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ABSTRACT

Audio source separation is a well-known problem in the speech community.

Many methods have been proposed to isolate speech signals from a mul-

tichannel mixture. In this thesis, we will explore a number of techniques

involving interchannel phase difference (IPD) features within a tensor factor-

ization framework. IPD features can be extracted on a time-frequency (TF)

grid and are a function of the phase characteristics of the mixing process.

Thus, the ultimate goal is to form a clustering of these features and produce

TF masks that can be used to perform the separation. We discuss various

non-tensor-based methods that are capable of modeling linear and nonlinear

IPD trends. Then, we discuss generalizations to both nonnegative and com-

plex tensor factorizations (NTF, CTF). We show that each method performs

best in certain circumstances and we conclude by saying that more work is

needed to devise a generally superior approach.

ii



ACKNOWLEDGMENTS

To all who have contributed.

iii



TABLE OF CONTENTS

CHAPTER 1 INTRODUCTION . . . . . . . . . . . . . . . . . . . . 1

CHAPTER 2 IPD FEATURES . . . . . . . . . . . . . . . . . . . . . 3
2.1 Feature Extraction . . . . . . . . . . . . . . . . . . . . . . . . 3
2.2 Source Localization and Separation . . . . . . . . . . . . . . . 6
2.3 Nonlinearities . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
2.4 Comparison with Narrowband Beamforming . . . . . . . . . . 9

CHAPTER 3 IPD MODELS . . . . . . . . . . . . . . . . . . . . . . . 14
3.1 DUET . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
3.2 Random Sample Helix Consensus . . . . . . . . . . . . . . . . 15
3.3 Mean-Locked Mixture of Wrapped Gaussians . . . . . . . . . . 17
3.4 Wrapped Cubic Regression Spline . . . . . . . . . . . . . . . . 19
3.5 Other IPD Clustering Methods . . . . . . . . . . . . . . . . . 24
3.6 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

CHAPTER 4 MATRIX AND TENSOR FACTORIZATION MODELS 29
4.1 Localization Cues . . . . . . . . . . . . . . . . . . . . . . . . . 30
4.2 Directional NMF . . . . . . . . . . . . . . . . . . . . . . . . . 32
4.3 Nonnegative Tensor Factorization . . . . . . . . . . . . . . . . 34
4.4 Complex Tensor Factorization . . . . . . . . . . . . . . . . . . 36
4.5 CTF of Raw STFT Matrices . . . . . . . . . . . . . . . . . . . 37
4.6 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

CHAPTER 5 CONCLUSION AND DISCUSSION . . . . . . . . . . . 42

APPENDIX A DNMF OPTIMIZATION . . . . . . . . . . . . . . . . 44

APPENDIX B NTF OPTIMIZATION . . . . . . . . . . . . . . . . . 46

APPENDIX C FACTORIAL NTF OPTIMIZATION . . . . . . . . . 48

APPENDIX D CTF OPTIMIZATION . . . . . . . . . . . . . . . . . 49

REFERENCES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

iv



CHAPTER 1

INTRODUCTION

Source separation is a classic problem in signal processing that has been

approached from many different angles [1, 2, 3, 4]. Some successful meth-

ods include beamforming [2], matrix factorization [5], phase difference mod-

els [6, 7], and neural networks [8]. The general problem involves the inversion

of a mixing system that takes multiple signals as input and produces as out-

put one or more mixed signals. A successful separation algorithm is able

to recover the original clean signals accurately. In the case of audio sig-

nals, single-channel methods attempt to model spectrotemporal properties

of the signals. When multiple mixtures are available, as when a multichan-

nel recording is captured, spatial information can be leveraged to enhance

the separation.

In this work, we focus primarily on the case of a multichannel recording

of spatially separated point sources with a compact microphone array [9]. In

this scenario, phase difference features extracted from pairs of microphones

can be used to identify each source’s activity in time and frequency. The

source-specific activity patterns are used to compute time-frequency (TF)

masks that separate the sources from one of the mixtures. TF masking

has been shown to be very effective for general audio signals and for speech

mixtures in particular [10].

Spectrotemporal factorization-based techniques can be used to introduce

additional structure into a model of the mixture signals. This can be im-

plemented in both the single-channel [11] and multichannel [12] scenarios.

We will discuss extensions of spatially-informed separation methods that use

phase difference features and localization cues from the beamforming litera-

ture to both nonnegative and complex tensor factorizations. In this way, we

leverage the combined modeling power of various methods.

The contributions of this thesis are:

• A discussion of interchannel phase difference (IPD) features and dis-
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tortions of them that limit the effectiveness of linear models

• A qualitative and quantitative evaluation of a basic linear IPD model

and novel extensions that account for nonlinearities

• A comparison of existing and novel tensor factorization models that

leverage localization cues to perform separation
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CHAPTER 2

IPD FEATURES

2.1 Feature Extraction

Denote the short-time Fourier transform (STFT) [9] with window size N of

a recorded signal as Xi, i = 1, . . . ,M , where Xi ∈ CF×T . M is the number

of microphones and F = N/2 + 1 is the number of unique coefficients per

frame. Interchannel logratio features are computed as:

yft = log

(
X1
ft

X2
ft

)
(2.1)

In an ideal, anechoic setting, a single source with STFT coefficients Sft ∈
CF×T is recorded at the microphones with attenuations and delays that de-

pend on the relative positions of the array and source. The logratio can be

written as:

yft = log

(
a1e
−jωd1Sft

a2e−jωd2Sft

)
(2.2)

= log

(
a1

a2

)
− jφ (ω(d1 − d2)) (2.3)

where ω = 2πf/N is the radian frequency at the f th frequency band, ai and

di are attenuation and delay values for the ith microphone, and φ(x) is a

wrapping function:

φ(x) = mod(x+ π, 2π)− π (2.4)

We will focus on the special case of a compact microphone array for which

level (loudness) differences are relatively uninformative (especially in noisy

3
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Figure 2.1: IPD feature sets for various numbers of speech sources in a
simulated, two-channel, anechoic mixture. At each frequency, only the 50
features with the largest corresponding STFT magnitudes are shown.
When multiple sources are present, the TF-disjointness of speech signals
results in an approximate superposition of the source-specific IPD lines.

conditions). So, we define the interchannel phase difference (IPD) feature as:

δft = −Im [yft] = φ
(
∠X2

ft − ∠X1
ft

)
(2.5)

In our ideal, one-source scenario, we simply have that δft = φ (ω(d1 − d2)),

which is a wrapped-linear function of frequency. When K > 1 sources are

present, IPD features are still meaningful as long as a TF disjointness as-

sumption holds:

∀f, t, k 6= k′
∣∣Skft∣∣ · ∣∣∣Sk′ft∣∣∣ ≈ 0 (2.6)

This says that each TF bin is occupied by at most one source. If this

is the case, the IPD features associated with the kth source will exhibit a

unique wrapped-linear pattern as long as the interchannel delays are unique

among the sources. This can typically be ensured with an appropriate array

geometry and the assumption that the sources are spatially separated.

Figure 2.1 illustrates IPD feature sets for various numbers of sources mixed

in a simulated environment. We can see that, in practice, perfect disjoint-

ness does not hold, but for speech signals, it holds sufficiently to be able to

distinguish the source patterns. However, this may not hold quite as well for
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music examples where instruments play together and harmonize.

2.1.1 Effect of STFT Parameters

In this thesis, we use a window size of 1024, hop size of 256, and Hann

analysis/synthesis windows. We also downsample all recordings to 16 kHz.

These are fairly common choices in source separation applications [13, 14].

The main way in which these choices affect the results of the algorithms in

this thesis is through the extraction of raw features. As an example, we can

consider the effects on IPD features, keeping in mind that speech signals are

generally non-stationary in both time and frequency.

A large window size will capture more information in a single frame, lead-

ing to high frequency resolution and low time resolution. This is beneficial

for source separation when the signals are more disjoint in frequency than in

time. A small window size will have the opposite effect. In terms of source

separation quality, very large or very small window sizes are undesirable be-

cause they make it more difficult to reconstruct the separated sources. This

is because, in either case, we are boosting the impact of errors in either fre-

quency or time. Speech is highly variable in the TF plane, so an intermediate

window size helps to strike a healthy trade-off. Similarly, a large hop size

(relative to the window size) allows masking errors to have an all-or-nothing

impact on the separation quality. A small relative hop size introduces un-

pleasant artifacts when the masking is uncertain because many frames have

to cooperate to construct the signal. As with the window size, an intermedi-

ate choice is best. A hop size one quarter the size of the window is a standard

choice and has various good properties when combined with a Hann window.

