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ABSTRACT

Scheduling and resource allocation in cloud systems is of fundamental im-

portance to system efficiency. The focus of this thesis is to study the funda-

mental limits of the scheduling and resource allocation problems in clouds,

and design provably high-performance algorithms.

In the first part, we consider data-centric scheduling. Data-intensive appli-

cations are posing increasingly significant challenges to scheduling in today’s

computing clusters. The presence of data induces an extremely heteroge-

neous cluster where processing speed depends on the task-server pair. The

situation is further complicated by ever-changing technologies of networking,

memory, and software architecture. As a result, a suboptimal scheduling

algorithm causes unnecessary delay in job completion and wastes system ca-

pacity. We propose a versatile model featuring a multi-class parallel-server

system that readily incorporates different characteristics of a variety of sys-

tems. The model has been studied by Harrison, Williams and Stolyar, re-

spectively. However, delay optimality in heavy traffic with unknown arrival

rate vectors has remained an open problem. We propose novel algorithms

that achieve delay optimality with unknown arrival rates. This enables the

application of proposed algorithms to data-centric clusters. New proof tech-

niques are required including construction of an ideal load decomposition.

To demonstrate the effectiveness of the proposed algorithms, we implement

a Hadoop MapReduce scheduler and show that it achieves more than 10

times improvement over existing schedulers.

The second part studies the resource allocation problem for clouds that

provide infrastructure as a service, in the form of virtual machines (VMs).

Consolidation of multiple VMs on a single physical machine (PM) has been

advocated for improving system utilization. VMs placed on the same PM are

subject to resource “packing constraint,” leading to stochastic dynamic bin

packing models for the real-time assignment of VMs to PMs in a data center.

ii



Due to finite-sized pools of servers, incoming requests might not be fulfilled

immediately, and such requests are typically rejected. Hence a meaningful

metric in practice is the blocking probability for arriving VM requests. We

analyze the power-of-d-choices algorithm, a well-known stateless randomized

routing policy with low scheduling overhead. We establish an explicit upper

bound on the equilibrium blocking probability, and further demonstrate that

the blocking probability exhibits distinct behaviors in different load regions:

doubly-exponential decay in the heavy-traffic regime and exponential decay

in the critically loaded regime.
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CHAPTER 1

INTRODUCTION

Cloud computing is becoming an essential resource for endeavors in all as-

pects, including healthcare, education and science. With the large-scale in-

frastructure provided by data centers, an increasing variety of services are

now hosted on clouds, exemplified by search, online social networking, e-

commerce, video streaming, database services and storage services [1, 2, 3, 4].

Over the past decade, data centers that host cloud computing services

have grown significantly in size, containing tens to hundreds of thousands

of commodity servers. Advanced technologies of networking, memory and

software architecture have greatly improved the computing capability of these

systems. Techniques like containerization and visualization are employed to

support resource sharing across multiple tenants. However, despite these

efforts, the performance of data centers is far from optimal. For instance,

data centers are still operated at quite low utilization, typically in the range

of 10− 30% [5, 6].

Various factors account for low performance of data centers. In particular,

as an important component of the software stack, the scheduling and resource

allocation mechanism affects the system performance substantially. The

scheduling and resource allocation mechanism determines when and which

resources from a shared resource pool (e.g., servers, storage and services) are

allocated to each incoming job. Suboptimal resource management could be

extremely wasteful with throughput, cause long delays, consume an unnec-

essarily large amount of power and lack robustness. Hence it is imperative

to design an optimal scheduling and resource allocation mechanism.

The metrics used to evaluate the performance of a scheduling algorithm

vary a lot across cloud systems that provide different services. In addition,

cloud services exhibit diverse characteristics, which pose significantly differ-

ent challenges on scheduling and resource allocation. The focus of this thesis

is to study the fundamental limits of the scheduling problem in various cloud
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systems, and design provably high-performance algorithms.

1.1 Two Typical Scheduling Problems in Clouds

A variety of systems have been designed and built to provide cloud services,

and most of them fall into one of the following two main types: data-centric

clusters, and clusters providing infrastructure as a service. For the first type,

task scheduling is imposed with data-locality constraint. The large-scale data

stored in the underlying distributed file system results in an extremely het-

erogeneous cluster, where the processing rate depends on the task-server pair.

An example is the map task scheduling in the MapReduce framework [7]. For

the second type, incoming jobs are resource requests submitted by customers,

in the form of virtual machines. The system must make resource allocation

decisions in a way that satisfies the resource requirements of incoming jobs.

In this thesis, we study scheduling problems in the two types of systems.

1.1.1 Data-centric Scheduling

Data-parallel applications have become prevalent for processing large data

sets from online social networks, search engines, scientific research and health-

care industry. MapReduce [7] pioneered the model, while systems like Dryad [8]

and Map-Reduce-Merge [9] generalized the types of data flow.

The key difference between the cloud systems for data-parallel applications

and a traditional cluster is the concept of “moving computation to data.”

Fetching data over a storage network, as in the approach of small data, be-

comes extremely inefficient for large-scale data processing, since the gigantic

size of the data can cause long delay and produce an excessive amount of

traffic in the network. In data-intensive clouds, computing tasks are moved

to data, which are stored in the distributed file system that co-exists with the

computing cluster (e.g., GFS [10] for Google’s MapReduce, and HDFS [11]

for Hadoop).

To facilitate parallel computation, data files stored on distributed file sys-

tems like HDFS are divided into data blocks of fixed size. Each data chunk is

replicated on a few nodes to guard against single-machine and rack failures.

Accordingly, each job is broken into tasks. For instance, there is one map

2



task per data block for MapReduce jobs. The distributed nature of data in-

duces an extremely heterogeneous cluster, as data-processing tasks consume

different amounts of time and resources at different locations. Even with

the increase in the speed of data center networks, there remains a significant

variability in average processing rate [12, 13, 14], depending on whether the

data reside in memory, on a local disk, in a local rack, in the same cluster or

in a different data center.

As the processing speed depends on the task-server pair, scheduling in

data-intensive clouds is an affinity scheduling problem [15, 16, 17, 18]. In

particular, for data-centric scheduling, the class of tasks is determined by the

locations of requested data. The current practice in a MapReduce cluster is

to place three replicas of each data chunk in three uniformly sampled servers.

This makes the number of types cubic in the number of servers in a cluster,

which itself can be as large as tens of thousands. On the other hand, each

server only provides a few different processing speeds due to the multi-level

locality.

Moreover, data placement and skewness of data popularity [13] results in

a random load distribution on a system, which makes scheduling in data-

centric clouds a fundamentally different problem from that in other large-

scale clusters. Many locality-aware scheduling algorithms have been pro-

posed [12, 19, 20, 21, 22]. However, they are not designed to be robust to

variation in load and data configurations.

One goal of this thesis is to study the fundamental limits of the schedul-

ing problem in data-intensive clouds, and design provably high-performance

algorithms. The two essential criteria used to evaluate the performance of a

scheduling algorithm here are throughput and delay. Throughput is equiv-

alent to the efficiency and robustness of the system, and delay is equivalent

to the completion time of tasks. Any other criterion, such as data locality

or a cost function involving data transfer and waiting time, is meaningful

only when translated into long-term throughput and delay in a stochastic

environment. We are interested in designing a throughput and delay optimal

scheduling algorithm for data-intensive clusters.
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1.1.2 Resource Allocation for IaaS Clouds

The popularity of cloud services, particularly infrastructure as a service

(IaaS), has increased drastically, due to the two premises offered by cloud

computing: resource flexibility and cost efficiency. Customers can scale up

and down computing resources they use in real time according to the needs of

their applications, and only pay for resources they have actually used. More-

over, customers can access large-scale computing resource at a much lower

cost, without setting up and maintaining local infrastructure. A variety of

commercial cloud systems are available, like Amazon Web Service [1], Google

AppEngine [2], Rackspace [3] and Microsoft Azure [4]. A growing number of

enterprise workloads are being moved to clouds, including large-scale services

that rely on thousands of servers, such as video streaming for Netflix [23].

For cloud computing systems that provide IaaS, customers submit requests

for computing resource in the form of virtual machines (VMs). Each re-

quest specifies the amount of physical resources it needs in terms of proces-

sor power, memory, I/O bandwidth, disk, etc. The cloud provider allocates

computing resource from a large pool of servers according to customers’ re-

quirements. In particular, consolidation of multiple VMs on a single physical

machine (PM) has been advocated for improving system utilization. An im-

portant design issue of such systems is the resource allocation problem: when

a user submits a VM request, which physical server(s) should be selected to

accommodate the request?

Due to the finite size of server pools, incoming VM requests might not

be fulfilled immediately, and such requests are typically rejected [4]. To

data center operators, loss of customers means loss of revenue. Hence an

important metric in practice is the loss rate of incoming VM requests. There

has been a significant amount of work on design issues associated with such

systems [24, 25, 26, 27, 28, 29, 30, 31]. In particular, the resource allocation

problem has been well studied [26, 32, 28, 33]. However, existing work has

not considered the loss rate of incoming VM requests. The goal here is

to understand how to route incoming resource requests to PMs in order

to minimize the loss rate, i.e., minimize the probability that an arriving VM

request does not find the required amount of resources at the selected PM(s).
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1.2 Contributions

Scheduling and resource allocation in clouds is of fundamental importance

to system efficiency. The objective of this thesis is to explore the fundamen-

tal limits of the scheduling and resource allocation problems in clouds, and

design provable high-performance algorithms.

To achieve this goal, we take the stochastic model-based approach, assum-

ing there is randomness in the request arrivals and also in the processing time

of a request. We use stochastic analysis to characterize the performance of

scheduling and resource allocation algorithms rigorously, and also verify high

performance of the proposed algorithms via implementation. In this thesis,

we focus on two typical scheduling problems in clouds. Below, we provide a

brief overview of our contributions towards each problem.

Data-centric scheduling. The presence of data produces an extremely

heterogeneous cluster where processing speed depends on the task-server

pair. The situation is further complicated by ever-changing technologies

of networking, memory, and software architecture. The data-locality prob-

lem poses new challenges to scheduling in today’s computing clusters. While

many locality-aware scheduling algorithms have been proposed in the liter-

ature and implemented in practice, most of the existing approaches are not

robust to changes in load or skewness of data popularity, and their funda-

mental throughput and delay properties are unknown.

We propose a versatile model featuring a multi-class parallel-server system

that readily incorporates different characteristics of a variety of data-intensive

clusters. The model had been studied by Harrison [16, 17], Williams [34, 18]

and Stolyar [35], respectively. However, delay optimality in heavy traffic with

unknown arrival rate vectors has remained an open problem.

We propose a simple priority algorithm called Pandas for systems with

two-level data locality, and a balanced priority algorithm called balanced-

Pandas for systems with multi-level locality. We establish throughput and

heavy-traffic delay optimality for both algorithms. The main challenge is

the construction of a novel ideal load decomposition that allows the separate

treatment of different subsystems.

We implement Pandas in Hadoop clusters. Trace-driven experiments on

Hadoop show that Pandas accelerates the data-processing phase of jobs by

11 times with hot-spots and 2.4 times without hot-spots over existing sched-
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ulers. When the difference in processing times due to location is large, such

as applicable to the case of memory-locality, the acceleration by Pandas is 22

times. The proposed approach is broadly applicable to all data-parallel ap-

plications, and can be integrated with job-level sharing policy (e.g., priority,

fairness and capacity), straggler mitigation and other optimization objec-

tives.

Resource allocation for IaaS clouds. VMs placed on the same PM are

subject to a resource “packing constraint,” leading to stochastic dynamic

bin packing models for the real-time assignment of VMs to PMs in a data

center. In particular, incoming resource requests that cannot be fulfilled im-

mediately are rejected. This setting motivates us to consider a loss model.

We analyze the power-of-d-choices algorithm, a well-known stateless random-

ized routing policy that fits for distributed scheduling. We consider a fluid

model that corresponds to large system limit. We establish an explicit upper

bound on the equilibrium blocking probability and further demonstrate that

the blocking probability exhibits distinct behaviors in different load regions:

doubly-exponential decay in the heavy-traffic regime and exponential decay

in the critically loaded regime. The techniques developed may be applicable

to other distributed resource allocation mechanisms.

1.3 Thesis Organization

The rest of this thesis is organized as follows. Chapter 2 provides an ex-

position of the scheduling with data locality problem, and describes a ver-

satile stochastic model that incorporates different characteristics of various

data-centric clusters. In Chapter 3, we focus the scheduling problem for the

computing cluster without rack structure. We propose Pandas, which is the

only known algorithm that is both throughput-optimal and delay-optimal in

the heavy-traffic regime without knowing job arrival rates. We investigate

the scheduling problem with multi-level locality in Chapter 4. We present

balanced-Pandas and show that balanced-Pandas achieves throughput and

heavy-traffic optimality simultaneously. In Chapter 5, we study the online

assignment of VMs to PMs via a stochastic bin-packing model. Finally,

Chapter 6 concludes this thesis.
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CHAPTER 2

SCHEDULING WITH DATA LOCALITY

In this chapter we introduce the problem of scheduling with data locality,

summarize previous work, and describe a versatile model featuring a multi-

class parallel-server system that readily incorporates different characteristics

of a variety of data-intensive clusters.

2.1 The Problem

Data-parallel applications have become increasingly popular for processing

large data sets. A fundamental problem to all data-parallel applications

is scheduling with data locality, as data-processing tasks consume different

amounts of time and resources at different locations. Even with the increase

in the speed of data center networks, there remains a significant difference in

average processing speed [12, 13, 14] depending on whether the data reside in

memory, on a local disk, in a local rack, in the same cluster or in a different

data center. As the processing rate depends on the task-server pair, it is an

affinity scheduling problem [15, 16, 17], albeit with two unique features:

1. A few different processing rates due to the multi-level locality.

Multi-level locality exists within and across data centers, where the average

task processing rate depends on the corresponding data location, whether it

is in memory, on local disks, in a local rack, in the same cluster or in different

data centers. In particular, running tasks on a server that caches the data

in the memory is the most efficient. When the server does not have the data

chunk for a particular task in memory or on the local disk, the data needs to

be retrieved over the network before processing. Such tasks will be processed

at a slower rate, reflecting the potential variation in network transfer when

retrieving data from different locations. For instance, it is measured in [12]

that running task on a server with data off-rack on average takes twice as
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much time as running on a server with data on the local disk.

From the perspective of each task, the cluster is divided into a few subsets,

where servers within a subset provide the same processing rate. Therefore,

not only is the system not homogeneous, it is not heterogeneous in the tradi-

tional sense as there are no fixed sets of fast and slow servers. Instead, each

server provides different processing rates for different tasks.

2. An explosive number of task types.

The type of a particular task is determined by the location of its data

chunks. To achieve high availability and yet avoid excessive amount of stor-

age, each data chunk is typically replicated on a small number of servers.

For instance, the number is 3 for the MapReduce cluster.

When a server breaks down and its disks are replaced, all its local data

chunks are restored by copying from their respective replicas. To avoid exces-

sive traffic from any single server, which can disrupt its service, it is desirable

to distribute the replicas over a large number of servers. Hence, the current

practice in a MapReduce cluster is for each data chunk to uniformly sample

three servers. This makes the number of types cubic in the number of servers

in a cluster, which itself can be as large as tens of thousands. As a result, it

is impractical to have one queue for each type of task.

We are interested in designing a throughput and delay optimal scheduling

algorithm in a system with multi-level locality. We define the optimality

criteria as follows.

Throughput Optimality: An algorithm is throughput optimal if it can stabilize

the system when some algorithm can. Throughput optimality means that an

algorithm is robust so that whichever load vector strictly within the capacity

region is imposed, the system is efficient enough to achieve a finite task

completion time. According to Little’s law, this implies that the number of

tasks queueing in the system is finite, i.e.,

lim sup
t→∞

E

[∑
m

Qm(t)

]
<∞.

However, throughput optimality does not guarantee the task completion time

to be small.

Heavy-traffic Delay Optimality: It is often difficult to analyze delay, or task

completion time, in a stochastic environment. One way to assess whether
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an algorithm is competent is to look at the heavy-traffic regime, where the

load vector approaches the boundary of the capacity region and the system

becomes critically loaded. An algorithm is heavy-traffic optimal if it asymp-

totically minimizes the average delay as the arrival rate vector approaches

the boundary of the capacity region; hence, it is efficient under stressed

conditions.

In addition, the algorithm should not assume any knowledge of arrival

rates in order to be robust with load variations.

2.2 Related Work

Affinity scheduling. There is a large body of work on affinity scheduling

for a multi-class parallel server system [15, 16, 17, 35, 34, 18], where the

service rate depends on the job class and server node pair. Harrison [16]

considered a two-type two-server model, and proposed a discrete review con-

trol policy, where system status is reviewed at an interval of fixed length.

At the beginning of each review period, the scheduler makes assignments

so as to minimize holding cost associated with unallocated jobs at the end

of the review period. The discrete-review policy is shown to asymptotically

optimize linear holding cost. Harrison and Lopez [17] extended the discrete-

review policy to a general parallel-server system, conjecturing its asymptotic

optimality in the heavy traffic regime. Bell and Williams [18] established

asymptotic optimality of a continuous-review “tree-based” threshold policy

with linear holding cost. In particular, it requires knowledge of the arrival

rates to solve an optimization problem, which identifies the tree-structure of

a graph containing the servers and job classes as nodes.

Stolyar [36] considered a generalized switch model, and showed that the

MaxWeight policy asymptotically minimizes the holding costs that are linear

combinations of each queue length to the power β+ 1 with β > 0. No knowl-

edge of the arrival rates is needed. Mandelbaum and Stolyar [35] proposed a

generalized cµ−rule for the parallel server system. The cµ−rule is shown to

achieve asymptotic optimality, for increasing and convex holding cost. Again,

it does not require the arrival rate information. However, it is not optimal for

linear holding costs in the heavy-traffic regime. Studies [15, 16] have shown

that cµ−rule might even result in system instability.
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The existing work on affinity scheduling requires a queue for each type of

task; hence, it is impractical for this setting as the typical number of task type

scales cubically with the number of servers. In addition, previous work either

requires the knowledge of the arrival rates of different task types [16, 17, 34],

or optimizes a specific function of delay [35, 36], which is not delay-optimal

in general in the heavy-traffic regime.

Locality-aware scheduling. Among the existing locality-aware schedul-

ing algorithms, the work most closely related to ours is delay scheduling in

HFS [12] and JSQ-MaxWeight [37]. HFS focuses on the conflict between

data locality and fairness among jobs. While fairness is a job-level priority,

delay scheduling is a task-level algorithm that specifies the priority among

map tasks based on their data location. However, delay scheduling makes

assumptions that may not hold universally: (a) task durations are short and

bimodal, and (b) a fixed waiting time parameter works for all loads and

skewness of traffic. These assumptions make it difficult for delay scheduling

to adapt to changes in workload, network conditions, or node popularity.

In contrast, our approach makes no assumption on task durations and is

provably robust to the aforementioned changes. Our approach is readily

integrated with the fairness part of HFS, as demonstrated in next chapter.

Wang et al. [37] were the first to formulate the scheduling problem with

two levels of data-locality from a stochastic network perspective and identi-

fied its capacity region. They proposed a scheduling algorithm consisting of

the Join the Shortest Queue (JSQ) together with the MaxWeight policy. The

JSQ step distributes the load into local and remote queues: a task is pre-

assigned as remote if its local queues are longer than the remote queue. The

MaxWeight step stabilizes the queues with a threshold-based priority pol-

icy. The JSQ-MaxWeight algorithm was shown to be throughput-optimal.

However, it was shown in [37] that it is heavy-traffic optimal only for a very

special traffic scenario, where all traffic concentrates on a subset of servers.

In particular, some servers receive zero local tasks and only provide remote

service; and any server with non-zero local tasks is overloaded (with load

exceeding 1) and requires remote service as a result. Recently they proposed

a decentralized scheduling algorithm, based on back-pressure approach, for

data-parallel computation on peer-to-peer networks [38]. The proposed al-

gorithm is shown to be throughput optimal, but its delay performance is not
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known.

Other locality-aware algorithms include Quincy [19], Bar [20], Maestro [21]

and Matchmaking [22]. Like HFS, Quincy [19] has a task-level algorithm that

works with the fairness job priority. In particular, at each task arrival and

departure, Quincy solves a min-cost flow problem that optimizes a linear

combination of data bytes transferred, with a penalty for an unscheduled

task and for killing a running task. The optimization is greedy at each step,

does not consider the stochastic arrivals of jobs, and does not translate into

optimal job completion times over a long horizon. Bar [20] assumes that

all jobs have the same task execution time in its optimization of makespan.

Maestro [21] assumes the knowledge of the number of data blocks on each

node to be processed in the future, and assumes that each data block is

processed exactly once. Matchmaking [22] avoids tuning the waiting time

parameter of HFS by making each node wait exactly one heartbeat interval

before acquiring a remote task. However, this fixed waiting time still makes

it difficult to adapt to skewed node popularity and varying loads.

In addition, there is work focusing on locality and virtual machines (VMs).

The ILA scheduler [39] adds a new level of locality due to co-locating VMs on

the same node and makes the waiting time of delay scheduling [12] propor-

tional to the data size, which can be smaller than the maximum data block

size of 128 MB. However, it is not clear whether ILA’s setting of parameter is

optimal. Purlieus [40] couples data placement and VM placement, but does

not consider task assignment, and hence is complementary to our work.

Data placement. Several data placement techniques have been used to

improve locality. Scarlett [13] adopts a proactive replication scheme that

periodically replicates files based on predicted data popularity. It focuses on

data that receives at least three concurrent accesses. However, it does not

consider node popularity caused by co-location of moderately popular data,

which can be solved by our approach. DARE [41] adopts a reactive approach

that probabilistically retains remotely retrieved data and evicts aged replicas.

Its reactive nature makes its performance depend on appropriate and timely

remote services. As our approach serves the right remote tasks, it will be

a valuable complement to DARE. PACMan [14] caches data in memory to

improve job completion times. Our approach can be readily extended to

include memory locality in scheduling to reap the benefit of cached data.
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Scheduling MapReduce jobs. There has been much recent work on

scheduling MapReduce jobs, including improvement of shuffle phase [42,

43, 44], joint scheduling of shuffle and reduce phase [45, 46], joint schedul-

ing of map and reduce phase [47, 48], straggler mitigation [49, 50, 51],

and optimization of job schedules to minimize average response time and

makespan [52, 53, 54, 55, 56]. None of these algorithms considers locality of

map tasks, and hence they are orthogonal to our approach. Our approach is

designed to work with various job-level and phase-level priorities by assign-

ing the optimal data-processing task when the job-level algorithm wants a

data-processing task assigned.

Application-specific scheduling. KMN [57] improves data locality of jobs

using a sampled subset of their data. The availability of multiple choices al-

lows it to avoid localized hot-spots in the system. However, as hot-spots

caused by node popularity can propagate to a significant fraction of the sys-

tem due to replicas sharing a workload, our approach will be complementary

to KMN during the propagation of hot-spots.

2.3 System Model

We describe our model in the context of MapReduce clusters, but it is appli-

cable to other computing systems, where tasks with data at different locations

can be modeled using different processing rates that depend on the locality

of the data.

We consider a MapReduce system with a hierarchical network. The system

consists of racks, each of which contains multiple servers. Servers within a

rack share a common switch. A large data set is divided into blocks, each

of which is replicated on a few servers for fault tolerance and performance.

A job consists of a number of map tasks, each of which processes a different

data chunk. For each task, we call a server a local server for the task if the

data block to be processed by the task is stored locally, and we call this task

a local task for the server. Analogously, we call a server a rack-local server if

the data block to be processed by the task is not stored on the server, but

in the same rack as the server, and we call this task a rack-local task for the

server. A server is a remote server if it is neither local nor rack-local for the

task and this task is called a remote task for the server.
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We consider a computing cluster that consists of K racks indexed by k ∈ K,
where K = {1, 2, · · · , K}. There are M parallel servers in the system, indexed

by m ∈ M, where M = {1, 2, · · · ,M}. For each server m, we denote by

K(m) the index of the corresponding rack where it locates. The cluster is

modeled as a time-slotted system, in which tasks arrive at the beginning

of each time slot according to some stochastic process. Each data chunk is

replicated on a set L̄ of servers. As each task processes one data chunk, it

has |L̄| local servers. Define the type of a task as the set L̄ of its local servers.

For instance, with |L̄| = 3 the task type L̄ is defined as:

L̄ ∈ {(m1,m2,m3) ∈M3,m1 < m2 < m3},

where m1,m2,m3 are the indices of the three local servers.

We use m ∈ L̄ to denote that server m is a local server for type L̄ tasks.

We use the notation m ∈ L̄k if server m is rack-local to type L̄ tasks, and

similarly, m ∈ L̄r if server m is remote to type L̄ tasks. Let L denote the set

of task types.

Arrivals. Let AL̄(t) denote the number of type L̄ tasks that arrive at the

beginning of time slot t. We assume that the arrival process of type L̄ tasks

is i.i.d. with rate-λL̄. We denote the arrival rate vector by λ = (λL̄ : L̄ ∈ L).

The number of total arrivals in one time slot is assumed to be bounded, i.e.,∑
L̄∈LAL̄(t) ≤ CA.

Services. For each task, we assume that its service time follows a geometric

distribution with mean 1/α if processed at a local server, and with mean 1/β

and 1/γ at a rack-local server and a remote server respectively. On average,

a task is processed fastest at a local server, and slowest at a remote server,

hence we assume α > β > γ. Each server can process one task at a time and

all services are non-preemptive.
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CHAPTER 3

PANDAS: PRIORITY ALGORITHM FOR
NEAR-DATA SCHEDULING WITH

TWO-LEVEL LOCALITY

In this chapter, we consider the scheduling problem for the computing cluster

without rack structure. The discrete-time model described in Chapter 2 will

be simplified with two levels of locality: within each time slot, a task is

completed with probability α at a local server, or with probability γ (γ <

α) at a remote server. The formulation is the same as previous work by

Wang et al. [37]. We consider two traffic scenarios that require distinct proof

techniques (although our algorithm does not distinguish between them as we

assume no knowledge of arrival rates):

Evenly loaded. This is the case where with appropriate load balancing,

each server can accommodate its load locally. No remote service is necessary

in this scenario.

Locally overloaded (hotspots). More often, the data requested by the

incoming traffic are skewed towards a subset of servers [13] and exceed their

capacity. We call these servers beneficiaries as they require remote service

to remain stable, and call the servers with spare capacity helpers. This

includes the special scenario in [37] for which the JSQ-MaxWeight algorithm

is shown to be heavy-traffic optimal, and is more general as it allows non-zero

local traffic at helpers, as well as traffic that is local to both a helper and a

beneficiary.

We propose Pandas (Priority Algorithm for Near-DAta Scheduling) which

is a task-level algorithm that specifies the priority among tasks of any data-

processing phase by considering data locality. Pandas consists of two main

steps:

1. Early detection of hot-spots: While early detection is highly desirable

for relieving hot-spots, it is not straightforward. As each data block has

multiple replicas, it is incorrect to estimate the traffic at a node by simply

summing all workloads whose data reside on this node. Pandas accurately
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detects a hot-spot before it causes excessive delay by monitoring a queuing

structure with appropriate load balancing.

2. Serve the right remote task: Timely service of remote tasks, that is,

tasks whose data need to be fetched over the network, by lightly loaded nodes

helps relieving hot-spots. However, not all tasks are equal. Pandas ensures

that only tasks contributing to potential hot-spots are served remotely.

We establish the following results:

• We prove that Pandas is throughput optimal, i.e., it can stabilize any

arrival rate vector strictly within the capacity region identified in [37].

Since the algorithm has a predetermined priority of “local-tasks first,”

existing techniques using the L2 norm Lyapunov drift, such as in [37],

do not apply: There exist states with arbitrarily large L2 norm where

the drift remains positive. The main idea is the construction of the ideal

load decomposition for each arrival vector, which separates the servers

into helpers and beneficiaries. The stability of the helper subsystem

(which by itself is not Markovian) is established first, and the spare

capacity helps stabilize the beneficiary subsystem.

• In addition, we prove that Pandas is heavy-traffic optimal for both the

evenly loaded and locally overloaded scenarios, i.e., it asymptotically

minimizes the average delay as the arrival rate vector approaches the

boundary of the capacity region. Since [37] shows heavy-traffic optimal-

ity only for a special traffic scenario, Pandas is so far the only known

heavy-traffic optimal algorithm. Further, to the best of our knowledge,

this is the only setting of affinity scheduling where a “local-tasks first”

algorithm is shown to be heavy-traffic optimal, which can be of separate

interest.

The locally overloaded case is the more challenging of the two. The

proof first establishes state-space collapse, where we show that the

helper subsystem has uniformly bounded moments independent of the

heavy-traffic parameter, and the beneficiary subsystem reduces to a sin-

gle dimension where all queue lengths are equal. We remark that this

result depends on our “local-tasks first” policy as the helper queues

are drained first, independent of the beneficiaries. In contrast, JSQ-

MaxWeight results in helper queues growing proportionally with the
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beneficiaries. The proof uses construction of ideal processes to bound

the dependence between helpers and beneficiaries through shared local

arrivals and remote services.

• We have integrated Pandas with the Hadoop FIFO scheduler and Fair

scheduler (HFS). Each scheduler retains its original job priority. To fo-

cus on the performance benefit brought by Pandas to the data-processing

phase, we use the SWIM workload [58] to obtain realistic characteris-

tics of data-processing tasks, but with empty reduce phases, as the

time taken by the reduce phase can be orthogonally improved by other

techniques [45, 46].

We evaluate Pandas in a variety of environments including Amazon’s

Elastic Compute Cloud (EC2), a private cluster and via large-scale

simulations. Pandas-accelerated FIFO scheduler achieves 11-fold im-

provement in average job completion time with hot-spot and 2.4-fold

improvement without hot-spot over the Hadoop FIFO scheduler. When

the difference in processing times due to location is large as in the case

of memory-locality, Pandas-accelerated Fair scheduler achieves 22-fold

improvement over HFS during a hot-spot.

3.1 Algorithm

Pandas detects hot-spots early by estimating the expected amount of con-

tention at a node. It maintains a queuing structure to identify a subset of

nodes that have the potential to become hot-spots via load balancing. Sec-

tion 3.1.1 describes the details of hot-spot detection. The identification of

potential hot-spots allows appropriate decisions of whether to serve a remote

task and which remote task to serve. This enables timely relief of hot-spots

without assigning too many remote tasks and sacrificing system throughput.

Section 3.1.2 describes the details of task assignment.

3.1.1 Early Detection of Hot-spots

While it is easy to detect a highly popular file by simply counting the number

of requests for this file, detecting a highly popular node is less straightforward.
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As each data block has multiple replicas and task processing time varies, it

is not known a priori where a task should be processed.

Queuing structure. Pandas maintains a queuing structure within the

scheduler as illustrated in Fig. 3.1. The queueing structure contains M

queues, where the m-th queue, denoted by Qm, only receives tasks local to

server m. We call it a local queue for tasks of type L̄ if m ∈ L̄. Note

that there can be tasks local to server m but buffered at Qn, n 6= m,

where server n is another local server for the tasks. Let the vector Q(t) =

(Q1(t), Q2(t), · · · , QM(t)) denote the queue lengths at time t.

Server 1Q1

Scheduler

Type L  

Join local queue

Remote tasks

Local tasks first

Q2

QM

Server 2

Server M

Figure 3.1: The proposed algorithm.

Load balancing: When a task arrives, the scheduler compares the lengths

of the task’s local queues, {Qm|m ∈ L̄}, and inserts the task into the shortest

queue. Ties are broken randomly. Load balancing is an estimate of where

each task should be processed based on the expected amount of load on each

node, since the exact processing time of each task is unknown. The purpose

of load balancing is not to permanently assign a task to a node. Rather the

purpose is to push away concurrent tasks from a potential hot-spot to other

local nodes with less contention, if such nodes exist.

3.1.2 Serve the Right Remote Task

Pandas decides on the sequence of task assignments for idle servers via pri-

oritized scheduling as follows:
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Local tasks first. When server m becomes idle, the scheduler sends the

head-of-line task from Qm.

Remote tasks. When server m becomes idle and Qm is empty, the scheduler

sends a remote task to server m from the longest queue in the system, if

the length of the longest queue, denoted by Qmax, exceeds the threshold

Ts = α/γ. The threshold is to ensure that the remote task will experience a

smaller completion time in expectation, since the mean processing time at a

remote server is 1/γ, and the mean waiting time plus processing time at a

local server is Qmax/α.

3.1.3 Queue Dynamics

Let AL̄,m(t) denote the number of type L̄ tasks that are routed to Qm. The

total number of tasks that join queue Qm, denoted by Am(t), is given by

Am(t) =
∑
L̄:m∈L̄

AL̄,m(t).

We denote the working status of server m at time slot t by fm(t):

fm(t) =

{
−1, if server m is idle

n, if server m serves a task from queue n

When server m completes a task at the end of time slot t− 1, i.e., fm(t−) =

−1, it is available for a new task at time slot t. Note that fm(t) = m

indicates that server m is working on a local task, and fm(t) = n, where

n 6= m, indicates that server m is working on a remote task. The scheduling

decision is based on the working status vector f(t) = (f1(t), f2(t), · · · , fM(t))

and queue length vector Q(t).

Let ηm(t) denote the scheduling decision for server m at time slot t, which

is the index of the queue that server m is scheduled to serve. Note that

ηm(t) = fm(t) for all busy servers, and when fm(t−) = −1, i.e., server m is

idle, ηm(t) is determined by the scheduler according to the algorithm.

We use Slm(t) and Rm(t) to denote the local and remote service provided

by server m respectively, where Slm(t) ∼ Bern(αI{ηm(t)=m}) and Rm(t) ∼
Bern(γI{ηm(t) 6=m}) are two Bernoulli random variables with varying proba-

bility: Slm(t) ∼ Bern(α) when server m is scheduled to the local queue, and
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Bern(0) otherwise; Rm(t) ∼ Bern(γ) when server m is scheduled to a remote

queue, and Bern(0) otherwise.

Note that the local service received by server m is also Slm(t), whereas the

remote service received by server m is Srm(t) ≡
∑

n:n6=mRn(t)I{ηn(t)=m}, which

is the sum of all remote service provided by other servers to server m. Let

Sm(t) ≡ Slm(t) +Srm(t) denote the departure process for queue m. Hence the

queue length satisfy the following equation:

Qm(t+ 1) = Qm(t) + Am(t)− Sm(t) + Um(t),

where Um(t) = max{0, Sm(t)− Am(t)−Qm(t)} is the unused service.

As the service times follow geometric distributions, Q(t) together with the

working status vector f(t) form a Markov chain {Z(t) = (Q(t), f(t)), t ≥ 0}.
We assume that the process is initialized as (Q(0), f(0)) = (0M×1,−1M×1).

Denote the state space by S ⊂ NM × {−1, 1, 2, · · · , ...,M}M , which consists

of all states that can reached from the initial state. Observe that this Markov

chain is irreducible and aperiodic.

The following lemma states a property of the unused service U(t). It will

be used in the proof of throughput and heavy-traffic optimality.

Lemma 3.1. For any t ≥ 0,

〈Q(t),U(t)〉 ≤M2.

Proof. By the definition of Um(t), 0 ≤ Um(t) ≤ M, and
∑

m∈M Um(t) ≤
M. If Um(t) = 0, Qm(t)Um(t) = 0. We note the fact that Um(t) > 0 only

if the number of tasks in Qm is less than the number of available servers

scheduled to Qm at time t. Since Sm(t) ≤ M , we have Qm(t) < M . Hence

Qm(t)Um(t) < MUm(t). Therefore, 〈Q(t),U(t)〉 <
∑

m∈MMUm(t) = M2.

3.2 Ideal Load Decomposition

A key component of the proof of both throughput and heavy-traffic optimal-

ity is a construction we call the ideal load decomposition. It is ideal in the

sense that it minimizes the work in the system by locally serving as many
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tasks as possible. The construction serves two purposes: 1) The ideal load

obtained for each server is used as an intermediary in the proofs of stability

and state-space collapse; 2) The construction uniquely identifies two sub-

systems, helpers and beneficiaries, which have very different behavior and

require distinct treatment in the proofs.

Helpers and Beneficiaries

A server is a helper if it is not overloaded, provides remote service and

its local queue does not receive remote service under the ideal load decom-

position. In contrast, a server is a beneficiary if it is overloaded, does not

provide remote service, and its local queue receives remote service from the

helpers. We will define an overloaded server in a more precise manner in

3.2.2. While pure helpers and beneficiaries do not exist in a real system, the

ideal load decomposition approximately depicts the load distribution in the

heavy-traffic regime.

In the rest of the section, we construct the ideal load decomposition. We

start from a new definition of the capacity region, which is equivalent to

that identified in [37], but uses a more refined decomposition appropriate

for our algorithm. The ideal load decomposition is constructed from this

refined decomposition in two steps: 1) Identify the overloaded servers; 2)

Construct the decomposition that produces helpers and beneficiaries. In

particular, we will show that the decomposition constructed at each step can

be characterized by a linear program.

3.2.1 An Equivalent Capacity Region

Let Λ be the set of arrival rates such that each element has a decomposition

satisfying the following condition:

Λ =
{
λ = (λL̄ : L̄ ∈ L) | ∃ (λL̄,n,m) such that

λL̄,n,m ≥ 0,∀L̄ ∈ L,∀n ∈ L̄,m ∈M,

λL̄ =
∑
n:n∈L̄

M∑
m=1

λL̄,n,m,∀L̄ ∈ L,

∑
L̄:m∈L̄

∑
n:n∈L̄

λL̄,n,m
α

+
∑
L̄:m/∈L̄

∑
n:n∈L̄

λL̄,n,m
γ

< 1, ∀m ∈M } , (3.1)
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where inequality (3.1) states that the sum of the local and remote load at

each server is less than 1.

Lemma 3.2. The capacity region Λ is equivalent to the capacity region

in [37].

The proof is straightforward. In [37], the rate λL̄ is decomposed into λL̄,m,

which is the rate of type-L̄ arrival allocated to server m. We further refine

the decomposition by simply writing λL̄,m ≡
∑

n λL̄,n,m, where n is the index

of the queue at which a task is queued till processed at server m. Observe

that λL̄,n,m = 0 if n /∈ L̄, since tasks only join their local queues with the

proposed algorithm.

3.2.2 Overloaded Servers

Let νn,m denote the total rate of arrivals routed to Qn, and eventually pro-

cessed at server m, νn,m ≡
∑

L̄:n∈L̄ λL̄,n,m.

ν1,1 ν1,2 ν1,M

Q1

ν2,1 ν2,2 ν2,M

Q2

νM,1 νM,2 νM,M

QM

Figure 3.2: Ideal load decomposition.

Figure 3.2 illustrates (νn,m) where the m-th sub-queue at Qn denotes the

arrivals routed to Qn but processed at server m. Note that the sub-queues are

only a part of the construction, and do not exist in the actual data structure.

For each server n, define

λln = νn,n, λ
r
n =

∑
m:m 6=n

νn,m,

which give the pseudo-arrival rate of tasks queued at Qu and served locally by

server n, and served remotely by other servers, respectively. Let λn ≡ λln+λrn
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denote the total pseudo-arrival rate at Qn. Note that the total rate of remote

service provided by server m is
∑

n:n 6=m νn,m.

For any subset of servers N ⊆M, we denote by LN the set of task types

only local to servers in N .

Lemma 3.3. For any arrival rate vector λ ∈ Λ, there exists a decompo-

sition {λ̃L̄,n,m} which satisfies condition (3.1) and ∀n ∈ D = {n ∈ M :∑
L̄:n∈L̄

∑
m λ̃L̄,n,m ≥ α}, where D denotes the overloaded set with arrival

rate greater than α,

λ̃L̄,n,m = 0, ∀L̄ /∈ LD,m ∈M. (3.2)

Note that the decomposition {λ̃L̄,n,m} is such that for the overloaded set

D, it only receives non-zero arrivals from task types that are only local to

D. In other words, any task type that is also local to some server m not

in the overloaded set, will be directed to m. This ensures that the set D is

truly overloaded as no load balancing with the rest of the system will reduce

its arrivals. Note that D is unique for a given arrival vector λ, although the

decomposition {λ̃L̄,n,m} might not be unique. When D is non-empty, we call

the system locally overloaded.

The proof takes a decomposition
{
λL̄,n,m

}
satisfying condition (3.1), and

iteratively moves an appropriate amount of local arrivals from overloaded

(λn ≥ α) queues to underloaded (λn < α) queues. This is possible whenever

an overloaded queue receives local arrivals that are also local to some under-

loaded queue. At the end of each step, either all shared local traffic between

the two queues is routed to the underloaded queue, or they have both become

underloaded or overloaded. At each step, the amount of arrivals moved is

determined such that condition (3.1) is always satisfied.

Linear Programming Characterization. An alternative characterization

of the decomposition of Lemma 3.3 is via a linear program. Observe that

remote service is required to accommodate the arrivals for a server with

λn ≥ α, while a server with λn < α can accommodate its arrivals locally.

Given a decomposition {λL̄,n,m} of λ ∈ Λ, we define the system load as

ρ
(
{λL̄,n,m}

)
=
∑

n:λn<α

λn
α

+
∑

n:λn≥α

(
1 +

λn − α
γ

)
, (3.3)
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which is the minimum possible lower bound on the total utilization of all

servers, such that the arrivals routed to each server according to {λL̄,n,m} can

be accommodated. Consequently, a natural definition of ideal routing is a

decomposition such that ρ is minimized. The linear program to determine

the minimum ρ∗ for λ is as follows. We refer to it as the routing optimization

problem:

min
{λL̄,n,m}

ρ
(
{λL̄,n,m}

)
subject to

λL̄,n,m ≥ 0,∀L̄ ∈ L,∀n ∈ L̄,m ∈M, (3.4)

λL̄ =
∑
n:n∈L̄

M∑
m=1

λL̄,n,m, ∀L̄ ∈ L, (3.5)

∑
L̄:m∈L̄

∑
n:n∈L̄

λL̄,n,m
α

+
∑
L̄:m/∈L̄

∑
n:n∈L̄

λL̄,n,m
γ

< 1, ∀m ∈M. (3.6)

As a byproduct of the proof of Lemma 3.3, it is easy to see that a de-

composition satisfying condition (3.2) gives an optimal solution of the linear

program. That is, when all shared type tasks are routed to underloaded

queues, the corresponding system load is minimized. In particular, the proof

of Lemma 3.3 provides a procedure to construct an optimal solution.

3.2.3 Ideal Load Decomposition

Lemma 3.4. For any arrival rate vector λ ∈ Λ, there exists a decomposition

{λ∗
L̄,n,m
} satisfying condition (3.1) and for ∀m ∈M, either m ∈ H or m ∈ B,

where

H = {n ∈M |
∑
L̄:n∈L̄

∑
m

λ∗L̄,n,m < α,

λ∗L̄,n,m = 0, ∀L̄ ∈ L,∀m 6= n}, (3.7)

B = {n ∈M |
∑
L̄:n∈L̄

∑
m

λ∗L̄,n,m ≥ α,

λ∗L̄,n,m = 0,∀L̄ /∈ LB,∀m ∈M

λ∗L̄,m,n = 0,∀L̄ ∈ L,∀m 6= n}. (3.8)

Lemma 3.4 states that for any arrival vector, there exists an ideal load
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decomposition, under which a server is either a helper or a beneficiary. A

helper server n ∈ H receives no remote service, hence νn,m = 0 for all m 6= n.

The Q1 and Q2 in Fig. 3.2 belong to such servers. Only the local sub-queue

has non-zero rate, denoted by νn,n. A beneficiary server m ∈ B, provides no

remote service, but receives remote service from helpers. The QM in Fig. 3.2

illustrates such a situation. Note that QM receives remote service from server

1 and 2.

The proof constructs the ideal load decomposition iteratively from {λ̃L̄,n,m}
given in Lemma 3.3. The main idea is that if an underloaded server receives

remote service, it can process this work locally while reducing the remote

service it provides, until it becomes a helper; if an overloaded server provides

remote service, it can instead use this service towards its local load while

reducing the remote service it receives, until it becomes a beneficiary.

Linear Programming Characterization. Similarly, we can characterize

the ideal load decomposition via a linear program. Given a decomposition

{λ̃L̄,n,m} of λ ∈ Λ satisfying condition (3.2), we define the system remaining

capacity as

CR

(
{λ̃L̄,n,m}

)
=
∑
m∈Dc

γ

(
1−

∑
L̄:m∈L̄

∑
n:n∈L̄

λ̃L̄,n,m
α
−
∑
L̄:m/∈L̄

∑
n:n∈L̄

λ̃L̄,n,m
γ

)

+
∑
m∈D

α

(
1−

∑
L̄:m∈L̄

∑
n:n∈L̄

λ̃L̄,n,m
α
−
∑
L̄:m/∈L̄

∑
n:n∈L̄

λ̃L̄,n,m
γ

)
, (3.9)

which is the maximum amount by which
∑

L̄∈LD λL̄ can be increased until

the boundary of the capacity region is hit. From the proof of Lemma 3.4 we

can see that CR of λ is maximized with the ideal load decomposition. It can

be determined by the following linear program. We refer to it as the service

optimization problem:

max
{λL̄,n,m}

CR
(
{λL̄,n,m}

)
subject to constraints (3.4)-(3.6).

Remark. The two iterative procedures given in the proofs of Lemmas

3.3-3.4 provide a construction of an optimal solution of the corresponding

linear program.
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3.3 Throughput Optimality

We devote this section to the proof of the following theorem:

Theorem 3.1. (Throughput Optimality) The proposed algorithm is through-

put optimal. That is, it stabilizes any arrival rate vector strictly within the

capacity region.

By Lemma 3.2, it is equivalent to prove that the proposed algorithm stabi-

lizes any arrival rate vector within Λ, defined in 3.2.1. The standard approach

using a quadratic Lyapunov function does not apply in our setting, as a re-

mote queue, despite its large queue length, can continue to grow, while a

shorter queue receives local service, hence increasing the quadratic drift. Al-

though the remote queue will be served after the local queue is empty, the

time taken to obtain a negative drift will depend on the system state.

To address the challenge, we treat the helper and beneficiary subsystems,

as defined in Lemma 3.4, separately. The proof has three main steps. First,

we show that the helper subsystem is stable using an extension of Lemma 1

in [59]. If the beneficiary subsystem is empty, this alone proves Theorem 3.1.

In the case where the beneficiary subsystem is non-empty, we show that the

beneficiary queues are either all stable or none of them is stable. This allows

us to show the stability of the beneficiary subsystem by contradiction.

Let Mh and Mb denote the number of helpers and beneficiaries, respec-

tively. For simplicity, assume that H = {1, 2, · · · ,Mh}, and B = {Mh +

1, · · · , ...,M}. Let Q(H)(t) and Q(B)(t) denote the vector of helper queues

and beneficiary queues, respectively.

3.3.1 Stability of Helper Subsystem

We have the following lemma for the stability of the helper subsystem.

Lemma 3.5. For any arrival rate vector λ ∈ Λ, the helper queues defined

by its ideal load decomposition will be stabilized with the proposed algorithm.

Throughout this subsection, notations with superscript (H) are used to de-

note the corresponding vectors for helpers. Since the arrivals and services for

helpers depend on the state of beneficiaries, {Z(H)(t) = (Q(H)(t), f (H)(t)), t ≥
0} itself is not a Markov chain. Here we use an extension of a lemma by
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Hajek [60], as presented in [59]. This lemma will be also useful in the heavy-

traffic analysis.

Lemma 3.6. For an irreducible and aperiodic Markov chain {X(t), t ≥ 0}
over a countable state space X , suppose V : X → R+ is a nonnegative-valued

Lyapunov function. For some positive integer T, we define the T time slot

drift of V at X as

∆V (X)
∆
= [V (X(t0 + T ))− V (X(t0))]I(X(t0) = X),

where I(·) is the indicator function. If the drift satisfies the following condi-

tions:

(C1). There exist a constant δ > 0 and σ such that

E [∆V (X) | X(t0) = X] ≤ −δ, for all X ∈ X , with V (X) ≥ σ.

(C2). There exists a constant D such that

P(∆V (X) ≤ D) = 1, for all X ∈ X .

Then there exists a θ∗ > 0 and a C∗ <∞ such that

lim
t→∞

supE
[
eθ
∗V (X(t))

]
≤ C∗.

If furthermore the Markov chain {X(t), t ≥ 0} is positive recurrent, then

V (X(t)) converges in distribution to a random variable V̂ for which

E
[
eθ
∗V̂
]
≤ C∗,

which implies that all moments of V̂ exist and are finite.

By Lemma 3.6, the helper subsystem is stable if there exists a positive

inter T and a Lyapunov function V defined on the subsystem only whose T

time slot drift satisfies conditions (C1) and (C2). To prove that the T time

slot drift satisfies condition (C1), we need the following lemmas. The main

idea is to use the ideal load decomposition as a potential set of arrival rates,

and show that
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1) The actual load arriving at Qm with the proposed load balancing step

is dominated, in an appropriate sense, by the ideal decomposition.

2) The local service at a helper server is sufficient to accommodate all

load arriving at its queue according to the ideal decomposition.

We defer the proof of these lemmas to Appendix A. Note that λ∗m is

the pseudo-arrival rate of local tasks for queue Qm according to the ideal

load decomposition. With a slight abuse of notation, let λ∗(H) denote the

corresponding pseudo-arrival rate vector for helpers.

