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Abstract 

This thesis presents new theoretical and computational developments and an integrated 

approach for interface and interphase mechanics in the process and performance modeling of 

fibrous composite materials. A new class of stabilized finite element methods is developed for 

the coupled-field problems that arise due to curing and chemical reactions at the bi-material 

interfaces at the time of the manufacturing of the fiber-matrix systems. An accurate modeling of 

the degree of curing, because of its effects on the evolving properties of the interphase material, 

is critical to determining the coupled chemo-mechanical interphase stresses that influence the 

structural integrity of the composite and its fatigue life.  

A thermodynamically consistent theory of mixtures for multi-constituent materials is adopted to 

model curing and interphase evolution during the processing of the composites. The mixture 

theory model combines the composite constituent behaviors in an effective medium, thereby 

reducing the computational cost of modeling chemically reacting multi-constituent mixtures, 

while retaining information involving the kinematic and kinetic responses of the individual 

constituents. The effective medium and individual constituent behaviors are each constrained to 

mutually satisfy the balance principles of mechanics. Even though each constituent is governed 

by its own balance laws and constitutive equations, interactive forces between constituents that 

emanate from maximization of entropy production inequality provide the coupling between 

constituent specific balance laws and constitutive models. The mixture model is cast in a finite 

strain finite element framework that finds roots in the Variational Multiscale (VMS) method. 

The deformation of multi-constituent mixtures at the Neumann boundaries requires imposing 

constraint conditions such that the constituents deform in a self-consistent fashion. A set of 

boundary conditions is presented that accounts for the non-zero applied tractions, and a 

variationally consistent method is developed to enforce inter constituent constraints at Neumann 

boundaries in the finite deformation context. The new method finds roots in a local multiscale 

decomposition of the deformation map at the Neumann boundary. Locally satisfying the 

Lagrange multiplier field and subsequent modeling of the fine scales via edge bubble functions 

results in closed-form expressions for a generalized penalty tensor and a weighted numerical flux 
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that are free from tunable parameters. The key novelty is that the consistently derived constituent 

coupling parameters evolve with material and geometric nonlinearity, thereby resulting in 

optimal enforcement of inter-constituent constraints. A class of coupled field problems for 

process modeling and for performance molding of fibrous composites is presented that provides 

insight into the theoretical models and multiscale stabilized formulations for computational 

modeling of multi-constituent materials. 
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Chapter 1 

Introduction 

1.1 Motivation 

In the manufacturing of fibrous composites, the fiber-resin mixture is subjected to a cure cycle 

that initiates cross-linking polymerization in resin to produce a structurally hard material. The 

properties of the final product as well as its performance characteristics depend on the properties of 

constituents as well as the properties of the interphase zone formed in the constituent interface 

region. Theoretical models and numerical methods employed to model material evolution at the 

microscale level need to capture the behavior of the individual constituents as well as their coupled 

interactions in an integrated fashion.  

From the materials perspective the fabrication of fiber-reinforced polymer matrix composites 

involves a number of complex interdependent processes, which preclude the resulting materials 

from achieving chemical or mechanical homogeneity. Firstly, the mixing of thermoset polymer 

ingredients, resin and hardener, is achieved via a stochastic but finite sequence of folding, 

stretching, and cutting events.  Despite best efforts to achieve spatial dispersion, at some scale this 

blend consists of pockets, layers, or veins of resin-rich material alternating with cross-linker-rich 

ones.  Secondly, selective chemical affinity of the embedded phase towards these constituents may 

enhance their separation.  The curing process therefore not only involves cross-linking reactions, 

but also inter-diffusion of reacting species.  As the cure progresses, molecular transport slows due to 

the obstruction imposed by the increasing number of cross-links.  The final degree of cure never 

reaches 100% and most often it varies from location to location.  Thirdly, the cross-linking reactions 

are exothermic, and consequently self-catalyzing.  Even autoclave treatment does not prevent the 

development of temperature gradients due to the difference between the thermal conductivities of 

polymer matrix and embedded phase.  This in turn results in differential chemical reaction along the 

interface and development of a composite with spatially inhomogeneous physical properties.  
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Finally, upon extraction from autoclave, due to material mismatch, differential residual stresses are 

developed that can cause local debonding and crack propagation along this interface.  The 

properties of the interphase region are especially difficult to predict, unless their detailed 

constitutional history is known.  Since interphases play a dominant role in the response of the 

composite when subjected to mechanical loads, an accurate modeling of the effects of chemo-

mechanical heterogeneities and interphase stresses is critical to determine the structural integrity of 

the composite and its fatigue life. 

With the objective of developing a comprehensive theoretical framework we employ mixture 

theory for a representative infinitesimal volume element of dense mixture of multi-constituent 

solids where each constituent is governed by its own balance laws and constitutive equations. A 

literature review reveals that mixture theory as proposed by Truesdell [1] has been widely employed 

in the modeling of fluid-fluid and solid-fluid mixtures. Comprehensive review articles by Atkin and 

Craine [2], Green and Naghdi [3,4] and the book by Rajagopal and Tao [5] provide a good 

exposition to the mixture theory and associated constitutive relations. Mixture theory ideas have 

also been used to model various phenomena such as classical viscoelasticity [6], swelling of 

polymers [7], thermo-oxidative degradation of polymer composites [8,9], growth of biological 

materials [10] and crystallization of polymers [11], to name a few. Mixture theories have also been 

employed to model the multi-constituent elastic solids, e.g., Bowen et al. [29] presented a 

thermomechanical theory for diffusion in mixtures of elastic materials. Bedford et al. [30] proposed 

a multi-continuum theory for composite materials, where the material particles of different 

constituents are grouped together at reference configuration to define a composite particle. Though 

these constituent particles occupy different spatial points as the material deforms, the interactions 

between constituents are evaluated in the reference configuration using the composite particle. Hall 

and Rajagopal [13] proposed a mixture model for diffusion of chemically reacting fluid through an 

anisotropic solid based on the maximization of the rate of entropy production constraint, 

considering anisotropic effective reaction rates and the limits of diffusion-dominated (diffusion of 

the reactants is far more rapid than the reaction) and reaction-dominated (the reaction is far more 

rapid than the diffusion of the reactants) processes. In the present work the theory by Hall and 

Rajagopal [13] is enhanced to the case of mixture of two interacting solid constituents, and an edge-

stabilized method is developed to model fibrous composite systems. 
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The theoretical basis of this work is a mixture based approach for multi-constituent materials 

that is locally homogeneous but globally heterogeneous and is built on satisfying the full set of 

balance equations of coupled chemo-mechanics wherein one can treat a range of 

physics/constitutive laws for the separate constituents. Furthermore, the constitutive laws are based 

not only on the individual components but also on the interactive forces between them. The latter 

can be thought of as providing the internal reaction force at the constituent level obtained by slicing 

through a representative volume element/cell which is acted on at its exterior surfaces by tractions 

/stresses, and reduces the constituent interactions, which are in reality very geometrically complex, 

to a force felt by (each) constituent due to its interactions with the others. It can handle fluid drag, 

solid-solid relative displacement, and high strains across the constituent interfaces, and can facilitate 

the modeling and analysis of interface and interphase strength in laminates. 

In the mixture theory model a thermodynamic framework that appeals to the maximization of 

the rate of entropy production is adopted. A Gibbs potential–based formulation is proposed to study 

problems involving chemical reactions and it also leads to implicit constitutive equations for the 

stress tensor. The assumption of maximization of the rate of entropy production due to dissipation, 

heat conduction, and chemical reactions is invoked to determine an equation for the evolution of the 

natural configuration. It helps in the determination (and selection) of admissible entropy production 

functions and helps identify physically relevant processes. The mixture model combines the 

composite constituent behaviors in an effective medium sense, reducing the computational cost of 

modeling chemically reacting multi-constituent mixtures, while retaining information involving the 

kinematic and kinetic responses of the individual constituents. The effective medium and individual 

constituent behaviors are each constrained to mutually satisfy the balance principles of mechanics. 

Interactive forces between constituents that emanate from maximization of entropy production 

inequality provide the necessary coupling between the balance laws and constitutive models and 

therefore between the concurrent and overlapping constituents. 

Another objective of this thesis is the development of variational formulations with enhanced 

stability properties for application to multiphysics problems that involve coupled interaction of 

mechanical, chemical and thermal fields. Enhanced stability properties help develop robust models 

and associated numerical schemes that can serve as a simulation-based material modeling and 

design platform. The resulting numerical solution scheme is based on Variational Multiscale (VMS) 
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method wherein decomposition of the deformation map into an elastic-component and another 

component that is associated with damage evolution and phase change is assumed. This 

compositional mapping between referential, intermediate and spatial configurations is integrated 

with the mixture theory thereby resulting in a novel method that is computationally efficient, and 

mathematically robust. 

1.2 Dissertation Outline 

The stabilized computational framework for mixture theory and its application to process modeling 

and performance modeling of multi-constituent materials are organized as follows: 

Chapter 2 starts with the discussion on mixture models for the diffusion of a chemically reacting 

fluid through a nonlinear elastic solid. Such processes arise in, as examples, the curing of 

composites using vacuum assisted resin transfer molding (VARTM), in the prediction of oxidation 

layer growth in composites, and in slurry infiltration in the manufacturing of composites. A 

residual-based stabilized mixed finite element formulation involving the balance of mass equation 

for the fluid that is written in an ALE form is presented. This 1-D development sets the stage for 

extending the stabilized method to full three dimensional contexts in the rest of the chapters. 

Numerical simulations for Fick’s diffusion problem, oxidation of PMR-15 resin and slurry 

infiltration problem were conducted to verify the method.  

Chapter 3 focuses on modeling the composite manufacturing process wherein the fiber-resin 

mixture is subjected to a cure cycle under high temperature, initiating cross-linking polymerization 

in resin to produce a structurally hard composite. We employ a modification to the Hall and 

Rajagopal model [13] for the formation and evolution of interphase in two-constituent materials 

where both constituents are in the solid phase. In this model, the properties of the matrix at the 

fiber-matrix interface evolve during the cure cycle and the isotropic reaction resulting from 

maximization of entropy production is associated with an anisotropic tensor that provides coupling 

of chemical reaction and mechanical stresses. Representative numerical simulations are presented 

for matrix curing and interphase formation by employing Ruiz [54,55] model and Yang [56-58] 

model respectively.  
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Chapter 4 extends the mixture model and numerical method to three dimensions and special 

emphasis is laid on the issue of Neumann boundary conditions that are considered a bottleneck in 

the application of higher order mixture theories to physical systems. The deformation of multi-

constituent mixtures at the Neumann boundaries requires imposing constraint conditions such that 

the constituents deform in a self-consistent fashion. A set of boundary conditions are presented to 

account for the non-zero applied tractions. A numerical method is developed that draws from the 

stabilized Discontinuous Galerkin method for finite strain kinematics with an underlying Lagrange 

multiplier interface formulation. Closed-form expressions are derived for the stabilization tensor 

and the weighted numerical flux that are free from tunable stability parameters. The key novelty is 

that the consistently derived stability tensors automatically evolve with evolving material and 

geometric nonlinearity at the boundaries.  

In Chapter 5, a hierarchical Variational multiscale method is developed to model the higher order 

mixture constitutive relations using lower order Lagrange elements. The fine scale fields are 

allowed to evolve as a function of the residual of governing equation and are employed in the 

interactive force field to model the lost physics. Numerical examples both in one dimension and 

three dimension are presented that showcases the capability of the method. Finally, a 

comprehensive capstone problem is presented for process and performance modeling of a lamina 

which includes all the features presented in previous chapters. 

Chapter 6 presents the summary and significant contribution of this thesis and possible future 

research for extending the presented computational famework to model damage and predicting the 

fatigue life of multi-constituent materials. 
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Chapter 2 

A Stabilized Finite Element Method for Diffusion of a 

Chemically Reacting Fluid through a Nonlinear 

Elastic Solid  

2.1 Introduction 

In this chapter, a stabilized mixed finite element method is presented for the diffusion of a 

chemically reacting fluid through a nonlinear elastic solid using a mixture theory based model. 

For a detailed introduction to mixture theory, interested readers are referred to comprehensive 

review articles by Atkin and Craine [2], Green and Naghdi [3,4] and the book by Rajagopal and 

Tao [5]. Mixture theory ideas have been used to model various phenomena such as classical 

viscoelasticity [6], swelling of polymers [7], thermo-oxidative degradation of polymer 

composites [8,9], and growth of biological materials [10] and crystallization of polymers [11]. 

Malek and Rajagopal [12] proposed that processes for fluid mixtures are governed by the 

maximization of the rate of dissipation constraint. Karra and Rajagopal [8] developed a mixture 

theory model and its constitutive relations based on this constraint for diffusion of a fluid 

through a viscoelastic solid. Karra and Rajagopal [9] also developed a mixture theory model for 

degradation of polyimides due to oxidation. A limitation of their model is that it cannot predict 

the oxidation layer thickness growth. Hall and Rajagopal [13] proposed a mixture theory model 

for diffusion of chemically reacting fluid through an anisotropic solid based on the maximization 

of the rate of entropy production constraint, considering anisotropic effective reaction rates and 

the limits of diffusion-dominated (diffusion of the reactants is far more rapid than the reaction)  

 

* This Chapter is has been adapted from “Hall R, Gajendran H, Masud A. Diffusion of chemically reacting fluids 

through nonlinear elastic solids: mixture model and stabilized methods. Mathematics and Mechanics of Solids. 

2014” . 
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and reaction-dominated (the reaction is far more rapid than the diffusion of the reactants) 

processes. This model in general can be applied to a variety of processes involving directionality 

of flow, of the reaction process and of the solid medium, such as curing of composites using 

vacuum assisted resin transfer molding (VARTM), prediction of oxidation layer growth in 

composites and slurry infiltration in manufacturing of composites.  

One of the applications of interest in this work is the oxidation of polymer matrix 

composites. Tandon et al. [14] conducted experiments to study oxidation processes in a high-

temperature polyimide resin used in aerospace composites, and developed an oxidation reaction 

rate model that conforms to the observed experimental data. In this work, we implement this 

oxidation model in the context of mixture theory. Schoeppner et al. [15] and Whitcomb et al. 

[16,17] developed finite element algorithms for the diffusion reaction equation to model the 

oxidation in PMR-15 resin and polymer matrix composites. In their work, the fibers and matrix 

were modeled in a discrete sense and thus their algorithm was computationally intensive. 

Whitcomb [16] proposed an adaptive mesh strategy and decoupled subdomain strategy to reduce 

the computational cost of their algorithm. Their adaptive mesh strategy requires a prior 

knowledge of oxidation layer growth to constrain the unoxidized region, thus reducing the 

number of unknowns in the problem. 

A significant feature of the mixture theory is the modeling of the constituents of the 

composite in an effective medium sense to reduce the computational cost of modeling 

chemically reacting multi-constituent mixtures while retaining information involving the 

kinematic and kinetic responses of the individual constituents. In this work, a stabilized mixed 

finite element formulation is employed for the conservation equations in the mixture theory and 

the performance of the model and the numerical algorithm is showcased for various applications.  

The outline of the paper is as follows. In section 2.2, we present the governing equations and the 

constitutive relations derived from the mixture theory for a chemically reacting fluid diffusing 

through a nonlinear elastic solid in a general three dimensional context. The modeling 

assumptions and the one-dimensional form of the general mixture theory are presented in section 

2.3. In section 2.4, we present the weak form of the mixture theory governing equations and 

develop the VMS based stabilized method. Section 2.5 presents the finite element results of the 



 

8 

mixture theory for Fick’s diffusion problem, in the context of matching an analytical solution for 

demonstration of accuracy and stability of the numerical approach; oxidation of PMR-15 resin; 

and slurry infiltration in polymer matrix composites.  Conclusions are drawn in section 2.6. 

2.2 Mixture Theory 

In this section, we first present the mixture theory based model for diffusion of an anisotropic 

non-linear viscoelastic fluid through an anisotropic elastic solid with mutual chemical reaction, 

as proposed by Hall and Rajagopal [13]. A basic assumption in the mixture theory is that the 

constituents of the mixture co-occupy the domain and as the mixture deforms, these co-existing 

continua deform with respect to each other. A set of appropriate constitutive relations that are 

based on the constraint of maximum rate of entropy production are also presented in [13]. In the 

present work, we consider the constitutive relations associated with unconstrained constituent 

volumes. Detailed derivation is available in [13].  

The equations of mass and linear momentum balance for the diffusion of a chemically reacting 

fluid through a finitely deforming thermoelastic solid are given as follows [13]: 

                                   div div( )
D

m
dt t

  
     

 


   


v v  (2.1) 

 
div( )TD

dt

 
      

v
T b I  

(2.2) 

where,   is the mass concentration and m  is the rate of mass transferred by chemical reaction, 

to constituent , per unit mixture volume; 
v  is the velocity of constituent  and 

T  is its partial 

Cauchy stress, while 
I  and b  are the interactive force on constituent  and the overall body 

force, per unit mixture volume.  