A non-rectangular window is used to avoid ringing artifacts from discon-

tinuities at the boundary of each analysis frame. The Hann window strikes

a balance between suppressing these artifacts and maintaining the original

information in the analysis frame. It also satisfies criteria necessary for a per-

fect reconstruction of the mixture under no separation [15] when the window

size is a power of two times the hop size. Windows that satisfy this criterion

generally lead to better reconstructions after separation.

A theoretical analysis of the effects of parameter choices in the STFT on

the performance of the algorithms in this thesis as well as an experimental
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validation of this analysis are left as an open problem for future research.

2.2 Source Localization and Separation

IPD features can be used for both localization and source separation. When

one source is present, the features with nonnegligible energy tend to lie near

a linear function of frequency. To localize the source, we can simply scan

over a range of directions and determine which one the features agree with

most. However, when K sources are present, one must check all K-tuples

of directions. To avoid having to perform this exhaustive search, which can

be quite expensive in 3-D localization problems and with many sources, we

can interpret this search as an optimization problem to be resolved with an

appropriately designed solver.

Given estimates of the source directions, there are various methods for

performing source separation. One approach would be to cluster the TF bins

according to how well they agree with each source’s direction model. Given

a clustering, we form TF masks to apply element-wise to the STFT of one

of the recorded mixtures to reconstruct the individual sources.

Typically, however, the source directions are not known a priori and must

be estimated jointly with the clustering. In subsequent chapters, we will

discuss various methods for doing so.

2.3 Nonlinearities

Nonlinearities originate from various sources including spatial aliasing, re-

verberation, and channel mismatch. Each of these has a unique effect on the

properties of IPD features. We will consider each in turn to better understand

how to design appropriate models.

2.3.1 Spatial aliasing

In the context of array signal processing, spatial aliasing refers to the am-

biguity in the direction of arrival (DOA) of a source as a result of a large
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microphone spacing and high sampling rate.1 We can see the effects of spa-

tial aliasing by noting that, upon feature extraction, IPD values can only be

recovered up to the interval [−π, π]. Any sufficiently long delay in the ar-

rival times of a signal at a pair of microphones will result in phase wrapping.

Strategies to account for this include explicit modeling of the circular-linear

nature of the data and representing IPD features as unit-norm complex val-

ues.

2.3.2 Reverberation

In an anechoic chamber, only the direct-path signal is observed. This is the

signal that propagates from the source to each microphone in straight lines.

Reverberation occurs when additional copies of the signal that reflect off of

boundaries (walls, furniture, windows, etc.) are recorded. Each recorded

reflection is a copy of the original signal after some filtering. A simple but

powerful model for this filtering describes each reflection as a delayed and

attenuated copy of the original signal. Thus, we can fully characterize the

room impulse response (RIR) as a set of delay-attenuation pairs2 (a, d). We

observe:

yft = log


R∑
r=1

a1re
−jωd1rSft

R∑
r=1

a2re−jωd2rSft

 = log

(
a11e

−jωd11

a21e−jωd21

)
+ log

1 +
R∑
r=2

b1re
−jωe1r

1 +
R∑
r=2

b2re−jωe2r


(2.7)

with relative attenuation and delay for the ith microphone and rth reflection

defined as:

bir =
air
ai1

, eir = dir − di1 (2.8)

So we can see that the case with reverb is similar to the case with no reverb

except that there is an additive perturbation that is a nonlinear function of

1To give some perspective, aliasing begins to occur for a signal lined up with the
microphones and recorded at 16 kHz when the microphone spacing increases to 1 cm.

2This assumes that the longest delay is within one STFT analysis window. It holds
approximately when late reflections are strongly attenuated.
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the relative attenuations and delays. The result is a sinusoid-like wobble

in the IPD data over frequency that depends very strongly on the room

characteristics and array/source positions. This is because the attenuations

and delays are heavily influenced by these factors. If the direct path has an

attenuation coefficient that is much larger than that of competing arrivals,

the linear term dominates and the wobble is negligible. For extremely small

rooms or otherwise in situations with strong early reflections (e.g. off of an

object holding the array), the nonlinearity may be quite strong.

2.3.3 Channel mismatch

Ideally, our microphones should have identical frequency responses. However,

in practice, this is not the case because of many real-world factors. It is easy

to see how this will affect IPD features by including additional terms γif ∈ C
in (2.1) to account for the channel responses:

δft = −Im

[
log

(
a1e
−jωd1Sftγ1f

a2e−jωd2Sftγ2f

)]
= φ (ω(d1 − d2) + (∠γ2f − ∠γ1f )) (2.9)

The phase difference between the frequency responses of the channels per-

turbs the feature set. In some cases, this can introduce significant nonlinear-

ities.

2.3.4 Illustration of nonlinearities

Figure 2.2 demonstrates the effects of these nonlinearities on a simulated one-

source, two-microphone mixture. As expected, early reflections introduce

the largest deviations from a wrapped-line model while heavily-attenuated,

late reflections introduce minor deviations that may not be distinguishable

from noise in practice. Channel mismatch is particularly problematic when

it introduces strong bends in the IPD function at low frequencies. This

is because the most salient speech information resides in this range and a

straight-line model will fail to properly capture the structure of the data.
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Figure 2.2: Simulated IPD feature sets exhibiting various nonlinearities.
(Top left) spatial aliasing due to large microphone spacing (10 cm). (Top
right) squiggles due to strong early reflections (array positioned 30 cm from
corner of room). (Bottom left) noise-like pattern due to overlap of many
late reflections (source near array, both far from walls). (Bottom right)
squiggle due to mismatched microphone frequency responses (random IIR
filters applied to either channel).

2.4 Comparison with Narrowband Beamforming

Consider a mixture of narrowband signals. This corresponds to a single

frequency band f in an STFT. If the signals are perfectly disjoint in time,

we will be able to isolate the IPD features corresponding to a target source

and exactly separate the signals. If disjointness does not hold, we will have

more difficulty. We investigate the potential of using IPD features through

a comparison with traditional beamforming techniques in the narrowband

case. In particular, we compare with delay-and-sum (D&S) and linearly-

constrained minimum-variance (LCMV) beamformers. For simplicity, we

assume the true source DOAs are known.
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A beamformer is a linear spatial filter used to enhance one or more target

signals in a multichannel mixture. The (single-source) D&S beamformer

simply delays all the recorded signals so that the instances of the target

signal in all the recordings are time-aligned and computes the sum. This will

reinforce the target signal more so than other uncorrelated signals/noise. The

(multiple-source) LCMV beamformer actively blocks non-target directional

signals with known DOAs. We will discuss the details of these spatial filters

in Chapter 4 in the context of tensor factorizations.

Generally speaking, we are interested in the signal-to-interference-and-

noise-ratio (SINR):

SINR = 10 log10


∑
t

E [|s1
t |2]∑

t

E [|s2
t + nt|2]

 (2.10)

where sjt is the DFT coefficient of source j at time t and nt is the noise

coefficient. We consider the following illustrative cases for a 2-channel array

in ideal, anechoic conditions.

Target Signal and Uncorrelated White Gaussian Noise

In this case, the SINR reduces to an signal-to-noise (SNR) measure:

SNR = 10 log10


∑
t

|s1
t |2∑

t

E [|nt|2]

 (2.11)

Without disjointness, a D&S beamformer gives 3 dB of improvement in

the SNR. We can see that this is the case by replacing s1
t with 2s1

t in (2.11).

An IPD clustering method will produce mixed results because the features

are contaminated with the phase information of the noise. When perfect

disjointness holds, the beamformer still achieves +3 dB, but an IPD masking

procedure can give a much greater dB improvement since it can aggressively

mask out noise frames.

Target Signal and Interference

In this case, the SINR reduces to an signal-to-interference (SIR) measure:
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Figure 2.3: Comparison of IPD clustering/masking and beamforming for a
single sinusoid in white, Gaussian noise. IPD histograms and separation
results are shown for the non-disjoint (left column) and disjoint (right
column) cases. In the disjoint case, the IPD-based mask aggressively blocks
the noise.

