.

The rest of the chapter is organized as follows: preliminaries of the TPL

problem are discussed in Section 4.2. Our algorithm will be presented in

Section 4.3 and Section 4.4. Section 4.5 shows the experimental results,

followed by a conclusion in Section 4.6.

64

4.2 Preliminaries

Preliminaries of standard-cell-based designs and the previous TPL algorithm

are discussed here.

4.2.1 Standard-Cell-Based Designs

We use the same assumptions as what are used in previous works [48, 62].

A layout is composed of different standard cells from the cell library. All

standard cells in the library have exactly the same height. There are power

rails going from the leftmost to the rightmost of a cell. A layout consists

of multiple standard cell rows, with power rails perfectly isolate the features

within different rows and cells aligned adjacently within the same row. As

with previous works, features on the M1 layer are used since it is the densest

layer with the most complex features. An example of a standard-cell-based

layout is shown in Fig. 4.1. The six instances are composed of three types of

cells from the cell library.

A1 B1 C1

A2 B2 C2

Figure 4.1: Layout of standard-cell-based designs with two rows. The six
instances are composed of three types of cells, A, B, and C from the cell
library.

4.2.2 Previous TPL Algorithm

A TPL algorithm targeting on standard-cell-based designs is proposed in [48],

which guarantees finding a solution if one exists for stitch-free designs. A

set of cutting lines are constructed based on the left boundaries of all the

65

(a)

1

2

3

{a}

1,2

1,3

2,1

2,3

3,1

3,2

{a,b}

1,2

1,3

2,1

2,3

3,1

3,2

{b,c}

1

2

3

{d}

(b)

a

b

c

d

(d)

mask 1

mask 2

mask 3

(c)

a

b

c

d

Figure 4.2: Previous TPL algorithm in [48]. (a) Input layout. There are
four cutting lines, with their cutting line sets as {a}, {a, b}, {b, c}, and {d}
respectively. (b) Solution graph. Different numbers here denote different
masks. The highlighted path is a legal TPL decomposition. (c) Constraint
graph. (d) Final decomposition which corresponds to the above highlighted
path. Different colors represent different masks.

features. The polygons that intersect with the same cutting line are defined

as cutting line set. TPL solutions for each cutting line are enumerated based

on the constraint graph, with each solution corresponding to a vertex in the

solution graph. Compatible vertices on adjacent cutting lines are connected

together. A more detailed description of the algorithm is discussed in a

previous paper [48].

We show a simple example in Fig. 4.2 to illustrate how the previous TPL

algorithm works. There are four features in the layout, with its solution graph

and constraint graph shown in Fig. 4.2 (b) and Fig. 4.2 (c) respectively. Final

TPL decomposition is shown in Fig. 4.2 (d).

66

4.2.3 Problem Definition

Given a standard-cell-based row structure layout and a minimum coloring

distance dmin, our objective is to find a legal triple patterning decomposition

while minimizing the number of stitches.

(a)

1

2

3

{a}

1,2

1,3

2,1

2,3

3,1

3,2

{a,b}

1,2

1,3

2,1

2,3

3,1

3,2

{b,c}

1

2

3

{d}

(b)

a

b

c

d

(d)

mask 1

mask 2

mask 3

(c)

{a} {a,b} {b,c} {d}

cutting

 line

a

b

c

d

1

2

3

1,2

1,3

2,1

2,3

3,1

3,2

1,2,1

{a} {a,b} {a,b,c} {a,b,c,d}

1,2,3

3,2,1

3,2,3

...

1,2,1,2

1,2,1,3

3,2,3,1

3,2,3,2

...

a

b

c

d

a

b

c

d

(a) (b) (c)
l1 l2 l3 l4

Figure 4.3: Example of how the previous algorithm works. (a) Input layout
with four features. The four cutting lines are shown in green dotted lines,
with the cutting line sets are {a}, {a, b}, {a, b, c}, and {a, b, c, d}
respectively. (b) Constraint graph of the input layout. (c) Solution graph
computed by the previous algorithm [48]. There are totally 45 vertices in
the graph.

4.3 An Optimal Algorithm

In the following, we will formally introduce the optimal TPL algorithm, which

is guaranteed to find a TPL solution with optimal number of stitches if one

exists. The novel graph model which minimizes the number of vertices in the

solution graph is also discussed. Since we are addressing the same problem as

the previous paper [48], the same terminologies including cutting line, cutting

line set, constraint graph, and solution graph, are reused for consistency. The

four concepts are illustrated in Fig. 4.2. As different rows are separated by

power tracks and can be solved independently, the following discussions are

based on the layout in a single standard cell row.

4.3.1 Limitations of Previous Approach

Although the algorithm in [48] is able to find a stitch-free decomposition if

one exists, it may uses an excessive amount of runtime and memory than

67

necessary. The example in Fig. 4.3 is used to show the limitations of the

previous approach. There are four features in the examples, with the con-

straint graph shown in Fig. 4.3 (b). The corresponding solution graph is

shown in Fig. 4.3 (c). One can easily observe that a huge number of nodes

are computed to explore all legal solution spaces.

In the following, we propose a novel graph model which minimizes the

number of vertices in the solution graph without losing the optimality of the

approach. An approximation approach is also proposed to achieve simulta-

neous runtime and memory reductions.

4.3.2 A Novel Graph Model

To reduce the number of nodes in the graph, we need to carefully compute

the cutting line sets for each of the cutting lines. Intuitively, cutting line sets

with smaller number of features indicate less number of nodes in the graph,

thus reducing memory and runtime. Our objective is to compute the cutting

line sets for all cutting lines, which leads to minimum number of vertices in

the solution graph.

Denote the set of polygons as P = {p1, p2, ..., pn} where n is the number

of features in the layout. We assume the set of polygons are already sorted

in non-decreasing order according to their left boundaries. Denote the set of

cutting lines as L = {l1, l2, ..., lm} where m is at most n. After performing

polygon dummy extension which is proposed in [48], the cutting line sets

for all the cutting lines can be computed. Denote the cutting line sets as

S = {s1, s2, ..., sm}, where si is the cutting line set which corresponds to the

cutting line li. The graph can be constructed as follows.

We sequentially go through all the cutting line sets. For cutting line set si,

all subsets of si which contains pi are enumerated. For the jth subset of sji , a

vertex vji is created in the graph. Denote the set of polygons for sji as pji . For

any two adjacent vertices vji and vki+1, an edge is added if for any polygon in

pki+1, all its conflicting polygons appears in pji . Denote the number of legal

TPL solutions for sji as nji . The weight of the edge is assigned according to

the following two scenarios:

1. If pji is a subset of pki+1, the weight is assigned as nki+1 − n
j
i .

2. Otherwise, the weight is assigned as nki+1.

68

If pji is a subset of pki+1, the cutting line of lji and lki+1 can be merged together.

Therefore, the weight of the edge is subtracted by nji to reflect the real number

of vertices needed for that cutting line set. Otherwise, the weight of the edge

is simply assigned as nki+1, which is the number of vertices needed to represent

all legal TPL solutions of pki+1.

There is also a source node s which connects to all vertices in the first

cutting line, and a sink t which connects to all vertices in the last cutting

line. By applying the shortest path algorithm from s to t, the cutting line sets

which minimize the number of vertices in the solution graph are obtained.

After that, any two adjacent cutting line sets are merged together if one of

the set is a subset of the other one.

b

a

ab

ac

bc

abc

d

ad

abcd

abd

...

c

s t

(a)

1

2

3

1

2

3

1

2

3

1

2

3

(b)

{a} {b} {c} {d}

Figure 4.4: (a) The graph model for the layout in Fig. 4.3. Cost of the
edges are not shown here for simplicity. The highlighted path corresponds
to the cutting line sets that lead to the minimum number of vertices in the
solution graph. (b) Solution graph corresponding to the highlighted path.
There are totally 12 vertices in the graph.

The layout in Fig. 4.3 is used to illustrate the procedures. There are four

cutting line sets {a}, {a, b}, {a, b, c}, and {a, b, c, d} in the example. For

cutting set {a}, there is one vertex in the graph. Similarly, there are two

subsets for the second cutting line sets, which are {b}, and {a, b} respectively.

Two vertices are created in the graph. Edges are added between compatible

69

a d

c

b

a d

c

b2b1

(a) (b) (c)

a d

c

b

Φ

Φ

F

Φ

Φ

BA

E

OUT

Φ

Φ

C

D

Φ

Φ

F

Φ

BA

E

OUT

Φ

Φ

C

D

Φ

{a,b1,c} {a,b2,c} {d}

(e)

a d

c

b2b1

(d)

1,2,3

1,3,2

3,1,2

3,2,1

1,1,2

1,1,3

3,3,1

3,3,2

1

2

3

...

...

(f)

mask 1

mask 2

mask 3

Figure 4.5: (a) Input layout. (b) Constraint graph. (c) Layout after
inserting stitch candidate. (d) Constraint graph after inserting stich
candidates. (e) Solution graph, with the thick blue edges of weight 1. (f)
Final TPL decomposition with one stitch.

nodes for these two cutting lines. The same procedures are repeated for all

cutting lines, and the complete graph is shown in Fig. 4.4 (a). The new

cutting line sets for each cutting line are extracted based on the shortest

path in the graph. Based on the new cutting line sets, the solution graph

with minimum number of vertices are constructed, which is shown in Fig. 4.4

(b). Compared with the solution graph in Fig. 4.3 (c), the number of vertices

is reduced by 73.3% while the completeness of the algorithm is not affected.

4.3.3 Computing Cutting Line Sets

By applying the shortest path algorithm on previous graph model, the cutting

line sets which lead to minimum number of vertices in the solution graph are

extracted. However, constructing such a graph model is expensive. For each

original cutting line set, we need to compute all its subsets and enumerate

the number of legal TPL solutions for all the subsets. It is very expensive

to accurately compute the number of legal TPL solutions for a given graph.

If enumerations are applied, the proposed graph model suffers from high

runtime penalties. The key observation here is that to reduce the number of

TPL solutions for a cutting line set, we need to limit the number of features

in the cutting line set. Intuitively, a feature should appear in as less cutting

lines as possible. The proposed approximation approach works as follows.

Given a cell-based layout, the constraint graph and the set of cutting lines

L = {l1, l2, ..., lm} are computed. Define the Influenced Cutting Line(ICL)

of a polygon as the set of cutting lines that intersect with the polygon.

For polygon a in Fig. 4.3 (a), the ICL is ICLa = {l1, l2, l3, l4}. Similarly,

ICLb = {l1, l2, l3, l4}. Note that the ICL of a polygon is always continuous.

70

The size of ICL is minimized for each polygon using the following technique.

For each polygon pi, all polygons that conflict with itself are identified.

Denote the one with the largest left boundary as pj. Denote the last cutting

line in ICLi as lit and the first cutting line in ICLj as ljs. ICLi is expanded (if

lit < ljs) or shrunk (if lit ≥ ljs) to ljs−1, which is the cutting line right before ljs.

When the left boundaries of pi and pj are the same or there is no conflicting

polygon with pi, its ICL is simply shrunk to include only the leftmost cutting

line in the original ICL. The cutting line set of li is computed as all polygons

whose ICL contains the cutting line li. Any two adjacent cutting line sets

are merged together if one of them is a subset of the other.

Lemma 4. For any feature pi which first appears in the cutting line set sj,

all conflicting features of pi with smaller left boundaries are included in the

cutting line set sj−1.

Proof. For any feature pi, denote the set of features with smaller left bound-

aries and conflict with pi as cif . Denote the cutting line of pi as lj. Clearly,

the ICL of any feature in cif will be expanded to lj−1, which means that all

features in cif appear in cutting line set sj−1.

For any feature pi, denote all its conflicting features with smaller left

boundaries as cif . Assume pi first appears in cutting line set sj. The way

we compute the cutting line sets ensures that all features in cif appear in the

cutting line sets sj−1. Since all conflicting polygons of pi appears in sj−1, it

enables an incremental computation of the solution graph as we are walking

through all cutting line sets. Each time a new cutting line set comes in, it

is sufficient to look back one cutting line set to ensure the legality of the

solution graph.

For feature a in the layout shown in Fig. 4.3 (a), ICLa = {l1, l2, l3, l4}. Af-

ter applying the above procedures, ICLa = {l1}. Similarly, the ICL of feature

b, c, and d can be computed as ICLb = {l2}, ICLc = {l3}, and ICLd = {l4}
respectively. The cutting line set corresponding to L = {l1, l2, l3, l4} are {a},
{b}, {c}, and {d} respectively. The solution graph based on these cutting

line sets is exactly the same with the one shown in Fig. 4.4 (b).

71

4.3.4 Stitch Candidates

The approach of finding all legal TPL stitch candidates in [53] is embedded

into our algorithm. After computing the stitch candidates, all the techniques

discussed above can be applied here. When stitches exist, the solution graph

becomes a weighted graph, with the weight of an edge computed as the

number of stitches needed for the connected vertices. The shortest path

algorithm is applied to get a TPL decomposition with optimal number of

stitches.

An example is shown in Fig. 4.5 to further illustrate the algorithm. There

are four features in the layout, where the constraint graph forms a clique.

One stitch candidate is computed, which is shown in thick red edge in Fig. 4.5

(c). After inserting the stitch candidate, the new constraint graph and so-

lution graph are computed, which are shown in Fig. 4.5 (d) and Fig. 4.5 (e)

respectively. Final result is shown in Fig. 4.5 (f), where there is one stitch

in the decomposition.

4.3.5 Analysis of the Algorithm

The time complexity of the algorithm is O(n+ s), where n is the number of

features and s is the number of stitch candidates in a layout. We first show

that the size of any cutting line set si is bounded. Denote the x coordinate

of current cutting line as xi. For any feature, it is extended by at most

dmin, which is a constant for 193 nm immersion lithography. For any feature

appearing in cutting line set si, either it physically intersects with cutting

line l = xi, or the extended part intersects with l = xi. For the first case,

the number is bounded as the height of a standard cell is fixed. For the

latter case, the x coordinates of the right boundaries for the polygons has

to be within [xi − dmin, xi], which is also limited. Denote the maximum

number of features for the two cases as u, which is just a constant. For any

cutting line, at most 3u number of solutions are enumerated. For two adjacent

cutting lines, at most 32u number of checks are needed to find compatible

solutions. By going through at most n+ s cutting lines, the time complexity

is O((32u + 3u)(n+ s)), which is O(n+ s).