The balance of energy and assumption of maximized rate of entropy production, together with 

Newton’s third law lead to the following relations for the partial stresses on the solid and fluid, 

s
T  and f

T ; the interactive force f
I  on the fluid, the constituent entropy  , and the rate of 

fluid mass conversion, fm , all per unit mixture volume; and the heat flux q, per unit mixture 

area: 
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where the chemical potential g  of constituent  is defined through 

 g












 (2.9) 

 ,  and  are the mixture density, mixture Helmholtz energy and temperature; while   are 

the constituent Helmholtz energies; Material parameters c  and mc are respectively associated 

with the constituent entropies, and  with mass transfer, while l is the mixture thermal 

conductivity tensor; s
F   is the solid deformation gradient; v

A  and L
A  are drag and viscosity 

coefficient tensors and f
D  is the fluid rate of deformation tensor.  

The rate of mass transfer to the fluid fm , is determined in coordination with the orientation 

average of the rate of reaction tensor  . Because of the presence of only two constituents, the 

mass balance provides that the rate of mass converted to the solid is the one lost from the fluid: 

 s fm m   (2.10) 
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In the diffusion-dominated approximation (diffusion of the reactants is far more rapid than the 

reaction), the operator { , , }s t n X  provides the directional solid mass conversion rate in the 

direction -n, per unit mixture volume, such that:   

 

4

0

1
{ [ ], , } 

4

s sm t d





 




  n X  (2.11) 

where, n is the outward unit normal, s
X is the reference coordinate of the solid,  is the solid 

angle, and a second-order representation is assumed for the operator { , , }s t n X  

 { , , } [ , ]s st t  n X n X n  (2.12) 

with the tensor 

 
0

[ , ] [ , ]

t

s st t dt X X   (2.13) 

thus, providing an anisotropic measure of the extent of reaction of the solid. 

Employing in the present work the Lagrangian solid strain measure s
E  and referring   to 

material coordinates, the Lagrange multiplier arising from the constraint of maximized rate of 

entropy production is given by, in the general case, cf. [13]: 

 

0 0 0 0

2 0 0 0 2

m

0 0 0 0

1
( )( ) ( ) ( )

41

2 ( ) ( ) ( )

1

2

s f
s f s f s f f s f s
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f f f s f s f
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L v
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D A D v v A v v A l
 

 

(2.14

) 

where 0

IJKLMNOPK is a tensor which couples the mechanical and chemically-influenced attributes of 

the model, in a way that is compatible with the results of the maximization of the rate of entropy 

production as described in [13].  Because   and fm  depend on , eq. (2.14) is a cubic equation 

in . To obtain a single-valued relation for , the following approximations are made: 
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1. We assume that the attributes of the Helmholtz free energy functions of the constituents 

and the mixture can be represented in terms of suitably condensed forms, s f    , 

s f    .  

2. Slow diffusion permits neglect of the squared relative kinetic energy terms 

2(( ) ( ))f s f s  v v v v , which are assumed also negligible relative to the drag force. 

3. We assume that the reaction is near enough to equilibrium to neglect the squared 

difference in the chemical potentials of the constituents, and the product of the chemical 

potential difference with the relative kinetic energy. 

The Lagrange multiplier is thus reduced to the following single-valued function: 

 

0 0 0 0

2

0 0 0 0 0 0 0

1
1 4

2 ( ) ( )

1

2

s

IJ KL MN OP IJKLMNOP

f f f s f s
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E K

c

E K






 

  

 
        
 
 

         
 

L v
D A D v v A v v

A l
 

 
(2.15) 

It can be noted that the tensor K0 will have mostly zero-valued components. If reaction processes 

such as oxidation are considered, in which the reaction is several times faster in the fiber 

direction than the transverse directions thus promoting a unidirectional reaction assumption, and 

assuming transversely isotropic coupling to the strains, the term involving K0 reduces to the 

following expression, involving 4 independent constants: 

 
0 0 0 0 0 0 2 0 0 0 0

11 11 1 11 2 22 33 3 12 31 4 23( ) ( ) ( )s s s s s s s

IJ KL MN OP IJKLMNOPE K K E K E E K E E K E            

 

(2.16

) 

In the present work, the influence of the energy and entropy production relations are retained 

through the presence of the Lagrange multiplier, which is obtained via invoking the constraint of 

maximized rate of entropy production. The equations explicitly retained are the constituent 

momentum balances and the mass balance equation, which can be considered most strongly 

enforced. In accordance with the present study being isothermal, the traditional heat capacity 

measures of the constituents are lost through the assumption above that the constituent entropy 

functions can be replaced by an overall entropy function. In general, for anisothermal processes, 

the Helmholtz and entropy functions of each constituent would be retained. It is interesting to 
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note, however, that the present system of equations incorporates the rate of temperature in 

combination with a non-traditional overall material property c  (the density average of the c  

properties), which may provide a simplified approach to accounting for a class of homogenized 

anisothermal effects. The present paper however considers only isothermal conditions. 

2.3 One Dimensional Mixture Theory  

Consider a one dimensional mixture domain   of length L with boundary   0,x x L   . 

The governing equations for the one-dimensional case under isothermal conditions are as 

follows: 

 1
1 0

v
v m

t x x

 
   


 

   
  

 (2.17) 
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The corresponding stresses and interactive force on the constituents can be written as follows: 
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(2.21) 

We consider the following Helmholtz free energy function that corresponds to the 1-D 

representation of a transversely isotropic thermoelastic solid permeated by a chemically reacting 

Newtonian fluid.  
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         (2.23) 

where   describes the coupling between the solid strain and the extent of reaction, consistent 

with the developments of [13]; , , , ,s s s s s

L T      are the transversely isotropic material 

constants, which in one dimension reduce to the elastic moduli of the solid. ,s

T T   are the true 

solid density and the true mixture density respectively. R  is the ratio of the universal gas 

constant to the molecular weight of the fluid. 0

1 1K K   and 0 0A A     are defined for 

convenient manipulations involving  . 

Remark: For the case of slurry deposition process that is presented in the section 2.5.3, 0

11  

represents the extent of material deposition. For this case, the term   provides coupling 

between the solid strain and the extent of deposition of the suspended particles. We assume that 

this deposition function 0

11  is in fact a function of the volume fraction of particles, which is 

considered a process parameter.  

The one dimensional representation of the Lagrange multiplier   is given as: 
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 (2.24) 

Also, from mass balance law and Newton’s third law we see that the solid and the fluid 

interactive forces have the following relationship:  

 1 1 1 1( )s s s f f sI m v I m v     (2.25) 

2.3.1 Modeling assumptions and methodology 
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In mixture theory where both solid and fluid co-occupy the domain and fluid moves relative to 

the deforming solid, it is natural to write the fluid balance laws in an Arbitrary Lagrangian 

Eulerian (ALE) framework [18-20]. For the class of problems considered in this work, the 

inertial effects on the solid are assumed to be negligible. Based on these modeling assumptions, 

the balance laws eqs. (2.17) and (2.18) can be rewritten as follows. 

 1
1 0

ss s
s s sv

v m
t x x

 


 
   

  
 (2.26) 
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(2.28) 
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1 1 1 1( ) 0
f f f

f f f f f m

Y

T v v
b I v v

x t x
  

  
     

  
 

(2.29) 

where, 
( )

Yt

 


represents the time derivative in the ALE frame [19,20] and 

1

mv  is the fluid mesh 

velocity. It is important to note that as the solid domain deforms, the Lagrangian mesh that is tied 

to material points deforms together with it. Consequently, the mesh velocity 
1

mv
 
is set equal to 

1

sv  

where, 
1

sv  is the velocity of the solid domain. Accordingly, the constitutive relations can be 

rewritten as,  
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1 1 1 1 1( ) ( )f f f s v f sI m v v v v       (2.32) 

 0

11

fm    (2.33) 
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Remark: In [13] an expression for the rate of mass conversion for fluid fm  is derived via 

maximization of the rate of dissipation constraint. However, in the present work we prescribe an 

oxidation rate given in [14] that is developed based on physical measurements. Likewise, in the 

slurry infiltration model we prescribe a rate of particle deposition as is given in [28]. Because of 

these postulated rates, the physics involved in the consistent derivation of mass conversion given 

in [13] is circumvented. 

2.4 Weak Form and Development of Stabilized Method 

The initial conditions for the density and velocity fields of the two constituents, and the 

displacement field of the solid are: 

 0 1 0 1 0( ,0) ;     ( ,0) ;      ( ,0)       s sx v x v u x u x          (2.34) 

The boundary   admits decomposition into 
g  and h , where 

g h    , and we 

denote the unit normal to the boundary   by 1n . The boundary conditions for the problem are: 
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 (2.35) 

where 
0 0,f fv  are the prescribed fluid density and velocity, and 

0

su  is the prescribed solid 

displacement. 
0

ft  and 
0

st  represent the prescribed fluid and solid boundary tractions, respectively. 

Let g  and 
1w  denote the weighting functions for the balance of mass and linear momentum for 

the corresponding constituent, respectively. The appropriate spaces for these weighting functions 

are: 

  1( ), 0  on  gg g H g
         (2.36) 

  1

1 1 1( ), 0  on  gw w H w         (2.37) 
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The corresponding trial solution spaces for the fluid and solid density, fluid velocity and solid 

displacement are:  

   1

0( , ) ( , ) ( ), ( , )   on  0,gt t H t T
                  (2.38) 

   1

1 1 1 0 ( , ) ( , ) ( ), ( , )   on  0,f f f f f f

gv t v t H v t v T         (2.39) 

   1

1 1 1 0  ( , ) ( , ) ( ), ( , )   on  0,s s s s s s

gu t u t H u t u T         (2.40) 

The weak form of governing equations for the solid-fluid system can be stated as follows: For all 

constituents  , ,   (0, )s f t T   , g  and
1w  , solve

   , 
1

f fv   and

1

s su   such that the following system holds. 

Weak form of equations for the fluid 
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 (2.41) 

 

1 1
11 1 1 1 1 1

1
1 1 1 1 11 1

( , ) ( , ) ( , ) ( , )

                                 ( , ( ) ) ( , ) 0f
h

f f
f f f f f f f

Y

f
f f f s f f

w v
T w b w I w

x t

v
w v v w T n

x

 




 
   

 


  



 (2.42) 

Weak form of equations for the solid: 

 1
1( , ) ( , ) ( , ) ( , ) 0

ss s
s s s s s s sv

g g g v g m
t x x

 


 
   

  
 (2.43) 

 1
11 1 1 1 1 1 11 1( , ) ( , ) ( , ) ( , ) 0s

h

s
s s s s s s sw

T w b w I w T n
x





   


 (2.44) 

where,    , d


     is the  2L   inner product. 

2.4.1 Fluid Sub-System: Residual-based Stabilization  

Our objective is to model the diffusion of a chemically reacting fluid through a nonlinear 

elastic solid, a phenomenon that is observed in the process modeling of composites, oxidation of 

resin/composites, and slurry infiltration in porous media, to name a few. In the modeling of these 
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processes, fluid mass concentration is invariably specified at the inlet boundary. Since the strong 

form of mass balance of fluid given in eq. (2.17) is a first order hyperbolic equation, any 

specified mass concentration boundary condition at the inlet that is different from the initial 

condition results in a discontinuous fluid concentration field. This discontinuity introduces 

spurious oscillations in the computed solution right at the beginning of the nonlinear iterative 

process that can lead to non-convergent and therefore non-physical solutions.  

To address this issue, we consider the weak form of the balance of mass equation for the 

fluid that is written in an ALE form. We employ Variational Multiscale (VMS) ideas [22-25] and 

develop a stabilized weak form for eq. (2.41). Underlying idea of VMS is an additive 

decomposition of the solution field into coarse and fine scale components as given below. 

 ˆf f f     (2.45) 

 ˆf f fg g g   (2.46) 

where, ˆ ,f f   represents the coarse-scale and fine-scale components of the density field and 

ˆ ,f fg g  represents the coarse-scale and fine-scale counterpart of the weighting function 

respectively. Various scale separations of f  are possible in eq. (2.46). However, they are 

subject to the restriction imposed by the stability of the formulation that requires the spaces for 

the coarse-scale and fine-scale functions to be linearly independent. In the development 

presented here, the space of coarse-scale weighting functions is identified with the standard finite 

element spaces, while the fine-scale weighting functions can contain various finite dimensional 

approximations, e.g., bubble functions or p-refinements or higher order NURBS functions. 

 Substituting eqs. (2.45) and (2.46) in eq. (2.41) and employing the linearity of the 

weighting function slot in eq. (2.41), we obtain the coarse-scale problem and the fine-scale 

problem as given in eqs. (2.47) and (2.48) respectively.  
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It is important to note that both systems are nonlinear, and are also fully coupled in terms of the 

scales. The key idea at this point is to solve the fine-scale problem eq. (2.48) locally, using 

analytical methods or numerical methods, and extract the fine-scale component, f . This can 

then be substituted in the corresponding coarse-scale problem given in eq. (2.47), thereby 

eliminating the fine-scales, yet modeling their effects.  

Solution of the Fine Scale Problem: 

We segregate the terms into coarse-scale and fine-scale terms and group all the terms containing 

coarse-scale density field 

 
1

1
ˆ, ( , ) ( , ) ( ,( ) 0)

f
f ff f

f f f s f

Y

v
g g g v g R

t x x

   
   

  
  (2.49) 

where, R̂ is the residual of the Euler-Lagrange equations of the coarse-scales over element 

interiors and is given as, 

 
1

1

ˆˆ ˆˆ ˆ( )
f ff f

s f f

Y

v
R v m

t x x

 


 
   

  
 (2.50) 

In obtaining the above form of the fine scale problem, we have assumed that the fluid mass 

conversion rate is a function of the coarse-scale fluid density field only, ˆ ˆ( , ) ( )f f f f fm m   . 

To reduce the complexity of the fine-scale problem and also to reduce the computational cost for 

evaluating the fine-scale solution field, we assume that the fine-scale field vanishes at the 

element boundaries.  

 0,   0   on   f f eg     (2.51) 

Remark: The assumption that fine-scales vanish at the inter-element boundaries helps in 

keeping the presentation of the ideas simple and concise. Relaxing this assumption in fact leads 

to a more general framework. This however requires Lagrange multipliers to enforce the 

continuity of the fine-scales fields across inter element boundaries. It is important to note that 

Lagrange multiplies can be accommodated in the present hierarchical framework as well.  
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Using Backward Euler time integration scheme and assuming that the fine-scale fluid density 

field at n-th time step is zero, 0f

n  , we can obtain the time discretized form of the eq. (2.49) 

as given below, 

 
1

1
ˆ, ( , ) ( , ) ( ,( ) ) 0

f
f ff f

f f f s f

Y

v
g g g v g R

t x x

   
   

  
  (2.52) 

The fine-scale fields are represented by bubble functions within each element and are given as,  

 1 2 1 1 1 1,   f e f f e f

n n n ng b g b       (2.53) 

where, 1 2,e eb b  are bubble functions and 1 1,  f f

n ng    are the coefficients associated with the fine-

scale fields over the element, as shown schematically in Figure 2.1.  

 

Figure 2.1. Schematic representation of quadratic and linear-hat bubbles 

Substituting eq. (2.53) in eq. (2.52), we can obtain the fine-scale density field via solution of eq. 

(2.52) as follows, 

 ˆf R   (2.54) 

where, R̂  is the residual of the Euler-Lagrange equations of the coarse-scales for eq. (2.47). The 

stabilization parameter,   is given as, 
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(2.55) 

We now substitute the fine-scale solution given in the eq. (54) into the coarse-scale problem, eq. 

(2.47).  
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 (2.56) 

Equation (2.56) represents the modified coarse-scale problem with the fine-scale effects 

embedded implicitly via the coarse-scale residual terms. The first four integral terms in eq. (2.56) 

correspond to the standard Galerkin method for the balance of mass for the fluid. The last two 

terms in the eq. (2.56) have appeared because of the fine-scale density field. It is important to 

note that the fine-scale density does not explicitly appear in eq. (2.56), rather the fine-scale 

effects are implicitly reflected in this form via the modeling terms.  

Equations (2.56), (2.42), (2.43) and (2.44) are linearized and solved simultaneously using 

Newton-Raphson solution procedure. This coupled system of equations is discretized-in-time 

using backward Euler scheme, while linear and quadratic Lagrange elements with equal order 

fields are employed. The resulting stiffness matrix for the full system is non-symmetric.   

2.5 Numerical Results 

We present three test cases that investigate the stability and accuracy of the numerical method 

developed for the mixture theory model described in section 2.3. In section 2.5.1, we solve a 

reduced mixture model that is equivalent to the Fick’s diffusion problem. A system comprising a 

first order hyperbolic equation and an algebraic equation is solved and the results are compared 

with the exact solution. Section 2.5.2 presents the oxidation problem of PMR-15 resin wherein 

full system of mixture theory equations is solved and the results are compared with the 

experimental and numerical results reported in Tandon et al. [14]. Section 2.5.3 simulates slurry 

infiltration process that is involved in the manufacturing of composites, and a parametric study 

of the reduction in the porosity of the solid as a function of slurry particle fraction and initial 

solid porosity are presented.  