SIR = 10 log10


∑
t

|s1
t |2∑

t

|s2
t |2

 (2.12)

Without disjointness, an LCMV beamformer with perfect knowledge of the

source DOAs gives +∞ dB. An IPD clustering method will have difficulties

in bins with strong overlap. When perfect disjointness holds, both give +∞.

When the source DOAs are not known perfectly, the LCMV performance

will reduce while the clustering result may stay very good. The rationale for

this is the same as in the previous case.

Figures 2.3-2.5 illustrate various scenarios in a narrowband setting. In one

method, we applied a beamformer and in the other, we created a binary mask

that is 1 for any features within 2π/50 of true IPD value and 0 otherwise.

We can see that when disjointness does not hold, it is difficult to distinguish
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Figure 2.4: Comparison of IPD clustering/masking and beamforming for a
mixture of two sinusoids. IPD histograms and separation results are shown
for the non-disjoint (left column) and disjoint (right column) cases. In the
disjoint case, the IPD-based mask aggressively blocks the interferer.

directional signals from each other and from noise. However, when disjoint-

ness does hold, a masking approach can be very powerful. We observe that

additive noise effectively smears out the phase difference values, suggesting

that an appropriate distribution can be used to model noisy IPD features in

each frequency band.

One important difference between these methods is that beamforming in-

volves linear processing while masking corresponds to nonlinear processing.

Nonlinear methods are more general and can take advantage of additional

knowledge such as disjointness. In speech mixtures, we often observe ap-

proximate disjointness in the TF plane. Thus, we are justified in pursuing

IPD-based separation algorithms.
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Figure 2.5: Comparison of IPD clustering/masking and beamforming for a
mixture of two sinusoids in white, Gaussian noise. IPD histograms and
separation results are shown for the non-disjoint (left column) and disjoint
(right column) cases. In the disjoint case, the IPD-based mask aggressively
blocks both the noise and interferer.
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CHAPTER 3

IPD MODELS

In this chapter, we will discuss approaches to modeling IPD features for the

purpose of source separation. In general, this does not necessarily imply that

we must localize the sources in the process. This is because we can perform

source separation using just a clustering of the features. In this chapter, we

will see that we can accomplish this clustering with simple assumptions that

do not depend on an explicit relationship between the features and source

locations. Although the directional nature of the target signals is crucial

for the clustering, we need not consider a mapping from a learned model to

source directions.

The methods we will look at are the Degenerate Unmixing Estimation

Technique (DUET) [6, 7], Random Sample Helix Consensus (RANSHAC) [16],

the Mean-Locked Mixture of Wrapped Gaussians (ML-MoWG) model [17],

and the Wrapped Cubic Regression Spline (WCRS) model [18]. The first

assumes a non-wrapped IPD model, the next two generalize this to the

wrapped-linear case, and the last relaxes this assumption to fit a wrapped

piece-wise cubic function. We will look at them in the order of increasing

complexity. As might be expected, more complex models are more difficult

to fit successfully to a novel data set. Thus, in practice, it is generally useful

to fit these models in order of increasing complexity, translating learned pa-

rameters appropriately at each stage. Throughout this chapter, we assume

that a single feature set consisting of iPD-frequency tuples is extracted per

multichannel recording. To conclude, we will compare the performance of all

these models.
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3.1 DUET

One significant contribution in the field of source separation is the Degenerate

Unmixing Estimation Technique (DUET) [6, 7]. In this approach, inter-

channel phase and level difference (IPD, ILD) features extracted from a pair

of microphones are clustered to construct binary time-frequency masks. If

no spatial aliasing occurs, the phase difference features can be normalized by

ω and clustered using, for example, k-means.

In the absence of reverberation and source overlap in the time-frequency

plane, this approach has been shown to be very successful. However, it (1)

fails to leverage a wealth of information present in the magnitude spectro-

grams of the mixtures and (2) does not accurately represent the data when

reverberation, aliasing, microphone mismatch, and other effects are present.

Generally speaking, these factors produce nonlinearities in the features as a

function of frequency. We seek to generalize this approach with more expres-

sive and robust modeling techniques.

3.2 Random Sample Helix Consensus

One extension of the DUET algorithm is a combination of the Random Sam-

ple Consensus (RANSAC) [19] algorithm and DUET. RANSAC was first

proposed in the context of computer vision where the problem is to identify

the parameters of a simple model in the presence of many outliers. Groups

of feature vectors are sampled at random from a data set and each group is

used to propose a possible fit of the model. Each such candidate is compared

with the entire data set to verify a good fit and the best model is reported.

For example, if a line is to be fit, each group contains two data points. It

can be shown that even in the presence of a large proportion of outliers, a

relatively small number of groups must be sampled to learn the correct model

with a high probability of success.

In the presence of aliasing, the un-normalized phase difference features δft

associated with a single source lie near a line that has been wrapped to the

interval [−π, π]. Thus, source separation is apparently reduced to a problem

of multimodal circular-linear regression. RANSHAC1 [16] iteratively applies

1The ‘H’ stands for helix. When circular-linear data is visualized on a cylinder, the
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Algorithm 1 RANSHAC: RANSAC for fitting multiple wrapped lines

Inputs: ∆ = {δi} : N IPD data points

K : number of wrapped lines to fit

Outputs: α̂ = {α̂j} : K slopes

Y = M samples from ∆ selected uniformly at random

I = 0N×M

for m = 1 : M do

Fit line with slope αm to Ym

I(i,m) = 1 , ∀i s.t. δi is inlier of line with slope αm

end for

α̂ = {}
A = {1, . . . , N}
for j = 1 : K do

m̂ = argmax
m

∑
i∈A

I(i,m)

α̂ = α̂ ∪ αm̂
A = A \ {i : I(i, m̂) = 1}

end for

return α̂

the RANSAC algorithm to this problem. This is computationally efficient

and is capable of handling spatial aliasing. It has also been extended to

larger arrays that can make use of ILD features [20].

The pseudocode for RANSHAC is given in Algorithm 1 and an illustration

is shown in Figure 3.1. Only a single data point is required to propose a

candidate wrapped line. At the beginning of the algorithm, a number of

IPD features are sampled uniformly at random from the data set. Wrapped-

line candidates are fit through these points and the origin. Then, an inlier

count is computed for each candidate based on how many points are within

a window of constant width across frequency. The highest-scoring candidate

is chosen as the first line and its inliers are removed from the dataset. This

process is repeated until k lines have been chosen. This procedure has been

shown to be successful even in the presence of many outliers. Figure 3.2

shows examples of real-world 2-channel recordings where RANSHAC works

very well.

wrapped lines form helices.
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Figure 3.1: Example of sequential RANSAC for wrapped line-fitting. (Top)
IPD data with 5 RANSAC samples overlaid. (Bottom left) First iteration
showing candidate wrapped lines and their inlier counts. (Bottom right)
Second iteration after removal of the inliers of the first model.

3.3 Mean-Locked Mixture of Wrapped Gaussians

RANSHAC has more modeling power than the original DUET approach,

but it relies on random sampling and is not guaranteed to find a statistically

optimal solution. So, we turn to a more principled probabilistic formulation.

In the Mean-Locked Mixture of Wrapped Gaussians (ML-MoWG) model [17],

we assume that the observed data is generated by a mixture of wrapped

Gaussians in each frequency band. However, we introduce the constraint

that the means corresponding to each source are tied across frequency via

a wrapped linear function. In other words, each source is represented by

a distribution with a wrapped line mean (parameterized by a scalar slope

value αk) and frequency-dependent variance and mixing weight parameters

σ2
kf and πkf .
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Figure 3.2: IPD datasets extracted from real-world stereo mixtures of two
speakers. (Left) recording with a hearing aid in an office. (Right) recording
with a low-quality microphone array in a stairwell with wrapped-line fits
overlaid.