72

4.3.6 Reducing Stitch Candidates

The number of stitch candidates computed by the approach in [53] are huge.

Since all features in a layout are possibly segmented and stitches are inserted,

an excessive number of stitches candidates are computed. In the following,

we show that our algorithm can accurately identify the features that need

stitch on the fly, thus significantly reducing the number of stitch candidates

with neglectable runtime penalties.

After computing all the cutting line sets S = {s1, s2, ..., sm}, the solution

graph are constructed. For any two adjacent cutting line sets si and si+1, if

there are no compatible decompositions for the two cutting line sets, stitches

have to be inserted. All the features within si and si+1 are features that

potentially need stitches, and denote the features as Fi,i+1. After that, all

legal stitch candidates are computed for polygons in Fi,i+1. We go back to the

cutting line set where none of the feature belongs to Fi,i+1, and the solution

graph are recomputed from that point on.

The algorithm can also be applied statically, where the techniques in [25,

72] are used to find relevant polygons for inserting stitches. All legal stitches

are computed before applying our algorithm to get legal decompositions.

Note that the algorithm is highly flexible which does not depend on a partic-

ular set of stitch candidates. Given any legal stitch candidates, the algorithm

guarantees to compute a TPL decomposition with optimal number of stitches

if one exists.

4.3.7 Power Tracks

As power and ground rails go through the whole layout and appear in all

cutting line sets, they can be preassigned to some masks to avoid recompu-

tations. Similar technique are also adopted in the previous paper [48]. There

are two base cases. We can assign all power rails on mask 1 and ground

rails on mask 2 respectively, or we can assign them on mask 1 at the same

time. All other combinations can be obtained from the base cases by rotating

colors.

73

4.4 Hierarchical Approach

For standard-cell-based designs, millions of chip elements are typically com-

posed from several hundreds or thousands types of cells in the standard cell

library. To further speed up the algorithm, the solution graphs of different

types of cells can be computed and stored in a lookup table. The solu-

tion graph are reused when constructing a whole chip decomposition. When

reusing the solution graphs, boundary adjacency between different cell could

introduce additional constraints and stitch candidates. In the following, we

will discuss the details involved in the hierarchical approach.

p4

p5p3

p2

p1

(a)

Ca Cb

p4

p2

p1

p3

p5

p2

p1

p3

p4

p5

Ca Cb

Boundary connection

p2

p1

p3

p5

p4

t1

t2 t3

t4

t5

t6

p4

p5
p3

p1

p2

Ca Cb

p6

p1

p2

p4

p3

p5

p6

p1

p2

p4

p
p6

(a)

{p3}{p1,p2} {p6}{p4,p5}

SG Ca SG Cb

1,2

1,3

2,1

2,3

3,1

3,2

1

2

3

1,2

1,3

2,1

2,3

3,1

3,2

1

2

3

{p1,p2}

1,2

1,3

2,1

2,3

3,1

{p2,p}

1,2

1,3

2,1

2,3

3,1

3,2

{p,p4}

1,2

1,3

2,1

2,3

3,1

3,2

{p6}

1

2

3

SG boundary

(c)

(b)

p4

p5
p3

p1

p2

p6

(d)

3,2

Figure 4.6: (a) Input layout with two cells ca and cb respectively. There are
four boundary polygons, p2, p3, p4, and p5 respectively. Boundary
connections between p3 and p5 are highlighted in green. (b) The updated
constraint graph. Connected vertices are merged together. (c) Final
solution graph, with the solution graph on cell boundaries recomputed.

74

4.4.1 Boundary Constraints

Boundary constraints exist between two adjacent standard cells in the given

layout, either due to boundary connections, or due to boundary conflicts.

Define a boundary polygon (BP) as a polygon that conflicts or connects with

other polygons in adjacent cells. If features are connected to each other,

they are treated as one single feature, since they have to be assigned to

the same mask to avoid stitches. For any two adjacent cells, the boundary

polygons are computed. The cutting line sets along the boundaries are also

recalculated. For the cutting line sets that are different from original ones at

cell boundaries, the corresponding part of the solution graph are calculated

from scratch. For the unchanged cutting line sets, the part of the solution

graph are reused from the previously stored lookup table. By reusing the

solution graph for each type of cell, a limited part of the whole chip solution

graph are recomputed, which improves the overall runtime.

In Fig. 4.6, there are two cells with six features in total. The boundary

polygons are p2, p3, p4, and p5 respectively. The constraint graph for cell

boundaries are recomputed since conflicts and connections exist between cell

boundaries, and the updated graph is shown in Fig. 4.6 (b). p3 and p5 are

merged into one feature since connection exists between these two features.

The final solution graph is shown in Fig. 4.6 (c), where the solution graph of

cell boundaries is updated based on the new constraint graph.

4.4.2 Boundary Stitch Candidates

If features that potentially need stitch candidates appear between cell bound-

aries, the stitch candidates can be updated on the fly. This step is similar to

boundary constraints, except that the cutting line sets are computed after

inserting all legal stitch candidates. Note that boundary stitch candidates

are only needed when features that need stitches exist between two adjacent

cells. If compatible nodes exist between two adjacent cutting lines on cell

boundaries, no stitches are needed.

By reusing the solution graph and considering boundary constraints and

stitches, the solution graph is incrementally updated while the correctness

of the graph is maintained. For designs without stitches, the completeness

of the solution graph is not affected. For complex designs with stitches, the

75

number of stitch candidates is minimized as they are only considered when

stitches are needed at potential locations.

Table 4.1: Comparisons of Runtime and Memory with Previous Algorithm

Test
Cases

n Tracks
Runtime Memory

t1 (s) t2 (s)
Improve

(%)
m1

(MB)
m2

(MB)
Improve

(%)

C1 106690 143 14 8 40.8 7.9 6.7 15.6

C2 674841 358 70 39 45.0 13.8 11.9 13.7

C3 2695803 715 273 149 45.5 31.8 28.9 9.3

C4 10782073 1429 1088 589 45.8 99.0 93.7 5.4

C5 26949406 715 2709 1481 45.3 264.1 240.0 9.1

C6 179201 143 32 22 33.2 12.5 9.4 24.5

C7 904292 322 147 98 33.3 24.6 16.2 34.2

C8 2695803 715 722 471 34.8 57.7 41.7 27.8

C9 10031115 1072 1589 1050 33.9 91.8 70.0 23.8

C10 17813611 1429 2833 1901 32.9 136.9 108.9 20.5

Ave. 7548983 633 948 581 39.1 82.3 62.7 18.4

Note: t1 and m1 are the runtime and memory in the previous paper [48], while t2
and m2 are the results of our proposed algorithm.

4.5 Experimental Results

The algorithm is implemented in C++ and run on a Linux server with 8GB

RAM and a 3.0 GHZ CPU. The algorithm in [48] is also implemented to

compare with our approach. For fair comparisons, the same benchmarks

are used as that used in the previous paper [48], which are generated from

NanGate FreePDK45 Generic Open Cell Library [28]. dmin is set to be 82

nm. Wires on the M1 layer are used for all experiments. For generating

stitch candidates, the same setting are used as that in [53]. The results are

discussed as follows.

A comprehensive comparisons of our algorithm with the previous algorithm

in [48] are detailed in Table 4.1 and Table 4.2. Hierarchical implementations

are used to generate these results. The comparisons between the runtime

and memory are shown in Table 4.1, and the comparisons between runtime

and stitches are shown in Table 4.2. The same stitch candidates are used in

both algorithms for a fair comparison.

76

Table 4.2: Comparisons of Runtime and Stitches with Previous Algorithm

Test
Cases

n Tracks
Runtime Stitches

t1 (s) t2 (s)
Improve

(%)
s s1 s2

C1 106690 143 14 8 40.8 0 0 0

C2 674841 358 70 39 45.0 0 0 0

C3 2695803 715 273 149 45.5 0 0 0

C4 10782073 1429 1088 589 45.8 0 0 0

C5 26949406 715 2709 1481 45.3 0 0 0

C6 179201 143 32 22 33.2 82736 3420 3420

C7 904292 322 147 98 33.3 419907 17146 17146

C8 2695803 715 722 471 34.8 2064944 83916 83916

C9 10031115 1072 1589 1050 33.9 4655445 188854 188854

C10 17813611 1429 2833 1901 32.9 8254596 334642 334642

Ave. 7548983 633 948 581 39.1 1547762 62798 62798

Note: t1 and s1 are the runtime and the number of stitches in the previous pa-
per [48], while t2 and s2 are the results of our proposed algorithm. “s” shows the
number of stitches candidates in the benchmark.

Compared with the previous algorithm, the runtime is further improved by

39.1% on average. For the benchmark C5 with over 26 million features, the

runtime is approximately reduced by half. In terms of the memory usage, the

improvements are more significant on designs with stitches than that without

stitches. For designs with stitches, the size of the cutting line set is typically

larger, which would introduce more vertices in the graph. If the size of a

cutting line set is increased by one, the number of vertices could increase

up to three times. Since the sizes of all cutting line sets are optimized and

redundant cutting line sets are eliminated, the memory reductions are more

prominent on complex designs with stitches. On average, our algorithm uses

18.4% less memory than the previous algorithm.

The comparisons of the number of stitches are shown in the last three

columns. All the stitch candidates are generated dynamically when features

that potentially need stitches are found in the circuit. The same stitch can-

didates are embedded into the previous approach to compute the solution

with optimal number of stitches. Not surprisingly, the number of stitches

achieved by both algorithms are exactly the same for all benchmarks, since

optimality in terms of stitches is guaranteed in both approaches. Overall,

the new approach is able to achieve simultaneous runtime and memory re-

77

ductions while guaranteeing the optimality in the number of stitches. This

clearly verifies the effectiveness of the new algorithm.

4.6 Conclusions

In this chapter, we propose a linear time triple patterning solver that guaran-

tees to compute a TPL decomposition with optimal number of stitches if one

exists. A novel graph model is proposed to reduce the memory requirement

of the algorithm. A fast approach is also proposed to achieve simultaneous

memory and runtime reductions compared with state-of-the-art TPL algo-

rithm. To reduce the number of stitch candidates, features that potentially

need stitches are accurately identified, where all legal stitch candidates are

computed. This algorithm is expected to relieve the manufacturing bottle-

neck in advanced technology node.

78

CHAPTER 5

PERFORMANCE EVALUATION
CONSIDERING MASK MISALIGNMENT

IN MULTIPLE PATTERNING
DECOMPOSITION

5.1 Introduction

As the feature size of the transistors keeps shrinking, the difficulties of fab-

ricating the small features also keep increasing. Traditional optical lithog-

raphy faces great challenges when dealing with these small features, mainly

due to the inherent physical limitations of light diffusions. Single exposure

lithography is already reaching its limit beyond the 20 nm technology node.

Several next-generation lithography techniques have been studied, such as ex-

treme ultra-violet (EUV) lithography [35] and E-beam [12]. However, source

power remains challenging for EUV, and low productivity of E-beam makes

it difficult to be used in volume production in industry. Multiple patterning

decomposition coupling with tradition litho technologies serves as one of the

most cost-effective ways to tackle the manufacturing bottlenecks.

For the most widely used 193 nm immersion lithography, double pattern-

ing (DPL) is required at the 20 nm technology node, where the features

are decomposed into two masks and go through two litho exposures. For

the 14/10 nm technology node and beyond, triple patterning decomposi-

tion (TPL) comes into picture where the features are decomposed into three

masks, with each mask going through a separate litho process. There have

been several works on MPL decompositions [17, 25, 27, 48, 53, 56, 63] in the

literature. However, none of the these works are considering mask alignment

explicitly, which is prominent and inevitable in advanced technology node.

On the other hand, there are several works in the literature that analyzed

the effects of mask misalignment on circuit performance for a given decom-

position [16, 74, 75, 76, 77]. The authors in [16, 74] studied the adverse

effects on timing for overlay errors in DPL. However, mask misalignment

is not explicitly captured in their models, and the analysis is not fed back

79

into the decomposer to get a better decomposition. Commercial tools like

StarRC [75] from Synopsys Inc. simply extract the min/max capacitance to

evaluate the timing degenerations, which often leads to pessimistic estima-

tions. Recent work in [76] focused on the evaluating the influence of mask

misalignment for DPL decompositions on static timing analysis. However,

the approach is only targeting on DPL and cannot be extended to MPL with

k > 2.

Mask misalignment will adversely affect the quality of a circuit in two folds.

On one hand, timing closure becomes more challenging considering mask

misalignment, since misalignment between different masks leads to signifi-

cant variations in total coupling capacitance, thus complicates the process of

performing timing analysis. Previous study shows that a 6 nm misalignment

causes a 15% error in coupling capacitance and a 5% error on total capac-

itance, whereas a 2 nm displacement creates approximately a 5% error for

coupling capacitance and 2% error for total capacitance [78]. On the other

hand, MPL decomposers unaware of mask misalignment could lead to in-

creased power dissipations and reliability issues. Even worse, if designers are

doing timing analysis unaware of the adverse effects of mask misalignment,

timing violations may occur for certain decompositions and they potentially

lead to functional errors of the circuit.

An example is shown in Fig. 5.1. There are three features, with the normal

spacing 100 nm. Assume DPL is used and there is a worst-case 10% mask

misalignment, the possible coupling capacitance variations are shown in the

right part of Fig. 5.1. One can clearly see that the worst-case capacitance

deviates as much as 10% from the normal capacitance.

In this chapter, we analyzed the effects of mask misalignment for MPL,

and mathematically proved the upper bound of the coupling capacitance in-

duced by mask misalignment. We aimed at computing a tight upper bound

on the worst-case coupling capacitance, which gives the designers the insight

of varying performance evaluations for different MPL decompositions. More-

over, the obtained upper bound can be further used as an upper bound in

power/timing analysis. Our contributions can be summarized as follows:

• We mathematically proved the worst-case scenarios of coupling capac-

itance incurred by mask misalignment in MPL decompositions.