2.5.1 Fick’s diffusion problem  

In this section we employ a reduced mixture model to solve Fick’s diffusion problem. The 

transient Fick’s diffusion equation can be derived from the mixture theory balance laws, eqs. 
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(2.17) and (2.18) based on the following simplifications: (a) solid is assumed to be rigid, (b) fluid 

is assumed ideal, (c) fluid inertial effects are neglected, and (d) fluid is assumed non-reactive. 

The constitutive relations for an ideal fluid and the interactive force between the fluid and rigid 

solid can be given as [26],  

 
11

f fT R    (2.57) 

 
1 1

f v f fI A v   (2.58) 

where, 
vA  is the drag coefficient. The governing eqs. (2.17) and (2.18) can be reduced to the 

following system of equations, 

 1( )
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f ff v

t x

 
 

 
 (2.59) 

 

1 0
f

v f fR A v
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(2.60) 

Since the coupled system of eqs. (2.59) and (2.60) serves as a reduced order model for the 

mixture theory, we solve this first order system to investigate the underlying characteristics of 

the mixture model wherein the conservation of mass equation for the fluid is hyperbolic. The 

diffusivity of the solid can be written in terms of the drag coefficient of the solid as 

 v

R
D

A


  (2.61) 

The derivation of the eq. (2.61) is provided in Appendix A. 

Remark: Solving for fluid velocity from eq. (2.60) and substituting back in eq. (2.59), one can 

obtain Fick’s diffusion equation. Since our full mixture model results in a first order system, in 

this work we have opted to solve the reduced system also in its first order form to help serve as a 

test case to evaluate our numerical method. 

The unknown fields in this problem are the fluid concentration and fluid velocity and are 

solved with zero initial conditions. The one-dimensional domain of length 0.001 m is exposed to 

air at the left end of the domain where the fluid concentration is assigned a value of 22.8863E-3 
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kg/m3 and fluid velocity is constrained to be zero at the right end of the domain. The gas constant 

R  and the drag coefficient 
vA  are assigned values of 286.987 J/kg-K and 1.63E17 s-1 

respectively. The problem is discretized in time with the first order Backward Euler scheme and 

the simulation is run for a total time of 30,000 seconds. A variable time step increment is used: 

the time steps employed during the first second is 1E - 4t  , and it is increased to 0.1t   for 

the remaining steps.                    

                                       

  a) Fluid density: Linear Lagrange h-refinement b) Fluid velocity: Linear Lagrange h-refinement 

Figure 2.2. Mesh refinement study at various time levels                                                            

 

Figure 2.3. Mesh refinement study using quadratic Lagrange elements 

It should be noted that eq. (2.59) is a first order hyperbolic equation for fluid 

concentration. For a non-zero fluid concentration boundary condition applied at the inflow, the 
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standard Galerkin finite element method results in oscillations around the steep front thereby 

causing numerical instability. We employ the variational multiscale method as described in 

section 4 to stabilize the formulation, and provide a comparison between of the stabilized 

numerical result with the exact solution. Figure 2.2a and Figure 2.2b show performance of the 

new method for h-refinement wherein we have used linear Lagrange interpolation functions. 

These plots show the spatial profiles of the fluid concentration and velocity fields at 1000, 

10,000 and 30,000 seconds. It can be seen that as the number of elements is increased, computed 

solution converges to the exact solution which is a numerical validation of the consistency of the 

formulation. Likewise Figure 2.3 shows the convergence of the fluid density field for quadratic 

elements. Figure 2.4 shows the variation of L2 norm of the error in fluid density field with mesh 

refinement for linear and quadratic VMS elements. A sub-optimal convergence rate of 1.54 for 

linear VMS element and 1.88 for quadratic VMS element is obtained for the nonlinear first order 

problem. Figure 2.5a and Figure 2.5b show that numerical results compare well with the exact 

solution at 1000, 10,000 and 30,000 seconds wherein domain is discretized with 400 elements.  

 

Figure 2.4. Convergence plot of L2 norm of fluid density 
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              a) Fluid density along the domain                              b) Fluid velocity along the domain 

Figure 2.5. Comparison between exact and finite element solution                                                            

In Figure 2.6a and Figure 2.6b, we show the spatial distributions of fluid density and fluid 

velocity for three different values of the drag coefficient for a domain of length 1 m. It can be 

seen that for lower drag coefficient that corresponds to higher diffusivity, fluid propagates 

further down in the porous solid as compared to the cases of higher drag coefficients.  

             

             a) Fluid concentration along the domain                     b) Fluid velocity along the domain 

Figure 2.6. Fluid quantities for three different drag coefficients                                                           
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2.5.2 Oxidation of PMR-15 resin  

Thermo-oxidative aging of polymer matrix composites (PMC’s) in high temperature applications 

influences the life and performance of these materials. In this section, we present numerical 

results for the oxidation behavior of polyimide PMR-15 resin based on the oxidation reaction 

model developed in the works of Tandon et al. [14]. For the sake of completeness, we provide a 

brief description of the oxidation process in polymer. However, for a detailed description of the 

oxidation process and the reaction kinetics model, refer to [14,15]. Oxidation front in polymer 

materials advances through a combination of diffusion and reaction mechanism. The exposed 

surface reacts with the diffusing air that depletes the amount of polymer available in that region. 

Once this region is fully oxidized, it acts as a medium through which air/oxygen diffuses through 

and an active oxidation zone is formed ahead of the fully oxidized zone. Thus, at any instant of 

time, the oxidation process in polymers comprises of a fully oxidized zone, an active oxidation 

zone and a neat resin zone as shown in Figure 2.7. 

                              

Figure 2.7. Schematic representation of thermo-oxidation process 

The oxidation reaction rate implemented in this work is given in [14] as, 
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where, 
0

11   is the rate of reaction,   is the oxidation state variable which indicates the availability 

of polymer for oxidation, ox  specifies the fully oxidized state of the material (Zone I),  0R  is the 

saturated rate of reaction, and   is the inverse of the saturation air/Oxygen concentration. The 

evolution equation for the oxidation state variable   is given as, 

 
fd

m
dt


  (2.65) 

where,   is the constant of proportionality.   varies in the active oxidation region while it 

assumes a value of ox  in the fully oxidized region and a value of 1.0 in the unoxidized region. 

Accordingly, oxidation front lies in the active oxidation region and for plotting purposes, it can 

be defined via a given, but otherwise arbitrary value of  ,1c ox  . 

In the numerical test presented below, we consider a one-dimensional domain of length 1 

mm. The left end of the domain is exposed to air, and the simulation is run under isothermal 

conditions at a uniform temperature of 288 0C. Material parameters used in the simulation are 

given as follows: (i) the true air density at 288 0C, 
30.6273  kg mf

T  , (ii) viscosity of air, 

29.5E-6 kg msLA  , (iii) Gas constant, 286.987 J kg K  R  , (iv) body force, 0fb  , (v) 

molecular weight of air is 0.02897  kg molairMW  , (vi) 
332.4412  m kg  , (vii) oxidation 

state, 0.187ox  , (viii) reaction rate, 
3

0 1.69E-2 kg m sR  , (ix) true solid density, 

31320  kg ms

T  , (x) porosity of solid, 0.1s  , (xi) Diffusivity of the solid, 

28.933E-13 m sD   , (xii) Young’s modulus, 2.6 GPasE  , (xiii) 2 0fk  , (xiv) 

30.35  m kg  , (xv) 
0 0.25E12A     and (xvi) 1 1.0E9K   . It is noted that the only new 

parameters that are not constrained by direct measurements are the last two parameters, i.e., 
0A 

 

and 1K . The remaining parameters are either specified in the original work [13], or are standard 

reported values (limited to the viscosity of air 29.5E-6 kg msLA   and Youngs modulus of 

PMR-15 2.6 GPasE  ). 
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The one-dimensional domain is discretized non-uniformly with linear Lagrange elements. 

The subset of the domain, [0, 0.0012] m is discretized with 100 elements and the rest of the 

domain also with 100 elements. The fluid and the solid constituents coexist over this domain. A 

fluid concentration of 22.8863E-3 kg/m3 is specified as boundary condition for the fluid and a 

load of 1 atm is applied on the solid at the left end of the domain. The problem is run with time 

steps of 1E-5 seconds for 1000 steps, followed by a time step of 1E-3 seconds for 10000 steps 

and with a time step of 0.1 seconds for a total time of 100 hours. The drag coefficient 
vA  for the 

oxidation problem is defined in terms of diffusivity of the solid, as ( )v f f

TA R D      

where,   is the Lagrange multiplier. For the derivation of this expression, refer to Appendix A.  

Remark: In our model, the fluid properties and its initial/boundary conditions are defined in 

mass concentration units. Since, fluid properties in Tandon et al. [14] are provided in molar 

concentration units, they have been converted to appropriate units for the present system of 

equations using the standard conversion relations. 

                                                                                                                            

Figure 2.8. Oxidation layer growth with time for various values of oxidation state cutoff variable  

The active oxidation zone that lies between the fully oxidized zone and the unoxidized 

core has a continuous variation of   from ox  to 1, respectively. Specifically, it can be seen from 

Figure 2.7 that for a value of 1.0c  , the oxidation front is the boundary between the active 

oxidation region and the neat resin region. Similarly, for a value of c ox  , which in the current 
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case is 0.187ox  , the oxidation front is the boundary between the fully oxidized region and the 

active oxidation region. In Figure 2.8, we plot the oxidation layer for various values of the post 

processing parameter c  that represents the location of the front in the active oxidation zone, for 

a reaction rate of 1.69E-3 kg/m3-s and a solid diffusivity of 8.93E-13 m2/s. The oxidation layer 

growth results shown in Figure 2.9-Figure 2.11 are plotted for 0.3c  . 

 

Figure 2.9. Oxidation layer growth with time for various values of reaction rate 

A parametric study was done for the oxidation layer growth with time and results are 

presented as shown in Figure 2.9-Figure 2.11. Figure 2.9 shows the variation in oxidation layer 

growth for different reaction rate parameters for a duration of 100 hours. The solid line shows 

the results from the mixture theory, where it can be seen that the reaction rate of 2.41E-4 kg/m3-s 

produces an oxidation layer growth of 66.9 μm as compared to 74.7 μm for the reaction rate of  

                                                                                                                                                      

Figure 2.10. Oxidation layer growth with time for various values of oxidation state 



 

29 

1.69E-3 kg/m3-s at the end of 100 hours. The mixture theory results follow a similar trend in 

comparison with the Tandon et al. [14] numerical results. 

Figure 2.10 shows the growth of oxidation layer for 0.1 and 0.187 oxidation state values. 

Since  ,1ox  , the local value of   indicates the amount of polymer that is available for 

oxidation. An oxidation state value of 0.1 indicates the spatial location where almost 90% of the 

polymer is available for oxidation, as compared to a value of 0.187 that indicates that only 81.3% 

of the polymer can be oxidized. For a constant oxidation rate, a lower value of ox  indicates that 

the oxidation front will stay at that spatial point longer, and therefore the rate of growth of the 

oxidation layer will be slower, as can be seen in Figure 2.10. Figure 2.11 shows the influence of 

the diffusivity of the solid on oxidation layer growth in PMR-15 resin. It can be observed that a 

diffusivity value of 1.667E-12 m2/s advances the oxidation layer at a higher rate in comparison to 

the lower diffusivity values of 1.3E-12 and 8.933E-13 m2/s. The oxidation layer depth of 74.7, 

90.1 and 100.1 μm are observed for solid diffusivity values of 8.933E-13, 1.3E-12 and 1.667E-

12 m2/s at the end of 100 hours, respectively.                                           

                                       

Figure 2.11. Oxidation layer growth with time for various values of drag coefficient 

Tandon et al. [14] studied the oxidation layer growth via diffusion reaction equation assuming an 

ideal fluid permeating through a rigid solid. Accordingly, in their model the deformation of the 

solid and viscous effects in the fluid are neglected. In the present work where we employ the 

mixture theory, a Newtonian fluid and an elastic solid are considered. Since the unknown fields 

in the mixture model are fluid density, fluid velocity, solid displacement and solid density, 

therefore kinematic and the force measures can be readily obtained from the simulations. Figure 
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2.12 shows the variation of the fluid and the solid kinematic and force quantities for solid 

diffusivity values of 8.93E-13, 1.30E-12 and 1.67E-12 m2/s. The plots shown are obtained for an 

oxidation state value of 0.187 and a reaction rate of 1.69E-3 kg/m3-s. Figure 2.12a and Figure 

2.12b show the variation of solid density and fluid density along the domain at the end of 100 

hours. Equation (2.65) provides the evolving oxidation state variable   that defines the fully 

oxidized region that has reached its saturation point. This can be observed in Figure 2.12a where 

solid density reaches a plateau and further oxidation in this region ceases. 

                       

             a) Solid density along the domain                            b) Fluid density along the domain 

                     

c) Fluid stress along the domain                           d) Interactive force along the domain            

Figure 2.12. Fluid and solid kinematic and force quantities along the domain at the end of 100 

hours 

Since there are only two constituents in the present model, loss of mass from one is the gain in 

mass of the other. Consequently, the density of the solid increases as shown in Figure 2.12a 
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wherein the apparent solid density has a higher value as compared to the neat resin region. This 

is rather contradictory to the experimental observations as the density of the PMR-15 resin is 

expected to decrease with increased levels of oxidation. If the two-constituent mixture model is 

extended to three-constituent model where the third constituent is allowed to evolve and also 

leave the domain, it can account for the experimentally observed weight loss in solid due to the 

oxidation process. Figure 2.12c shows that the variation in fluid stress is dominated by the 

hydrostatic pressure. Figure 2.12d shows the distribution of interactive force between the 

diffusing fluid and deforming solid. It can be seen that the interactive force becomes zero in the 

neat resin region where the fluid has not reached yet. 

2.5.3 Slurry Infiltration Problem 

Slurry infiltration is an important step in the processing of ceramic matrix composites 

(CMC). In the slurry infiltration process, a viscous fluid that is laden with particles of various 

sizes, composition, and volume fraction is injected into a fiber preform. In this process, fluid 

serves as a medium that carries the suspended particles to the preform. This cycle is repeated 

several times till the density of the preform increases and its porosity reduces to some desired 

design value. Once slurry infiltration process is complete, a second process called melt 

infiltration is carried out with a viscous fluid that can chemically react with the preform as well 

as the deposited particles to make a composite with desired strength and density distribution 

[27].  

In this section, we consider the slurry infiltration process wherein we employ properties of a 

porous PMC as a surrogate model for CMC material. We assume that water based slurry has 

permeated the porous elastic solid and we model the process of deposition of suspension onto the 

fiber preform. Youngs modulus of the porous PMC is obtained via rule of mixtures as given 

below, 

 L f f m mE E V E V   (2.66) 

where ,f mE E are the fiber and epoxy Youngs moduli, respectively, and are assigned values of 

380 GPa and 3.45 GPa. ,f mV V  are the volume fractions of the fiber and the matrix in the porous 

composite. For a 50% porous PMC, we evaluate the properties based on 40% fiber and 10% 
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matrix composition. The carbon fiber density and the matrix density are 1950 kg/m3 and 1200 

kg/m3, respectively.  The water-based slurry is assumed to contain SiO2 particles of dimension 2-

15 μm with 50% volume fraction. The viscosity of the slurry can be computed from Einstein’s 

equation as follows. 

 
2

(1 2.5 )sl w

SiO     (2.67) 

where 
sl is the viscosity of slurry, 

w is the viscosity of water, and 
2SiO is the volume fraction of 

SiO2 particles in the slurry. Assuming 50% volume fraction of SiO2 particles, the slurry viscosity 

turns out to be 1.793E-3 kg/m-s. Given that the density of the SiO2 particles is 2650 kg/m3 and 

the density of water is 1000 kg/m3, slurry density can be computed as,  

 

2

3

0.5 0.5

     1825  kg m

sl w SiO     


 (2.68) 

where ,sl w   and 
2SiO
 are the density of the slurry, water and the SiO2 particles, respectively. 

In the present model, it is assumed that the particle laden fluid is uniformly present in the domain 

and the dependence of the rate of deposition on the flow velocity is ignored. Accordingly, the 

mass deposition rate of particles from the slurry onto the porous composite, as given in [28], is 

modified for the present case as follows,  

 
f fm k w   (2.69) 

where k  is the filtration constant, and w  is the apparent mass fraction of the particles in the 

slurry. The filtration rate of the solid medium is assumed to be 83.8341E-3 s-1. The initial 

apparent mass fraction of particles in the slurry can be computed as, 

 0

p
p

s sl sl
w V





  (2.70) 

where s  is the solid porosity, and ,p p

slV  are the density and volume fraction of particles in the 

slurry, respectively. The drag coefficient 
vA  for the slurry infiltration (permeation) problem is 

defined in terms of permeability of the solid K  and the viscosity of the fluid
LA  as 

v LA A K . 
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(For the derivation of this expression, see Appendix A). The permeability of the solid is taken to 

be 4.935E-17 m2. The chemical reaction and solid strain coupling parameters are assigned to be

0 0.25E3A    , 1 1.0E0K   .  