The ML-MoWG pdf for a single frame of a two-channel mixture is:

p
(
δ ; α,σ2,π

)
=

F∏
f=1

K∑
k=1

πkfWN
(
δf ; αkf , σ

2
kf

)
(3.1)

where the wrapped Gaussian distribution [21] is given as:

WN
(
x ; µ, σ2

)
=

∞∑
l=−∞

N
(
x ; µ+ 2πl, σ2

)
, x ∈ [−π, π] (3.2)

and arises from applying (2.4) to x ∼ N (µ, σ2). We assume that the IPD fea-

tures are independent across STFT frames to write the associated likelihood

over an entire data set as:

L
(
δ1:T ; α,σ2,π

)
=

T∏
t=1

F∏
f=1

K∑
k=1

πkfWN
(
δft ; αkf , σ

2
kf

)
(3.3)

The EM algorithm is applied to iteratively learn the parameters (see Algo-

rithm 2). Although this is guaranteed to converge to a local optimum of the

likelihood, the noisy and wrapped nature of the data results in the presence

of many local optima. To ensure that we find a good solution, the RAN-
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Algorithm 2 EM for fitting a mixture of mean-locked wrapped Gaussians

E step

ηtjfl =
N(δf,t ; α̂jf+2πl , σ̂2

jf) π̂j
K∑
j=1

D∑
f=1

∞∑
l=−∞

N(δf,t ; α̂jf+2πl , σ̂2
jf) π̂j

M step

α̂j =

T∑
t=1

D∑
f=1

∞∑
l=−∞

f (δf,t−2πl)
σ̂2
jf

ηtjfl

T∑
t=1

D∑
f=1

∞∑
l=−∞

f2

σ̂2
jf

ηtjfl

σ̂2
jf =

T∑
t=1

∞∑
l=−∞

(δf,t−α̂jf−2πl)
2
ηtjfl

T∑
t=1

∞∑
l=−∞

ηtjfl

π̂j = 1
T

T∑
t=1

D∑
f=1

∞∑
l=−∞

ηtjfl

SHAC algorithm can be used to quickly initialize EM. Figure 3.3 illustrates

an example of an ML-MoWG fit in this way.

3.4 Wrapped Cubic Regression Spline

All the methods so far failed to address the presence of nonlinearities other

than wrapping due to aliasing. To account for this, one can fit a Wrapped

Cubic Regression Spline (WCRS) [18] to the IPD features. This is a conve-

nient approach because splines are fairly general and simply parameterized.

We first show how a spline is fit to a non-wrapped dataset and then extend

this to the wrapped case.

3.4.1 Regression spline

A cubic spline is a twice-differentiable, piece-wise polynomial defined with

respect to anchor points xm , m = 0, . . . ,M − 1. Each polynomial section is

defined as:

y (f ; am) = am0 (f − xm)3 + am1 (f − xm)2 + am2 (f − xm) + am3 (3.4)

xm ≤ f ≤ xm+1 (3.5)
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Figure 3.3: Two-component, mean-locked mixtures of wrapped Gaussians
fit to IPD data with EM. The data is colored according to its posterior
probability and 50 of the mixtures are superimposed.

where am ∈ R4×1 , m = 0, . . . ,M − 2, denotes the parameters for the mth

section. We also have smoothness constraints at each anchor point to ensure

that the values and first two derivatives of adjacent sections are equal:

y (f ; am)
∣∣∣
f=xm+1

= y (f ; am+1)
∣∣∣
f=xm+1

(3.6)

∂y (f ; am)

∂f

∣∣∣
f=xm+1

=
∂y (f ; am+1)

∂f

∣∣∣
f=xm+1

(3.7)

∂2y (f ; am)

∂f 2

∣∣∣
f=xm+1

=
∂2y (f ; am+1)

∂f 2

∣∣∣
f=xm+1

(3.8)

We also enforce derivative constraints at the spline endpoints for stability:

∂y (f ; a0)

∂f

∣∣∣
f=x0

= 0 (3.9)

∂y (f ; aM−2)

∂f

∣∣∣
f=xM−1

= 0 (3.10)

We can solve for the parameters via the linearly-constrained quadratic

optimization problem:
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min
a(0),...,a(M−2)

N−1∑
i=0

(
δi − y

(
fi ; a(i)

))2
(3.11)

s.t. (3.6)− (3.10) (3.12)

where a(i) denotes the parameters of the spline section satisfying (3.5) for fi.

In matrix-vector form, we have:

min
a

(δ −X a)> (δ −X a) (3.13)

s.t. G a = 0 (3.14)

where

a =

[
a>0 a>1 · · · a>M−2

]>
∈ R4(M−1)×1 (3.15)

δ =

[
δ0 δ1 · · · δN−1

]>
∈ RN×1 (3.16)

X ∈ RN×4(M−1) allows us to evaluate (3.4) for the dataset via X a, and

G ∈ R3(M−2)+2×4(M−1) allows the constraints to be expressed via (3.14). The

solution is found with vector calculus and the method of Lagrange multipli-

ers [22]:

â =
(
X>X

)−1
(I−H) X>δ (3.17)

where

H = G>
[
G
(
X>X

)−1
G>
]−1

G
(
X>X

)−1
(3.18)

We require at least 4 unique data points in the domain of each polynomial

section. This ensures that X is full column rank so that X>X is invertible.
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3.4.2 Wrapped regression spline

We now assume that the data is wrapped Gaussian-distributed and express

the optimization as a weighted least squares problem:

min
a(0),...,a(M−2)

N−1∑
i=0

∞∑
l=−∞

wil
(
δi −

[
y
(
fi ; a(i)

)
+ 2πl

])2
(3.19)

s.t. (3.6)− (3.10) (3.20)

where we choose the weights to be:

wil =
N
(
δi ; y

(
fi ; a(i)

)
+ 2πl, σ2

)
∞∑

n=−∞
N
(
δi ; y

(
fi ; a(i)

)
+ 2πn, σ2

) (3.21)

We write this more compactly as:

min
a

∞∑
l=−∞

(δ − (X a− 2πl1))>Wl (δ − (X a− 2πl1)) (3.22)

s.t. G a = 0 (3.23)

where Wl = diag (wl) contains the weights and
∞∑

l=−∞
Wl = I.

For fixed W, the solution is given as:

â =
(
X>X

)−1
(I−H) X>

(
δ − 2π

∞∑
l=−∞

wl l

)
(3.24)

We typically truncate the infinite summation to 5 terms centered at l = 0.

This incurs very little error.

The weights w and parameters a are coupled, so we must iterate between

them until convergence. This procedure is actually an EM algorithm. We

can see this by recognizing (3.19) as the negative of the Q function for this

problem where the weights are posterior probabilities. In the E step, we cal-

culate the posteriors via (3.21) and in the M step, we update the parameters

via (3.24). This will converge to a feasible stationary point of the likelihood

function associated with this problem.
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Figure 3.4: Phase difference scatterplot showing nonlinearities due to
reverberation and microphone mismatch. The anechoic model and a
50-knot, wrapped cubic spline fit are overlaid.

An attractive feature of this model is its generality. If we constrain the

2nd- and 3rd-order spline parameters to be zero and further constrain all of

the linear parameters to be equal, the WCRS reduces to a wrapped line.

An unattractive aspect is the computational complexity. Although the large

matrix inversion
(
X>X

)−1
can be broken up into M − 1 small inversions of

size 4 × 4, these must be computed at every iteration. Another issue is the

generalization to multiple sources. This is mathematically straightforward

because the only difference is that the posterior probabilities are evaluated

over all wrapping indices l and source indices k (the spline parameters are

updated on a source-specific basis). However, in practice, it is difficult to fit

the splines so that they properly handle cross-overs between the individual

sources’ IPD functions (see Figure 3.8). This suggests that an additional cue

is required to distinguish between features that belong to each source.

Figure 3.4 shows an example of an IPD dataset perturbed by noticeable

nonlinearities and the spline fit. This data is from a simulation in a rever-

berant room with randomized IIR filtering at either microphone. We see

that the flexibility to adapt to bends in the IPD function allows the spline

to correctly model the data. This is especially important at low frequencies

where the majority of important speech information lies.
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3.5 Other IPD Clustering Methods

The authors in [23] proposed a RANSAC-based solution similar to the one

discussed here. However, it involves constructing IPD histograms in each fre-

quency band after replicating the feature values over all physically realizable

multiples of 2π. This becomes exponentially computationally expensive as

the number of channels increases. RANSHAC avoids this by using the raw

IPD values.