• We proposed a graph model that guarantees to compute the tight upper

80

pitch
misalignment

Cl Cr

Figure 5.1: Variations of coupling capacitance due to mask misalignment.
There are three features in the layout, with the normal spacing (pitch) of
100 nm. The misalignment is assumed to be 10% in the worst-case, which
is 10 nm. The percentage of the variations in coupling capacitance is shown
in the right figure, where Cl and Cr refer to the capacitance of the left two
features and right two features respectively. Only lateral capacitance is
shown here [79]. The capacitance C is calculated as C = εS

d
, where ε is the

permittivity of the intermediate material and S is the area of the two
parallel metallic plates.

bound on the worst-case coupling capacitance of any MPL decomposi-

tions for a given layout.

The rest of the chapter is organized as follows. Some preliminaries of the

problem are discussed in Section 5.2. The problem description is presented

in Section 5.3. Our algorithm is presented in Section 5.4, followed by the

experimental results in Section 5.5. Finally, we give the conclusions in Sec-

tion 5.6.

5.2 Preliminaries

Some preliminaries of mask misalignment are discussed here. Existing ap-

proaches considering the effects of mask misalignment are also reviewed.

81

5.2.1 Mask Misalignment in MPL Decomposition

In MPL decompositions, the features are decomposed into different masks

and go through separate litho exposures. However, due to process variations,

the alignments of different masks are never perfect. As shown in Fig. 5.1,

the spacing between features on different masks could be increased/decreased

due to misalignment between different masks. Mask misalignment leads to

significant variations of the coupling capacitance [78], which further leads to

power and timing degenerations [75, 76]. Two popular approaches compre-

hending mask misalignment on power/timing are discussed in the following.

5.2.2 Min/Max Extraction

To capture the coupling capacitance variations due to mask misalignment,

min/max capacitance can be extracted as follows. For each pair of paral-

lel lines, the coupling capacitance is extracted as a triplet with the form

“min:nom:max”, where min corresponds the coupling capacitance with mini-

mum mask misalignment, nom corresponds to the coupling capacitance with

no mask misalignment, and max corresponds to the coupling capacitance

with maximum mask misalignment.

pitch

misalignment

pitch

misalignment

(a) (c)

pitch

(b)

Figure 5.2: Min/Max coupling capacitance extraction considering mask
misalignment. (a) Minimum coupling capacitance. (b) Normal coupling
capacitance. (c) Maximum coupling capacitance.

Figure 5.2 shows an example of extracting coupling capacitance under

different misalignment scenarios. Each entry in the triplet “min:nom:max”

is computed based on different misalignment values.

82

pitch

misalignment

(a) (b)

pitch

misalignment

A B C A B C

Figure 5.3: Pos/Neg coupling capacitance extraction considering mask
misalignment. (a) Coupling capacitance with positive mask misalignment.
(b) Coupling capacitance with negative mask misalignment.

5.2.3 Positive/Negative Extraction

The min/max extraction of coupling capacitance could be overpessimistic.

One example is shown in Fig. 5.3, where there are three features in the layout.

It is obvious that the min/max coupling capacitance between AB and BC

cannot happen at the same time. Thus, the authors in [76] proposed a new

model to capture coupling capacitance variations for DPL. As the techniques

target on DPL, mask misalignment only comes from the second mask in DPL

(assuming the second mask is aligned relative to the first mask). For every

net, its coupling capacitance is extracted as a triplet named “pos:nom:neg”.

“pos” refers to the capacitance with positive misalignment, “nom” refers to

the capacitance with no misalignment, while “neg” refers to capacitance with

negative misalignment respectively.

The major difference of the “pos:nom:neg” and “min:nom:max” represen-

tation is that if you group the “pos”, “nom”, and “neg” values together,

the overall capacitance is not over pessimistic, and the actual capacitance is

physically feasible in silicon. Assume there are three nets in the layout, A,

B and C respectively, as shown in Fig. 5.3. The representation of coupling

capacitance for this layout looks like the following. For features A and B, the

triplet is CAB
pos : CAB

nom : CAB
neg . For B and C, the triplet is CBC

pos : CBC
nom : CBC

neg .

Here, CAB
pos and CBC

pos correspond to the coupling capacitance with positive

mask misalignment, CAB
nom and CBC

nom for zero misalignment, and CAB
neg and

CBC
neg for negative mask misalignment respectively.

However, in the “min:nom:max” form of representations, the same param-

eters look like this: CAB
pos : CAB

nom : CAB
neg and CBC

neg : CBC
nom : CBC

pos . Clearly, the

capacitance CAB
pos and CBC

neg cannot appear at the same time, as they require

83

the mask misalignment to be both positive and negative, which is physically

infeasible. However, this approach only applies for DPL, and is applied for

a per-net analysis in [76].

In this chapter, we studied the worst-case coupling capacitance scenarios

for MPL decompositions. Compared with the “pos:neg” approach which is

usually optimistic and “min:max” which is always pessimistic, our results are

tight and physically achievable.

5.3 Problem Description

In this problem, we are given the input layout, the minimum coloring distance

dmin, a capacitance model to extract the coupling capacitance between two

parallel lines, and a constant k, which denotes how many masks are available

to decompose the layout. In the following, we discussed how to extract

the coupling capacitance in the layout, which will be used in evaluating the

worst-case coupling capacitance for a given layout.

We followed the same assumptions as in [76], where lateral coupling capaci-

tances are extracted considering mask misalignment. The rest of the coupling

capacitances are extracted corresponding to zero misalignment. Namely, non-

lateral capacitance and ground capacitance are always extracted as single val-

ues corresponding to the zero misalignment case. The parallel plate model is

used to extract the lateral capacitance, which has shown to be accurate and

correlated well to the real capacitance [80]. For two parallel metallic plates

of area S and spacing d, the capacitance is calculated by C = εS
d

, where ε is

the permittivity of the intermediate material.

In this chapter, we focused on standard-cell-based designs, which is one of

the most popular design styles in industry and has been studied in several

previous works [48, 62, 81, 82]. The problem can be formally defined as

follows.

Performance Evaluation Considering Mask Misalignment in

MPL Decomposition: Given a cell-based row structure layout, a mini-

mum coloring distance dmin, the number of available masks k, the maximum

mask misalignment values s of each mask, our objective is to compute a tight

upper bound on the worst-case coupling capacitance for the given layout.

84

5.4 Algorithm

A high-level description of our approach is as follows. The characteristics

of coupling capacitance variations induced by mask misalignment are first

analyzed. Based on the analysis, we proved that the worst-case coupling

capacitance only happens at the boundaries. Based on this observation, our

algorithm works as follows. We build a solution graph similar to the one pro-

posed in [48]. Weights of the edges are assigned as the worst-case coupling

capacitance between the two connected decompositions. It is shown in [48]

that any path in the solution graph corresponds to a legal TPL decompo-

sition, and any legal decomposition corresponds to a path in the solution

graph. Thus, we can run a longest path algorithm on the solution graph,

which guarantees to compute a tight upper bound for the worst-case cou-

pling capacitance. The details are discussed as follows.

5.4.1 Coupling Capacitance Due to Mask Misalignment

Coupling capacitance variations occur when there is mask misalignment in

either the X or Y direction. Mask misalignment in X and Y directions is

assumed to be independent here. For standard-cell-based layout, there are

power tracks isolating different rows [48], where the power tracks are preferred

to be assigned to the same mask. When the misalignment in the X direction

is small, i.e. 10% variation which is 10 nm for 100 nm pitch, we assume that

it only affects coupling capacitance of two parallel lines with no intermediate

features within the two lines. The following discussions are based on mask

misalignment in X directions. The same principle applies for misalignment

in Y direction as well.

Denote all the vertical edges in the layout as E = {e1, e2, ..., en}, where the

edges are sorted in non-decreasing X coordinates and n is the total number

of vertical edges in the layout. Define an indicator variable δij as follows:

δij =

{
1 If ei and ej are adjacent

0 Otherwise
(5.1)

There are k masks available, and assume all masks are aligned relative to

mask 0. Thus, misalignment for different masks can be denoted as {m0, m1,

85

..., mk−1}, where mi refers to the mask misalignment for mask i, and m0

will be always 0. Denote Lij as the overlapping length between edges ei and

ej, dij as the normal spacing between ei and ej. Define another indicator

variable Isei as follows:

Isei =

{
1 If ei is on mask s

0 Otherwise
(5.2)

The total coupling capacitance can be represented as

C =
n∑
i=1

n∑
j=i+1

σδijLij

dij −
∑k−1

h=0mhIhei +
∑k−1

h=0mhIhej
(5.3)

where σLij equals to εS in the parallel plate model. Note that σ is a constant

which is unrelated to any of the mask misalignment variable mi. Now we

have the following lemma.

Lemma 5. C is a convex function with respect to mi.

Proof. Denote f(i, j) as follows:

f(i, j) =
σδijLij

dij −
∑k−1

h=0mhIhei +
∑k−1

h=0mhIhej
(5.4)

then we have

C =
n∑
i=1

n∑
j=i+1

f(i, j) (5.5)

Thus, proving f(i, j) is convex is sufficient since C is a linear combination of

f(i, j).

Note that f(i, j) has k−1 variables, as m0 will always be 0. Therefore, the

Hessian matrix H of f(i, j) has dimensions of (k − 1)× (k − 1). Computing

the Hessian matrix of f(i, j) yields a matrix with H(s, t) as follows:

H(s, t) = 2σδijLij
(Isej − I

s
ei

)(I tej − I
t
ei

)

(dij −
∑k−1

h=0mhIhei +
∑k−1

h=0mhIhej)
3

(5.6)

86

Denote the matrix M as follows:

M =

(I1ej − I

1
ei

)2 (I1ej − I
1
ei

)(I2ej − I
2
ei

) . . .

(I2ej − I
2
ei

)(I1ej − I
1
ei

) (I2ej − I
2
ei

)2 . . .
...

...
. . .

(Ik−1ej
− Ik−1ei

)(I1ej − I
1
ei

)

 (5.7)

We have H = µM , where

µ =
2σδijLij

(dij −
∑k−1

h=0mhIhei +
∑k−1

h=0mhIhej)
3

(5.8)

µ ≥ 0 and is a constant given any ei and ej.

Next, for any k − 1 dimensional vector of Z = {z1, z2, ..., zk−1}, we have

the following scenarios when computing ZTMZ:

• If ei and ej are on the same mask, we have Ihei = Ihej for any h. Thus,

ZTMZ = 0.

• If ei is on mask 0, and ej is on mask h where h 6= 0, we have ZTMZ =

z2h ≥ 0. Similarly, we have ZTMZ = z2h ≥ 0 when ei is on mask h, and

ej is on mask 0.

• If ei is on mask s, and ej is on mask h where h 6= 0, s 6= 0, and s 6= h,

we have ZTMZ = (zh − zs)2 ≥ 0.

Clearly, ZTMZ ≥ 0 for any vector Z, which immediately indicates that

ZTHZ ≥ 0 for any vector Z. Thus, f(i, j) is convex, which means C is also

convex. The proof is complete.

The same argument holds when considering mask misalignment in Y direc-

tion. The convexity of function C brings great convenience when computing

the worst-case coupling capacitance for a given decomposition, as the worst-

case only occurs at the boundaries. Namely, when computing the worst-case

coupling capacitance, we only care about boundaries where there are worst-

case X and Y misalignments. This key property enables us to enumerate all

possible worst-case scenarios and build up a solution graph which guaran-

tees to compute a tight upper bound of the worst-case coupling capacitance.

Details are introduced in the following section.

87

5.4.2 Some Terminologies

In this section, we will introduce an algorithm that guarantees a tight upper

bound on the worst-case coupling capacitance for a given layout. All power

tracks are assumed on the same mask. The approach of solving one row

is first presented, followed by combining solutions for different rows. The

details are introduced in the following.

Some terminologies used in the algorithm are first introduced. Like many

of the previous works [25, 27, 48, 53, 56], a conflict graph CG = (V,E) is

defined for the input layout, where each vertex corresponds to a polygon in

the layout, and there is an edge connecting two vertices if their distance is less

than dmin. Besides the conflict graph, an adjacency graph AG = (V,EAG) is

also defined. AG has the same vertices as that in CG, but with more edges.

There is an edge connecting two vertices in AG if there is an edge connecting

them in CG, or any of their parallel edges form a capacitor.

(a)

a

b

c

(b) (c)

a

b

c a

b

c

Figure 5.4: (a) Input layout. (b) Conflict graph. (c) Adjacency graph.

Figure 5.4 illustrates the concept of CG and AG. There are three features

in the layout, where the distance of ab and bc is less than dmin respectively.

The CG is shown in Fig. 5.4 (b), while the AG is shown in Fig. 5.4 (c). Note

that in CG, there is no edge connecting a and c as their distance is larger

than dmin. However, a and c are connected in AG, as their edges form a

parallel capacitor.

Next, polygon dummy extension is performed on the layout, where the

right boundary of a feature is virtually extended to the left boundary of its

rightmost conflicting feature. Different from the previous work [48] where

polygon dummy extension is based on CG, our polygon dummy extension

is based on AG. The difference between the two methods is illustrated in

Fig. 5.5. For the layout in Fig. 5.5 (a), the layout after polygon dummy

extension is the same as the original one, as shown in Fig. 5.5 (b). Using our

88

approach, the layout is shown in Fig. 5.5 (c), where the right boundary of

feature a is virtually extended to the left boundary of feature c.

(a)

a
b

c

(b) (c)

a
b

c a
b

c

Figure 5.5: (a) Input layout. (b) Polygon dummy extension in [48]. (c)
Polygon dummy extension for our approach.

We reuse the definitions of cutting line and cutting line set from the pre-

vious work [48]. The concepts are illustrated as follows. A cutting line refers

to a vertical line that is aligned with the left boundary of a feature in the

layout. A cutting line set refers to the set of polygons that intersect with

the same cutting line. Different from [48], we will recursively merge adjacent

cutting line sets if one cutting line set is a subset of its adjacent ones. By

merging these redundant cutting line sets, the size of the solution graph is

reduced while the completeness of the graph is not affected.

5.4.3 Graph Model for Worst-Coupling Capacitance
Computation

With all the cutting line sets available, a solution graph can be built as

follows. For each cutting line set, enumerate all its possible solutions. For

each solution, create up to 4k−1 vertices1 in the graph. Note that all these

vertices have exactly the same coloring solution, but with different mask

misalignment values. Currently, triple patterning lithography (k = 3) is one

of the most promising options for 14/10 nm technology node. For 7 nm

technology node, quadruple patterning (k = 4) could be used. But it is

unlikely that people goes to k > 4 due to cost and some technical issues.