Lemma 3.7. (Arrival.) Consider any arrival rate vector λ ∈ Λ and H is

the corresponding helper set defined in Lemma 3.4. Then under the proposed

algorithm, for any t ≥ t0,

E
[
〈Q(H)(t),A(H)(t)〉 − 〈Q(H)(t),λ∗(H)〉 | Z(t0)

]
≤ 0.

The lemma states that the actual arrival rate on the left-hand side of the

equation is dominated by the arrival rates in the ideal decomposition, in a

dot product with the queue lengths. It indicates that the proposed algorithm

keeps the number of tasks at least as balanced as the ideal decomposition.

The main idea of the proof is to regroup the arrival rates according to the

types of tasks, and use the fact that an incoming task always joins the shortest

queue.

Lemma 3.8. (Local service.) Consider any arrival rate vector λ ∈ Λ and

H is the corresponding helper set defined in Lemma 3.4. Then under the

proposed algorithm, there exists T1 > 0 such that for any T > T1 and any t0,

E

[
t0+T−1∑
t=t0

(
〈Q(H)(t),λ∗(H)〉 − 〈Q(H)(t),S(H)(t)〉

)
| Z(t0)

]
≤ −θ1

∥∥Q(H)(t0)
∥∥

1
+ C1, (3.10)

where θ1 > 0 and C1 are constants independent of Z(t0).

Recall that for any m ∈ H, λ∗m = λ∗lm, i.e., all arrivals are served locally

under the ideal decomposition. Thus Lemma 3.8 indicates that all servers are

able to accommodate their local load assigned by the ideal decomposition.

The proof uses the fact that the local service rate is always α as long as there
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is local tasks present, and the inequality is obtained using the definition of

the capacity region.

Proof of Lemma 3.5. Consider the following Lyapunov functions:

Vh(Z) =
∥∥Q(H)

∥∥, Wh(Z) =
∥∥Q(H)

∥∥2
,

with the corresponding T -period drifts denoted by:

∆Vh(Z) := [Vh(Z(t0 + T ))− Vh(Z(t0))]I(Z(t0) = Z),

∆Wh(Z) := [Wh(Z(t0 + T ))−Wh(Z(t0))]I(Z(t0) = Z).

Observe that Vh(Z) =
√
Wh(Z). By the concavity of the square root

function, we have

∆Vh(Z) ≤ 1

2‖Q(H)‖
[Wh(Z(t0 + T ))−Wh(Z(t0))]I(Z(t0) = Z) =

∆Wh(Z)

2‖Q(H)‖
.

We first analyze ∆Wh(Z)).

E [∆Wh(Z) | Z(t0)]

= E

[
t0+T−1∑
t=t0

(∥∥Q(H)(t+ 1)
∥∥2 −

∥∥Q(H)(t)
∥∥2
)
| Z(t0)

]

= E

[
t0+T−1∑
t=t0

(
2〈Q(H)(t),A(H)(t)− S(H)(t)〉+ 2〈Q(H)(t),U(H)(t)〉

+
∥∥A(H)(t)− S(H)(t) + U(H)(t)

∥∥2
)
| Z(t0)

]
.

By Lemma 3.1, 〈Q(H)(t),U(H)(t)〉 ≤ M2. Since both the arrival vector

A(H)(t) and the service vector S(H)(t) are bounded, so as the unused service

vector U(H)(t), we can upper bound
∥∥A(H)(t)− S(H)(t) + U(H)(t)

∥∥2
by a

constant. Thus the T-time slot drift can be bounded as

E [∆Wh(Z) | Z(t0)]

≤ 2E

[
t0+T−1∑
t=t0

〈Q(H)(t),A(H)(t)− S(H)(t)〉 | Z(t0)

]
+ C. (3.11)

We split the expectation term in (3.11) into two terms by adding and
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subtracting an term involving an ideal decomposition {λ∗
L̄,m,n
} of λ.

E

[
t0+T−1∑
t=t0

〈Q(H)(t),A(H)(t)− S(H)(t)〉 | Z(t0)

]

= E

[
t0+T−1∑
t=t0

(
〈Q(H)(t),A(H)(t)〉 − 〈Q(H)(t),λ∗(H)〉

)
| Z(t0)

]
(3.12)

+E

[
t0+T−1∑
t=t0

(
〈Q(H)(t),λ∗(H)〉 − 〈Q(H)(t),S(H)(t)〉

)
| Z(t0)

]
.(3.13)

By Lemmas 3.7 and 3.8, it follows that

E [∆Wh(Z) | Z(t0)] ≤ −2θ1

∥∥Q(H)(t0)
∥∥

1
+ C2,

where θ1 and C2 are two positive constants independent of Z(t0). Therefore,

E [∆Vh(Z) | Z(t0)] ≤
−2θ1

∥∥Q(H)(t0)
∥∥

1
+ C2

2‖Q(H)(t0)‖
≤ −θ1 +

C2

2‖Q(H)(t0)‖

= −θ1 +
C2

2Vh(Z)
,

where the second inequality comes from the fact that l2 norm of a non-

negative vector is always less than its l1 norm. This means that we have a

negative drift for sufficiently large Vh(Z).

In addition, by the boundedness of arrivals and service, we have

∣∣∥∥Q(H)(t)
∥∥− ∥∥Q(H)(t0)

∥∥∣∣ ≤ ∥∥Q(H)(t)−Q(H)(t0)
∥∥ ≤ T

√
Mh max{M,CA}.

Thus the drift of Vh(Z) is finite with probability 1. By Lemma 3.6, Vh(Z(t))

converges in distribution to a random variable V̂h, and there exist constants

θ∗h and C∗h with θ∗h > 0 such that E
[
eθ
∗
hV̂h

]
≤ C∗h, which implies that the

helper subsystem is stable.

Consider the helper subsystem in steady state. Observe that the total

arrival rate for this subsystem is at most
∑

L̄∈L∗H
λL̄, where L∗H is the set

of task types that have at least one local server in H. Since arrivals at the

helper subsystem can be processed remotely, the total amount of local service

provided by helper servers is no greater than
∑

L̄∈L∗H
λL̄. Hence the total

amount of remote service provided by all helpers in steady state, denoted by
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RH, can be lower bounded as

RH ≥ γ

Mh −
1

α

∑
L̄∈L∗H

λL̄

 .

3.3.2 Stability of Beneficiary Subsystem

Assume that the beneficiary subsystem is non-empty. We will prove the

following important property of the beneficiary subsystem.

Lemma 3.9. For any arrival rate vector λ ∈ Λ, either all queues in B are

stable or none of them is stable.

Proof. We prove this lemma by contradiction. Let F and F c denote the set

of stable and unstable beneficiaries, respectively. Assume that F 6= ∅ and

F c 6= ∅. By Lemma 3.5, helper queues H are stable. Consider the system

with queues F ∪H in steady state. Since queues in F c grow with time, the

probability that the maximum queue is among F ∪ H is arbitrarily small.

Hence the amount of remote service offered by helpers and devoted to queues

F ∪ H can be arbitrarily small, denoted by δ > 0. Consider the following

two arrival scenarios for F :

Case (1): E
[∑

m∈F Am(t)
]
> |F|α.

Then ∃k ∈ F such that E [Ak(t)] ≥ E
[∑

m∈F Am(t)
]
/|F| > α. Thus there

exists a constant θ > 0 such that E [Ak(t)] ≥ α + θ. Note that ∀m ∈ F , the

amount of service it receives satisfies E [Sm(t)] ≤ α+ δ. Choosing sufficiently

small δ < θ, we can have E [Sk(t)] < E [Ak(t)], which contradicts with the

assumption that beneficiary k is stable.

Case (2): E
[∑

m∈F Am(t)
]

= |F|α.
The total arrival rate for F c is given by E[

∑
m∈Fc Am(t)] =

∑
L̄∈LB λL̄ −

|F|α+σ, where σ ≥ 0 is the amount of arrivals local to some server in H but

join F c. It can be made arbitrarily small as queues in F c become sufficiently

large.

Consider service received by F c. For any m ∈ F c, its instability implies

P[Qm(t) = 0] = 0, hence E
[
Slm(t)

]
= α. We have E

[∑
m∈Fc Sm(t)

]
≥

α|F c|+RH − δ. Define ε = αMb + γ(Mh − 1
α

∑
L̄∈L∗H

λL̄)−
∑

L̄∈LB λL̄. Since

the ideal load decomposition satisfies (3.1), ε is a positive constant. Select
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small δ and σ such that δ < ε
4
, and σ < ε

4
. Then ∃T > 0 such that for

∀t > T ,

E

[∑
m∈Fc

Sm(t)

]
> E

[∑
m∈Fc

Am(t)

]
+
ε

2
.

This contradicts with the assumption that all queues in F c are unstable.

This completes the proof.

Next we show the stability of the beneficiary subsystem.

Lemma 3.10. For any arrival rate vector λ ∈ Λ, all queues in B will be

stabilized under the proposed algorithm.

Proof. Again, we prove the statement by contradiction. By Lemma 3.9, we

can assume that all beneficiaries are unstable. With a similar argument as

the second case in the proof of Lemma 3.9, we can show that this assumption

does not hold. Therefore, all beneficiaries are stable.

3.4 Heavy-traffic Optimality

In this section, we show that the proposed algorithm achieves queue length

optimality in the heavy-traffic limit. That is, the proposed algorithm asymp-

totically minimizes the number of backlogged tasks. We consider the two

cases separately: locally overloaded and evenly loaded. The proof follows

the Lyapunov drift-based approach recently developed in [59]. The main

steps include: 1. Obtain a lower bound on the expected queue length as

ε → 0; 2. Establish state-space collapse of the system in the heavy-traffic

limit; 3. Obtain a matching upper bound on the expected queue length

as ε → 0. However, as the “local-tasks first” policy excludes the use of a

quadratic Lyapunov function, the main challenge is to prove the state-space

collapse and derive a matching upper bound for the locally overloaded case.

The main idea is to first show uniform boundedness for the helper queues,

and analyze the Lyapunov drift for the beneficiary subsystem with a steady-

state helper subsystem, and bound the amount of remote service received by

helpers and the amount of helper traffic routed to beneficiaries. The proof

for the evenly loaded case is considerably simpler.
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3.4.1 Locally Overloaded Traffic

With locally overloaded traffic, there exists a set of beneficiary queues. With-

out loss of generosity, consider the traffic regime such that {1, 2, · · · ,Mh} are

helper servers and {Mh+1, · · · ,M} are beneficiary servers, where 0 < Mh <

M. Additionally, there exists an ideal decomposition such that the pseudo-

arrival rate for any beneficiary is strictly greater than its local processing

capacity. That is, for any n ∈ B,

λ∗n =
∑

L̄:L̄∈LB,n∈L̄

∑
m

λ∗L̄,n,m > α.

It is easy to verify that this condition is equivalent to the following: for any

subset G of B, ∑
L̄∈L(G)

λL̄ > |G|α, (3.14)

where L(G) = {L̄ ∈ LB | ∃m ∈ G, s.t.,m ∈ L̄} is the set of task types in LB
that are local to some servers in G. We call this condition the heavy locally

overloaded traffic condition. Assume that the arrivals local to helpers satisfy∑
L̄∈L∗H

λL̄ ≡ Φα, (3.15)

where 0 ≤ Φ < Mh. For any λ ∈ Λ, it satisfies that
∑

L̄∈L λL̄ < Mbα+ Φα+

γ(Mh − Φ). We assume that∑
L̄∈L

λL̄ = Mbα + Φα + γ(Mh − Φ)− ε, (3.16)

i.e., ∑
L̄∈LB

λL̄ = Mbα + γ(Mh − Φ)− ε,

where ε > 0 characterizes the distance between the arrival rate vector and the

capacity boundary. We will make a further assumption that the
∑

L̄∈L∗H
λL̄

is independent of ε. That is, the total local load for helpers is fixed. This

assumption can be removed with more care. The heavy traffic condition for

the locally overloaded scenario is now articulated as follows.
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Assumption 1 (Assumption for the heavy locally overloaded traffic). Con-

sider the arrival processes {A(ε)

L̄
(t), t ≥ 0}L̄∈L, parameterized by ε > 0, with

mean arrival rate vector λ(ε) satisfying the heavy locally overloaded traf-

fic condition (3.14), and equations (3.15)-(3.16). Arrivals local to helpers

{A(ε)

L̄
(t), t ≥ 0}L̄∈L∗H are independent of ε. The variance of the number of ar-

rivals that are only local to beneficiaries, i.e., Var(
∑

L̄∈LB A
(ε)

L̄
(t)), is denoted

as (σ
(ε)
b )2, which converges to σ2

b as ε ↓ 0.

The corresponding Markov chain {Z(ε)(t) = (Q(ε)(t), f (ε)(t)), t ≥ 0} has

been shown to be positive recurrent. Hence the queue-length vector process

Q(ε)(t) converges in distribution to a random vector Q̄(ε) for any 0 < ε < ε̄,

where ε̄ is a positive constant. All theorems in this section concern the

steady-state queueing process Q̄(ε).

Helper Subsystem

To establish the heavy-traffic optimality of the proposed algorithm, we first

show uniform boundedness for the helper subsystem.

Theorem 3.2. (Helper queues) Consider the limiting queueing process

Q̄(ε) under the proposed algorithm, with the arrival processes {A(ε)

L̄
(t), t ≥

0}L̄∈L, parameterized by ε > 0, satisfying Assumption 1. Then there exist a

sequence of finite numbers {Nr : r ∈ N} such that for each positive integer r,

E
[∥∥Q̄(ε,H)

∥∥r] ≤ Nr.

Therefore,

lim
ε↓0

εE

[∑
m∈H

Q̄(ε)
m

]
= 0.

Theorem 3.2 states that the expected queue length of Q̄(ε,H) is bounded

and independent of ε. The theorem follows from the same Lyapunov function

for Lemma 3.5, which, with the positive recurrence of {Z(t), t ≥ 0}, implies

that all moments of Q̄(ε,H) are bounded according to Lemma 3.6. Therefore,

we only need to consider the beneficiary queue lengths in the rest of Section

3.4.1.
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Lower Bound

To obtain a lower bound on the steady-state expected beneficiary queue

lengths, we consider a hypothetical single server system with the arrival

process {a(ε)(t), t ≥ 0} and the service process {β(ε)(t), t ≥ 0}, where

a(ε)(t) =
∑
L̄∈LB

A
(ε)

L̄
(t), β(ε)(t) =

∑
i∈B

Xi(t) +
∑
j∈H

Yj(t).

Assume that {A(ε)

L̄
(t)}L̄∈L satisfies Assumption 1. Here {Xi(t)}i∈B and {Yj(t)}j∈H

are independent and each process is temporally i.i.d. For any i ∈ B, let

Xi(t) ∼ Bern(α). And ∀j ∈ H, Yj(t) ∼ Bern(γ(1 − ρ
(ε)
j )), where ρ

(ε)
j is

the proportion of time helper j spends on local tasks in steady state. Hence

E
[∑

j∈H Yj(t)
]

represents the total amount of remote service provided by

helpers. We denote the variance of β(ε)(t) by (ν
(ε)
b )2, which converges to a

constant ν2
b as ε → 0. Let {Ψ(ε)(t)} denote the corresponding queue-length

process. Assume the single server starts with an empty state, i.e., Ψ(ε)(0) = 0.

Then Ψ(ε)(t) is stochastically smaller than the total beneficiary queue-length

process
∑

m∈BQ
(ε)
m (t) of the original system.

As {Ψ(ε)(t), t ≥ 0} is a positive recurrent Markov Chain, it converges in

distribution to a random variable Ψ̄(ε). Utilizing Lemma 4 in [59], one can

bound E
[
Ψ̄(ε)

]
as follows:

E
[
Ψ̄(ε)

]
≥ (σ

(ε)
b )2 + (ν

(ε)
b )2 + ε2

2ε
− M

2
,

which gives a lower bound on E
[∑

m∈B Q̄
(ε)
m

]
. We have the following theorem.

Theorem 3.3. (Lower Bound) Consider the scheduling problem under an

arrival process {A(ε)

L̄
(t), t ≥ 0}L̄∈L satisfying Assumption 1. Thus under the

proposed algorithm, the queue-length vector process Q(ε)(t) converges in dis-

tribution to a random vector Q̄(ε) for any ε with 0 < ε < ε̄. Then

E

[∑
m∈B

Q̄(ε)
m

]
≥ (σ

(ε)
b )2 + (ν

(ε)
b )2 + ε2

2ε
− M

2
.
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Therefore, in the heavy traffic limit as ε ↓ 0,

lim inf
ε↓0

εE

[∑
m∈B

Q̄(ε)
m

]
≥ σ2

b + ν2
b

2
. (3.17)

State Space Collapse

We will show that under the proposed algorithm, the multi-dimensional state

of the system collapses to a single dimension. State space collapse is a key

step in establishing heavy-traffic optimality. The prioritized service makes

it difficult to show state space collapse of the whole queue length vector

Q. Instead, we first show the steady-state beneficiary queue-length vector

concentrates along a single direction. Then, it follows from Theorem 3.2

that the system state collapses to a particular direction.

Throughout this subsection, we use notations with superscript (B) to denote

the corresponding vectors for beneficiaries. Let the queueing and working sta-

tus process for beneficiaries be represented as {Z(B)(t) = (Q(B)(t), f (B)(t))}.
Define

cb =
1√
Mb

(1, 1, · · · , 1︸ ︷︷ ︸
B

). (3.18)

Then the parallel and perpendicular components of the queue length vector

Q(B) with respect to cb are given by:

Q
(B)
|| = 〈cb,Q

(B)〉cb, Q
(B)
⊥ = Q(B) −Q

(B)
|| .

We will establish state-space collapse of Q(B) along the direction cb, by show-

ing that Q
(B)
⊥ is bounded and independent of the heavy-traffic parameter ε.

Remark. With the bounded moments of the helper queue lengths, the

whole queue length vector Q collapses to the following direction c:

c =
1√
Mb

(0, 0, · · · , 0,︸ ︷︷ ︸
Mh

1, 1, · · · , 1︸ ︷︷ ︸
Mb

). (3.19)

To establish state space collapse, we need to show that when the arrival rate

vector λ satisfies the heavy locally overloaded traffic assumption, there exists

an ideal load decomposition {λ∗
L̄,m,n
} satisfying the following proposition in

addition to Lemma 3.4. The proof is provided in Appendix A.
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Lemma 3.11. Consider an arrival rate vector λ that satisfies the heavy

locally overloaded traffic assumption, with 0 < ε < ε̄, where ε̄ is a positive

constant. Then there exists a decomposition
{
λ∗
L̄,n,m

}
of λ satisfying the

following conditions:

1. ∀m ∈ B, ∑
L̄:m∈L̄

λ∗
L̄,m,m

α
= 1− εb;

2. ∀m ∈ B, ∃L̄ ∈ LB, s.t.
∑

n∈H λ
∗
L̄,m,n

≥ λ0;

where εb is a constant satisfying 0 < εb <
ε

αMb
, and λ0 is a positive constant

not depending on ε.

The following theorem formally states the state space collapse result.

Theorem 3.4. (State space collapse) Consider the scheduling problem

under an arrival process {A(ε)

L̄
(t), t ≥ 0}L̄∈L satisfying Assumption 1. Thus

under the proposed algorithm, the queue-length vector process Q(ε)(t) con-

verges in distribution to a random vector Q̄(ε) for any ε with 0 < ε < ε̄.

Then, there exists a sequence of finite numbers {Ĉr : r ∈ N} such that for

each positive integer r,

E
[∥∥∥Q̄(ε,B)

⊥

∥∥∥r] ≤ Ĉr,

where Q̄
(ε,B)
⊥ is the component of Q̄(ε,B) perpendicular to the direction cb

defined in (3.18).

Moreover, there exists a sequence of finite numbers {Cr : r ∈ N} such that

for each positive integer r,

E
[∥∥∥Q̄(ε)

⊥

∥∥∥r] ≤ Cr,

where Q̄
(ε)
⊥ is the component of Q̄(ε) perpendicular to the direction c defined

in (3.19).

We need the following lemmas to prove Theorem 3.4.

Lemma 3.12. Let c be a vector with unit norm in RMb. Then for any t ≥ 0,∥∥∥Q(B)
|| (t+ 1)

∥∥∥2

−
∥∥∥Q(B)
|| (t)

∥∥∥2

≥ 2〈cb,Q
(B)(t)〉〈cb,A

(B)(t)− S(B)(t)〉,
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where Q
(B)
|| is the parallel component of the beneficiary queue length vector

Q(B) with respect to the direction c.

Lemma 3.13. Consider a time slot t0 and a positive integer T . Let c be a

vector with unit norm in RMb. Then for any t with t0 ≤ t < t0 + T ,∣∣∣∥∥∥Q(B)
⊥ (t)

∥∥∥− ∥∥∥Q(B)
⊥ (t0)

∥∥∥∣∣∣ ≤ T
√
Mb max{M,CA}, (3.20)

where Q
(B)
⊥ is the perpendicular component of the beneficiary queue length

vector Q(B) with respect to the direction c.

Lemma 3.14. Consider a time slot t0 and a positive integer T . For any t

with t0 ≤ t < t0+T , let G(t) = 〈Q(B)(t),A(B)(t)−S(B)(t)〉−〈cb,Q
(B)(t)〉〈cb,A

(B)(t)−
S(B)(t)〉. Then G(t) ≤ h

∥∥∥Q(B)
⊥ (t0)

∥∥∥ + F0, where h =
√
Mb max{M,CA} and

F0 = MbT (max{M,CA})2 are constants.

Proof of Theorem 3.4. Consider the following Lyapunov function

V (Z(B)) =
∥∥∥Q(B)
⊥

∥∥∥.
By Lemma 3.6, it is sufficient to show that the T -period drift of V (Z(B)) is

always finite and is negative for sufficient large V . Fix an ε within the range

specified in the theorem. The T -time slot drift of V is given by ∆V (Z(B)) =

[V (Z(B)(t0 + T )− V (Z(B)(t0)))]I(Z(B)(t0) = Z).

First we show that ∆V (Z(B)) satisfies condition (C2). From lemma 3.13,

we can see that P
[
∆V (Z(B)) ≤ C

]
= 1 with C = T

√
Mb max{M,CA}.

Next we focus on condition (C1). Consider the following Lyapunov func-

tions:

W (Z(B)) =
∥∥Q(B)

∥∥2
,W||(Z

(B)) =
∥∥∥Q(B)
||

∥∥∥2

,

with the corresponding T -period drifts denoted by:

∆W (Z(B)) := [W (Z(B)(t0 + T ))−W (Z(B)(t0))]I(Z(B)(t0) = Z(B)),

∆W||(Z
(B)) := [W||(Z

(B)(t0 + T ))−W||(Z(B)(t0))]I(Z(B)(t0) = Z(B)).

Then V (Z(B)) =
√
W (Z(B))−W||(Z(B)). Due to the concavity of the

square root function, the drift of V (Z(B)) satisfies the following inequality
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(Lemma 7 in [59]):

∆V (Z(B)) ≤ 1

2
∥∥∥Q(B)
⊥

∥∥∥
(
∆W (Z(B))−∆W||(Z

(B))
)
. (3.21)

As it is difficult to study the drift of V (Z(B)) directly, we will get started

with the drifts of W (Z(B)) and W||(Z
(B)).

For the drift ∆W (Z(B)), following the same argument as in the derivation

of the bound (3.11) on ∆W (Z(B)), we can obtain

E
[
∆W (Z(B)) | Z(B)(t0)

]
≤ 2E

[
t0+T−1∑
t=t0

〈Q(B)(t),A(B)(t)− S(B)(t)〉 | Z(B)(t0)

]
+ C ′,

where C ′ > 0 is a constant.

For the drift ∆W||(Z
(B)), by Lemma 3.12, we have

E
[
∆W||(Z

(B))) | Z(B)(t0)
]

≥ 2E

[
t0+T−1∑
t=t0

〈cb,Q
(B)(t)〉〈cb,A

(B)(t)− S(B)(t)〉 | Z(B)(t0)

]
.

Let G(t) = 〈Q(B)(t),A(B)(t)−S(B)(t)〉−〈cb,Q
(B)(t)〉〈cb,A

(B)(t)−S(B)(t)〉.
Combining the above two inequalities yields:

E
[
∆W (Z(B))−∆W||(Z

(B)) | Z(B)(t0)
]
≤ 2E

[
t0+T−1∑
t=t0

G(t) | Z(B)(t0)

]
+ C ′.

To bound E
[
t0+T−1∑
t=t0

G(t) | Z(B)(t0)

]
, we consider the following random vari-

ables

t∗m = min{τ : τ ≥ t0, fm(τ−) = −1},m ∈M,

t∗ = max
m∈M

t∗m.

Therefore, by the time slot t∗, all servers have been available at least once.

We decompose the probability space into two parts by using t∗: D1 = {t∗ ≥
t0 + K | Z(B)(t0)} and D2 = {t∗ < t0 + K | Z(B)(t0)}. Let T = JK,where J
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and K are positive integers. Then

E

[
t0+T−1∑
t=t0

G(t) | Z(B)(t0)

]

= E

[
t0+T−1∑
t=t0

G(t) | Z(B)(t0), t∗ ≥ t0 +K

]
P [D1] (3.22)

+E

[
t0+T−1∑
t=t0

G(t) | Z(B)(t0), t∗ < t0 +K

]
P [D2] . (3.23)

For the term (3.22), by Lemma 3.14 we have

E

[∑
t

G(t) | Z(B)(t0), t∗ ≥ t0 +K

]
≤ hT

∥∥∥Q(B)
⊥ (t0)

∥∥∥+ F0T. (3.24)

For the term (3.23), we divide the summation into two parts: from t = t0

to t = t∗ and from t = t∗+1 to t = t0 +T −1. The first part can be bounded

in a similar way as (3.22) by Lemma 3.14:

E

[
t∗∑
t=t0

G(t) | Z(B)(t0), t∗ < t0 +K

]
≤ Kh

∥∥∥Q(B)
⊥ (t0)

∥∥∥+KF0. (3.25)

The key step is to bound E
[∑t0+T−1

t=t∗+1 G(t) | t∗ < t0 +K,Z(B)(t0)
]
.

For each m ∈ B, define Âm(t) =
∑

L̄∈LB AL̄,m, i.e., Â excludes arrivals

that are also local to helpers from beneficiaries. Define λ∗lm =
∑

L̄:m∈L λ
∗
L̄,m,m

and λ∗rm =
∑

L̄:m∈L
∑

n:n6=m λ
∗
L̄,m,n

from the ideal load decomposition {λ∗
L̄,m,n
}

given by Lemma 3.11. Let Td = t0 + T − t∗, and D(Q(t0)) = MbQ
max(t0)−∑

m∈BQm(t0), where Qmax(t) is the maximum beneficiary queue length at

time t. We use Fi, i ∈ N, to denote a positive constant not depending on

ε. In the following argument, we temporarily omit the superscript (B) for

brevity. Let e denote a vector of all ones in RMb , i.e., e =
√
Mbcb. We break

G(t) into four groups and obtain an bound for each group.

G(t) = 〈Q, Â〉 − 〈Q,λ∗l〉 − 〈Qmaxe,λ∗r〉 − 〈Q−Qmaxe, λ0e〉

+〈Q−Qmaxe, λ0e〉+ 〈Q,λ∗l〉 − 〈Q,Sl〉

+〈Qmaxe,λ∗r〉 − 〈Q,Sr〉 − 〈cb,Q〉〈cb, Â− S〉

−〈cb,Q〉〈cb,A− Â〉+ 〈Q,A− Â〉.
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Bounds for the four groups are established by the following lemmas.

Lemma 3.15. (Arrivals)

E

[
t0+T−1∑
t=t∗+1

(
〈Q(t), Â(t)〉 − 〈Q(t),λ∗l〉 − 〈Qmax(t)e,λ∗r〉

−〈Q(t)−Qmax(t)e, λ0e〉) | t∗ < t0 +K,Z(B)(t0)
]
≤ 0.

Lemma 3.16. (Local service)

E

[
t0+T−1∑
t=t∗+1

(
〈Q(t)−Qmax(t)e, λ0e〉+ 〈Q(t),λ∗l〉

−〈Q(t),Sl(t)〉
)
| t∗ < t0 +K,Z(B)(t0)

]
≤ −Td

[
λ0D(Q(t0)) + αε0

∑
m∈B

Qm(t0)

]
+ F1.

Lemma 3.17. (Remote service)

E

[
t0+T−1∑
t=t∗+1

(〈Qmax(t)e,λ∗r〉 − 〈Q(t),Sr(t)〉

−〈cb,Q(t)〉〈cb, Â(t)− S(t)〉
)
| t∗ < t0 +K,Z(B)(t0)

]
≤ Td

[
λ0

4
D(Q(t0)) + αε0

∑
m∈B

Qm(t0)

]
+ F2.

Lemma 3.18. (Extra arrivals to beneficiaries)

E

[
t0+T−1∑
t=t∗+1

(
−〈cb,Q(t)〉〈cb,A(t)− Â(t)〉

+〈Q(t),A(t)− Â(t)〉
)
| t∗ < t0 +K,Z(B)(t0)

]
≤ Td

λ0

4
D(Q(t0)) + F3.
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Combining inequalities from Lemma 3.15-3.18 yields

E

[
t0+T−1∑
t=t∗+1

G(t) | Z(B)(t0), t∗ < t0 +K

]

≤ −(t0 + T − t∗)λ0

2

(
MbQ

max(t0)−
∑
m∈B

Qm(t0)

)
+ F1 + F2 + F3

= −(t0 + T − t∗)λ0

2

∥∥Qmax(t0)e−Q(B)(t0)
∥∥

1
+ F4,

≤ −(t0 + T − t∗)λ0

2

∥∥Qmax(t0)e−Q(B)(t0)
∥∥+ F4,

where F4 = F1 +F2 +F3, and ‖·‖1 is the l1 norm. The last inequality follows

by the fact that the l1 norm of a vector is no smaller than its l2 norm.

As 〈cb,Q
(B)(t)〉 minimizes the convex function

∥∥xcb −Q(B)(t0)
∥∥ over x ∈

R, i.e.,

∥∥Qmax(t0)e−Q(B)(t0)
∥∥ ≥ ∥∥〈cb,Q

(B)(t)〉cb −Q(B)(t0)
∥∥ =

∥∥∥Q(B)
⊥ (t0)

∥∥∥,
it follows that

E

[
t0+T−1∑
t=t∗+1

G(t) | Z(B)(t0), t∗ < t0 +K

]

≤ −(t0 + T − t∗)λ0

2

∥∥∥Q(B)
⊥ (t0)

∥∥∥+ F4

≤ −(J − 1)K
λ0

2

∥∥∥Q(B)
⊥ (t0)

∥∥∥+ F4. (3.26)

Denote P[t∗ ≥ t0 + K | Z(t0)] by YK . Substituting (3.24)-(3.26) in (3.22)

and (3.23) yields

E

[
t0+T−1∑
t=t0

G(t) | Z(B)(t0), t∗ < t0 +K

]
≤ −F5

∥∥∥Q(B)
⊥ (t0)

∥∥∥+ F6,

where F5 = −YKhT − (1−YK)hK+ λ0

2
(1−YK)(J − 1)K and F6 = YKF0T +

(1− YK)F0K + (1− YK)F4.

Then from inequality (3.21), we can obtain the following upper bound on
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the drift of V (Z(B)) :

E
[
∆V (Z(B)) | Z(B)(t0)

]
≤ −F5 +

F6 + C ′/2∥∥∥Q(B)
⊥ (t0)

∥∥∥ . (3.27)

Observe that lim
K,J→∞

F5 = +∞. Thus for any δ > 0, there exist large enough

K and J such that −F5 < −δ. Pick any θ with 0 < θ < δ and let ζ = 2F6+C′

2(δ−θ) .

Then E
[
∆V (Z(B)) | Z(B)(t0)

]
≤ −θ for all Z(B) with V (Z(B)) =

∥∥∥Q(B)
⊥ (t0)

∥∥∥ ≥
ζ. This means that the drift of V (Z(B)) is negative for sufficiently large

V (Z(B)), as the constants θ and ζ do not depend on ε. Therefore there exists

a sequence of constants {Ĉr : r ∈ N} such that E
[∥∥∥Q(ε,B)

⊥

∥∥∥r] ≤ Ĉr for each

r = 1, 2, · · · .

The parallel and perpendicular component of the queue length vector Q

with respect to c ∈ RM defined in (3.19) are given by:

Q|| = 〈c,Q〉c =

∑
k∈BQk√
Mb

c, Q⊥ = Q−Q||.

We note the fact that

Q⊥ = (Q(H),Q
(B)
⊥ ).

From Theorem 3.2, all moments of Q(H) are bounded. Together with the

result for Q
(B)
⊥ , it follows that all moments of Q⊥ are bounded. That is,

there exist a sequence of constants {Cr : r ∈ N} such that E [‖Q⊥‖r] ≤ Cr

for each r = 1, 2, · · · .

Upper Bound

We will derive an upper bound on the steady-state beneficiaries queue-length

based, using the Lyapunov drift-based moment bounding technique devel-

oped in [59]. The main difficulty arises from the fact that the total amount

of service received at beneficiary queues,
∑

m∈B Sm(t), depends on the queue-

ing process Q(t): for any m ∈ B, the local service provided by server m,

{Slm(t)} is neither i.i.d, nor independent of Qm(t); the amount of remote

service B received,
∑

m∈B S
r
m(t), relies on the occurrence of system states

that the maximum queue is among B. In addition, the existence of tasks
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types shared among H and B, i.e., task types that are local to some helper

and some beneficiary, makes total arrivals for B,
∑

m∈B Am(t), depend on

Q(t) as well. Hence we define the following ideal processes to decouple the

dependence.

Ideal local service process Ŝl(t):

Ŝlm(t) =

{
X l
m(t) if m ∈ B

Slm(t) if m ∈ H,

where the processes {X l
m(t), t ≥ 0}m∈B is coupled with {Slm(t), t ≥ 0}m∈B in

the following way: If ηm(t) = m, X l
m(t) = Slm(t); if ηm(t) 6= m, X l

m(t) = 1

when Rm(t) = 1, and X l
m(t) ∼ Bern(α−γ

1−γ ) when Rm(t) = 0. Hence ∀m ∈ B,

{X l
m(t), t ≥ 0} is i.i.d. with X l

m(t) ∼ Bern(α).

Ideal remote service process R̂(t):

R̂m(t) =

{
0 if m ∈ B
Xr
m(t) if m ∈ H,

where the processes {Xr
m(t), t ≥ 0}m∈H is coupled with {Rm(t), t ≥ 0}m∈H

in the following way: If ηm(t) 6= m, Xr
m(t) = Rm(t); if ηm(t) = m, Xr

m(t) ∼
Bern(γ). Hence for m ∈ H, {Xr

m(t), t ≥ 0} is i.i.d. with Xr
m(t) ∼ Bern(γ).

Ideal scheduling decision process η̂(t): For any m ∈ B, η̂m(t) = m. For

any m ∈ H, η̂m(t) = ηm(t) if ηm(t) = m; when fm(t−) = −1 and Qm(t) = 0,

η̂m(t) = argmaxn∈B{Qn(t)}. That is, idle helper server with empty local

queue is scheduled to serve the maximum beneficiary queue under the ideal

scheduling.

Ideal remote service received Ŝr(t):

Ŝrn(t) =


∑
m∈H

R̂m(t) · I{η̂m(t)=n} if n ∈ B

0 if n ∈ H.

Then the ideal departure for queue m is given by Ŝm(t) = Ŝlm(t) + Ŝrm(t).

Ideal arrival process Â(t): all task types local to both some helper and

beneficiary are routed to helpers.
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For m ∈ B, let

Âm(t) =
∑

L̄∈LB:m∈L̄

AL̄,m = Am(t)−
∑

L̄/∈LB:m∈L̄

AL̄,m.

For m ∈ H, let

Âm(t) = Am(t) +
∑

L̄/∈LB:m∈L̄

∑
n∈L̄∩B AL̄,n

|{k : k ∈ L̄ ∩H}|
.

Then we can rewrite the queue dynamics as

Q(t+ 1) = Q(t) + Â(t)− Ŝ(t) + Û(t),

where Û(t) = Ŝ(t) − S(t) + A(t) − Â(t) + U(t). This queue dynamics will

be used to expand the Lyapunov drift.

We will use the following lemma to derive an upper bound on the expected

beneficiary queue lengths. The lemma follows from the fact that the mean

drift of function
∥∥Q||∥∥2

equals zero when the system is in steady state.

Lemma 3.19. For the scheduling system, consider any arrival process with

an arrival rate vector strictly within the capacity region. Suppose the queue-

ing process is in steady state under the proposed algorithm. Then for any

direction c ∈ RM , we have

E
[
〈c,Q(t)〉〈c, Ŝ(t)− Â(t)〉

]
=

E
[
〈c, Â(t)− Ŝ(t)〉2

]
2

+
E
[
〈c, Û(t)〉2

]
2

(3.28)

+E
[
〈c,Q(t) + Â(t)− Ŝ(t)〉〈c, Û(t)〉

]
. (3.29)

Considering the direction c defined in (3.19), we can obtain an upper

bound on E [〈c,Q(t)〉] = 1√
Mb

E
[∑

m∈BQm(t)
]

by bounding terms in (3.28)

and (3.29).

Theorem 3.5. (Upper Bound) Consider the scheduling system under the

proposed algorithm with the arrival process {A(ε)

L̄
(t), t ≥ 0}L̄∈L satisfying As-

sumption 1. Thus the queue-length vector process Q(ε)(t) converges in distri-

bution to a random vector Q̄(ε) for any ε with 0 < ε < ε̄. Then the expected
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beneficiary queue lengths in steady-state can be upper bounded as

E

[∑
m∈B

Q̄(ε)
m

]
≤ (σ

(ε)
b )2 + (ν

(ε)
b )2

2ε
+D(ε),

where D(ε) = o(1
ε
), i.e., lim

ε↓0
εD(ε) = 0.

Therefore, in the heavy-traffic limit, the upper bound becomes,

lim sup
ε↓0

εE

[∑
m∈B

Q̄(ε)
m

]
≤ σ2

b + ν2
b

2
.

This upper bound under heavy-traffic limit coincides with the lower bound

(3.17), which establishes the first moment heavy-traffic optimality of the pro-

posed algorithm.

Proof. For convenience, we temporarily omit the superscript (ε). Under

the ideal arrival process, shared type tasks that join beneficiaries queues are

redistributed among its helper local servers evenly. Hence

E

[∑
m∈B

Âm(t)

]
= E

∑
L̄∈LB

AL̄(t)

 =
∑
L̄∈LB

λL̄ = Mbα + γ(Mh − Φ)− ε.

Let ρm denote the proportion of time server m spends on serving local

queue m in steady state. Then

E

[∑
m∈B

Ŝm(t)

]
= Mbα +

∑
m∈H

γ(1− ρm) = Mbα +Mhγ − γ
∑
m∈H

ρm,

E

[∑
m∈H

Ŝm(t)

]
=
∑
m∈H

αρm,

E

[∑
m∈B

Ŝm(t)−
∑
m∈B

Âm(t)

]
= ε+ γ

(
Φ−

∑
m∈H

ρm

)
= ε+ δ,

where δ = γ(Φ −
∑
m∈H

ρm). Since the amount of local service provided by

helpers
∑
m∈H

αρm is not greater than the arrival rate of tasks local to helpers∑
L̄∈L∗H

λL̄ ≡ Φα, we have δ ≥ 0. We will further show that δ → 0 as ε ↓ 0

later.

For any time slot t, we analyze each term in Lemma 3.19 with respect to
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the collapse direction c defined in (3.19).

E
[
〈c,Q(t)〉〈c, Ŝ(t)− Â(t)〉

]
=

1

Mb

E

[(∑
m∈B

Qm(t)

)(∑
m∈B

Ŝm(t)−
∑
m∈B

Âm(t)

)]
(a)
=

1

Mb

E

[∑
m∈B

Qm(t)

]
E

[∑
m∈B

Ŝm(t)−
∑
m∈B

Âm(t)

]

=
ε+ δ

Mb

E

[∑
m∈B

Qm(t)

]
, (3.30)

where (a) follows from the fact that the total arrivals of tasks that are only

local to beneficiaries do not depend on the beneficiary queue-lengths, so as

the ideal service process for beneficiary queues.

Var

(∑
m∈B

Âm(t)

)
= Var

∑
L̄∈LB

AL̄(t)

 = (σ
(ε)
b )2,

Var

(∑
m∈B

Ŝm(t)

)
= Mbα(1− α) +

∑
m∈H

γ(1− ρm)[1− γ(1− ρm)] = (ν
(ε)
b )2,

where we recall that (σ
(ε)
b )2 and (ν

(ε)
b )2 are the variances of the arrival process

a(ε)(t) and the service process β(ε) for the single server system defined for the

lower bound.

As {Â(t)} and {Ŝ(t)} are independent, and E
[
〈c, Ŝ〉

]
−E

[
〈c, Â〉

]
= ε+δ√

Mb
,

it follows that

E
[
〈c, Â(t)− Ŝ(t)〉2

]
=

1

Mb

(
(σ

(ε)
b )2 + (ν

(ε)
b )2 + (ε+ δ)2

)
. (3.31)

In steady state, E
[
〈c, Â(t)− Ŝ(t) + Û(t)〉

]
= E [〈c,Q(t+ 1)〉 − 〈c,Q(t)〉] =

0. Thus E
[
〈c, Û(t)〉

]
= E

[
〈c, Ŝ(t)− Â(t)〉

]
= ε+δ√

Mb
. Also,

〈c, Û(t)〉 = 〈c, Ŝ(t)− S(t) + A(t)− Â(t) + U(t)〉 ≤ 2M + CA√
Mb

.

By the coupling of Ŝ(t) and S(t), 〈c, Ŝ(t)−S(t)〉 ≥ 0. In addition, 〈c,A(t)−
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Â(t)〉 ≥ 0. Hence 〈c, Û(t)〉 ≥ 0. Therefore

E
[
〈c, Û(t)〉2

]
≤ 2M + CA√

Mb

E
[
〈c, Û(t)〉

]
=

(2M + CA)(ε+ δ)

Mb

. (3.32)

Next we bound (3.29).

E
[
〈c,Q(t) + Â(t)− Ŝ(t)〉〈c, Û(t)〉

]
= E

[
〈c,Q(t)〉〈c, Û(t)〉

]
+ E

[
〈c, Â(t)− Ŝ(t)〉〈c, Û(t)〉

]
≤ E

[
〈c,Q(t)〉〈c, Û(t)〉

]
+
CA(ε+ δ)

Mb

.

We can expand the expectation term as

〈c,Q(t)〉〈c, Û(t)〉

= 〈Q(t), Û(t)〉 − 〈Q⊥(t), Û⊥(t)〉

= 〈Q(t), Ŝ(t)− S(t)〉+ 〈Q(t),A(t)− Â(t)〉+ 〈Q(t),U(t)〉 (3.33)

−〈Q⊥(t), Û⊥(t)〉. (3.34)

We need the following lemmas to bound the four terms in (3.33)-(3.34).

Lemma 3.20. E
[∥∥∥Û(t)

∥∥∥2
]
≤ Rε, where R is a constant not depending on

ε.

Lemma 3.21. E
[
〈Q(t), Ŝ(t)− S(t)〉

]
≤ R0ε + R1

√
ME

[
〈e, Ŝ(t)− S(t)〉

]
,

where e = 1√
M

(1, 1, · · · , 1)︸ ︷︷ ︸
M

, R0 > 0 and R1 > 0 are constants not depending

on ε.

Lemma 3.22. 〈Q(t),A(t)− Â(t)〉 ≤ 0.

Lemma 3.23. 〈Q(t),U(t)〉 ≤M
√
M〈e,U(t)〉, where e = 1√

M
(1, 1, · · · , 1)︸ ︷︷ ︸

M

.

Let R2 = max{R1,M}, then by Lemmas 3.21 and 3.23,

〈Q(t), Ŝ(t)− S(t)〉+ 〈Q(t),U(t)〉

≤ R0ε+R2

√
ME

[
〈e, Ŝ(t)− S(t) + U(t)〉

]
= R0ε+R2

(
ε− α− γ

γ
δ

)
.

47



The last equality follows from the fact that Q(t) is in steady state, which

implies that E [〈e,A(t)− S(t) + U(t)〉] = E [〈e,Q(t+ 1)〉 − 〈e,Q(t)〉] = 0.

Thus E
[
〈e, Ŝ(t)− S(t) + U(t)〉

]
= E

[
〈e, Ŝ(t)−A(t)〉

]
= 1√

M

(
ε− α−γ

γ
δ
)

.

Next we use the state space collapse result to bound −〈Û⊥(t), Û⊥(t)〉.

E
[
−〈Q⊥(t), Û⊥(t)〉

] (a)

≤

√
E
[
‖Q⊥(t)‖2]E [∥∥∥Û(t)

∥∥∥2
]

(b)

≤

√
C2E

[∥∥∥Û(t)
∥∥∥2
]

(c)

≤
√
C2Rε,

where (a) follows from Cauchy-Swartz inequality; (b) comes from the state

space collapse result; (c) follows from Lemma 3.20.

We can bound the term (3.29) as

E
[
〈c,Q(t) + Â(t)− Ŝ(t)〉〈c, Û(t)〉

]
≤ CA(ε+ δ)

Mb

+R0ε+R2

(
ε− α− γ

γ
δ

)
+
√
C2Rε. (3.35)

Now we reintroduce the superscript (ε). Substituting (3.30)-(3.32) and

(3.35) in (3.28) and (3.29) yields:

ε+ δ

Mb

E

[∑
m∈B

Qm(t)

]
≤ 1

2Mb

(
(σ

(ε)
b )2 + (ν

(ε)
b )2 + (ε+ δ)2

)
+
√
C2Rε

+
(2M + 3CA)(ε+ δ)

2Mb

+R0ε+R2

(
ε− α− γ

γ
δ

)
.

Therefore

E

[∑
m∈B

Qm(t)

]
≤ (σ

(ε)
b )2 + (ν

(ε)
b )2

2(ε+ δ)
+D(ε)

(a)

≤ (σ
(ε)
b )2 + (ν

(ε)
b )2

2ε
+D(ε),

where (a) follows from the fact that δ ≥ 0, and

D(ε) =
ε+ δ

2
+Mb

√
C2R

√
ε

ε+ δ
+M +

3CA
2

+Mb(R0 +R2)
ε

ε+ δ
− MbR2(α− γ)

γ

δ

ε+ δ
.
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As ε ↓ 0, δ ↓ 0, we have lim sup
ε↓0

εD(ε) = 0. Thus D(ε) = o(1
ε
).

3.4.2 Evenly Loaded Traffic

In this subsection, we establish the heavy-traffic delay optimality of the pro-

posed algorithm in the regime with only helper servers. The proof for the

evenly loaded traffic case follows exactly the same three steps for the locally

overloaded traffic case. The symmetry brought about by the uniform ideal

load for all queues will significantly simplify the proof.

Heavy Evenly Loaded Traffic Regime

We consider the arrival rate vector λ(ε) ∈ Λ, parameterized by ε > 0, λ(ε) =

(1 − ε0)λ̄, where ε0 = ε
Mα

, and λ̄ is an arrival rate vector on the boundary

of the capacity region Λ such that all servers are fully utilized to handle its

local load. That is, it lies in the set F ,

F =
{
λ = (λL̄ : L̄ ∈ L) | ∃ (λL̄,n,m) such that

λL̄,n,m ≥ 0,∀L̄ ∈ L,∀n ∈ L̄,∀m ∈M,

λL̄,n,m = 0,∀L̄ ∈ L,∀n ∈ L̄,∀m 6= n,

λL̄ =
∑
n:n∈L̄

M∑
m=1

λL̄,n,m,∀L̄ ∈ L,∑
L̄:m∈L̄

λL̄,m,m = α, ∀m ∈M } . (3.36)

Thus the heavy-traffic limit corresponds to the scenario ε ↓ 0. It is easy to

see that with λ(ε), all servers in the system are helpers, i.e., H =M.

Additionally, the limiting arrival rate vector λ̄ ∈ F satisfies a condition

called resource pooling, under which there is a one-dimensional state-space

collapse in the heavy-traffic limit. The resource polling condition means that

all servers are connected in the following sense: Consider a decomposition of

λ̄ ∈ F satisfying (3.36). Server m connects directly with server m′ if there

exists a task type L̄ ∈ L local to both m and m′, such that λL̄,m,m > 0 and

λL̄,m′,m′ > 0. Server m is connected with server m′ if there exists a sequence

of servers m1, · · · ,mk, such that m1 = m, mk = m′, and mi connects directly
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with mi+1 for all i = 1, 2, · · · , k − 1.

Definition (Resource pooling). An arrival rate vector λ̄ ∈ F satisfies the

resource pooling condition if there exists a decomposition of λ̄ such that all

servers are connected.

Assumption 2 (Assumption for the heavy evenly loaded traffic).

Consider the arrival processes {A(ε)

L̄
(t), t ≥ 0}L̄∈L, parameterized by ε > 0,

with mean arrival rate vector λ(ε) = (1 − ε0)λ̄, where ε0 = ε
Mα

, and λ̄ ∈
F satisfies the resource pooling condition. The variance of the number of

arrivals, Var(
∑

L̄∈LA
(ε)

L̄
(t)), is denoted as (σ(ε))2, which converges to σ2 as

ε ↓ 0.