                           

             a) Fluid density along the domain                             b) Solid density along the domain 

                               

                 c) Fluid stress along the domain                                d) Solid stress along the domain 

Figure 2.13. Mixture constituents kinematic and stress measures along the domain at 30, 60 and 

90 seconds 

In this problem, one-dimensional domain of length 0.4 m is considered that contains both solid 

and fluid constituents uniformly present everywhere. We assume uniform material properties and 

temperature distribution. In addition, we assume that deposition of the suspended particles is 

occurring throughout the domain. The problem is run for 90 seconds with a time step of 5E-4 
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seconds. The solid displacement and fluid velocity is constrained at the left end of the domain. A 

load of 1E7 N is applied at the right end of the domain.  

Figure 2.13a and Figure 2.13b show the reduction in apparent fluid density and increase in 

apparent solid density along the domain at the end of 30, 60 and 90 seconds. The initial apparent 

fluid density of 912.5 kg/m3 drops to 514.9 kg/m3 at the end of 30 seconds and further drops to 

393.4 and 337.1 kg/m3 at the end of 60 and 90 seconds, respectively. This drop in fluid density is 

due to particle deposition on to the porous solid that results in an apparent solid density increase 

(see Figure 2.13b) from 900 kg/m3 to 1297.7, 1419.1 and 1475.5 kg/m3 at the end of 30, 60 and 

90 seconds, respectively. In order to evaluate the evolution in the stress carrying capacity of the 

solid, an external load is applied to the solid which is held constant in time, i.e., the solid is under 

constant compressive stress of 10 MPa throughout the process. Figure 2.13c and Figure 2.13d 

show the solid and fluid stress profiles along the domain. As deposition of particles are uniform 

along the length of the domain, the fluid and solid stresses remain constant along the domain. 

                                        

Figure 2.14. Reduction in solid porosity with time 

Figure 2.14 shows the decrease in solid porosity as a function of time. For a 50% initial solid 

porosity and with a 50% particle slurry, the maximum reduction in porosity is bounded by 0.25. 

As can be seen from the Figure 2.14, the solid porosity asymptotes to 0.25 with time. 

Next, we present the results for the case where the porous solid is subjected to three 

infiltration cycles of 30 seconds each, for a total of 90 seconds. At the end of each cycle, the 

particle mass fraction w  is reset to the initial particle mass fraction in the slurry 0w . Figure 2.15 
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shows the variation of the solid porosity with time for 50% porous solid and 30%, 40% and 50% 

SiO2 particle volume fraction in the slurry. We see that as the particles get deposited, the porosity 

of the solid decreases. For all three different particle volume fractions in the slurry, this decrease 

in porosity is nonlinear, wherein the rate of reduction in porosity seems to be slowing down with 

time that is indicated by the relatively flatter portion of the curve at the end of each cycle. From 

the perspective of the physics of the problem this means that while there is more relative 

reduction in porosity during early infiltration cycles, due to closure of pores due to the solid mass 

buildup, the relative reduction in porosity in subsequent cycles slows down. Figure 2.16 shows a 

similar trend in reduction in porosity with time for three different initial solid porosities that are 

infiltrated with 50% particle slurry. 

                              

Figure 2.15. Reduction in solid porosity with time for 30%, 40% and 50% SiO2 particles in the 

slurry 

 

Figure 2.16. Reduction in solid porosity with time for 40%, 50% and 60% initial solid porosity
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2.6 Conclusions 

We have presented a VMS based finite element method [22,24,25] for the fluid-solid mixture 

theory model of Hall and Rajagopal [13] that is based on the constituent equations of motion and 

mass balance. The model addresses the energy and entropy production equations through an 

equation for Lagrange multiplier that results from consideration of the full set of balance 

equations as a constraint during the process of maximization of entropy production. The present 

system of equations is applied to isothermal processes in the one-dimensional context.  

Employing VMS ideas, a multiscale decomposition of the fluid density field into coarse and fine 

scales and a-priori unique decomposition of the admissible spaces of functions leads to two 

coupled nonlinear problems termed as the coarse-scale and the fine-scale sub-problems. The 

fine-scale solution is extracted from the nonlinear fine-scale sub-problem which is then 

variationally projected onto the coarse-scale space, leading to a formulation that is expressed 

entirely in terms of the coarse-scales. Although the final formulation does not depend explicitly 

on the fine-scale density field for the fluid, the effects of fine-scales are consistently represented 

via the additional residual based terms, and they add to the stability of the numerical method. 

The resulting stabilized method for the mixture model is applied to hyperbolic propagation while 

recovering Fickian diffusion, anisotropic oxidation in composite materials recovering the data of 

Tandon et al. [14], and mass deposition. Results of the oxidation modeling of Tandon et al. [14] 

are recovered by employing the reaction kinetics model and properties assumed there; the only 

additional assumed properties are two constants describing coupled chemomechanical and purely 

chemical dissipation. In all of these cases the mixture provides rich detail concerning the 

kinematic and kinetic behaviors of the constituents, in contrast to standard effective media 

approaches. The proposed solution scheme based on a single Helmholtz energy reveals the 

importance of an effective material property related to the temperature rate; further investigation 

is 3D context needed to determine applicability to general anisotropic and anisothermal 

problems. 
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Chapter 3 

A Mixture Model for Curing and Interphase 

Evolution in Multi-Constituent Materials 

3.1 Introduction 

The fabrication of fiber-reinforced polymer matrix composites involves a number of complex 

interdependent processes, which preclude the resulting materials from achieving chemical or 

mechanical homogeneity. Firstly, the mixing of thermoset polymer ingredients, resin and 

hardener, is achieved via a stochastic but finite sequence of folding, stretching, and cutting 

events.  Despite best efforts to achieve spatial dispersion, at some scale this blend consists of 

pockets, layers, or veins of resin-rich material alternating with cross-linker-rich ones.  Secondly, 

selective chemical affinity of the embedded phase towards these constituents may enhance their 

separation.  The curing process therefore not only involves cross-linking reactions, but also 

interdiffusion of reacting species.  As the cure progresses, molecular transport slows due to the 

obstruction imposed by the increasing number of cross-links.  The final degree of cure never 

reaches 100% and it likely varies from location to location.  Thirdly, the cross-linking reactions 

are exothermic, and consequently self-catalyzing.  Even autoclave treatment does not prevent the 

development of temperature gradients due to the difference between the thermal conductivities of 

polymer matric and embedded phase.  This in turn results in differential chemical reaction along 

the interface and development of a composite with spatially inhomogeneous physical properties.  

Finally, upon extraction from autoclave, due to material mismatch, differential residual stresses 

are developed that can cause local debonding and crack propagation along this interface.  The 

properties of the interphase region are especially difficult to predict, unless their detailed 

constitutional history is known.  Since interphases play a dominant role in the response of the 

composite when subjected to mechanical loads, an accurate modeling of the effects of chemo-

mechanical heterogeneities and interphase stresses is critical to determine the structural integrity 

of the composite and its fatigue life. 
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While many theoretical models and associated numerical schemes have been developed for 

structure-functional modeling and analysis of components made of composites, numerical 

methods that can adequately model process modeling of these engineered materials are scarce. 

For example, in composite manufacturing, the fiber-resin mixture is subjected to a cure cycle 

under high temperature, initiating cross-linking polymerization in resin to produce a structurally 

hard composite. The properties of the final product as well as its performance characteristics 

depend on the properties of constituents, processing parameters such as cure time, cure 

temperature, cure pressure and the chemical reaction in the resin. Due to the preferential 

adsorption of fibers, the chemical composition of resin near the fiber surface is different in 

comparison to the bulk resin. During curing, due to this change in constituent composition an 

interphase material is formed near the fiber surface. The interphase material plays a significant 

role in the effective properties of the composite, as the load carrying capacity of the composite is 

determined by the capability of the matrix to transfer load to the fiber. To tailor a composite with 

optimum properties for optimal performance, modeling and understanding the mechanism in the 

formation of interphase is very important. Theoretical models and numerical methods that can be 

applied to understand the processes modeling of multi-constituent materials need to adopt 

systems based approach. Consequently, in this class of problems, there is a sequence of 

constitutive equations that are applicable at the appropriate levels of the physical processes.   

Numerical methods which involve explicit modeling and individual tracking of 

fiber/matrix/interphase system result in high cost of computation. Mixture theory on the other 

hand provides a locally homogeneous but globally heterogeneous model for multi-constituent 

materials and allows co-occupancy, i.e., each spatial point in the mixture is occupied by all 

phases simultaneously. This assumption avoids the need to track/follow individual spatial points 

corresponding to individual phases by capturing the mixture response macroscopically through 

constitutive models. These locally homogeneous but globally heterogeneous models reduce the 

cost of computation when compared to discrete modeling of individual components. Mixture 

theory ideas have been used to model various phenomena such as classical viscoelasticity [6], 

swelling of polymers [7], thermo-oxidative degradation of polymer composites [8,9], growth of 

biological materials [10] and crystallization of polymers [11]. Mixture theory has also been 

employed to model the mixture of two elastic solids. Bowen et al. [29] presented a 

thermomechanical theory for diffusion in mixtures of elastic materials. Bedford et al. [30] 
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proposed a multi-continuum theory for composite materials, where the material particles of 

different constituents are grouped together at reference configuration to define a composite 

particle. Though these constituent particles occupy different spatial points as the material 

deforms, the interactions between constituents are evaluated in the reference configuration using 

the composite particle. This concept is employed in this work to model the interaction force 

fields. 

In [13] Hall and Rajagopal proposed a mixture theory model for diffusion of chemically reacting 

fluid through an anisotropic solid. Model is based on the maximization of the rate of entropy 

production constraint, considering anisotropic effective reaction rates and the limits of diffusion-

dominated (diffusion of the reactants is far more rapid than the reaction) and reaction-dominated 

(the reaction is far more rapid than the diffusion of the reactants) processes. A modification to 

the Hall and Rajagopal model [13] is employed in the present work for the formation and 

evolution of interphase material in two-constituent materials where both constituents are in the 

solid phase. In this model, the properties of the matrix at the fiber-matrix interface evolve during 

a cure cycle and the isotropic reaction resulting from maximization of entropy production is 

associated with an anisotropic tensor that provides coupling of chemical reaction and mechanical 

stresses.  

The outline of the paper is as follows: In section 3.2, we present two-constituent mixture theory 

model for interphase evolution and curing. Section 3.3 presents the weak form of the governing 

equations with embedded constitutive relations along with linearization of the nonlinear system 

for finite element implementation. Section 3.4 discusses some representative curing and 

interphase evolution models that are then integrated in the mixture theory model from Section 2. 

Numerical test of curing and interphase evolution for some benchmark problems are presented in 

Section 3.5, and conclusions are drawn in Section 3.6. 

3.2 Two-constituent Mixture Theory Model for Interphase 

Evolution and Curing  

A two-constituent solid model that is developed in the context of mixture theory is employed for 

curing and interphase formation in a continuum sense. The model is embedded with solid-solid 

phase change wherein due to chemical reactions the matrix material transforms into interphase 
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material at the solid-solid interface. It is assumed that there is no mass exchange between the 

fiber and the matrix and that the interphase is formed in the matrix material along the contact 

surface with fibers. It is also assumed that the reaction is affected by the reinforcement spacing 

that results in a potentially transversely isotropic interphase.  

As there is no interconversion of mass between matrix and fiber material, conservation of mass 

for the matrix and reinforcement can be given as,  

 
m m m

RJ    (3.1) 

 
r r r

RJ    (3.2) 

where the superscript, m, r refers to matrix and fiber/reinforcement respectively. ,m r

R R   are the 

apparent reference densities of matrix and fiber with respect to the reference mixture volume, 

respectively. Conservation of linear momentum can be written as, 

 DIV
m

m m m m m D

Dt
   

v
T b I  (3.3) 

 DIV
r

r r r r r D

Dt
   

v
T b I  (3.4) 

where 
T  is the Cauchy stress, 

b
 
is the body force and 

I  is the interactive force acting on the 

th
 
component in the mixture. To keep the presentation concise, the superscript   is used to 

represent both matrix (m) and reinforcement (r). According to Newton’s third law, the interactive 

force acting between the matrix and fiber follow the relation, 

 
r m I I  (3.5) 

 

3.2.1 Constitutive relations based on maximization of rate of dissipation 

 The thermodynamic system of the mixture comprised of two-solid constituents is assumed to be 

defined by the following set of state variables,  
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     , , , , ,m r m rs t s t   F F  (3.6) 

where 
F  is the deformation gradient of the th  component,   is the extent of chemical 

reaction in current configuration and 
 
is the temperature of the mixture. It is assumed that the 

temperature of mixture and its components are equal and constant with respect to space and time. 

The Helmholtz free energy function of the mixture is defined as, 

    , , , , ,m r m rs t          F F  (3.7) 

In the component form, the mixture Helmholtz free energy function is given as, 
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  (3.8) 

where, 
  is the Helmholtz free energy function of the th  component and   is the mixture 

density. 

From a set of admissible class of constitutive relations, the following relations were obtained 

[13] by enforcing the maximum rate of dissipation constraint. These relations also correspond to 

the case where the volume additivity constraint is not required. 
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0 0

 
 

  
  

  
 

(3.13) 

where, 0  is the reaction rate,   is the rate of dissipation,   is the Lagrange multiplier 

enforcing the maximum rate of dissipation constraint, 
  and g

 are the entropy and chemical 

potential  of the th
 
component of the mixture. 

The chemical potential of the matrix in (3.9) is given as,  
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 (3.14) 

Using (3.7)-(3.8), the above equation can be modified as, 
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Similarly, the chemical potential of the reinforcement in (3.10) can be written as, 
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3.2.2 Constitutive model for the mixture theory 

In this section we consider a constitutive model wherein thermal field has pronounced effect on 

the evolving mechanical field, while the reserve coupling of the mechanical field with the 

thermal field is considered weak. The constitutive relations (3.9)-(3.11) are modified based on 
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the specified constitutive equations and the interphase model. The reduced form of Helmholtz 

functionals for the matrix and fiber are: 
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Using (3.19) in (3.9), the matrix stress can be rewritten as,  
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where assuming major and minor symmetries for the interphase modulus  K  we get   
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where m

 

is the coupling term between the matrix strain and the extent of chemical reaction, . 

R  
is the reference temperature, 

m

T   is the matrix true density and 
0 , ,m m ma  

 
are matrix 

material constants. 
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                      (3.23) 

In (3.23) 0,ck     is the bulk modulus of the composite which is a function of the composite 

density and the chemical reaction and is defined as 0

1,c ck c      and 
1c  is constant of 

proportionality, 0

OPQRK     is the stiffness of the interphase material  0,c cm     is the mass of 

the composite that is a function of the density of composite as well as the mass conversion due to 
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chemical reactions, and  OP   is the coefficient of thermal expansion. In the current 

implementation of the model, the second term in (3.23) is neglected. 

The rate of dissipation due to chemical reaction and viscous effects is given as,  
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where Aijkl

L 0
 is the fourth order tensor representing viscous effects and the terms 

0 0, , ,c c cg n          represent the chemo-thermal dissipative energy during the curing and 

interphase formation of the matrix material.  

Likewise, the Helmholtz free energy function of the reinforcement in reference coordinates 

accounts for the effect of thermal field on the mechanical properties of the fibrous constituent. 

Using (3.20) in (3.10), the reinforcement stress can be rewritten as: 
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where,  
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Where 0
m  is the fiber direction in reference coordinates, 

r

T  is the fiber true density and 

0 , , , , ,r r r r r r

L T    a
 
are  fiber material constants.  
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In the absence of drag force between solid constituents and under isothermal conditions the 

interactive force acting on the fiber (3.11) can be further simplified as: 
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Using (3.16)-(3.18), the interactive force in (3.27) can be rewritten as, 
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From (3.7) the spatial gradient of the Helmholtz free energy function is:  
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Substituing (3.29) in (3.28), the expression for the interactive force becomes 
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 (3.30) 

Remark: From the above equation, it is observed that the interactive force is a function of the 

gradient of deformation gradient. Hence, for a linear displacement field, there will be no 

interactive force between the matrix and the reinforcement. To model the interactive force in a 

finite element discretization, the shape functions should be at least quadratic in order. 

As the interphase is formed from the matrix material, the matrix density is defined by the 

following additive split, 

      0 0,u m m m c     F F  (3.31) 

Where 
u   is the unconverted matrix density and 

c  is the converted matrix density. 
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Remark: Though portion of matrix material adjoining the reinforcement gets converted in to an 

interphase material, the density of the untransformed matrix material  m m F  is a function of 

matrix mechanical deformation alone. The converted matrix material density  0c   is a 

function of the chemical reaction alone and is independent of mechanical deformation. 

3.3 Weak Form and Linearization of Governing Equations  

This section presents the variational form of the quasi-static version of governing equations 

described in Section 3.2.1. Since it is a nonlinear system of equations, we also present the 

linearization of the nonlinear weak form for finite element implementation. 