Thus, the number of vertices per cutting line set is limited.

After that, compatible vertices are connected for adjacent cutting line sets.

Compatible vertices mean that no two features that are connected in CG are

1For x direction, there are up to 2k−1 combinations. Similarly, there are up to 2k−1

combinations in y direction. Thus, the number is 4k−1.

89

assigned to the same mask, and the worst-case mask misalignment for the

same mask is identical. Weight are assigned to the edges in the graph, where

the weight is the worst-case coupling capacitance of the two connected de-

compositions. Intuitively, the weight means that how much extra coupling

capacitance is needed to transit from one decomposition to the other one.

Since the worst-case mask misalignments are already known in each vertex,

the worst-case coupling capacitance can be easily computed. Finally, a vir-

tual source and virtual sink are constructed. The source connects to all

vertices of the first cutting line set, while the sink connects to all vertices of

the last cutting line set.

(a)

a

b

c

s

0,1:m1

0,1:-m1

1,0:m1

1,0:-m1

{a,b}

0:m1

1:m1

1:-m1

t

(c)
{c}

(b)

a

b

c

0:-m1

Figure 5.6: (a) Input layout after polygon dummy extension. (b) Conflict
graph (CG). (c) DPL solution graph. mi in this example means mask
misalignment in X direction for mask i. Mask misalignment in Y direction
is not considered, since it does not affect the effective coupling capacitance.
The tuple {1 : m1} for cutting line set {a} means that feature a is on mask
1, and the mask misalignment for mask 1 is m1. Note that m0 is always 0,
which is not shown in the picture. Same principle applies for other cutting
line sets. Weights of the edges are not shown here for simplicity.

90

Figure 5.6 shows a simple example of how to construct the DPL (k = 2)

solution graph for a given layout. For a given layout, its CG and AG are

first constructed. Polygon dummy extension is then performed. After that,

all cutting lines and cutting line sets are computed. For each cutting line

sets, all solutions are enumerated. Compatible solutions of adjacent cutting

lines are connected. Finally, a longest path algorithm is used to get the tight

upper bound on the worst-case coupling capacitance for all decompositions.

Although longest path algorithm on general graph is NP-hard, it is solvable

in polynomial time for directed acyclic graph.

(a)

a
b

c

s

0,1:m1

0,1:-m1

1,0:m1

1,0:-m1

{a,b}

0:m1

1:m1

1:-m1

t

Solution graph of row one

{c}

0:-m1

s

0,1:m1

0,1:-m1

1,0:m1

1,0:-m1

{d,e}

0:m1

1:m1

1:-m1

t

{f}

0:-m1

d
e

f

Solution graph of row two

Row
one

Row
two

Final so lution
graph s

0,1:m1

0,1:-m1

1,0:m1

1,0:-m1

{a,b}

0:m1

1:m1

1:-m1

{c}

0:-m1

0,1:m1

0,1:-m1

1,0:m1

1,0:-m1

{d,e}

0:m1

1:m1

1:-m1

{f}

0:-m1

t(b)

Figure 5.7: (a) Input layout after polygon dummy extension, and solution
graph for each row. (b) Final solution graph of the two rows. Power tracks
and weights for edges are not shown here for simplicity.

We have the following lemma for the solution graph. The proofs are omit-

ted due to page limits.

Lemma 6. Every path in the solution graph is a legal decomposition with

physically feasible worst-case mask misalignments, and vice versa.

5.4.4 Final Decomposition

For each row, all its decompositions are incorporated in the solution graph.

Computing a solution for one row is straightforward. Longest path algorithm

91

Table 5.1: Comparisons with Previous Works

Test
Case

#
Rows

#
Polygons

Ours
Tight
Bound

Pos/Neg
Bound

Min/Max
Bound

Runtime
(s)

C1 8 284 1 0.62 1.40 0.82

C2 13 716 1 0.62 1.49 1.21

C3 16 999 1 0.63 1.34 1.68

C4 22 1805 1 0.65 1.45 3.23

C5 36 4878 1 0.64 1.38 9.44

C6 72 19110 1 0.64 1.38 46.16

C7 108 42295 1 0.64 1.38 118.44

C8 143 74630 1 0.64 1.37 239.50

C9 179 116650 1 0.64 1.37 421.23

C10 215 167003 1 0.64 1.37 667.48

Avg. 81.2 42837 1 0.63 1.39 150.92

can be used to compute the decomposition with a tight upper bound coupling

capacitance.

Some modifications to the solution graph are needed to compute the upper

bound of the whole layout, where multiple rows usually exist. The solution

graph of different rows are sequentially connected, forming the final solution

graph for the whole layout. To connect two different solution graphs SA and

SB, we add compatible edges between the last cutting line set vertices in

SA and the first cutting line set vertices in SB. The weight of the edges are

assigned to be the coupling capacitance of the corresponding vertices in SB.

As features in different rows are isolated by the power tracks, two vertices

will be compatible with each other as long as their mask misalignments are

identical.

After merging the solution graphs in different rows into one graph, the

worst-case capacitance can be computed by running a longest path algorithm

on the merged graph. The correctness of the algorithm is guaranteed as

follows. First consider two rows and their solution graphs SA and SB. From

Lemma 6, we know that for each row, all legal solutions are incorporated in

its solution graph. By adding all-pair compatible edges between SA and SB,

any solution in one row is guaranteed to be connected to another solution in

the other row, as long as they have the same mask misalignments. Therefore,

the merged solution graph explores all solution space of the two rows. The

same argument applies for multiple rows as well. Thus, the longest path

92

algorithm gives us the decomposition with a tight upper bound on worst-case

coupling capacitance. The “tight” here means that the coupling capacitance

is physically achievable, which is the key difference with “min:nom:max”

notations.

Figure 5.7 shows an example of combining the solution graphs of two dif-

ferent rows. The final solution graph for the whole layout is shown in Fig. 5.7

(b). As we can see that the two solution graphs are merged based on the last

cutting line set of the first row, and the first cutting line set of the last row.

Any two nodes with exactly the same mask misalignments are connected

together, forming the final solution graph of the given layout.

For performance purposes, enumerating all possible mask misalignment

while constructing the solution graph is “over-killed”, as the solution graph

follows the same pattern under different mask misalignment scenarios. The

solution graph can be thought as being split into 22(k−1) portions, where k

is the number of available masks. Each portion of the graph corresponds to

one corner case of the mask misalignment scenarios. For each portion of the

graph, the structures are identical, and the only difference is the weight of

the edges.

To speed up the construction of the solution graph, weight of the edges

is assigned after constructing an unweighted solution graph. As analyzed

above, for different mask misalignment scenarios, the structure of the graph

remains the same. After constructing an unweighted solution graph, we loop

through all corner cases of mask misalignment, and each time reassign the

weight of the edges in the graph. For each corner case, the tight upper bound

is identified using longest path algorithm. Final upper bound is chosen by

comparing the upper bounds in all possible corner cases.

5.5 Experimental Results

The algorithm is implemented in C++ and run on a Linux server with 4GB

RAM and a 3.00 GHZ CPU. All benchmarks are generated using NanGate

FreePDK45 Generic Open Cell Library [28], which is available online. The

10 benchmarks are generated by randomly aligning the cells into different

rows. They are generated in increasing size to better reflect the scalability

of our approach. We evaluate our approach based on triple patterning de-

93

composition where k = 3 and dmin = 100 nm. Maximum mask misalignment

is set to be 10 nm in X directions and 10 nm in Y directions for all masks

except for mask 0. Power tracks are assigned to mask 0. Wires on the M1

layer are used for all experiments.

Detailed results are shown in Table 5.1. The first column of the table

shows the name of the benchmarks. The number of rows and the number

polygons are shown in the second and third columns. The upper bound on

worst-case capacitance is shown in column four, with the worst-case capac-

itance for “pos:nom:neg” shown in column five. The bound computed by

“min:nom:max” approach is shown in column six. The last column shows

the runtime of the algorithm.

As the original “pos:nom:neg” approach is only applied for DPL, we extend

it to TPL by performing random walks on the solution graph. In particular,

we approximate its value by randomly picking up 100 decompositions in the

solution graph, and averaging their coupling capacitances. Therefore, column

five shows how good the bounds are when naively extending “pos:nom:neg”

approach. Note that values of column four, five and six are obtained by

subtracting the nominal capacitance2 and then normalizing the values based

on tight bound on the worst-case capacitance.

We can clearly see that “min:nom:max” tends to overestimate the cou-

pling capacitance variations, while “pos:nom:neg” tends to underestimate

the effects due to mask misalignments. When decompositions are not known

beforehand, optimistic estimations on coupling capacitance could lead to tim-

ing violations while pessimistic estimations imposes unnecessary constraints

during the design stage. As indicated in the table, “min:nom:max” approach

could overestimates the capacitance variations by as much as 39% on av-

erage, while “pos:nom:neg” approach could underestimate the capacitance

variations by as much as 37% on average. For our approach, the bound com-

puted is tight, as the way we compute the maximum coupling capacitance

guarantees that it is physically achievable. Not surprisingly, the runtime

in the last column indicates that the runtime increases as the size of the

benchmark increases. However, we can see that the runtime roughly has a

linear correlation with the size of the benchmark. This clearly shows the

effectiveness of our approach.

2Capacitance with zero mask misalignment.

94

5.6 Conclusions

In this chapter, we studied capacitance variations in MPL decompositions

considering mask misalignment, which is prominent and inevitable in ad-

vanced technology nodes. We mathematically proved that worst-case cou-

pling capacitance only occurs at the boundaries of different mask misalign-

ment, and proposed an algorithm that guarantees to compute a tight up-

per bound on the worst-case coupling capacitance. Compared with the

“pos:nom:neg” approach and the “min:nom:max” approach, experimental

results show that the first approach tends to underestimate the capacitance

variations by as much as 37% while the latter approach tends to overestimate

the capacitance variation by as much as 39% on average. Our approach guar-

antees to find the tight capacitance upper bound for any decompositions for

a given layout. Our approach is expected to help engineers better under-

stand the qualities of different decompositions, and brings convenience for

advanced technology nodes.

95

CHAPTER 6

FUTURE DIRECTIONS ON TRIPLE
PATTERNING DECOMPOSITION

In this chapter, we will discuss some of the possible future directions for

triple patterning decomposition, and show some of our preliminary results.

6.1 Pattern-Based Triple Patterning Decomposition

As illustrated in previous chapters, extensive research efforts have been de-

voted to TPL [25, 27, 48, 54]. An ILP-based algorithm is proposed by Bei Yu

et al. [25], which is not capable of handling larger layout due to the exponen-

tial time complexity of the ILP approach. They also proposed a semidefinite

programming technique to reduce the runtime. However, the semidefinite

programming technique is trading off the runtime with the optimality of the

algorithm. The decomposition results obtained are no longer guaranteed to

be optimal. A graph-based approach is proposed by Fang et al. [27], which

cannot guarantee to find a solution if one exists. Moreover, the approach

typically generated more stitches compared with the work by Bei Yu et al.

Stitches increase manufacturing cost and can potentially lead to function

errors of the chip due to the line end errors. The high number of stitches

makes the algorithm difficult to be employed in practice. For our previous

algorithm [48], it runs in polynomial time and guarantees to find a solution

if one exists. When there are stitches, the algorithm guarantees to compute

an optimal solution with minimum number of stitches.

Given the importance of TPL, a fast, robust, and accurate evaluator is

needed for the designers to evaluate the printability of a layout. The eval-

uator gives some insights to the designers to modify or redesign the circuit

based on the printability of the layout. To qualify for the evaluator, the

algorithm needs to be fast, accurate, and guarantees to find a solution if one

exists. None of the algorithm by Bei Yu et al. and Fang et al. satisfy all the

96

above requirements. Due to the low time complexity and optimality of our

algorithm, our previous approach well fits into these requirements, and can

be potentially used as an evaluator for chip designers.

For all the previous works, a single conflicting distance dmin is used to

decide whether two features can be assigned to the same mask. However, in

practice, the printability of different patterns can never be clearly separated

by a constant distance. On the contrary, they should be involved with a

comprehensive analysis based on different distances, different geometry pat-

terns, and different process-dependent parameters. A local pattern aware

cost model is needed to capture different printability of various patterns.

None of the previous works capture the pattern aware TPL decomposition

problem. To be able to used by the designer to evaluate their designs, we

need to test the extendibility of our previous optimal TPL algorithm. For

our previous optimal TPL algorithm, it is inherently a pattern aware formu-

lation. When constructing the solution graph, proper cost can be assigned

to the edges to capture local pattern aware costs. By doing this, we can con-

struct a weighted directed solution graph, and then utilize a shortest path

algorithm to compute the optimal solution. Due to the efficiency and easy

extendibility of the approach, it can be used as an evaluation tool to evaluate

the decomposability of any customer designed layout, given a user-specified

local pattern aware cost model.

In this section, we will discuss cost-driven TPL decompositions, and show

some experimental results how our approach helps in reducing printing vari-

ations.

6.1.1 Criteria Guiding TPL Decomposition

TPL decomposition can be guided using a distance-driven model and local

pattern aware cost-driven model respectively. Many of the previous works

are based on a single minimum coloring distance dmin, which are not enough

to capture different pattern scenarios. For our previous optimal algorithm,

the distance-driven scheme is already incorporated and well addressed. In

the following, we will use a local pattern aware cost-driven framework to test

the effectiveness and extendibility of our previous algorithm. The distance-

driven and cost-driven triple patterning decompositions are detailed in this

97

section.

(a) (b) (c)

Figure 6.1: A decomposition comparison for the M1 layer pattern with 40
nm width, and their lithography simulation with best focus and 0
misalignment. (a) Single mask decomposition (higher image) and its
printed pattern on the wafer (lower image). (b) Tradition TPL
decomposition and its printed pattern on the wafer. (c) Local pattern
aware TPL decomposition and its printed pattern on the wafer. Note that
different colors here denote different patterns.

Constant Distance Criteria

Using a single distance dmin to differentiate the printability of different pat-

terns can effectively reduce the complexity of the multiple patterning prob-

lems. Once dmin is known, feature within distance dmin cannot be assigned

to the same mask, while features with distance larger than dmin can be freely

assigned to any masks.