For any arrival {A(ε)

L̄
(t), t ≥ 0}L̄∈L satisfying Assumption 2, as the mean

arrival rate vector λ(ε) ∈ Λ, the proposed algorithm stabilizes the system.

Therefore, the corresponding Markov chain {Z(ε)(t) = (Q(ε)(t), f (ε)(t)), t ≥ 0}
is positive recurrent. Hence the queue-length vector process Q(ε)(t) converges

in distribution to a random vector Q̄(ε) for any 0 < ε < ε̄, where ε̄ is a

positive constant. All theorems in this subsection concern the steady-state

queueing process Q̄(ε). We obtain the three theorems analogous to the locally

overloaded case.

Remark: If the arrival rate vector λ̄ makes some server pairs (m̂,m) iso-

lated from each other, we can always decompose servers into disjoint groups,

such that servers within each group are connected, while isolated from servers

outside. For each connected group Hi, we can establish state-space collapse

and obtain an upper bound on E
[∑

m∈Hi Q̄
(ε)
m

]
. Together they give an upper

bound on E
[∑

m Q̄
(ε)
m

]
, which coincides with the lower bound in the heavy

traffic limit.

Lower Bound

Consider a single server system with the arrival process {a(ε)(t) =
∑̄
L∈L

A
(ε)

L̄
(t), t ≥

0} and the service process {β(ε)(t) =
∑M

m=1Xm(t), t ≥ 0}, where {Xm(t), t ≥
0}m∈M are independent, and each process is temporally i.i.d. with Xm(t) ∼
Bern(α). Assume that the mean of {A(ε)

L̄
(t)}L̄∈L satisfies λ(ε) ∈ Λ and

H = M. We denote the variances of the arrival and service processes as

(σ(ε))2 = Var(a(ε)(t)), ν2 = Var(β(ε)(t)). Then the corresponding queue-
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length process {Ψ′(t), t ≥ 0} is stochastically smaller than the total queue

lengths process {
∑M

m=1Q
(ε)
m (t)} of the original system. Again, utilizing the

lower bound from Lemma 4 in [59], we can establish an lower bound on the

performance of the proposed algorithm.

Theorem 3.6. (Lower bound)

E

[∑
m∈M

Q̄(ε)
m

]
≥ (σ(ε))2 + ν2 + ε2

2ε
− M

2
.

Therefore, in the heavy traffic limit,

lim inf
ε↓0

εE

[
M∑
m=1

Q̄(ε)
m

]
≥ σ2 + ν2

2
. (3.37)

State Space Collapse

Recall that with the arrival process {A(ε)

L̄
(t), t ≥ 0}L̄∈L satisfying Assumption

2, the queue-length process under the proposed algorithm Q(ε)(t) converges

in distribution to a random vector Q̄(ε) for any 0 < ε < ε̄. We will show that

the queue length vector Q̄(ε) collapses to the direction of a unit vector, i.e.,

the vector

ce =
1√
M

(1, 1, · · · , 1︸ ︷︷ ︸
M

). (3.38)

Then the parallel and the perpendicular component of any Q ∈ RM with

respect to the direction ce become:

Q|| =

∑
mQm√
M

ce, Q⊥ =

[
Qk −

∑
mQm

M

]M
k=1

.

Theorem 3.7. (State space collapse) There exists a sequence of finite

numbers {C ′r : r ∈ N} such that for each positive integer r,

E
[∥∥∥Q̄(ε)

⊥

∥∥∥r] ≤ C ′r,

where Q
(ε)
⊥ is the component of Q(ε) perpendicular to ce defined in (3.38).

Analogue to Lemma 3.11, we have the following lemma for the ideal load
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decomposition of any arrival rate vector satisfying the resource pooling con-

dition, which is essential for showing state space collapse.

Lemma 3.24. Consider any arrival rate vector λ = (1 − ε0)λ̄, where ε0 =
ε
Mα

, and λ̄ ∈ F satisfies the resource pooling condition. Consider any 0 <

ε < ε̄, where ε̄ is a positive constant. Then there exists a decomposition{
λ∗
L̄,n,m

}
of λ satisfying Lemma 3.4 and the following conditions:

1. ∀m ∈M, ∑
L̄:m∈L̄

λ∗L̄,m,m = α(1− ε0);

2. there exists a positive constant λmin not depending on ε, such that for

any two servers m and m′ that are connected directly, there exists a

task type L̄ ∈ L, such that λ∗
L̄,m,m

≥ λmin, λ
∗
L̄,m′,m′

≥ λmin.

Additionally, we need lemmas analogue to Lemmas 3.12-3.14, with bene-

ficiary queue length vector Q(B) replaced by all queue length vector Q. The

proof of these lemmas is similar to that of Lemma 3.12-3.14, so we skip it

here. Through the following argument, we omits the superscript (ε) for ease

of exposition.

Lemma 3.25. Let c be a vector with unit norm in RM . Then for any t ≥ 0,

∥∥Q||(t+ 1)
∥∥2 −

∥∥Q||(t)∥∥2 ≥ 2〈c,Q(t)〉〈c,A(t)− S(t)〉,

where Q|| is the parallel component of the queue length vector Q with respect

to the direction c.

Lemma 3.26. Consider a time slot t0 and a positive integer T . Let c be a

vector with unit norm in RM . Then for any t with t0 ≤ t < t0 + T ,

|‖Q⊥(t)‖ − ‖Q⊥(t0)‖| ≤ T
√
M max{M,CA},

where Q⊥ is the perpendicular component of the queue length vector Q with

respect to the direction c.

Lemma 3.27. Consider a time slot t0 and a positive integer T . For any t

with t0 ≤ t < t0 +T , let Ge(t) = 〈Q(t),A(t)−S(t)〉−〈cbe,Q(t)〉〈cbe,A(t)−
S(t)〉. Then Ge(t) ≤ h′‖Q⊥(t0)‖ + F ′0, where h′ =

√
M max{M,CA} and

F ′0 = MT (max{M,CA})2 are constants.
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Proof of Theorem 3.7. Consider the Lyapunov function Ve(Z) = ‖Q⊥‖. We

again show that the T -period drift of Ve(Z), given by ∆Ve(Z) = [Ve(Z(t0 +

T )−Ve(Z(t0)))]I(Z(t0) = Z), satisfies the two conditions in Lemma 3.6. The

proof follows exactly the same steps for the locally overloaded traffic case.

By employing the same analysis of the conditional drifts of W (Z) = ‖Q‖2

and W||(Z) =
∥∥Q||∥∥2

in Section 3.4.1, and using the bound (3.21) on ∆Ve(Z),

we have

E [∆Ve(Z) | Z(t0)] ≤
E
[∑t0+T−1

t=t0
Ge(t) | Z(t0)

]
+ C

‖Q⊥‖
,

where C is a constant and Ge(t) = 〈Q(t),A(t)−S(t)〉 − 〈ceQ(t)〉〈ce,A(t)−
S(t)〉.

A key different step is to bound E
[∑t0+T−1

t=t∗+1 Ge(t) | Z(t0), t∗ < t0 +K
]
.

Since we consider the entire system, we do not have the shared arrival issue

here. In addition, as the local load for each server approaches 1, each server

devotes to serving its local queue. Hence the remote service vanishes as λ(ε)

is close to the capacity boundary, which enable us to get rid of the remote

service terms in bounding Ge(t). We have the following inequalities analogue

to Lemmas 3.15-3.17.

Lemma 3.28. For any t∗ < t < t0 + T,

E [〈Q(t),A(t)〉 − 〈Q(t),λ∗〉 | t∗, Z(t0)] ≤ −λmin‖Q⊥(t0)‖+ F ′1,

where F ′1 is a positive constant not depending on ε.

Lemma 3.29.

E

[
t0+T−1∑
t=t∗+1

(〈Q(t),λ∗〉 − 〈Q(t),S(t)〉) | t∗, Z(t0)

]
≤ −(t0 + T − t∗) ε

M

∑
m

Qm(t0) + F ′2,

where F ′2 is a positive constant not depending on ε.

Lemma 3.30. For any t∗ < t < t0 + T,

E [〈cbe,Q(t)〉〈cbe,A(t)− S(t)〉 | t∗, Z(t0)] ≥ − ε

M

∑
m

Qm(t0)− F ′3,
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where F ′3 is a positive constant not depending on ε.

It follows from these lemmas that

E

[
t0+T−1∑
t=t∗+1

Ge(t) | Z(t0), t∗ < t0 +K

]
≤ −(t0 + T − t∗)λmin‖Q⊥(t0)‖+ F ′4

≤ −(J − 1)Kλmin‖Q⊥(t0)‖+ F ′4,

where F ′4 = (F ′1 + F ′3)(J − 1)K + F ′2 is constant independent of ε.

Utilizing Lemma 3.27 and the above inequality yields an upper bound

on the drift of Ve(Z), which is similar to (3.27). Hence the drift of Ve(Z)

is negative for sufficiently large Ve(Z). Moreover, Lemma 3.26 implies finite

drift of Ve(Z). Note that the Markov chain {Z(ε)(t) = (Q(ε)(t), f (ε)(t)), t ≥ 0}
is positive recurrent. Therefore, by Lemma 3.6, all moments of Ve(Z) are

finite and independent of ε. State space collapse of Q along the direction ce

follows.

Upper Bound

Again we construct an ideal service process {Ŝ(t), t ≥ 0} that makes
∑

m Ŝm(t)

independent of
∑

mQm(t). In particular, ∀m ∈M, its ideal local service pro-

cess Ŝlm(t) is defined in the same way as that for beneficiaries in the locally

overloaded traffic case.

Ideal local service process Ŝl(t):

Ŝlm(t) = X l
m(t),∀m ∈M,

where the processes {X l
m(t), t ≥ 0}m∈M is coupled with {Sm(t), t ≥ 0}m∈M

in the following way: If ηm(t) = m, X l
m(t) = Slm(t); if ηm(t) 6= m, X l

m(t) = 1

when Rm(t) = 1, and X l
m(t) ∼ Bern(α−γ

1−γ ) when Rm(t) = 0. Hence ∀m ∈M,

{X l
m(t), t ≥ 0} is i.i.d. with X l

m(t) ∼ Bern(α).

Ideal remote service process R̂(t): For any m ∈M, R̂m(t) = 0.

Ideal scheduling decision process η̂(t): For any m ∈M, η̂m(t) = m.

Since the total amount of arrivals for the system is independent of queue-

length process, we do not need to define ideal arrival process here.
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We can rewrite the queue dynamics as

Q(t+ 1) = Q(t) + A(t)− Ŝ(t) + Û(t),

where Û(t) = Ŝ(t)−S(t) + U(t). Again setting the drift of W||(Z) =
∥∥Q||∥∥2

to zero gives the following equation, which is similar to that in Lemma 3.19.

E
[
〈ce,Q〉〈ce, Ŝ−A〉

]
=

E
[
〈ce,A− Ŝ〉2

]
2

+
E
[
〈ce, Û〉2

]
2

(3.39)

+E
[
〈ce,Q + A− Ŝ〉〈ce, Û〉

]
. (3.40)

We obtain the upper bound on E
[ ∑
m∈M

Qm

]
by bounding each term in (3.39)-

(3.40). We omit the standard calculation here.

Theorem 3.8. (Upper bound)

E

[
M∑
m=1

Q̄(ε)
m

]
≤ (σ(ε))2 + ν2

2ε
+D(ε)

e ,

where D
(ε)
e = o(1

ε
), i.e., lim

ε↓0
εD

(ε)
e = 0.

Therefore, in the heavy-traffic limit, we have

lim sup
ε↓0

εE

[
M∑
m=1

Q̄(ε)
m

]
≤ σ2 + ν2

2
.

The heavy-traffic optimality of the proposed algorithm follows by the coinci-

dence of lower and upper bounds.

3.5 Evaluation

We evaluate the performance of Pandas in this section. In particular, we

have integrated Pandas with the Hadoop FIFO scheduler and Fair scheduler

(HFS). Each scheduler retains its original job priority. To focus on the per-

formance benefit brought by Pandas to the data-processing phase, we use

the SWIM workload [58] to obtain realistic characteristics of data-processing

tasks, but with empty reduce phases, as the time taken by the reduce phase
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can be orthogonally improved by other techniques [45, 46]. The workload

study [61] that SWIM is based on also shows that 75% of jobs in the Face-

book trace have no shuffle stage and the map outputs are directly written to

the file system.

We describe the evaluation setup in 3.5.1, evaluate Pandas-accelerated

FIFO scheduler against Hadoop FIFO scheduler in 3.5.2, and Pandas-accelerated

Fair scheduler against HFS in 3.5.3. The overhead of Pandas is discussed

in 3.5.4.

3.5.1 Evaluation Setup

We discuss the environment, trace characteristics, evaluation metrics and

Pandas’ thresholds setting in this section.

Environment

For both the Elastic Compute Cloud (EC2) [1] and a private cluster, we run

a modified version of Hadoop-1.2.1, configured with a block size of 256 MB

and a replication factor 3. We use 100 “m3.xlarge” instances on EC2 and

28 “m1.xlarge” instances on OpenStack [62] in the private cluster. Table 3.1

shows details of the instances.

Table 3.1: Types of instances used in the experiments.

Nodes Memory (GB) VCPU Map Slots
EC2 100 15 4 4

Private 28 16 8 4

1. EC2. We use EC2 for evaluation with a long trace characterized by

hot-spots occurring and disappearing. As rack structures are not available

in EC2, every other node is regarded as a remote node. Only the average

remote slowdown σs/σl is computed, where σl is the average processing time

(not including waiting time) of a local task, and σs is that of a remote task.

The average is taken over all nodes in the system. Slowdown is measured by

collecting local and remote task completion times under the Hadoop sched-

ulers.
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The remote slowdown was measured to be 2 on EC2 instances [12]. In our

experiments, the slowdown varies with the placement of assigned VMs, and

tends to increase with load and hot-spots, which lead to a higher level of

network congestion and disk contention. The largest average slowdown we

measured on EC2 is 6. Figure 3.3 shows the CDF of slowdown, defined as

(processing time of a remote task / σl), where σl is the average processing

time of local tasks. Although 75% of the remote tasks experience a slowdown

less than 5, some of the remote tasks experience as much as 45x slowdown.

 0
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 0.6

 0.8

 1

 0  5  10 15 20 25 30 35 40 45
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Figure 3.3: Slowdown distribution on EC2.

2. Private cluster. We use the private cluster for evaluation under stressed

conditions, sensitivity analysis and short traces with fixed load. As all nodes

in our private cluster are in the same rack and are exclusively used for the

experiment, there is neither traffic from other VMs co-located on the same

physical node as in a multi-tenant environment, nor background traffic repli-

cating, redistributing and importing files. As a result, there is virtually no

slowdown in the system. For our experiments, we send background traffic

from each VM to its neighboring VM to create a slowdown.

3. Large-scale simulation. We use simulation with 500 nodes over a long

time horizon to evaluate the performance of Pandas in a large cluster across

all loads up to system capacity. It allows us to gain insight into the transient

behavior observed with the long trace where hot-spot occurs and disappears.

It also allows us to explore the performance of Pandas at load regions where

experiments are not possible, as the FIFO scheduler and HFS crash due to

excessive queuing of jobs. Pandas is able to avoid excessive queuing due to

its throughput optimality.

Our simulation models task processing times as heavy-tailed random vari-

ables. We use a truncated Pareto distribution with shape parameter 1.9 to

generate the number of tasks for each job. The parameter of HFS is tuned
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according to HFS evaluation [12] such that 95% data locality is achieved. At

each task arrival, a set of three nodes are chosen to be its local nodes. Uni-

form load is simulated by sampling the nodes uniformly at random. Skewed

load is simulated by sampling from half the cluster with probability 0.8, and

from the remaining half with probability 0.2. This mimics hot-spots in the

presence of uniform traffic. The slowdown of the system is set to 2.

Trace characteristics

We generate traces by sampling jobs from the SWIM benchmark [58] so that

1) we preserve the Pareto job size distribution [12]; 2) The length of the

trace and the number of files are appropriately scaled for the capacity of the

different clusters by SWIM. We leave the reduce phases empty to focus on

the improvement of the data-processing phase only, as the time taken by the

reduce phase can be orthogonally improved by other techniques [45, 46].

We did not run the SWIM benchmark directly because SWIM does not

model data popularity. It assumes that the file system is only populated with

data accessed in this experiment and each task independently chooses its data

location. This is different from what happens in a real cluster, where differ-

ent tasks can access the same data block, hence creating correlated patterns

in accesses. SWIM is essentially assuming that each job process a completely

different file, which is not the case in practice. Therefore, the data popularity,

as well as the node popularity, is always uniform. Moreover, unlike hot-spots

caused by skewed data popularity, hot-spots caused by skewed node popular-

ity occur randomly and are hard to reproduce as they depend on the random

placement of data blocks by HDFS. A trace constructed with the same dis-

tribution of data popularity might cause a hot-spot in one experiment, but

not in another.

In view of the above, we generate hot-spots by making a subset of nodes

more popular than others. For all experiments on EC2 and the private clus-

ter, hot-spots are generated by increasing the popularity of 40% of nodes in

the system, resulting in a skewed node popularity. The actual node popular-

ity varies with the load, which will be specified for each experiment.

Table 3.2 shows the job size distribution used for the long trace on EC2,

and Table 3.3 shows the job size distribution used on the private cluster.

They have the same Pareto distribution, but the trace for the private cluster
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Table 3.2: Job size distribution used on EC2.

Bins 1 2 3 4 5 6 7
Job Count 570 240 210 120 90 90 60

Map Count per Job 1 2 10 50 100 200 400

Table 3.3: Job size distribution used on private cluster.

Bins 1 2 3 4 5 6 7 8
Job Count 237 95 77 55 42 37 30 27

Map Count per Job 1 2 4 10 25 50 100 200

has jobs of smaller sizes as the capacity of the private cluster is smaller.

Table 3.4: Trace characteristics on EC2.

Job Range Node popularity, load
1-230 Uniform, 0.24

231-460 Uniform, 0.48
461-690 Uniform, 0.72
691-920 Skewed, 0.48
921-1150 Uniform, 0.48
1151-1380 Skewed, 0.24

Table 3.4 shows the long trace containing 6 stages with varying load and

node popularity. Like the experiments on HFS [12], the inter-arrival time

of jobs is generated from an exponential distribution. The uniform node

popularity is obtained by using the default data placement of SWIM. The

skewed node popularity, or hot-spots, are generated by directing all traffic to

40% of the nodes in the system.

Evaluation metrics

We use the following metrics for performance evaluation:

Map completion time. It is the average completion time of all map tasks

in a trace or in a sliding window. Completion time of a map task is defined

as the time interval between task arrival and the moment the task finishes

processing. For the long trace, the average is computed in a sliding window

of k jobs, i.e., the value at point i on x-axis shows the average computed over

jobs [i− k+ 1, i− k+ 2, . . . i] for i ≥ k and over jobs [1, 2, . . . i] for 1 < i < k.
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This gives higher resolution to changes in map completion time as hot-spots

occur and disappear.

Job completion time. It is the average completion time of all jobs in a

trace or in a sliding window. Completion time of a job is defined as the time

interval between job arrival and the moment the job finishes processing. The

sliding window is defined in the same way as for map completion time above.

Data locality. It is measured as the percentage of map tasks processed at

a local node.

Speed-up. Speed-up in job completion time is defined as

Speed-up =
T − TP
T

, (3.41)

where T is the original job completion time under FIFO or HFS, and TP is

that with Pandas acceleration. A negative speed-up indicates that the job

is slowed down with Pandas. Note that, with this definition, the maximum

possible speed-up is 100%, corresponding to TP = 0, but the maximum possi-

ble slowdown is infinite. A 100% slowdown indicates that the job completion

time has doubled.

Jobs in bins. For the detailed analysis on the private cluster, we divide jobs

into three classes based on their sizes in Table 3.3: 1) Small jobs (placed in

bin 1−3, having less than 5 map tasks), 2) medium jobs (placed in bin 4−6,

having 10− 50 map tasks) and 3) large jobs (placed in bin 7− 8, having at

least 100 map tasks).

Pandas thresholds

On both EC2 and the private cluster, only the remote threshold Ts is used due

to the absence of rack structure. We set Ts based on the slowdown measured

with the default Hadoop schedulers. In all experiments, the thresholds are

set to fixed values for each trace, even if the average slowdown varies with

changing loads and node popularity.
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3.5.2 Pandas-accelerated FIFO

Long trace on EC2

We run a trace of 1380 jobs on 5000 files on EC2. The job size distribution

is given in Table 3.2. The average slowdown measured with this set of VMs

under FIFO is 1.5, hence we set the Pandas remote threshold Ts to 2.

Figure 3.4 shows the average task completion time and job completion time

in a sliding window of 230 jobs. Before hot-spots occur, Pandas-accelerated

FIFO outperforms FIFO at all times and the largest improvement of 2.3-fold

reduction occurs for jobs 231− 460 at load 0.48.
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Figure 3.4: Pandas-accelerated FIFO achieves up to 11-fold improvement
over FIFO on EC2.

As soon as the hot-spots occur, the performance of FIFO degrades drasti-

cally. With 0.48 skewed load, the completion time with the FIFO Scheduler

severely degrades, while Pandas-accelerated FIFO consistently produces low

completion times. Even when the hot-spot disappears, its lingering effect

makes the completion time with FIFO continue to increase sharply, while

Pandas-accelerated FIFO produces much lower completion time under uni-

form load. For instance, with jobs 921 − 1150, Pandas-accelerated FIFO

achieves 11-fold improvement over FIFO. The completion time with FIFO

improves gradually with the skewed load of 0.24. In this scenario, the load

is skewed but low, hence contention occurs less frequently. The last set of

jobs 1151−1380 receives a 4.5-fold improvement in job completion time with

Pandas-accelerated FIFO.
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Large-scale simulation

The behavior of FIFO is clearer with simulation over the entire range of

loads within system capacity. Figure 3.5a shows that with uniform data

locality, FIFO incurs very large delay beyond 0.6 load. Figure 3.5b shows

that with hot-spots, FIFO incurs very large delay beyond 0.52 load. FIFO’s

aggressive assignment of remote tasks and waste of throughput have resulted

in instability. This explains the drastic increase in completion time under

FIFO in Figure 3.4. In contrast, Pandas is throughput-optimal and heavy-

traffic optimal, hence producing low delays for all loads up to capacity. For

both scenarios, the corresponding standard variations are dramatically small

(of order 10−3), thus we do not show the error bars on the graph.
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Figure 3.5: Average job completion time.

Detailed performance on private cluster

We run a short trace with the job size distribution in Table 3.3, but scaled

to a total of 192 jobs and 3700 map tasks. The trace accesses 1000 files at

0.2 load. The threshold Ts is set to 2. Table 3.5 shows the average map task

and job completion time for uniform and skewed loads. Even at such a low

load, Pandas-accelerated FIFO achieves 2.38-fold and 2-fold improvements

in average job completion time for uniform and skewed loads respectively.

We focus on uniform load. Similar behavior is observed under skewed load.

Figure 3.6 shows the CDFs of job completion time for the three classes of

jobs. Pandas reduces almost all job completion times and only the largest

jobs experience a slight increase in completion time. This is a result of the

improvement in overall system efficiency by Pandas.
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Table 3.5: Pandas-accelerated FIFO outperforms FIFO at 0.2 load.

Average Map
Completion Time (s)

Average Job
Completion Time (s)

Workload Behavior FIFO Pandas FIFO FIFO Pandas FIFO
Uniform 43.37 30.88 70.25 29.48
Skewed 73.44 58.12 143.3 71.86
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Figure 3.6: Average job completion time at 0.2 uniform load.

Figure 3.7 shows the data locality of FIFO and Pandas-accelerated FIFO

for each bin. Pandas-accelerated FIFO achieves almost 100% data locality for

all bins. Not surprisingly, the largest improvement is observed for the small

jobs as they have the fewest choice of local nodes and are frequently assigned

to remote nodes under FIFO. The improvement in system throughput by

Pandas also leads to a larger number of idle nodes, hence higher data locality.

Figure 3.8 shows the speed-up in job completion times. We observe that

most jobs experience a speed-up, with 50.4% of jobs experiencing at least a

60% speed-up, corresponding to 2.5-fold reduction in completion time, and

19.17% of jobs experiencing at least a 80% speed-up, corresponding to 5-

fold reduction. Only 3.1% of jobs experience a slowdown, with the largest

slowdown being 140%, corresponding to 2.4 times the completion time under

FIFO.

Sensitivity analysis

We evaluate the impact of the variation in threshold values on performance.

A remote threshold lower than the corresponding slowdown makes the sched-

uler assign remote tasks too aggressively. On the other hand, a remote thresh-

old higher than the slowdown makes the scheduler too conservative, hence

not relieving the hot-spots fast enough.
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Figure 3.8: Speed-up of jobs at 0.2 uniform load.

Table 3.6 shows the average map and job completion time of Pandas-

accelerated FIFO with threshold values 3, 5 and 7 when the average slow-

down observed is 5. Even with an inaccurate threshold, we observe 9.25-fold

improvement over FIFO in average job completion time while we achieve

11-fold improvement with the correct threshold.

3.5.3 Pandas-accelerated Fair

Long trace on EC2

We run the same trace as for FIFO in Section 3.5.2 with the same threshold

Ts = 2. Figure 3.9 shows the average task completion time and job comple-

tion time in a sliding window of 230 jobs. Pandas’ performance is comparable

to HFS under uniform load and during the first hot-spot. However, after the

first hot-spot, Pandas accelerates tasks by 45% and jobs by 47%.

With the default waiting time parameter, HFS is sufficiently aggressive in

relieving hot-spots at this load although at the cost of wasting throughput

and affecting later jobs. The acceleration of HFS is not as large as that of

FIFO as HFS has a different capacity region and can accommodate a higher

load than 0.48. Our experiment at a higher load crashed due to excessive

queuing of jobs in the HFS scheduler, although Pandas-accelerated Fair did

not suffer from queuing due to its throughput optimality. We explore the
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Table 3.6: Pandas-accelerated FIFO with different threshold values at 0.3
skewed load.

FIFO Threshold = 3 Threshold = 5 Threshold = 7
Map (s) 159.23 42.67 38.17 43.72
Job (s) 381.26 41.2 34.75 38.96
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Figure 3.9: Pandas-accelerated Fair achieves up to 47% improvement over
HFS.

behavior of HFS and Pandas acceleration at higher loads using simulation in

Section 3.5.3.

Large-scale simulation

Since the performance of HFS depends on the waiting time parameter, we

tune the parameter according to HFS evaluation [12] so that HFS achieves

95% data locality. Figure 3.10a shows that with uniform node popularity,

HFS incurs drastic delay only beyond 0.95 load. Figure 3.10b shows that

with hot-spots, HFS incurs high delay beyond 0.65 load. At lower loads,

Pandas achieves negligible acceleration, while beyond 0.95 and 0.65 loads

respectively, Pandas achieves very large acceleration.

We observe that a high data locality of 95% favors uniform node popularity.

When the waiting time parameter is tuned for lower data locality, HFS incurs

large delays at a smaller load for uniform, but at a larger load for hot-spots, as

in Figure 3.9. The waiting time parameter yields a trade-off of performance

between the two scenarios. But in both cases, HFS has a larger capacity

region than FIFO, and large improvement by Pandas will occur only at loads
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beyond 0.48.
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Figure 3.10: Average job completion time.

A stressed test on private cluster

We run a trace of 600 jobs on 1000 files on the private cluster. Table 3.3 shows

the job size distribution while Table 3.4 shows load and node popularity

with 100 jobs per segment. The peak slowdown under HFS is 30, which

is a stressed scenario with a large amount of network contention, or in an

environment where the difference in processing time due to location is large

such as with memory-locality. We set Ts = 30.

Figure 3.11 shows the average task completion time and job completion

time in a sliding window of 100 jobs. Before hot-spots occur, Pandas-

accelerated Fair outperforms HFS at all times and the largest improvement

of 4.1-fold reduction in average job completion time occurs for jobs 201−300,

even if the average task completion time experiences only a 2.7-fold reduction.

As the first hot-spot occurs, the improvement in task completion time

reaches 11-fold, while that in job completion time remains around 4.5-fold.

Unlike FIFO in Figure 3.4, HFS recovers from the hot-spot much faster, leav-

ing a conspicuous peak in the curve for jobs 301−400. Another peak appears

towards the end of the curve as the second hot-spot occurs. The improve-

ments in task and job completion times reach 15 and 12-fold respectively

for jobs 401 − 500, as Pandas-accelerated Fair recovers from the hot-spot.

The improvement reaches its maximum of 18 and 22-fold respectively at the

second hot-spot.
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Figure 3.11: Pandas-accelerated Fair achieves up to 22-fold improvement
over HFS on the private cluster.

Detailed performance on private cluster

We run the same trace as in Section 3.5.2 at 0.68 load. We set Ts to 8

for uniform load and 27 for skewed load based on the average slowdown

measured with HFS. Table 3.7 shows the average map and job completion

times. Pandas-accelerated Fair achieves more than 3.3-fold improvement in

average job completion time for both uniform and skewed loads.

Table 3.7: Performance at 0.68 load.

Average Map
Completion Time (s)

Average Job
Completion Time (s)

Workload Behavior HFS Pandas Fair HFS Pandas Fair
Uniform 194.9 85.05 209.71 61.93
Skewed 913.99 194.41 610.71 182.4
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Figure 3.12: Average job completion time at 0.68 uniform load.

We focus on uniform load. Similar behavior is observed under skewed load.
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Figure 3.13: Data locality at 0.68 uniform load.

 0
 0.2
 0.4
 0.6
 0.8

 1

-300 -200 -100 0 100

C
D
F

Percentage of Speedup

Figure 3.14: Speed-up at 0.68 uniform load.

Figure 3.12 shows the CDF of job completion time. Pandas produces sig-

nificant improvement for all three classes of jobs. Figure 3.13 shows the data

locality of HFS and Pandas-accelerated Fair for each bin. Pandas achieves

close to 100% data locality whereas HFS, with its default configuration,

achieves only 30 − 60% data locality for the small jobs. We also plot the

CDF of speedup for each job in Figure 3.14. Most jobs experience a speed-

up, with 46.87% of jobs experiencing at least a 60% speed-up, corresponding

to at least 2.5-fold reduction in completion time, and 24.48% of jobs expe-

riencing at least a 80% speed-up, corresponding to at least 5-fold reduction.

Only 13.02% of jobs experience a slowdown, with the largest slowdown being

346%, corresponding to 4.46 times the completion time under HFS.

Sensitivity analysis

Table 3.8 shows the average map and job completion time of Pandas-accelerated

Fair with threshold values 5, 8 and 10 when the average slowdown observed is

8. Even with an inaccurate threshold, we observe 2.8-fold improvement over

HFS in average job completion time while we achieve 3.38-fold improvement

with the correct threshold.
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Table 3.8: Pandas-accelerated Fair with different threshold values at 0.6
uniform load.

HFS Threshold = 5 Threshold = 8 Threshold = 10
Map (s) 194.9 103.34 85.05 115.59
Job (s) 209.71 71.43 61.93 73.74

3.5.4 Scheduler Overhead

The space overhead of Pandas is negligible as our data structures maintain

pointers to tasks, rather than keeping multiple copies. Table 3.9 shows the

average scheduling delay for the trace with 192 jobs on the private cluster.

We observe that the delay is comparable across the schedulers, with Pandas-

accelerated FIFO being the fastest.

Table 3.9: Scheduling delay.

Scheduler FIFO Pandas FIFO Fair Pandas Fair
Delay (ms) 0.96 0.75 0.81 1.15

3.6 Conclusion

In this chapter, we proposed a novel priority algorithm for near-data schedul-

ing. We have shown that the proposed algorithm achieves throughput op-

timality and heavy-traffic delay optimality for all traffic scenarios. The pri-

oritized service imposes challenges to the state space collapse analysis and

makes the proof of heavy-traffic optimality go beyond applying the existing

drift-based analysis. A novel ideal load decomposition is used to separate

the system into subsystems that require distinct treatments. The algorithm

is also shown to have superior performance in trace-driven experiments.
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CHAPTER 4

BALANCED-PANDAS: SCHEDULING
WITH MULTI-LEVEL DATA LOCALITY

In the previous chapter, we have studied scheduling with two-level data lo-

cality. However, multiple locality levels exist within and across data centers.

In this chapter, we will focus on the scheduling with multi-level data locality.

We found that going from two to three levels of locality changes the problem

drastically, as a tradeoff between performance and throughput emerges. The

priority algorithm presented in Chapter 3, which is both throughput and

heavy-traffic optimal for two locality levels, is not even throughput-optimal

with three locality levels. We defer detailed explanation to Section 4.1.

The JSQ-MaxWeight algorithm proposed by Wang et al. [37] solved the

problem of per-task-type queue with MaxWeight when there are two locality

levels. Like MaxWeight, JSQ-MaxWeight is throughput-optimal. However,

it was shown to be heavy-traffic optimal only for a special traffic scenario

where a server is either locally overloaded or receives zero local traffic. We

explain in Section 4.2 that an extension of the JSQ-MaxWeight algorithm to

three locality levels preserves its throughput optimality, but suffers from the

same lack of heavy-traffic optimality in all but a special set of scenarios.

We propose balanced-Pandas, a novel algorithm that uses weighted-workload

routing and priority service. The key insight is that throughput optimality

requires the workload to be kept at the correct ratio at different queues, but

the composition of the workload can be designed appropriately such that it

is delay-optimal in the heavy-traffic regime. We note that this is the only

known delay-optimal algorithm in the heavy-traffic regime when the arrival

rates are unknown.

We state our results in the rest of this chapter for three-level locality. We

consider a discrete-time model for the system, as described in Chapter 2.

Within each time slot, a task is completed with probability α at a local

server, β at a rack-local server, or γ at a remote server, with α > β > γ. Our

main contributions are as follows:
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• We identify the capacity region of a system with three locality levels.

The capacity is defined to be the set of arrival rate vectors under which

the system can be stabilized by some scheduling algorithm.

• We extend the JSQ-MaxWeight algorithm [37] and show that it is

throughput-optimal. It is heavy-traffic optimal for special traffic sce-

narios analogous to that with two-level locality [37].

• We establish the throughput optimality of our proposed algorithm.

• We establish the heavy-traffic optimality of our proposed algorithm.

The priority service precludes the use of the L2 norm Lyapunov drift.

The main idea is the construction of a multi-level ideal load decomposi-

tion for each arrival rate vector, which resolves the problem encountered

by Pandas.

4.1 A Performance-versus-Throughput Dilemma

Under Pandas presented in Chapter 3, each server maintains a queue that

only receives tasks local to this server. The load balancing step balances

tasks across their local queues. Each server serves a local task if its queue is

not empty; otherwise it serves a remote task from the longest queue in the

system. With two levels of locality, the priority algorithm achieves good delay

performance as it maximizes the number of tasks served locally. The system is

also throughput-optimal as any remaining capacity of an underloaded server

is devoted to remote service.

Server 1 Server 2

Rack 1

Server 3 Server 4

Rack 2

λ 1.9λ λ 

Figure 4.1: A simple system with two racks.
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However, for a system with three levels of locality, the priority algorithm is

not throughput-optimal. Consider a system with two racks, each consisting

of two servers, as illustrated in Fig. 4.1. There are three types of tasks: one

type of task is only local to server 1 and has rate λ, one is only local to server

4 and has rate 1.9λ, and the third type is local to both servers 2 and 3 and

has rate λ. Assume a local task is served at rate α = 1, a rack-local task is

served at rate β = 0.9, and a remote task is served at rate γ = 0.5. With

Pandas, the system is stable only if

1.9λ < α + β(1− 0.5λ

α
) + γ(1− λ

α
) + γ(1− 0.5λ

α
),

Thus the achievable throughput is λ < 0.9355, while the system is clearly

stabilizable for λ < 1. The problem with the priority algorithm is that the

shared local traffic of rate λ is split evenly among servers 2 and 3. However,

the throughput will increase if server 3 serves no local tasks, but instead

devotes its capacity to rack-local service for server 4.

While Pandas achieves good delay performance at low load when most

tasks can be served locally, it sacrifices throughput at high load. This exam-

ple raises the question as to whether there exist scheduling algorithms that

can simultaneously achieve throughput and delay optimality.

4.1.1 Outer Bound of the Capacity Region

We consider a decomposition of the arrival rate vector λ = (λL̄ : L̄ ∈ L). For

any task type L̄ ∈ L, λL̄ is decomposed into (λL̄,m,m ∈ M), where λL̄,m is

assumed to be the arrival rate of type L̄ tasks for server m. To ensure the

arrival rate vector λ supportable, a necessary condition is that the sum of

local, rack-local and remote load on any server is strictly less than 1, i.e.,∑
L̄:m∈L̄

λL̄,m
α

+
∑

L̄:m∈L̄k

λL̄,m
β

+
∑

L̄:m∈L̄r

λL̄,m
γ

< 1. (4.1)
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Let Λ be the set of arrival rates such that each element has a decomposition

satisfying condition (4.1):

Λ =
{
λ =

(
λL̄ : L̄ ∈ L

)
|∃ λL̄,m ≥ 0, ∀L̄ ∈ L,∀m ∈M, s.t.

λL̄ =
M∑
m=1

λL̄,m,∀L̄ ∈ L,∑
L̄:m∈L̄

λL̄,m
α

+
∑

L̄:m∈L̄k

λL̄,m
β

+
∑

L̄:m∈L̄r

λL̄,m
γ

< 1, ∀m ∈M}.

Therefore Λ gives an outer bound of the capacity region.

4.2 Results on JSQ-MaxWeight

In this section, we summarize the results on an extension of the JSQ-MaxWeight

algorithm proposed by Wang et al. [37].

We extend the JSQ-MaxWeight algorithm to a system with three levels

of locality: local, rack-local and remote. The central scheduler maintains a

set of M queues, where the m-th queue, denoted by Qm, receives tasks local

to server m. Let Q = (Q1, Q2, · · · , QM) denote the vector of these queue

lengths. The algorithm consists of JSQ routing and MaxWeight scheduling:

JSQ routing: When a task of type L̄ arrives, the scheduler compares the

lengths of the task’s local queues, {Qm|m ∈ L̄}, and inserts the task into the

shortest queue. Ties are broken randomly.

MaxWeight scheduling: When server m becomes idle, its scheduling de-

cision ηm(t) is chosen from the following set:

arg max
n∈M
{αQn(t)I{n=m}, βQn(t)I{K(n)=K(m)}, γQn(t)I{K(n)6=K(m)}}.

Ties are broken randomly.

Let fm(t) denote the working status of server m at time slot t,

fm(t) =

{
−1 if server m is idle

n if server m serves a task from queue n.

Note that fm(t) = m indicates server m working on a local task. If fm(t) = n,

where n 6= m and K(n) = K(m), i.e., server n and server m are in the same
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rack, server m is working on a rack-local task. Otherwise it is processing a

remote task.

The arrivals to Qm in time slot t are given by

Am(t) =
∑
L̄:m∈L̄

AL̄,m(t),

where AL̄,m(t) is the number of type L̄ tasks that are routed to Qm.

Let Slm(t), Rk
m(t) and Rr

m(t) denote the local, rack-local and remote ser-

vice provided by server m respectively, where Slm(t) ∼ Bern(αI{ηm(t)=m}),

Rk
m(t) ∼ Bern(βI{K(ηm(t))=K(m),ηm(t)6=m}) andRr

m(t) ∼ Bern(γI{K(ηm(t))6=K(m)})

are Bernoulli random variables with varying probability.

Note that the local service received by queue Qm is Slm(t), whereas the rack-

local service received by queueQm is Skm(t) ≡
∑

n:K(n)=K(m),n6=mR
k
n(t)I{ηn(t)=m},

which is the sum of all rack-local service provided by other servers within

the same rack as m to queue Qm. Similarly, the remote service received by

queue Qm is given by Srm(t) ≡
∑

n:K(n)6=K(m) R
r
n(t)I{ηn(t)=m}. Let Sm(t) ≡

Slm(t) + Skm(t) + Srm(t) denote the departure process for queue m. Hence the

queue length satisfy the following equation:

Qm(t+ 1) = Qm(t) + Am(t)− Sm(t) + Um(t),

where Um(t) = max{0, Sm(t)−Am(t)−Qm(t)} is the unused service. As the

service times follow geometric distributions, Q(t) together with the working

status vector f(t) form an irreducible and aperiodic Markov chain {Z(t) =

(Q(t), f(t)), t ≥ 0}.

Theorem 4.1. Any arrival rate vector strictly within Λ is supportable by

JSQ-MaxWeight. Thus Λ is the capacity region of the system and JSQ-

MaxWeight is throughput optimal.

We use V (t) = ‖Q(t)‖2 as the Lyapunov function. We show that there

exists a positive integer T such that the T time slots drift of V (t) is bounded

within a finite subset of the state space and negative outside this subset.

Then the result follows by the extension of the Foster-Lyapunov theorem.

For a system with only two levels of data locality, JSQ-MaxWeight algo-

rithm has been shown to be heavy-traffic optimal for a special traffic sce-

nario [37], where a server is either locally overloaded or receives zero local
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traffic. For a system with the rack structure, hence three levels of locality,

we consider the following traffic scenario:

All traffic concentrates on a subset of racks, and any rack with non-zero

local tasks is overloaded. Moreover, any server in an overloaded rack either

receives zero local traffic or is locally overloaded. Denote the set of racks

that can have local tasks as O, the set of servers that receives non-zero local

traffic asMl, the set of servers that receives zero local traffic but belongs to

racks O as Mk, the set of servers in racks that receive zero local traffic as

Mr. For any subset of servers S ⊂Ml, we denote by N (S) = {L̄ ∈ L|∃m ∈
S, s.t. m ∈ L̄} the set of task types with local servers in S. Analogously,

for any subset of racks R ⊂ O, denote by N (R) = {L̄ ∈ L|∃m, s.t. m ∈
L̄, and K(m) ∈ R} the set of task types with local servers in racks R. Let

M(R)
l = {m ∈ Ml|K(m) ∈ R} be the set of servers having local traffic and

belonging to racks R, and M(R)
k = {m ∈ Mk|K(m) ∈ R} the set of servers

without any local traffic and belonging to racksR. Formally, the heavy-traffic

regime assumes that for any S ⊂Ml,∑
L̄∈N (S)

λL̄ > |S|α,

and for any R ⊂ O, ∑
L̄∈N (R)

λL̄ > |M
(R)
l |α + |M(R)

k |β.

It is easy to see that in a stable system,
∑

L̄∈L λL̄ < |Ml|α+ |Mk|β+ |Mr|γ.

We assume that ∑
L̄∈L

λL̄ = |Ml|α + |Mk|β + |Mr|γ − ε, (4.2)

where ε > 0 characterizes the distance of the arrival rate vector from the

capacity boundary.

Theorem 4.2. Consider arrival processes {A(ε)

L̄
(t), t ≥ 0}L̄∈L with arrival

rate λ(ε) satisfying the above condition, then JSQ-MaxWeight is heavy-traffic

optimal.

Note that JSQ-MaxWeight is not heavy-traffic optimal in other traffic sce-

narios, when the underloaded racks, and the underloaded servers in over-
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loaded racks, receive local traffic, for the same reason as with two levels of

locality [37]. One problem is the growth of queues of local tasks at the servers

that have zero local queue lengths in the special scenario. The growing queues

of local tasks at the underloaded servers and racks result in non-optimal de-

lay. Our balanced-Pandas solves this problem.

4.3 Algorithm

The balanced-Pandas algorithm is illustrated in Fig. 4.2. The central sched-

uler maintains a set of M queues, where the m-th queue consists of 3 sub-

queues denoted by Ql
m, Q

k
m and Qr

m, which receive tasks local, rack-local and

remote to serverm respectively. We denote by Q(t) = (Q1(t),Q2(t), · · · ,QM(t))

the queue lengths at time t, where Qm(t) = (Ql
m(t), Qk

m(t), Qr
m(t)). We define

the expected workload of the m-th queue, Wm(t), as

Wm(t) =
Ql
m(t)

α
+
Qk
m(t)

β
+
Qr
m(t)

γ
.

Server 1

Scheduler

Type   

Join remote

Schedule local

Tasks

𝑸𝟏
𝒍  

𝑸𝟏
𝒌 

𝑸𝟏
𝒓  

𝑸𝟐
𝒍  

𝑸𝟐
𝒌 

𝑸𝟐
𝒓  

𝑸𝑴
𝒍  

𝑸𝑴
𝒌  

𝑸𝑴
𝒓  

Schedule rack-local
Server 2

Schedule remote
Server M

Join rack-local

Join local

𝐿  

Figure 4.2: The balanced-Pandas algorithm.

At the beginning of each time slot t, the central scheduler routes new

arrivals to one of the queues and schedules a new task for an idle server as

follows:

Weighted-Workload queueing: When a task of type L̄ arrives, the sched-

76



uler selects three queues that have the least workload among its local servers,

rack-local servers and remote servers respectively. They are further weighted

by 1/α, 1/β, 1/γ respectively, and the task joins the queue with the min-

imum weighted workload. Ties are broken randomly. The task then joins

the corresponding sub-queue depending on whether it is local, rack-local or

remote for the selected server. Formally, the final selected queue m∗(t) is in

the set

arg min
m∈M

{
Wm(t)

α
I{m∈L̄},

Wm(t)

β
I{m∈L̄k},

Wm(t)

γ
I{m∈L̄r}

}
.

Prioritized scheduling: When a server becomes idle, it serves tasks from

its queue in the order of local, rack-local and remote. For instance, both

the local and rack-local sub-queues need to be empty before a remote task is

served. When all its sub-queues are empty, the server remains idle.

4.3.1 Queue Dynamics

Let AL̄,m(t) denote the number of type L̄ tasks that are routed to Qm. The

total number of tasks that join local sub-queue Ql
m, rack-local sub-queue Qk

m,

and remote sub-queue Qr
m, denoted by Alm(t), Akm(t) and Arm(t), respectively,

are given by Alm(t) =
∑

L̄:m∈L̄AL̄,m(t), Akm(t) =
∑

L̄:m∈L̄k AL̄,m(t), Arm(t) =∑
L̄:m∈L̄r AL̄,m(t).

We denote the working status of server m at time slot t by fm(t) :

fm(t) =


−1, if server m is idle

0, if server m serves a local task from Ql
m

1, if server m serves a rack-local task from Qk
m

2, if server m serves a remote task from Qr
m

When server m completes a task at the end of time slot t− 1, i.e., fm(t−) =

−1, it is available for a new task at time slot t. The scheduling decision is

based on the working status vector f(t) = (f1(t), f2(t), · · · , fM(t)) and the

queue length vector Q(t). Let ηm(t) denote the scheduling decision for server

m at time slot t. Note that ηm(t) = fm(t) for all busy servers, and when

fm(t−) = −1, i.e., server m is idle, ηm(t) is determined by the scheduler

according to the algorithm.
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Let Slm(t), Skm(t) and Srm(t) be the local, rack-local and remote service pro-

vided by server m respectively, where Slm(t) ∼ Bern(αI{ηm(t)=0}), S
k
m(t) ∼

Bern(βI{ηm(t)=1}) and Srm(t) ∼ Bern(γI{ηm(t)=2}) are Bernoulli random vari-

ables with varying probability. For instance, Slm(t) ∼ Bern(α) when server

m is scheduled to its local sub-queue, and Bern(0) otherwise. The same ap-

plies to Skm(t) and Srm(t). Then the dynamics of three sub-queues at server

m can be described as

Ql
m(t+ 1) = Ql

m(t) + Alm(t)− Slm(t),

Qk
m(t+ 1) = Qk

m(t) + Akm(t)− Skm(t),

Qr
m(t+ 1) = Qr

m(t) + Arm(t)− Srm(t) + Um(t),

where Um(t) = max{0, Srm(t)−Arm(t)−Qr
m(t)} is the unused service. As the

service times follow geometric distributions, Q(t) together with the working

status vector f(t) form an irreducible and aperiodic Markov chain {Z(t) =

(Q(t), f(t)), t ≥ 0}.

4.3.2 Throughput Optimality

Theorem 4.3. Balanced-Pandas is throughput optimal. That is, it stabilizes

any arrival rate vector strictly within the capacity region.

To prove Theorem 4.3, we use a Lyapunov function that is quadratic in

the expected workload in each queue:

V (t) = ‖W(t)‖2 =
∑
m

(
Ql
m(t)

α
+
Qk
m(t)

β
+
Qr
m(t)

γ

)2

.

Note that the service discipline does not affect the proof as the expected

workload is reduced at the same rate regardless of which sub-queue is served.

The proof is similar to that for the throughput-optimality of JSQ-MaxWeight.

The weighted-workload queueing effectively replaces the role of MaxWeight

services, but leaves the choice of service discipline free for potential achieve-

ment of delay optimality.
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4.4 Ideal Load Decomposition

A key component of the proof of heavy-traffic optimality of Balanced-Pandas

is the construction of an ideal load decomposition, analogous to the method

used for two levels of locality in the Chapter 3. However, the construction

method with three levels of locality is more involved. Instead, we will use the

alternative characterization of ideal load decomposition via two linear pro-

grams. The decomposition serves two purposes: 1) The ideal load obtained

for each server is used as an intermediary in the proofs of state-space collapse;

2) The construction uniquely identifies four types of servers, helpers and ben-

eficiaries in underloaded and overloaded racks respectively, which have very

different traffic compositions and require distinct treatment in the proofs.