The space of trial solutions for the matrix and reinforcement are: 

   1: | ,   on  m m nsd m m m

t t t ut tH          (3.32) 

   1: | ,   on  r r nsd r r r

t t t ut tH          (3.33) 

The space of weighting functions for the matrix m  and reinforcement r are the homogeneous 

and time independent counterparts of the corresponding spaces of trial solutions 
m

t and 
r

t , 

respectively. 

Taking the inner product of (3.3) and (3.4) with the corresponding weighting functions and 

integrating over the domain leads to the weighted residual form:  

  , 0i ij j i iw T b I d    


     (3.34) 

where   represents both matrix and fiber. Integrating (3.34)by parts and using divergence 

theorem we develop the weak form for the mixture model which is stated as: Given the boundary 

conditions
m r   on  u

  and the initial conditions, find 
m m

t  and  
r r

t  for 

, such that 

  , 0,      ,i j ij i i i iw T d w b d w I d m r       
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An important issue in mixture theory based models is the Neumann boundary conditions where 

the constituents need to be tied in a self-consistent fashion to simulate the response a material 

where constituents are fully bonded. In this work we have employed a finite strain finite element 

method for the consistent tying of the constituents at the boundaries via a variational formulation 

that finds roots in the VMS method presented in Chapter 4. 

To keep the discussion simple and without loss of generality, we present linearization of (3.35) 

in the 1-D context. 

 1,1 11 1 1 1 1w T d w b d w I d       
  

       (3.36) 

  1 1D 0u       (3.37) 

where the directional derivative of the residual is defined as, 
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The consistent tangent for the matrix constituent is: 
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 (3.39) 

   

where, the matrix tangent moduli is given as,  
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Similarly, the directional derivative for the reinforcement is given as:  
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 (3.41) 

where the fiber tangent moduli is given as, 
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The one-dimensional quasi-static version of the discretized residual vector and its directional 

derivative are summarized in Box. 3.1. For ease of numerical implementation, various terms in 

the above relations are presented in Appendix-A. 

Box 3.1. One-dimensional form of linearized finite element equations 
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where aN  represents the shape function associated with a generic node. 
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3.4 Curing and Interphase Evolution Models  

During the curing process, chemical reactions that are triggered by the temperature field result in 

evolving natural configurations of matrix as shown in Figure 3.1. These reactions result in an 

overall curing of the matrix material in addition to the formation of interphase material along the 

fiber-matrix interface. In this work we have employed the Ruiz and Trochu [54,55] model for 

curing, and Yang and Pitchumani [56-58] model for interphase evolution. Both models have 

been cast in the context of mixture theory presented in Section 3.2 and have been implemented in 

the context of finite-strain finite element method discussed in Section 3.3. 

 

 

Figure 3.1. Evolving natural configurations of the matrix material due to chemical reaction 

3.4.1 Curing model 

In fiber reinforced polymeric composites, fiber materials are often oriented to provide the 

designed structural properties in the desired direction. These fiber materials are interlocked with 

a weaker material (a thermoset resin) and allowed to cure through a polymerization process. The 

matrix material is comprised of resin and hardener and catalysts are usually present in the 
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hardener to accelerate cure. Because of chemical reactions, the viscosity of the thermoset 

increases and ultimately cross linking occurs due to growth and branching of chains, leading to 

an increase in the molecular mass. A model for resin kinetics and evolution of composite 

properties during curing for glass-polyester composites is presented in Ruiz and Trochu [54,55].   

            ,r agp c agp r r gE T E T E T E T F W T        (3.43) 
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In (3.43)  ,rE T   is the resin Young’s modulus which is a function of the temperature field, 

is the degree of cure, and T is the glass transition temperature. 
' '

1 2
ˆ, , , , , ,g c agpa a c d b E E  are 

constitutive parameters and are given in [54,55]. We embed this model within the mixture theory 

framework in the context of finite strain finite element method. The parametric values employed 

for the numerical implementation of the model are obtained from [54,55].  

For the mixture theory described in Section 3.2, the evolution of matrix properties is given by the 

interphase evolution function  0K  . In the mixture model presented in Section 3.2, this 

function is defined as the derivative of the Ruiz model for evolution of Young’s modulus with 

respect to the cure parameter. Accordingly, by taking the functional form of  0K   to be the 

first derivative of  ,rE T   given in (3.43), we embed the Ruiz and Trochu [54,55]. model in the 

mixture theory presented in Section 3.2. 
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where 
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We have employed the Kamal-Sourour kinetic model [54] for the evolution of matrix stress. 

   
2

0 0 0

1 2 1K K      (3.47) 

where 1K  and 2K  are the rate constants. 

3.4.2 Interphase evolution model 

In the manufacturing of fibrous composites, the fibers are aligned in a mold and injected with a 

polymer matrix. This impregnation of the fiber layout with epoxy-amine resin mixture initiates a 

curing reaction at the fiber-matrix interface. Because of the selective adsorption of the fiber, a 

concentration gradient of amine species is formed near the fiber surface. During the curing cycle, 

adsorption, desorption, diffusion, reaction mechanisms take place simultaneously in the resin. An 

interphase model that links the process parameters to the interphase structure and properties for 

an inorganic fiber/epoxy-amine thermosetting system is proposed by Yang and Pitchumani in 

[56-58]. The reaction in the resin is written as: 

 1 2n E n A P   (3.48) 

where 1 2,  n n  are molar number of epoxy and amine respectively and ,  ,  E A P  are epoxy, amine 

and product respectively.  
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    (a) Interphase modulus vs Amine conc.                  (b) Interphase density vs amine conc. 

 

Figure 3.2. Interphase properties evolution for epoxy-amine resin  

 

Figure 3.2a represents the variation in experimental values of interphase modulus of the neat 

resin with amine content. A numerical fit for this variation is given by eq. (3.49) 

 
   

1111 2 2

1 1
( ) ( )

19.57 / 214.42 0.42 50.59 / 803.09 0.47
E X K X

X X
  

   
 (3.49) 

where 
2( 1) /X pph pph  . In the mixture model we express the evolution of composite density 

as a function of the reaction . This function can be developed based on the experimentally 

obtained density versus amine concentration plot, and in our work we have developed this 

function based on data from Vanlandingham et al. [59] as presented in Figure 3.2b. Accordingly, 

the converted density 0c      function is defined as 

 
  5 2

6 2 8 4

1.21373 0.0017357 4.3204 10

                              1.4373 10 1.04455 10

c pph pph pph

pph pph

 

 

   

   
 (3.50) 

Remark: Experimental data for the evolution of density as a function of amine concentration as 

given in Vanlandingham et al. [59]  is shown in Figure 3.2b. Employing least-squares fit to the 

experimental data we extracted equation (3.50) for the evolving density of the interphase 

material. 
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Given that the stoichiometric ratio for epoxy amine reaction is 2:1, pph amine concentration can 

be given as follows [56-58]. 
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 (3.52) 

where ,  E Ac c  is the concentration of epoxy and amine in the system at time t, molecular weight 

of epoxy and amine are 382 and 210 g/mol, respectively. For a value of pph=28 epoxy-amine 

system, the mass of epoxy and amine are 97.21g and 27.31g, respectively. 

For present implementation a simple phenomenological model as presented in (3.53) was used 

for the evolution of the chemical reaction. 

  0 01
n

     (3.53) 

where   is the reaction rate coefficient. 

Remark: The reaction rate given in (3.53) can be calibrated for the experimentally obtained 

data for material under investigation such that it results in a good match with the experimentally 

observed degree of cure. 

3.5 Numerical Results and Model Validation  

3.5.1 Numerical test of curing with the Ruiz model 

This section presents verification of the model and the computational method. We consider a 

one-dimensional domain of glass-epoxy composite of length 1m. The composite is assumed to be 

under isothermal conditions at a temperature of 393K. The matrix material is allowed to achieve 

96% curing at this temperature, while the fiber is assumed to be chemically inert. The domain in 

subjected to a body force of 10 m/sec2 and the displacement is constrained at x=0. The problem 

is run for 600 seconds with a time step of 5 seconds in order to achieve 96% curing. The right 
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end of the domain x=1, is subjected to a compressive displacement of 0.01m which is applied at 

the first time step and maintained constant through the remaining time steps.  

The evolution of matrix density 
c  is assumed to occur all over the matrix domain, and 

not just at the matrix/fiber interface. Figure 3.3 shows the degree of cure of the resin as a 

function of time up to a point where reaction is approximately 96% complete in around 600 

seconds. Evolution of matrix modulus is presented in Figure 3.4a and shows a delayed response. 

The matrix modulus in Figure 3.4a is obtained by evaluating the ratio of the average matrix 

stress over the average matrix strain. The matrix stress obtained from mixture model is shown in 

Figure 3.4b and it compares well with the stress obtained from the Ruiz and Trochu [54-55] 

model. Both models predict a rapid increase in matrix stress once the degree of cure reaches 0.88 

and higher, and this increase in stress can be attributed to the increase in Young’s modulus of 

resin with an increase in the degree of cure. The fiber interactive force varies linearly along the 

domain at 600 sec as shown in Figure 3.5. The interactive force is less towards the right end of 

the domain due to the applied body force, which subjects the domain to higher strain at the left 

end of the domain.  

 

Figure 3.3.  Degree of cure as a function of time 

Figure 3.6 shows a comparison between the elastic modulus obtained from the Ruiz 

model and from the mixture theory model for a cure of 0.93 at various temperatures. For the 

mixture theory model, results are plotted for compressive displacement boundary condition of 
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0.01m. It can be seen from the plots that the elastic modulus obtained at the end of cure cycle 

compares well with that predicted by the Ruiz model (3.43). 

  

(a) Matrix modulus vs time                    (b) Matrix stress vs time 

Figure 3.4. Evolution of matrix modulus and matrix stress with progressive curing of the resin 

 

Figure 3.5. Fiber interactive force along the domain at t=600 seconds 
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Figure 3.6.  Evolution of elastic modulus as a function of temperature 

3.5.2 Numerical test of interphase evolution 

This test case investigates interphase formation between matrix and fiber for a given reaction 

rate. We consider a domain of unit length, fixed at x=0 and subjected to a specified displacement 

of 0.01 applied at x=L to induce compressive stress that develops in the autoclave during the cure 

cycle. The domain is discretized with 40 one-dimensional cubic elements. A temperature field of 

600K, which is otherwise arbitrary, is prescribed, and it is constant and uniform with respect to 

space and time. Material constants for the reinforcement (i.e., fiber) are: 

8 111740,  8.595 10 ,  3.6113 10r r r

T       ,  and the bulk and shear moduli are 

9 9 97.0590 10 ,  6.4573 10 ,  5.349 10  r r r

L T        , respectively. Material constants for the 

matrix material are: 
9 91200,  1.99 10 ,  1.33 10m m m

T       . 

Figure 3.7 shows the evolution of the cure in the interphase material for n = 1.4, 1.6 and 1.8 in  

(3.53). It can be observed that the cure of the interphase material reaches a value of 0.99, 0.97 

and 0.95 for n = 1.4, 1.6 and 1.8 at 1200 seconds, respectively. For these reaction rates, the 

interphase modulus and interphase density varies with time as shown in Figure 3.8a and Figure 

3.8b, respectively. Interphase modulus is a function of amine concentration and is an inherent 

property of the material. As the reaction proceeds the amine concentration decreases and the 

interphase modulus follows a curve shown in Figure 3.2a. Likewise, due to the reduction in 

amine concentration, interphase density also decreases as in shown in Figure 3.2b.  
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Figure 3.7. Degree of cure vs time 

               

                     a). Interphase modulus vs time                           b). Interphase density vs time      

                             Figure 3.8. Interphase property evolution with time                      

Figure 3.9a shows the average matrix stress variation with respect to time. As the interphase 

properties evolves, the epoxy-amine system shows nearly a linear variation in stress in the initial 

stages and reaches plateau after 400 seconds.  In order to segregate the effects of stress evolution 

due to chemical evolution from evolving mechanical stretching, we ran the problem with a 

prescribed stretched at time zero. Though only the interphase material evolves (the matrix is 

assumed to be inert), the effect of the curing in interphase on the overall matrix strength is shown 

in Figure 3.9b. It can be observed that the overall matrix modulus evolves similar to the matrix 

stress for a reaction constant of n = 1.8.  
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                   (a) Matrix stress vs time                                      (b) Youngs modulus vs time 

Figure 3.9. Interphase properties evolution for epoxy-amine resin 

3.5.3 Interphase formation in zones with different reaction rates 

This test case models interphase evolution for variable reaction rates along the length of the rod 

and showcases that while the mixture model is locally homogeneous, it retains the global 

heterogeneity property. The spatial dimension, boundary conditions and mesh resolution are 

same as in the previous case. The reference and the current uniform temperatures are 580K and 

600K, respectively. The rod is divided into subdomains A B  as shown in Figure 3.10 and it is 

assumed that the reaction rate in A B  is 100 times faster than in  / A B  subdomain, i.e., 

0 0 0 0

/A B,    0.01 A B B       . This gives rise to a sharp interface between material zones with 

variable curing rates. The problem was run for 400, 800 and 1200 seconds with a time step of 5 

seconds. Material constants for the reinforcement (i.e., fiber) are: 

4 41590,  0.566 10 ,  111 10r r r        , and the bulk and shear moduli are

4 4 45.71 10 ,  3.81 10 ,  2.51 10r r r

L T        , respectively. Material constants for the matrix 

material are: 
2 2559,  5.71 10 ,  3.81 10m m m       . 
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Figure 3.10. Reaction zones in 1D mixture domain 

  

                  (a) Interphase density vs time                            (b) Matrix strain along the domain 

 

 

                  (c) Matrix stress along the domain                         (d) Fiber stress along the domain 

 Figure 3.11. Interphase properties evolution for epoxy-amine resin      

Figure 3.11a shows the spatial distribution of the density of the interphase material r c
(density of 

converted matrix) along the domain for 400, 800 and 1200 seconds. This sharp variation in the 

density of the interphase matrix material results in rapid variation in the stiffness of the system 

A 

x 

B 
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that manifests itself in terms of sharp variation in the axial strain as shown in Figure 3.11b.  

Figure 3.11c shows the matrix stress variation along the domain at 1200 seconds. It can be 

observed that the matrix stress is higher in the faster reaction zone, as they reach maximum cure 

faster and hence higher interphase modulus. Since the fiber is assumed to be inert and is 

subjected to a constant mechanical loading, Figure 3.11d shows a constant fiber stress at 1200 

seconds as expected.            

3.5.4 Interphase evolution and interactive force field 

This problem is an extension of the previous test case with an applied body force of 0.5 m/s2 that 

produces a nonlinear displacement field.  Figure 3.12a shows the spatial distribution of 
c

(density of converted matrix). As seen in (3.31), the converted matrix density is only a function 

of the degree of cure and independent of the mechanical deformation. Hence, we see a similar 

variation in the converted density in comparison to the previous case with no body force.  Since 

the displacement field is non-linear, the gradient of the deformation gradient does not vanish in 

equation (3.30). Figure 3.12b shows the spatial distribution of the interactive force field between 

the two constituents, that also shows sharp variation across the zones of fast and slow chemical 

reactions. 

  

         (a) Interphase density along the domain         (b) Fiber interactive force along the domain 

Figure 3.12. Converted matrix density along the domain 
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3.5.5 Tri-axial model with curing and coupled chemo-mechanical 

evolution 

This test case is three dimensional implementation of the cure and interphase evolution model. 

The constitutive model is tri-axial, however it is implemented in a three dimensional kinematic 

context. Since the underlying displacement formulation is based on variational multiscale ideas 

that give rise to a multiscale/stabilized displacement field which inherits the properties of the 

classical t( , )F X   type methods as shown in Masud and Truster [42], introduction of the 

temperature field leads to an additional mapping that accounts for thermal evolution of the 

problem, however the thermal field is not split into coarse and fine scales. In the finite 

deformation context, it leads to a split of the total deformation map 
  of each constituent into 

thermal 
th  and mechanical mappings  ,mech t

X , where mechanical mapping is further split 

into fine scale deformation map 
  over the coarse scale deformation map  , t 

X : 
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t t

  

   

  



 
 

   

X X

X X

X u u u

  

    (3.54) 

where  th
u  is the displacement component associated with the thermal field,  u

a  is the coarse 

scale displacement field and   u
a  is the fine scale displacement field. Accordingly, the 

deformation gradient can be written as follows, 

  th    F F F F  (3.55) 

where th
F  is the thermal part of the deformation gradient,   F

a  is the fine scale deformation 

gradient and 
F  is the coarse scale deformation gradient.  
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Table 3.1. Material properties of the lamina 

    (MPa)    (MPa)    (MPa) 
L   (MPa) T   (MPa) 

   

(kg/mm3) 

Volume

Fraction 

Fiber 4.424E+03 1.2028E+3 2.467E+05 1.039E+04 1.039E+04 1550E-09 0.5 

Matrix 3.4315 - - 2.2877 - 1200E-09 0.5 

 

Consider a Graphite-Epoxy composite rod of 1x0.1x0.1 mm as shown in Figure 3.14. The 

domain is discretized using 27 noded Lagrange elements with 8x2x2 elements.  The mechanical 

material coefficients for the fiber and the matrix constituents are given in Table 3.1. The 

coefficient of thermal expansion of the matrix is 45e-6 1/K. The coefficient of thermal expansion 

of the fiber in longitudinal and transverse direction are -1.8e-6 and 21.6e-6 1/K respectively. A 

compressive displacement of -0.001 is applied at x=1.0, y = 0.1 and z=0.1 plane to simulate the 

pressure loading in the autoclave. The domain is also subjected to temperature field as shown in 

Figure 3.13a. It can be observed that the temperature varies axially in X direction, where the 

temperature is maximum at the boundaries and minimum at the center of the domain. This 

problem is run for 300 seconds, where the displacement boundary conditions is applied at the 

first time step and help constant until 300 seconds.  