Model-Based EM Source Separation and Localization (MESSL) [24] uses

an IPD-ILD clustering approach to separate speech mixtures. Gaussian dis-

tributions are assumed for both features and an EM algorithm is derived

that initially attempts to fit wrapped-line IPD functions and slowly relaxes

this to capture general trends. Although this is an interesting approach, it

may be difficult to implement in practice for compact arrays in real-world

noisy conditions. In this case, ILD features tend to either be uninformative

or actively disturb the clustering process.

The beamforming literature [1, 2, 3, 4] consists of an entirely different

class of approaches that use phase cues. Beamformers are often used for

localization, tracking, and denoising of moving sources, but they can also be

applied in general source separation. In the next chapter, we will discuss

these methods further and incorporate them into several matrix and tensor

factorization algorithms.

3.6 Experiments

To illustrate the differences among the approaches discussed in this chap-

ter, we ran a number of experiments. Random 3-second speech signals from

the TSP corpus [25] were mixed in a 5 × 5 meter room simulator with a

3-channel, right-angle array positioned in the middle of the room with two

sources positioned 1 meter away from it on opposite sides. To simulate early

reverberation, the source-array configuration was shrunk in size by a factor

of 2 and positioned 1 meter from the corner of the room. In the RANSHAC

algorithm, the expected fraction of outliers was set to 0.1 and the inlier

threshold was set to π/8. The ML-MoWG slope parameters were initialized

with those of RANSHAC and the variance parameters were bounded after

24



IPD
-2 0 2

fr
eq

ue
nc

y

50

100

150

200

250

300

350

400

450

500

IPD
-2 0 2

fr
eq

ue
nc

y

50

100

150

200

250

300

350

400

450

500

IPD
-2 0 2

fr
eq

ue
nc

y

50

100

150

200

250

300

350

400

450

500

IPD
-2 0 2

fr
eq

ue
nc

y

50

100

150

200

250

300

350

400

450

500

IPD
-2 0 2

fr
eq

ue
nc

y

50

100

150

200

250

300

350

400

450

500

IPD
-2 0 2

fr
eq

ue
nc

y

50

100

150

200

250

300

350

400

450

500

Figure 3.5: IPD modeling results for a simulated mixture of two speakers
captured with a three-channel array with no sources of nonlinearity. In each
frequency band, only the 50 IPD features with largest corresponding STFT
magnitude are shown. (Top left) DUET histogram and estimated source
means. (Top right) IPD data and RANSHAC fits. (Bottom left) IPD data
and ML-MoWG fits (initialized with RANSHAC). (Bottom right) IPD data
and spline fits (initialized with RANSHAC).

each iteration within [0.1, 1]. In the spline model, we used a wrapped Gaus-

sian truncation order of 4, 100 spline knots, and an assumed data variance

of 0.05.

The model-fitting results are shown in Figures 3.5-3.8 for various types

of nonlinearity in the IPD feature set. We observe that as the IPD trends

deviate from a linear model, the very flexible spline becomes more appropri-

ate. However, it can be difficult to control the spline precisely because of its

flexibility. This is evident from the spurious bend in the spline observable in

Figure 3.8. In a noisy data set, the wrapped-line models may perform better

because they are more constrained.

The corresponding source separation results are given terms of SIR in

Figure 3.9. To perform the separation, binary masks were constructed with

a nearest neighbor rule. Each TF bin is assigned to the source whose model

value is closest to the corresponding feature value. These quantitative results
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Figure 3.6: IPD modeling results as in Figure 3.5 but with spatial aliasing.

mirror the qualitative results. Although the RANSHAC and ML-MoWG

methods show nearly identical results, the latter has the distinct advantage

of a principled probabilistic model that can be adapted to other situations

(e.g. moving sources [17]).

Finally, we compare their computation time. Given our particular algo-

rithm parameter settings, the average run times for the four approaches were

0.1503, 0.7931, 18.8176, and 29.5018 seconds. We can easily see that in-

creased modeling power comes with longer computation times. However, the

source separation performance is potentially much greater.
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Figure 3.7: IPD modeling results as in Figure 3.5 but with early
reverberation.
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Figure 3.8: IPD modeling results as in Figure 3.5 but with channel
mismatch. The flexible spline may have difficulty disambiguating at
cross-overs.
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Figure 3.9: Source separation results corresponding to Figures 3.5-3.8.
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CHAPTER 4

MATRIX AND TENSOR FACTORIZATION
MODELS

All of the previous methods focused on modeling the IPD features exclu-

sively. In a more general approach, we would like to be able to incorporate

spectrotemporal information.

A multichannel NMF [26] formulation extends a single-channel model that

assumes i.i.d. complex Gaussian STFT coefficients with variances that fac-

tor in a two-term NMF form. This is shown to be an exponential-family

distribution and an appropriate EM algorithm is derived.

The CMF [27] model was proposed to extend single-channel NMF to in-

corporate complex values and escape the assumption of disjointness. This

model assumes that an STFT matrix factorises into a sum of products of

magnitude and exponentiated phase terms. One significant drawback is that

each term in the factorization contains its own F-by-T matrix of phase in-

formation. This results in a drastic over-parameterization. There is also the

additional complication of not knowing how the basis vectors are grouped by

source index. These issues were fixed in [28] by assuming one phase matrix

per source rather than per basis element. An extension of CMF was proposed

to handle the multichannel case [29]. However, this has the same drawbacks

as the original single-channel CMF.

Multichannel extensions [30] were proposed that factorize a block matrix of

rank-one outer products of complex TF vectors into TF activations and pos-

itive semidefinite frequency-dependent matrices that characterize the spatial

information in the mixture (gains and delays between sources and micro-

phones). This involves assuming a zero-mean complex Gaussian distribution

for each TF bin whose covariance matrix is assumed to factorize. The au-

thors in [31] also used a zero-mean Gaussian model for each TF bin in a

somewhat different approach, finding that a full-rank covariance performed

best.

The authors in [32] convert the complex matrix factorization problem into
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a real-valued one by appropriately placing real and imaginary components

in a block-wise matrix to be factored into a pair of block-wise matrices.

There are clearly many matrix and tensor factorization approaches to au-

dio source separation. In this chapter, we will focus on the extension of IPD

feature and beamformer localization cue modeling to the factorization frame-

work. This will incorporate both spatial and spectrotemporal cues into the

separation process.

4.1 Localization Cues

Classical array processing techniques use spatial information to distinguish

between sources near the array. The standard approach is to assume an

additive Gaussian model for the observed DFT coefficients at each TF bin:

xft = Af (Φ) sft + nft , nft ∼ N
(
0, σ2

f I
)

(4.1)

where sft ∈ CK is a vector of source DFT coefficients, nft ∈ CM is a noise

vector, and the steering matrix:

Af (Φ) =
1√
M

exp

(
j

2πlf
u

m>Φ

)
(4.2)

relates the source DOAs (in the columns of Φ) and M microphone locations

(in the columns of m) to the array’s phase response at frequency band f .

The constants lf and u denote frequency in Hertz at the f th band and the

speed of sound, respectively.

When the true DOAs are known, we can apply beamforming to isolate and

enhance each source signal. A beamformer is a linear filter w that can be

applied to recover an estimate of a source coefficient via ŝft = wHxft. One

typically seeks to minimize the expected output power of the beamformer

while maintaining certain constraints. In a source separation context, this

involves solving the following optimization problem:
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min
w

wHRw (4.3)

s.t. AH
f w = u (4.4)

where R = E
[
xftx

H
ft

]
and u ∈ CK is a vector of desired gains. Enforcing

the constraints makes sure that the energy corresponding to specific DOAs

is emphasized or suppressed, while minimizing the objective ensures that as

much residual energy as possible is removed. For example, if we wanted to

isolate a signal at DOA φ1 and suppress a signal at DOA φ2, the constraint

would be given as [af (φ1) , af (φ2)]Hw = [1, 0]>.