𝑸𝟏
𝒍     𝑸𝟏

𝒌    𝑸𝟏
𝒓  

𝑩𝒐 𝑯𝒐 𝑩𝒖 𝑯𝒖 

𝑸𝟐
𝒍     𝑸𝟐

𝒌    𝑸𝟐
𝒓  𝑸𝟑

𝒍     𝑸𝟑
𝒌     𝑸𝟑

𝒓  𝑸𝟒
𝒍     𝑸𝟒

𝒌     𝑸𝟒
𝒓  

Tasks local only to 𝐵𝑜  

Tasks local to 𝐻𝑜  but not 𝐻𝑢  or 𝐵𝑢  

Tasks local to 𝐵𝑢  but not 𝐻𝑢  

Tasks local to 𝐻𝑢  

Figure 4.3: The queue compositions of the four types of servers.

Figure 4.3 illustrates the different sub-queue compositions of the four sub-

systems under the ideal load decomposition:

Helpers in underloaded racks, Hu: A server belongs to Hu if it is not over-

loaded, provides rack-local service and remote service, and all tasks local to

this server are served locally in the system.

Beneficiaries in underloaded racks, Bu: A server belongs to Bu if it is over-

loaded, does not provide rack-local or remote service, and tasks local to this

server receive rack-local service but not remote service.

Helpers in overloaded racks, Ho: A server belongs toHo if it is not overloaded,

provides rack-local service but not remote service, and all tasks local to this

server are served locally in the system.

Beneficiaries in overloaded racks, Bo: A server belongs to Bo if it is over-

loaded, does not provide rack-local or remote service, and tasks local to this

server receive rack-local service and remote service.
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We will define overloaded servers and racks in a more precise manner in

4.4.2. While pure helpers and beneficiaries in underloaded or overloaded

racks do not exist in a real system, the ideal load decomposition approxi-

mately depicts the load distribution in the heavy-traffic regime.

We characterize the ideal load decomposition in the rest of the section.

Analogous to the two-level locality case, we will construct the ideal load

decomposition via two linear programs: 1) Identify the overloaded servers

and racks via routing optimization problem; 2) Construct the decomposition

that produces Hu, Bu, Ho, Bo via service optimization problem. In order to

define the overloaded set, we will need an equivalent capacity region with a

more refined decomposition similar to (3.1) for two-level locality.

4.4.1 An Equivalent Capacity Region

We define the following equivalent capacity region:

Λ̄ =
{
λ =

(
λL̄ : L̄ ∈ L

)
|∃ λL̄,n,m ≥ 0, ∀L̄ ∈ L,∀n ∈ L̄,∀m ∈M, s.t.

λL̄ =
∑
n:n∈L̄

M∑
m=1

λL̄,n,m,∀L̄ ∈ L,

∑
L̄:m∈L̄

∑
n:n∈L̄

λL̄,n,m
α

+
∑

L̄:m∈L̄k

∑
n:n∈L̄

λL̄,n,m
β

+
∑

L̄:m∈L̄r

∑
n:n∈L̄

λL̄,n,m
γ

< 1,∀m ∈M}.

Each λL̄,m is further decomposed into
∑

n λL̄,n,m, where λL̄,n,m denotes the

rate of type L̄ tasks local to the server n but processed at server m. The

additional index n provides a pseudo-distribution of tasks across their local

servers only. It does not affect where they are processed. The information is

used for identifying the overloaded set, which only depends on the types and

rates of local tasks to a server.

The equivalence of the capacity region is established in similar ways as

Lemma 3.2.

4.4.2 Overloaded Servers and Racks

We use the same notation as in Chapter 3. For any subset of servers S ⊆M,

we denote by LS the set of task types local only to servers in S, and by L∗S
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the set of task types that have at least one local server in S. With a slight

abuse of notation, for any subset of racks R ⊂ K, we denote by LR the set

of task types that are local only to servers in racks R.
Given a decomposition {λL̄,n,m} of λ, let

ψn =
∑
L̄:n∈L̄

M∑
m=1

λL̄,n,m, ∀n

denote the pseudo-arrival rate of local tasks to server n. We define the over-

loaded racks in a similar way as overloaded servers with two-level locality. A

rack k is overloaded under a decomposition {λL̄,n,m} if

∑
m:K(m)=k,ψm≥α

(ψm − α) ≥ β
∑

i:K(i)=k,ψi<α

(1− ψi
α

). (4.3)

Note that the LHS of (4.3) gives the amount of local traffic for overloaded

servers in rack k that could not be served locally. The RHS of (4.3) is the

maximum rack-local service that can be provided by underloaded servers.

Hence rack k requires remote service if Eq. (4.3) holds.

We define the rack load ρk
(
{λL̄,n,m}

)
in the same way as (3.3) for two-level

locality, which is the minimum possible lower bound on the total utilization

of servers needed in order to accommodate arrivals routed to servers in rack-k

according to {λL̄,n,m} : for any underloaded rack-k,

ρk =
∑

m:K(m)=k
ψm<α

ψm
α

+
∑

m:K(m)=k
ψm≥α

(1 +
ψm − α

β
);

for any overloaded rack-k,

ρk = |{m : K(m) = k}|+ 1

γ

 ∑
m:K(m)=k
ψm≥α

(ψm − α)− β
∑

m:K(m)=k
ψm<α

(1− ψm
α

)

 .
We then define the system load as

ρ
(
{λL̄,n,m}

)
=
∑
k∈K

ρk
(
{λL̄,n,m}

)
.
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Consider the routing optimization problem:

min
{λL̄,n,m}

ρ
(
{λL̄,n,m}

)
subject to

λL̄,n,m ≥ 0, ∀L̄ ∈ L,∀n ∈ L̄,∀m ∈M, (4.4)

λL̄ =
∑
n:n∈L̄

M∑
m=1

λL̄,n,m,∀L̄ ∈ L, (4.5)

∑
L̄:m∈L̄

∑
n:n∈L̄

λL̄,n,m
α

+
∑

L̄:m∈L̄k

∑
n:n∈L̄

λL̄,n,m
β

+
∑

L̄:m∈L̄r

∑
n:n∈L̄

λL̄,n,m
γ

< 1,∀m ∈M.

(4.6)

Let
(
{λ̃L̄,n,m}, ρ∗

)
be any fixed optimal solution of this linear program.

Then {λ̃L̄,n,m} gives a set of overloaded racks O satisfying (4.3), and a set of

overloaded servers D, both of which are unique for the given λ.

4.4.3 Ideal Load Decomposition

Next we will formally define the four types of servers. Given a decomposition

{λ̃L̄,n,m} of λ ∈ Λ that minimizes ρ, we denote the utilization of each server

m by

wm =
∑
L̄:m∈L̄

∑
n:n∈L̄

λ̃L̄,n,m
α

+
∑

L̄:m∈L̄k

∑
n:n∈L̄

λ̃L̄,n,m
β

+
∑

L̄:m∈L̄r

∑
n:n∈L̄

λ̃L̄,n,m
γ

.

Let O and U denote the set of overloaded and underloaded racks determined

by the routing optimization problem, respectively. We denote the set of

overloaded servers in racksO by Do. We define the system remaining capacity

as

CR

(
{λ̃L̄,n,m}

)
=

∑
k∈U

∑
m:K(m)=k
ψm<α

γ(1− wm) +
∑
k∈O

∑
m:K(m)=k
ψm<α

β(1− wm)

+
∑
k∈O

∑
m:K(m)=k
ψm≥α

α(1− wm), (4.7)
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which is the maximum amount by which
∑

L̄∈LDo
λL̄ can be increased until

the boundary of the capacity region is hit.

Analogously, the ideal load decomposition for the multi-level locality is

determined by the following linear program, which we refer to as the service

optimization problem:

max
{λL̄,n,m}

CR
(
{λL̄,n,m}

)
subject to constraints (4.4)-(4.6).

Let
(
{λ∗

L̄,n,m
}, C∗R

)
be any fixed optimal solution of this linear program.

Then under this optimal decomposition, all servers are classified into the

following four subsystems:

Ho = {n : K(n) ∈ O|ψn < α},

Bo = {n : K(n) ∈ O|ψn ≥ α},

Hu = {n : K(n) ∈ U|ψn < α},

Bu = {n : K(n) ∈ U|ψn ≥ α}.

Remark. Recall that the decomposition that identifies overloaded servers

D for systems with two-level locality, satisfies the following property: all

shared local traffic between overloaded and underloaded servers are routed

to underloaded servers. Similarly, the decomposition that achieves ρ∗ have

some special property, which depends on the relationship between α, β and

γ.

An interesting case is β2 > αγ, which implies that the rack-local rate is

significantly larger than the remote rate. This condition holds in MapReduce

cluster.

Consider an overloaded rack and an underloaded rack. Suppose there

exists traffic that are local to both racks. The condition β2 > αγ dictates

that all such traffic should be moved to the underloaded rack in the ideal load

decomposition regardless of the load on the servers. For instance, moving ∆

amount of traffic from Ho to Hu creates new capacity for Ho so that it can

serve an additional β∆
α

amount of rack-local traffic in the overloaded rack.

On the other hand, when a server in Hu becomes overloaded (and hence

becomes Bu), the movement creates new rack-local traffic in the underloaded

rack and as a result reduces a γ∆
β

amount of remote traffic served in this rack.

The condition β2 > αγ implies that β∆
α
> γ∆

β
, i.e., the increase in rack-local
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capacity outweighs the decrease in remote capacity. Hence the movement of

shared local traffic continues even if a server changes from Hu to Bu. And

in the ideal load decomposition constructed, no shared local traffic between

underloaded racks and overloaded racks is routed to overloaded racks.

In other words, the condition β2 > αγ ensures that the sacrifice of local

service for rack-local service benefits the system capacity by reducing the

amount of traffic that should be served remotely. And the final load de-

composition is ideal in the sense that it minimizes the amount of remote

traffic.

4.5 Heavy-traffic Optimality

In this section, we establish the heavy-traffic optimality of balanced-Pandas.

The proof follows the framework developed in [59], which we have used to

prove the heavy-traffic optimality of Pandas in Chapter 3. However, the

Lyapunov drift analysis developed cannot be applied directly to our algorithm

due to the prioritized service and a more complicated state-space collapse.

Traffic distributions

The traffic distribution (λ = (λL̄ : L̄ ∈ L)) on the system can be classified

into two categories: the set of overloaded racks O = ∅, or O 6= ∅. In the

first case, each rack can accommodate its load, and the system in the heavy-

traffic regime decomposes into independent racks, each of which has two

levels of locality. We focus on the second case in this chapter, which is more

challenging of the two, and defer the proof for the first case to Appendix B.

In particular, we consider the heavy-traffic regime such that Bu = ∅, i.e., all

servers in underloaded racks can accommodate their arrivals locally.

Figure 4.4 illustrates the one-dimensional state-space vector the system

collapses to in the heavy-traffic regime when Bu = ∅. There are two key

ideas. First, the prioritized service allows us to have a uniformly bounded

helper subsystem in the heavy-traffic regime, which corresponds to the disap-

pearance of the rack-local and local queues for Hu and that of the local queue

for Ho in Figure 4.4. Second, the weighted-workload routing distributes the

tasks local only to Bo in the ratio of α : β : γ in terms of server workload

across Bo, Ho and Hu.
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Figure 4.4: The queue compositions of the three types of servers in the

heavy-traffic regime with α : β : γ = 1 : 0.8 : 0.5. The workload at the three types

of servers maintain the ratio α : β : γ = 1 : 0.8 : 0.5.

4.5.1 Formal Statement of Results

We formally state the main theorems in this subsection and provide the

outline of proofs in Section 4.5.2.

Consider the traffic regime such that there exist a set of overloaded racks.

Moreover, these racks are truly overloaded in the sense that remote service

is required for each rack. Formally, there exists an ideal load decomposition

such that the pseudo-arrival rates for any overloaded rack is strictly greater

than its capacity. That is, for any rack k ∈ O,

∑
m:K(m)=k,ψm≥α

(ψm − α) > β
∑

i:K(i)=k,ψi<α

(1− ψi
α

), (4.8)

where ψm =
∑

L̄:n∈L̄
∑M

m=1 λ
∗
L̄,n,m

. We refer to this condition as the heavy

rack overloaded traffic assumption.

Assume that

Bu = ∅. (4.9)

The local traffic on Hu and Ho is assumed to satisfy∑
L̄∈L∗Hu

λL̄ ≡ Φuα,
∑
L̄∈LHo

λL̄ ≡ Φoα, (4.10)

where L∗Hu = {L̄ : ∃m ∈ Hu s.t. m ∈ L̄}, LHo = {L̄ : ∀m ∈ L̄,m ∈
Ho ∪ Bo, and ∃n ∈ Ho s.t. n ∈ L̄}, 0 ≤ Φo < |Ho|, and 0 ≤ Φu < |Hu|. In
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addition, we assume that∑
L̄∈LBo

λL̄ = |Bo|α + β(|Ho| − Φo) + γ(|Hu| − Φu)− ε, (4.11)

where ε > 0 characterizes the distance of the arrival rate vector from the

capacity boundary. We make the additional assumption that the {λL̄ : L̄ ∈
L∗Hu ∪ LHo} are independent of ε. That is, the total local load for helpers is

fixed. This assumption can be removed with more care. We now state the

heavy traffic assumption as follows.

Assumption 3 (Assumption for the heavy rack overloaded traffic). Consider

the arrival processes {A(ε)

L̄
(t), t ≥ 0}L̄∈L, parameterized by ε > 0, with mean

arrival rate vector λ(ε) satisfying conditions (4.8)-(4.11). Arrivals local to

helpers {A(ε)

L̄
(t), t ≥ 0}L̄∈L∗H are independent of ε. We denote by (σ(ε))2

the variance of the number of arrivals that are only local to beneficiaries in

overloaded racks, i.e., Var
(∑

L̄∈LBo
A

(ε)

L̄
(t)
)

= (σ(ε))2, which converges to σ2

as ε ↓ 0.

Let {Z(ε)(t) = (Q(ε)(t), f (ε)(t)), t ≥ 0} be the system state under balanced-

Pandas when the arrival rate is λ(ε). Since λ(ε) ∈ Λ, the Markov chain Z(ε)(t)

is positive recurrent and has a steady state distribution. We denote the

steady state queue-length vector by Q̄(ε). All theorems in this section con-

cern the steady-state queueing process Q̄(ε) under balanced-Pandas, with the

arrival processes {A(ε)

L̄
(t), t ≥ 0}L̄∈L, parameterized by ε > 0, satisfying As-

sumption 3.

Theorem 4.4. (Helper queues) There exist two sequence of finite numbers

{Nr : r ∈ N} and {N ′r : r ∈ N} such that for each positive integer r,

E

[ ∑
m∈Hu

(
Q̄l(ε)
m + Q̄k(ε)

m

)]
≤ Nr, E

[∑
m∈Ho

Q̄l(ε)
m

]
≤ N ′r.

Therefore,

lim
ε↓0

εE

[ ∑
m∈Hu

(
Q̄l(ε)
m + Q̄k(ε)

m

)]
= 0, lim

ε↓0
εE

[∑
m∈Ho

Q̄l(ε)
m

]
= 0.

Theorem 4.4 states that the helper subsystem is uniformly bounded and in-

dependent of ε. As the arrival rate approaches the capacity boundary, i.e., ε ↓
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0, the steady state mean queue length E
[∥∥Q̄∥∥] = E

[∑
m(Q̄l

m + Q̄k
m + Q̄r

m)
]
→

∞. In order to characterize the scaling order of E
[∥∥Q̄∥∥] , by Theorem 4.4,

we only need to consider

Ψ =
∑
m∈Hu

Qr
m +

∑
m∈Ho

(
Qk
m +Qr

m

)
+
∑
m∈Bo

(
Ql
m +Qk

m +Qr
m

)
.

The following theorem gives an lower bound on E
[
Ψ(ε)

]
.

Theorem 4.5. (Lower bound)

E
[
Ψ(ε)

]
≥ (σ(ε))2 + (ν(ε))2 + ε2

2ε
− M

2
.

Therefore, in the heavy traffic limit as ε ↓ 0,

lim inf
ε↓0

εE
[
Ψ(ε)

]
≥ σ2 + ν2

2
. (4.12)

In order to obtain an upper bound on E
[
Ψ(ε)

]
, we first need to show that

the steady-state weighted queue-length vector W collapses to a particular

direction. Define c = c̃
‖c̃‖ ∈ RM

+ as a vector with unit l2 norm, where

c̃m =


γ, ∀m ∈ Hu

β, ∀m ∈ Ho

α, ∀m ∈ Bo

The parallel and perpendicular components of the steady-state weighted

queue-length vector W with respect to c are

W|| = 〈c,W〉c, W⊥ = W −W||.

The following theorem states that W collapses to the direction c in the sense

that its parallel component with respect to c is bounded, independent of

heavy-traffic parameter ε.

Theorem 4.6. (State space collapse) There exists a sequence of finite

numbers {Cr : r ∈ N} such that for each positive integer r,

E [‖W⊥‖r] ≤ Cr,
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that is, the deviation of W from the direction c are bounded and independent

of the heavy-traffic parameter ε.

Theorem 4.7. (Upper bound)

E
[
Ψ(ε)

]
≤ (σ(ε))2 + (ν(ε))2

2ε
+B(ε),

where B(ε) = o(1
ε
), i.e., lim

ε↓0
εB(ε) = 0. Therefore, in the heavy-traffic limit,

we have

lim sup
ε↓0

εE
[
Ψ(ε)

]
≤ σ2 + ν2

2
,

which coincides with the lower bound (4.12).

4.5.2 Outline of Proofs

(Theorem 4.4.) We first show that in steady state, the expected local load

on any helper is upper bounded by a constant ρ̄h < 1 which is independent

of ε. As shown in Chapter 3, with upper-bounded local load and priority

scheduling for local tasks, the expected local queue length is bounded and

independent of ε. Therefore the local sub-queue lengths of Hu and Ho are

bounded and independent of ε. Under the ideal load decomposition, all tasks

of types L∗Hu are served locally by Hu in order to achieve maximum remote

capacity for overloaded racks. We can show that in the absence of Bu, the

number of tasks in L∗Hu that are served rack-locally or remotely vanishes as

ε ↓ 0. Therefore we can also show the uniform boundedness of the rack-local

sub-queue lengths of Hu.

(Theorem 4.5.) In order to obtain a lower bound on E
[
Φ(ε)

]
, we construct a

single server system Ψ(ε)(t) with an arrival process
{∑

L̄∈LBo
A

(ε)

L̄
(t), t ≥ 0

}
and a service process {b(ε)(t), t ≥ 0}, which defined as follows:

b(ε)(t) =
∑
i∈Bo

Xi(t) +
∑
j∈Ho

Yj(t) +
∑
n∈Hu

Vn(t), (4.13)

where {Xi(t)}i∈Bo , {Yj(t)}j∈Ho and {Vn(t)}n∈Hu are independent and each

process is i.i.d. For all i ∈ Bo, Xi(t) ∼ Bern(α). For all j ∈ Ho, Yj(t) ∼
Bern(β(1− ρlj)), where ρlj is the proportion of time helper j spends on local
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tasks in steady state. For all n ∈ Hu, Vn(t) ∼ Bern(γ(1 − ρn)), where

ρn is the proportion of time helper n spends on local and rack-local tasks in

steady state. We denote Var(b(ε)(t)) by (ν(ε))2, which converges to a constant

ν2 as ε ↓ 0. The definition of Xi, Yj and Vn is such that E
[∑

i∈Bo Xi(t)
]
,

E
[∑

j∈Ho Yj(t)
]

and E
[∑

n∈Hu Vn(t)
]

are the maximum amount of local,

rack-local and remote services that can be provided for
∑

L̄∈LBo
A

(ε)

L̄
(t). Then

in steady state, Φ(ε)(t) is stochastically smaller than Ψ(ε)(t). Using Lemma 4

in [59], we can obtain a lower bound on E
[
Ψ(ε)

]
.

(Theorem 4.6.) We consider the Lyapunov function

F⊥(Z) = ‖W⊥‖.

We can show that the drift of F⊥(Z) is always finite and becomes negative for

sufficiently large F⊥. According to Lemma 3.6, all moments of F⊥(Z) exist

and are finite. The main challenge is to show that the ideal load decompo-

sition
{
λ∗
L̄,n,m

}
satisfies: ∀L̄ ∈ LBo , ∀m ∈ {i ∈ M|i ∈ L̄, or i ∈ Hu, or i ∈

L̄k ∩ Ho},
∑

n∈L̄ λ
∗
L̄,n,m

≥ κ, where κ is a positive constant independent of

ε. That is, each task type only local to Bo receives service from all of its

local servers, rack-local servers in Ho and remote servers in Hu. A crucial

step to bound the drift of F⊥(Z) is to use the ideal load decomposition as an

intermediary.

(Theorem 4.7.) We obtain an upper bound on E
[
Ψ(ε)

]
by bounding E

[
‖c̃‖〈c, Q̃〉

]
,

where Q̃ = (Q̃1, Q̃2, · · · , Q̃M),

Q̃m =


Qrm
γ
, ∀m ∈ Hu

Qkm
β

+ Qrm
γ
, ∀m ∈ Ho

Qlm
α

+ Qkm
β

+ Qrm
γ
, ∀m ∈ Bo

The corresponding dynamics is given by

Q̃(t+ 1) = Q̃(t) + Ã(t)− S̃(t) + Ũ(t),

where Ã, S̃ and Ũ are defined in the same way as Q̃.

We consider the Lyapunov function G||(Z) =
∥∥∥Q̃||∥∥∥2

, where Q̃|| is the

parallel component of the vector Q̃ with respect to the direction c. Note

that the drift of G||(Z) is zero in steady state. However, since the service
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rate of each server varies with the task type and depends on the status of its

three sub-queues, the terms related to service in the drift of G||(Z) cannot

be bounded directly. In addition, tasks arrivals of types such as L∗Hu ∪ LHo
also depend on Q̃, which makes the terms difficult to bound. Similar to the

proof of Theorem 3.5 on upper bound in Chapter 3, we construct a series of

ideal arrival and service processes to solve this problem. This allows us to

rewrite the dynamics of Q̃, and bound the terms using Lemma 8 in [59].

4.6 Evaluation

We compare the performance of balanced-Pandas with the JSQ-MaxWeight

algorithm and Pandas presented in Chapter 3 via simulation. We consider a

continuous-time system of 10 racks, where each rack consists of 50 servers.

Tasks arrive at the system according to a Poisson process. The service rates

for local, rack-local and remote tasks are α = 1, β = 0.9 and γ = 0.5, respec-

tively. So the mean slowdown of remote tasks is 2, which is consistent to the

measurements in [12]. We consider exponential service time distribution for

each task.

The task type is designated at arrival. For each task, a set of three servers

are chosen to be its local servers according to the distribution of requested

data in the system. We consider two cases:

1. Distribution-1. All the datasets requested by the incoming traffic are

distributed uniformly in a subset ofB servers, which co-locate at a subset ofR

racks. This simulates the special traffic scenario where the JSQ-MaxWeight

algorithm achieves heavy-traffic optimality. Here we report the results for

R = 5 and B = 50 ∗ 5. That is, the set of three local servers for each task are

sampled uniformly randomly from all servers.

2. Distribution-2. At each task arrival, with probability σ1, the task samples

a set of three servers uniformly randomly from a subset of N1 servers in

the first rack; with probability σ2, it samples uniformly from a subset of N2

servers in the second rack; with probability 1 − σ1 − σ2, it samples from all

other M−N1−N2 servers. We choose σ1 = 0.2, N1 = 10, σ2 = 0.06, N2 = 25.

This simulates the traffic with four types of servers when the mean arrival

rate is large. In particular, the first rack becomes overloaded with the N1

servers as Bo, the other 50−N1 servers as Ho; the N2 servers in the second
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rack become Bu; all the other servers in the system become Hu.
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Figure 4.5: Capacity regions with distribution-2.

Figure 4.5 compares the stability regions for JSQ-MaxWeight, the Weighted-

Workload algorithm and the priority algorithm. The x-axis shows the mean

arrival rate, λ ≡
∑

L̄ λL̄/M, and the y-axis shows the mean completion time

for all tasks. A drastic increase in completion time indicates that an algo-

rithm is close to its critical load. For distribution-2, we can compute the

capacity region λ < 0.9027. Observe that both the balanced-Pandas algo-

rithm and JSQ-MaxWeight are stable for λ < 0.9027, hence are throughput-

optimal. However, Pandas becomes unstable at λ ' 0.83. This shows that

maximizing the amount of tasks served locally can lead to instability at a

much lower load than the full capacity.
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(a) Distribution-1
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Figure 4.6: Mean task completion time.

Figure 4.6 compares the delay performance of JSQ-MaxWeight and balanced-

Pandas and Pandas at high load. With distribution-1, both algorithms

achieve heavy-traffic optimality. Figure 4.6(a) shows that balanced-Pandas

has similar performance as JSQ-MaxWeight. With distribution-2, however,

balanced-Pandas achieves up to 4-fold improvement over JSQ-MaxWeight

algorithm at high load. The balanced-Pandas algorithm is shown to be

heavy-traffic optimal for all traffic scenarios. The significant improvement
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of balanced-Pandas over JSQ-MaxWeight at high load in Fig. 4.6(b) shows

that JSQ-MaxWeight is not heavy-traffic optimal for all traffic scenarios.

4.7 Conclusion

In this chapter, we studied the scheduling problem with multi-level data-

locality. We studied an extension of the JSQ-MaxWeight algorithm to three

locality levels. We have shown that the JSQ-MaxWeight is throughput opti-

mal but only heavy-traffic optimal for a special traffic scenario. We proposed

an algorithm called balanced-Pandas that uses weighted workload routing

and priority service. Balanced-Pandas is shown to be throughput optimal,

and achieves heavy-traffic optimality for general traffic scenario.
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CHAPTER 5

RESOURCE ALLOCATION FOR VMS

In this chapter, we consider cloud computing systems that provide infrastruc-

ture as a service (IaaS). Cloud users submit requests for computing resource

in the form of virtual machines (VMs). The resource allocation problem for

VMs is a stochastic bin-packing problem [63, 64], but with VMs terminat-

ing after an application has completed. This motivates the model with jobs

arriving and departing the system, which was first considered in [26] and

is referred to as a service model in [28]. Some recent work along this line

focuses on improving resource utilization with different packing algorithms

[65, 31]. Some other recent work studies this problem with different perfor-

mance objectives, including maximizing system throughput [26], minimizing

heavy-traffic queue lengths [32], and minimizing the total energy consump-

tion [66].

In this chapter, we are interested in zero-delay service, i.e., a VM is served

immediately upon arrival. This model is motivated by the fact that when

users submit VM requests to a cloud computing system, any request that is

not immediately fulfilled is typically rejected [4]. Therefore, we consider a

loss model and focus on the blocking probability, i.e., the probability that an

arriving job does not find the required amount of resource at the server, in

contrast to the models in [26, 28]. Some recent work [33, 28, 67] also studies

zero-delay service. However, their performance objective is to minimize the

number of servers occupied, which is different from ours. In particular, they

consider the case of infinite number of servers, while we consider finite number

of servers and study the blocking probability in the limit as the number of

servers goes to infinity.

In our model, we consider one-dimensional packing constraint for the re-

quests of resources. While VM requests can be modelled as multi-dimensional

bin-packing, it has been observed that memory is the dominating bottle-

neck [65]. Due to the large size of a cloud computing system, we consider
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asymptotic blocking probability as N →∞.

We consider the power-of-d-choices routing algorithm for this system. An

arriving job is routed to the server with the largest amount of available

resource among d ≥ 2 randomly chosen servers. When none of the chosen

servers has enough resource to accommodate the job, it is rejected. Our goal

here is to study the asymptotic blocking probability of the power-of-d-choices

routing algorithm.

With respect to the power-of-d-choices algorithm, Azar et al. [68] were the

first to analyze randomized load balancing schemes using a balls-and-bins

model. Another line of work focuses on the queueing systems [69, 70, 71,

72, 73, 74, 75, 76]. In particular, a supermarket model has been used widely

to analyze the randomized load balancing schemes. Vvedenskaya et al. [71]

and Mitzenmacher [69] showed that when each arriving job is assigned to the

shortest d ≥ 2 randomly chosen queues, the equilibrium queue sizes decay

doubly exponentially in the limit as the number of servers goes to infinity.

This is a substantial improvement over the d = 1 case, where the queue size

decays exponentially. While the work in [77] does not address power-of-d

choices routing directly, similar analytical techniques have been used there

to study the impact of resource pooling in large server farms. However, to the

best of our knowledge, the performance of the power-of-d-choices algorithm

(d ≥ 2) for a loss model has not been studied previously. Related work has

also been done in parallel with our work in [78].

The rest of this chapter is organized as follows. We first state the precise

model and main results. The proofs of these main results will be deferred

to later sections. We study the loss model under the power-of-d-choices

algorithm (d ≥ 2) for the case when jobs are homogeneous, i.e., all jobs are

of the same type. In particular, we justify the use of fluid approximation

of sufficiently large finite systems. We then develop an upper bound for the

stationary point of the fluid model and analyze the blocking probability in

two different limiting regimes. We then extend our analysis to the case with

heterogeneous jobs based on an independence ansatz.

Note on notation: We will use bold letters to denote vectors in RB or NJ

or NJ×N , and ordinary letters for scalars. Dot product in the vector spaces

RJ is denoted by 〈x,y〉.
Let N+ be the set of non-negative integers. The following notations will
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be used throughout this chapter:

C ,

{
n ∈ NJ

+ :
J∑
j=1

njbj ≤ B

}
,

Q(N) , {Q = {n1,n2, ...,nN} : nm ∈ C,∀m = 1, 2, ..., N} ,

S ,
{
s ∈ [0, 1]B+1 : 1 = s0 ≥ s1 ≥ ... ≥ sB ≥ 0

}
,

S(N) ,

{
s ∈ S : si =

Ki

N
, for some Ki ∈ N+,∀i

}
,

P ,

p ∈ R|C| :
|C|∑
i=1

pi = 1, pi ≥ 0, ∀i

 .

And we will use the following notation for asymptotic comparisons; here

f and g are positive functions:

1. f(x) . g(x) for f(x) = O(g(x)), and f(x) & g(x) for f(x) = Ω(g(x)).

2. f(x) ∼ g(x) for lim
x→∞

f(x)
g(x)

= 1.

5.1 Problem Statement and Main Results

We consider a system with N servers, each of which has B units of a resource,

such as CPU, memory, etc. This system is accessed by J different types

of jobs, where each type of job is characterized by the number of units of

resource that it demands. Jobs of type j arrive according to a Poisson process

of rate Nλj, each type-j job requests bj units of the resource, and each job

stays in the system for an exponentially distributed amount of time with

mean 1. We use b = (b1, b2, ..., bJ) to denote the vector of resource units

required by different job types. The arrival processes of the different job

types and the job holding times are all independent of each other. Let λ =∑J
j=1 λjbj denote the total traffic intensity.

Each arriving job is routed to a server according to a routing policy and

requires zero-delay service. If the selected server has sufficient resource to

accommodate the arriving job, the job will be processed immediately. Oth-

erwise the job is blocked, i.e., it leaves the system immediately without being

served.
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For each server m, let nj,m(t) denote the number of type-j jobs that the

server is serving at time t. We use

nm(t) = (n1,m(t), n2,m(t), ..., nJ,m(t))

to denote the state of server m. Note that nm is feasible only if server m has

enough resource to accommodate all these jobs. That is,

J∑
j=1

nj,mbj ≤ B.

We consider two cases separately: J = 1 which we call the homogeneous job

case and J > 1 which we call the heterogeneous job case. In the homogeneous

case, we assume without loss of generality that b1 = 1, i.e., all jobs require

one unit of resource.

Our goal is to study the blocking probability of the power-of-d-choices

routing: under this routing scheme, upon each job arrival, d servers are

selected uniformly at random and the job is routed to the least loaded of

the servers (the one with the least amount of resource used). If none of

the selected servers has sufficient amount of resource, then the arriving job

is blocked and lost. The performance in the case d = 1 is fundamentally

different from the cases where d > 1. Therefore, we study these two cases

separately. In the case of d = 1, since we are routing an arrival to a randomly

selected server, we will call this scheme the random routing scheme. We will

reserve the use of the term power-of-d-choices routing to the case where

d > 1.

Next, we present the main results of this chapter, for the homogeneous job

case first followed by the heterogeneous job case.

5.1.1 Homogeneous Jobs

Before we present our main results, we introduce some notation. Consider

a system with N servers. Let S
(N)
k (t) denote the fraction of servers with

at least k jobs in service at time t. The Markov process {S(N)(t), t ≥ 0} is

positive recurrent, and then has a unique equilibrium distribution, denoted

by π(N). We will approximate π(N) by the unique invariant measure of the
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following fluid model in a manner which will be made precise later.

Definition 5.1. (Fluid Model). Given any initial condition s0 ∈ S, a func-

tion s(t) : [0,∞)→ S is said to be a solution to the fluid model if:

1. s(0) = s0;

2. s0(t) = 1 for any t ≥ 0;

3. s(t) satisfies the following differential equations for any t ≥ 0:

dsk(t)

dt
=

{
λ(sdk−1 − sdk)− k(sk − sk+1), 1 ≤ k ≤ B − 1

λ(sdB−1 − sdB)−BsB, k = B.
(5.1)

Equation (5.1) can be written as

ṡ(t) = F(s),

where

Fk(s) =

{
λ(sdk−1 − sdk)− k(sk − sk+1), 1 ≤ k ≤ B − 1

λ(sdB−1 − sdB)−BsB, k = B.

The k-th function Fk(s) is the drift of sk at point s(t). The stationary point

of the differential equation (5.1), denoted by π, satisfies

F(π) = 0. (5.2)

The following theorem presents the main convergence result (in the limit

N →∞) for the homogeneous job case.

The Markov process {S(N)(t), t ≥ 0} is positive recurrent, and then has a

unique stationary probability measure. We use

Theorem 5.1. For any N, the Markov process S(N)(t) is positive recurrent,

thus it has a unique equilibrium distribution π(N). Then the sequence π(N)

converges weakly to δπ, where π is the unique stationary point of the fluid

model (i.e. F(π) = 0), and δπ is the Dirac measure concentrated on π. That

is,

lim
N→∞

π(N) = δπ, in distribution.
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Due to the convergence result above and due to the Poisson nature of

the arrival process, πdB is a good approximation to the blocking probability

experienced by arriving jobs, denoted by P
(N)
b , in a system with N servers.

This is due to the fact that

P
(N)
b = E

[
(S

(N)
B )d

]
.

From Theorem 5.1, we can approximate P
(N)
b by πdB when N is sufficiently

large.

While π can be computed recursively from Eq. (5.2), we provide a closed-

form expression which provides an upper bound on πB for all values of λ and

B for the case d ≥ 2. This upper bound is useful later to understand the

striking performance difference between the cases d = 1 and d > 1.

Theorem 5.2. (Upper bound) Let π denote the stationary point of the fluid

model. Define {π̄k}Bk=0 as follows:

π̄k =

 1, 0 ≤ k ≤ i0 + 1

λ
dk−i0−1−1

d−1

(k−1)(k−2)d
1 ···(i0+1)d

k−i0−2 , i0 + 1 < k ≤ B.
(5.3)

where i0 = bλc.
Then π̄ is an upper bound for π, i.e., for any 0 ≤ k ≤ B,

π̄k ≥ πk.

Note that in the case d = 1, since we are randomly selecting a server, by

the property of Poisson processes, the blocking probability is given by the

well-known Erlang-B formula for M/M/B/B systems:

B(B, λ) =
λB/B!∑B
k=0(λk/k!)

. (5.4)

Comparing equations (5.3) and (5.4), we can see that the blocking proba-

bility goes to zero faster in the case of d ≥ 2, compared to that for d = 1.

To provide further insight into the blocking probability Pb in the case of

d ≥ 2, we consider two limiting regimes: (i) B−λ√
λ
→ α as B → ∞ and (ii)

B−λ
logd λ

→ β as B → ∞. We call the former the heavy-traffic regime and
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the latter the critically-loaded regime. The heavy-traffic has been studied

extensively in the context of M/M/B/B and G/G/B/B systems [79, 80, 81].

Theorem 5.3. Let λ < B and λ
B
→ 1 as B →∞, then

πB . (e−
c2

2 )
(B−λ)2

λ
d(1−c)(B−λ)−1

, (5.5)

where c is an arbitrary constant satisfying 0 < c < 1.

In particular,

1. If B−λ√
λ
→ α as B →∞, where α > 0, then

logd log
1

Pb
& ((1− c)α + o(1))

√
λ.

That is, the blocking probability decays doubly exponentially in
√
λ.

2. If B−λ
logd λ

→ β as B → ∞, where β > 1, then there exists a constant

γ = (1− c)β − 1 > 0 such that

log
1

Pb
& λγ+o(1).

That is, the blocking probability decays exponentially in λγ.

Remark. Theorem 5.3 shows that the fluid limit of the equilibrium blocking

probability is dominated by an asymptotic upper bound, which exhibits very

different behavior depending on the relationship between λ and B as B goes

to infinity. In particular, if B−λ√
λ
→ α, the upper bound is doubly exponential

in
√
λ and if B−λ

log λ
→ β, β > 1, the upper bound is exponential in λη. This is

in contrast with the result for random routing, where the blocking probability

scales as O( 1√
λ
) even if B−λ√

λ
→ α.

Numerical Results: Figure 5.1 shows the blocking probability for the

power-of-two-choices algorithm with B − λ =
√
λ and B − λ = 2 log λ,

both by solving Eq. (5.2) numerically and by simulating a finite system with

N = 1000. Note that the y-axis is in log scale. We can see that even for

small B, the blocking probability Pb exhibits qualitatively different behavior

in these two regions: with log λ load gap, Pb decays exponentially; while for√
λ load gap, Pb decays much faster. For B = 30, Pb is of order 10−15 with√
λ load gap. It requires very long simulation time to observe a blocking
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Figure 5.1: Blocking probability for the power-of-two-choices algorithm with

different load gap. Line curves are obtained by solving Eq. (5.2) numerically.

Markers are from simulations with N = 1000.

event. We simulated around 1010 arrivals and no job blocking was observed

for B ≥ 30.

To extend the results in this section to the heterogeneous job case, we

present a well-known alternative viewpoint of the derivation of π. Suppose

we assume that, in steady-state, the servers become independent of each other

and due to symmetry, the tail of the equilibrium queue-size distribution at

each server is given by π. In this case, let us focus on a particular server,

say server 1, and write down the Markov chain corresponding to the number

of jobs in the server. To describe the transition rate of this Markov chain,

suppose that the server has k jobs currently in service. Then, the arrival rate

of jobs to this server (call it qk) is Nλ times the probability that an arriving

job selects this server. It is easy that qk is given by

qk = Nλ× d

N
×

(
d∑
i=1

1

i

(
d− 1

i− 1

)
(πk − πk+1)i−1(πk+1)d−i

)

= λ

(
πdk − πdk+1

πk − πk+1

)
.

Thus, the Markov chain can be represented by the transition diagram in

Figure 5.2. It is now easy to see that the steady-state distribution of this

Markov chain is given by Eq. (5.2). This independence ansantz will be used

in the next section to derive blocking probability results for the heterogeneous

job case.
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Figure 5.2: State-transition-rate diagram for server 1 with B units of resource

and homogeneous job arrivals.

5.1.2 Heterogeneous Jobs

We use the independence ansatz in the previous subsection as follows. Con-

sider a particular server, say server 1, and let n = (n1, ..., nJ) be the number

of jobs of different types in this server. Let {pn}n∈C denote the asymptotic

equilibrium distribution for server 1. Then pn is also the asymptotic fraction

of servers in state n.

Under the asymptotic independence assumption, the arrival process of type

j jobs to server 1 is a state-dependent Poisson process with rate λj(n), which

is given by

λj(n) = λj

(
d∑
i=1

(
d

i

)
Ei−1

n Gd−i
n

)
, (5.6)

where

En =
∑
n̂∈C

〈n̂,b〉=〈n,b〉

pn̂ , Gn =
∑
n′∈C

〈n′,b〉>〈n,b〉

pn′ .

Let Bj = bB
bj
c denote the maximum number of type-j jobs that a server

can serve simultaneously. In the case of two job types, the Markov chain

is shown in Figure 5.3. However, it is difficult to analyze the equilibrium

distribution of this Markov and obtain a simple expression for the blocking

probability. Therefore, we study a one-dimensional recursion as in [82] and

[83].

Theorem 5.4. The tail distribution r of the number of occupied resource
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Figure 5.3: State-transition-rate diagram for server 1 with B units of resource

and two types of jobs arrivals.

units satisfies the following equation for any k = 0, 1, ...., B:

J∑
j=1

λjbj(r
d
k−bj − r

d
k−bj+1) = k(rk − rk+1), (5.7)

where rx = 1 for any x ≤ 0 and rB+1 = 0.

As for the blocking probability, we obtain analogous results as for homo-

geneous jobs. Let b = max
j=1,...,J

bj, and denote the blocking probability for jobs

of type j by Pbj . We have the following theorem.

Theorem 5.5. Let λ < B and λ
B
→ 1 as B →∞,

rB−b+1 . (e−
c2

2 )
(B−λ)2

bλ
d(1−c)(B−λ

b
)−1

, (5.8)

where c is an arbitrary constant satisfying 0 < c < 1.

In particular,

1. If B−λ√
λ
→ α as B →∞, where α > 0, then

logd log
1

Pbj
& ((1− c)α

b
+ o(1))

√
λ,

∀j ∈ {1, 2, ..., J}. That is, for any type of jobs, the blocking probability
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decays doubly exponentially in
√
λ.

2. If B−λ
logd λ

→ β as B → ∞, where β > b, then there exists a constant

η = (1− c)β
b
− 1 > 0 such that

log
1

Pbj
& λη+o(1),

∀j ∈ {1, 2, ..., J}. That is, for any type of jobs, the blocking probability

decays exponentially in λη.

The results in this section are derived under the independence ansatz.

The existing technique to establish asymptotic independence depends on

monotonicity, which does not hold for our problem. Although we do not have

the tools to prove the ansatz without monotonicity, we believe that it is true

in terms of the random nature of power-of-d-choices algorithm. Alternatively,

one can use the fluid approximation: first show convergence of the stochastic

system to a differential equation, then show that the differential equation

has a unique stationary point to which it converges starting from any initial

condition, and finally prove certain tightness results. We have done all of this

for the homogeneous case in the next section. In the heterogeneous case, we

only have partial results: we can prove convergence to a differential equation

and also show that Eq. (5.7) is one of the stationary points of the differential

equation. The rest of the steps need to be verified.

5.2 Convergence Results for Homogeneous Jobs

In this section, we focus on the convergence results that justify the approx-

imation of the sample paths S(N)(t) of sufficiently large systems using the

solution s(t) to the fluid model. Before showing the convergence results

rigorously, we introduce some notation for system state and provide some

interpretation of the fluid model defined in Section 5.1.1.

5.2.1 Preliminaries

Fix the number of servers N . With homogeneous jobs, system state can

be represented by Q(N)(t) = (n
(N)
1 (t), n

(N)
2 (t), ..., n

(N)
N (t)), where n

(N)
m (t) is
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the number of jobs in server m at time t. Under the Poisson arrivals and

i.i.d. exponential service time assumption, the process {Q(N)(t), t ≥ 0} is

Markov with state space Q(N). Note that 0 ≤ n
(N)
m (t) ≤ B as each server can

accommodate at most B jobs simultaneously. Define

S
(N)
k (t) =

1

N

(N)∑
i=1

I[k,B](n
(N)
i (t)), ∀k ∈ {0, 1, 2, ..., B},

where S
(N)
k (t) represents the fraction of servers with at least k jobs in service.

Note that S
(N)
0 (t) = 1 for all t. Since the system is fully symmetric, the

evolution of the system can be described by the process {S(N)(t), t ≥ 0},
which is also Markov. Moreover, the system is stable for any λ ≥ 0, as the

amount of resource at each server is finite and there is no extra waiting room

for arrivals. Hence the Markov process {S(N)(t), t ≥ 0} is positive recurrent,

and then has a unique equilibrium distribution π(N).

Explanation for the drift of sk(t) in Eq. (5.1): Consider a system

with N servers. We will identify the expected change in the fraction of servers

with at least k jobs in service over a small period of time of length dt.

(I). The first term corresponds to the change caused by the arrivals. When

an arriving job is assigned to a server with k − 1 jobs, S
(N)
k increases by 1

N
.

Observe that the number of servers with at least j jobs for j 6= k does not

change. Thus S
(N)
k is increased by 1

N
if only if an arriving job joins a server

with k − 1 jobs. Note that the probability that all d sampled servers have

at least k − 1 jobs is sdk−1. The difference sdk−1 − sdk is the probability that

at least one of the sampled servers has k − 1 jobs. With total arrival rate

Nλ, the increment for S
(N)
k during this time period due to arrival is hence

dt×Nλ× 1
N
× (sdk−1 − sdk) = λ(sdk−1 − sdk)dt.

(II). The second term corresponds to the decrease due to the completion

of jobs. The argument is similar to that of the first term.

5.2.2 Convergence Results

We first provide an overview of the convergence results:

First we prove some properties of the fluid model. We will show that

there exists a unique solution π to the differential equations (5.1) which is

104



stationary with respect to t, i.e., F(π) = 0 (Lemma 5.1). Moreover, given

any finite initial condition, the solution to the fluid equation is unique and

converges to the stationary solution as t→∞ (Lemma 5.2).

The second step is to show that as N →∞, the evolution of process S(N)(t)

converges uniformly, over any finite time interval, to the unique solution of

the fluid model (Lemma 5.5). The result is derived by applying Kurtz’s

theorem ([84, 69]) for density dependent jump Markov processes.

The last step is to prove that the sequence of the stationary probability

measure of S(N)(t) (denoted by π(N)), concentrates at the unique stationary

point π of the fluid model as N →∞ (Theorem 5.1).

Lemma 5.1. There exists a unique solution π ∈ S of the differential equation

(5.1) that is invariant with respect to t, i.e., F(π) = 0.

Proof outline of Lemma 5.1

Existence: The stationary solution π satisfies the equation F(π) = 0. We

construct a continuous mapping G : S → S, such that a fixed point of G is

a solution to F(π) = 0. By Brouwer Fixed Point Theorem, G has at least

one fixed point, i.e., there exists π ∈ S such that F(π) = 0.

Uniqueness: We prove the uniqueness of stationary solution by contradic-

tion and induction. First we show that if there exist two stationary solutions

π and π̂ satisfying πB = π̂B, then πk = π̂k for any k. Therefore if there exist

two different solutions π and π̂, πB 6= π̂B. Assume πB < π̂B, by induction,

we can show that πk < π̂k for any k = 0, 1, ..., B, which contradicts with the

fact that π0 = π̂0 = 1.

Lemma 5.2. Given any initial condition s0 ∈ S,

1. the fluid model has a unique solution s(s0, t) in S,

2. as t→∞, the solution s(s0, t) converges to the unique stationary solu-

tion π.

We need the following lemmas to prove Lemma 5.2. The proofs of Lemma

5.3-5.4 are provided in the Appendix C.

Lemma 5.3. Let s̄(t) and s(t) be the solutions to differential equations (5.1)

with initial condition s̄0 and s0 respectively. If s̄0
k ≤ s0

k for k = 1, 2, ..., B,

then s̄k(t) ≤ sk(t) for any t ≥ 0.
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Lemma 5.4. Let ψ(t) =
∑B

k=0 |sk(t) − πk|, where s(t) is the solution to

differential equations (5.1) with initial condition s0 satisfying s0
k ≥ πk for

any k (or s0
k ≤ πk for any k), then ψ(t) converges to 0 as t→∞.

Proof of Lemma 5.2. Item 1 follows by the arguments in Theorem 1.(a) of

[71]. For any initial values s0 ∈ S, define two initial conditions su and sl:

suk = max{s0
k, πk}, slk = min{s0

k, πk} for any k. Let su(t) and sl(t) denote the

solutions with initial conditions su and sl respectively. From Lemma 5.3, we

have suk(t) ≥ πk ≥ slk(t) for all t and any k. Thus it is sufficient to show that

limt→∞ |su(t)− π| = limt→∞ |sl(t)− π| = 0, where | · | is l1 norm. The result

follows directly from Lemma 5.4.

Lemma 5.5. Consider a sequence of systems with the number of servers N

increasing to infinity. Fix any T > 0. If the sequence of initial system state

{S(N)(0)}∞N=1 concentrates on some s0 ∈ S as N →∞, then

lim
N→∞

sup
t∈[0,T ]

|S(N)(t)− s(s0, t)| = 0 a.s.. (5.9)

where s(s0, t) is the solution to the differential equation (5.1) given initial

condition s0.

The following lemma is used to prove Lemma 5.5.

Lemma 5.6. The drift function F(s) is Lipschitz, i.e., there exists a constant

M > 0 such that for any x,y ∈ S,

|F(x)− F(y)| ≤M |x− y|,

where | · | is l1 norm.

Proof of Lemma 5.5. We prove this lemma by Kurtz’s theorem [84].

(a). It is easy to check that {S(N)(t), t ≥ 0} is a density dependent jump

Markov process with state space S(N).

(b). When the system is in state s, the possible transitions is given by L =

{±ek : 1 ≤ k ≤ B}, where ek are vectors with only the k−th element equal

to 1/N and all other elements zero. The transition rates are given by q
(N)
s,s+l =

Nβl(s), where βek(s) = λ(sdk−1 − sdk) and β−ek(s) = k(sk − sk+1). Therefore

the rate at which jumps occur is bounded above by λ+B everywhere.
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(c). Lemma 5.6 states that the differential equation for the limiting deter-

ministic process satisfies the Lipschitz condition.