 

Figure 3.13b shows the evolution of curing at 100, 200 and 300 seconds in the domain. It can be 

seen that the cure at the boundary region reaches a value of 0.99 faster in comparison to the 

middle region of the domain. This is due to the prescribed temperature variation along the 

domain. Figure 3.13c shows the variation in the Youngs modulus in the matrix material at 100, 

200 and 300 seconds. An uneven variation in the Youngs modulus can be observed along the 

length of the domain. The reason for this variation can be attributed to two factors: degree of 

cure and temperature. As the Youngs modulus decrease with increase in temperature even for 

fully cured material and time required to achieve complete curing is a function of temperature, 

we see uneven but symmetric variation in matrix Youngs modulus along the domain. The matrix 

stress shows in Figure 3.13d follows a similar trend.  
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          (a) Temperature along the domain                                  (b) Cure along the domain 

 

 

      
         (c) Youngs Modulus along the domain                  (d) Matrix axial stress along the domain 

 

Figure 3.13. Chemically evolving variables at time = 100, 200 and 300 seconds 

 

 

Figure 3.14a shows the matrix stress variation at 300 seconds for the whole domain. The matrix 

stress is symmetric along the x-axis and varies between 6.62 MPa and 7.45 MPa. Though the 

applied displacement is compressive, the matrix stress is tensile due to the thermal effects. Figure 

3.14b shows the composite axial stress variation which is dominated by the fiber stress. As the 

coefficient of thermal expansion of the fiber is negative, we observe a compressive stress for the 

composite. To the contrary, as the coefficient of thermal expansion of the fiber is positive in 

transverse direction we observe a tensile transverse stress field of the composite in Figure 3.14c. 

The fiber interactive force field in X and Y direction are shown in Figure 3.14d and Figure 3.14e, 
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which accounts for the interaction in the fiber and matrix in a homogenized sense due to the 

differential expansion and curing of the matrix material. 

 

              

          (a) Matrix axial stress                                                       (b) Composite axial stress 

 

 
(c) Composite transverse stress 

 

                    
       (d) Fiber interactive force in X direction                  (e) Fiber interactive force in Y direction 

 

Figure 3.14. Kinematic and kinetic quantities of the constituents and composite at 300 seconds 
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3.6 Conclusions 

In this paper we have presented a model for interphase formation during the curing process of 

composite materials in the context of mixture theory and cast in a finite strain framework. The 

model is based on the maximization of the rate of entropy production constraint and 

accommodates anisotropic effective reaction rates accompanied with an anisotropic tensor that 

provides coupling of chemical reaction and mechanical stresses. In this multi-continuum theory 

for composites, the material particles of different constituents are grouped together at reference 

configuration to define a composite particle. Though these constituent particles occupy different 

spatial points as the material deforms, the interactions between constituents are evaluated in the 

reference configuration using the composite particle. A significant feature of the mixture model 

is the interactive force field that is generated due to the interplay of the constituents. Even though 

in the homogenized mixture element an explicit discrete representation of the constituents is 

suppressed, the interplay of the constituents is fully accounted for via interactive force fields and 

the corresponding coupling terms that emanate from the mixture modeling ideas. It is important 

to realize that the standard single continuum homogenization theories do not possess this feature 

and while they can model kinematics of deformation, they cannot provide an insight into the 

interplay of the constituents. As such they are not able to identify the regions in the composite 

where interactive force fields can exceed the load transfer capability between fiber and matrix 

which can lead to the initiation of localized damage. 
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Chapter 4 

Edge Stabilization and Consistent Tying of 

Constituents at Neumann Boundaries in Multi-

Constituent Mixture Models* 

4.1 Introduction 

 In the manufacturing of fibrous composites, the fiber-resin mixture is subjected to a cure cycle 

that initiates cross-linking polymerization in resin to produce a structurally hard material. The 

properties of the final product as well as its performance characteristics depend on the properties 

of constituents as well as the properties of the interphase zone formed in the constituent interface 

region. Theoretical models and numerical methods employed to model material evolution at the 

microscale level need to capture the behavior of the individual constituents as well as their 

coupled interactions in an integrated fashion. This chapter employs a mixture theory based model 

for a representative infinitesimal volume element of dense mixture of multi-constituent solids 

where each constituent is governed by its own balance laws and constitutive equations. 

Interactive forces between constituents that emanate from maximization of entropy production 

inequality provide the necessary coupling between the balance laws and constitutive models and 

therefore between the concurrent and overlapping constituents. 

A literature review reveals that mixture theory as proposed by Truesdell [1] has been widely 

employed in the modeling of fluid-fluid and solid-fluid mixtures. Comprehensive review articles 

by Atkin and Craine [2], Green and Naghdi [3,4] and the book by Rajagopal and Tao [5] provide 

 

* This Chapter has been submitted for publication in IJNME 
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 a good exposition to the mixture theory and associated constitutive relations. Mixture theory 

ideas have been used to model various phenomena such as classical viscoelasticity [6], swelling 

of polymers [7], thermo-oxidative degradation of polymer composites [8,9], growth of biological 

materials [10] and crystallization of polymers [11], to name a few. Mixture theories have also 

been employed to model the multi-constituent elastic solids, e.g., Bowen et al. [29] presented a 

thermomechanical theory for diffusion in mixtures of elastic materials. Bedford et al. [30] 

proposed a multi-continuum theory for composite materials, where the material particles of 

different constituents are grouped together at reference configuration to define a composite 

particle. Though these constituent particles occupy different spatial points as the material 

deforms, the interactions between constituents are evaluated in the reference configuration using 

the composite particle. Hall and Rajagopal [13,31] proposed a mixture model for diffusion of 

chemically reacting fluid through an anisotropic solid based on the maximization of the rate of 

entropy production constraint, considering anisotropic effective reaction rates and the limits of 

diffusion-dominated (diffusion of the reactants is far more rapid than the reaction) and reaction-

dominated (the reaction is far more rapid than the diffusion of the reactants) processes. In the 

present work the theory by Hall and Rajagopal [13,31] is enhanced to the case of mixture of two 

interacting solid constituents, and a edge-stabilized method is developed to model fibrous 

composite systems. 

A general preface of the mixture theory is that the constituents are assumed to coexist over 

each other at every point in the domain, a condition that arises due to the volumetric 

homogenization of each constituent over the composite/mixture domain.  As the constituents 

deform over each other, the domain boundary of the mixture has to be constrained through 

continuity conditions. Enforcing continuity between constituents at the boundary is analogous to 

the interface treatment in domain decomposition methods, contact problems and material 

interfaces. Amongst the various numerical techniques that enforce continuity conditions and 

traction equilibrium at the interface, a classical approach is the unconstrained optimization 

problem a Lagrange multiplier field is employed to enforce continuity at the interface. The 

stability issues that arise in this dual field formulation in its discretized form are well known 

[32], where the interpolation functions for the primary field and Lagrange multipliers need to be 

chosen such that the celebrated Babuska-Brezzi condition is not violated. In addition, the 

computational cost increases because of the introduction of additional variables associated with 
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the Lagrange multipliers. This however can be addressed via a primal field formulation that can 

be derived by defining the Lagrange multipliers through penalty parameter and the continuity 

conditions. The disadvantage of the penalty method is that it attains optimal convergence only as 

the penalty parameter approaches infinity, which however leads to ill conditioning of the matrix 

systems. A consistent penalty formulation was introduced by Nitsche [33] to enforce Dirichlet 

boundary condition weakly on the boundaries. This primal formulation is consistent and 

symmetric, wherein the Lagrange multiplier fields are approximated by the numerical fluxes at 

the boundary. Nitsche method was then extended to handle interfaces that arise in domain 

decomposition methods, embedded finite element methods and physical interfaces. The penalty 

parameter in Nitsche method needs to be defined to ensure the coercivity of the method and there 

have been many works to define this parameter through an a-priori analysis, solving a global or 

local eigenvalue problem, and through bubble function approach [34-38]. Masud and coworkers 

[39-44] have developed a unified formulation for interface coupling and frictional contact 

modeling where the penalty parameter is derived through variational multiscale framework and 

Lagrange multiplier field is approximated as simple average of fluxes. Truster and Masud [45] 

extended this framework in finite deformation context where the stabilization tensor is 

consistently derived and is a function of both material and geometric nonlinearity. 

The deformation of multi-constituent mixtures at the Neumann boundaries requires imposing 

constraint conditions such that the constituents deform in a self-consistent fashion. In the present 

work, a set of boundary conditions are presented that are modified to account for the non-zero 

applied tractions. Following the line of thought in [39-44] a numerical method is developed that 

draws from the stabilized Discontinuous Galerkin method for finite strain kinematics with an 

underlying Lagrange multiplier interface formulation. The derivation of the new method hinges 

upon a multiscale decomposition of the deformation map locally at the Neumann boundary and 

subsequent modeling of the fine scales via edge bubble functions. The resulting terms enable the 

condensation of the multiplier field from the formulation in addition to providing an edge based 

stabilization of the method. Closed-form expressions are derived for the stabilization tensor and 

the weighted numerical flux that are free from tunable stability parameters. The key novelty is 

that the consistently derived stability tensors automatically evolve with evolving material and 

geometric nonlinearity at the boundaries. 
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 The outline of thid chapter is as follows. In section 4.2, we present the governing equations and 

the constitutive relations for two-solid constituent mixtures for the modeling of composites. 

Boundary conditions and a procedure to determine the material properties of the constituents is 

presented in Section 4.3. The stabilized formulation for the imposition of continuity and traction 

equilibrium conditions is derived in Section 4.4. Section 4.5 presents a series of numerical test 

cases and results are compared with analytical solutions and results available in literature. 

Conclusions are drawn in section 4.6. 

4.2 Mixture Theory Governing Equations 

Although mixture theory provides a general framework for modeling an N constituent mixture, 

we present mixture equations in the context of two-constituents, namely matrix and fiber, where 

both constituents are assumed to be in the solid phase. The underlying idea in mixture theory for 

the modeling of composites is that the constituents are assumed to coexist concurrently at every 

point in the domain. This assumption arises due to the volumetric homogenization of each 

constituent over the composite/mixture domain.  

Let us consider a microstructure of a composite as shown in Figure 4.1a. A macroscopic 

point in the mixture domain represents an average behavior of the constituents at the microscale. 

Thus, assuming certain periodicity in the microstructure, the macroscopic point can be 

represented by a unit cell as shown in Figure 4.1b. The unit cell comprises of fibers with given 

orientation embedded in the matrix material. These constituents are segregated and homogenized 

over the mixture volume (as shown in Figure 4.1c and Figure 4.1d) and are assigned an apparent 

density property which is defined as ratio of the mass of the constituent over the mixture volume. 

Thus the composite density is the sum addition of the constituent apparent densities. 

 
m r     (4.1) 

where ,m r   are the matrix and fiber apparent density, respectively and 
c is the composite 

density. 

Remark: The effective properties of a composite are orthotropic due to fiber orientation and 

fiber-matrix interaction even when the constituents are isotropic. In mixture theory, as the 
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constituents are homogenized at the individual level in a volumetric sense over the mixture 

volume, in order to obtain the effective orthotropic properties of the composite, the domain of 

homogenized fibers is modeled as an orthotropic material.   

 

Figure 4.1. Mixture theory homogenization 

 Consider an open bounded region of the mixture c  in the reference configuration as 

shown in Figure 4.2, where a matrix reference domain m  and a fiber reference domain m  

coexist over each other. It should be noted that in the reference configuration, c r m   . 

The boundaries of the fiber, matrix and the composite domains are denoted by ,r m   and c , 

respectively, where, c r m      because every point on the boundary is concurrently occupied 

by fiber and matrix. For compact presentation of ideas, the kinematic and kinetic quantities of 

the matrix, fiber and the composite will be denoted by a superscript  , where  , ,m r c . For 

a given point  in the material configuration of the composite, there exists a particle of matrix, 

 and that of fiber,  with same material coordinates. Although X r = Xm = Xc , these 

constituent material points are shown in two separate domain in Figure 4.2 for the sake of clarity. 

As explained earlier, the fiber domain Wr  and the matrix domain Wm  coexist over each other in 

the composite domain, Wc . When the mixture domain is subjected to external loadings, the 

reference configuration of the constituent  ,   deforms to the current configuration 


  

under the deformation map,  , t 
X . Thus the deformation gradient of each constituent  , is 

given as, 

 X

  X
m

  X
r
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 (4.2) 

 

Figure 4.2. Mixture kinematics 

From Figure 4.2, it can be seen that the coexisting material points ,r m
X X  of the constituents in 

material configuration maps to two different spatial points in the current configuration. The 

interaction between these homogenized constituents as they deform with respect to each other is 

a function of the relative stretch and rotation of these two spatial points. For any point in one of 

the constituent spatial configurations, the corresponding spatial point from the other constituent 

can be obtained via a pull back and push forward mapping as given below. 

       
1

, , , ,r r r r m r m mt t t t


       (4.3) 

The balance of mass and balance of linear momentum of the constituents in the current 

configuration are given as follows:  

   m
t


  




 


 v  (4.4) 

  
T       0T b I  (4.5) 
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where 
  is the apparent density in the current configuration, and m  is the rate of mass 

transferred by chemical reaction to constituent  ; 
T  is the partial Cauchy stress, 

b  is the 

body force per unit mass and 
I  is the interactive force per unit mixture volume of the 

constituent in the reference configuration as the constituents deforms over each other. Newton’s 

third law requires that 

 
   
I

r + I
m = 0  (4.6) 

Remark: Interactive force is a unique feature of mixture theory that models the interaction 

between the constituents as they deform with respect to each other. This volumetric force is a 

homogenized quantity that captures the interactions at the fiber-matrix interface through 

constitutive relations. A failure model based on the interactive force between fiber and matrix 

can be developed to model the damage at the fiber-matrix interface in a macroscopic sense.  

In the absence of mass exchange between the constituents, the balance of mass equations reduce 

to algebraic form,  

 
RJ     (4.7) 

where R


 
is the apparent density in the reference configuration. 

Remark: Though it has been assumed that there is no mass transfer between the matrix and 

fiber, the theory still allows the modeling of the interphase evolution in the composite, by 

postulating that the interphase evolves in the boundary layer of the matrix domain at the fiber-

matrix interface.  

The constitutive relations for the mixture theory are obtained through the maximization of the 

rate of dissipation constraint. Details for this derivation can be seen in [13] and [31]. Here we 

present the summary of the constitutive relations, where the volume additivity constraint is not 

imposed. 

Constitutive relations: 
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where  G
0  is the reaction rate,   is the rate of dissipation,   is the Lagrange multiplier enforcing 

the maximum rate of dissipation constraint, ha
 are the entropy and ga

 chemical potential of the 

a th
 component of the mixture. 

Assuming isothermal conditions and chemically non-reactive nonlinear elastic constituents, the 

constitutive relations for the matrix stress, fiber stress and the fiber interactive force given in 

(4.8)-(4.10) can be reduced to 
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 (4.15) 

Remark: Interactive force in the fiber under isothermal conditions is given by (4.15). It should 

be noted that the interactive force is a function of both matrix and fiber displacement field and in 

fact involves the second order derivative of the displacement fields. Thus the constitutive relation 
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for the interactive force is a higher order relation and requires at least a quadratic piecewise 

polynomial as the shape function. As indicated by Hall [31], the components of the interactive 

forces relevant here are related to the expression for the force on a defect. The interactive force 

is required for force balance of a given constituent as obtained from both the surface tractions 

on a representative element and the interacting constituents within the element. 

4.3 Boundary Conditions and Material Properties for the 

Mixture Model 

In this section, we specify the boundary conditions and the material properties of the constituents 

to complete the definition of the mixture boundary value problem. In single continuum theories 

for solid mechanics problems, the definition of the Dirichlet or Neumann boundary conditions 

are well posed. But in mixture theory, as the constituents are allowed to deform with respect to 

each other, the definitions of the boundary conditions are unclear for two reasons. First, given a 

composite traction field, one needs an equivalent matrix and fiber traction boundary condition to 

complete the matrix and fiber boundary value problem. Second, due to finite deformation 

kinematics, the constituent boundaries can have different spatial maps, thus making it difficult to 

impose consistent boundary conditions. 