The previous algorithms by Bei [25], Fang [27], and ours [48] are all based

on a single distance dmin. A comprehensive comparisons between these three

algorithms are already discussed in Chapter 1. Due to the high time com-

plexity of the ILP-based algorithm [25], it is not practical to use it as an

evaluator to check the printability of large layout. For the graph-based al-

gorithm [27], it cannot guarantee to find a solution if one exists, which also

98

limits its usage in practice to evaluate the printability of a layout. Our ap-

proach guarantees to find a solution if one exists, and can compute the TPL

solution with the minimum number of stitches. It runs in polynomial time,

and is capable of handling very large layout. Thus, it can be used an effective

evaluator to characterize the printability of any standard-cell-based layout.

Since the constant distance rule is not seeing the difference between dif-

ferent patterns, it could lead to some degenerated results. Naively adopting

the minimum distance rule could possibly lead to stitches, even when the

pattern itself is actually decomposable. Figure 6.1 shows a simple example

to demonstrate the limitation of the single-constant-distant criteria, where

four features conflict with each other when using a single minimum distance.

Figure 6.1(a) shows the result of printing the four features in one mask, and

there are serious line width degenerations. Figure 6.1(b) shows the decom-

position result and its simulation with tradition TPL algorithm. Here, two

stitches are needed to resolve the conflicts, which could have severe reliability

issues [16, 17, 18]. However, with a pattern aware distance criteria, we can

achieve an acceptable decomposition result as shown in Fig. 6.1(c).

(a): distance=12nm

DOF=0nm

(b): distance=30nm

DOF=0nm

(c): distance=44nm

DOF=0nm

(a): distance=30nm

DOF=0nm

(b): distance=40nm

DOF=0nm

(c): distance=50nm

DOF=0nm

(a): distance=40nm

DOF=0nm

(b): distance=50nm

DOF=0nm

(c): distance=60nm

DOF=0nm

Line end to

line end

Line end to

line edge

Line edge to

line edge

Figure 6.2: Printed patterns for different geometry features with different
spacing values and different depth of focus (DOF) values. These results are
obtained using Calibre WORKBench simulations.

99

Cost Metric for Printed Patterns

In reality, a single distance is not enough to characterize the printability of

different patterns. The no-print distance and best-print distance can never

be clearly separated by a constant distance value. Indeed, this decomposition

criteria should involve a complex analysis, which is a function of lithography

printing parameters, pattern types and geometry distances.

We have performed some preliminary simulations using Calibre WORK-

Bench on some patterns. The experimental results clearly indicate that dif-

ferent patterns have very much different tolerances in printability even when

they are the same distance apart. We show some preliminary data based on

the simulations with different patterns. The results are shown in Fig. 6.2. For

the line end to line end local pattern, very well printing quality is observed

even when the distance is 12 nm, as shown in the upper figure of Fig. 6.2.

When the distance increase, no significant improved printing quality is ob-

served. For the line edge to line edge local pattern, the printing quality is

almost unacceptable when the distance is 40 nm. It becomes better when the

distance between the features is larger. This set of simulation data clearly

shows that the best-print distance and no-print distance of different patterns

can be very different.

To best capture the cost related to different local patterns, a through

and complete analysis of various process related parameters and a complete

set of critical local patterns are needed, which is beyond the scope of this

thesis. We are focusing on testing the robustness and extendibility of our

algorithm in handling local pattern aware TPL decompositions. We adopt

a simple cost-aware model based on Calibre WORKBench simulations to

test the robustness of our algorithm. Three of the patterns used are shown

in Fig. 6.2. Note that in practice, a more through and precise model is

expected from the user. The optimality of our algorithm does not depend

on a specific model. Given any user-defined local pattern aware cost model,

the algorithm is able to compute optimal solutions with the minimum cost

with respect to that model. However, the accuracy of the decompositions do

largely depend the accuracy of the model provided.

The simple cost aware model used to evaluate our TPL algorithm is based

on the local patterns. Generally, the further apart of the patterns, the better

printing quality they will be, and therefore the lower cost there will be. The

100

29nm

54nm

31nm

62nm

(a) CD Variations=11nm

50nm 60nm

60nm 66nm

(b) CD Variations=9nm

(d) CD Variations=6nm(c) CD Variations=10nm

52nm
72nm

59nm
63nm

50nm

52nm

30nm

38nm

(a) CD Variations=11nm (b) CD Variations=7nm

(c) CD Variations=8nm (d) CD Variations=2nm

0

0.5

1

1.5

2

2.5

3

3.5

Circuit1 Circuit2 Circuit3 Circuit4 Circuit5 Circuit6

Cost aware TPL

Original TPL

Local Pattern Aware Cost Curve

cost Distance

Cost

Figure 6.3: A typical trend for the local pattern aware cost curve.

0

0.5

1

1.5

2

2.5

3

3.5

Circuit1 Circuit2 Circuit3 Circuit4 Circuit5 Circuit6

Cost aware TPL

Original TPL

Figure 6.4: Figure showing the cost reduction compared with the previous
optimal TPL algorithm. The results of cost aware approach are scaled as 1.
An average of 3.3x reduction is achieved.

general trend for the local pattern aware cost model is shown in Fig. 6.3. Note

that for every pattern, we need a cost curve that are only applicable to that

particular pattern. Ideally, the cost curve should involve a complete anal-

ysis of process related parameters and lithography simulations. The curve

obtained characterizes the printing quality of the pattern under different dis-

tance values.

Utilizing the local pattern aware cost model in our TPL algorithm requires

some modifications of the problem formulation. Previously, we only have one

type of edge, conflicting edge, to indicate the conflicting relations between

different features. All of the conflicting edges together formulate the con-

straint graph. To accommodate the local pattern aware cost model, we add

101

one more type of edge correspond to each type of pattern in the constraint

graph. Therefore, two features now are connected by multiple types of edges,

with each edge indicating the type of patterns current feature is involved.

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

Circuit1 Circuit2 Circuit3 Circuit4 Circuit5 Circuit6

log(No. of Polygons)

log(Runtime)

Figure 6.5: Comparisons of the runtime/number of polygons ration. The
ratios are almost the same with minor variations, which indicates that it is
an polynomial time algorithm.

6.1.2 Pattern-Based TPL Results

Based on our simple local pattern aware cost model, we run the optimal TPL

algorithm to compare the cost-aware TPL results with the results without

using the cost model. The algorithm is implemented in C++ and run on a

Linux machine with 4GB RAM and a 2.8GHZ CPU. All the benchmarks are

generated using NanGate FreePDK45 Generic Open Cell Library [28]. The

wires on metal 1 are used in the experiment to validate our algorithm.

Comparisons with the Results without Cost-Driven Optimization

We compare our work with the previous optimal TPL algorithm [48]. We

maximize the minimum distance used in their algorithm such that their ap-

proach is able to solve all the benchmarks without introducing stitches. For

each benchmark, we arbitrarily choose an optimal solution produced in the

102

previous work [48], and compare its cost with the optimal solution generated

using our proposed algorithm. The detailed results are shown in Fig. 6.4 and

Fig. 6.5 respectively. Figure 6.4 shows that the cost aware algorithm always

achieves superior results compared with the previous TPL algorithm which

doesn’t consider different cost for different patterns. Figure 6.5 shows that

the runtime/polygons ratios changes with small fluctuations, which indicates

that the algorithm is a polynomial time algorithm. For benchmarks with

over 18 million polygons, the runtime is within three hours. Compared with

the results in previous optimal TPL algorithm [48], we can reduce the cost

by as much as 3.3x on average.

6.2 Color Balancing for Triple Patterning Lithography

There are several works on triple patterning lithography in the literature [25,

26, 27, 48, 49, 50, 51, 52, 53, 54]. Bei Yu et al. [25] proved that the gen-

eral TPL decomposition problem is NP-hard, and proposed an ILP-based

approach for general TPL decompositions. A semidefinite programming ap-

proach is also proposed to further improve the runtime. S. Fang et al. [27]

proposed a graph-based heuristic to solve general TPL problems and achieves

good results while greatly reducing the runtime. Tian et al. [48] recently pro-

posed a polynomial time TPL algorithm for standard-cell-based row structure

designs. Given a pre-computed set of stitches, the approach guarantees to

find a solution with the optimal number of stitches if one exists. Kuang and

Young [53] present an approach which is able to find all legal stitch positions

in TPL. For all the previous works except our previous work [48], balancing

the usage of three masks are not considered. In practice, people are not only

interested in achieving a legal TPL decomposition, but also concerned with

properly balancing the three masks. Masks with features well distributed

on each mask maximally utilize the mask resources, and is beneficial for the

manufacturing process.

We [48] proposed a heuristic to globally balance the usage of different

masks. The approach is very efficient and achieves very good color balanc-

ing results. However, the approach can only handle simple layout with no

stitches. Few existing works focus on balancing different masks for complex

layout with stitches.

103

0 20 40 60 80 100
0

10

20

30

40

50

60

70

80

90

100

 0

2

4

6

8

10

12

14

16

18

20

(a) Balancing map for TPL decompositions without color bal-
ancing

0 20 40 60 80 100
0

10

20

30

40

50

60

70

80

90

100

 0

2

4

6

8

10

12

14

16

18

20

(b) Balancing map for TPL decompositions with color balancing

Figure 6.6: Balancing map for a simple circuit.

In this section, we focused on color balancing for complex layout with

stitches. In practice, the designers are more interested in finding a decompo-

sition with none of the three masks overwhelms the other while minimizing

the number of stitches. The color balancing issue is of crucial importance to

ensure that consistent and reliable printing qualities can be achieved. By bal-

104

ancing the usage among different masks, the process variations of the printed

features are well controlled, and well-behaved printing characteristics can be

expected. With three balanced masks, we can maximally benefit from the

manufacturing process, and minimize the printing interference of the features

in the same mask. The algorithm is divided into two steps. In the first step,

the algorithm in the previous paper [48] is adopted to computed a solution

graph of a layout. In the second step, a path-finding algorithm is used to get

a balanced TPL decomposition with the optimal number of stitches.

In practice, there are many considerations for TPL decompositions, among

which minimizing the number of stitches and properly balancing the usage of

the three masks are of great importance. By evenly distributed features on

different masks, each mask is properly utilized, and the features are better

printed. To visually see the difference of decompositions with and without

color balancing, we show two TPL balancing map for the same circuit in

Fig. 6.6. The circuit is equally divided by a 100 X 100 grid, where the

balancing value in every grid is calculated. The balancing value is calculated

as MAX{ai − aj}, where i = {1, 2, 3}, j = {1, 2, 3}, and ai and aj denote

the total area on mask i and j respectively. These values are scaled by the

area of the cells within that grid. The lower value of the balancing, the more

balanced a decomposition is. We can see that the decomposition considering

color balancing is much balanced than the one without considering balancing

different masks.

6.2.1 Our Approach

In the following sections, the two steps of our approaches are introduced. In

the first step, the previous algorithm [48] is used to compute a solution graph

for a given layout. In the second step, a path-finding algorithm is invoked to

compute a balanced TPL decomposition with the optimal number of stitches.

Constructing a Weighted Solution Graph

Since we are targeting on complex designs, several steps are involved before

getting a weighted solution graph. Many of the concepts are already covered

in the previous chapters. Here we briefly go through the terminologies and

algorithm for completeness.

105

(a)

c

b d

a

(b)

c

b d

a

(c)

c

b d

a

(d)

b

d

a1

a2

c2

c1

Figure 6.7: A simple example of stitch candidate identification. (a) Input
layout. (b) Constraint graph. (c) Node projection results. (d) Final legal
stitch candidates.

Stitch Identification: For complex designs, stitches are needed to re-

solve the coloring conflicts among different features in the layout. Currently,

we follow the technique that is adopted in previous papers [25, 48]. Node

projection is performed to find all possible legal stitch candidates.

A simple example of how to find all stitch candidates is illustrated in

Fig. 6.7. Based on the given layout, the constraint graph is computed, fol-

lowed by node projection which is shown in Fig. 6.7 (c). All legal stitch

candidates are identified based on node projection results, which are shown

in Fig. 6.7 (d).

Weighted Solution Graph Construction: Given a layout, we find all

the legal stitch candidates and construct its constraint graph. Based on the

constraint graph, the weighted solution graph can be computed. The weight

of an edge is assigned as follows. If no stitch is needed between the two

vertexes it connects, the weight of the edge is assigned to be zero. If m

stitches are needed, the weight of the edge is assigned to be m ∗ Lw ∗ Lh,
where Lw and Lh are the width and height of the input layout respectively.

Note that the weight of a stitch is assigned to be the area of the input

layout. This guarantees that our path-finding algorithm is able to compute

a balanced decomposition with the optimal number of stitches, which will be

explained in the following sections.

A simple example of how to construct a weighted solution graph is illus-

trated in Fig. 6.8. Originally there are four features in the layout. After

identifying all legal stitch candidates, there are five features, which is shown

in Fig. 6.8 (b). Based on previous TPL algorithm, the solution graph is com-

puted, which is shown in Fig. 6.8 (d). Different from the previous approach,

the cost of a stitch is computed as Lw ∗ Lh, which ensures that our path-

106

a

b

c

d

a

b

c

d

(a) (b) (d)

1

2

3

{a}

1,2

1,3

2,1

2,3

3,1

3,2

{a,b}

1,2

1,3

2,1

2,3

3,1

3,2

{b,c}

1

2

3

{d}

(e)

a

b

c

d

Cutting
line

Extended
area

1

2

3

1

2

3

1

2

3

1

2

3

{a} {b} {c} {d}

(c)

a

b

c

d

a

b

c

d

(a) (b) (c)

1

2

3

{a}

1,2

1,3

2,1

2,3

3,1

3,2

{a,b}

1,2

1,3

2,1

2,3

3,1

3,2

{b,c}

1

2

3

{d}

(d)

a

b

c

d

Cutting
line

Extended
area

(e)

a

b

c

d

a

b

c

d1

(a) (c)

1

2

3

{a}

1,2

1,3

2,1

2,3

3,1

3,2

{a,b}

1,2

1,3

2,1

2,3

3,1

3,2

{b,c}

1

2

3

{d1}

(d) (e)

a

b

c

d1

(b)

d2
d2

Stitch
candidate

1

2

3

{d2}

Figure 6.8: An example of constructing weighted solution graph. (a) The
input layout with four features. (b) Layout after finding all stitch
candidates. (c) Constraint graph. (d) Weighted solution graph for the
layout with stitch candidates. The bold blue edges are stitch edges with
weight, while other edges are initially assigned zero weight. The highlighted
path is a TPL solution after running the path-finding algorithm. (e) Final
TPL solution corresponds to the highlighted path. Different colors denote
different masks.

finding algorithm achieves optimal number of stitches while maintaining a

balanced decomposition.