Then the result follows by Kurtz’s Theorem.

Proof of Theorem 5.1. We will use ⇒ for weak convergence throughout the

proof. Note that set S is compact. By a corollary of Prokhorov’s theorem, for

any subsequence of {N}, there exists a subsubsequence {Nk} such that π(Nk)

converges weakly to some probability distribution π̄. By the Skorokhod’s

representation theorem, there exist a sequence of random vector {X(Nk)}
and a random vector X̄ such that

X(Nk) d
= π(Nk), X̄

d
= π̄,

and

X(Nk) a.s.−→ X̄ as k →∞.

Let S(Nk)(0) = X(Nk), i.e., start the system with Nk servers at an initial

condition specified by its stationary distribution. We use S̄(t) to denote the

random state of the dynamic system with initial condition X̄.

We have the following claim:

Claim 1: For any t ≥ 0,

S(Nk)(t)⇒ S̄(t) as k →∞.

Then the result follows from the arguments in Theorem 5.1 of [85]. We

present it here for completeness. Since S(Nk)(t) was started at the steady-

state distribution π(Nk),

S(Nk)(t)
d
= π(Nk), for all t.

Thus, Claim 1 implies that the distribution of S̄(t) is independent of time t,

i.e., π̄ represents an invariant distribution of the dynamic system S̄(t). On

the other hand, the solution to the ODE for any initial condition converges

to a unique fixed point π. Therefore, the invariant measure π̄ concentrates

at the fixed point π. That is, π̄ = δπ. Hence

π(Nk) ⇒ δπ.
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So every convergent subsequence of {π(N)} converges weakly to δπ. Therefore

π(N) ⇒ δπ by a corollary of Prohorov’s theorem.

Remark. Lemma 5.5 and Theorem 5.1 state that the behavior of sufficiently

large systems can be approximated by that of the deterministic infinite sys-

tem, which is described by a system of differential equations defined in Eq.

(5.1).

0 25 50
0

0.2

0.4

0.6

0.8

1
λ=10

k

π
k

Numerical
Simulation

0 25 50
0

0.2

0.4

0.6

0.8

1
λ=25

k
0 25 50

0

0.2

0.4

0.6

0.8

1
λ=45

k

Figure 5.4: Equilibrium tail distribution for the power-of-two-choices algorithm

with B = 50 at three different loads. The values for the stationary point are

obtained numerically by solving Eq. (5.2). Simulation results are from a finite

system with N = 500.

Numerical Result. Figure 5.4 shows the equilibrium tail distributions of

the number of jobs at a server under the power-of-two-choices algorithm with

B = 50 at three different loads, both by solving Eq. (5.2) numerically and

by simulating a finite system with N = 500. We can see that the coincidence

of the empirical distribution with the stationary point is almost exact. That

is, values of the stationary point in the large system limit predict that of a

finite system very well.

5.3 Asymptotic Blocking Probability for Homogeneous

Jobs

In this section, we focus on the asymptotic blocking probability of power-

of-d-choices routing algorithm with homogeneous jobs. We first develop an

explicit upper bound for the blocking probability and then analyze the block-

ing probability in two limiting regimes.
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5.3.1 An Upper Bound

Unlike the supermarket model operating under the power-of-d-choices policy

[69, 71], there is no explicit expression for the stationary point π of the loss

model. We establish an explicit upper bound for π. Observe that the pro-

posed upper bound π̄ (defined in Eq. (5.3)) can be expressed by a recursive

formula as follows:

π̄k =

{
1, 0 ≤ k ≤ i0 + 1

λ
k−1

π̄dk−1, i0 + 1 < k ≤ B,

where i0 = bλc.

Proof of Theorem 5.2:. We complete the proof in two steps.

(i) First we show that πk ≤ λ
k
πdk−1 for 1 ≤ k ≤ B by backward induction.

The inequality holds for k = B:

πB −
λ

B
πdB−1 = − λ

B
πdB ≤ 0.

Assume that πk+1 ≤ λ
k+1

πdk hold for k + 1 ≤ B. Then

πk −
λ

k
πdk−1 = πk+1 −

λ

k
πdk ≤ πk+1 −

λ

k + 1
πdk ≤ 0.

Hence πk ≤ λ
k
πdk−1, ∀k = 1, 2, ..., B.

(ii) Next we prove the theorem by induction.

For any k ≤ i0 + 1, π̄k = 1 ≥ πk. Assume that π̄k ≥ πk hold for some

k ≥ i0 + 1. Then

π̄k+1 =
λ

k
π̄dk ≥

λ

k
πdk ≥

λ

k
πdk + πk −

λ

k
πdk−1 = πk+1,

where the first inequality comes from the assumption and the second one

follows by the property of π we just proved.

Figure 5.5 compares the equilibrium tail distribution of the stationary

point and the proposed distribution π̄ with B = 50 at three different loads.

We can see that the upper bound always holds. Moreover, the proposed

distribution characterizes the steep slope of the stationary point, i.e., πk

decreases drastically from 1 to 0 at some k.
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Figure 5.5: An upper bound for the stationary point.

Since the performance measure of primary interest is the blocking prob-

ability Pb, we are interested in the tightness of the upper-bound blocking

probability.

Table 5.1: The blocking probability for the power-of-two-choices policy with
B = 50 at different load.

ρ = λ/B Fluid limit Upper bound

0.6 0 0
0.8 0 4.508× 10−27

0.84 0.0000 7.003× 10−7

0.88 1.873× 10−25 0.0426
0.9 5.229× 10−13 0.2419
0.92 8.240× 10−7 0.5535
0.94 7.854× 10−4 0.8122

Table 5.1 compares the upper-bound blocking probability and values of the

stationary fluid limit under the power-of-two-choices policy with B = 50 at

different loads. The values given by the upper bound are quite close to that

of the stationary fluid limit at low to medium load. With B fixed, as the

load increases towards 1, the gap increases. We have seen that the proposed

upper bound resembles a shift of the stationary fluid limit from Fig. 5.5.

At high load, the upper bound shifts too much that the resulting bound for

blocking probability becomes loose. However, if we fix the load ρ = λ
B

for

the system, we can see that the upper bound blocking probability π̄dB decays

to 0 as B increases. This implies that the upper bound becomes tight for

sufficiently large B.
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5.3.2 Proof of Theorem 5.3

We devote this section to the proof of Theorem 5.3. We begin by proving

the following lemma.

Lemma 5.7. Let λ < B and λ
B
→ 1 as B → ∞. If k

B−λ → θ as B → ∞,

where θ is a constant satisfying 0 ≤ θ < 1, then

λB−i0−k · i0!

(B − k)!
∼ e−

(1−θ)2(B−λ)2

2λ , (5.10)

where i0 = bλc.

Proof. By Stirling’s formula, we have

λB−i0−k · i0!

(B − k)!
∼ λB−i0−k

√
2πi0 · ( i0e )i0√

2π(B − k) · (B−k
e

)B−k

∼
√

i0
B − k

· eB−k−λ
(

λ

B − k

)λ
·
(

λ

B − k

)B−k−λ
∼ eB−k−λ

(
λ

B − k

)λ
·
(

λ

B − k

)B−k−λ
. (5.11)

Define ∆ = B − λ. Note that λ/∆→∞ as B →∞. And (B − k − λ) ∼
(1− θ)∆. Then we have(

λ

B − k

)B−k−λ
∼

(
λ

λ+ (1− θ)∆

)(1−θ)∆

∼
(

1 +
(1− θ)∆

λ

)−(1−θ)∆

∼

[(
1 +

(1− θ)
λ/∆

)−λ/∆]−(1−θ) ∆2

λ

∼ e−(1−θ)2 ∆2

λ . (5.12)
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Now consider the first two terms in Eq. (5.11).

log

(
eB−k−λ

(
λ

B − k

)λ)

∼ (1− θ)∆− λ log

(
1 +

(1− θ)∆
λ

)
∼ (1− θ)∆− λ

(
(1− θ)∆

λ
− 1

2

(
(1− θ)∆

λ

)2

+ o(λ)

)

∼ (1− θ)2∆2

2λ
+ o(1).

That is,

eB−k−λ
(

λ

B − k

)λ
∼ e

(1−θ)2∆2

2λ . (5.13)

Equations (5.12)-(5.13) yield the asymptotic approximation in Eq. (5.10).

Proof of Theorem 5.3. From Theorem 5.2, it is sufficient to show that the

upper bound π̄B defined in (5.3) satisfies Eq. (5.5). We establish this result

using Lemma 5.7. We can write π̄B as

π̄B =

(
λB−i0−1 · i0!

(B − 1)!

)
·
(
λB−i0−2 · i0!

(B − 2)!

)(d−1)·d0

·
(
λB−i0−3 · i0!

(B − 3)!

)(d−1)d

· · ·
(

λ · i0!

(i0 + 1)!

)(d−1)dB−i0−3

. (5.14)

Note that each term within the bracket in Eq. (5.14) is no greater than 1.

We can obtain an upper bound for π̄B by discarding some terms in Eq. (5.14).

In particular, consider keeping the first m terms, where m = (1− c)(B − λ),

c is an arbitrary constant satisfying 0 < c < 1. From Lemma 5.7, each term

we keep here can be approximated by using Eq. (5.10). Define ∆ = B − λ.
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Then we have

π̄B ≤
(
λB−i0−1 · i0!

(B − 1)!

)
·
(
λB−i0−2 · i0!

(B − 2)!

)(d−1)d0

· · ·
(
λB−i0−m · i0!

(B −m)!

)(d−1)dm−2

∼ e−
∆2

2λ [(1− 1
∆

)2+(1− 2
∆

)2·(d−1)+···+(1−m
∆

)2·(d−1)dm−2]

. e−
c2∆2

2λ
·dm−1

=
(
e−

c2

2

)∆2

λ
·d(1−c)∆−1

.

We complete the proof for Eq. (5.5). As discussed in Section 5.1.1, we

have Pb = πdB. Thus,

Pb .
(
e−

c2

2

)∆2

λ
·d(1−c)∆

.

Now we can study the blocking probability with various load gap by ana-

lyzing the exponent c2

2
∆2

λ
· d(1−c)∆.

1. B−λ√
λ
→ α: we have:

logd log
1

Pb
& 2 logd ∆− logd λ+ logd

c2

2
+ (1− c)∆

∼ ((1− c)α + o(1))
√
λ.

2. B−λ
logd λ

→ β: As β > 1 and 0 < c < 1 is an arbitrary constant, we can

select c to make γ = (1− c)β − 1 > 0. Then we have:

logd log
1

Pb
& ((1− c)β − 1) logd λ+ 2 logd log λ+ o(1)

∼ (γ + o(1)) logd λ.

Hence

log
1

Pb
& λγ+o(1).
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5.4 Heterogeneous Jobs

In this section, we focus on the heterogeneous job case. In particular, we

will employ the ansatz in [72], which asserts that in equilibrium, any finite

set of queues in a randomized load balancing system become asymptotically

independent as the number of queues goes to infinity. This will allows us

to derive the equilibrium distribution by studying a single server, which has

state-dependent Poisson arrivals.

5.4.1 Independence Ansatz

The asymptotic independence for a supermarket model operating under the

power-of-d policy with exponentially distributed service time was established

by Graham [73] using the propagation of chaos approach. And the indepen-

dence ansatz for general service time distributions was demonstrated in [72].

A key step of the existing approaches involves standard coupling to establish a

monotonicity property for the supermarket model, which is essential to prov-

ing the independence ansatz. The monotonicity property states that there

exists a coupling such that the evolution of a system with any non-zero ini-

tial condition stochastically dominates the evolution of the same system with

the all-zeros initial condition. The monotonicity argument is used to demon-

strate uniform convergence, i.e., the distance between the two evolutions of

the system monotonically decreases with time. This ensures convergence of

the system under the arbitrary initial condition to the limiting equilibrium

distribution.

We found that it is difficult to establish the independence ansatz using such

approach as the loss model with the power-of-d policy does not satisfy the

monotonicity property. Consider two copies X1(·) and X2(·) of the loss model

under the power-of-d policy. And assume element-wise dominance of X1(·)
over X2(·). With exponential service times, departures of the two systems

can always be coupled. The problem comes from blocking for arrivals. As an

arrival is blocked when it is assigned to a server with insufficient resource, it is

possible that jobs are blocked in the heavier-loaded system X1(·) while enter

the lighter-loaded system X2(·). This might break the dominance. Therefore

monotonicity does not hold for the loss model by standard coupling.

Justification of the independence ansatz for our model remains to be done.
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However, we believe that it is true considering the randomized nature of

power-of-d algorithms. In the following section, we derive some interesting

results under the independence ansatz.

5.4.2 Equilibrium Distribution for A Single Queue

We assume asymptotic independence for the loss model with the power-of-d

algorithm. Consider server 1 (by symmetry, any server) in the large N limit.

Under the asymptotic independence assumption, the arrival process of type

j jobs to server 1 is a state-dependent Poisson process with rate λj(n), which

is given in Eq. (5.6).

We can explain Eq. (5.6) as follows: Assume that server 1 is of state n.

When a type j job arrives at the system, it will join server 1 only if server 1

is chosen and the state n′ of any other selected server satisfies the condition

〈n′,b〉 ≥ 〈n,b〉, i.e., server 1 has the largest amount of available resource.

Note that server 1 is selected as one of the d sampled servers with probability
(N−1
d−1)
(Nd)

= d
N
. Consider the case where i − 1 out of the other d − 1 selected

servers have the same amount of available resource, i ∈ {1, 2, ..., d}. Such an

event happens with probability
(
d−1
i−1

)
Ei−1

n Gd−i
n , where En (Gn) represents the

fraction of servers with the same (larger) amount of resource occupied. As

ties are broken randomly, server 1 is selected with probability 1
i
. Hence the

probability that the arrival is routed to server 1 is given by

d∑
i=1

d

N
· 1

i
·
(
d− 1

i− 1

)
Ei−1

n Gd−i
n =

1

N

d∑
i=1

(
d

i

)
Ei−1

n Gd−i
n .

Multiplying this probability by the arrival rate of type j jobs and letting

N →∞ yield Eq. (5.6).

Note that queue 1 is a birth-death process with state-dependent arrival

and departure rates. The global balance equation is given by:[
J∑
j=1

njδ
−
j (n) +

J∑
j=1

λj(n)δ+
j (n)

]
pn

=
J∑
j=1

λj(n
−
j )δ−j (n)pn−j +

J∑
j=1

(nj + 1)δ+
j (n)pn+

j
, (5.15)

115



where

n+
j = (n1, n2, ..., nj−1, nj + 1, nj+1, ..., nJ),

n−j = (n1, n2, ..., nj−1, nj − 1, nj+1, ..., nJ),

δ+
j (n) =

{
1, if n+

j ∈ C
0, otherwise,

δ−j (n) =

{
1, if n−j ∈ C
0, otherwise.

Moreover, the local balance equation is given by

λj(n
−
j )δ−j (n)pn−j = njδ

−
j (n)pn, ∀j ∈ {1, 2, ..., J},∀n ∈ C.

Remark. We notice that if the local balance equations are satisfied, the

global balance equations are satisfied. However, we have not established that

the global balance equations have a unique solution. This is normally true for

queueing systems where the arrival rate is fixed; however, since the derivation

here follows from the independence ansantz, the arrival rate depends on p.

Thus, establishing the uniqueness of the solution to Eq. (5.15) remains to be

done.

5.4.3 One-dimensional Recursion

We are interested in the probability Pbj that an arriving job of type j is

blocked. Note that

Pbj =

∑
n∈T +

j

pn


d

, (5.16)

where T +
j = {n ∈ C : n+

j /∈ C}.
The underlying high dimension of the state n makes it difficult to obtain

the equilibrium distribution from Eq. (5.16). In order to quantify the block-

ing probability, we will use Kaufman-Roberts recursion [82, 83] to establish

a one-dimensional recursion, regardless of the dimensionality of jobs types

(Theorem 5.4). The key idea is to pay attention to the random variable

R(n) =
∑J

j=1 njbj, which denote the amount of occupied resource. We use r
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to represent the tail distribution of R(n), i.e.,

rk = Pr[R ≥ k] =
∑

n∈C:〈n,b〉≥k

pn, for k = 0, 1, ..., B.

Note that rk is also the asymptotic fraction of servers having at least k units

of resource occupied. For ease of exposition, throughout this section, we

define rx = 1 for any x ≤ 0, and rB+1 = 0.

In order to prove Theorem 5.4, we need the following lemma.

Lemma 5.8. For any j ∈ J , and k ∈ {0, 1, ..., B},

λj(r
d
k−bj − r

d
k−bj+1) = E [nj|〈n,b〉 = k] (rk − rk+1), (5.17)

where rx = 1 for any x ≤ 0 and rB+1 = 0.

Proof. Equation (5.16) can be written as :

λj(n
−
j )γj(n)pn−j = njpn, (5.18)

where

γj(n) =

{
1 if nj ≥ 1

0 if nj = 0.

For any k ∈ {0, 1, ..., B}, define Dk = {n ∈ C : k =
∑J

j=1 njbj}. Note that

for any n ∈ Dk,

En = rk − rk+1, Gn = rk+1.

Hence λj(n) depends on k = 〈n,b〉 only. Summing Eq. (5.18) over the set

Dk, we have ∑
n∈Dk

λj(n
−
j )γj(n)pn−j =

∑
n∈Dk

njpn. (5.19)
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Consider the left-hand side (LHS) of (5.19).

LHS =
∑
n∈Dk

λj(n
−
j )γj(n)pn−j

= λj
∑
n∈Dk

(
d∑
i=1

(
d

i

)
Ei−1

n−j
Gd−i

n−j

)
γj(n)pn−j

= λj
∑

n∈Dk∩{n:nj≥1}

(
d∑
i=1

(
d

i

)
Ei−1

n−j
Gd−i

n−j

)
pn−j .

Note that

Dk ∩ {n : nj ≥ 1} =

{
n ∈ C :

∑
i 6=j

nibi + (nj − 1)bj = k − bj, nj ≥ 1

}
.

Let n̂ = n−j . Then

LHS = λj
∑

n̂∈Dk−bj

(
d∑
i=1

(
d

i

)
Ei−1

n̂ Gd−i
n̂

)
pn̂

= λj

(
d∑
i=1

(
d

i

)
(rk−bj − rk−bj+1)i−1rd−ik−bj+1

) ∑
n̂∈Dk−bj

pn̂

= λj

(
d∑
i=1

(
d

i

)
(rk−bj − rk−bj+1)ird−ik−bj+1

)
= λj(r

d
k−bj − r

d
k−bj+1). (5.20)

The right-hand side (RHS) of (5.19) can be written as

RHS =
∑
n∈Dk

nj
pn

P [{n : 〈n,b〉 = k}]
P [{n : 〈n,b〉 = k}]

=
∑
n∈Dk

njP [n|〈n,b〉 =] (rk − rk+1)

= E [nj|〈n,b〉 = k] (rk − rk+1). (5.21)

Equation (5.17) follows from Eq. (5.20) and (5.21).

Proof of Theorem 5.4. Multiplying Eq. (5.17) by bj on both side and sum-
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ming over j yields

J∑
j=1

λjbj(r
d
k−bj − r

d
k−bj+1) =

J∑
j=1

bjE [nj|k] (rk − rk+1)

= E

[
J∑
j=1

bjnj|k

]
(rk − rk+1)

= k(rk − rk+1).

Remark. We can write the blocking probability for jobs of type j as

Pbj =

 ∑
n∈C:〈n,b〉>B−bj

pn

d

= rdB−bj+1.

By solving Eq. (5.7), we can obtain Pbj immediately. Compared with the

formula (5.16), the one-dimensional recursion brings a significant reduction

in computation.
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Figure 5.6: Equilibrium distribution of the number of occupied resource units

for the power-of-two-choices algorithm with B = 50 and three types of jobs,

where b = (1, 2, 4) and λj = λ/7. The values for the stationary point are

obtained numerically by solving Eq. (5.7). Simulation results are from a finite

system with N = 1000.

Numerical Results. Figure 5.6 compares the empirical distribution from

simulation of a finite system with N = 1000 with the stationary point at

three different loads. Simulation results coincide with the stationary point

very well, which also verifies the validness of independence ansatz.
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5.4.4 Upper Bound

We first establish an upper bound for the tail distribution r of the number

of occupied resource units. Let λ =
∑J

j=1 λjbj be the total traffic intensity.

We have the following theorem.

Theorem 5.6. Define {r̄k}Bk=0 as follows:

r̄k =


1, 0 ≤ k ≤ k0 + 1

1
k−1

J∑
j=1

λjbj r̄
d
k−bj , k0 + 1 < k ≤ B,

(5.22)

where k0 = bλc, r̄x = 1 for any x ≤ 0 and r̄B+1 = 0.

Let {rk}Bk=0 denote the solution to Eq (5.7). Then for any k = 0, 1, ..., B,

r̄k ≥ rk.

Proof of Theorem 5.6 is essentially the same as that of Theorem 5.2.

Lemma 5.9. Define {r̃k}Bk=0 as follows:

r̃k =


1, 0 ≤ k < b(k′0 + 2)

λ
(m−1)b

r̃dk−b, mb ≤ k < (m+ 1)b, k ≤ B,

m ∈ N and k′0 + 1 < m ≤ B
b
,

(5.23)

where b = max
j=1,...,J

bj, and k′0 = bλ
b
c

Then r̃ gives an upper bound for r̄, i.e., for any k = 0, 1, ..., B,

r̃k ≥ r̄k.

The following corollary follows immediately by Theorem 5.6 and Lemma

5.9.

Corollary 1. r̃ is an upper bound for r, i.e.,

r̃k ≥ rk,∀k = 0, 1, ..., B.

Remark. Although the upper bound r̄ has no explicit expression, the re-

cursion is straightforward and no further iterative calculation is needed here.
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Lemma 5.9 provides a further upper bound on r̄ which is used in the analysis

of the blocking probability in the heavy-traffic and critically-loaded traffic

regimes (Theorem 5.5).

5.4.5 Proof Outline of Theorem 5.5

Proof outline of Theorem 5.5. Note that b = max
j=1,...,J

bj. By the monotonicity

of the tail distribution {rk}Bk=0, the blocking probability Pbj for type j jobs

(∀j ∈ {1, 2, ..., J}) satisfies

Pbj = rdB−bj+1 ≤ rdB−b+1 ≤ r̃dB−b+1.

Hence it is sufficient to show that the upper bound r̃B−b+1 satisfies (5.8).

From the definition of r̃, we can see that {r̃k}Bk=0 consists of consecutive

subsequences of size b, where elements in each subsequence have the same

value. That is, ∀k ∈ [mb, (m + 1)b), m ∈ N, r̃k = r̃mb. To analyze its

asymptotic behavior, we consider the subsequence {r̃mb}m∈N. Define the

scaled arrival rate λ′ = λ/b, and resource units B′ = bB/bc. Then the

recursion of {r̃mb}B
′

m=0 is the same as π̄ with arrival rate λ′ and B′ units of

resource.

By following the proof for Theorem 5.3, we can establish the asymptotic

behavior of r̃B′b in large B′ limit, which gives Eq. (5.8). The analysis for the

two limiting regimes is the same as that in Theorem 5.3.

Remark. Theorem 5.5 states that for the general case with multiple types

of jobs, the blocking probability for jobs of any type under the power-of-d

algorithm has exactly the same asymptotic behavior as that of homogeneous

job case.

Numerical Results. We simulate a system of N = 1000 servers under the

power-of-two-choices algorithm with different load gap. We consider three

types of jobs with same arrival rate, i.e., λ1 = λ2 = λ3, and b = (1, 2, 4).

For each B, we simulate this system with different load gap B − λ =
√
λ

and B − λ = 2 log λ, where λ =
∑

j λjbj is the total traffic intensity. Figure

5.7 compares the blocking probability for jobs that require the maximum

amount of resource, i.e., type 3 jobs, with different load gap, both by solving

Eq. (5.7) numerically and by simulation. Note that the y-axis is in log
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Figure 5.7: Blocking probability for the power-of-two-choices algorithm with

different load gap. There are three types of jobs with b = (1, 2, 4). Line curves

are obtained by solving Eq. (5.7) numerically. Markers are from simulations with

N = 1000.

scale. Observe that the blocking probability for jobs of type 3 exhibits similar

behavior as that of the homogeneous job case (Fig. 5.1). That is, Pb3 decays

exponentially with log λ load gap, while it decays much faster with
√
λ load

gap. Similar behavior can be observed for the blocking probability of the

other two types of jobs.

5.5 Conclusion

This chapter considered a loss model for the VM assignment problem in a

cloud system. The overall goal is to study how to route arriving jobs to the

servers in order to minimize the probability that an arriving job does not

find the required number of resources in the system. Using the fluid model

approach, we showed that when arrivals are routed to the least utilized of d ≥
2 randomly selected servers, the blocking probability decays exponentially or

doubly exponentially. This is a substantial improvement over the random

policy. In addition, we developed an explicit upper bound for the stationary

fluid limit. The analysis of the upper bound revealed significant insight into

the asymptotic behavior of large systems with the power-of-d-choices (d ≥ 2)

algorithm.

We have seen that for a fixed B, the gap between the proposed upper bound

and the stationary fluid limit increases with the load. For future work, we

are interested in characterizing the gap and establishing an approximation

with higher accuracy. Some of current model assumptions could be relaxed
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to make the model closer to the real system, including the assumption of

exponential service times and the constraint on the one-dimensionality of

requested resources.
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CHAPTER 6

CONCLUSIONS AND FUTURE WORK

In this thesis, we have studied the scheduling and resource allocation prob-

lems in two typical cloud systems: data-intensive clouds and a IaaS cloud

system.

For data-intensive clouds, we first investigated the scheduling problem from

a stochastic perspective. We have proposed two novel priority algorithms,

Pandas and balanced-Pandas. Using stochastic analysis, we have established

optimality of both algorithms with respect to throughput and delay perfor-

mance. In particular, we remark that the result of Pandas settles a version

of an open problem in affinity scheduling, where we want to minimize delay

without knowing job arrival rates. Moreover, we have implemented Pan-

das in Hadoop clusters, and demonstrated that Pandas achieves an order of

magnitude improvement over existing schedulers. On the technical end, the

prioritized service poses challenges to the state-space collapse analysis and

makes the proof of heavy-traffic optimality go beyond applying existing ap-

proaches. We used a novel ideal load decomposition to separate the system

into several subsystems, which require distinct treatments. The techniques

developed could be useful to the general affinity scheduling problem.

For the VM allocation problem in a IaaS cloud, we considered a loss model,

which characterizes the loss of unfulfilled VM requests in real systems. The

overall goal is to study how to route arriving VM requests to servers in order

to minimize the blocking probability. Using the fluid model approach, we

showed that under the well-known power-of-d-choice routing, the blocking

probability decays exponentially or doubly exponentially. This is a substan-

tial improvement over the random policy.

There are several interesting and important questions which we did not

address in this thesis. For the scheduling problem with multi-level locality,

we have left out the question of what happens to the proposed Balanced-

Pandas when overloaded servers exist in underloaded racks. Based on the
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state-space collapse result, we conjecture that the delay under balanced-

Pandas is within some constant factor of a universal lower bound. It will

be interesting to investigate the factor here. A more fundamental question

is what algorithm can achieve delay optimality for all traffic scenarios with

unknown arrival rates. Addressing this issue for general affinity scheduling

has been a longstanding open problem.

Another question of practical relevance is the design of a distributed sched-

uler. In this thesis, we have focused on centralized data-centric scheduling

algorithms. The large scale of data centers and massive request rates makes

the overhead of a centralized scheduler excessive, and calls for algorithms

working with distributed schedulers, which is a harder problem. An alterna-

tive is random sample-based approaches, such as power-of-d-choice. Future

work to design and analyze distributed schedulers could be of great interest.

On the modeling end, an interesting direction is to relax some of our current

assumptions. For instance, the service times are assumed to be memoryless

(geometric or exponential), while more general traffic distributions are ob-

served in reality. Also, we assume a one-dimensional resource constraint for

the VM assignment problem. It would be interesting to extend the model by

incorporating more realistic constraints.
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APPENDIX A

ADDITIONAL PROOFS FOR PANDAS

A.1 Proofs for Ideal Load Decomposition

We first prove Lemma 3.3 and then use the resulting decomposition of Lemma

3.3 to prove Lemma 3.4.

A.1.1 Proof of Lemma 3.3.

Given λ ∈ Λ, there exists a decomposition {λL̄,n,m} satisfying Eq. (3.1). We

apply an iterative approach to construct {λ̃L̄,n,m} from {λL̄,n,m}.
We denote by {λ(k)

L̄,n,m
}, k ≥ 0, the decomposition after the k-th iter-

ation. Let M(k)
h and M(k)

b denote the corresponding locally underloaded

queues and locally overloaded queues, respectively. That is, M(k)
h = {n ∈

M|
∑

L̄:n∈L̄
∑

m λ
(k)

L̄,n,m
< α} and M(k)

b = {n ∈ M|
∑

L̄:n∈L̄
∑

m λ
(k)

L̄,n,m
≥ α}.

And L(k)
b is used to denote the set of task types that are only local to M(k)

b ,

L(k)
s the set of task types local both to M(k)

h and M(k)
b . Initialize {λ(0)

L̄,n,m
}

as the given decomposition {λL̄,n,m}. If there exists L̄ ∈ L(k)
s such that

λ
(k)

L̄,n1,m
> 0 for some n1 ∈ M(k)

b , m ∈ M, {λ(k+1)

L̄,n,m
} will be updated as fol-

lows. Otherwise, the iterative processing ends up with {λ̃L̄,n,m} = {λ(k)

L̄,n,m
}.

The k + 1-th iteration will redistribute λ
(k)

L̄,n1,m
from temporal overloaded

queue n1 to temporal underloaded queue n2 which is also local to L̄. Consider

the following four cases.

Case (i): λ
(k)
n1 − λ

(k)

L̄,n1,m
≥ α, λ

(k)
n2 + λ

(k)

L̄,n1,m
< α.

Set

λ
(k+1)

L̄,n1,m
= 0, λ

(k+1)

L̄,n2,m
= λ

(k)

L̄,n2,m
+ λ

(k)

L̄,n1,m
.

All other components λ
(k+1)

L̄,n,m′
remain the same as the previous iteration.
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Hence after the k + 1-th iteration, n1 is still overloaded, while n2 is still

underloaded. Observe that for ∀m′ ∈M,m′ 6= m, Eq. (3.1) still holds under

{λ(k+1)

L̄,n,m
}. The total amount of remote load for m remains the same as the

k-th iteration, which ensures the correctness of Eq. (3.1) for m.

Case (ii): λ
(k)
n1 − λ

(k)

L̄,n1,m
< α, λ

(k)
n2 + λ

(k)

L̄,n1,m
< α.

Update {λ(k+1)

L̄,n,m
: L̄ ∈ L, n ∈ L̄,m ∈ M} as case (i). Thus the k + 1-

th iteration redistributes the shared load between n1 and n2, making n1

underloaded as n2. It is obvious that the load decomposition after the k+ 1-

th iteration satisfies Eq. (3.1).

Case (iii): λ
(k)
n1 − λ

(k)

L̄,n1,m
≥ α, λ

(k)
n2 + λ

(k)

L̄,n1,m
≥ α.

Let

δ = min{λ(k)

L̄,n1,m
,
λ

(k)
n1 − λ

(k)
n2

2
}, λ(k+1)

L̄,n1,m
= λ

(k)

L̄,n1,m
− δ, λ(k+1)

L̄,n2,m
= λ

(k)

L̄,n2,m
+ δ.

Keep all other components λ
(k+1)

L̄,n,m′
unchanged. Observe that such an exchange

makes n2 be overloaded as n1 and minimizes the local load difference between

n1 and n2. Again Eq. (3.1) holds for ∀m ∈M after k + 1-th iteration.

Case (iv):: λ
(k)
n1 − λ

(k)

L̄,n1,m
< α, λ

(k)
n2 + λ

(k)

L̄,n1,m
≥ α

Follow the same update as case (iii).

If λ
(k)
n1 + λ

(k)
n2 ≥ 2α, the update turns n2 into an overloaded queue like case

(iii).

If λ
(k)
n1 +λ

(k)
n2 < 2α, δ =

λ
(k)
n1
−λ(k)

n2

2
< λ

(k)

L̄,n1,m
. Thus λ

(k+1)
n1 < α and λ

(k+1)
n2 < α,

i.e., both n1 and n2 are underloaded after the k + 1-th iteration.

Consider the system load ρ defined in (3.3). It is easy to verify that

ρ
(
{λ(k+1)

L̄,n,m
}
)
< ρ

(
{λ(k)

L̄,n,m
}
)
. We note the important fact that ρ

(
{λL̄,n,m}

)
is minimized by a decomposition satisfying condition (3.2). Observe that

any arrival exchange among underloaded queues only or among overloaded

queues only will not decrease the total system utilization. When all shared

type tasks join underloaded queue, the corresponding total load is minimized

as there is no possible arrival exchange that will reduce the total load. This

ensures the convergence of the above iterative approach. Consequently, the

decomposition after the algorithm stops gives the desired decomposition.

This completes the proof of Lemma 3.3.
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A.1.2 Proof of Lemma 3.4.

We construct the ideal decomposition iteratively from {λ̃L̄,n,m} given in

Lemma 3.3 by exchanging remote load for local load in each buffer. First

consider load exchange for Dc =M/D to construct H. Define

ψ({λ̃L̄,n,m}) =
∑
n∈Dc

∑
m:m6=n

νn,m

as the total amount of remote service received by Dc with the decomposition

{λ̃L̄,n,m}. Whenever there exists some remote sub-queue of queue n ∈ H
with non-zero load, for instance νn,m > 0( m 6= n), we move all the traffic

from this remote sub-queue (n,m) to the local sub-queue (n, n). In order to

maintain validity of Eq. (3.1) for server n, we reduce the amount of remote

service provided by n. We can move min{νn,m,
∑

k 6=n νk,n} amount of load

from remote sub-queues at the n-th column to the corresponding sub-queues

at the m-th column (within the same row). Then Eq. (3.1) still holds for

n. It is easy to see that such an exchange reduces ψ by νn,m at least. The

iterative process ends when no remote load is left in the buffers of Dc, i.e.,

ψ = 0, and Dc become H defined in (3.7).

Next we exchange load for D to construct B. Define

φ({λ̃L̄,n,m}) =
∑
m1∈D

∑
m2∈D
m2 6=m1

νm2,m1

as the total amount of remote service offered by D with the updated decom-

position {λ̃L̄,n,m} satisfying Eq. (3.7). If some overloaded buffer m1 ∈ D
offers remote service, i.e., ∃νm2,m1 > 0 where m2 ∈ D and m2 6= m1, we

can exchange the remote service offered by m1 for local service as follows:

Pick any non-empty remote sub-queue (m1, k) within Qm1 (k ∈ H), then

move min{νm2,m1 , νm1,k} amount of load from sub-queue νm1,k to the local

sub-queue (m1,m1), and move the same amount of load from the sub-queue

(m2,m1) to the sub-queue (m2, k) within Qm2 . Note that such movement

does not increase remote service offered by other beneficiaries. Hence ψ is

reduced by at least min{νm2,m1 , νm1,k}. Again Eq. (3.1) holds for all m ∈M
after such an exchange. Similarly, the iterative process ends when ψ = 0,

i.e., D become B defined in (3.8).
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A.2 Additional Proofs for Theorem 3.1

For ease of exposition, we temporally omit the superscript (H).

A.2.1 Proof of Lemma 3.7.

Under Pandas, every arriving task at the beginning of each time slot will join

its shortest local queue. For ∀L̄ ∈ L∗H, define Q∗
L̄
(t) = min

m∈L̄∩H
{Qm(t)}. For

any task type that is only local to H, i.e., L̄ ∈ LH, it will be routed to queue

Q∗
L̄
(t) at the beginning of time slot t. Meanwhile, a task local both to B and

H might join Q∗
L̄
(t) or its shortest local queue in B.

E
[
〈Q(H)(t),A(H)(t)〉 | Z(t)

]
= E

[∑
m∈H

Qm(t)Am(t) | Z(t)

]

= E

∑
L̄∈L∗H

∑
m∈L̄∩H

Qm(t)AL̄,m(t) | Z(t)


(a)

≤
∑
L̄∈L∗H

Q∗L̄(t)λL̄

(b)
=

∑
L̄∈L∗H

Q∗L̄(t)
∑

m∈L̄∩H

M∑
n=1

λ∗L̄,m,n

(c)

≤
∑
L̄∈L∗H

∑
m∈L̄∩H

λ∗L̄,m,mQm(t)

= E
[
〈Q(H)(t),λ∗(H)〉 | Z(t0)

]
,

where step (a) follows from the fact that shared-type tasks might join B upon

arrival; (b) uses the definition of ideal load decomposition; (c) is true since

∀L̄, ∀m ∈ L̄ ∩H, Qm(t) ≥ Q∗
L̄
(t).

Therefore, we have

E
[
〈Q(H)(t),A(H)(t)〉 − 〈Q(H)(t),λ∗(H)〉 | Z(t0)

]
= E

[
E
[
〈Q(H)(t),A(H)(t)〉 − 〈Q(H)(t),λ∗(H)〉 | Z(t)

]
| Z(t0)

]
≤ 0.
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A.2.2 Proof of Lemma 3.8.

Consider the following random variables:

t∗m = min{τ : τ ≥ t0, fm(τ) = −1},m ∈M, (A.1)

t∗ = max
1≤m≤M

t∗m. (A.2)

So server m makes the first scheduling decision after t0 at t∗m. And t∗ is the

first time slot that every server has made at least one scheduling decision

after t0. Let T = JK, where J > 0 and K > 0. We then decompose the

probability space into two parts by using t∗: A1 = {t∗ > t0 + K | Z(t0)}
and A2 = {t∗ ≤ t0 +K | Z(t0)}. Let Bi denote the expectation term that is

further conditioned on Ai, i = 1, 2, i.e.,

Bi = E

[
t0+T−1∑
t=t0

(
〈Q(H)(t),λ∗(H)〉 − 〈Q(H)(t),S(H)(t)〉

)
| Z(t0), Ai

]
.

Thus the expectation term in (3.10) is broken down into two parts: B1P[A1]

and B2P[A2]. That is,

E

[
t0+T−1∑
t=t0

(
〈Q(H)(t),λ∗(H)〉 − 〈Q(H)(t),S(H)(t)〉

)
| Z(t0)

]
= B1P[A1] +B2P[A2].

The following lemma gives an bound on P[A1] and P[A2], which will be

used later.

Lemma A.1. Consider the random variables t∗ and t∗m for m ∈ M defined

in (A.1)-(A.2). Then

P[t∗ < t0 +K | Z(t0)] ≥ (1− (1− γ)K)M ,

P[t∗ ≥ t0 +K | Z(t0)] ≤ 1− (1− (1− γ)K)M .

Since both of arrivals and departures are bounded, for ∀t1, t ∈ [t0, t0 + T ],

where t1 < t,

Qm(t) ≤ Qm(t1) + (t− t1)CA,

Qm(t) ≥ Qm(t1)− (t− t1)M.
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As λ ∈ Λ, there exists ϑ > 0 such that for ∀m ∈ M, the decomposition

satisfies ∑
L̄:m∈L̄

λ∗
L̄,m,m

α
+
∑
L̄:m/∈L̄

∑
n:n∈L̄

λ∗
L̄,n,m

γ
≤ 1

1 + ϑ
.

For any m ∈ H, λ∗m =
∑

L̄:m∈L̄ λ
∗
L̄,m,m

< α. Together with the bounded

difference between Qm(t0) and Qm(t), we can bound B1 as

B1 ≤ E

[
t0+T−1∑
t=t0

〈Q(H)(t),λ∗(H)〉 | Z(t0), A1

]

≤ E

[
t0+T−1∑
t=t0

∑
m∈H

αQm(t) | Z(t0), A1

]

≤ E

[
t0+T−1∑
t=t0

∑
m∈H

α(Qm(t0) + (t− t0)CA) | Z(t0), A1

]
≤ αT

∑
m∈H

Qm(t0) + αT 2MCA.

To bound the term B2, we divide the summation into two parts: from

t = t0 to t = t∗ and from t = t∗ + 1 to t = t0 + T − 1. The first part can be

bounded in a similar way as term B1 :

E

[
t∗∑
t=t0

(
〈Q(H)(t),λ∗(H)〉 − 〈Q(H)(t),S(H)(t)〉

)
| Z(t0), t∗ ≤ t0 +K

]
≤ α(t∗ − t0)

∑
m∈H

Qm(t0) + α(t∗ − t0)TMCA. (A.3)

For the second part, we first let it condition on t∗, and then further condi-

tioned on Z(t). Note that ∀t ∈ (t∗, t0 + T ) and m ∈ H,

E
[(
〈Q(H)(t),λ∗(H)〉 − 〈Q(H)(t),S(H)(t)〉

)
| Z(t0), t∗ ≤ t0 +K

]
= E

[∑
m∈H

(Qm(t)λ∗m −Qm(t)Slm(t)−Qm(t)Srm(t)) | Z(t0), t∗ ≤ t0 +K

]

≤ E

[∑
m∈H

(Qm(t)λ∗m −Qm(t)Slm(t)) | Z(t0), t∗ ≤ t0 +K

]

=
∑
m∈H

E

[
Qm(t)

( ∑
L̄:m∈L̄

λ∗L̄,m,m − αI{ηm(t)=m}

)
| Z(t0), t∗ ≤ t0 +K

]
.
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As t > t∗, given Z(t), η(t) is independent of all the previous system state.

Thus we have

E

[
Qm(t)

( ∑
L̄:m∈L̄

λ∗L̄,m,m − αI{ηm(t)=m}

)
| Z(t0), Z(t), t∗ ≤ t0 +K

]
= Qm(t)

∑
L̄:m∈L̄

λ∗L̄,m,m −Qm(t)αE
[
I{ηm(t)=m} | Z(t)

]
. (A.4)

Note that ηm(t) is conditionally independent of Q(t) given Z(t).

Consider the following random variables

τ tm := max{τ : τ ≤ t, fm(τ) = −1},m ∈M.

Hence τ tm is the last moment before t at which server m makes a scheduling

decision. Therefore the status of server m remains the same from time τ tm

to t, i.e., ηm(t) = ηm(τ tm). Observe that ηm(τ tm) = m if Qm(τ tm) > 0, as local

tasks will be scheduled first. If Qm(τ tm) = 0, ηm(τ tm) 6= m. Thus,

Qm(τ tm)E
[
I{ηm(t)=m} | Z(τ tm)

]
= Qm(τ tm).

Using the bounded difference between Qm(t0), Qm(τ tm) and Qm(t), we have

E
[
Qm(t)I{ηm(t)=m} | Z(t)

]
= E

[
Qm(t)E

[
I{ηm(t)=m} | Z(τ tm)

]
| Z(t)

]
≥ E

[
(Qm(τ tm)− TM)E

[
I{ηm(t)=m} | Z(τ tm)

]
| Z(t)

]
≥ E

[
Qm(τ tm)E

[
I{ηm(t)=m} | Z(τ tm)

]
| Z(t)

]
− TM

= E
[
Qm(τ tm) | Z(t)

]
− TM

≥ E [Qm(t0) | Z(t)]− 2TM. (A.5)

As
∑

L̄:m∈L̄
λ∗L̄,m,m ≤ α

1+ϑ
, together with (A.5), we can upper bound (A.4) as

(A.4) ≤ − αϑ

1 + ϑ
Qm(t0) + 2αTM.

Thus the summation from t = t∗+ 1 to t = t0 +T − 1 can be upper bounded
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by

−(t0 + T − t∗)

[
αϑ

1 + ϑ

∑
m∈H

Qm(t0)− 2αTMMh

]
. (A.6)

Now we can bound the term B2 by combining the bounds for two summa-

tions in (A.3) and (A.6):

B2 ≤ Kα

(
1− (J − 1)ϑ

1 + ϑ

)∑
m∈H

Qm(t0) + C,

where C > 0 is a constant.

Let ζ = ϑ
1+ϑ

, and J1 = 1 + 1
ζ
. Pick any J > J1, then Kα

(
1− (J−1)ϑ

1+ϑ

)
< 0.

From Lemma A.1, we have

P[t∗ < t0 +K | Z(t0)] ≥ (1− (1− γ)K)M ,

P[t∗ ≥ t0 +K | Z(t0)] ≤ 1− (1− (1− γ)K)M .

Applying the bound for B1 and B2, together with the above two inequali-

ties, we can obtain

E

[
t0+T−1∑
t=t0

(
〈Q(H)(t),λ∗(H)〉 − 〈Q(H)(t),S(H)(t)〉

)
| Z(t0)

]

≤ αT

(∑
m∈H

Qm(t0)

)
(1− (1− (1− γ)K)M)

+Kα

(
1− (J − 1)ϑ

1 + ϑ

)(∑
m∈H

Qm(t0)

)
(1− (1− γ)K)M + C

= αT

(
D1(K) +

1

J
(1 + ζ)D2(K)− ζD2(K)

)∑
m∈H

Qm(t0) + C,

where D1(K) = 1− (1− (1− γ)K)M , D2(K) = (1− (1− γ)K)M , and C is a

constant independent of Z(t0).

Next we select K and J to make the coefficient of
∑

m∈HQm(t0) negative.

First pick any θ ∈ (0, ζ). Note that D1(K)→ 0 as K →∞, there exists K1

such that ∀K > K1, D1(K) ≤ ζ−θ
3

. Since D2(K)→ 1 as K →∞, there exists

K2 such that ∀K > K2, D2(K) ≥ 1 − ζ−θ
3ζ

. Let J2 = 3(1+ζ)
ζ−θ , then ∀J > J2,

1
J

(1+ζ)D2(K) < ζ−θ
3
D2(K) < ζ−θ

3
. Thus, by picking K > max{K1, K2} and
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J > max{J1, J2}, we obtain

D1(K) +
1

J
(1 + ζ)D2(K)− ζD2(K) ≤ ζ − θ

3
+
ζ − θ

3
− ζ(1− ζ − θ

3ζ
) = −θ.

Therefore

E

[
t0+T−1∑
t=t0

(
〈Q(H)(t),λ∗(H)〉 − 〈Q(H)(t),S(H)(t)〉

)
| Z(t0)

]
≤ −θαT

∑
m∈H

Qm(t0) + C

= −θ1

∥∥Q(H)(t0)
∥∥

1
+ C,

where θ1 = θαT and C are independent of Z(t0).

A.2.3 Proof of Lemma A.1

Given the server status vector f(t0), the service time distribution for all

servers are determined. Hence t∗m, m ∈M are independent. We have

P[t∗ < t0 +K | Z(t0)] = P[t∗1 < t0 +K, · · · , t∗M < t0 +K | Z(t0)]

= ΠM
m=1P[t∗m < t0 +K | Z(t0)]

= (1− (1− α)K)M1(1− (1− γ)K)M2 ,

where M1 =
∑

m I{fm(t)=m}, M2 =
∑

m I{fm(t) 6=m,fm(t) 6=−1}. Note that M1 +

M2 ≤M, and 0 < 1− (1− γ)K < 1− (1− α)K < 1. Thus

(1− (1−α)K)M1(1− (1− γ)K)M2 ≥ (1− (1− γ)K)M1+M2 ≥ (1− (1− γ)K)M .

Therefore,

P[t∗ < t0 +K | Z(t0)] ≥ (1− (1− γ)K)M ,

P[t∗ ≥ t0 +K | Z(t0)] ≤ 1− (1− (1− γ)K)M .
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A.3 Heavy-traffic Optimality with Locally Overloaded

Traffic

A.3.1 Proof of Lemma 3.11

We will prove this lemma by constructing a decomposition that meets the

three conditions.

Consider a decomposition
{
λL̄,n,m

}
that satisfies Lemma 3.4. We fix the

decomposition of LH over H. In the following argument, we will focus on the

decomposition of LB to achieve the goal. We start with the coarse decom-

position of λL̄ into λL̄ ≡
∑

m∈L̄ λL̄,m. For ease of exposition, we model the

relationship between the task types LB and the beneficiaries B by a bipartite

graph G = (X ,Y , E). Each vertex x ∈ X corresponds to a task type L̄ ∈ LB
and we assign x a budget b(x) = λL̄. Each vertex y ∈ Y represents a server

m ∈ B. If server m is local to task type L̄, we put an edge xy in E . For any

vertex v in the graph, we denote the set of its neighbor vertices byN (v). And

let N (V) = ∪v∈VN (v) for any vertex set V . Consider the weight function

w : E → [0,+∞)

xy → w(xy)

Let w(x) =
∑

y∈N (x) w(xy) and w(y) =
∑

x∈N (y)w(xy). If a weight func-

tion w satisfies that ∀x ∈ X , w(x) = b(x) and w(y) ≥ α, it is said to be a

proper weight function. Let W be the set of proper weight functions. Then

W is nonempty by Lemma 3.4.