4.3.1 Consistent split of traction fields 

In mixture theory literature, a volumetric split of the traction fields is usually proposed, which 

however has the drawback of inconsistent deformation of the constituent boundaries. Following 

along the lines of the strategy adopted in interface problems, where continuity in the traction and 

displacement fields are weakly imposed, we propose a set of equations that ensures displacement 

continuity and traction equilibrium at the constituent boundary, that can be written in the spatial 

configuration as:  
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           on  

        on  

r r m m c
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where, c
h  is the composite traction field on the boundary   and  is the specified composite 

displacement field, respectively. 

4.3.2 Modeling of homogeneous fiber constituent 

In mixture theories the constituents are homogenized over the mixture volume. While each of the 

constituents, i.e. matrix and the fiber material may be homogenous and isotropic, the structural 

layout of the fibers makes the homogenized fiber material as being transversely isotropic. The 

material constants of the homogenized fiber and matrix material can be obtained from 

experiments that capture the effective composite behavior. There are several material models for 

composites that are based on single continuum homogenization theories [46-48]. In this work, 

we employ these models from the literature to obtain the material constants for the homogenized 

constituents.  

The total Helmholtz free energy function of the composite mixture can be written as, 
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where 
m

T  and 
r

T  are the matrix and fiber true density, ,m m 
 
are matrix material constants,

 

, , , ,r r r r r

L T      are fiber material constants and 
0

m  is the fiber direction in reference 

coordinates. For a transversely isotropic composite, the Helmholtz free energy of the composite 

based on single continuum homogenization (sch) can be written as follows,  
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where, , , , ,sch sch sch sch sch

L T      are single continuum homogenization composite material 

constants and 
0

m  is the fiber direction in reference coordinates. For the homogenized composite, 

the five independent material constants in (4.18) can be obtained from the literature for various 

material classes. The material constants associated with the homogenized matrix in (4.17) are 

modeled using the true matrix material parameters, also available in literature. Then, for the case 

of equally strained composite and its constituents, the material constants of the homogenized 

fiber material in (4.17) can be obtained by comparing the coefficients of the five strain invariants 

in (4.17) and (4.18).  

4.4 Variational Multiscale Framework for Mixture Theory 

This section presents a Lagrange multiplier formulation for imposing continuity constraints 

given in equation (4.16) on the constituent boundaries. Employing the Variational Multiscale 

(VMS) framework, we transform the Lagrange multiplier formulation to a stabilized primal 

formulation in the finite deformation context, where the closed-form approximation for 

numerical flux and stabilization parameter are consistently derived. This derivation is a 

generalization of the primal formulation for the interfaces that arise due to material discontinuity 

and possible non-conforming meshes [39-45]. We consider the balance of linear momentum 

equations of the constituents and its boundary conditions in reference configuration,  

 
    
DIV P

a + r
R

a
b

a + Ja
I

a = 0    in    Wa ,   a Î r,m{ } (4.19) 

  (4.20) 

where 


P  is the first Piola-Kirchhoff stress tensor, 


N  is the unit outward normal to the 

constituent boundary 
 , 


b

 
is the body force, 


I

 
is the interactive force field and 


 
is the 

deformation map of constituent  . We write this boundary value problem as an unconstrained 

minimization problem via the use of Lagrange multiplier method as,  
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  (4.21) 

where 
  is the Helmholtz free energy function of the constituent   and   is the Lagrange 

multiplier field defined on the boundary to enforce the continuity constraints. Employing the 

continuity conditions (4.20) in the work done by the surface traction term in (4.21) and also 

considering the fact that the sum of the volume fraction of the constituents is unity, the above 

equation can be rewritten as, 

  (4.22) 

The associated weak form is obtained by taking variational derivative of (4.22) with respect to 

 and is stated as follows: For all , find

 
, such that 

  (4.23) 

where the functional spaces are defined as follows:  
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(4.24) 

The functional spaces for the kinematically admissible constituent deformation field and the 

corresponding variational field lie in the  2H   Sobolev space. This requirement arises due to 

the constitutive relation obtained for the interactive force through the maximization of rate of 

dissipation constraint. As seen in the equation (4.15), the interactive force is a function of spatial 

gradient of deformation gradient and thus we require the non-standard definition of the 

admissible spaces for mixture theory as compared to single continuum theories. 

4.4.1 Multiscale decomposition 

Although the Lagrange multiplier formulation consistently enforces the constraint at the 

constituent boundary, it leads to a mixed form for which the admissible spaces of functions for 

the displacement field and the Lagrange multiplier field must satisfy the Babuska-Brezzi 

condition [32]. In this section, we present a synopsis of the stabilized DG formulation that has 

been extended to the case of two-constituent mixture by employing the VMS framework 

presented in [45]. 

In the VMS framework, the underlying field is decomposed into a coarse scale field and a fine 

scale field. The coarse scale field represents the part of the solution that is represented by the 

given numerical discretization and the fine scale field represents the unresolved part of the 

solution. In the finite deformation context, it leads to a split of the total deformation map  of 

each constituent, which is written as a composition of fine scale deformation map  over the 

coarse scale deformation map , 

  (4.25) 
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where  u
a  is the coarse scale displacement field and   u

a  is the fine scale displacement field. By 

substituting (4.25) in (4.2), we obtain the multiplicative split of the total deformation gradient as 

follows, 

    F F F  (4.26) 

where   F
a  is the fine scale deformation gradient and 

F  is the coarse scale deformation 

gradient. Substituting the multiscale decomposition of the solution field and weighting field into 

the weak form (4.23) and by employing the standard arguments regarding the linearity of the 

weighting function field, we obtain the coarse-scale problem and fine-scale problem as follows: 

Coarse scale sub-problem 

  (4.27) 

Fine scale sub-problem 

  (4.28) 

To obtain a primal formulation, we follow along the derivations presented in [45], and first solve 

the fine scale problem to obtain a closed form approximation of the incremental fine scale field. 

Consider a finite element discretization of the constituent domain, where the union of all disjoint 

elements represent the domain, 1
elemn

e e

 

   . Though the formulation allows the modeling of 

non-conforming meshes between the constituents, for the sake of clarity and ease of 

implementation of the mixture theory, we assume a conforming mesh between the matrix and the 

fiber,   ,   r m

e ee   . Similarly, the boundary of the constituent domain can be written as, 



 

80 

1
segn

s e

 

    , where 
 
n

seg
 is the total number of boundary segments. The union of the elements 

attached to these boundary segments is denoted as, 1
segn

e e

    . As a modeling step, the fine 

scales are assumed to exist close to the boundary and asymptote to zero beyond the elements 

attached to the boundary and in the direction of unit normal to the boundary. Thus, the nonlinear 

fine scale problem can be written as a series of local problems defined in the elements across the 

interface. The fine scales are modeled using edge bubble functions and can be written as, 

  (4.29) 

where 
  
b

s

a
X( )  is the edge bubble function that is non-zero on the boundary segment and vanish 

along the remaining boundaries of the element, 
 
is the unknown fine scale degree of freedom 

of the 
 
a th

 constituent. Thus, the fine scale problem (4.28) can be rewritten as a local problem 

over the matching pair of boundary elements:   

  (4.30) 

As equation (4.30) is a nonlinear problem, we first linearize this equation about the fine scale 

solution field,  

  (4.31) 

  (4.32) 

where   Du
a

 is the incremental fine scale displacement field, 
 
Aa

 is the acoustic tensor moduli 

and is given as, 

 
  
A
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where 


S is the second Piola-Kirchhoff stress tensor and 


C is the material moduli in reference 

configuration. The second term in (4.32) represents the stiffness contribution from the interactive 

force and is obtained by taking the variational derivative of (4.15) with respect to fine scale 

fields. The expressions for the variational derivative of the interactive force with respect to the 

fine scale fields are given in Appendix B.1. 

Now, by substituting the incremental form of the fine scale fields (4.29) and integrating by parts 

the right hand side of (4.32), we obtain the linearized fine scale problem: 

  (4.34) 

where  is the third order tensor of the bubble function. 
   
Brm ,Bmr

 

are second order stiffness 

tensors obtained by substituting the fine scale fields given in (4.29) in the variational derivative 

of the interactive force expressions provided in Appendix B.1.  By employing the arbitrariness of 

the fine scale weighting function field, the incremental fine scale displacement field for both the 

constituents can be written as,  

  (4.35) 

where the stabilization tensor for each constituent is given as,  
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  (4.36) 

In order to simplify calculations, we introduce certain assumptions along the lines of [45]. We 

ignore the bulk contribution in (4.35) for both the constituents, assuming that the bubble 

functions are orthogonal to coarse-scale residual. Though this assumption is not strictly enforced 

by modeling the bubble functions using polynomials, it has been shown in [42] and [45] that we 

obtain a stable algorithm for wide variety of problems both in small and finite deformation 

context. Thus, the incremental fine scale displacement fields reduces to, 

  (4.37) 

Further, by employing the mean value theorem, we extract the traction residual out of the 

integral over boundary and the incremental fine scale displacement fields are written as, 

  (4.38) 

The stabilization tensor of each constituent in the above equation is given as, 

  (4.39) 

where the average value of the bubble function over the interface is employed. 

4.4.2 Variational embedding in coarse scale problem 
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To obtain a primal stabilized formulation for two solid-constituents mixture theory, we first 

embed the incremental fine scales into the continuity equation (4.27) with the objective to obtain 

a closed form expression for the Lagrange multiplier in terms of the coarse scale displacement 

fields. Accordingly, we first consider the displacement continuity equation, 

  (4.40) 

We linearize (4.40) with respect to the fine scale fields and by substituting the incremental fine 

scales for each constituent as given in equation (4.38), we obtain the linearized continuity 

problem 

  (4.41) 

The second and the third terms in (4.41) are the Lagrange multiplier enforcement of the 

bouondary constraints that are written in terms of normal tractions while accounting for any 

externally applied forces. Equation (4.42) holds for all   .  

Because of the edge based stabilization facilitated by the fine scale equations we can employ 

arbitrary combination of interpolation functions for the displacement and Lagrange multiplier 

fields. Assuming that the Lagrange multipliers belong to the space of discontinuous L2
 

functions, we can localize (4.41) to sum of element interiors, and following along the lines of 

Truster and Masud [45] allows us to obtain a close form expression for the Lagrange multiplier 

field  on each segment along the Neumann boundary. Accordingly, a pointwise expression for 

the Lagrange multiplier field at the boundary can be obtained,   

  (4.42) 

where the flux weighting tensors 
 
and the stabilization tensors s   are given as,  

  (4.43) 

By substituting (4.42) into the incremental fine scale displacement fields (4.38), the fine scale 

fields are written as a function of coarse scale displacement fields: 
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  (4.44) 

wherein we have employed the symmetry of the tensors  to enable the substitution  

. The additional stability tensor  that arises during the stabilization is defined as 

follows.  

  (4.45) 

Remark: It is important to note that in general . 

Now we return to the coarse scale problem to obtain the final multiscale weak form by 

embedding the expressions obtained for the incremental fine scale fields and Lagrange multiplier 

field. We first linearize the coarse scale problem in equation (4.27) with respect to the fine scale 

fields.   

  (4.46) 

where 

  (4.47) 

Following along the assumptions presented above for the fine-scale problem, we neglect the bulk 

term and the interactive force contribution for computational expediency in equation (4.46) to 

obtain the final stabilized form. 

 

 

(4.48

) 
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By embedding the expressions for Lagrange multiplier field from equation (4.42) and 

incremental fine scale displacement field from equation (4.44) into the above equation (4.47), we 

obtain the final multiscale weak form in the primal variables for self-consistent imposing of the 

tractions at the Neumann boundaries.  

 

 

(4.49

) 

The last two terms are the contributions from the stress jump. By employing the standard 

notations in the DG method literature and by neglecting the last two terms in (4.48) to improve 

computational efficiency, we simplify the final multiscale form:  
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where the average flux operators are given as, 



 

86 

  (4.51) 

The set of first three bracketed terms are the weak form of momentum balance for the mixture 

model wherein the third term is contribution to momentum balance from the interactive force 

field. The fourth term is self-consistent weak form for boundary tractions. Fifth and sixth terms 

are the stabilization terms that arise due to the variational gap in the weighting function fields of 

matrix and fiber to enforce the displacement continuity and traction continuity. Similarly, the last 

integral is the stabilization term that accounts for the variation in material moduli of matrix and 

fiber to enforce the displacement continuity.  

Remark: This derivation follows the general framework developed in [45] wherein starting from 

an underlying Lagrange multiplier method for weakly imposing the continuity constraints, and 

employing the fine scale problem facilitated by the variational multiscale split of the boundary 

problem, we derive closed form expression for the Lagrange multiplier field. Substituting it in the 

corresponding coarse-scale problem results in a method that is free of explicit representation of 

the Lagrange multiplier field.  

4.5 Numerical Results 

This section presents numerical results obtained for several three-dimensional problems by 

employing the proposed VMS based formulation for mixture theory for the modeling of 

composites. Our objective is to be able to account for more features at the micromechanics level 

than are facilitated by the homogenization theories that smear away any local effects in the 

interest of producing computationally economic models. The present theory brings in the 

interactive force field that arises due to relative deformation or evolution of the constituents that 

were related in their corresponding reference configurations. This micromechanics feature is 

modeled via the interactive force field which serves as a measure of the local interactions 

between constituents, and can serve as an indicator for the onset of damage in the material. 

Section 4.5.1 presents axial stretching of 4-ply symmetric laminate and the results are compared 

with Pipes and Pagano [49] and Reddy [50]. In Section 4.5.2, we consider a graphite-epoxy 

lamina plate with a hole which is subjected to a given axial pressure field. In this problem, the 
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ratio of the hoop stress along the circumference of the hole to the applied pressure at the 

composite boundary is compared with the analytical solution provided by Lekhnitskii [51]. In 

Section 4.5.3, we present the solution for the bending of a 4-ply laminate subjected to transverse 

pressure load and the results are compared with the First Order Shear Deformation (FSDT) 

theory [52]. We conclude the section with pure bending of the rectangular composite block to 

highlight the finite deformation capability of the method. As all the numerical problems 

presented are solved in the context of mixture theory, each lamina consists of overlapping and 

coexisting matrix and fiber domains. The matrix material is modeled as a homogenous isotropic 

material and the fiber as a transversely isotropic material. The corresponding constitutive model 

is given in (4.17). 

The matrix and the fiber domain are discretized using structured linear hexahedral meshes that 

are comprised of 27-noded Lagrange elements. The volume and surface integrals are evaluated 

with sufficiently high Gauss quadrature rule to integrate all the terms. The significant features of 

mixture theory are the constituent stresses and the interactive force field that are highlighted 

throughout.  

4.5.1 Four Ply Laminate, [+45/-45]s 

Consider the Graphite-Epoxy laminate of dimensions 60×20×2.5  mm with [+45/-45]s as 

shown in Figure 4.3. The laminate consists of four plys, where each ply is of 0.625 mm 

thickness. The top and the bottom ply have a fiber orientation of +450 and the middle plys have 

an orientation of -450 with respect to the longitudinal axis. As the laminate is modeled using 

mixture theory, every node has six degrees of freedom, namely the 3-displacements for the 

matrix and the fiber each. The material properties of the matrix and fiber are given in Table 4.1. 

The boundary of the laminate, i.e., the matrix and the fiber boundary are tied with the interface 

formulation as explained in Section 4.4. This ensures the consistent tying of the boundaries.  

The laminate is subjected to an axial displacement of 0.3 mm at 30x    mm plane. The 

nodes at 0x   plane are appropriately constrained to avoid any rigid body motion. This axial 

stretching problem is solved with four different meshes and the results are compared with Pipes 

and Pagano [49] and Reddy [50]. Figure 4.4 shows the axial displacement, composite axial 

stress, in-plane shear stress and out of plane shear stress at top surface along the width of the 



 

88 

laminate at 0x  plane obtained from mixture theory. It can be seen that the results obtained 

from mixture theory converge with mesh refinement along the width and the thickness of the 

laminate and follow the trends of Pipes and Pagano [49]. The in-plane shear stress along the 

width of the laminate at the interlaminar interface between +45 and -45 at 0x  plane is shown 

in Figure 4.5. Theoretically, a stress singularity is predicted at 10y    mm in the interlaminar 

interface plane and the present mixture model produces a good comparison for in-plane shear 

stress with Reddy [50].  

 

Figure 4.3. 4-ply laminate 

Table 4.1. Material properties of the laminate 

   (MPa)   (MPa)    (MPa) 
L   (MPa) T   (MPa) 

   

(kg/mm3) 

Volume

Fraction 

Fiber 4.424E+03 1.203E+03 2.467E+05 1.039E+04 1.039E+04 1550E-09 0.5 

Matrix 1.990E+03 - - 1.327E+03 - 1200E-09 0.5 

Figure 4.6 shows the axial stress and in-plane shear stress of the composite. As predicted by the 

classical laminate theory, we observe a uniform state of stress in the middle region of the 

laminate, while there is distortion in the stress fields close to the boundary due to finite width 

effects of the laminate. One of the advantages of mixture theory is that kinetic and kinematic 

response of each constituent is readily available for analysis and for failure prediction in the 

constituents without resorting to the discrete modeling of the microstructure. Figure 4.7-Figure 
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4.9shows the axial stress and in-plane shear stress of the fiber and matrix respectively. From 

Figure 4.7b, it can be observed that the fiber in-plane shear stress in the top and bottom plys is 

tensile, while it is compressive in the middle plys. This is an artifact of the angle ply laminate 

configuration. From Figure 4.8, it can be seen that the matrix stress exhibits the effect of the fiber 

orientation at the boundaries, though matrix is modeled as homogeneous isotropic material. This 

effect arises due to the tying of the constituent boundaries, where the surface tractions at the 

boundaries are distributed between the constituents in a consistent fashion.  