The solution, known as the linearly-constrained minimum-variance (LCMV)

beamformer [33], is found with the method of Lagrange multipliers:

ŵ = R−1Af

(
AH
f R−1Af

)−1
u (4.5)

and is often simplified to the data-independent form:

ŵ = Af

(
AH
f Af

)−1
u (4.6)

When only one directional source is present, this reduces to the well-known

delay-and-sum (D&S) beamformer:

ŵ = af (4.7)

A typical beamforming approach to locating the sources, called steered re-

sponse power (SRP) [34] localization, scans each feasible DOA with a beam-

former (typically D&S) and computes the output power of the filtered signal:

Pf (θ) =
∑
t

∣∣aHf (θ) xft
∣∣2 (4.8)

Directions exhibiting salient peaks indicate the presence of a directional

source. The peaks in this SRP function can be sharpened by applying the

phase transform (PHAT) [35], which simply sets all of the STFT coefficients’
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magnitudes to 1.

4.2 Directional NMF

Directional NMF (DNMF) [36] involves factorizing a matrix of steered re-

sponse power (SRP) features into terms that describe the spatial and spec-

trotemporal properties of the source signals. Rather than accumulate SRP

values across frames as in (4.8), we evaluate this function for a discrete set

of DOAs at each TF bin and interpret it as a feature vector. This model

assumes TF disjointness, which typically holds for speech mixtures, but can

handle moderate overlap fairly well.

The single-source version of (4.1) corresponds to the Gaussian likelihood:

Lft (θ) = N
(
xft ; µft , σ

2
fI
)

(4.9)

where:

µft = E [xft] = af (θ) E [sft] (4.10)

Since the source coefficients are unavailable (we are trying to recover them),

we replace the expectation in (4.10) with the least-squares estimate and write:

µ̂ft = af (θ) ŝft = af (θ) aHf (θ) xft (4.11)

Substituting (4.11) into (4.9) and expanding, we can write:

logLft (θ) ∝ − 1

2σ2
f

(
‖xft‖2

2 − |aHf (θ) xft|2
)

(4.12)

This log likelihood is simply an affine transformation of the output power

of a delay-and-sum (D&S) beamformer. The variances σ2
f can be adjusted

to minimize the mismatch in the shape of these functions across frequency,

effectively implementing a broadband beamformer. We can concatenate the

“likelihood” feature vectors evaluated over D look directions in a nonnegative

matrix L ∈ RD×FT and assume the factorization:
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L = DGV (4.13)

s.t. D,G,V ≥ 0 (4.14)

1>DD = 1>K , V1FT = 1K (4.15)

D ∈ RD×K ,G ∈ RK×K ,V ∈ RK×FT (4.16)

where D contains SRP basis vectors in the columns, G contains mixing

weights on the diagonal, and V contains TF mask values in the rows. Recall

that K indicates the number of sources.

We minimize the Kullback-Liebler divergence KL (L‖DGV) via multi-

plicative updates like those proposed in [11] to iteratively solve for the factors:

D← D�

(
L� L̂

)
V>G>

JV>G>
(4.17)

G← G�
D>

(
L� L̂

)
H>

D>JV>
(4.18)

V← V �
G>D>

(
L� L̂

)
G>D>J

(4.19)

where� and� denote element-wise multiplication and division, J is aD×FT
matrix of ones, and L̂ = DGV is a reconstruction of the SRP matrix. To

avoid scale ambiguities, we normalize the columns of D and the rows of V:

G← diag
(
D>1D

)
G diag (V 1FT ) (4.20)

D← D diag
(
D>1D

)−1
(4.21)

V← diag (V 1FT )−1 V (4.22)

A derivation of these updates is given in Appendix A. We can interpret the

columns of D as distributions over DOAs p (θk) and the rows of V as time-

frequency distributions p (f, t|k). Figure 4.1 shows two SRP distributions

found by NMF for a mixture of two speakers.
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Figure 4.1: SRP distributions (from W:j) for K = 2 two sources located on
the DOA hemisphere. The hemisphere is flattened such that (azimuth,
zenith) points map to (argument, modulus) points. Larger/darker circles
denote areas of higher probability mass. The grid has 147 points.

4.3 Nonnegative Tensor Factorization

Directional NMF is generalized by arranging the SRP feature vectors in an

F × T ×D tensor and assuming the following factorization:

L =
K∑
k=1

(WkHk)⊗ dk (4.23)

where ⊗ is a tensor outer product, W = [W1, . . . ,WK ] ∈ RF×Z is a spectral

dictionary, H =
[
H>1 , . . . ,H

>
K

]> ∈ RZ×T is a temporal activation matrix,

and dk ∈ RD is the SRP basis vector for the kth source. This factorization

incorporates the often-applied assumption that the mask parameters (i.e. V

in DNMF) are well modeled with a low-rank, two-term factorization. Like

DNMF, NTF assumes TF disjointness, but can handle moderate overlap

fairly well.

The multiplicative updates can be written as:
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Wk ←Wk �

〈
L� L̂ ,dk

〉
H>k

1F×TH>k
(4.24)

Hk ← Hk �
(
W>

k

〈
L� L̂ ,dk

〉)
(4.25)

dk ← dk �
〈
L� L̂ ,WkHk

〉
(4.26)

where 〈X ,y〉ij =
∑
k

Xijkyk denotes a tensor inner product. We enforce

normalization constraints via:

W←W diag
(
W>1F

)−1
(4.27)

Hk ←
1

1>z Hk1T
Hk (4.28)

D← 1

1>DD1K
D (4.29)

A derivation of these updates is given in Appendix B. NTF was shown to

significantly outperform DNMF in source separation experiments [12].

4.3.1 Explicit factorial formulation

We can also consider the more computationally burdensome generalization

of DNMF where K F × T SRP matrices are evaluated for every unique

source direction K-tuple using a data-independent LCMV beamformer. This

beamformer is characterized by a weight matrix whose columns are steering

vectors corresponding to each source direction. Thus, the magnitude squared

of each LCMV output coefficient gives the SRP values used to construct the

tensors. However, it turns out that if we write out the math for the cor-

responding NTF problem, a closed-form expression results for the direction

distributions.

The factorization for each LCMV output is:

Lk = (WkHk)⊗

(
K⊗
k=1

dk

)
(4.30)

where
⊗

represents a vector Kronecker product. The optimization procedure
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attempts to factorize all K F ×T ×O(DK) tensors. Thus, source separation

in this case can be seen as a complicated version of a two-step procedure in

which an LCMV beamformer is swept through all DOA K-tuples and masks

are constructed from the LCMV output with the largest total power. In

other words, this is fundamentally no different from a standard localize-then-

separate approach and has an exponential run-time as a function of K. The

only notable difference is that all DOA K-tuples are considered by weighting

all LCMV output matrices by the DOA parameters dk before updating the

NMF parameters Wk,Hk. Details of the multiplicative updates are given in

Appendix C.

4.4 Complex Tensor Factorization

Complex tensor factorizations have been shown to be promising for blind

audio source separation [37].

Although NTF is a fairly powerful model with many opportunities for reg-

ularization and generalization, it assumes a particular array configuration,

no channel mismatch, no reverberation, and no spatial aliasing. We can re-

formulate our description of the data in a way that leverages spectrotemporal

factorization and raw IPD feature modeling simultaneously. We do this by

arranging the IPD features in a tensor as in NTF:

Lftd =
∣∣X∗ft∣∣ ej∠

(
X
I1(d)
ft

/
X
I2(d)
ft

)
(4.31)

where I1(d), I2(d) are indexing operators to select distinct channel pairs, d ∈
[1, D] denotes a pair index, and the asterisk in X∗ft indicates that any channel

can be chosen. We then assume the factorization:
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L =
K∑
k=1

(
WkHk

)
⊗Mk (4.32)

s.t. ∀ k Wk,Hk ≥ 0 (4.33)

∀ k 1>FWk = 1>z (4.34)

∀ f, d, k
∣∣Mk

fd

∣∣ = 1 (4.35)

∀ k Wk ∈ RF×z,Hk ∈ Rz×T ,Mk ∈ CF×d (4.36)

In this model, which we will refer to as CTF-IPD, the matrix Mk contains

complex-valued mean functions that can represent any nonlinear pattern in

the IPD features. In this sense, it generalizes all of the other models discussed

so far.

Assuming a complex Gaussian error, we solve iteratively for the parameters

via projected gradient descent on the error function:

e =
∑
f,t,d

∥∥∥∥∥Lftd −∑
k

(∑
z

W k
fzH

k
zt

)
Mk

fd

∥∥∥∥∥
2

2

(4.37)

This model is highly expressive and therefore must be constrained ap-

propriately. For example, we may want to impose smoothness in the mean

functions across frequency and enforce that the dictionaries learn speech-

like spectra. One interesting approach is that taken in the MESSL algo-

rithm [24]. The IPD functions are constrained to be circular-linear at first

and are allowed to be increasingly unconstrained as the learning progresses.