For any proper weight function, we can further decompose w(xy) into

w(xy) =
∑

z∈M u(xy, z) to satisfy Eq. (3.1) and (3.8), where the function u

u : E ×M→ [0,+∞)

(xy, z)→ u(xy, z), ∀xy ∈ E ,∀z ∈M

For any such refined decomposition, let wl(y) =
∑

x∈N (y) u(xy, y), which

denotes the rate of arrivals that are served locally at server y. Then wr(y) =

w(y) − wl(y) is the rate of arrivals served remotely by other servers. In the

rest of the proof we only consider proper weight functions. To prove the

lemma, it suffices to find a weight function w and its refined decomposition
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u such that

∀x ∈ X , w(x) = b(x), (A.7)

∀y ∈ Y , w(y) ≥ α,wl(y) = α(1− εb), (A.8)

∀x ∈ X ,∀y ∈ Y ,∀z ∈ B, z 6= y, u(xy, z) = 0 (A.9)

∀y ∈ Y ,∃x ∈ X ,
∑
z∈H

u(xy, z) ≥ λ0. (A.10)

Step 1. We first find a weight function w that satisfies (A.7) and

w(y) ≥ α + κ0,

where κ0 > 0 is a constant that does not depend on ε.

For any G ⊆ B, let L(G) = {L̄ ∈ LB | ∃m ∈ G, s.t.,m ∈ L̄}, i.e., the set of

task types that are local to some servers in G. Define

κ1 = min
G⊆B

 ∑
L̄∈L(G)

λL̄ − |G|α

 .

From the heavy locally overloaded traffic assumption, κ1 > 0, and for any

G ⊆ B, ∑
L̄∈L(G)

λL̄ ≥ |G|α + κ1. (A.11)

First we obtain a proper weight function w such that for any y ∈ Y ,

w(y) ≥ α + κ2

Mb
, where

κ2 = min

{
κ1, min

L̄∈LB

λL̄
|L̄|+ 1

}
.

We have the following claim.

Claim 1. For any proper weight function w ∈ W , if there exists y0 ∈ Y
with w(y0) < α+ κ2

Mb
, then there exists a path P = y0x0y1x1 · · · yk such that

for i = 0, 1, ..., k − 1, w(xiyi+1) > 0, and for i = 1, ..., k − 1, w(yi) ≤ α + κ2

Mb
,

and w(yk) > α + κ2

Mb
.

Proof. If there exists x0 ∈ N (y0) and y1 ∈ N (x0) such that w(x0y1) > 0

and w(y1) > α + κ2

Mb
, then let P = y0x0y1 and it is done. Otherwise ∀x ∈
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N (y0) and y ∈ N (x), either w(xy) = 0 or w(y) ≤ α+ κ2

Mb
. Consider the sets

X0 = N (y0) and Y1 = N (X0). Let V = {y ∈ Y | ∃x ∈ N (y), s.t. x /∈ X0},
which is the set of vertices that have neighbors outside X0. Note that for

any y ∈ Y1\V , ∃x ∈ X0 such that w(xy) > 0, otherwise w(y) = 0, which

contradicts with w(y) ≥ α. Moreover, V 6= ∅ and ∃x0 ∈ X0, y1 ∈ V such that

w(x0y1) > 0, since if this is not true, we have∑
x∈X0

b(x) =
∑
x∈X0

w(x) =
∑

y∈Y1\V

w(y) =
∑

y∈Y1\V

w(y)

< |Y1\V|
(
α +

κ2

Mb

)
≤ |Y1\V|α + κ2,

which contradicts with the heavy traffic assumption in (A.11). Thus there

exists ∃x0 ∈ X0, y1 ∈ V such that w(x0y1) > 0. If ∃x1 ∈ N (y1), and ∃y2 ∈
N (x1) such that w(x1y2) > 0 and w(y2) > α + κ2

Mb
, then let P = y0x0y1x1y2

and we are done. Otherwise, let X1 = N ({y0, y1}), and Y2 = N (X1). Arguing

similarly, we can find x1 ∈ X1 and y2 ∈ Y2 such that y2 has neighbors outside

of X1 and w(x1y2) > 0. Then if ∃x2 ∈ N (y2), and ∃y3 ∈ N (x2) such that

w(x2y3) > 0 and w(y3) > α + κ2

Mb
, then let P = y0x0y1x1y2x2y3 and we

are done. Otherwise we can continue to consider X2 = N ({y0, y1, y2}), and

Y2 = N (X2). The procedure will end in finite steps for the following reason.

In the connected component (X ′,Y ′, E ′) that contains y0, there exists at least

y ∈ Y ′ such that w(y) > α + κ2

Mb
. Otherwise

∑
x∈X ′

b(x) =
∑
x∈X ′

w(x) =
∑

y∈Y ′:∃x∈X ′
s.t. w(xy)>0

w(y) < |Y ′|
(
α +

κ2

Mb

)
≤ |Y ′|α + κ2,

which contradicts with the heavy traffic assumption.

Following the above procedure, we obtain a sequence Y0 ( Y1 ( · · · in Y ′.
The procedure ends when the sequence hits some y ∈ Y ′ with w(y) > α+ κ2

Mb
.

So it takes at most |Y ′| steps. This completes the proof for the claim.

Consider a proper weight function w such that miny∈Y w(y) is maximized.

Then for any y ∈ Y , w(y) ≥ α+ κ2

Mb
. If w does not satisfy this condition, let

y0 ∈ arg miny∈Y w(y). Then α ≤ w(y0) < α+ κ2

Mb
. From Claim 1, there exists

a path P = y0x0y1x1 · · · yk such that w(xiyi+1) > 0 for i = 0, 1, ..., k − 1,

and w(yi) ≤ α + κ2

Mb
for i = 1, ..., k − 1 and w(yk) > α + κ2

Mb
. Let δ =
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min{w(x0y1), w(x1y2), ..., w(xk−1yk), w(yk) − (α + κ2

Mb
)}. Then δ > 0. We

modify w to get another weight function w̃ as follows:

w̃(xy) =


w(xy) + δ if x = xi, y = yi, where i = 0, 1, ..., k

w(xy)− δ if x = xi, y = yi+1, where i = 0, 1, ..., k − 1

w(xy) otherwise.

By the definition of δ, w̃(xy) ≥ 0 for any xy ∈ E . And for any x ∈ X ,

b(x) = w̃(x). For any y ∈ Y , y 6= y0, y 6= yk, w̃(y) = w(y) ≥ α. And w̃(yk) ≥
α + κ2

Mb
, w̃(y0) = w(y0) + δ > w(y0) ≥ α. We then modify other vertices in

arg miny∈Y w(y) using similar method, which results a proper weight function

ŵ. Then miny∈Y ŵ(y) > miny∈Y w(y), which contradicts with the assumption

that w maximize miny∈Y w(y). Let κ0 = κ2

Mb
.

Step 2. Next we further decompose w(xy) into w(xy) ≡
∑

z∈M u(xy, z)

that satisfies conditions (A.8)-(A.10).

Define εb = ε
2αMb

, εh = ε
2γMh

. For any y ∈ Y , since w(y) =
∑

x∈N (y) w(xy) ≥
α+κ0, we can pick a subset of X ′ ⊂ N (y), and assign appropriate values for

u(xy, z) such that

0 < u(xy, y) ≤ w(xy), ∀x ∈ X ′,∑
x∈X ′

u(xy, y) = α(1− εb),

u(xy, y) = 0, ∀x ∈ N (y)\X ′.

Further, ∀xy ∈ E , ∀z ∈ B, z 6= y, let u(xy, z) = 0. Therefore, conditions

(A.7)-(A.9) are satisfied. Next we focus on distributing the remaining weight

of y, wr(y) =
∑

x∈N (y)(w(xy)− u(xy, y)), over helpers H to ensure that Eq.

(3.1) holds for any helper, and condition (A.10) is satisfied.
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Observe that ∑
y∈Y

wr(y) =
∑
y∈Y

∑
x∈N (y)

(w(xy)− u(xy, y))

=
∑
x∈X

w(x)−
∑
y∈Y

wl(y)

=
∑
L̄∈LB

λL̄ −Mbα(1− εb)

= Mhγ −
γ

α

∑
L̄∈L∗H

λL̄ −Mhγεh.

For any edge xy with w(xy)−u(xy, y) = 0, let u(xy, z) = 0 for any z ∈ H.
If w(xy)− u(xy, y) > 0, we can assign an appropriate non-negative value for

u(xy, z), z ∈ H, such that
∑

z∈H u(xy, z) = w(xy)− u(xy, y), and

∑
xy∈E

u(xy, z)

γ
+
λlz
α

= 1− εh, ∀z ∈ H,

where λlz =
∑

L̄:z∈L̄ λL̄,z,z is the amount of local arrivals for helper z from

task types L∗H.
In this way, the refined decomposition u(xy, z) maintains the validity of

Eq.(3.1). Last, we will show that condition (A.10) is satisfied. For any y ∈ Y ,∑
x∈N (y)

(w(xy)− u(xy, y)) = wr(y) = w(y)− wl(y) ≥ α+ κ0 − α(1− εb) ≥ κ0.

By the pigeon hole principle, there exists x′ ∈ N (y) such that

w(x′y)− u(x′y, y) ≥ κ0

|N (y)|
≥ κ0

|LB|
.

That is, ∑
z∈H

u(x′y, z) ≥ λ0,

where λ0 = κ0

|LB|
, a constant not depending on ε. Therefore, condition (A.10)

holds for each beneficiary. This completes the proof.
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A.3.2 Proof of Lemma 3.12

By the queue dynamics,∥∥∥Q(B)
|| (t+ 1)

∥∥∥2

−
∥∥∥Q(B)
|| (t)

∥∥∥2

= 〈cb,A
(B)(t)− S(B)(t) + U(B)(t)〉2 + 2〈cb,Q

(B)(t)〉〈cb,A
(B)(t)− S(B)(t)〉

+2〈cb,Q
(B)(t)〉〈cb,U

(B)(t)〉

≥ 2〈cb,Q
(B)(t)〉〈cb,A

(B)(t)− S(B)(t)〉.

A.3.3 Proof of Lemma 3.13

Note that (Q(B)(t) − Q(B)(t0))⊥ = Q
(B)
⊥ (t) − Q

(B)
⊥ (t0). By the boundedness

of arrivals and service, we have∣∣∣∥∥∥Q(B)
⊥ (t)

∥∥∥− ∥∥∥Q(B)
⊥ (t0)

∥∥∥∣∣∣ ≤ ∥∥∥Q(B)
⊥ (t)−Q

(B)
⊥ (t0)

∥∥∥
≤

∥∥Q(B)(t)−Q(B)(t0)
∥∥ ≤ T

√
Mb max{M,CA}.

A.3.4 Proof of Lemma 3.14

G(t) = 〈Q(B)(t),A(B)(t)− S(B)(t)〉 − 〈cb,Q
(B)(t)〉〈cb,A

(B)(t)− S(B)(t)〉

= 〈Q(B)
⊥ (t),A

(B)
⊥ (t)− S

(B)
⊥ (t)〉

(a)

≤
∥∥∥Q(B)
⊥ (t)

∥∥∥ · ∥∥∥A(B)
⊥ (t)− S

(B)
⊥ (t)

∥∥∥
≤

∥∥∥Q(B)
⊥ (t)

∥∥∥ · ∥∥A(B)(t)− S(B)(t)
∥∥,

(b)

≤
(∥∥∥Q(B)

⊥ (t0)
∥∥∥+ T

√
Mb max{M,CA}

)
·
√
Mb max{M,CA},

where (a) follows from Cauchy-Schwartz inequality, (b) is true due to the

boundedness of arrivals and service. Thus the proof is complete if we set

h =
√
Mb max{M,CA} and F0 = MbT (max{M,CA})2.
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A.3.5 Proof of Lemma 3.15

For ∀L̄ ∈ LB, define Q∗
L̄
(t) = min

m∈L̄
{Qm(t)}. For any task type that is only

local to B, i.e., L̄ ∈ LB, it will be routed to queue Q∗
L̄
(t) at the beginning of

time slot t. By the definition of ideal arrival process Â,∑
m∈B

Âm(t) =
∑
L̄∈LB

AL̄(t).

From Lemma 3.11, for any m ∈ B, ∃L̄m ∈ LB such that
∑

n:n6=m λ
∗
L̄m,m,n

≥ λ0.

E
[
〈Q(B)(t), Â(B)(t)〉 | Z(B)(t)

]
=
∑
L̄∈LB

Q∗L̄λL̄

(a)
=

∑
m∈B

∑
L̄∈LB
m∈L̄

Q∗L̄λ
∗
L̄,m,m +

∑
m∈B

∑
L̄∈LB
L̄6=L̄m
m∈L̄

∑
n:n 6=m

Q∗L̄λ
∗
L̄,m,n +

∑
m∈B

∑
n:n6=m

Q∗L̄mλ
∗
L̄,m,n

(b)

≤
∑
m∈B

∑
L̄∈LB
m∈L̄

Qmλ
∗
L̄,m,m +

∑
m∈B

∑
L̄∈LB
L̄6=L̄m
m∈L̄

∑
n:n6=m

Qmaxλ∗L̄,m,n

+
∑
m∈B

Qmax

( ∑
n:n6=m

λ∗L̄m,m,n − λ0

)
+
∑
m∈B

Qmλ0

= E
[
〈Q(B)(t),λ∗l(B)〉+ 〈Qmax(t)e,λ∗r(B)〉+ 〈Q(B)(t)−Qmax(t)e, λ0e〉 | Z(B)(t0)

]
,

where (a) follows from the definition of ideal load decomposition; (b) follows

from the fact that Q∗
L̄
≤ Qm ≤ Qmax for any m ∈ L̄.

A.3.6 Proof of Lemma 3.16

The proof is similar to the derivation of (A.6) in the proof of Lemma 3.8.
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A.3.7 Proof of Lemma 3.17

E

[
t0+T−1∑
t=t∗+1

〈Qmax(t)e,λ∗r(B)〉 | t∗ < t0 +K,Z(B)(t0)

]

= E

[
t0+T−1∑
t=t∗+1

∑
m∈B

Qmax(t)λ∗rm | t∗ < t0 +K,Z(B)(t0)

]

≤ E

[
t0+T−1∑
t=t∗+1

∑
m∈B

(Qmax(t0) + TCA)λ∗rm | t∗ < t0 +K,Z(B)(t0)

]
≤ (t0 + T − t∗)Qmax(t0)

∑
m∈B

λ∗rm + C,

where C is a constant.

E

[
t0+T−1∑
t=t∗+1

〈Q(B)(t),Sr(B)(t)〉 | t∗ < t0 +K,Z(B)(t0)

]

= E

[
t0+T−1∑
t=t∗+1

∑
m∈B

(
Qm(t)

∑
n:n6=m

Rn(t)I{ηn(t)=m}

)
| t∗ < t0 +K,Z(B)(t0)

]

= E

[
t0+T−1∑
t=t∗+1

∑
n∈M

Rn(t)

( ∑
m∈B:m6=n

Qm(t)I{ηn(t)=m}

)
| t∗ < t0 +K,Z(B)(t0)

]

≥ E

[
t0+T−1∑
t=t∗+1

∑
n∈H

γ

(∑
m∈B

Qm(t)I{ηn(t)=m}

)
| t∗ < t0 +K,Z(B)(t0)

]
.

Similar to the proof of Lemma 3.8, consider the following random variables

τ tn := max{τ : τ ≤ t, fn(τ) = −1}, n ∈M.

Hence τ tn is the last moment before t at which server n makes a scheduling

decision. Therefore the status of server m remains the same from time τ tn to

t, i.e., ηn(t) = ηn(τ tn). Note that if a remote task is scheduled for server n, it

must come from the longest queue. Hence,∑
m∈B

E
[
Qm(τ tn)I{ηn(t)=m} | Z(τ tn)

]
=

∑
m∈B

E
[
Qm(τ tn)I{ηn(τ tn)=m} | Z(τ tn)

]
= Qmax(τ tn)I{ηn(τ tn)∈B} = Qmax(τ tn)I{ηn(t)∈B}.
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Applying the bounded difference between Q(t0), Q(τ tn) and Q(t) yields

E

[∑
m∈B

Qm(t)I{ηn(t)=m} | Z(B)(t0)

]

= E

[∑
m∈B

Qm(t)E
[
E
[
I{ηn(t)=m} | Z(τ tn)

]
| Z(t)

]
| Z(B)(t0)

]

≥ E

[∑
m∈B

(Qm(τ tn)− TM)E
[
E
[
I{ηn(t)=m} | Z(τ tn)

]
| Z(t)

]
| Z(B)(t0)

]
≥ E

[
E
[
Qmax(τ tn)I{ηn(t)∈B} | Z(t)

]
| Z(B)(t0)

]
− TM

≥ E
[
Qmax(t0)E

[
I{ηn(t)∈B} | Z(t)

]
| Z(B)(t0)

]
− 2TM

= Qmax(t0)E
[
I{ηn(t)∈B} | Z(B)(t0)

]
− 2TM.

Thus

E

[
t0+T−1∑
t=t∗+1

(
〈Qmax(t)e,λ∗r(B)〉 − 〈Q(B)(t),Sr(B)(t)〉

)
| t∗ < t0 +K,Z(B)(t0)

]
≤ (t0 + T − t∗)Qmax(t0)

∑
m∈B

λ∗rm

−E

[
t0+T−1∑
t=t∗+1

∑
n∈H

I{ηn(t)∈B} | t∗ < t0 +K,Z(B)(t0)

]
+ C.

By the boundedness of arrivals and service, we have

〈cb,Q(t0)〉 − TM√
Mb

≤ 〈cb,Q(t)〉 ≤ 〈cb,Q(t0)〉+
TCA√
Mb

.

So

E
[
〈cb,Q(t)〉〈cb, Â(t)− S(t)〉 | t∗ < t0 +K,Z(B)(t0)

]
≥ 〈cb,Q(t0)〉 1√

Mb

E

[∑
m∈B

(Âm(t)− Sm(t)) | t∗ < t0 +K,Z(B)(t0)

]
− C.
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Observe that

E

[∑
m∈B

Âm(t) | t∗ < t0 +K,Z(B)(t0)

]
=
∑
L̄∈LB

λL̄.

E

[∑
m∈B

Sm(t) | t∗ < t0 +K,Z(B)(t0)

]

= E

[∑
m∈B

(αI{ηm(t)=m} + γI{ηm(t)∈B}) +
∑
n∈H

γI{ηn(t)∈B} | t∗ < t0 +K,Z(B)(t0)

]

≤ αMb + E

[∑
n∈H

γI{ηn(t)∈B} | t∗ < t0 +K,Z(B)(t0)

]
.

Hence the conditional expectation of 〈cb,Q(t)〉〈cb, Â(t)−S(t)〉 can be lower

bounded by

〈cb,Q(t0)〉√
Mb

∑
L̄∈LB

λL̄ − αMb − E

[∑
n∈H

γI{ηn(t)∈B} | t∗ < t0 +K,Z(B)(t0)

]− C.
Then we can obtain an upper bound on the summation from t = t∗ + 1 to

t0 + T − 1 :

(t0 + T − t∗)αε0
∑
m∈B

Qm(t0) + C +
1

Mb

(∑
m∈B

Qm(t0)−MbQ
max(t0)

)

·

(
E

[
t0+T−1∑
t=t∗+1

∑
n∈H

γI{ηn(t)∈B} | t∗ < t0 +K,Z(B)(t0)

]
− (t0 + T − t∗)

∑
m∈B

λ∗rm

)
.

(A.12)

We will show that ∀ε < Mbλ0

4
, there exist a constant Lr > 0 not depending

on ε such that ∀Z(B)(t0) with
∥∥∥Q(B)
⊥ (t0)

∥∥∥ ≥ Lr,

E

[
t0+T−1∑
t=t∗+1

∑
n∈H

γI{ηn(t)∈B} | t∗ < t0 +K,Z(B)(t0)

]

≥ (t0 + T − t∗)

(∑
m∈B

λ∗rm −
Mbλ0

4

)
. (A.13)
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Then for any Z(B) with sufficiently large
∥∥∥Q(B)
⊥

∥∥∥, (A.12) can be bounded as:

(A.12) ≤ (t0+T−t∗)

[
αε0

∑
m∈B

Qm(t0) +
λ0

4

(∑
m∈B

Qm(t0)−MbQ
max(t0)

)]
+C.

This finishes the proof of Lemma 3.17.

We now prove inequality (A.13) by contradiction. Assume that ∃ε < Mbλ0

4
,

∀L1 > 0 there exists
∥∥∥Q(B)
⊥ (t0)

∥∥∥ > L1 such that (A.13) does not hold. Then

we can bound the total amount of service received by beneficiaries when Z(B)

hits the state Z(B)(t0) as

E

[
t0+T−1∑
t=t∗+1

∑
m∈B

Sm(t) | t∗ < t0 +KZ(B)(t0)

]

= E

[∑
m∈B

(αI{ηm(t)=m} + γI{ηm(t)∈B}) +
∑
n∈H

γI{ηn(t)∈B} | t∗ < t0 +K,Z(B)(t0)

]

< (t0 + T − t∗)

(
Mbα +

∑
m∈B

λ∗rm −
Mbλ0

4

)
.

Therefore,

E

[
t0+T−1∑
t=t∗+1

∑
m∈B

Am(t)

]
≥

t0+T−1∑
t=t∗+1

∑
L̄∈LB

λL̄

> E

[
t0+T−1∑
t=t∗+1

∑
m∈B

Sm(t) | t∗ < t0 +K,Z(B)(t0)

]
.

That is, when Z(B) hits the state Z(B)(t0), the amount of service beneficia-

ries receive is insufficient for the arrival. Arguing similarly to the proof for

stability of the beneficiary system, all beneficiary queues will grow together.

Then shared arrivals will join helper queues, i.e., the helper subsystem re-

ceives arrivals with maximum rate
∑

L̄∈L∗H
λL̄. From Section 3.3, the helper

subsystem will be stable with such arrivals and any moment of
∥∥QH∥∥ is

bounded. Consider Ẑ(B) with
∥∥∥Q̂(B)
⊥

∥∥∥ > ∥∥∥Q(B)
⊥ (t0)

∥∥∥ > L1 and Q̂m > Qm(t0)

for any m ∈ B, then Q̂max
B ≥ 1

Mb

∥∥∥Q̂(B)
⊥

∥∥∥ ≥ L1

Mb
. Note that we can make

P[Qmax
H > Q̂max

B ] arbitrarily small by selecting sufficiently large L1. An up-

per bound on the amount of remote service provided by helpers and devoted
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to helpers, denoted by δHH , is given by δHH ≤ RHP[Qmax
H > Q̂max

B ], which can

be arbitrarily small. Hence ∃L1 > 0 such that for any Ẑ(B) with
∥∥∥Q(B)
⊥

∥∥∥ > L1,

δHH < Mbλ0

4
. Thus we can obtain an lower bound on the amount of remote

service provided by helpers and devoted to beneficiaries

E

[
t0+T−1∑
t=t∗+1

∑
n∈H

γI{ηn(t)∈B} | Ẑ(B)

]
≥ (t0 + T − t∗)

(
RH −

Mbλ0

4

)
.

This contradicts with the assumption. Note that L1 does not depend on ε,

as λ0 is independent of ε.

A.3.8 Proof of Lemma 3.18

For each m ∈ B, define

Aem(t) = Am(t)− Âm(t) =
∑

L̄:L̄/∈LB,m∈L̄

AL̄,m(t),

which gives the extra arrivals of shared types for m. For any L > 0, we have

E
[
〈Q(t),A(t)− Â(t)〉 | Z(B)(t0)

]
= E

[∑
m∈B

Qm(t)Aem(t) | Z(B)(t0)

]

= E

[∑
m∈B

(
Qm(t)I{Qm(t)<L}A

e
m(t) +Qm(t)I{Qm(t)≥L}A

e
m(t)

)
| Z(B)(t0)

]

≤ E

[
L
∑
m∈B

Aem(t) +
∑
m∈B

Qm(t)I{Qm(t)≥L}A
e
m(t) | Z(B)(t0)

]

≤ C +Qmax(t0)E

[∑
m∈B

I{Qm(t)≥L}A
e
m(t) | Z(B)(t0)

]
.
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For brevity, we use Y to denote the event {t∗ < t0 +K,Z(B)(t0)}. Since

E

[
t0+T−1∑
t=t∗+1

〈cb,Q(t)〉〈cb,A(t)− Â(t)〉 | Y

]

= E

[
t0+T−1∑
t=t∗+1

∑
m∈BQm(t)

Mb

∑
m∈B

Aem(t) | Y

]
,

≥

∑
m∈B

Qm(t0)

Mb

E

[
t0+T−1∑
t=t∗+1

∑
m∈B

I{Qm(t)≥L}A
e
m(t) | Y

]
− C,

we can upper bound the conditional expectation of the summation over [t∗+

1, t0 + T − 1] by

MbQ
max(t0)−

∑
m∈B

Qm(t0)

Mb

E

[
t0+T−1∑
t=t∗+1

∑
m∈B

I{Qm(t)≥L}A
e
m(t) | Y

]
+ C. (A.14)

Next we will show that ∀ε < Mbλ0(α−γ)
4α

, there exists La > 0 not depending

on ε, ∀L > La > 0,

E

[
t0+T−1∑
t=t∗+1

∑
m∈B

I{Qm(t)≥L}A
e
m(t) | Y

]
≤ (t0 + T − t∗)Mbλ0

4
. (A.15)

Then we can bound term (A.14) as

(A.14) ≤ (t0 + T − t∗)λ0

4

(
MbQ

max(t0)−
∑
m∈B

Qm(t0)

)
+ C.

Similar to the proof of inequality (A.13), we prove (A.15) by contradiction.

Assume that ∃ε < Mbλ0(α−γ)
4α

, such that ∀L > 0, ∃Z(B) such that

E

[∑
m∈B

I{Qm(t)≥L}A
e
m(t) | Z(B)(t0)

]
>
Mbλ0

4
.
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Then total arrival for B is bounded as

E

[∑
m∈B

Am(t) | Z(B)(t0)

]

≥ E

∑
L̄∈LB

AL̄(t) | Z(B)(t0)

+ E

[∑
m∈B

I{Qm(t)≥L}A
e
m(t) | Z(B)(t0)

]

>
∑
L̄∈LB

λL̄ +
Mbλ0

4

∑
L̄∈LB

λL̄ +
α

α− γ
ε

≥ E

[∑
m∈B

Sm(t) | Z(B)(t0)

]
.

Thus all beneficiaries grow together when sub-system hits the state Z(B)(t0).

Again shared arrivals will join helper queues. Consider stable helper subsys-

tem with maximum arrival rate
∑

L̄∈L∗H
λL̄. Note that there exists uniform

bound for stable helper subsystem. The bounded moments of
∥∥Q(H)

∥∥ ensure

that P[Qmax
H > La] can be arbitrarily small with sufficiently large La. Hence

∃La > 0 such that the amount of shared arrivals that join B, denoted by ae,

is upper bounded by

ae ≤ CAP[Qmax
H > Qmin

B | Qmin > La] <
Mbλ0

4
.

We note the fact that La does not depend on ε. This contradicts with the

assumption.

A.3.9 Proof of Lemma 3.20.

In the following argument, we will focus on the steady state of the system

and omit the time (t). We will show that

E
[∥∥∥Ŝ− S

∥∥∥2
]
≤ C1ε, E

[∥∥∥A− Â
∥∥∥2
]
≤ C2ε, E

[
‖U‖2] ≤ C3ε,
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where C1, C2, C3 are constants independent of ε. Then

E
[∥∥∥Û∥∥∥2

]
= E

[∥∥∥Ŝ− S + A− Â + U
∥∥∥2
]

≤ 2e
∥∥∥Ŝ− S

∥∥∥2

+ 2E
[∥∥∥A− Â

∥∥∥2
]

+ 2E
[
‖U‖2]

≤ 2(C1 + C2 + C3)ε.

We first show that E
[∥∥∥Ŝ− S

∥∥∥2
]
≤ C1ε. Since we consider steady state,

E

[∑
m∈B

Sm

]
= E

[∑
m∈B

Am

]
+ E

[∑
m∈B

Um

]
≥ E

[∑
m∈B

Am

]
≥
∑
L̄∈LB

λL̄

E

[
M∑
m=1

Sm

]
= E

[
M∑
m=1

Am

]
+ E

[
M∑
m=1

Um

]
≥ E

[
M∑
m=1

Am

]
=
∑
L̄∈L

λL̄.

Let Nbb(t) and Nbh(t) denote the number of servers in B that are sched-

uled to serve beneficiary and remote helper queues at time slot t, respec-

tively. Similarly define Nhb(t) and Nhb(t) as the number of servers in H that

are scheduled to serve remote beneficiary and helper queues at time slot t,

respectively. Then

E

[∑
m∈B

Sm

]
= α (Mb − E [Nbb +Nbh]) + γE [Nhb +Nbb] ≥

∑
L̄∈LB

λL̄, (A.16)

E

[
M∑
m=1

Sm

]
= α (Mb − E [Nbb +Nbh] +Mh − E [Nhb +Nhh])

+γE [Nhb +Nbb +Nbh +Nhh] ≥
∑
L̄∈L

λL̄. (A.17)

Eliminating E [Nhb] by adding γ
α−γ∗(A.17) to (A.16) yields:

(α + γ)E [Nbh] + αE [Nbb] + γE [Nhh] ≤
α

α− γ
ε.

Therefore

E [Nbh] ≤
αε

(α + γ)(α− γ)
, E [Nbb] ≤

ε

α− γ
, E [Nhh] ≤

α

γ(α− γ)
ε. (A.18)
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For ∀m ∈ B,

Ŝm − Sm = X l
m +

∑
n∈H

Xr
n · I{η̂n=m} − Slm −

∑
n:n6=m

RnI{ηn=m}

= X l
m(1− I{ηm=m}) +

∑
n∈H

Xr
n(I{η̂n=m} − I{ηn=m})−

∑
n∈B
n6=m

RnI{ηn=m}.

We have

E

[∑
m∈B

(Ŝm − Sm) | Z

]
= α(Nbb +Nbh) + γNhh − γNbb.

It is easy to see that −(Mb − 1) ≤ Ŝm − Sm ≤ 1 + Mh. So |Ŝm − Sm| ≤ M .

Define M−
b = {m ∈ B : Ŝm − Sm ≤ 0} and M+

b = {m ∈ B : Ŝm − Sm > 0}.

E

 ∑
m∈M−b

(Ŝm − Sm) | Z

 ≥ E

 ∑
m∈M−b

∑
n∈B
n6=m

−RnI{ηn=m} | Z


≥ −E

[∑
n∈B

RnI{ηn 6=n and ηn∈B} | Z

]
= −γNbb.

Thus

E

[∑
m∈B

(Ŝm − Sm)2 | Z

]
≤ E

[∑
m∈B

M |Ŝm − Sm| | Z

]

= ME

∑
m∈B

(Ŝm − Sm)− 2
∑

m∈M−b

(Ŝm − Sm) | Z


≤ M [(α− γ)Nbb + αNbh + γNhh] + 2MγNbb

= M [(α + γ)Nbb + αNbh + γNhh] .

For ∀m ∈ H,

Ŝm − Sm = −
∑
n:n6=m

RnI{ηn=m}.
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It is obvious that −M ≤ Ŝm − Sm ≤ 0. Hence

E

[∑
m∈H

(Ŝm − Sm)2 | Z

]
≤ E

[∑
m∈H

−M(Ŝm − Sm) | Z

]
= Mγ(Nbh +Nhh).

Therefore

E

[
M∑
m=1

(Ŝm − Sm)2

]
= E

[
E

[
M∑
m=1

(Ŝm − Sm)2 | Z

]]
≤ M(α + γ)(E [Nbb] + E [Nbh]) + 2MγE [Nhh] ≤ C1ε,

where C1 = M(4α+γ)
α−γ is a constant not depending on ε.

Next we will show that E
[∥∥∥A− Â

∥∥∥2
]
≤ C2ε. Note that ∀m ∈M, |Am−

Âm| ≤ CA. In particular, for ∀m ∈ B, Am − Âm ≥ 0 and for ∀m ∈ H,

Am − Âm ≤ 0. Let Abs denote the total amount of shared tasks that are

routed to beneficiary queues. Then we have

E
[∥∥∥A− Â

∥∥∥2
]
≤ E

[
M∑
m=1

CA|Am − Âm|

]

= CAE

[∑
m∈B

(Am − Âm)−
∑
m∈H

(Am − Âm)

]
= 2CAE

[
Abs
]
.

In steady state,

E

[∑
m∈H

Sm

]
= E

[∑
m∈H

Am

]
+ E

[∑
m∈H

Um

]
≥ E

[∑
m∈H

Am

]
=
∑
L̄∈L∗H

λL̄ − E
[
Abs
]

E

[∑
m∈B

Sm

]
= E

[∑
m∈B

Am

]
+ E

[∑
m∈B

Um

]
≥ E

[∑
m∈B

Am

]
=
∑
L̄∈LB

λL̄ + E
[
Abs
]
.

On the other hand,

E

[∑
m∈H

Sm

]
= α(Mh − E [Nhh +Nhb]) + γE [Nhh +Nbh]

≤ αMh − αE [Nhb] + γE [Nbh] (A.19)

E

[∑
m∈B

Sm

]
= α(Mb − E [Nbh +Nbb]) + γE [Nhb +Nbb]

≤ αMb − αE [Nbh] + γE [Nhb] . (A.20)
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Eliminating Nhb on the right hand sides of (A.19) and (A.20) yields:

γ

α
E

[∑
m∈H

Sm

]
+ E

[∑
m∈B

Sm

]
≤ αMb + γMh −

1

α
(α2 − γ2)E [Nbh]

≤ αMb + γMh.

We have

αMb + γMh ≥
γ

α

∑
L̄∈L∗H

λL̄ −
γ

α
E
[
Abs
]

+
∑
L̄∈LB

λL̄ + E
[
Abs
]

= αMb + γMh − ε+
α− γ
α

E
[
Abs
]
.

Hence E
[
Abs
]
≤ α−γ

α
ε. Therefore,

E
[∥∥∥A− Â

∥∥∥2
]
≤ 2CA ·

α− γ
α

ε = C2ε,

where C2 = 2CA
α−γ
α

is a constant.

Now consider the term E
[
‖U‖2] . Since 0 ≤ Um ≤ M , E

[
‖U‖2] ≤

ME
[
M∑
m=1

Um

]
. In steady state,

E

[
M∑
m=1

Um

]
= E

[
M∑
m=1

Sm

]
− E

[
M∑
m=1

Am

]
.

From (A.20), we have

E [Nhb] ≥
1

γ

(
E

[∑
m∈B

Sm

]
− αMb + αE [Nbh)]

)

≥ 1

γ

∑
L̄∈LB

λL̄ − αMb + αE [Nbh]

 .

It follows from (A.19) and (A.20) that

E

[
M∑
m=1

Sm

]
≤ αMb + γMh − (α− γ)E [Nbh]− (α− γ)E [Nhb]

≤
∑
L̄∈L

λL̄ +
α

γ
ε.
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Therefore

E
[
‖U(t)‖2] ≤ αM

γ
ε.

A.3.10 Proof of Lemma 3.21.

〈Q(t), Ŝ(t)− S(t)〉

=
∑
m∈H

Qm(t)

(
−
∑
n:n6=m

Rn(t)I{ηn(t)=m}

)
+
∑
m∈B

Qm(t)
(
X l
m(t)

+
∑
n∈H

Xr
n(t) · I{η̂n(t)=m} − Slm(t)−

∑
n:n6=m

Rn(t)I{ηn(t)=m}

)

=
∑
m∈H

(
Xr
m(t)

∑
n∈B

Qn(t)I{η̂m(t)=n} −Rm(t)
∑
n:n6=m

Qn(t)I{ηm(t)=n}

)
(A.21)

+
∑
m∈B

(
Qm(t)(X l

m(t)− Slm(t))−Rm(t)
∑
n:n6=m

Qn(t)I{ηm(t)=n}

)
.

(A.22)

By the coupling of {Xr
m(t), t ≥ 0} with {Rm(t), t ≥ 0}, the expectation of

each term in (A.21) can be written as

γ
∑
m∈H

E

∑
n∈B

Qn(t)(I{η̂m(t)=n} − I{ηm(t)=n})−
∑
n:n6=m
n∈H

Qn(t)I{ηm(t)=n}

 .
Consider the random variable τ tm, which is the last time slot before t at
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which server m makes a scheduling decision. Then

γE

∑
n∈B

Qn(t)(I{η̂m(t)=n} − I{ηm(t)=n})−
∑
n:n6=m
n∈H

Qn(t)I{ηm(t)=n}

(A.23)

=
t∑
i=1

γE

[∑
n∈B

Qn(t)(I{η̂m(t)=n} − I{ηm(t)=n})

−
∑
n:n6=m
n∈H

Qn(t)I{ηm(t)=n} | τ tm = t− i

 · P [τ tm = t− i
]
.

For a particular τ tm = t − i, we decompose the probability space based on

Qm(τ tm).

Case (i): Qm(τ tm) > 0

Under the proposed algorithm, ηm(τ tm) = m when Qm(τ tm) > 0. Hence the

corresponding term equals zero.

Case (ii): Qm(τ tm) = 0

Let Qmax
b (t) = max

m:m∈B
{Qm(t)} and Qmax

h (t) = max
m:m∈H

{Qm(t)}. Under the

proposed algorithm, ηm(τ tm) = arg max
n:n6=m

{Qn(τ tm)} if Qm(τ tm) = 0. We fur-

ther decompose the probability space based on the values of Qmax
b (τ tm) and

Qmax
h (τ tm).

Observe that if Qmax
b (τ tm) > Qmax

h (τ tm), η̂m(τ tm) = ηm(τ tm) = Qmax
b (τ tm).

Hence the expectation in Eq.(A.23) is equal to zero under this case.

If Qmax
b (τ tm) ≤ Qmax

h (τ tm), ηm(τ tm) = Qmax
h (τ tm) and η̂m(τ tm) = Qmax

b (τ tm).

By the boundedness of arrivals and departures, we can upper bound the

conditional expectation by

E [ Qmax
b (τ tm) + iCA −Qmax

h (τ tm) + inM

| Qmax
b (τ tm) ≤ Qmax

h (τ tm), Qm(τ tm) = 0, τ tm
]
≤ i(CA +M).

Then we can obtain an upper bound the term (A.23)

t∑
i=1

γi(CA +M) · P
[
Qmax
b (τ tm) ≤ Qmax

h (τ tm), Qm(τ tm) = 0, τ tm
]
. (A.24)

The event {Qmax
b (τ tm) ≤ Qmax

h (τ tm), Qm(τ tm) = 0, τ tm = t − i} is equivalent
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to the event that at time slot t − i, server m is idle and is scheduled to

the maximum helper queue. Let k = arg max
n∈H

{Qn(τ tm)}. For any time slot

between t− i and t, the working status of server m is equal to k. Hence

{Qmax
b (τ tm) ≤ Qmax

h (τ tm), Qm(τ tm) = 0, τ tm = t− i}

= {fm((t− i)−) = 0, ηm(t− i) = k, fm(t− i+ 1) = k, ..., fm(t) = k}.

We have

P
[
Qmax
b (τ tm) ≤ Qmax

h (τ tm), Qm(τ tm) = 0, τ tm = t− i
]

= P
[
fm((t− i)−) = 0, ηm(t− i) = k, fm(t− i+ 1) = k, ..., fm(t) = k

]
= P

[
fm(t− i+ 1) = k, ..., fm(t) = k | fm((t− i)−) = 0, ηm(t− i) = k

]
·P
[
fm((t− i)−) = 0, ηm(t− i) = k

]
.

Let Ym denote the event that when server m becomes idle, it is scheduled to

the maximum helper queue. As we consider the steady state,

P
[
fm((t− i)−) = 0, ηm(t− i) ∈ H

]
= P [Ym] .

By using the chain rule of probability, we have

P
[
fm(t− i+ 1) = k, ..., fm(t) = k | fm((t− i)−) = 0, ηm(t− i) = k

]
= P

[
fm(t− i+ 1) = k, | fm((t− i)−) = 0, ηm(t− i) = k

]
·
n−2∑
j=0

P [fm(t− j) = k | fm(t− j − 1) = k, · · · ,

f(t− i+ 1) = k, fm((t− i)−) = 0, ηm(t− i) = k ] .

Given that server m is scheduled to serve a remote task from another

helper queue at time slot t− i, the working status fm(t− i+ 1) is determined

by the random variable Rm(t− i+ 1) ∼ Bern(γ). Hence

P
[
fm(t− i+ 1) = k, | fm((t− i)−) = 0, ηm(t− i) = k

]
= 1− γ.

Similarly, for any j = 0, 1, ..., n − 2, given fm(t − j − 1) = k, fm(t − j) is
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determined by Rm(t− j − 1) ∼ Bern(γ), thus

P [fm(t− j) = k | fm(t− j − 1) = k, · · · ,

f(t− i+ 1) = k, fm((t− i)−) = 0, ηm(t− i) = k ] = 1− γ.

Now we can bound (A.23) as

E

∑
n∈B

Qn(t)(I{η̂m(t)=n} − I{ηm(t)=n})−
∑
n:n6=m
n∈H

Qn(t)I{ηm(t)=n}


≤

t∑
i=1

i(CA +M)(1− γ)i · P [Ym]

≤ (CA +M)(1− γ) · P [Ym]
∞∑
i=1

i(1− γ)i−1

=
(CA +M)(1− γ)

γ2
· P [Ym] .

Next we will bound the expectation of term (A.22) in a similar way. Again

consider the random variable τ tm and first decompose the probability space

based on τ tm. For a particular τ tm = t− i, consider Qm(τ tm).

Case (i): Qm(τ tm) > 0

Under the proposed algorithm, ηm(t) = ηm(τ tm) = m with Qm(τ tm) > 0.

And X l
m(t) = Slm(t). Hence the term (A.22) is equal to zero.

Case (ii): Qm(τ tm) = 0

When Qm(τ tm) = 0, ηm(τ tm) = arg max
n6=m

{Qn(τ tm)}. By the bounded differ-

ence between Qm(t) and Qm(τ tm), similarly we can upper bound the condi-

tional expectation by i(αCA+γM). Thus we can upper bound the expectation

of each term in (A.22) by

t∑
i=1

i(αCA + γM) · P
[
Qm(τ tm) = 0 | τ tm = t− i

]
· P
[
τ tm = t− i

]
. (A.25)

For ∀m ∈ B, let Vm denote the event that when server m is idle, its local

queue is empty so it is scheduled to serve the maximum queue in the system.
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In steady state,

P
[
Qm(τ tm) = 0, τ tm = t− n

]
= P [Vm] .

Similar to the analysis for (A.24), we can bound the term (A.25) by

(αCA + γM))(1− γ)

γ2
· P [Vm] .

Therefore,

E
[
〈Q(t), Ŝ(t)− S(t)〉

]
≤ (CA +M)(1− γ)

γ

∑
m∈H

P [Ym] +
(αCA + γM)(1− γ)

γ2

∑
m∈B

P [Vm] .

On the other hand,

√
M〈e, Ŝ(t)− S(t)〉

=
∑
m∈H

(
−
∑
n:n6=m

Rn(t)I{ηn(t)=m}

)

+
∑
m∈B

(
X l
m(t) +

∑
n∈H

Xr
n(t) · I{η̂n(t)=m} − Slm(t)−

∑
n:n6=m

Rn(t)I{ηn(t)=m}

)
=

∑
m∈H

(
Xr
m(t)I{η̂m(t)6=m} −Rm(t)I{ηm(t)6=m}

)
+
∑
m∈B

(
X l
m(t)− Slm(t)−Rm(t)I{ηm(t) 6=m}

)
(a)
=

∑
m∈B

(
X l
m(t)(1− I{ηm(t)=m})−Rm(t)I{ηm(t) 6=m}

)
,

where (a) comes from the coupling of Xr
m and Rm for m ∈ H.

For ∀m ∈ B,

E
[
X l
m(t)(1− I{ηm(t)=m})−Rm(t)I{ηm(t) 6=m}

]
= (α− γ)P

[
I{ηm(t)6=m}

]
= (α− γ)P [Vm] .

Thus

E
[
〈e, Ŝ(t)− S(t)〉

]
≥ (α− γ)

∑
m∈B

P [Vm] .
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It follows from (A.18) in the proof of Lemma 3.20 that∑
m∈H

P [Ym] = E [Nhh(t)] ≤
α

γ(α− γ)
ε.

Therefore

E
[
〈Q(t), Ŝ(t)− S(t)〉

]
≤ (CA +M)(1− γ)

γ

∑
m∈H

P [Ym] +
(αCA + γM)(1− γ)

γ2(α− γ)
E
[
〈e, Ŝ(t)− S(t)〉

]
≤ R0ε+R1

√
Me〈e, Ŝ(t)− S(t)〉,

where R0 = α(CA+M)(1−γ)
γ2(α−γ)

, R1 = (αCA+γM)(1−γ)

γ2(α−γ)
√
M

are constants independent of

ε.

A.3.11 Proof of Lemma 3.22 .

We denote by Ls the set of task types that are local both to helpers and

beneficiaries. By the definition of Â:

〈Q,A− Â〉

=
∑
m∈B

Qm(t)
∑

L̄∈Ls:m∈L̄

AL̄,m

−∑
m∈H

Qm(t)
∑

L̄∈Ls:m∈L̄

∑
n∈L̄∩B AL̄,n

|{k : k ∈ L̄ ∩H}|


=

∑
L̄∈Ls

[ ∑
n∈L̄∩B

Qn(t)AL̄,n −
∑

m∈L̄∩H

Qm(t)

∑
n∈L̄∩B AL̄,n

|{k : k ∈ L̄ ∩H}|

]

=
∑

L̄=(m1,m2,m3)
m1,m2∈H,m3∈B

[
Qm3(t)AL̄,m3

− (Qm1(t) +Qm2(t))
AL̄,m3

2

]

+
∑

L̄=(m1,m2,m3)
m1∈H,m2,m3∈B

[
Qm2(t)AL̄,m2

+Qm3(t)AL̄,m3
−Qm1(t)(AL̄,m2

+ AL̄,m3
)
]
.

Case (i): L̄ = (m1,m2,m3) with m1,m2 ∈ H,m3 ∈ B.
As arriving tasks are routed to the shortest local queue, AL̄,m3

> 0 only if

Qm3 ≤ Qm1(t) andQm3 ≤ Qm2(t). HenceAL̄,m3
(Qm3 − (Qm1(t) +Qm2(t))/2) ≤

0.

Case (ii): L̄ = (m1,m2,m3) with m1 ∈ H,m2,m3 ∈ B.
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Similarly, AL̄,m2
> 0 only if Qm2 ≤ Qm1(t). Hence AL̄,m2

(Qm2 −Qm1(t)) ≤
0. Similarly AL̄,m3

(Qm3 −Qm1(t)) ≤ 0.

Therefore,

〈Q,A− Â〉 ≤ 0.

A.3.12 Proof of Lemma 3.23.

Proof. By the definition of Um(t), 0 ≤ Um(t) ≤M. If Um(t) = 0, Qm(t)Um(t) =

0. We note the fact that Um(t) > 0 only if the number of tasks in Qm is

less than the number of available servers scheduled to Qm at time t. Since

Sm(t) ≤ M , we have Qm(t) ≤ Qm(t) + Am(t) < M . Hence Qm(t)Um(t) <

MUm(t). Therefore, 〈Q(t),U(t)〉 <
∑

m∈MMUm(t) = M
√
M〈e,U(t)〉,

where e = 1√
M

(1, 1, · · · , 1)︸ ︷︷ ︸
M

.

A.4 Heavy-traffic Optimality with Evenly Loaded

Traffic

A.4.1 Proof of Lemma 3.24

Fix an 0 < ε < Mα
2
, i.e., 0 < ε0 <

1
2
. There exists a constant θ > 0 such that

0 < ε0 ≤ 1
1+θ

. Since λ̄ ∈ F satisfies the resource pooling condition, there

exists a decomposition {λ̄∗
L̄,n,m
} of λ̄ such that Eq. (3.36) and all servers

are connected. As λ(ε) = (1 − ε0)λ̄, it is easy to see that {λ∗
L̄,n,m
} with

λ∗
L̄,n,m

= (1 − ε0)λ̄∗
L̄,n,m

for any L̄ ∈ L, any n ∈ L, and any m ∈ M gives a

decomposition of λ. By the property of {λ̄∗
L̄,n,m
}, condition 1 holds naturally

under the decomposition {λ∗
L̄,n,m
}, and H =M, i.e., Lemma 3.4 is satisfied.

Define

κ = min
∀L̄∈L,∀m∈L̄
λ̄∗
L̄,m,m

>0

{
λ̄∗L̄,m,m

}
.

It follows that for any λ∗
L̄,m,m

> 0,

λ∗L̄,m,m = (1− ε0)λ̄∗L̄,m,m ≥
κ

2
.
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Let λmin = κ
2
, which is independent of ε. Since all servers are connected

under {λ∗
L̄,n,m
}, condition 2 is satisfied with λmin.

A.4.2 Proof of Lemma 3.28

The proof is similar to that of Lemma 3.15. For ∀L̄ ∈ L, define Q∗
L̄
(t) =

minm∈L̄{Qm(t)}. Thus tasks of type L̄ will be routed to queue Q∗
L̄
(t) at the

beginning of time slot t. We have

E [〈Q(t),A(t)〉 | Z(t)] =
∑
L̄

∑
m:m∈L̄

λ∗L̄,m,mQ
∗
L̄(t).