Table 6.1: Comparisons with Previous Color Balancing Approach

Test
Cases

n Tracks
Stitch

Candidates
Our

Stitches
Previous
Stitches

Our
Area
Ratio

Previous
Area
Ratio

C6 179201 143 78102 3420 32534 1:1:1 1:1:1

C7 904292 322 394349 17146 164725 1:1:1 1:1:1

C8 4449681 715 1940587 83916 806357 1:1:1 1:1:1

C9 10031115 1072 4382524 188854 1815545 1:1:1 1:1:1

C10 17813611 1429 7778321 334642 3218362 1:1:1 1:1:1

Path-Finding Algorithm

After the weighted solution graph is constructed, computing a balanced de-

composition can be done using a path-finding algorithm. The detailed pro-

cedures are discussed as follows.

For each standard cell row, there are three variables, a1, a2, and a3, which

denotes the total area of the features which are assigned to mask 1, mask

2, and mask 3 respectively. Initially, the three variables are all zero. We

go through the solution graph from the left to right, and assign the new

features to the mask that is legal and of the highest priority. The priority

107

of the three masks are determined as follows: the variable with the highest

value is assigned the lowest priority while the variable with the smallest value

is assigned the highest priority. If a feature is assigned a mask, the variable

denotes the area of the features in that mask will be increased by the area

of that feature. For example, if feature f is assigned to mask 2 and the area

of feature f is areaf , the variable a2 will be increased by areaf .

Now consider the extreme case, where all the features are assigned to mask

1. The difference of a1 and a2 is smaller than the cost of a stitch, which is

Lw ∗ Lh. Therefore, the optimal number of stitches is guaranteed.

Table 6.2: Comparisons with Previous Approach of Computing Optimal
Number of Stitches

Test
Cases

n Tracks
Stitch

Candidates
Our

Stitches
Previous
Stitches

Our
Area
Ratio

Previous
Area
Ratio

C6 179201 143 78102 3420 3420 1:1:1 1:1.68:1.13

C7 904292 322 394349 17146 17146 1:1:1 1:1.68:1.12

C8 4449681 715 1940587 83916 83916 1:1:1 1:1.68:1.12

C9 10031115 1072 4382524 188854 188854 1:1:1 1:1.68:1.11

C10 17813611 1429 7778321 334642 334642 1:1:1 1:1.68:1.12

TPL Considering Color Balancing Results

Our algorithm is implemented in C++ and tested on a Linux server with

4GB RAM and a 2.8 GHZ CPU. The same benchmarks are used as in the

previous paper [48]. Metal 1 is used since they have the most complex shapes.

We compared our approach with the previous simple approach, which ne-

glects the effects of stitches. The detailed results are shown in Table 6.1. The

names of the benchmark are kept the same as in the previous paper [48]. The

number of polygons are shown in column 2, while the number of standard

cell tracks are shown in column 3. Columns 4, 5, and 6 detail the number

of stitch candidates, the number of stitch based on our approach, and the

number of stitches of the previous approach respectively.

Note that the number of stitches computed by our approach are the same

with the optimal results in the previous paper [48]. For the previous color

balancing approach, the number of stitches for each benchmark is shown in

108

column 6. Compared with the previous approach, our new approach signifi-

cantly reduces the number of stitches while maintaining balanced decompo-

sitions among different masks.

Comparisons with the previous approach which computes optimal number

of stitches are shown in Table 6.2. The previous approach which computes

the optimal number of stitches has no control of balancing different masks.

The area ratio for the three masks are shown in the last column of Table 6.2.

Compared with the previous approach, our algorithm achieves the optimal

number of stitches and maintains a very balanced decomposition at the same

time. This clearly verifies the effectiveness of our approach.

6.3 Hybrid Lithography for Triple Patterning

Decomposition and E-beam Lithography

Currently, even TPL is not giving satisfying performance for the 14/10 nm

technology node and beyond. For complex designs, stitches are still needed

to fight with the native conflicts. There has been various new ways to cope

with the shrinking feature size in semiconductor fabrications. Several next-

generation lithography techniques, such as DSA [39, 40, 41, 42], extreme

ultra-violet (EUV) [35, 37, 38, 83, 84, 85] and E-beam [8, 9, 47], have been

studied to resolve the manufacturing difficulties. However, the source power

remains an unresolved issue for EUV. E-beam suffers for its low productivity

in practice. DSA is still under calibration in research labs and is not mature

to be used in practice as a feasible lithography technique.

(a)

b

a

c

mask1

mask2

mask3

undecided

(b)

b

a

(c)

b

a

c

E-Beam

c1

c2

d d d

stitch

Figure 6.9: Example of hybrid lithography. Different colors denote different
masks. (a) Input layout. (b) TPL decomposition with one stitch. (c)
Hybrid lithography decomposition with no stitches.

109

Given the unsatisfying performance of different lithography techniques,

people have studied to combine different techniques to cope with the ever

increasing difficulties in fabricating the small features. Particularly, optical

lithography combined with E-beam lithography has drawn people’s atten-

tions [8, 11]. By combining the high throughput optical lithography and

high resolution E-beam lithography, both high throughput and high resolu-

tion can be achieved. A simple example is shown in Fig. 6.9. For the layout

in Fig. 6.9 (a) which is not TPL decomposable, one stitch is needed for

TPL decomposition. However, by combining E-beam and TPL, a stitch-free

decomposition is achieved by assigning one feature to E-beam lithography,

which is shown in Fig. 6.9 (d).

In this section, we studied the pros and cons of two most promising tech-

niques, TPL and E-beam, and investigated combining the merits of the two

techniques to provide satisfying solutions for semiconductor fabrications in

advanced technology node. Firstly, our previous TPL algorithm is extended

to compute a graph that essentially explores all the solution space for the

hybrid lithography. Secondly, shortest path algorithm is utilized to compute

the decomposition with minimum number of E-beam shots.

6.3.1 Hybrid Lithography

As technology continues to move forward and the feature size keeps shrink-

ing, more and more demanding challenges begin to emerge for semiconductor

fabrications. Among them, high throughput and low cost are desired proper-

ties for any lithography techniques. However, both E-beam and TPL suffer

from several drawbacks, which limit their abilities in practice.

E-beam lithography has been extensively studied in both academic and

industries for many years. E-beam lithography is an attractive tool for semi-

conductor fabrications since it is able to generate patterns at practically very

high resolution that is beyond the physical limitations of traditional optical

techniques. E-beam is a maskless technique where a charged particle beam is

shot directly into the silicon wafer, thus forming the desired layout patterns.

There are several types of E-beam techniques while the experiments of this

chapter is based on variable shaped beam (VSB). For VSB, the layout is

decomposed into a set of rectangles, where all the rectangles are fabricated

110

sequentially via electronic shot. For E-beam lithography, even with several

technological improvements, the low throughput is still one of its main chal-

lenges. This limitation has been addressed in many previous papers, and will

still be an unresolved issue in the near future.

The problem associated with TPL include the mask image placement,

mask-to-mask matching, and CD control for edges defined by multiple sepa-

rate exposures. Mask making capabilities and cost escalation are also critical

for future progress. According to ITRS 2011 [34], to accommodate the op-

tical pattern correction to achieve sub-wavelength imaging, the data growth

per node is as high as 2.7X per technology node. Therefore, TPL is much

expensive compared with both single patterning and double patterning tech-

niques. Additionally, stitches may be needed to resolve the coloring conflicts

of different features, which further increases the manufacturing cost and may

lead to yield lost. Moreover, for some complex designs, even TPL fails to

generate a legal decomposition.

E-beam has the nice property of very high resolutions while very high

throughput can be achieved using TPL. Motivated by the high throughput

of traditional immersion lithography and the high resolution of E-beam, we

proposed to combine E-beam and TPL together to achieve simultaneous high

throughput and high resolutions. The details are discussed in the following

sections.

6.3.2 Our Approach

In this section, we are focusing on the standard-cell-based row structure

layout, which is the same as in the previous paper [48]. In the standard-cell-

based layout, there are power tracks going from the leftmost of the layout

to the rightmost of it in each standard cell row. Features in different rows

are isolated by the power tracks, thus having no coloring conflicts with each

other. Since different rows only share the power tracks, they can be colored

independently.

As TPL may introduce stitches, or even fail to resolve coloring conflicts

for some designs, it is preferable to incorporate the high-resolution E-beam

technique to combat with the manufacturing difficulties. If a feature is fab-

ricated by E-beam, we call it an E-beam feature. Techniques are needed

111

to minimize the usage of E-beam to ensure both high throughput and high

resolution, which will be fully discussed in the following sections.

Building a Weighted Solution Graph

Inspired by our previous TPL algorithm, we first compute a weighted solution

graph, where the weight of an edge denotes the number of VSBs needed

from one decomposition to another. After that, the shortest path algorithm

is adopted to get the optimal number of VSBs needed for a layout. The

terminologies of cutting line, cutting line set, constraint graph and solution

graph are the same as in the previous paper [48]. Polygon dummy extension

is also performed to ensure the correctness of the solution graph. The graph

is constructed as follows.

All the cutting lines are traversed from left to right, while the solution

graph is dynamically updated. For any cutting line set Si, all its legal col-

oring solutions are enumerated. Denote it as Ni. Note that when a feature

is assigned as an E-beam feature, no feature will conflict with it. On the

contrary, if there is an edge connecting two features in the constraint graph

and they are assigned to the same regular mask, coloring conflict occurs and

the corresponding decomposition is an illegal one.

Denote the jth solution in Ni as N j
i . For any two adjacent cutting line

solutions N j
i and Nk

i+1 and for any feature pm in cutting line set Si and pn

in Si+1, we define the compatibility of N j
i and Nk

i+1 as follows:

• If pm conflicts with pn and they are assigned to the same regular masks,

N j
i and Nk

i+1 are incompatible.

• If pm and pn corresponds to the same feature and they are assigned to

different regular masks, N j
i and Nk

i+1 are incompatible.

• If pm and pn corresponds to the same feature, and pm is assigned as

a E-beam while pn is assigned to a regular mask, N j
i and Nk

i+1 are

incompatible.

• For all remaining cases, N j
i and Nk

i+1 are compatible.

For any two compatible nodesN j
i andNk

i+1, an edge is added in the solution

graph. The weight of the edge is assigned as the number of VSBs needed

112

Algorithm 5: Algorithm of Coloring a Single Row

1 begin
2 Initialize solution graph G to be empty;
3 P ← all polygons in a standard cell row;
4 Compute constraint graph;
5 Polygon dummy extension;
6 X ← x coordinates of the left boundaries of all polygons in P ;
7 w ← size of X;
8 for i← 1 to w do
9 Find all polygons intersecting with x = Xi;

10 Enumerate solutions for these polygons;
11 Add the solutions into the solution graph G;

12 end
13 Shortest path algorithm on the graph G;

14 end

from N j
i to Nk

i+1. As we gradually scan all the cutting lines, the solution

graph is incrementally updated. For all adjacent cutting lines, all possible

solutions are enumerated, and the weight of all edges are properly captured.

Therefore, the solution graph essentially explores all the solution space for a

layout. Every path in the solution graph corresponds to legal decomposition,

and every legal decomposition corresponds to a path in the graph. Similar

observations have been made in the previous paper [48], and proofs are also

given in the previous paper [48].

Minimizing the Usage of E-beam

Once we have the weighted solution graph, computing a decomposition be-

comes straightforward. The shortest path algorithm can be used to compute

a decomposition with the minimum number of VSBs needed. Note that since

the solution graph is incrementally updated, if we visit all the cutting lines

one by one, all the vertices visited are already in topological order. This

simplifies the implementation of the shortest path algorithm. The solution

computed by the shortest path algorithm guarantees the minimum number

of VSBs for a layout. The overall algorithm is shown in Algorithm 5.

113

Algorithm 6: Hierarchical Algorithm

1 begin
2 Cl ← all standard cells in the library;
3 Cr ← all standard cells in a row;
4 foreach Cell Ci in Cl do
5 Build constraint graph Gi;
6 Polygon dummy extension of Ci;
7 Build solution graph Si;

8 end
9 w ← size of Cr ;

10 for j ← 1 to w do
11 Build partial solution graph G for the first jth cells in Cr;
12 end
13 Shortest path algorithm on the graph G;

14 end

Hierarchical Approach

In standard-cell-based designs, millions of the circuit elements are composed

from hundreds or thousands type of cells in the cell library. The solution

graph of all the cells can be precomputed and reused in a hierarchical way

to speed up the algorithm. Techniques of combining the solution graph of

different cells are discussed in Chapter 1 and Chapter 5, where all the tech-

niques also apply here. Note that the hierarchical implementation does not

affect the optimality of the approach. The number of VSBs computed is still

optimal. The overall algorithm are shown in Algorithm 6.

0

5000

10000

15000

20000

25000

80 120 160 200 240

VSB

nm

Number of VSB and Minimum Coloring Distance

Figure 6.10: Number of VSBs and minimum coloring distance dmin.

114

6.3.3 Hybrid Lithography Results

The algorithm is implemented in C++ and runs on a Linux server with

4GB RAM and four 3.00 GHZ CPU. All benchmarks are from NanGate

FreePDK45 Generic Open Cell Library [28], which is available online. Totally

89 types of standard cells are selected from the cell library to evaluate the

necessity of using the proposed hybrid lithography. All the cells are TPL

decomposable without stitches when dmin = 80 nm. All the benchmarks are

generated by randomly aligning the cells adjacently from the cell library. We

have done experiments by shrinking the size of the cells, which mimics the

shrinking feature size in more advanced technology nodes. However, instead

of shrinking the size of the cell, the minimum coloring distance, dmin, is

monotonically increased while keeping the size of all cells constant. Note

that it has the same effects as shrinking the size of the cells. Wires on metal

one layer are used for all experiments. All the power tracks are assumed to

be on mask one, and the VSB technique is used to evaluated the number of

E-beam shots needed for a design. Note that other E-beam techniques can

be easily incorporated to reflect different manufacturing cost. All the results

are obtained using the hierarchical implementation.