The optimization details are given in Appendix D.

4.5 CTF of Raw STFT Matrices

One drawback that limits the expressivity of these models is the assumption

that only one source is strongly activated in each TF bin. Although this is

approximately the case for speech signals, it is clearly suboptimal. A better

model, CTF-Raw, should represent overlap between the sources in the TF

plane and therefore additivity of the STFT coefficients. A straightforward

adaptation of the CTF-IPD model accomplishes this:
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L =
K∑
k=1

[(
WkHk

)
�Pk

]
⊗Mk (4.38)

s.t. ∀ k Wk,Hk ≥ 0 (4.39)

∀ k 1>FWk = 1>z (4.40)

∀ f, d, k
∣∣Mk

fd

∣∣ = 1 (4.41)

∀ f, t, k
∣∣P k

ft

∣∣ = 1 (4.42)

∀ k Wk ∈ RF×z,Hk ∈ Rz×T ,Pk ∈ CF×T ,Mk ∈ CF×d (4.43)

where Pk is a matrix of unit complex numbers that represents the estimated

phase of the kth source’s STFT. Now, the Mk parameter represents the

frequency-dependent phase response for the kth source. The optimization

procedure is analogous to that of CTF-IPD. However, this model does not

assume TF disjointness. It only assumes that the spectrogram of each source

is accurately represented with a low-rank two-term factorization.

4.6 Experiments

In this section, we will compare all five methods discussed in this chapter,

three of which involve nonnegative factorizations (DNMF, NTF, Factorial

NTF) and two of which involve complex factorizations (CTF-IPD, CTF-

Raw). For reference, we will also include a single-channel supervised NMF

algorithm and a standard classical array processing approach that first ap-

plies SRP-PHAT for localization and then LCMV beamforming for separa-

tion.

The NMF algorithm involves first learning speaker-specific dictionaries for

each speaker and then concatenating them to form a dictionary for the mix-

ture. The mixture spectrogram is used to learn the activation matrix at test

time and source-specific reconstructions are used to perform the separation

via masking. The SRP-PHAT + LCMV approach implements a standard

SRP localization scheme on a grid over the DOA space that sequentially

identifies peaks. These peak locations are used to implement LCMV beam-

formers to isolate the sources. These are very standard procedures in the

NMF and beamforming literatures.
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The experimental setup was as follows. In each of 20 trials, 2- to 3-

second sentences for K = 2 speakers were selected uniformly at random

from the TSP corpus [25]. These were emitted from randomly chosen loca-

tions in a ring centered at a 4-channel, square microphone array placed in

a 2-dimensional room simulator of size 5 × 5 meters. The speaker locations

were chosen to ensure that they were separated by at least 2π/(K+1) radians

relative to the array.1 Six different scenarios were used to test the algorithms

and the scenario-specific settings are given in Table 4.1. All NMF and NTF

algorithms were run for 50 iterations. When nonlinearities are expected, the

CTF-IPD model is fit with a linear phase difference function constraint for 50

iterations and then allowed to fit unconstrained for another 50 iterations. 50

basis vectors were used in all spectral source dictionaries. The DOAs learned

in NTF where used to initialize the CTF models.

All matrix factorization-based algorithms used masking to reconstruct the

separated sources. This involves the standard procedure of estimating the

magnitude portion of the source spectrograms with the learned parameters

and forming soft TF masks [11] to be applied element-wise to the first chan-

nel’s mixture STFT. The SRP-PHAT + LCMV method automatically pro-

duces estimated STFTs, one for each separate source.

Separation performance results are shown in terms of signal-to-interference

Ratio (SIR) in Figure 4.2. What we see is that, in simpler cases (e.g. ideal

set-up), methods based on beamforming, directional NMF, and NTF perform

better than other methods (sometimes including supervised NMF). However,

as the experimental circumstances become more difficult to handle, a more

expressive nonlinear model like CTF-IPD performs best. CTF-Raw has a

surprisingly poor performance in almost all cases. However, superior perfor-

mance is observed in specific trials. The average performance suffers when a

poor initialization is used and the optimization gets stuck in a poor local op-

timum. A complicating factor in the CTF-Raw model is the large number of

parameters. The performance of the IPD-based methods depends strongly on

the optimization procedure used.2 Thus, improving it beyond the adaptive

gradient descent scheme used here may lead to better results. As expected,

the more expressive CTF-IPD algorithm outperforms the other unsupervised

1Ensuring robustness to small angles of separation (in terms of DOA) is not a point of
focus in this thesis.

2Take special note of the mixed constraints in the CTF-IPD model.
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Table 4.1: Details of experimental setup. For each scenario, the variable
settings are indicated as follows. Reverb: if moderate reverberation was
applied. IIR: if IIR filtering was applied to the recorded mixtures (to
simulate channel mismatch). CTF iters: the iteration counts used for the
CTF-IPD and CTF-raw algorithms during linear and nonlinear learning
stages. Mic spacing: length of microphone array square sides. Array center:
location of center of microphone array as fraction of room size. Source
radius: radius of circle centered at microphone array on which sources are
located.

Scenario reverb IIR CTF
iters

mic spac-
ing (cm)

array
center

source ra-
dius (m)

ideal no no 75,0 2 1/2 1

alias no no 75,0 10 1/2 1

alias +
l rev

yes no 75,75 10 1/2 1

alias +
e rev

yes no 75,75 7.5 1/4 0.5

alias + IIR no yes 75,75 10 1/2 1

alias + IIR
+ l rev

yes yes 75,75 10 1/2 1

methods when channel mismatch (simulated with IIR filtering) is present.
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Figure 4.2: Average SIR values for various algorithms in a two-source
separation experiment. The specifics of the experimental setups are given in
the text and Table 4.1.
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CHAPTER 5

CONCLUSION AND DISCUSSION

Phase difference modeling, matrix and tensor factorizations, and TF masking

have been shown to be effective in source separation applications. We can

apply these tools simultaneously in models that are capable of describing

observed spatial mixtures in the presence of noise, reverberation, channel

mismatch, etc. One promising direction described in this thesis is the CTF

model, which can represent an arbitrary nonlinear phase difference function

as well as spectrotemporal characteristics for each source. Extending this

model to be robust in challenging real-world scenarios is the next step in

this line of research. This may involve adaptations to the model such as

regularization and task-specific prior knowledge.

In this thesis, it was assumed that all sources are stationary. However,

this is not necessary. The ML-MoWG and RANSHAC approaches have

been extended to the case where the sources are moving by tracking the

source directions-of-arrival (DOAs) with a factorial wrapped Kalman filter

(FWKF). The WKF [38] was proposed separately to treat the problem of

tracking on the unit circle. In this context, the IPD features are transformed

to DOA space to provide observations for the filters using a RANSAC-like

sampling scheme. A directional filter was also developed for tracking on the

sphere: von Mises-Fisher Filter (vMFF) [39]. Both make use of determinis-

tic approximations to solve the Bayesian filtering equations more efficiently

than particle filtering and with greater accuracy than extended (EKF) and

unscented (UKF) Kalman filters. Finally, an explicit multiple-source SRP

likelihood has been derived and used to perform simultaneous localization of

speech sources [40].

We conclude by considering the relationship between the IPD and factor-

ization models. IPD features and beamformer localization cues (as used in

DNMF and NTF) both derive from spatial information through the time-

delay-of-arrival (TDOA) of sound waves impinging on the microphone array.
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This relationship is clear for the anechoic case in which a single TDOA is

active per source. For each source, the IPD line slope is linearly proportional

to the TDOA and the SRP feature vectors all share a dominant peak. We

can even draw an analogy between an SRP profile and the function result-

ing from evaluating the “likelihood” of feasible wrapped lines for an IPD

dataset [17]. The resulting feature sets differ mathematically, but they both

derive from the same time delays.