Hence

E [〈Q(t),A(t)〉 − 〈Q(t),λ∗〉 | Z(t)]

= −
∑
L̄

∑
m:m∈L̄

λ∗L̄,m,m(Qm(t)−Q∗L̄(t)). (A.26)

Assume that m1 = arg maxm∈M{Qm(t)}, and m′ = arg minm∈M{Qm(t)}.
Denote the maximum queue length at time slot t by Qmax(t). That is,

Qmax(t) = Qm1(t). Note that for any L̄ ∈ L such that m′ ∈ L̄, Q∗
L̄
(t) =

Qm′(t) as Qm′ is the minimum queue at time t.

From Lemma 3.24, there exists a sequence of servers (m1,m2, ...,mk−1,mk)

such that mk = m′, and mi is connected directly with mi+1 under the ideal

decomposition, for all i = 1, 2, · · · , k − 1. That is, there exists a task type

L̄i,i+1 local to both server mi and mi+1, satisfying λL̄i,i+1,mi,mi ≥ λmin, and

λL̄i,i+1,mi+1,mi+1
≥ λmin. For the summation in (A.26), we keep terms of types

L̄1,2, L̄2,3, ..., L̄k−1,k, and for each task type L̄i,i+1, we only keep m = mi term.
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All other terms are discarded. It follows that

E [〈Q(t),A(t)〉 − 〈Q(t),λ∗〉 | Z(t)]

≤ −λmin
(
Qm1(t)−Q∗L̄1,2

+Qm2(t)−Q∗L̄2,3
+ · · ·+Qmk−1

(t)−Q∗L̄k−1,k

)
≤ −λmin

(
Qm1(t)−Q∗L̄k−1,k

)
= −λmin

(
Qmax(t)−Qmin(t)

)
≤ −λmin√

M

√√√√∑
m

(
Qm(t)−

∑
iQi(t)

M

)2

= −λmin√
M
‖Q⊥(t)‖

(a)

≤ −λmin√
M
‖Q⊥(t0)‖+ F ′1,

where the inequality (a) comes from Lemma 3.26. This completes the proof.

A.4.3 Proof of Lemma 3.29

The proof is the same as that of Lemma 3.8. Observe that for any m ∈ M,∑
L̄:m∈L̄ λL̄,m,m = α(1 − ε

M
) by Lemma 3.24. Replacing α

1+ϑ
with α(1 − ε

M
)

gives the part on the right hand side in Lemma 3.29.

A.4.4 Proof of Lemma 3.30

By the boundedness of arrivals and service, we have

〈ce,Q(t0)〉 − TM√
M
≤ 〈ce,Q(t)〉 ≤ 〈ce,Q(t0)〉+

TCA√
M
.

Hence

E [〈ce,Q(t)〉〈ce,A(t)− S(t)〉 | t∗, Z(t0)]

≥ 〈ce,Q(t0)〉 1√
M

E

[∑
m∈M

(Am(t)− Sm(t)) | t∗, Z(t0)

]
− F ′3,

where F ′3 is a constant.
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Note that

E

[∑
m∈M

Am(t)

]
= E

[∑
L̄∈L

AL̄(t)

]
=
∑
L̄∈L

λL̄ = Mα− ε,

E

[∑
m∈M

Sm(t) | t∗, Z(t0)

]
= E

[∑
m∈M

(αI{ηm(t)=m} + γI{ηm(t)6=m}) | t∗, Z(t0)

]
≤ Mα.

Combining the above inequalities yields

E [〈ce,Q(t)〉〈ce,A(t)− S(t)〉 | t∗, Z(t0)]

≥ 〈ce, Q(t0)〉 1√
M

(−ε)− F ′3

= − ε

M

∑
m

Qm(t0)− F ′3.
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APPENDIX B

ADDITIONAL PROOFS FOR
BALANCED-PANDAS

B.1 Proof of Theorem 4.1

To prove Theorem 4.1, we first establish the equivalence of the capacity region

Λ̄ and then use the refined decomposition as an intermediary.

Lemma B.1. The set Λ̄ is equivalent to Λ.

Proof. The proof is straightforward. For Λ, The rate λL̄ is decomposed into

λL̄,m , which is the rate of type-L̄ arrival allocated to server m. We further

refine the decomposition by simply writing λL̄,m ≡
∑

n λL̄,n,m, where n is the

index of the queue to which a task is local. It is easy to show that Λ̄ ⊂ Λ by

defining λL̄,m ≡
∑

n λL̄,n,m.

To show the reverse direction, ∀λ ∈ Λ, ∀L̄, ∀n ∈ L, m ∈M, define

λ′L̄,n,m =
λL̄,m
|L̄|

.

It is obvious that the constructed decomposition {λ′
L̄,n,m
} satisfies condition

(4.3). Thus λ ∈ Λ̄, i.e., Λ ⊂ Λ̄.

For any arrival rate vector λ ∈ Λ̄, there exists δ > 0 such that λ′ =

(1+δ)λ ∈ Λ̄. Thus there exists a decomposition {λ′
L̄,n,m
} of λ′, which satisfies

condition (4.3). Let

λL̄,n,m =
λ′
L̄,n,m

1 + δ
,∀L̄, ∀n ∈ L, m ∈M.

Hence {λL̄,n,m} gives a decomposition of λ. For any m,

∑
L̄:m∈L̄

∑
n:n∈L̄

λL̄,n,m
α

+
∑

L̄:m∈L̄k

∑
n:n∈L̄

λL̄,n,m
β

+
∑
L̄:m/∈L̄

∑
n:n∈L̄

λL̄,n,m
γ
≤ 1

1 + δ
.
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Define ψ = (ψ1, ψ2, · · · , ψM) as

ψn =
∑
L̄:n∈L̄

M∑
m=1

λL̄,n,m, ∀n, (B.1)

which can be regarded as the arrival rate for server n under the JSQ-MaxWeight

algorithm. The following two lemmas use ψ as an intermediary to show some

properties of arrival distribution and service for the system under the JSQ-

MaxWeight algorithm, which are the key steps for the proof of Theorem 4.1.

The proofs of these two lemmas are identical to that of Lemma 2 and 3

in [37]. We omit the details here.

Lemma B.2. Consider any arrival rate vector λ ∈ Λ̄ and the corresponding

ψ defined in (B.1). Under the JSQ routing algorithm, for any t0 and any

t ≥ t0,

E [〈Q(t),A(t)〉 − 〈Q(t),ψ〉|Z(t0)] ≤ 0.

Lemma B.3. Consider any arrival rate vector λ ∈ Λ̄ and the corresponding

ψ defined in (B.1). Under the MaxWeight scheduling algorithm, there exists

T1 > 0 such that for any T > T1 and any t0,

E

[
t0+T−1∑
t=t0

(〈Q(t),ψ〉 − 〈Q(t),S(t)〉) |Z(t0)

]
≤ −θ1‖Q(t0)‖1 + C1,

where θ1 > 0 and C1 are constants independent of Z(t0).

We also need the following lemma for the proof of Theorem 4.1.

Lemma B.4. For any t,

〈Q(t),U(t)〉 ≤M2.

Proof. By the definition of Um(t), if Um(t) > 0, the number of tasks in

queue m must be less than the number of available servers scheduled to this

queue at time slot t. Since Sm(t) ≤ M , Qm(t) < M . Note that Um(t) ≤ M

If Um(t) = 0, Qm(t)Um(t) = 0. Hence Qm(t)Um(t) < MUm(t). Therefore,

〈Q(t),U(t)〉 <
∑

m∈MMUm(t) = M2.
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Proof of Theorem 4.1. Consider the following Lyapunov function:

F (Z(t)) = ‖Q(t))‖2.

The corresponding T -period drift is given by:

∆F (Z(t0)) = E

[
t0+T−1∑
t=t0

(F (t+ 1)− F (t)) |Z(t0)

]

= E

[
t0+T−1∑
t=t0

(2〈Q(t),A(t)− S(t)〉+ 2〈Q(t),U(t)〉

+‖A(t)− S(t) + U(t)‖2) |Z(t0)
]
.

By Lemma B.4, the term 〈Q(t),U(t)〉 ≤M2. Since both the arrival vector

A(t) and the service vector S(t) are bounded, so as the unused vector U(t),

the term ‖A(t)− S(t) + U(t)‖2 can be bounded by a constant. Thus the

T-time slot drift can be bounded as

∆F (Z(t0)) = 2E

[
t0+T−1∑
t=t0

〈Q(t),A(t)− S(t)〉|Z(t0)

]
+ C.

For any arrival rate vector λ ∈ Λ̄ and the corresponding ψ, we split the

expectation term into two terms using ψ:

E

[
t0+T−1∑
t=t0

〈Q(t),A(t)− S(t)〉|Z(t0)

]

= E

[
t0+T−1∑
t=t0

(〈Q(t),A(t)〉 − 〈Q(t),ψ〉) |Z(t0)

]

+ E

[
t0+T−1∑
t=t0

(〈Q(t),ψ〉 − 〈Q(t),S(t)〉) |Z(t0)

]
.

By Lemma B.2-B.3, we have

∆F (Z(t0)) ≤ −2θ1‖Q(t0)‖1 + C2,

where C > 0 is a constant.

Pick T ≥ T0 and any ε > 0. Let P =
{
Z = (Q, f)| ‖Q‖1 ≤

C+ε
2θ1

}
. Then

P is a finite subset of state space. For any Z ∈ Pc, ∆F (Z) ≤ −ε. Therefore
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the Markov process {Z(t), t ≥ 0} is positive recurrent. As a result, Λ̄ and Λ

are the capacity region of the system, and the JSQ-MaxWeight algorithm is

throughput optimal.

B.2 Proof of Theorem 4.2

We can show that the JSQ-MaxWeight algorithm achieves first-order heavy-

traffic optimality in this special scenario. The proof follows the Lyapunov

drift-based approach developed in [59], which consists of three steps: first

obtain a lower bound; then show state space collapse; and finally use the

state space collapse result to obtain an upper bound. In particular, the

proof of state-space collapse and upper bound are identical to that in [37].

We omit the proof details here and just state the results.

For any arrival rate in the capacity region, we know that a steady state

distribution exists under the JSQ-MaxWeight algorithm. Let Q̄ denote the

steady state random vector. Let σ
(ε)
1 be the standard deviation of the arrival

rate vector {A(ε)

L̄
(t), t ≥ 0}L̄∈L, which converges to a constant σ1.

Lower Bound

Consider a single server queueing system with arrival process
∑

L̄A
(ε)

L̄
(t),

and service process b1(t):

b1(t) =
∑
i∈Bo

Xi(t) +
∑
j∈Ho

Yj(t) +
∑
n∈Hu

Vn(t),

where all {Xi(t)}i∈Bo , {Yj(t)}j∈Ho and {Vn(t)}n∈Hu are independent and each

process is i.i.d. In particular, Xi(t) ∼ Bern(α), Yj(t) ∼ Bern(β) and Vn(t) ∼
Bern(γ). We denote Var(b1(t)) by ν2

1 . As the corresponding queue length

process of this single server system is stochastically smaller than the sum of

queue length in the original system, we can obtain the following lower bound:

E

[
M∑
m=1

Q̄(ε)
m

]
≥ (σ

(ε)
1 )2 + ν2

1 + ε2

2ε
− M

2
.

Therefore, in the heavy traffic limit, we have

lim inf
ε→0+

εE

[
M∑
m=1

Q̄(ε)
m

]
≥ σ2

1 + ν2
1

2
.
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State Space Collapse

We expect that state space under the JSQ-MaxWeight algorithm collapses

along the direction where all Bo queues are equal. Let c1 ∈ RM be the unit

vector where

c1m =


1√
MBo

, ∀m ∈ Bo

0, else.

The parallel and perpendicular components of Q with respect to the direction

c1 are defined as:

Q|| = 〈c1,Q〉c1, Q⊥ = Q−Q||.

Consider the Lyapunov function F⊥(Z) = ‖Q⊥‖. We can show that the

drift of F⊥(Z) is always finite and becomes negative for sufficiently large F⊥.

We then obtain state space collapse by Lemma 3.6. That is, there exists a

sequence of finite numbers {Cr : r ∈ N} such that for each positive integer r,

E
[∥∥∥Q̄(ε)

⊥

∥∥∥r] ≤ Cr,

where Q̄⊥ is the component of Q̄ perpendicular to c1.

Upper Bound

By utilizing the result of state space collapse, we can obtain the following

upper bound on the expected queue length in steady state:

E

[
M∑
m=1

Q̄(ε)
m

]
≤ (σ

(ε)
1 )2 + ν2

1

2ε
+B(ε),

where B(ε) = o(1
ε
), i.e., lim

ε→0+
εB(ε) = 0. Therefore, in the heavy-traffic limit,

we have

lim sup
ε→0+

εE

[
M∑
m=1

Q̄(ε)
m

]
≤ σ2 + ν2

1

2
.

The heavy-traffic optimality of the proposed algorithm follows by the coin-

cidence of lower and upper bounds.
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B.3 Proof of Theorem 4.3

By Theorem 4.1, it is equivalent to prove that balanced-Pandas stabilizes any

arrival rate vector within Λ. For any arrival rate vector λ ∈ Λ, since Λ is an

open set, similarly there exists a δ > 0 such that there exists a decomposition

of λ, {λL̄,m} satisfying the following condition:

∑
L̄:m∈L̄

λL̄,m
α

+
∑

L̄:m∈L̄k

λL̄,m
β

+
∑

L̄:m∈L̄r

λL̄,m
γ
≤ 1

1 + δ
, ∀m. (B.2)

Define ω = (ω1, ω2, · · · , ωM) as

ωm =
∑
L̄:m∈L̄

λL̄,m
α

+
∑

L̄:m∈L̄k

λL̄,m
β

+
∑

L̄:m∈L̄r

λL̄,m
γ

, ∀m, (B.3)

which can be regarded as the workload for server m under balanced-Pandas.

Note that the dynamics of the expected workload can be described as

Wm(t+ 1) = Wm(t) + Am(t) + Sm(t) + Ũm(t),

where

Am(t) =
Alm(t)

α
+
Akm(t)

β
+
Arm(t)

γ
,

Sm(t) =
Slm(t)

α
+
Skm(t)

β
+
Srm(t)

γ
,

Ũm(t) =
Um(t)

γ
.

With a slight abuse of notation, we use A = (A1, A2, · · · , AM), S = (S1, S2, · · · , SM)

and Ũ = (Ũ1, Ũ2, · · · , ŨM) throughout the proofs. Then the dynamics of W

can be expressed as

W(t+ 1) = W(t) + A(t)− S(t) + Ũ(t).

Proof of Theorem 4.3. Consider the Lyapunov function V (Z(t)) = ‖W(t))‖2.
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The corresponding drift is given by:

∆V (Z(t)) = E [V (t+ 1)− V (t)|Z(t)]

= E
[(

2〈W(t),A(t)− S(t)〉+ 2〈W(t), Ũ(t)〉

+
∥∥∥A(t)− S(t) + Ũ(t)

∥∥∥2
)
|Z(t)

]
.

The remaining steps are the same as the proof of Theorem 4.1. We need

the following lemmas analogous to Lemmas B.2-B.4.

Lemma B.5. Consider any arrival rate vector λ ∈ Λ and the corresponding

ω defined in (B.3). Under balanced-Pandas, for any t ≥ 0,

E [〈W(t),A(t)〉 − 〈W(t),ω〉|Z(t)] ≤ 0. (B.4)

Lemma B.6. Consider any arrival rate vector λ ∈ Λ and the corresponding

ω defined in (B.3). Under balanced-Pandas, for any t ≥ 0,

E [〈W(t),ω〉 − 〈W(t),S(t)〉|Z(t)] ≤ −θ2‖Q(t)‖1, (B.5)

where θ2 > 0 is constant independent of Z(t).

Lemma B.7. For any t, 〈W(t), Ũ(t)〉 = 0.

Therefore, we can bound the drift of V (Z(t)) as

∆V (Z(t)) ≤ −2θ2‖Q(t)‖1 + C,

where θ2 and C are positive constants independent of Z(t).

Pick any ε > 0. Let P =
{
Z = (Q, f)| ‖Q‖1 ≤

ε
2θ2

}
. Then P is a finite

subset of state space. For any Z ∈ Pc, ∆F (Z) ≤ −ε. Therefore the Markov

process {Z(t), t ≥ 0} is positive recurrent. Therefore balanced-Pandas stabi-

lizes the system for any λ ∈ Λ, i.e., balanced-Pandas is throughput optimal.
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B.3.1 Proof of Lemma B.5

〈W(t),A(t)〉 =
∑
L̄∈L

( ∑
m:m∈L̄

Wm(t)

α
AL̄,m(t)+

∑
m:m∈L̄k

Wm(t)

β
AL̄,m(t) +

∑
m:m∈L̄r

Wm(t)

γ
AL̄,m(t)

 .

For any task type L̄ ∈ L, define

W ∗
L̄(t) = min

m∈M

{
Wm(t)

α
I{m∈L̄},

Wm(t)

β
I{m∈L̄k},

Wm(t)

γ
I{m∈L̄r}

}
.

Note that for any task of type L̄ ∈ LH, it will be routed to queue m∗ with

expected workload W ∗
L̄
(t) at the beginning of time slot t. That is, type-L̄

tasks will not join any server m with Wm(t) > W ∗
L̄
(t). Thus

E [〈W(t),A(t)〉|Z(t)] = E

[∑
L̄∈L

W ∗
L̄(t)AL̄(t)|Z(t)

]
=
∑
L̄∈L

W ∗
L̄(t)λL̄.

On the other hand,

E [〈W(t),ω〉|Z(t)]

=
∑
L̄∈L

 ∑
m:m∈L̄

Wm(t)

α
λL̄,m +

∑
m:m∈L̄k

Wm(t)

β
λL̄,m +

∑
m:m∈L̄r

Wm(t)

γ
λL̄,m

 .

Note that for any task of type L̄ ∈ L, Wm(t)
α
≥ W ∗

L̄
(t) for any m ∈ L̄,

Wm(t)
β
≥ W ∗

L̄
(t) for any m ∈ L̄k, and Wm(t)

γ
≥ W ∗

L̄
(t) for any m ∈ L̄r. Therefore

E [〈W(t),ω〉|Z(t)] ≥
∑
L̄∈L

(
W ∗
L̄(t)

∑
m

λL̄,m

)
=
∑
L̄∈L

W ∗
L̄(t)λL̄.

Consequently, we have

E [〈W(t),ω〉|Z(t)] ≥ E [〈W(t),A〉|Z(t)] .
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B.3.2 Proof of Lemma B.6

From Eq. (B.2)-(B.3), we have ωm ≤ 1
1+δ

, ∀m. Thus

E [〈W(t),ω〉|Z(t)] =
∑
m

Wm(t)ωm ≤
1

1 + δ

∑
m

Wm(t).

On the other hand,

E [〈W(t),S(t)〉|Z(t)]

=
∑
m

Wm(t)
2∑
i=0

E
[
E
[
Slm(t)

α
+
Skm(t)

β
+
Srm(t)

γ
|Z(t), ηm(t) = i

]
|Z(t)

]
=

∑
m

Wm(t).

We now are ready to prove (B.5):

E [〈W(t),ω〉 − 〈W(t),S(t)〉|Z(t)] ≤ − δ

1 + δ

∑
m

Wm(t) ≤ −θ2

∥∥Q̄(t)
∥∥

1
,

where θ2 = δ
(1+δ)α

.

B.3.3 Proof of Lemma B.7

〈W(t), Ũ(t)〉 =
∑
m

(
Ql
m(t)

α
+
Qk
m(t)

β
+
Qr
m(t)

γ

)
Ũm(t).

For any m, by the definition of Ũm(t), Ũm(t) > 0 implies that server m is

idle, i.e., all of its three sub-queues are empty. That is, Wm(t) = 0. Therefore

Wm(t)ŨUm(t) = 0 for all m.

B.4 Heavy-traffic Optimality without Overloaded

Racks

For the case without overloaded racks, we consider two traffic scenarios: the

set of overloaded servers in underloaded racks Bu = ∅ and Bu 6= ∅, which

correspond to the evenly loaded and locally overloaded scenario for the system
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with two levels of locality respectively.

We first establish the heavy-traffic optimality for the evenly loaded case

where Bu = ∅ in subsection B.4.1 and then show the proof for the locally

overloaded case where Bu 6= ∅ in subsection B.4.2.

B.4.1 Evenly loaded

The proof follows exactly the same three steps for the evenly loaded traffic

scenario in a system with two levels of locality in Chapter 3. We will skip

the proof details and just present the main steps and results here.

We consider the heavy-traffic regime where the limiting arrival rate vector

satisfies the resource pooling condition introduced in Chapter 3. We use the

same notation F to denote the set of arrival rate vector on the boundary

of the capacity region Λ, such that all servers are fully utilized to handle its

local load. That is, all servers in the system are helpers in underloaded racks.

Assumption 4 (Assumption for the heavy evenly loaded traffic).

Consider the arrival processes {A(ε)

L̄
(t), t ≥ 0}L̄∈L, parameterized by ε > 0,

with mean arrival rate vector λ(ε) = (1 − ε0)λ̄, where ε0 = ε
Mα

, and λ̄ ∈
F satisfies the resource pooling condition. The variance of the number of

arrivals, Var(
∑

L̄∈LA
(ε)

L̄
(t)), is denoted as (σ

(ε)
e )2, which converges to σ2

e as

ε ↓ 0.

We have shown that the corresponding Markov chain {Z(ε)(t) = (Q(ε)(t), f (ε)(t))}
under balanced-Pandas is positive recurrent. The queue-length vector pro-

cess Q(ε)(t) hence converges in distribution to a random vector Q̄(ε) for any

0 < ε < ε̄, where ε̄ is a positive constant. All theorems in this section concern

the steady-state queueing process Q̄(ε).

Lower Bound

Consider a single server system with arrival process {a(ε)(t), t ≥ 0} and ser-

vice process {b(ε)
e (t), t ≥ 0}, where

a(ε)(t) =
∑
L̄∈L

A
(ε)

L̄
(t), b(ε)

e (t) =
M∑
m=1

Xm(t).
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Here {Xm(t), t ≥ 0}m∈M are independent, and each process is temporally

i.i.d. with Xm(t) ∼ Bern(α). Note that the mean of a(ε)(t) is Mα − ε and

the variance is given by (σ
(ε)
e )2. Then the corresponding queue-length process

is stochastically smaller than
∑M

m=1

(
Q
l(ε)
m (t) +Q

k(ε)
m (t) +Q

r(ε)
m (t)

)
. Hence

E

[
M∑
m=1

(
Q̄l(ε)
m + Q̄k(ε)

m + Q̄r(ε)
m

)]
≥ (σ

(ε)
e )2 + ν2

e + ε2

2ε
− M

2
,

where ν2
e is the variance for {b(ε)

e (t)}. Therefore, in the heavy traffic limit,

we have

lim inf
ε→0+

εE

[
M∑
m=1

(
Q̄l(ε)
m + Q̄k(ε)

m ) + Q̄r(ε)
m

)]
≥ σ2

e + ν2
e

2
. (B.6)

State Space Collapse

We will show that the expected workload W collapses to the direction ce,

where

ce =
1√
M

(1, 1, · · · , 1︸ ︷︷ ︸
M

).

Let W|| and W⊥ be the components of W parallel and perpendicular to the

direction ce. We will establish state space collapse by showing that W⊥ is

bounded and independent of the heavy-traffic parameter ε. That is, there

exists a sequence of finite numbers {Cr : r ∈ N} such that for each positive

integer r,

E [‖W⊥‖r] ≤ Cr,

where W⊥ is the component of W perpendicular to ce.

To establish state space collapse, we consider the Lyapunov functions

F (Z) = ‖W⊥‖. By Lemma 3.6, it is sufficient to show that the drift of

F (Z), denoted by ∆F (Z), satisfies two conditions: (i) ∆F (Z) is finite with

probability 1; (ii) ∆F (Z) is negative for sufficiently large F (Z). The anal-

ysis is identical to that for the two-level locality system, with queue-length

vector Q replaced by the workload vector W. We put the details here for

completeness.

We first need the following lemma for the ideal load decomposition, which

is analogous to Lemma 3.24 for the evenly loaded traffic scenario in Chapter
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3.

Lemma B.8. Consider any arrival rate vector λ = (1−ε0)λ̄, where ε0 = ε
Mα

,

and λ̄ ∈ F satisfies the resource pooling condition. Consider any 0 < ε <

ε̄, where ε̄ is a positive constant. Then there exists an ideal decomposition{
λ∗
L̄,n,m

}
of λ satisfying the following conditions:

1. ∀m ∈M, ∑
L̄:m∈L̄

λ∗L̄,m,m = α(1− ε0).

2. There exists a positive constant λmin not depending on ε, such that for

any two servers m and m′ that are connected directly, there exists a

task type L̄ ∈ L, such that λ∗
L̄,m,m

≥ λmin, λ
∗
L̄,m′,m′

≥ λmin.

We need the following additional lemmas analogues to Lemmas 3.25-3.26,

with queue-length vector Q replaced by the workload vector W.

Lemma B.9. Let c be a vector with unit norm in RM . Then for any t ≥ 0,

∥∥W||(t+ 1)
∥∥2 −

∥∥W||(t)
∥∥2 ≥ 2〈c,W(t)〉〈c,A(t)− S(t)〉,

where W|| is the parallel component of the workload W with respect to the

direction c.

Lemma B.10. Let c be a vector with unit norm in RM . Then for any t ≥ 0,

‖W⊥(t+ 1)‖ − ‖W⊥(t)‖ ≤
√
M

γ
max{1, CA}, (B.7)

where W⊥ is the perpendicular component of the workload W with respect to

the direction c.

From lemma B.10, we can see that ∆F (Z) satisfies finite condition, since

Pr(∆F (Z) ≤ C) = 1 with C =
√
M max{M,CA}.

Next we focus on the negative drift condition. Consider the following

Lyapunov functions:

V (Z) = ‖W‖2, V||(Z) =
∥∥W||

∥∥2
.
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The rest of the proof follows the same line of reasoning as in the proof of

Theorem 3.5 to bound ∆F (Z) :

E [∆F (Z(t))|Z(t)]

≤ 1

2‖W⊥‖
(2E [〈W(t),A(t)− S(t)〉 − 〈ce,W(t)〉〈ce,A(t)− S(t)〉|Z(t)] + C1) .

To obtain the a bound on the expectation term on the right-hand side of

the above inequality, we need the following lemmas analogous to Lemmas

3.28-3.30.

Lemma B.11. Under balanced-Pandas, for any t ≥ 0,

E [〈W(t),A(t)〉 − 〈W(t),ω〉|Z(t)] ≤ −λmin‖W⊥(t)‖.

Lemma B.12. Under balanced-Pandas, for any t ≥ 0,

E [〈W(t),ω〉 − 〈W(t),S(t)〉|Z(t)] = − ε

Mα

∑
m

Wm(t).

Lemma B.13. Under balanced-Pandas, for any t ≥ 0,

E [〈ce,W(t)〉〈ce,A(t)− S(t)〉|Z(t)] ≥ − ε

Mα

∑
m

Wm(t).

Utilizing the above three inequalities yields:

E [∆F (Z(t))|Z(t)] ≤ −λ0 +
C1

‖W⊥(t)‖
,

where λ0 and C1 are positive constants independent of ε. This inequality

verifies the negative drift condition, and hence establishes the existence of

finite constants {Cr}r∈N for which E
[∥∥∥W(ε)

⊥ (t)
∥∥∥r] ≤ Cr, for all ε ∈ (0,Mα).

Proof of Lemma B.11. is similar to that of Lemma B.5

Proof of Lemma B.12. is similar to that of Lemma B.6. We omit details

here.

Proof of Lemma B.13. Note that

〈ce,A(t)〉 ≥ 1√
Mα

∑
m

(
Alm(t) + Akm(t) + Arm(t)

)
=

1√
Mα

∑
L̄∈L

AL̄(t).
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From the proof of Lemma B.6, we have

E [〈ce,S(t)〉|Z(t)] =
1√
M

∑
m

1 =
√
M.

Consequently,

E [〈ce,W(t)〉〈ce,A(t)− S(t)〉|Z(t)]

= 〈ce,W(t)〉E [〈ce,A(t)− S(t)〉|Z(t)]

≥ − ε

Mα

∑
m

Wm(t).

Upper Bound

Again we construct a series of ideal arrival and service processes, which allows

us to rewrite the dynamics of W, and bound the terms using Lemma 8 in

[59].

Ideal scheduling decision process η̂(t): ∀m ∈ M, η̂m(t) = 0. That is,

each server is scheduled to serve its local sub-queue only under the ideal

scheduling.

Ideal service process Ŝ(t) : ∀m ∈M

Ŝlm(t) = X l
m(t), Ŝkm(t) = 0, Ŝrm(t) = 0,

where each process X l
m(t) is coupled with Sm(t) in the following way: If

ηm(t) = 0, X l
m(t) = Slm(t); if ηm(t) = 1, X l

m(t) = 1 when Skm(t) = 1,

and X l
m(t) ∼ Bern(α−β

1−β ) when Skm(t) = 0; if ηm(t) = 2, X l
m(t) = 1 when

Srm(t) = 1, and X l
m(t) ∼ Bern(α−γ

1−γ ) when Skm(t) = 0. Hence each process

X l
m(t) is i.i.d. with X l

m(t) ∼ Bern(α).

Ideal arrival process Â(t): Ideally, ∀L̄ ∈ L, type-L̄ tasks would join their

local sub-queues. So we re-distribute unwanted arrivals
∑

m:m/∈L̄AL̄,m among

its local servers evenly.

Then we can rewrite the dynamics of W as

W(t+ 1) = W(t) + Â(t)− Ŝ(t) + Û(t),
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where Û(t) = Ŝ(t)− Â(t) + A(t)− S(t) + Ũ(t). We consider the Lyapunov

function G||(Z) =
∥∥W||

∥∥2
, where W|| is the parallel component of the vector

W with respect to the direction ce. As shown in Lemma 8 [59] the drift of

G||(Z) is zero in steady state, which yields

2E
[
〈ce,W(t)〉〈ce, Ŝ(t)− Â(t)〉

]
= E

[
〈ce, Â(t)− Ŝ(t)〉2

]
+ E

[
〈ce, Û(t)〉2

]
(B.8)

+2E
[
〈ce,W(t) + Â(t)− Ŝ(t)〉〈ce, Û(t)〉

]
. (B.9)

An upper bound on E [〈ce,W(t)〉] can be obtained by bounding each of the

above terms, which gives an upper bound on E
[
M∑
m=1

(
Q
l(ε)
m (t) +Q

k(ε)
m (t) +Q

r(ε)
m (t)

)]
.

E
[
〈ce,W(t)〉〈ce, Ŝ(t)− Â(t)〉

]
=

1

M
E

[(∑
m

Wm(t)

)(∑
m

Ŝlm(t)

α
−
∑
m

Âlm(t)

α

)]

=
ε

Mα
E

[(∑
m

Wm(t)

)]
.

By the definition of ideal service and arrival processes, we have

E
[
〈ce, Â(t)− Ŝ(t)〉2

]
=

(σ
(ε)
e )2 + ν2 + ε

Mα2
.

For the term E
[
〈ce, Û(t)〉2

]
, we have the following lemma.

Lemma B.14.

E
[
〈ce, Û(t)〉2

]
≤ C ′ε,

where C ′ is a constant not depending on ε.

Next we will bound the term (B.9). We consider the system in steady state,

which yields E
[
〈ce, Â(t)− Ŝ(t) + Û(t)〉

]
= E [〈ce,W(t+ 1)−W(t)〉] = 0.

Hence

E
[
〈ce, Û(t)〉

]
= E

[
〈ce, Â(t)− Ŝ(t)〉

]
=

ε

Mα
.
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Note that

E
[
〈ce, Â(t)− Ŝ(t)〉〈ce, Û(t)〉

]
≤ E

[
〈ce, Â(t)〉〈ce, Û(t)〉

]
≤ CA√

Mα
E
[
〈ce, Û(t)〉

]
=

CA

M
√
Mα2

ε.

Then we have

E
[
〈ce,W(t) + Â(t)− Ŝ(t)〉〈ce, Û(t)〉

]
= E

[
〈ce,W(t)〉〈ce, Û(t)〉

]
+ E

[
〈ce, Â(t)− Ŝ(t)〉〈ce, Û(t)〉

]
≤ E

[
〈ce,W(t)〉〈ce, Û(t)〉

]
+

CA

M
√
Mα2

ε.

We can rewrite the term 〈ce,W(t)〉〈ce, Û(t)〉 as

〈ce,W(t)〉〈ce, Û(t)〉

= 〈W(t), Û(t)〉 − 〈W⊥(t), Û⊥(t)〉

= 〈W(t), Ŝ(t)− S(t)〉+ 〈W(t),A(t)− Â(t)〉 (B.10)

+〈W(t), Ũ(t)〉 − 〈W⊥(t), Û⊥(t)〉. (B.11)

The following two lemmas bound the two terms in (B.10).

Lemma B.15.

E
[
〈W(t), Ŝ(t)− S(t)〉

]
= 0.

Lemma B.16.

E
[
〈W(t),A(t)− Â(t)〉

]
≤ 0.

The first term in (B.11) is equal to zero by Lemma B.7. To bound the

second term in (B.11), we first show that

E
[∥∥∥Û(t)

∥∥∥2
]
≤ Rε,

where R is a constant independent of ε. Next we will use state space collapse
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result to bound −〈W⊥(t), Û⊥(t)〉. By Cauchy-Schwarz inequality, we have

E
[
−〈W⊥(t), Û⊥(t)〉

]
≤

√
E
[∥∥∥Ŵ⊥(t)

∥∥∥2
]
E
[∥∥∥Û⊥(t)

∥∥∥2
]

≤
√
C2Rε.

Combining these inequalities gives the bound on the term (B.9)

E
[
〈ce,W(t) + Â(t)− Ŝ(t)〉〈ce, Û(t)〉

]
≤ CA

M
√
Mα2

ε+
√
C2Rε.

Now we are ready to revive the superscript (ε). From the above analysis,

we have

2
ε

Mα
E

[∑
m

W (ε)
m (t)

]
≤ (σ

(ε)
e )2 + ν2 + ε

Mα2
+ C ′ε+ 2

CA

M
√
Mα2

ε+ 2
√
C2Rε,

i.e.,

αE

[∑
m

W (ε)
m (t)

]
≤ (σ

(ε)
e )2 + ν2

2ε
+D(ε)

e ,

where D
(ε)
e = ε

2
+ C′Mα2

2
+ CA√

M
+Mα2

√
C2R
ε
. On the other hand,

E

[
M∑
m=1

(
Ql(ε)
m (t) +Qk(ε)

m (t) +Qr(ε)
m (t)

)]
≤ αE

[∑
m

W (ε)
m (t)

]
.

Thus

E

[
M∑
m=1

(
Ql(ε)
m (t) +Qk(ε)

m (t) +Qr(ε)
m (t)

)]
≤ (σ

(ε)
e )2 + ν2

2ε
+D(ε)

e .

Observe that D
(ε)
e = o(1

ε
), i.e., limε↓0 εD

(ε)
e = 0. Therefore, in the heavy-traffic

limit, we obtain the following upper bound:

lim sup
ε↓0

εE

[
M∑
m=1

(
Ql(ε)
m (t) +Qk(ε)

m (t) +Qr(ε)
m (t)

)]
≤ (σe)

2 + ν2

2ε
,

which coincides with the lower bound in (B.6).
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B.4.2 Locally overloaded

Consider the heavy traffic regime where O = ∅ and Bu 6= ∅. The system

can be separated into two subsystems: racks with only Hu servers, denoted

by P , and racks mixed with servers of Hu and Bu, denoted by Pc. In the

heavy-traffic regime, the behavior of subsystem P is exactly the same as a

system with evenly loaded traffic. Here we focus on the subsystem Pc. For

simplicity, assume that P = ∅. Let the local traffic for Hu be∑
L̄∈L∗H

λL̄ ≡ Φα. (B.12)

We define the heavy-traffic regime to be∑
L̄∈LBu

λL̄ = |Bu|α + β(|Hu| − Φ)− ε, (B.13)

where ε > 0 characterizes the distance of the arrival rate vector from the

capacity boundary. We will make a further assumption that the {λL̄ : L̄ ∈
L∗Hu} are independent of ε.

Assumption 5 Consider the arrival processes {A(ε)

L̄
(t)}L̄∈L with arrival rate

vector λ(ε) satisfying the above conditions. Note that the variance of {A(ε)

L̄
(t)}L̄∈L∗Hu

is independent of ε. We denote by (σ
(ε)
l )2 the variance of the number of ar-

rivals that are only local to beneficiaries in overloaded racks, i.e., Var
(∑

L̄∈LBu
A

(ε)

L̄
(t)
)

=

(σ
(ε)
l )2, which converges to σ2

l as ε ↓ 0.

Again we follow the three-step framework to establish heavy-traffic opti-

mality for the case Bu 6= ∅. All results in this subsection concern the steady-

state queue-length vector Q̄.

Helper queues

Similar to the case of O 6= ∅, we first need to show that the helper subsystem

is uniformly bounded and independent of ε. That is, there exist two sequences

of finite numbers {Nr : r ∈ N} such that for each positive integer r,

E

[ ∑
m∈Hu

Q̄l(ε)
m

]
≤ Nr.
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Thus,

lim
ε↓0

εE

[ ∑
m∈Hu

Q̄l(ε)
m

]
= 0.

Therefore, we only need to consider

Φl(t) =
∑
m∈Bu

(
Ql(ε)
m (t) +Qk(ε)

m (t) +Qr(ε)
m (t)

)
+
∑
m∈Hu

(
Qk(ε)
m (t) +Qr(ε)

m (t)
)
.

Lower Bound

Consider a single server system with an arrival process {a(ε)
l (t), t ≥ 0} and

service process {b(ε)
l (t), t ≥ 0}, where

a
(ε)
l (t) =

∑
L̄∈LBu

A
(ε)

L̄
(t), b

(ε)
l (t) =

∑
i∈Bu

Xi(t) +
∑
j∈Hu

Yj(t).

Here {Xi(t)}i∈Bu , {Yj(t)}j∈Hu are independent and each process is i.i.d. For

all i ∈ Bu, Xi(t) ∼ Bern(α). For all j ∈ Hu, Yj(t) ∼ Bern(β(1−ρlj)), where ρlj

is the proportion of time helper j spends on local tasks in steady state. The

definition of Xi and Yj is such that E
[∑

i∈Bu Xi(t)
]

and E
[∑

j∈Hu Yj(t)
]

are

the maximum amount of local and rack-local services that can be provided

for
∑

L̄∈LBu
A

(ε)

L̄
(t). We denote Var(b

(ε)
l (t)) by (ν

(ε)
l )2, which converges to a

constant ν2
l as ε ↓ 0.

Then in steady state the corresponding queue-length process is stochasti-

cally smaller than Φ
(ε)
l (t). Hence

E
[
Φ

(ε)
l

]
≥ (σ

(ε)
l )2 + ν2

l + ε2

2ε
− M

2
,

where ν2
l is the variance for {b(ε)

l (t)}.
Therefore, in the heavy traffic limit, we have

lim inf
ε→0+

εE
[
Φ

(ε)
l

]
≥ σ2

l + ν2
l

2
. (B.14)
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State Space Collapse

The weighted-workload routing distributes the tasks local only to Bu in the

ratio of α : β in terms of server workload across Bu and Hu. We will show

that the workload vector W collapses to the direction cl = c̃l
||c̃l||
∈ RM

+ as a

vector with unit l2 norm, where

c̃lm =

{
β, ∀m ∈ Hu

α, ∀m ∈ Bu
.

The parallel and perpendicular components of the steady-state weighted

queue-length vector W with respect to cl are

W|| = 〈cl,W〉cl, W⊥ = W −W||.

We establish state space collapse by showing that W⊥ is bounded and

independent of the heavy-traffic parameter ε. That is, there exists a sequence

of finite numbers {Cr : r ∈ N} such that for each positive integer r,

E [‖W⊥‖r] ≤ Cr.

Upper Bound

Utilizing the property of state-space collapse in the heavy-traffic limit, we

can obtain an upper bound on E
[
Φ

(ε)
l

]
:

E
[
Φ

(ε)
l

]
≤ (σ

(ε)
l )2 + (ν

(ε)
l )2

2ε
+B

(ε)
l ,

where B
(ε)
l = o(1

ε
), i.e., lim

ε↓0
εB

(ε)
l = 0. Therefore, in the heavy-traffic limit,

we have

lim sup
ε↓0

εE
[
Φ

(ε)
l

]
≤ σ2

l + ν2
l

2
,

which coincides with the lower bound (B.14).
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B.5 Heavy-traffic Optimality with Overloaded Racks

B.5.1 Proof of Theorem 4.4

We need the following lemma to prove Theorem 4.4.

Lemma B.17. There exists a constant ρh, 0 ≤ ρh < 1, not depending on ε,

such that for any m ∈ Ho ∪Hu,

E
[
Alm
α

]
≤ ρh.

Proof of Lemma B.17. We prove this lemma by contradiction. Assume that

there exists a server n ∈ Hu, s.t. E
[
Aln
α

]
ε→0−→ 1.

Let Sn denote the set of servers in Hu that have shared traffic with n, i.e.,

Sn = {i : ∃L̄ ∈ L s.t. n ∈ L̄, i ∈ L̄}. For each i ∈ Sn, define Pi = P[Wn <

Wi] + 1
2
P[Wn = Wi]. Among tasks that are local to both n and i (might

also local to other servers), we denote by L
(n)
i the amount that are routed to

server n, and Li the amount routed to i. Then

L
(n)
i : Li = Pi : (1− Pi).

Consider remote tasks from LBo . For each i, let Ri denote the amount of

remote tasks from LBo . Thus

Rn : Ri = Pi : (1− Pi) = L
(n)
i : Li.

Note that local load on n is contributed by {L(n)
i }i∈Sn . Since E

[
Aln
α

]
ε→0−→ 1,

there must exist a subset S∗n ⊂ Sn, such that for any i ∈ S∗n, limε→0 L
(n)
i > 0.

In addition, as the system is stable, E
[
Arn
α

]
ε→0−→ 0, i.e., Rn

ε→0−→ 0. Hence

∀n ∈ S∗n,
Ri = Rn

Li

L
(n)
i

ε→0−→ 0.

Thus the amount of tasks from LBo that are served remotely by n ∪ S∗n
vanishes as ε→ 0.

From Lemma B.7, we know that the amount of rack-local tasks and that of
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remote tasks not from LBo have order o(ε). As a result, for any i ∈ S∗n ∪{n},

E
[
Ali
α

]
ε→0−→ 1.

Since ∀j ∈ Sn \S∗n, L
(n)
j → 0, local load on n comes from tasks types that are

only local to n ∪ S∗n. If there exists i ∈ S∗n, such that its local load includes

tasks that are also local to servers not in the set n ∪ S∗n, since E
[
Ali
α

]
ε→0−→ 1,

similarly we can define Si and find a set S∗i , such that shared traffic between

i and Si \ S∗i rarely contributes to the local load on i. Repeat the above

procedure for any server in S∗n ∪ {n}, we will end up with a set S∗ ⊂ Hu,

such that the local load on each server in S∗ converges to 1 as ε→ 0, i.e.,

E
[
Ali
] ε→0−→ α. (B.15)

And the amount of shared traffic between S∗ and Hu \ S∗ routed to S∗

vanishes. That is, ∑
i∈S∗

E
[
Ali
] ε→0−→

∑
L̄:∀m∈L̄,m∈S∗

λL̄. (B.16)

Equations (B.15) and (B.16) imply that
∑

L̄:∀m∈L̄,m∈S∗ λL̄ = |S∗|α. How-

ever, by the definition of Hu,∑
L̄:∀m∈L̄,m∈S∗

λL̄ ≤
∑
m∈S∗

φm < |S∗|α.

Contradiction. Thus the assumption is not valid. Therefore, for any n ∈ Hu,

its local load in steady state is strictly less than 1 as ε → 1. That is, there

exists a constant ρ∗h < 1, such that E
[
Aln
]
≤ ρ∗h. Similarly, we can show that

this holds for Ho as well.

Now we are ready to prove Theorem 4.4. Consider the system in steady

state. For any m ∈ Hu, define

Q̂m(t) = Ql
m(t) +Qk

m(t), Âm(t) = Alm(t) + Akm(t), Ŝm(t) = Slm(t) + Skm(t).

The dynamics of Q̂ can be written as

Q̂(t+ 1) = Q̂(t) + Â(t)− Ŝ(t).
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Consider the ideal arrival process F(t) defined in the proof of Theorem 4.7.

Let

F̂m(t) = F l
m(t) + F k

m(t).

Then we can rewrite the dynamics of Q̂ as

Q̂(t+ 1) = Q̂(t) + F̂(t)− Ŝ(t) + Â(t)− F̂(t).

Let ch ∈ RMHo
+ be a unit vector with all elements equal, i.e.,

ch =
1√
MHu

(1, 1, · · · , 1︸ ︷︷ ︸
MHu

).

Since we consider the system in steady state, the drift of function
∥∥∥Q̂||∥∥∥2

=∥∥∥〈ch, Q̂||〉
∥∥∥2

should be zero, which yields

2E
[
〈ch, Q̂(t)〉〈ch, Ŝ(t)− F̂(t)〉

]
= E

[
〈ch, F̂(t)− Ŝ(t)〉2

]
+ E

[
〈ch, Â(t)− F̂(t)〉2

]
+2E

[
〈ch, Q̂(t) + F̂(t)− Ŝ(t)〉〈ch, Â(t)− F̂(t)〉

]
. (B.17)

According to the definition of ideal arrival process,

〈ch, F̂(t)〉 =
1√
MHu

∑
m∈Hu

F l
m(t) =

1√
MHu

∑
L̄∈L∗Hu

AL̄(t).

Thus the sum of ideal arrivals on Hu and the queue lengths are independent.

We have

E
[
〈ch, Q̂(t)〉〈ch, Ŝ(t)− F̂(t)〉

]
=

1

MHu
E

[( ∑
m∈Hu

Q̂m(t)

)(∑
m∈Hu

Ŝm(t)

)]
− 1

MHu
E

[ ∑
m∈Hu

Q̂m(t)

] ∑
L̄∈L∗Hu

λL̄

 .

Note that Ŝm(t) = Slm(t) + Skm(t) only depends on the state of m−th queue.
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Hence

E

[( ∑
m∈Hu

Q̂m(t)

)(∑
m∈Hu

Ŝm(t)

)]

=
∑
m∈Hu

E
[
Ŝm(t)Q̂m(t)

]
+
∑
m∈Hu

E
[
Ŝm(t)

]
E

[ ∑
n∈Hu:n6=m

Q̂n(t)

]

=
∑
m∈Hu

E
[
Ŝm(t)Q̂m(t)

]
+ E

[ ∑
m∈Hu

Ŝm(t)

]
E

[∑
n∈Hu

Q̂n(t)

]
−
∑
m∈Hu

(
E
[
Ŝm(t)

]
E
[
Q̂m(t)

])
.

We have the following bound on the term
∑

m∈Hu E
[
Ŝm(t)Q̂m(t)

]
.

Lemma B.18.∑
m∈Hu

E
[
Ŝm(t)Q̂m(t)

]
≥
∑
m∈Hu

αE
[
Q̂m(t)

]
− C1,

where C1 > 0 is a constant.

Since Q̂ is in steady state, we have E
[
Ŝm(t)

]
= E

[
Âm(t)

]
. So

E

[ ∑
m∈Hu

Ŝm(t)

]
E

[∑
n∈Hu

Q̂n(t)

]
−
∑
m∈Hu

(
E
[
Ŝm(t)

]
E
[
Q̂m(t)

])
= E

[ ∑
m∈Hu

Âm(t)

]
E

[∑
n∈Hu

Q̂n(t)

]
−
∑
m∈Hu

(
E
[
Âm(t)

]
E
[
Q̂m(t)

])
= E

[ ∑
m∈Hu

(
Alm(t) + Akm(t)

)]
E

[∑
n∈Hu

Q̂n(t)

]
−
∑
m∈Hu

(
E
[
Alm(t) + Akm(t)

]
E
[
Q̂m(t)

])
(a)

≥ E

[ ∑
m∈Hu

(
Alm(t) + Akm(t)

)]
E

[∑
n∈Hu

Q̂n(t)

]
−
∑
m∈Hu

(
αρ∗hE

[
Q̂m(t)

])
,

where inequality (a) follows from Lemma B.17.
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Together we have

E
[
〈ch, Q̂(t)〉〈ch, Ŝ(t)− F̂(t)〉

]
≥ 1

MHu

{∑
m∈Hu

αE
[
Q̂m(t)

]
− C1 + E

[ ∑
m∈Hu

(
Alm(t) + Akm(t)

)]
E

[∑
n∈Hu

Q̂n(t)

]

−
∑
m∈Hu

(
αρ∗hE

[
Q̂m(t)

])
− E

[ ∑
m∈Hu

Q̂m(t)

] ∑
L̄∈L∗Hu

λL̄


=

1

MHu

α(1− ρ∗h) + E

[ ∑
m∈Hu

(
Alm(t) + Akm(t)

)]
−
∑

L̄∈L∗Hu

λL̄

E

[ ∑
m∈Hu

Q̂m(t)

]

− C1

MHu
.

Following the same line of reasoning as in the proof of Lemma 3.20, we

can show that

∑
L̄∈L∗Hu

λL̄ − E

[ ∑
m∈Hu

(
Alm(t) + Akm(t)

)]
≤ Cε,

where C is a constant only depending on α, β and γ. Also, By the definition

of ideal arrival process,∑
m∈Hu

F̂m(t) =
∑

L̄∈L∗Hu

λL̄ ≥
∑
m∈Hu

Âm(t).