To show the effectiveness of the hybrid lithography, a quadruple patterning

approach is also implemented. For each benchmark with different minimum

coloring distances, its solution graph for quadruple patterning lithography is

constructed. Note that the way of constructing a quadruple solution graph

is very similar with constructing a TPL solution graph, except that for each

feature, there are four possible mask assignments.

The detailed results are shown in Table 6.3. The name of the benchmark,

the number of rows in the benchmark, and the number of polygons in the

benchmarks are shown in columns 1, 2, and 3 respectively. The minimum

number of VSBs needed are shown in column 4, while the minimum coloring

distance dmin is shown in column 5. The runtime is shown in column 6.

Whether the layout can be successfully decomposed using triple patterning

and quadruple patterning are shown in the last two columns respectively.

We can clearly see that, as the minimum coloring distance increases, the

minimum number of VSBs also increases. The same trend applies for all

benchmarks. The trends on all different benchmarks are also shown using

graphs illustrated in Fig. 6.10. In Fig. 6.10, the number of VSBs for all

115

benchmarks are grouped together based on different dmin for clarity.

We can see that for all benchmarks, the number of VSB shots increases

consistently as dmin increases. When dmin is equals to 120 nm, all the layout

fails to be decomposed with triple patterning lithography while quadruple

patterning works. When dmin is larger than 160 nm, all the layout fails to be

decomposed even with quadruple patterning, while they can be successfully

decomposed using the hybrid lithography with limited number of E-beam

shots.

Since increasing dmin has the same effects as shrinking the feature sizes,

it demonstrates that TPL alone is not enough in more advanced technology

nodes. The hybrid lithography is one of the options to achieve simultaneous

high resolution and high throughput in advanced technology nodes.

Table 6.3: E-beam and Triple Patterning Decomposition Results

Test
Cases

Row # p # VSB dmin (nm)
Runtime

(s)
Triple

Patterning
Quadruple
Patterning

C1 15 1133

0 80 9.8
√ √

70 120 8.0 ×
√

126 160 7.6 × ×
228 200 7.0 × ×
359 240 6.5 × ×

C2 29 4605

0 80 12.7
√ √

232 120 9.8 ×
√

440 160 9.1 × ×
921 200 8.3 × ×
1488 240 7.6 × ×

C3 40 8808

0 80 18.3
√ √

503 120 12.4 ×
√

909 160 11.5 × ×
1642 200 10.1 × ×
2849 200 8.8 × ×

C4 58 18652

0 80 26.4
√ √

1056 120 18.1 ×
√

2027 160 16.6 × ×
3631 200 14.1 × ×
5698 240 11.4 × ×

C5 86 40534

0 80 44.4
√ √

2180 120 28.4 ×
√

4186 160 26.2 × ×
7431 200 21.5 × ×
12285 240 17.5 × ×

116

6.4 Conclusions

In this chapter, we investigated the pattern-based TPL decompositions. Given

a cost aware pattern library, our approach is able to efficiently compute op-

timal TPL solutions. We also studied color balancing problem in complex

designs. Experimental results show that our approach achieves much bal-

anced decompositions than previous algorithms. We also proposed a hybrid

lithography technique which combines the merits of TPL and E-beam for

advanced technology node. The approach is able to compute the decomposi-

tion with minimum number VSB shots for a row structure layout. Extensive

experiments are performed for different advanced technology nodes. The

results clearly indicate the necessity and the effectiveness of our proposed

hybrid lithography framework. Our approach allows engineers to minimize

the usage of E-beam, which optimizes the tradeoff between high throughput

and high printing resolutions. This work serves as an exploration of hybrid

lithography combining TPL and E-beam for advanced technology nodes.

117

REFERENCES

[1] I.-Y. Kang, H.-S. Seo, B.-S. Ahn, D.-G. Lee, D. Kim, S. Huh, C.-W. Koh,
B. Cha, S.-S. Kim, H.-K. Cho et al., “Printability and inspectability of
programmed pit defects on the masks in EUV lithography,” in SPIE
Advanced Lithography, vol. 7636, 2010.

[2] E. Spiller, S. L. Baker, P. B. Mirkarimi, V. Sperry, E. M. Gullikson,
and D. G. Stearns, “High-performance Mo-Si multilayer coatings for
extreme-ultraviolet lithography by ion-beam deposition,” Appl. Opt.,
vol. 42, no. 19, pp. 4049–4058, Jul 2003.

[3] C. H. Clifford, T. T. Chan, and A. R. Neureuther, “Compensation meth-
ods for buried defects in extreme ultraviolet lithography masks,” in Proc.
of SPIE, vol. 7636, 2010.

[4] C. H. Clifford and A. R. Neureuther, “Smoothing based fast model for
images of isolated buried euv multilayer defects,” in SPIE Advanced
Lithography, 2008, pp. 692 119–692 119.

[5] C. H. Clifford and A. R. Neureuther, “Smoothing based model for images
of buried EUV multilayer defects near absorber features,” in Photomask
Technology, 2008.

[6] J. Burns and M. Abbas, “EUV mask defect mitigation through pattern
placement,” in SPIE Photomask Technology, 2010, pp. 782 340–782 340.

[7] B. Lin et al., “Successors of ArF water-immersion lithography: EUV
lithography, multi-e-beam maskless lithography, or nanoimprint?” in J
Micro/Nanolith. MEMS MOEMS, 2008.

[8] Y. Du, H. Zhang, M. D. Wong, and K.-Y. Chao, “Hybrid lithography
optimization with e-beam and immersion processes for 16nm 1d gridded
design,” in 17th Asia and South Pacific Design Automation Conference
(ASP-DAC), 2012, pp. 707–712.

[9] K. Yuan, B. Yu, and D. Z. Pan, “E-beam lithography stencil plan-
ning and optimization with overlapped characters,” IEEE Transactions
on Computer-Aided Design of Integrated Circuits and Systems, vol. 31,
no. 2, pp. 167–179, 2012.

118

[10] K. Yuan and D. Pan, “E-beam lithography stencil planning and op-
timization with overlapped characters,” in Proceedings of the Interna-
tional Symposium on Physical Design, 2011, pp. 151–158.

[11] S. Steen, S. J. McNab, L. Sekaric, I. Babich, J. Patel, J. Bucchignano,
M. Rooks, D. M. Fried, A. W. Topol, J. R. Brancaccio et al., “Hybrid
lithography: The marriage between optical and e-beam lithography. a
method to study process integration and device performance for ad-
vanced device nodes,” Microelectronic Engineering, vol. 83, no. 4, pp.
754–761, 2006.

[12] B. Yu, K. Yuan, J.-R. Gao, and D. Pan, “E-blow: E-beam lithography
overlapping aware stencil planning for MCC system,” in 2013 Design
Automation Conference, 2013, pp. 1–7.

[13] H. Levinson, “Extreme ultraviolet lithography’s path to manufactur-
ing,” Journal of Micro, 2009.

[14] H. Zhang, Y. Du, M. Wong, and R. Topaloglu, “Self-aligned double pat-
terning decomposition for overlay minimization and hot spot detection,”
in ACM/EDAC/IEEE Design Automation Conference, 2011.

[15] H. Zhang, Y. Du, M. Wong, and R. Topaloglu, “Hot spot detection for
indecomposable self-aligned double patterning layout,” in Proceedings
of SPIE, 2011.

[16] J. Yang and D. Pan, “Overlay aware interconnect and timing variation
modeling for double patterning technology,” in IEEE/ACM Interna-
tional Conference on Computer-Aided Design, 2008, pp. 488–493.

[17] A. Kahng, C.-H. Park, X. Xu, and H. Yao, “Layout decomposition for
double patterning lithography,” in IEEE/ACM International Confer-
ence on Computer-Aided Design, 2008, pp. 465–472.

[18] D. Pan, J. Yang, K. Yuan, M. Cho, and Y. Ban, “Layout optimizations
for double patterning lithography,” in IEEE International Conference
on ASIC, 2009, pp. 726–729.

[19] Y. Xu and C. Chu, “GREMA: Graph reduction based efficient mask
assignment for double patterning technology,” in IEEE/ACM Interna-
tional Conference on Computer-Aided Design, 2009, pp. 601–606.

[20] J. Yang, K. Lu, M. Cho, K. Yuan, and D. Pan, “A new graph-theoretic,
multi-objective layout decomposition framework for double patterning
lithography,” in Asia and South Pacific Design Automation Conference,
2010, pp. 637–644.

119

[21] Y. Xu and C. Chu, “A matching based decomposer for double patterning
lithography,” in Proceedings of the International Symposium on Physical
Design, 2010, pp. 121–126.

[22] K. Yuan and D. Pan, “WISDOM: Wire spreading enhanced decomposi-
tion of masks in double patterning lithography,” in IEEE/ACM Inter-
national Conference on Computer-Aided Design, 2010, pp. 32–38.

[23] S. Chen and Y. Chang, “Native-conflict-aware wire perturbation for
double patterning technology,” in IEEE/ACM International Conference
on Computer-Aided Design, 2010, pp. 556–561.

[24] C. Hsu, Y. Chang, and S. Nassif, “Simultaneous layout migration and
decomposition for double patterning technology,” IEEE Transactions
on Computer-Aided Design of Integrated Circuits and Systems, vol. 30,
no. 2, pp. 284–294, 2011.

[25] B. Yu, K. Yuan, B. Zhang, D. Ding, and D. Pan, “Layout decompo-
sition for triple patterning lithography,” in IEEE/ACM International
Conference on Computer-Aided Design, 2011.

[26] Q. Li, P. Ghosh, D. Abercrombie, P. LaCour, and S. Kanodia, “14nm
M1 triple patterning,” in Proceedings of the SPIE, 2012.

[27] S. Fang, Y. Chang, and W. Chen, “A novel layout decomposition al-
gorithm for triple patterning lithography,” in Proceedings of the 49th
Annual Design Automation Conference, 2012, pp. 1185–1190.

[28] Si2 Open Cell Library, http://www.si2.org/openeda.si2.org/projects/nangatelib.

[29] K. Yuan, J. Yang, and D. Pan, “Double patterning layout decomposition
for simultaneous conflict and stitch minimization,” IEEE Transactions
on Computer-Aided Design of Integrated Circuits and Systems, vol. 29,
no. 2, pp. 185–196, 2010.

[30] H. Zhang, Y. Du, M. D. F. Wong, and K.-Y. Chao, “Mask cost re-
duction with circuit performance consideration for self-aligned double
patterning,” in 2011 16th Asia and South Pacific Design Automation
Conference, 2011, pp. 787–792.

[31] Z. Xiao, Y. Du, H. Zhang, and M. Wong, “A polynomial time exact
algorithm for overlay-resistant self-aligned double patterning (SADP)
layout decomposition,” IEEE Transactions on Computer-Aided Design
of Integrated Circuits and Systems, vol. 32, no. 8, pp. 1228–1239, 2013.

[32] Y. Du, Q. Ma, H. Song, J. Shiely, G. Luk-Pat, A. Miloslavsky, and
M. D. F. Wong, “Spacer-is-dielectric-compliant detailed routing for self-
aligned double patterning lithography,” in Proceedings of the 50th An-
nual Design Automation Conference, 2013, pp. 93:1–93:6.

120

[33] Z. Xiao, Y. Du, H. Zhang, and M. D. Wong, “A polynomial time ex-
act algorithm for self-aligned double patterning layout decomposition,”
in Proceedings of the 2012 ACM International Symposium on Physical
Design, 2012, pp. 17–24.

[34] International Technology Roadmap for Semiconductors: Lithography,
2011.

[35] H. Zhang, Y. Du, M. D. Wong, Y. Deng, and P. Mangat, “Layout small-
angle rotation and shift for EUV defect mitigation,” in IEEE/ACM
International Conference on Computer-Aided Design, 2012, pp. 43–49.

[36] Y. Du, H. Zhang, and M. D. Wong, “Linear time EUV blank defect
mitigation algorithm considering tolerance to inspection inaccuracy,” in
SPIE Photomask Technology, 2012, pp. 85 221R–85 221R.

[37] H. Zhang, Y. Du, M. D. Wong, and R. O. Topalaglu, “Efficient pattern
relocation for EUV blank defect mitigation,” in 17th Asia and South
Pacific Design Automation Conference, 2012, pp. 719–724.

[38] Y. Du, H. Zhang, M. Wong, and R. Topaloglu, “EUV mask preparation
considering blank defects mitigation,” in Proceedings of SPIE, 2011.

[39] J. Y. Cheng, D. P. Sanders, H. D. Truong, S. Harrer, A. Friz, S. Holmes,
M. Colburn, and W. D. Hinsberg, “Simple and versatile methods to in-
tegrate directed self-assembly with optical lithography using a polarity-
switched photoresist,” ACS Nano, vol. 4, no. 8, pp. 4815–4823, 2010.

[40] C. Bencher, J. Smith, L. Miao, C. Cai, Y. Chen, J. Y. Cheng, D. P.
Sanders, M. Tjio, H. D. Truong, S. Holmes et al., “Self-assembly pat-
terning for sub-15nm half-pitch: A transition from lab to fab,” in SPIE
Advanced Lithography, 2011, pp. 79 700F–79 700F.

[41] G. Schmid, R. Farrell, J. Xu, C. Park, M. Preil, V. Chakrapani, N. Mo-
hanty, A. Ko, M. Cicoria, D. Hetzer et al., “Fabrication of 28nm pitch
Si fins with DSA lithography,” in SPIE Advanced Lithography, 2013, pp.
86 801F–86 801F.

[42] J. Nam, E. S. Kim, D. Kang, H. Yu, K. Kim, S. Yi, C.-H. Shin, and
H.-K. Kang, “Patterning process for semiconductor using directed self
assembly,” in SPIE Advanced Lithography, 2013, pp. 868 011–868 011.