When nonlinearities (e.g. due to reverberation and channel mismatch) are

present, the connection between TDOAs and feature values is significantly

more complicated. The non-linear IPD and CTF models both attempt to

gracefully handle this complication in a general way. However, we can see how

difficult this is by observing that an ideal fit to the data effectively recovers

the room impulse responses. And this, in turn, implies de-reverberation and

channel equalization. Thus, in practice, a balance must be struck between

generalization and modeling precision. A crucial factor in the success of these

methods is an excellent match between feature representation and model. In

this thesis, we have seen several of these pairings, but there are likely others

that perform better in some way. Exploring this possibility is left for future

work.

Also left as an open problem for future research is a theoretical analysis

of the effects of parameter choices in the STFT on the performance of the

algorithms in this thesis as well as an experimental validation of this analysis.
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APPENDIX A

DNMF OPTIMIZATION

The optimization problem we are trying to solve is:

min
D,G,V

KL (L ‖DGV) (A.1)

s.t. D,G,V ≥ 0 (A.2)

1>DD = 1>K , V1FT = 1K (A.3)

D ∈ RD×K ,G ∈ RK×K ,V ∈ RK×FT (A.4)

where:

KL (X ‖Y) = tr
[
X> log (X�Y)

]
− tr

[
1>D×FTX

]
+ tr

[
1>D×FTY

]
(A.5)

=
∑
i,j

Xij log

(
Xij

Yij

)
−Xij + Yij (A.6)

To derive the multiplicative update for a factor Q, we compute the partial

derivative of the objective, which is always of the form:

∇Q = ∇+
Q −∇

−
Q (A.7)

with positive and negative parts ∇+
Q ,∇

−
Q and apply gradient descent:

Q←− Q− η �∇Q (A.8)

where the step size is chosen as η = Q�∇+
Q. Thus, we have:

Q←− Q�
∇−Q
∇+

Q

(A.9)
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To enforce the constraints, we normalize the factors appropriately after

each iteration. This procedure inherits the local convergence properties of

two-term NMF [11].
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APPENDIX B

NTF OPTIMIZATION

We could view NTF optimization problem directly in terms of linear algebra.

However, an equivalent probabilistic formulation allows for greater general-

ization. We will derive multiplicative updates via a setup akin to PLSI [41].

The assumed factorization is:

p(f, t, d) =
∑
s,z

p(f |s, z)p(t|s, z)p(z|s)p(d|s)p(s) =
∑
s,z

p(f |s, z)p(t, z|s)p(d, s)

(B.1)

where s and z denote source and dictionary element indices. We seek to

maximize the negative cross entropy:

∑
f,t,d

L(f, t, d) log p(f, t, d) (B.2)

Applying the EM framework, we define the auxiliary Q function:

Q =
∑

f,t,d,s,z

L(f, t, d) log p(f, t, d, s, z) (B.3)

Computing partial derivatives with appropriate Lagrange multiplier terms

to ensure normalization, we have the following EM update equations:

p(s, z|f, t, d) =
p(f |s, z)p(t, z|s)p(d, s)

p(f, t, d)
(B.4)
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p(f |s, z) =

∑
t,d

L(f, t, d)p(s, z|f, t, d)∑
f,t,d

L(f, t, d)p(s, z|f, t, d)
=

∑
t,d

L(f, t, d)p(s, z|f, t, d)∑
t

p(t, z|s)
∑

d p(d, s)
(B.5)

p(t, z|s) =

∑
f,d

L(f, t, d)p(s, z|f, t, d)∑
f,t,d,z

L(f, t, d)p(s, z|f, t, d)
=

∑
f,d

L(f, t, d)p(s, z|f, t, d)∑
d

p(d, s)
(B.6)

p(d, s) =

∑
f,t,z

L(f, t, d)p(s, z|f, t, d)∑
f,t,d,s,z

L(f, t, d)p(s, z|f, t, d)
=
∑
f,t,z

L(f, t, d)p(s, z|f, t, d) (B.7)

Plugging the E step into the M step and simplifying, we have multiplicative

updates:

p(f |s, z)←− p(f |s, z)

∑
t

p(t, z|s)
∑
d

L̄(f, t, d)p(d|s)∑
t

p(t, z|s)
(B.8)

p(t, z|s)←− p(t, z|s)
∑
f

p(f |s, z)
∑
d

L̄(f, t, d)p(d|s) (B.9)

p(d, s)←− p(d, s)
∑
f,t

L̄(f, t, d)
∑
z

p(f |s, z)p(t, z|s) (B.10)

where L̄(f, t, d) = L(f, t, d)/p(f, t, d) and p(d|s) = p(d, s)/
∑
d

p(d, s). If we

enforce normalization constraints after each iteration, it suffices to replace

p(d|s) with p(d, s) in the first two updates.

The striking similarity of these updates to standard NMF updates is ex-

plained by the equivalence of PLSI and NMF [42].
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APPENDIX C

FACTORIAL NTF OPTIMIZATION

In the factorial variant of NTF, we make use of the same probabilistic for-

mulation as in NTF. The assumed factorization is:

p(f, t, d̄, s) =
∑
z

p(f |s, z)p(t, s, z)p(d̄) (C.1)

where d̄ is the index into the product distribution d̄ =
K⊗
k=1

dk that captures

the probability that each DOA K-tuple is the true one.

Following the derivation procedure for NTF, we have multiplicative up-

dates:

p(f |s, z)←− p(f |s, z)

∑
t

p(t, z, s)
∑̄
d

L̄(f, t, d̄, s)p(d̄)∑
t

p(t, s, z)
(C.2)

p(t, s, z)←− p(t, s, z)
∑
f

p(f |s, z)
∑
d̄

L̄(f, t, d̄, s)p(d̄) (C.3)

p(dk)←−
∑

f,t,d̄¬k,s

L(f, t, d̄¬k, s) (C.4)

where the DOA distribution update is in closed-form for each component k of

the product distribution. The notation d̄¬k denotes all indices in the product

distribution that include dk.
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APPENDIX D

CTF OPTIMIZATION

The optimization problem we are trying to solve is:

min
W,H,M

∥∥∥∥∥L−
K∑
k=1

(
WkHk

)
⊗Mk

∥∥∥∥∥
2

2

(D.1)

s.t. ∀ k Wk,Hk ≥ 0 (D.2)

∀ k 1>FWk = 1>z (D.3)

∀ f, d, k
∣∣Mk

fd

∣∣ = 1 (D.4)

∀ k Wk ∈ RF×z,Hk ∈ Rz×T ,Mk ∈ CF×d (D.5)

In light of the fact that the constraints are fairly prohibitive, we apply

alternating projected gradient descent to optimize the parameters. The ob-

jective can be written as:

e =
∑
f,t,d

∣∣∣∣∣Lf,t,d −∑
k

ΓkftM
k
fd

∣∣∣∣∣
2

, Γkft =
∑
i

W k
fiH

k
it (D.6)

The gradients are:

∂ e

∂ Mk
f,d

= −2
∑
t

(
Lf,t,d −

∑
k′

Γk
′

f,tM
k′

f,d

)
Γkf,t (D.7)

∂ e

∂ W k
f,i

= −2
∑
t,d

(
Lf,t,d −

∑
k′

Γk
′

f,tM
k′

f,d

)
Mk

f,d

∗
Hk
i,t (D.8)

∂ e

∂ Hk
i,t

= −2
∑
f,d

(
Lf,t,d −

∑
k′

Γk
′

f,tM
k′

f,d

)
Mk

f,d

∗
W k
f,i (D.9)

If we constrain the means to have a particular parameterized form, we can

use the chain rule to include the contribution of this parameterization to the

49



gradient. Suppose we assume the standard wrapped-linear form character-

ized by steering vectors:

Mk
f,d = ej

2πωf
vs

m>d θk (D.10)

where m is the matrix of microphone location differences and θ ∈ R3 is a

DOA vector. Then, the chain rule gives:

∂Mk
f,d

∂θki
= Mk

f,d j
2πωf
vs

mi,d (D.11)

The full gradient for this DOA parameter is:

∂ e

∂ θki
= −2

∑
f,t,d

(
Lf,t,d −

∑
k′

Γk
′

f,tM
k′

f,d

)
Γkf,t

∂Mk
f,d

∂θki
(D.12)

Iterating gradient descent updates using (D.7)-(D.9) and projections to

ensure the constraints are satisfied, using an adaptive step size, and ensuring

that the objective function decreases at each step lead to convergence to a

local solution.
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