Therefore we have

E
[
〈ch, Q̂(t)〉〈ch, Ŝ(t)− F̂(t)〉

]
(B.18)

≥ 1

MHu
[α(1− ρ∗h)− Cε]E

[ ∑
m∈Hu

Q̂m(t)

]
− C1

MHu
. (B.19)

By the boundedness of arrivals and service, there exist constants C2 > 0 and

C3 > 0 not depending on ε such that

E
[
〈ch, F̂(t)− Ŝ(t)〉2

]
≤ C2, (B.20)

E
[
〈ch, Â(t)− F̂(t)〉2

]
≤ C3. (B.21)
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For the last on the RHS of (B.17),

E
[
〈ch, Q̂(t) + F̂(t)− Ŝ(t)〉〈ch, Â(t)− F̂(t)〉

]
= E

[
〈ch, Q̂(t)〉〈ch, Â(t)− F̂(t)〉

]
+ E

[
〈ch, F̂(t)− Ŝ(t)〉〈ch, Â(t)− F̂(t)〉

]
(a)

≤ E
[
〈ch, F̂(t)− Ŝ(t)〉〈ch, Â(t)− F̂(t)〉

]
(b)

≤ C4, (B.22)

where (a) follows by the fact that 〈ch, Â(t)− F̂(t)〉 ≤ 0, and (b) follows from

the boundedness of arrivals, and C4 > 0 is a constant.

From Eq. (B.17) and inequalities (B.19)-(B.22), we have

2

MHu
[α(1− ρ∗h)− Cε]E

[ ∑
m∈Hu

Q̂m(t)

]
≤ 2C1

MHu
+ C2 + C3 + 2C4. (B.23)

Thus for any 0 < ε <
α(1−ρ∗h)

C
,

E

[ ∑
m∈Hu

Q̂m(t)

]
≤ C5

α(1− ρ∗h)− Cε
,

where C5 = C1 + (C2 + C3 + 2C4)
MHu

2
. Therefore

lim
ε↓0

E

[ ∑
m∈Hu

(
Ql(ε)
m (t) +Qk(ε)

m (t)
)]
≤ C5

α(1− ρ∗h)
. (B.24)

That is,

lim
ε↓0

εE

[ ∑
m∈Hu

(
Ql(ε)
m (t) +Qk(ε)

m (t)
)]

= 0.

Similarly we can show that

lim
ε↓0

εE

[∑
m∈Ho

Ql(ε)
m (t)

]
= 0.
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B.5.2 Proof of Theorem 4.6

Analogue to Lemma B.8, we have the following lemma for the ideal load

decomposition for the case O 6= ∅.

Lemma B.19. Consider an arrival rate vector λ that satisfies the heavy

traffic rack overloaded assumption, with 0 < ε < ε̄, where ε̄ is a positive

constant. Then there exists a decomposition
{
λ∗
L̄,n,m

}
of λ satisfying the

following conditions:

1. ∀m ∈M, define

ωm =
∑
L̄:m∈L̄

λ∗
L̄,m

α
+
∑

L̄:m∈L̄k

λ∗
L̄,m

β
+
∑

L̄:m∈L̄r

λ∗
L̄,m

γ
.

Then

ωm =


1− γε0, ∀m ∈ Hu

1− βε0, ∀m ∈ Ho

1− αε0, ∀m ∈ Bo

where ε0 = ε
‖c̃‖2 .

2. Let LBo denote the set of task types that are only local to Bo. ∀L̄ ∈
LBo , ∀m ∈ {i ∈ M|i ∈ L̄, or i ∈ Hu, or i ∈ L̄k ∩ Ho}, λ∗L̄,m =∑

n∈L̄ λ
∗
L̄,n,m

≥ κ, where κ is a positive constant independent of ε.

We need the following additional lemmas analogue to Lemmas B.11-B.13

for the evenly loaded case.

Lemma B.20. Under balanced-Pandas, for any t ≥ 0,

E [〈W(t),A(t)〉 − 〈W(t),ω〉|Z(t)] ≤ −λmin‖W⊥(t)‖, (B.25)

where λmin is a constant independent of ε.

Lemma B.21. Under balanced-Pandas, for any t ≥ 0,

E [〈W(t),ω〉 − 〈W(t),S(t)〉|Z(t)] = − ε

‖c̃‖
〈c,W〉.
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Lemma B.22. Under balanced-Pandas, for any t ≥ 0,

E [〈c,W(t)〉〈c,A(t)− S(t)〉|Z(t)] ≥ − ε

‖c̃‖
〈c,W〉.

Proof of Theorem 4.6.: We consider Lyapunov function

F (Z) = ‖W⊥‖,

whose drift can be bounded as

∆F (Z) ≤ 1

2‖W⊥‖
(∆V (Z)−∆V||(Z)), (B.26)

where ∆V (Z) and ∆V||(Z) are the drifts for V (Z) = ‖W‖2 and V||Z =∥∥W||
∥∥2

respectively. We then have

E
[
∆V (Z(t))−∆V||(Z(t))|Z(t)

]
(B.27)

≤ 2E [〈W(t),A(t)− S(t)〉 − 〈c,W(t)〉〈c,A(t)− S(t)〉|Z(t)] + C1.

Lemma B.20-B.22 gives an bound on ∆F (Z(t)):

E [∆F (Z(t))|Z(t)] ≤ −λ0 +
C

‖W⊥(t)‖
,

where λ0 and C are positive constants independent of ε. This inequality

verifies the negative drift condition, and hence establishes the existence of

finite constants {C ′r}r∈N for which E
[∥∥∥W(ε)

⊥ (t)
∥∥∥r] ≤ C ′r.

Proof of Lemmas B.20-B.22

Proof of Lemma B.20. From the proof of Lemma 3.7, we have

E [〈W(t),A(t)〉|Z(t)] =
∑
L̄∈L

(
W ∗
L̄(t)

∑
m

λ∗L̄,m

)
,

where

W ∗
L̄(t) = min

m∈M

{
Wm(t)

α
I{m∈L̄},

Wm(t)

β
I{m∈L̄k},

Wm(t)

γ
I{m∈L̄r}

}
.
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Note that

E [〈W(t),ω〉|Z(t)]

=
∑
L̄∈L

 ∑
m:m∈L̄

Wm(t)

α
λ∗L̄,m +

∑
m:m∈L̄k

Wm(t)

β
λ∗L̄,m +

∑
m:m∈L̄r

Wm(t)

γ
λ∗L̄,m

 .

So

E [〈W(t),A(t)〉|Z(t)]− E [〈W(t),ω〉|Z(t)]

=
∑
m

 ∑
L̄∈LBo
s.t. m∈L̄

(
W ∗
L̄(t)− Wm(t)

α

)
λ∗L̄,m +

∑
L̄∈LBo

s.t. m∈L̄k

(
W ∗
L̄(t)− Wm(t)

β

)
λ∗L̄,m

+
∑
L̄∈LBo

s.t. m∈L̄r

(
W ∗
L̄(t)− Wm(t)

γ

)
λ∗L̄,m

 .
Let λ0 = κ

M
, where κ is defined in Lemma B.19. Then λ0 > 0 and does not

depend on ε. By Lemma B.19, for any L̄ ∈ LBo , ∀m ∈ {i ∈ M|i ∈ L̄, or i ∈
Hu, or i ∈ L̄k ∩Ho}, λ∗L̄,m ≥ λ0, and

λ∗
L̄,m

M
≥ λ0.

Define L̄∗ ∈ arg minL̄∈LBo W
∗
L̄
(t), and Wmin = W ∗

L̄∗
(t). Consider a particu-

lar server m0 ∈ Hu, and discard the terms with indices not equal to L̄∗ in its

summation. For each m ∈ Bo, keep one term with index L̄(m) ∈ LBo s.t. m ∈
L̄; for each m ∈ Ho, keep one term with index L̄(m) ∈ LBo s.t. m ∈ L̄k; for

each m ∈ Hu, except m0, keep one term with index L̄(m) ∈ LBo s.t. m ∈ L̄r.
Discarding all other terms yields:
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E [〈W(t),A(t)〉|Z(t)]− E [〈W(t),ω〉|Z(t)]

≤ −
∑
m∈Bo

λ0

(
Wm(t)

α
−W ∗

L̄(m)(t)

)
−
∑
m∈Ho

λ0

(
Wm(t)

β
−W ∗

L̄(m)(t)

)
−

∑
m∈Hu,m 6=m0

λ0

(
Wm(t)

γ
−W ∗

L̄(m)(t)

)
− λ0M

(
Wm0(t)

γ
−Wmin(t)

)
= −

∑
m∈Bo

λ0

(
Wm(t)

α
−Wmin(t)

)
−
∑
m∈Ho

λ0

(
Wm(t)

β
−Wmin(t)

)
−
∑
m∈Hu

λ0

(
Wm(t)

γ
−Wmin(t)

)
− λ0

∑
m 6=m0

(
Wm0(t)

γ
−W ∗

L̄(m)(t)

)
(a)

≤ −λ0

[∑
m∈Bo

(
Wm(t)

α
−Wmin(t)

)
+
∑
m∈Ho

(
Wm(t)

β
−Wmin(t)

)

+
∑
m∈Hu

(
Wm(t)

γ
−Wmin(t)

)]

≤ −λ0

α

∑
m

(Wm(t)− c̃mWmin(t)) ,

where (a) follows from the fact that
Wm0 (t)

γ
≥ W ∗

L̄(m)(t) for all L̄(m).

By the definition of Wmin(t), for any m, Wm(t) ≥ c̃mWmin(t). Hence∑
m

(Wm(t)− c̃mWmin(t)) = ‖W(t)−Wmin(t)c̃‖1

≥ ‖W(t)−Wmin(t)‖c̃‖ · c‖2,

where ‖·‖1 and ‖·‖2 are the l1 and l2 norm, respectively. The inequality

follows by the fact that the l1 norm of a vector is no smaller than its l2 norm.

As the convex function ‖W(t)− xc‖2 is minimized at x = 〈c,W〉,

‖W(t)−Wmin(t)‖c̃‖ · c‖2 ≥ ‖W(t)− 〈c,W〉c‖2 = ‖W⊥(t)‖.

Therefore, we have

E [〈W(t),A(t)〉|Z(t)]− E [〈W(t),ω〉|Z(t)] ≤ −λ0‖W⊥(t)‖,

where λmin = λ0

α
, independent of ε.
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Proof of Lemma B.21. It is similar to that of Lemma B.12. We skip the

proof details here.

Proof of Lemma B.22. It is similar to that of Lemma B.13. We skip the

proof details here.

B.5.3 Proof of Theorem 4.7

First we define a series of ideal processes.

Ideal scheduling decision process η′(t): ∀m ∈ Bo, η′m(t) = 0; ∀m ∈ Ho,

η′m(t) = ηm(t) if ηm(t) = 0, and η′m(t) = 1 when fm(t−) = −1, Ql
m(t) = 0;

∀m ∈ Hu, η
′
m(t) = ηm(t). That is, each beneficiary in the overloaded racks is

scheduled to serve its local sub-queue only under the ideal scheduling, and an

idle helper with an empty local sub-queue in an overloaded rack is scheduled

to serve its rack-local sub-queue only.

Ideal service process D(t): For each m ∈ Bo,

Dk
m(t) = 0, Dr

m(t) = 0,

and each process Dl
m(t) is i.i.d. with Dl

m(t) ∼ Bern(α) and is coupled with

Sm(t) in the following way: If ηm(t) = 0, Dl
m(t) = Slm(t); if ηm(t) = 1,

Dl
m(t) = 1 when Skm(t) = 1, and Dl

m(t) ∼ Bern(α−β
1−β ) when Skm(t) = 0;

if ηm(t) = 2, Dl
m(t) = 1 when Srm(t) = 1, and Dl

m(t) ∼ Bern(α−γ
1−γ ) when

Skm(t) = 0.

For each m ∈ Ho,

Dl
m(t) = Slm(t), Dr

m(t) = 0,

and each process Dk
m(t) is i.i.d. with Dk

m(t) ∼ Bern(βI{ηm(t)6=0}) and is cou-

pled with Sm(t) in the following way: If ηm(t) 6= 2, Dk
m(t) = Skm(t); if

ηm(t) = 2, Dk
m(t) = 1 when Srm(t) = 1, and Dl

m(t) ∼ Bern(β−γ
1−γ ) when

Srm(t) = 0.

For each m ∈ Hu, Dm(t) = Sm(t).

Dl
m(t) = Slm(t), Dk

m(t) = 0,

and each process Dr
m(t) is i.i.d. with Dr

m(t) ∼ Bern(γI{ηm(t)6=0}) and is cou-
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pled with Sm(t) in the following way: If ηm(t) 6= 1, Dr
m(t) = Srm(t); if

ηm(t) = 1, Dr
m(t) = 0 when Skm(t) = 0, and Dr

m(t) ∼ Bern(β−γ
1−β ) when

Skm(t) = 1.

Ideal arrival process F(t): Ideally, ∀L̄ ∈ L∗Hu , type-L̄ tasks would join their

local sub-queues atHu. So we re-distribute unwanted arrivals
∑

m:m/∈L̄,m/∈Hu AL̄,m

among its local servers at Hu evenly. Similarly, all tasks of types LHo
would be routed to their local sub-queues at Ho. That is, unwanted arrivals∑

m:m/∈L̄,m/∈Ho AL̄,m would be re-distributed evenly among its local servers at

Ho. For any L̄ ∈ LBo , type-L̄ tasks would only join their local sub-queues at

Bo, or rack-local sub-queues at Ho, or remote sub-queues at Hu. Hence we

re-distribute unwanted arrivals that are routed to other sub-queues evenly

among its local servers at Bo. Then we can rewrite the dynamics of Q̃ as

Q̃(t+ 1) = Q̃(t) + F̃(t)− D̃(t) + Ṽ(t),

where Ṽ(t) = Ã(t)(t)− F̃(t) + D̃(t)− S̃(t) + Ũ(t).

In steady state, we have

2E
[
〈c, Q̃(t)〉〈c, D̃(t)− F̃(t)〉

]
(B.28)

= E
[
〈c, F̃(t)− D̃(t)〉2

]
+ E

[
〈c, Ṽ(t)〉2

]
(B.29)

+2E
[
〈c, Q̃(t) + F̃(t)− D̃(t)〉〈c, Ṽ(t)〉

]
. (B.30)

Note that

Ψ(ε) ≤
∑
m∈Hu

γ
Qr
m

γ
+
∑
m∈Ho

β

(
Qk
m

β
+
Qr
m

γ

)
+
∑
m∈Bo

α

(
Ql
m

α
+
Qk
m

β
+
Qr
m

γ

)
= ||c̃||〈c, Q̃〉.

An upper bound on E
[
〈c, Q̃(t)〉

]
can be obtained by bounding each of the

above terms, which gives an upper bound on E
[
Ψ(ε)(t)

]
.

For convenience, we temporarily omit the superscript (ε). We study each

term in (B.28)-(B.30).

According to the definition of ideal arrival processes,

〈c̃, F̃(t)〉 =
∑
L̄∈LBo

AL̄(t).
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Hence

E
[
〈c̃, F̃(t)〉

]
=
∑
L̄∈LBo

λL̄, Var
[
〈c̃, F̃(t)〉

]
= (σ(ε))2.

By the definition of ideal service processes,

〈c̃, D̃(t)〉 =
∑
m∈Bo

α · D
l
m(t)

α
+
∑
m∈Ho

β · D
k
m(t)

β
+
∑
m∈Hu

γ · D
r
m(t)

γ
.

For each server m, we denote by ρlm the proportion of time it spends on

serving local sub-queue in steady state. Then

E
[
〈c̃, D̃(t)〉

]
= αMBo +

∑
m∈Ho

β(1− ρlm) +
∑
m∈Hu

γ(1− ρlm),

Var
[
〈c̃, D̃(t)〉

]
= α(1− α)MBo +

∑
m∈Ho

β(1− ρlm)[1− β(1− ρlm)]

+
∑
m∈Hu

γ(1− ρlm)[1− γ(1− ρlm)]

= (ν(ε))2.

It is easy to verify that

E
[
〈c̃, D̃(t)〉

]
−E

[
〈c̃, F̃(t)〉

]
= ε+β(ΦHo−

∑
m∈Ho

ρlm)+γ(ΦHu−
∑
m∈Hu

ρlm) = ε+δ,

where δ = β(ΦHo −
∑

m∈Ho ρ
l
m) + γ(ΦHu −

∑
m∈Hu ρ

l
m) ≥ 0, and δ → 0 as

ε ↓ 0. Therefore,

E
[
〈c, Q̃(t)〉〈c, D̃(t)− F̃(t)〉

]
=

1

||c̃||
E
[
〈c, Q̃(t)〉

(
〈c̃, D̃(t)〉 − 〈c̃, F̃(t)〉

)]
=

ε+ δ

||c̃||
E
[
〈c, Q̃(t)〉

]
. (B.31)

For the first term in (B.29), we have

E
[
〈c, F̃(t)− D̃(t)〉2

]
=

1

||c̃||2

{
Var

[
〈c̃, D̃(t)〉

]
+ Var

[
〈c̃, D̃(t)〉

]
+
(
E
[
〈c, F̃(t)− D̃(t)〉

])2
}

=
1

||c̃||2
[
(σ(ε))2 + (ν(ε))2 + (ε+ δ)2

]
. (B.32)
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The following lemma provides an upper bound on the second term in

(B.29).

Lemma B.23.

E
[
〈c, Ṽ(t)〉2

]
≤ Cε, (B.33)

where C is a constant not depending on ε.

Next we will bound the term (B.30). We consider the system in steady

state, which yields

E
[
〈c, F̃(t)− D̃(t) + Ṽ(t)〉

]
= E

[
〈c, Q̃(t+ 1)− Q̃(t)〉

]
= 0.

Hence

E
[
〈c, Ṽ(t)〉

]
= E

[
〈c, F̃(t)− D̃(t)〉

]
=
ε+ δ

‖c̃‖
.

Thus

E
[
〈c, F̃(t)− D̃(t)〉〈c, Ṽ(t)〉

]
≤ E

[
〈c, F̃(t)〉〈c, Ṽ(t)〉

]
≤ CA(ε+ δ)

‖c̃‖2 .

Together, we have

E
[
〈c, Q̃(t) + F̃(t)− D̃(t)〉〈c, Ṽ(t)〉

]
≤ E

[
〈c, Q̃(t)〉〈c, Ṽ(t)〉

]
+
CA(ε+ δ)

‖c̃‖2 .

We can rewrite the term 〈c, Q̃(t)〉〈c, Ṽ(t)〉 as

〈c, Q̃(t)〉〈c, Ṽ(t)〉

= 〈Q̃(t), Ṽ(t)〉 − 〈Q̃⊥(t), Ṽ⊥(t)〉

= 〈Q̃(t), D̃(t)− S(t)〉+ 〈Q̃(t),A(t)− F̃(t)〉 (B.34)

+〈Q̃(t), Ṽ(t)〉 − 〈Q̃⊥(t), Ṽ⊥(t)〉. (B.35)

The following two lemmas bound the first two terms in (B.34).

Lemma B.24.

E
[
〈Q̃(t), D̃(t)− S̃(t)〉

]
= 0.

Lemma B.25.

E
[
〈Q̃(t), Ã(t)− F̃(t)〉

]
= o(ε).
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The first term in (B.35) is equal to zero by Lemma B.7. To bound the

second term in (B.35), we first provide a bound on E
[∥∥∥Ṽ(t)

∥∥∥2
]
. By Lemma

B.23, we can show that

E
[∥∥∥Ṽ(t)

∥∥∥2
]
≤ Rε,

where R is a constant independent of ε. Again we will use state space collapse

result to bound −〈Q̃⊥(t), Ṽ⊥(t)〉. By Cauchy-Schwarz inequality, we have

E
[
−〈Q̃⊥(t), Ṽ⊥(t)〉

]
≤

√
E
[∥∥∥Q̃⊥(t)

∥∥∥2
]
E
[∥∥∥Ṽ⊥(t)

∥∥∥2
]

≤
√
C ′2Rε.

Utilizing the above inequalities yields the following bound on the term (B.30):

E
[
〈c, Q̃(t) + F̃(t)− D̃(t)〉〈c, Ṽ(t)〉

]
≤ CA(ε+ δ)

‖c̃‖2 .+
√
C ′2Rε+ o(ε). (B.36)

We now reintroduce the superscript (ε). Substituting (B.31)-(B.33) and

(B.36) in (B.28)-(B.30) yields

2
ε+ δ

||c̃||
E
[
〈c, Q̃(t)〉

]
≤ 1

||c̃||2
[
(σ(ε))2 + (ν(ε))2 + (ε+ δ)2

]
+ Cε+

2CA(ε+ δ)

‖c̃‖2 .+ 2
√
C ′2Rε+ 2o(ε).

Since δ ≥ 0, we have

‖c̃‖E
[
〈c, Q̃(t)〉

]
≤ (σ(ε))2 + (ν(ε))2

2(ε+ δ)
+B(ε) ≤ (σ(ε))2 + (ν(ε))2

2ε
+B(ε),

where B(ε) = C
2

ε
ε+δ
‖c̃‖+ CA + ‖c̃‖2

√
C ′2R

√
ε

ε+δ
+ o(1), which is o(1/ε). Since

Ψ(ε) =
∑
m∈Bo

(Ql(ε)
m +Qk(ε)

m +Qr(ε)
m ) +

∑
m∈Ho

(Qk(ε)
m +Qr(ε)

m ) +
∑
m∈Hu

Qr(ε)
m

≤ ||c̃||〈c, Q̃〉,

we have

E
[
Ψ(ε)

]
≤ (σ(ε))2 + (ν(ε))2 + (ε+ δ)2

2ε
+B(ε).
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Taking the limit as ε→ 0+ gives the result (4.7). Observe that

E

[∑
m

(Ql(ε)
m +Qk(ε)

m +Qr(ε)
m )

]

= E

[ ∑
m∈Hu

(Ql(ε)
m +Qk(ε)

m ) +
∑
m∈Ho

Ql(ε)
m

]
+ E

[
Ψ(ε)

]
.

We have established the coincidence of lower and upper bounds for εE
[
Ψ(ε)

]
.

Then the heavy-traffic optimality of the proposed algorithm follows by The-

orem 4.4.

B.5.4 Proof of Lemmas B.23-B.25

Proof of Lemma B.23. We will show that

E
[∥∥∥Ã− F̃

∥∥∥2
]
≤ C1ε, E

[∥∥∥D̃− S̃
∥∥∥2
]
≤ C2ε, E

[∥∥∥Ũ∥∥∥2
]
≤ C3ε,

where C1, C2, C3 are constants independent of ε. Since Ṽ(t) = Ã(t)− F̃(t) +

D̃(t)− S̃(t) + Ũ(t), we have

E
[∥∥∥Ṽ(t)

∥∥∥2
]

= E
[∥∥∥Ã(t)− F̃(t) + D̃(t)− S̃(t) + Ũ(t)

∥∥∥2
]

≤ 2E
[∥∥∥Ã(t)− F̃(t)

∥∥∥2

+
∥∥∥D̃(t)− S̃(t)

∥∥∥2

+
∥∥∥Ũ(t)

∥∥∥2
]

≤ 2(C1 + C2 + C3)ε.

In order to achieve maximum throughput, ∀L̄ ∈ L∗Hu , type-L̄ tasks would

join their local sub-queues atHu ideally. LetAlHuC, A
k
HuC andArHuC denote the

amount of tasks from L∗Hu that are routed to local, rack-local and remote sub-

queues at C respectively, where C ∈ {Hu,Ho,Bo}. Thus ideally AlHuHu ≥ 0,

and all others are zero. We call arrival types that are supposed to be zero

as unwanted arrivals. Similarly, all tasks of types LHo would be routed to

their local sub-queues at Ho ideally. We denote by AlHoC, A
k
HoC and ArHoC the

amount of tasks from LHo that are routed to local, rack-local and remote sub-

queues at C respectively, where C ∈ {Hu,Ho,Bo}. All these arrivals except

AlHoHo are unwanted. For any L̄ ∈ LBo , type-L̄ tasks would only join their

local sub-queues at Bo, or rack-local sub-queues at Ho, or remote sub-queues
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at Hu. As task types LBo are only local to servers in Bo, unwanted arrivals

include AkBoBo , A
r
BoHo and ArBoBo .

First we show that the amount of unwanted arrivals is upper bounded by

Cε, where C is a constant not depending on ε. The expected load on Bo is

given by

ΥBo = E
[

1

α

(
AlBoBo + AlHoBo + AlHuBo

)
+

1

β

(
AkBoBo + AkHoBo + AkHuBo

)
+

1

γ

(
ArBoBo + ArHoBo + ArHuBo

)]
.

Since the system is stable, ΥBo < MBo . Similarly, the expected load on Ho

satisfies

ΥHo = E
[

1

α

(
AlHoHo + AlHuHo

)
+

1

β

(
AkBoHo + AkHoHo + AkHuHo

)
+

1

γ

(
ArBoHo + ArHoHo + ArHuHo

)]
< MHo .

The expected load on Hu satisfies

ΥHu = E
[
AlHuHu
α

+
AkHuHu
β

+
1

γ

(
ArBoHu + ArHoHu + ArHuHu

)]
< MHu .

Therefore,

αΥBo + βΥHo + γΥHu < αMBo + βMHo + γMHu . (B.37)
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LHS of (B.37) can be written as

E
[
AlBoBo + AkBoHo + ArBoHu +

α

β
AkBoBo +

α

γ
ArBoBo +

β

γ
ArBoHo

]
+E

[
β

α
AlHoHo + AlHoBo +

α

β
AkHoBo + AkHoHo

]
+E

[
β

γ
ArHoHo +

α

γ
ArHoBo + ArHoHu

]
+E

[
γ

α
AlHuHu +

β

α
AlHuHo + AlHuBo +

α

β
AkHuBo + AkHuHo

]
+E

[
γ

β
AkHuHu +

α

γ
ArHuBo +

β

γ
ArHuHo + ArHuHu

]
=

∑
L̄∈LBo

λL̄ + E
[
α− β
β

AkBoBo +
α− γ
γ

ArBoBo +
β − γ
γ

ArBoHo

]

+
β

α

∑
L̄∈LHo

λL̄ + E
[
α− β
α

AlHoBo +
α2 − β2

αβ
AkHoBo +

α− β
α

AkHoHo

]

+E
[

(α− γ)β

αγ
ArHoHo +

α2 − βγ
αγ

ArHoBo +
α− β
α

ArHoHu

]
+
γ

α

∑
L̄∈L∗Hu

λL̄ + E
[
β − γ
α

AlHuHo +
α− γ
α

AlHuBo +
α2 − βγ
αβ

AkHuHo +
α− γ
α

AkHuHo

]

+E
[

(α− β)γ

αβ
AkHuHu +

α2 − γ2

αγ
ArHuBo +

αβ − γ2

αγ
ArHuHo +

α− γ
α

ArHuHu

]
. (B.38)

Since∑
L̄∈LBo

λL̄ +
β

α

∑
L̄∈LHo

λL̄ +
γ

α

∑
L̄∈L∗Hu

λL̄ = αMBo + βMHo + γMHu − ε,

and the coefficient for each unwanted arrival term in (B.38) is positive, each

unwanted arrival term can be upper bounded by Cε, where C is a constant

only depending on α, β and γ. By the definition of ideal arrival processes,

E
[∥∥∥Ã− F̃

∥∥∥
1

]
is a linear function of the unwanted arrival terms in (B.38).

Thus

E
[∥∥∥Ã− F̃

∥∥∥2
]
≤ CAE

[∥∥∥Ã− F̃
∥∥∥

1

]
≤ C1ε,

where C1 > 0 is a constant independent of ε.
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As we consider the system in steady state, for any m ∈M,

E
[
Am(t)− Sm(t) + Ũm(t)

]
= E [Wm(t+ 1)−Wm(t)] = 0,

i.e., E
[
Sm(t)− Ũm(t)

]
= E [Am(t)] . Then we have

E

[∑
m∈Bo

α(Sm − Ũm) +
∑
m∈Ho

β(Sm − Ũm) +
∑
m∈Hu

γ(Sm − Ũm)

]

= E

[∑
m∈Bo

αAm +
∑
m∈Ho

βAm +
∑
m∈Hu

γAm

]

≥
∑
L̄∈LBo

λL̄ +
β

α

∑
L̄∈LHo

λL̄ +
γ

α

∑
L̄∈L∗Hu

λL̄.

Consequently,

E

[∑
m∈Bo

αŨm +
∑
m∈Ho

βŨm +
∑
m∈Hu

Ũm

]

≤ αMBo + βMHo + γMHu −

 ∑
L̄∈LBo

λL̄ +
β

α

∑
L̄∈LHo

λL̄ +
γ

α

∑
L̄∈L∗Hu

λL̄


= ε.

As 0 ≤ Ũm(t) ≤ 1
γ
,

E
[∥∥∥Ũ(t)

∥∥∥2
]
≤ 1

γ
E

[∑
m

Ũm(t)

]

≤ 1

γ2
E

[∑
m∈Bo

αŨm(t) +
∑
m∈Ho

βŨm(t) +
∑
m∈Hu

Ũm(t)

]
≤ ε

γ2
.
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Next we will focus on E
[∥∥∥D̃(t)− S̃(t)

∥∥∥2
]
. By the definition of D̃(t),

E
[∥∥∥D̃(t)− S̃(t)

∥∥∥2
]

= E

[∑
m∈Bo

∥∥∥∥Dl
m

α
− Slm

α
− Skm

β
− Srm

γ

∥∥∥∥2
]

+E

[∑
m∈Ho

∥∥∥∥Dk
m

β
+
Dr
m

γ
− Skm

β
− Srm

γ

∥∥∥∥2

+
∑
m∈Hu

∥∥∥∥Dr
m

γ
− Srm

γ

∥∥∥∥2
]

= E

[∑
m∈Bo

(∥∥∥∥Dl
m

α
− Skm

β

∥∥∥∥2

I{ηm(t)=1} +

∥∥∥∥Dl
m

α
− Srm

γ

∥∥∥∥2

I{ηm(t)=2}

)]

+E

[∑
m∈Ho

∥∥∥∥Dk
m

β
− Srm

γ

∥∥∥∥2

I{ηm(t)=2}

]
+ E

[ ∑
m∈Hu

∥∥∥∥Dr
m

γ

∥∥∥∥2

I{ηm(t)=1}

]

≤ 1

γ2
E

[∑
m∈Bo

(I{ηm(t)=1} + I{ηm(t)=2})

]
+

1

γ2
E

[∑
m∈Ho

I{ηm(t)=2}

]

+
1

γ2
E

[ ∑
m∈Hu

I{ηm(t)=1}

]
.

Again as we consider the system in steady state, for any m,

E
[
Alm(t)− Slm(t)

]
= E

[
Ql
m(t+ 1)−Ql

m(t)
]

= 0,

E
[
Akm(t)− Skm(t)

]
= E

[
Qk
m(t+ 1)−Qk

m(t)
]

= 0,

E [Arm(t)− Srm(t) + Um(t)] = E [Qr
m(t+ 1)−Qr

m(t)] = 0.

That is,

E
[
Slm(t)

]
= αE

[
I{ηm(t)=0}

]
= E

[
Alm(t)

]
,

E
[
Skm(t)

]
= βE

[
I{ηm(t)=1}

]
= E

[
Akm(t)

]
,

E [Srm(t)] = γE
[
I{ηm(t)=2}

]
= E [Arm(t) + Um(t)] .
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Thus

E

[∑
m∈Bo

(I{ηm(t)=1} + I{ηm(t)=2})

]

=
1

β
E

[∑
m∈Bo

Akm(t)

]
+

1

γ
E

[∑
m∈Bo

Arm(t)

]
+

1

γ
E

[∑
m∈Bo

U r
m(t)

]

= E

[∑
m∈Bo

1

β

(
AkBoBo + AkHoBo + AkHuBo

)
+

1

γ

(
ArBoBo + ArHoBo + ArHuBo

)]

+
1

γ
E

[∑
m∈Bo

U r
m(t)

]
≤ Cε,

where C is a constant not depending on ε. Similarly,

E

[∑
m∈Ho

I{ηm(t)=2}

]
≤ Cε, E

[ ∑
m∈Hu

I{ηm(t)=1}

]
≤ Cε.

Combining these inequalities yields:

E
[∥∥∥D̃(t)− S̃(t)

∥∥∥2
]
≤ C2ε.

Proof of Lemma B.24. The proof is similar to that of Lemma B.15.

Proof of Lemma B.25. By the definition of ideal arrival process F(t), for any

m ∈ Bo,

F l
m = Alm +

∑
L̄:L̄∈LBo
m∈L̄

1

|L̄|

 ∑
n:n∈Bo
n∈L̄k

AL̄,n +
∑
n:n∈Bo
n∈L̄r

AL̄,n +
∑

n:n∈Ho
n∈L̄r

AL̄,n

− ∑
L̄:L̄/∈LBo
m∈L̄

AL̄,m,

F k
m = F r

m = 0.
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For any m ∈ Ho,

F l
m = Alm −

∑
L̄:L̄/∈LHo
m∈L̄

AL̄,m +
∑

L̄:L̄∈LHo
m∈L̄

1

|L̄|
∑

n:n/∈L̄∩Ho

AL̄,n,

F k
m = Akm −

∑
L̄:L̄/∈LBo
m∈L̄k

AL̄,m,

F r
m = 0.

For any m ∈ Hu,

F l
m = Alm +

∑
L̄:L̄∈L∗Ho
m∈L̄

1

|L̄|
∑

n:n/∈L̄∩Hu

AL̄,n,

F k
m = 0,

F r
m = Arm −

∑
L̄:L̄/∈LBo
m∈L̄r

AL̄,m.
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We can write 〈Q̃(t), Ã(t)− F̃(t)〉 as

∑
m∈Bo

Q̃m

(
Alm
α

+
Akm
β

+
Arm
γ
− F l

m

α
− F k

m

β
− F r

m

γ

)
+
∑
m∈Ho

Q̃m

(
Akm
β

+
Arm
γ
− F k

m

β
− F r

m

γ

)
+
∑
m∈Hu

Q̃m

(
Arm
γ
− F r

m

γ

)

=
∑

L̄:L̄∈LBo

 ∑
n:n∈Bo
n∈L̄k

(
Q̃n

β
− 1

|L̄|
∑
m∈L̄

Q̃m

α

)
AL̄,n

+
∑
n:n∈Bo
n∈L̄r

(
Q̃n

γ
− 1

|L̄|
∑
m∈L̄

Q̃m

α

)
AL̄,n

+
∑

n:n∈Ho
n∈L̄r

(
Q̃n

γ
− 1

|L̄|
∑
m∈L̄

Q̃m

α

)
AL̄,n

 (B.39)

+
∑

L̄:L̄∈LHo

∑
n∈L̄k

Q̃n

β
AL̄,n +

∑
n∈L̄r

Q̃n

γ
AL̄,n +

∑
n∈L̄
n/∈Ho

Q̃n

α
AL̄,n

 (B.40)

+
∑

L̄:L̄∈L∗Hu

∑
n∈L̄k

Q̃n

β
AL̄,n +

∑
n∈L̄r

Q̃n

γ
AL̄,n +

∑
n∈L̄
n/∈Hu

Q̃n

α
AL̄,n

 . (B.41)

For each term in (B.39), according to weighted workload routing, AL̄,n > 0

only if n is in the set

arg min
m∈M

{
Wm(t)

α
I{m∈L̄},

Wm(t)

β
I{m∈L̄k},

Wm(t)

γ
I{m∈L̄r}

}
.

Note that ∀n ∈ Bo, Q̃n = Wn. Hence if n ∈ Bo and n ∈ L̄k,

Q̃n

β
≤ 1

|L̄|
∑
m∈L̄

Wm

α
=

1

|L̄|
∑
m∈L̄

Q̃m

α
.

So the first term in (B.39) is non-positive. Similarly we can show the second

term in (B.39) is non-positive. As for the third term, since ∀n ∈ Ho, Q̃n =
Qkm
β

+ Qrm
γ
≤ Wn,

Q̃n
γ
≤ gammaWn ≤ 1

|L̄|
∑

m∈L̄
Wm

α
= 1
|L̄|
∑

m∈L̄
Q̃m
α
. Thus we
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have (B.39) ≤ 0. From the definition of Q̃, (B.40) can be upper bounded by

∑
L̄:L̄∈LHo

∑
n∈L̄k

Wn

β
AL̄,n +

∑
n∈L̄r

Wn

γ
AL̄,n +

∑
n∈L̄&n/∈Ho

Wn

α
AL̄,n

 . (B.42)

Similarly, (B.41) can be upper bounded by

∑
L̄:L̄∈L∗Hu

∑
n∈L̄k

Wn

β
AL̄,n +

∑
n∈L̄r

Wn

γ
AL̄,n +

∑
n∈L̄&n/∈Hu

Wn

α
AL̄,n

 . (B.43)

Next we will show that the expectation of each term in (B.42) and (B.43)

will go to zero as ε → 0. Consider any L̄ ∈ LHo , and n ∈ L̄k ∩ Bo such that

AL̄,n > 0. Pick any m ∈ L̄ such that m ∈ Ho. Define

W ∗
L̄(t) = min

m∈M

{
Wm(t)

α
I{m∈L̄},

Wm(t)

β
I{m∈L̄k},

Wm(t)

γ
I{m∈L̄r}

}
.

So

Wn

β
AL̄,n ≤ CA

Wn

β
I{Wn

β
=W ∗

L̄
} ≤ CA

Wn

β
I{Wn

β
≤Wm

α
}

= CA
Wn

β
I{(α2

γ2−1)Wn
α
≤Wm

β
−Wn

α
} ≤

CAα

β
· Wn

α
I{aWn

α
≤|Wm

β
−Wn

α
|},

where a = α2

γ2 − 1 > 0 is a constant.

Next we will show that

E
[
Wn

α
I{aWn

α
≤|Wm

β
−Wn

α
|}

]
= o(ε).

We need the following lemma, which follows by the result of state space

collapse.

Lemma B.26. There exist a sequence of constants {Cr}r∈N independent of

ε such that for any n,m ∈M,

E
[∥∥∥∥Wn

cn
− Wm

cm

∥∥∥∥r] ≤ Cr,

where c is the direction to which the state space W collapse.
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Note that

Wn

α
I{aWn

α
≤|Wm

β
−Wn

α
|} =

Wn

α
I{aWn

α
≤|Wm

β
−Wn

α
|}I{Wn>0}

=
Wn

α
I
{a

2W2
n

α2 ≤|
Wm
β
−Wn

α
|2}
I{Wn>0}

≤
|Wm

β
− Wn

α
|2

a2Wn

α2

I{Wn>0}.

Thus

E
[
Wn

α
I{aWn

α
≤|Wm

β
−Wn

α
|}

]
≤ E

[
|Wm

β
− Wn

α
|2

a2Wn

α2

I{Wn>0}

]
(a)

≤ α2

a2

√
E
[
|Wm

β
− Wn

α
|4
]
E
[
I{Wn>0}

W 2
n

]
(b)

≤ α2

a2

√
C4E

[
I{Wn>0}

W 2
n

]
,

where (a) comes from Cauchy-Schwarz inequality, and (b) follows by Lemma

B.26. Since Wn = Qln(t)
α

+ Qkn(t)
β

+ Qrn(t)
γ
, we have E

[
I{Wn>0}
W 2
n

]
→ 0 as ε → 0.

Therefore we have

E
[
Wn

α
I{aWn

α
≤|Wm

β
−Wn

α
|}

]
ε→0−→ 0.

We can show that any other term in (B.42) and (B.43) is upperbounded

by o(ε) in a similar way.
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APPENDIX C

ADDITIONAL PROOFS FOR LOSS MODEL

C.1 Proof of Lemma 5.1

The case λ = 0 is trivial with a unique stationary solution π = (1, 0, 0, ..., 0︸ ︷︷ ︸
B

).

We focus on the case λ > 0.

Existence: For ease of exposition, throughout the proof we define xB+1 = 0

for any x ∈ S.

Step 1. Define G(x), ∀x ∈ S.
For any x ∈ S, let G(x) = (G0(x), G1(x), ..., GB(x)), where G0(x) = 1,

and ∀k = 1, 2, ..., B, Gk(x) ≥ 0 satisfies

λGd
k(x) + kGk(x)− λxdk−1 − kxk+1 = 0. (C.1)

We will show that G is uniquely determined by x. Consider a sequence of

functions {Hk(yk)}Bk=1, where

Hk(yk) = λydk + kyk − λxdk−1 − kxk+1.

Since x ∈ S,

Hk(xk−1) = kxk−1 − kxk+1 ≥ 0,

Hk(xk+1) = λxdk+1 − λxdk−1 ≤ 0.

Note that Hk(yk) is strictly increasing in yk ∈ [0,∞). Hence there exists

a unique y∗k > 0 such that Hk(y
∗
k) = 0. By the definition of Gk in (C.1),

Hk(Gk) = 0. Hence Gk = y∗k is determined by x uniquely, and

xk+1 ≤ Gk(x) ≤ xk−1. (C.2)
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Step 2. Show that G(·) is mapping S into S.
We will verify that ∀x ∈ S, G(x) ∈ S, i.e., 1 = G0(x) ≥ G1(x) ≥ ... ≥

GB(x) ≥ 0. For any x ∈ S, inequality in (C.2) ensures that Gk ∈ [0, 1] for

all k. To prove that Gk ≥ Gk+1, consider a function

ϕk(z) = λzd + kz,

which is strictly increasing in [0, 1].Hence it is sufficient to show that ϕk(Gk) ≥
ϕk(Gk+1).

ϕk(Gk)− ϕk(Gk+1) = λGd
k + kGk − λGd

k+1 − (k + 1)Gk+1 +Gk+1

(a)
= λxdk−1 + kxk+1 − λxdk − (k + 1)xk+2 +Gk+1

= λ(xdk−1 − xdk) + k(xk+1 − xk+2) +Gk+1 − xk+2

(b)

≥ Gk+1 − πk+2

(c)

≥ 0,

where the equality (a) comes from the definition of Gk, Gk+1 in (C.1), and the

inequality (b) follows by the fact that x ∈ S, and the inequality (c) results

from the property of Gk in (C.2).

Therefore G(x) ∈ S.

Step 3. Show that G(·) is continuous.

Consider any point x ∈ S. For every ε > 0, set δ = ε
λd+1

. Let y be any

point in S such that |x− y| < δ. By the definition of G(·), ∀k = 1, 2, ..., B,

λ(Gd
k(x)−Gd

k(y)) + k(Gk(x)−Gk(y))

= (Gk(x)−Gk(y))

(
λ
d−1∑
i=0

Gd−1−i
k (x)Gi

k(y) + k

)
= λ(xdk−1 − ydk−1) + k(xk+1 − yk+1)

= λ(xk−1 − yk−1)

(
d−1∑
i=0

xd−1−i
k−1 yik−1

)
+ k(xk+1 − yk+1).
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Then we have

|Gk(x)−Gk(y)| =
|λ(xk−1 − yk−1)

(∑d−1
i=0 x

d−1−i
k−1 yik−1

)
+ k(xk+1 − yk+1)|

λ
∑d−1

i=0 G
d−1−i
k (x)Gi

k(y) + k

≤ λd|xk−1 − yk−1|+ k|(xk+1 − yk+1)|
k

≤ λd|xk−1 − yk−1|+ |(xk+1 − yk+1)|,

which implies that

|G(x)−G(y)| =
B∑
k=0

|Gk(x)−Gk(y)|

≤
B∑
k=1

(λd|xk−1 − yk−1|+ |(xk+1 − yk+1)|)

≤ (λd+ 1)
B∑
k=0

|xk − yk|

< (λd+ 1)δ

= ε.

Therefore G is continuous at any point x ∈ S.

Step 4. Show that a fixed point of G in S is a stationary point.

Note that set S is compact and convex. Step 1-3 ensures that there exists

a fixed point of G in S, denoted by x̂. That is, x̂ = G(x̂). From the definition

of G in (C.1), we have

Fk(x̂) = λx̂dk + kx̂k − λx̂dk−1 − kx̂k+1 = 0.

That is, x̂ is a stationary point.

Uniqueness: We prove the uniqueness of stationary solution by contradic-

tion. Assume that there exists two different solutions π and π̂. We claim

that πB 6= π̂B. Otherwise, we have

πB−1 =
d

√
πdB +

B

λ
πB = π̂B−1.

Note that

πk =
d

√
πdk+1 +

k + 1

λ
(πk+1 − πk+2).
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Hence by induction, we can show that πk = π̂k for any k = 0, 1, ..., B.

Consider the case that πB < π̂B. Similarly, we can establish that πk < π̂k

for any k = 0, 1, ..., B by induction. Therefore, π0 < π̂0, which contradicts

with the fact that π0 = π̂0 = 1. This completes the proof for the uniqueness.

C.2 Proof of Lemma 5.3

Due to continuous dependence of a solution on the initial values, it is sufficient

to show that if s̄0
k < s0

k for any k ≥ 1, s̄k(t) ≤ sk(t) for all t ≥ 0 and any

k. Assume that strict inequalities hold for t < t1 and are broken at t = t1.

Consider two cases:

(i) s̄k(t1) = sk(t1) for any k.

The uniqueness of solution ensures that s̄k(t) = sk(t) for all t ≥ t1 and any

k. Hence the claim holds.

(ii) ∃k∗ ≥ 1 such that s̄k∗(t1) < sk∗(t1).

Then there exists k ≥ 1 such that s̄k(t1) = sk(t1), and at least of one

following conditions hold: s̄k−1(t1) < sk−1(t1), s̄k+1(t1) < sk+1(t1). If k < B,

we have

ds̄k
dt

(t1)− dsk
dt

(t1)

= λ(s̄dk−1 − sdk−1) + k(s̄k+1 − sk+1)− λ(s̄dk − sdk)− k(s̄k − sk) < 0,

where the inequality comes from the definition of k. Similarly, we can verify

that ds̄k
dt

(t1)− dsk
dt

(t1) < 0 if k = B.

Since s̄(t) and s(t) are continuous functions of t, there exists t0 < t1 such

that s̄k(t0) < sk(t0) and

ds̄k
dt

(t)− dsk
dt

(t) < 0

for any t ∈ (t0, t1). Thus

s̄k(t1)− sk(t1) = s̄k(t0)− sk(t0) +

∫ t1

t0

(
ds̄k
dt

(t)− dsk
dt

(t)

)
dt < 0,

which contradicts with the assumption that s̄k(t1) = sk(t1).
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C.3 Proof of Lemma 5.4

We will show that dψ(t)/dt ≤ −ψ. Then ψ(t) ≤ ψ(0)e−t, which implies that

ψ(t) converges to 0 exponentially fast.

Consider the case where s0
k ≥ πk for any k. From Lemma 4, sk(t) ≥ πk for

any t ≥ 0, ∀k ∈ {0, 1, ..., B}. We can rewrite ψ(t) as ψ(t) =
∑B

k=0(sk(t)−πk).
Since F(π) = 0, ṡ = F(s), we have

dψ(t)

dt
=

B∑
k=0

dsk(t)

dt
=

B∑
k=1

Fk(s(t))−
B∑
k=1

Fk(π)

=

(
λ(sd0(t)− sdB(t))−

B∑
k=1

sk(t)

)
−

(
λ(πd0 − πdB)−

B∑
k=1

πk

)
= −λ(sdB(t)− πdB)− ψ(t) ≤ −ψ(t),

where the last inequality follows by the fact that sdB(t) ≥ πdB.

The other case where s0
k ≤ πk for any k can be proved similarly.

C.4 Proof of Lemma 5.6

Since x,y ∈ S, for any 0 ≤ k ≤ B

0 ≤ xk ≤ 1, 0 ≤ yk ≤ 1.
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Then we have:

|F(x)− F(y)|

=
B−1∑
k=1

|λ(xdk−1 − xdk)− k(xk − xk+1)− λ(ydk−1 − ydk) + k(yk − yk+1)|

+|λ(xdB−1 − xdB)−BxB − λ(ydB−1 − ydB) +ByB|

≤ 2
B∑
k=0

k|xk − yk|+ 2
B∑
k=0

λ|xdk − ydk|

≤ 2B
B∑
k=0

|xk − yk|+ 2λ
B∑
k=0

(
|xk − yk|

d−1∑
i=0

xd−1−i
k yik

)

≤ 2(B + dλ)
B∑
k=0

|xk − yk|

= M |x− y|,

where M = 2(B + dλ).

C.5 Proof of Claim 1

From Lemma 5.5, we have

S(Nk)(t)⇒ S̄(t) as k →∞.

By the definition of weak convergence, for a bounded continuous function f ,

if S(Nk)(0)→ S̄(0) as k →∞,

E
[
f(S(Nk)(t))|S(Nk)(0)

] n→∞−→ E
[
f(S̄(t))|S̄(0)

]
.

As S(Nk)(0) = X(Nk) and S̄(0) = X̄, by Skorokhod’s representation theo-

rem,

S(Nk)(0)→ S̄(0).

Define

Yk = E
[
f(S(Nk)(t))|X(Nk)

]
, Y = E

[
f(S̄(t))|X̄

]
.

Since f is bounded, Yk and Y are bounded. By the bounded convergence
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theorem, we have

E [Yk]→ E [Y] .

This holds for all bounded, continuous f. Thus again by the definition of

weak convergence,

S(Nk)(t)⇒ S̄(t) as k →∞.
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