[43] Z. Xiao, Y. Du, H. Tian, M. D. Wong, H. Yi, H.-S. P. Wong, and
H. Zhang, “Directed self-assembly (DSA) template pattern verification,”
in Proceedings of the 51st Annual Design Automation Conference, 2014,
pp. 1–6.

121

[44] Y. Du, Z. Xiao, M. D. Wong, H. Yi, and H.-S. P. Wong, “DSA-aware
detailed routing for via layer optimization,” in SPIE Advanced Lithog-
raphy, 2014, pp. 90 492J–90 492J.

[45] Z. Xiao, D. Guo, M. D. F. Wong, H. Yi, M. C. Tung, and H.-S. P. Wong,
“Layout optimization and template pattern verification for directed self-
assembly (DSA),” in Proceedings of the 52th Annual Design Automation
Conference, 2015.

[46] Y. Du, D. Guo, M. D. F. Wong, H. Yi, H. S. P. Wong, H. Zhang,
and Q. Ma, “Block copolymer directed self-assembly (DSA) aware con-
tact layer optimization for 10 nm 1D standard cell library,” in 2013
IEEE/ACM International Conference on Computer-Aided Design (IC-
CAD), 2013, pp. 186–193.

[47] D. Lam, D. Liu, and T. Prescop, “E-beam direct write (EBDW) as
complementary lithography,” in SPIE Photomask Technology, 2010.

[48] H. Tian, H. Zhang, Q. Ma, Z. Xiao, and M. Wong, “A polynomial
time triple patterning algorithm for cell based row-structure layout,” in
IEEE/ACM International Conference on Computer-Aided Design, Nov.
2012, pp. 57–64.

[49] H. Tian, H. Zhang, Q. Ma, and M. D. Wong, “Evaluation of cost-driven
triple patterning lithography decomposition,” in SPIE Advanced Lithog-
raphy, 2013.

[50] C. Cork, J. Madre, and L. Barnes, “Comparison of triple-patterning de-
composition algorithms using aperiodic tiling patterns,” in Proceedings
of SPIE, vol. 7028, 2008, p. 702839.

[51] Y. Chen, P. Xu, L. Miao, Y. Chen, X. Xu, D. Mao, P. Blanco,
C. Bencher, R. Hung, and C. Ngai, “Self-aligned triple patterning for
continuous IC scaling to half-pitch 15nm,” in Proceedings of SPIE, vol.
7973, 2011, p. 79731P.

[52] B. Mebarki, H. Chen, Y. Chen, A. Wang, J. Liang, K. Sapre, T. Man-
drekar, X. Chen, P. Xu, P. Blanko et al., “Innovative self-aligned triple
patterning for 1x half pitch using single spacer deposition-spacer etch
step,” in Proceedings of SPIE, vol. 7973, 2011, p. 79730G.

[53] J. Kuang and E. F. Y. Young, “An efficient layout decomposition ap-
proach for triple patterning lithography,” in Proceedings of the 50th An-
nual Design Automation Conference, 2013, pp. 69:1–69:6.

[54] Q. Ma, H. Zhang, and M. D. F. Wong, “Triple patterning aware rout-
ing and its comparison with double patterning aware routing in 14nm
technology,” in Proceedings of the 49th Annual Design Automation Con-
ference, 2012.

122

[55] N. Een and N. Sorensson, “The minisat page,” http://minisat.se/Main.
html.

[56] Y. Zhang, W.-S. Luk, H. Zhou, C. Yan, and X. Zeng, “Layout decom-
position with pairwise coloring for multiple patterning lithography,” in
Proceedings of the International Conference on Computer-Aided Design,
2013, pp. 170–177.

[57] X. He, T. Huang, L. Xiao, H. Tian, and E. F. Young, “Ripple: A
robust and effective routability-driven placer,” IEEE Transactions on
Computer-Aided Design of Integrated Circuits and Systems, vol. 32,
no. 10, pp. 1546–1556, 2013.

[58] M.-K. Hsu, S. Chou, T.-H. Lin, and Y.-W. Chang, “Routability-driven
analytical placement for mixed-size circuit designs,” in IEEE/ACM In-
ternational Conference on Computer-Aided Design. IEEE Press, 2010,
pp. 80–84.

[59] N. Viswanathan and C.-N. Chu, “Fastplace: Efficient analytical place-
ment using cell shifting, iterative local refinement, and a hybrid net
model,” IEEE Transactions on Computer-Aided Design of Integrated
Circuits and Systems, vol. 24, no. 5, pp. 722–733, 2005.

[60] M. Pan, N. Viswanathan, and C. Chu, “An efficient and effective de-
tailed placement algorithm,” in IEEE/ACM International Conference
on Computer-Aided Design,, 2005, pp. 48–55.

[61] M.-C. Kim, D.-J. Lee, and I. L. Markov, “SimPL: An effective placement
algorithm,” IEEE Transactions on Computer-Aided Design of Integrated
Circuits and Systems, vol. 31, no. 1, pp. 50–60, 2012.

[62] B. Yu, X. Xu, J.-R. Gao, and D. Z. Pan, “Methodology for standard cell
compliance and detailed placement for triple patterning lithography,” in
IEEE/ACM International Conference on Computer-Aided Design, 2013.

[63] H. Tian, Y. Du, H. Zhang, Z. Xiao, and M. D. Wong, “Constrained pat-
tern assignment for standard cell based triple patterning lithography,” in
IEEE/ACM International Conference on Computer-Aided Design, 2013.

[64] X. He, T. Huang, L. Xiao, H. Tian, G. Cui, and E. F. Young, “Ripple:
An effective routability-driven placer by iterative cell movement,” in
IEEE/ACM International Conference on Computer-Aided Design, 2010,
pp. 74–79.

[65] T. Lin, C. Chu, J. R. Shinnerl, I. Bustany, and I. Nedelchev, “PO-
LAR: Placement based on novel rough legalization and refinement,” in
Proceedings of the International Conference on Computer-Aided Design,
2013, pp. 357–362.

123

http://minisat.se/Main.html
http://minisat.se/Main.html

[66] A. B. Kahng, P. Tucker, and A. Zelikovsky, “Optimization of linear
placements for wirelength minimization with free sites,” in Proceedings
of Asia and South Pacific Design Automation Conference, 1999, pp.
241–244.

[67] U. Brenner and J. Vygen, “Faster optimal single-row placement with
fixed ordering,” in Proceedings of Design Automation and Test in Europe
Conference and Exhibition, 2000, pp. 117–121.

[68] A. B. Kahng, S. Reda, and Q. Wang, “Architecture and details of a
high quality, large-scale analytical placer,” in IEEE/ACM International
Conference on Computer-Aided Design, 2005, pp. 891–898.

[69] “Msuncore max sat solver,” http://logos.ucd.ie/wiki/doku.php?id=
msuncore.

[70] Y. Du, D. Guo, M. D. Wong, H. Yi, P. Wong, H. Zhang, and Q. Ma,
“Block copolymer directed self-assembly (DSA) aware contact layer op-
timization for 10 nm 1d standard cell library,” in IEEE/ACM Interna-
tional Conference on Computer-Aided Design, 2013.

[71] Y. Zhang, W.-S. Luk, C. Yan, X. Zeng, and H. Zhou, “Layout decom-
position with pairwise coloring for multiple patterning lithography,” in
IEEE/ACM International Conference on Computer-Aided Design, 2013.

[72] B. Yu, Y.-H. Lin, G. Luk-Pat, D. Ding, K. Lucas, and D. Z. Pan,
“A high-performance triple patterning layout decomposer with balanced
density,” in IEEE/ACM International Conference on Computer-Aided
Design, 2013.

[73] H. Tian, Y. Du, H. Zhang, Z. Xiao, and M. D. Wong, “Triple pattern-
ing aware detailed placement with constrained pattern assignment,” in
IEEE/ACM International Conference on Computer-Aided Design, 2014.

[74] M. Gupta, K. Jeong, and A. B. Kahng, “Timing yield-aware color re-
assignment and detailed placement perturbation for bimodal CD dis-
tribution in double patterning lithography,” IEEE Transactions on
Computer-Aided Design of Integrated Circuits and Systems, vol. 29,
no. 8, pp. 1229–1242, 2010.

[75] Synopsys Inc., “Design solutions for 20nm and beyond,” 2012.

[76] A. N. V. and A. Mandal, “Timing analysis comprehending mask mis-
alignment due to double patterning,” in ACM International Workshop
on Timing Issues in the Specification and Synthesis of Digital Systems,
2014, pp. 82–84.

124

http://logos.ucd.ie/wiki/doku.php?id=msuncore
http://logos.ucd.ie/wiki/doku.php?id=msuncore

[77] K. Jeong, A. B. Kahng, and R. O. Topaloglu, “Is overlay error more
important than interconnect variations in double patterning?” in Pro-
ceedings of the International Workshop on System Level Interconnect
Prediction, 2009, pp. 3–10.

[78] K. Chow, “Are multi-patterning corners really needed for 16/14 nm?”
in EE Times, 2014.

[79] N. D. Arora, K. V. Raol, R. Schumann, and L. M. Richardson, “Mod-
eling and extraction of interconnect capacitances for multilayer VLSI
circuits,” IEEE Transactions on Computer-Aided Design of Integrated
Circuits and Systems, vol. 15, no. 1, pp. 58–67, 1996.

[80] R. S. Ghaida and P. Gupta, “Within-layer overlay impact for design in
metal double patterning,” IEEE Transactions on Semiconductor Man-
ufacturing, vol. 23, no. 3, pp. 381–390, 2010.

[81] H.-A. Chien, S.-Y. Han, Y.-H. Chen, and T.-C. Wang, “A cell-based row-
structure layout decomposer for triple patterning lithography,” in Pro-
ceedings of the 2015 Symposium on International Symposium on Physi-
cal Design, 2015, pp. 67–74.

[82] H. Tian, H. Zhang, Z. Xiao, and M. D. Wong, “An efficient linear time
triple patterning solver,” in Asia and South Pacific Design Automation
Conference, 2015, pp. 208–213.

[83] Y. Du, H. Zhang, and M. D. Wong, “Linear time EUV blank defect
mitigation algorithm considering tolerance to inspection inaccuracy,” in
Proc. of SPIE, vol. 8522, 2012, pp. 85 221R–1.

[84] H. Zhang, Y. Du, M. D. Wong, and R. O. Topalaglu, “Efficient pattern
relocation for EUV blank defect mitigation,” in Asia and South Pacific
Design Automation Conference, 2012, pp. 719–724.

[85] Y. Du, H. Zhang, M. D. Wong, and R. O. Topaloglu, “EUV mask prepa-
ration considering blank defects mitigation,” in SPIE Photomask Tech-
nology, 2011.

125

	LIST OF ABBREVIATIONS
	CHAPTER 1 A Polynomial Time Triple Patterning Algorithm for Cell-Based Row-Structure Layout
	Introduction
	Preliminaries
	Standard-Cell-Based Row-Structure Layout
	Color Balancing
	Problem Definition

	A Polynomial Time Algorithm
	Basic Terminologies
	Polygon Dummy Extension
	Power and Ground Connections
	Algorithm Complexities
	Hierarchical Speedup Approach
	Color Balancing

	TPL Incorporating Stitches
	Stitch Position Identification
	Coloring a Standard Cell Row
	Finding an Optimal Decomposition

	Experimental Results
	Results of the Basic TPL Algorithm
	TPL Algorithm with Stitches
	Comparisons with Previous Works

	Conclusions

	CHAPTER 2 Constrained Pattern Assignment for Standard-Cell-Based Triple Patterning Lithography
	Introduction
	Preliminaries
	Standard-Cell-Based Designs
	Previous TPL Algorithm

	Problem Definition
	Coloring Constraints
	Constrained Pattern Assignment

	A Hybrid Approach
	Variable Notations
	Boundary Polygons
	Capturing Boundary Constraints
	Capturing Cell Inner Constraints
	Computing the Solution Graph
	Power Tracks
	An Extended Partial Max SAT Approach
	Analysis of the Algorithm

	Approach for Local Color Balancing
	Experimental Results
	Constrained Pattern Assignments Results
	Local Color Balancing

	Conclusions

	CHAPTER 3 Triple Patterning Aware Detailed Placement With Constrained Pattern Assignment
	Introduction
	Preliminaries
	Standard-Cell-Based Row Structure Layout
	Previous TPL Algorithm
	CPA-Friendly Detailed Placement

	CPA-Friendly Detailed Placement
	Weighted Partial Max-SAT Variables
	Hard Clauses
	Soft Clauses
	Capturing Critical Polygons
	Excluding Native Conflicts
	CPA-Friendly Solution Graph
	Analysis of the Algorithm

	CPA-Friendly Refinement with Optimal HPWL
	Capturing X-Scope of a Cell
	Constructing a Graph Model
	Honoring Cell Displacement

	Experimental Results
	Conclusions

	CHAPTER 4 An Efficient Linear Time Triple Patterning Solver
	Introduction
	Preliminaries
	Standard-Cell-Based Designs
	Previous TPL Algorithm
	Problem Definition

	An Optimal Algorithm
	Limitations of Previous Approach
	A Novel Graph Model
	Computing Cutting Line Sets
	Stitch Candidates
	Analysis of the Algorithm
	Reducing Stitch Candidates
	Power Tracks

	Hierarchical Approach
	Boundary Constraints
	Boundary Stitch Candidates

	Experimental Results
	Conclusions

	CHAPTER 5 Performance Evaluation Considering Mask Misalignment in Multiple Patterning Decomposition
	Introduction
	Preliminaries
	Mask Misalignment in MPL Decomposition
	Min/Max Extraction
	Positive/Negative Extraction

	Problem Description
	Algorithm
	Coupling Capacitance Due to Mask Misalignment
	Some Terminologies
	Graph Model for Worst-Coupling Capacitance Computation
	Final Decomposition

	Experimental Results
	Conclusions

	CHAPTER 6 Future Directions on Triple Patterning Decomposition
	Pattern-Based Triple Patterning Decomposition
	Criteria Guiding TPL Decomposition
	Pattern-Based TPL Results

	Color Balancing for Triple Patterning Lithography
	Our Approach

	Hybrid Lithography for Triple Patterning Decomposition and E-beam Lithography
	Hybrid Lithography
	Our Approach
	Hybrid Lithography Results

	Conclusions

	REFERENCES