  

                           (a) Axial deflection                                      (b) Composite axial stress 

  

         (c) Composite in-plane shear stress                    (d) Composite out-of-plane shear stress 

Figure 4.4. Comparison with Pipes and Pagano results 
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Figure 4.5. Composite shear stress-xz along the interlaminar interface (between +45 and -45 

lamina) 

       

                   (a) Axial stress                                               (b) In-plane shear stress 

Figure 4.6. Composite stress in the domain 

    

           (a) Axial stress                                                      (b) In-plane shear stress 

Figure 4.7. Fiber stress in the domain 

The significant feature of the mixture theory is that apart from obtaining the constituent 

stress fields, it provides a distribution of the interaction between fiber and matrix, which is a 

measure of the fiber-matrix interface strength. This interaction produces a volumetric force field 

that models the interaction between the matrix and the fiber as they deform over each other. 

While traditional laminate theories for composites can model the overall deformation modes of 
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the laminate, they do not have the microstructural information to be able to identify the regions 

in the domain where the fiber-matrix interface is under higher stress.  

Remark: As mixture theory provides matrix, fiber and composite stress fields in addition to 

interactive force field, a comprehensive failure theory can be developed for modeling failure in 

matrix and fiber, and at the fiber-matrix interface.  

 

    

           (a) Axial stress                                                         (b) In-plane shear stress 

Figure 4.8. Matrix stress in the domain 

                    
     (a) Interactive force in X direction                         (b) Interactive force in Y direction 

 
(c) Interactive force in Z direction 

Figure 4.9. Matrix interactive force in the domain 

Figure 4.9  shows the matrix interactive force field in X, Y and Z direction. Figure 4.9c 

shows that the interactive force acting on the matrix in the top ply (+45o) and middle ply (-45o) 

along the interlaminar surface are in tension and compression, respectively. Similar force 

distribution is observed in the bottom layer and middle layer along the interlaminar surface.  
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From Figure 4.9, it can be observed that the matrix interactive force achieves its maximum 

and minimum along the interlaminar interface close to the boundary. The interactive force in z 

direction has a maximum value of 5.97 N/mm3 along y=  10 mm plane at the interlaminar 

interface for the top ply and achieves a minimum value of -5.97 N/mm3 at the interlaminar 

interface for the middle ply. This suggests that the interlaminar peeling is one of the failure mode 

for symmetric angle ply laminate when subjected to axial loading.  

Remark: Fiber-matrix interaction is a function of the loading, the boundary conditions, the 

material orientation, as well as the mode of deformation. Therefore, sections with higher 

interactive force indicate the regions where fiber-matrix debonding can get initiated, thereby 

providing crucial insight into the potential onset of damage in the material system. 

Remark: From (4.6), it can be deduced that the fiber interactive force in equal and opposite to 

the matrix interactive force. Thus, for conciseness, fiber interactive force plots are not shown 

here. 

4.5.2 Single Ply Lamina with Hole 

Next, we consider the axial stretching of single ply lamina with hole at the center. This is a 

representative simulation of a composite with crack or hole that results in stress concentration 

leading to failure of the structure. A rectangular prismatic domain of dimensions 60×20×2.5  

mm is considered with a circular hole of radius of 1.0 mm. The composite is comprised of epoxy 

matrix and graphite fibers with material properties are provided in Table 4.2. The lamina is 

subjected to an axial pressure of 200 MPa at 30x    mm plane in the axial direction. The 

domain is discretized using 27-noded Lagrange elements and the nodes are appropriately 

constrained at 0x   plane to avoid rigid body motion.  

The stress concentration, which is defined as the ratio of the hoop stress and the applied 

pressure, is plotted along the circumference of the hole. A closed form solution for the stress 

concentration around the hole for an infinite width laminate is derived in Leknitskii [51] for a 

given axial load and for an arbitrary fiber orientation. Figure 4.10 shows that the stress 

concentration obtained from the mixture theory compares well with analytical solution for both 

00 and 450 fiber orientation that is considered in the simulations presented here. It can also be 
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observed that with mesh refinement, the finite element solution variationally converges 

monotonically to the exact solution which is a numerical validation of the variational consistency 

of the method. For the fiber orientation of 00, the stress concentration reaches a maximum value 

of 6.8 at 900 along the circumference of the hole, while a fiber orientation of 450 reduces the 

stress concentration in the lamina to 4.4. The location of the maximum stress concentration also 

shifts from 900 to 1230.  

Table 4.2. Material properties of the lamina 

    (MPa)    (MPa)    (MPa) 
L   (MPa) T   (MPa) 

   

(kg/mm3) 

Volume

Fraction 

Fiber 1.314E+03 -3.86E+03 2.252E+05 9.674E+03 3.531E+03 1550E-09 0.7 

Matrix 1.990E+03 - - 1.327E+03 - 1200E-09 0.3 

 

Figure 4.11 and Figure 4.12 show the composite axial stress and in-plane shear stress for the 450  

lamina, respectively. From these plots, it can be seen that the stress profile is fairly uniform away 

from the hole and therefore there is no substantial effect of the finite width of the geometry on 

the stress variations around the hole. This justifies the comparison of the stress concentration 

with analytical solution derived for the infinite width lamina. Figure 4.13 and Figure 4.14 present 

the interactive force profile in X and Y direction for 450 lamina respectively. Interactive force in 

X and Y direction reaches a maximum value of 10.1 N/mm3 and 10.2 N/mm3, respectively. From 

Figure 4.11-Figure 4.14, it can be deduced that the constituent stresses and matrix fiber 

interactions achieve their maximum and minimum values around the hole and thus the failure in 

the load carrying capacity of the lamina will initiate in the region around the hole.  
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                      (a) 00 fiber orientation                                       (b) 450 fiber orientation 

Figure 4.10. Hoop stress along the circumference of the hole 

  

           (a) 450 fiber orientation                                              (b) Zoomed view 

Figure 4.11. Composite axial stress 

          

           (a) 450 fiber orientation                                                 (b) Zoomed view 

Figure 4.12. Composite in-plane shear stress 
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           (a) 450 fiber orientation                                            (b) Zoomed view 

Figure 4.13. Interactive force in X direction 

        

           (a) 450 fiber orientation                                          (b) Zoomed view 

Figure 4.14. Interactive force in Y direction 

4.5.3 Laminated Plate Bending Problem 

This problem presents bending of four-ply Graphite-Epoxy laminate under uniformly distributed 

load. We consider a square laminate of dimension, 1×1×0.1 mm subjected to uniformly distributed 

load q = 1  units on the top surface. Simply supported boundary conditions are applied on all four 

edges at the mid-plane of the laminate. The results are presented for anti-symmetric cross ply 

[0,90,0,90] configuration and compared with the analytical solution obtained from classical 

laminate plate theory (CLPT) and first order shear deformation theory (FSDT) for laminated plates 

[52]. The material properties of the fiber and the matrix are given in Table 1. 
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Figure 4.15. Vertical deflection of the mid plane for 8×8×4  mesh 

Figure 4.15 shows the vertical displacement contour of the mid-plane for 8×8×4  mesh 

configuration where the deflection has been magnified 100 times for plotting purposes. It can be 

observed that the maximum vertical displacement of 0.00136 mm is obtained at the center of the 

plane. Figure 4.16 provides a comparison between the vertical deflection along the diagonal of 

the mid plane of the anti-symmetric cross ply laminate obtained for four mesh configurations, 

namely, 2×2×4 , 4×4×4 , 8×8×4 , 16×16×4  and the analytical results obtained from CLPT 

and FSDT [52]. It can be observed that the finite element solution of the vertical deflection 

converges monotonically with mesh refinement. As the CLPT assumes that the transverse 

normal and shear stresses are negligible, it underpredicts the displacement of the laminate. The 

vertical deflection compares well with the results obtained with coarse mesh, which corresponds 

to a stiff behavior. As the FSDT accounts for constant transverse shear stress, we can see from 

Figure 4.16 that the FSDT solution compares well with 16×16×4  mesh. Figure 4.17 shows the 

interactive force field through the thickness for 8×8×4  mesh. It can be observed from the plot 

that the second ply from the bottom which has a 900 fiber orientaion has a compressive 

interactive force in z direction while the third ply where the fiber orientation is at 00, has a tensile 

interactive force in z direction. As the second and third ply shows opposite interactive force in 

the z direction, it can be seen that one of the failure modes for antisymmetric cross ply laminate 

will be delamination along the mid-plane interface at the center of the edges.  
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Figure 4.16. Comparison of vertical deflection along the diagonal between mixture theory and 

plate theory 

 

Figure 4.17. Interactive force in Z direction 

4.5.4 Large Deformation Bending of a Composite Beam 

This section tests the finite deformation capability of the proposed numerical method, under 

plane strain conditions. A Graphite-Epoxy lamina of dimensions 8×1×1 mm is considered, 

where the fibers are oriented along the axial direction. This finite deformation pure bending 

problem is adapted from Ogden [53] and Truster et al. [45] where the exact solution and 

corresponding First Piola-Kirchhoff stress is provided for incompressible and compressible neo-

Hookean materials respectively. The deformation map of the matrix and fiber constituents for 

arbitrary bending angle of   is given as, 
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where oR  is the outer radius, L and H are the length and the width of the domain, respectively. In 

Ogden [53], the following equations are employed to impose the incompressibility constraint, 
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where iR  is the inner radius of the deformed domain. Using (4.52) and (4.53), the deformation 

map can be rewritten as, 
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and the deformation gradient and its inverse are given as,  
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F F   (4.55) 

It can be observed from (4.54) that the deformation map is a function of the bending angle y

only. Now, ignoring the interactive forces, we can solve for the body force in both the 

constituents based on the material model given in (4.17) that satisfy the equilibrium equations. 

The expressions for the body force and the first Piola-Kirchhoff stress for the fiber is given in 

Appendix B. 

The domain consists of matrix and fiber and their corresponding material properties are given in 

Table 1. Using the symmetry conditions, only the upper half of the domain is modeled. The 
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block is discretized with 16×128×2  mesh and is constrained in thickness direction to simulate 

plane strain conditions. The mid-plane is constrained in the Y direction to enforce symmetry and 

is appropriately constrained in X direction to avoid rigid body motion. For a given bending 

angle, the body force and traction fields are evaluated based on equations (B.11-B.14) given in 

Appendix B which are employed to drive the simulation The problem is run for a total bending 

angle of 22.50 in increments of 2.50. Figure 4.18 compares the discrete bending angle with the 

applied bending angle for 16×128×2  mesh. It can be seen the discrete bend angle compares 

well with applied bend angle and has a slope of 0.93. Ideally, the bending angle computed 

through finite element simulation will be equal to the actual value for a very fine mesh, which 

corresponds to a slope of unity. Figure 4.19 shows the hoop stress of fiber, matrix and the 

composite in the deformed configuration for the bend angle of 22.50. 

    

Figure 4.18. Discrete angle vs the applied angle for 16×128×2  mesh 
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        (a) Fiber hoop stress                                                     (b) Matrix hoop stress 

 

(c) Composite hoop stress 

Figure 4.19. Hoop stress in the deformed configuration, 
022.5   
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Figure 4.20. Convergence rate plot for H1 seminorm error in displacement for various 

bending angle 

In this work, we used 27 node Lagrange elements for all numerical test cases because of the 

gradient of the deformation gradient which leads to second order derivatives in the displacement 

field that appear in the interactive force constitutive relation. For the current problem the 

interactive forces were neglected in mixture theory framework to derive an exact solution so that 

numerical solution can be compared with the exact solution to see variational convergence of the 

method. This simplification allowed us to model the composite beam with 8 node Lagrange 

elements for four different meshes with spatial resolution of 2 16 1  , 4 32 1  , 8 64 1  , 

16 128 1  , and perform a convergence rate study.  

The convergence rate study for the nonlinear problem was carried out for various bending angles 

from 10 to 50. In each case, the problem was run via Newton-Raphson method to convergence for 

the given bend angle, with a normalized residual of 10-10. Once the converged solution was 

obtained, it was used in the calculation of the seminorm of the error field. Figure 4.20 shows the 

H1 seminorm of error in the displacement field for various bending angles from 10 to 50. 

Computed results show an optimal convergence rate of 1.0. As expected, it can be seen that for 

higher bend angles that increase the nonlinearity in the problem, though the absolute error 

increases monotonically with the increase in nonlinearity, the convergence rate from the 

computed solution in the H1 seminorm is almost 1.0, as predicted by the finite element theory.   
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4.6 Conclusions 

We have presented a mixture based model for multi-constituent solids where constituents are 

governed by their individual balance laws and are cognizant of the presence of other coexisting 

constituents via the interactive forces that emanate from maximizing the entropy production. The 

model is locally homogeneous while the structural layout of the fiber component introduces 

directionality as well as heterogeneity at the mesoscale. The coexisting constituents are 

represented independently inside the domain, weighted by their volume fractions and coupled via 

the interactive force field. To model the damage-free boundaries of the composite, a method is 

presented to tie the constituents at the Neumann boundaries. The boundary constraint equations 

find roots in the interface mechanics literature and they are modified to account for the non-zero 

applied tractions. The resulting computational method draws from the stabilized Discontinuous 

Galerkin method for finite strain kinematics where VMS based multiscale decomposition of the 

deformation map at the Neumann boundary and subsequent elimination of the underlying 

Lagrange multiplier via local modeling of the edge fine scales via edge bubble functions results 

in terms that self-consistently tie the multiple constituents. The resulting terms that enable the 

condensation of the multiplier field from the formulation also provide an edge based stabilization 

of the method. Closed-form expressions are derived for a generalized penalty tensor and a 

weighted numerical flux that are free from any tunable stability parameters. Numerical tests 

verify that the consistently derived constituent coupling parameters automatically evolve with 

evolving material and geometric nonlinearity at the boundaries.  

Several three-dimensional test cases are presented to validate the method via comparison with 

experimental, numerical and analytical data published in the literature. In all the cases the 

representative volume element consists of overlapping and coexisting matrix and fiber domains 

where matrix constituent is considered to be homogenous and isotropic and the fiber constituent 

is considered to be a transversely isotropic material. The interactive force field plots for the 

various test cases highlight the region that are susceptible to peeling and debonding of the 

laminates and this insight can help in developing methods for delamination in composites that is 

one of the most dominant modes of failure of laminated material systems.  
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Chapter 5 

Variational Multiscale Method for a Comprehensive 

Two-Constituent Mixture Theory Model     

5.1 Introduction 

In this chapter we present a numerical scheme that is based on a new variational formulation 

that possesses enhanced stability properties as well as an ability to account for multiple spatial 

scales in the solution. We wish to highlight that the development of the multiscale stabilized 

form that is pursued in this chapter wherein lower-order Lagrange elements can be used to model 

higher order constitutive theories has not been reported in the literature to date. 

In addition, in the theory and the finite element method presented here, we incorporate all the 

ingredients developed in the earlier chapters for various facets of the mixture constitutive models 

into one comprehensive mathematical and computational framework. Since the mixture theory is 

comprised of higher-order constitutive equations, therefore in Chapter 4 we had employed 

quadratic interpolation functions in 3D that leads to a formulation that works with 27-noded 

brick element or higher order elements. In Chapter 4 we had focused on the development of 

variationally consistent method for tying the constituents at the Neumann boundaries employing 

a methodology that emanated from Lagrange multiplier enforcement of constraints across 

interfaces in Discontinuous Galerkin method. A literature review reveals that Nitsche method 

can also been used for this class of problems, however in the finite strain context, finding optimal 

coefficients for the Nitsche method is non-trivial. Various scaling techniques have been proposed 

in the literature for the purpose of scaling the coefficients in the Nitsche method [34-38]. Since 

we are primarily interested in class of problems involving finite strains, in Chapter 4 we 

developed a variationally consistent method for self-consistent tying of the constituents, wherein 

VMS ideas were employed but only in a narrow band at the Neumann boundaries. 
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A major contribution in this Chapter is the derivation and development of a computational 

formulation wherein linear Lagrange polynomials with quadratic bubble functions, implemented 

within Heterogeneous Variational Multiscale Framework (HVMF) of Masud and Scovazzi [60] 

can model the higher order constitutive equations facilitated by the mixture model presented in 

Chapter 3 and Chapter 4. The importance of this development can be realized via the following 

example: If cubic Lagrange polynomials are generalized to 3D, they result in 64-noded element 

with 6 dof per node. Not only do they result in a large element stiffness matrix, they also require 

5x5x5 integration rule for accurate numerical integration. However, via HVMF of Masud and 

coworkers [40-45] if we could get the mixture theory models work with linear brick elements 

with quadratic bubbles for fine-scales, it can result in substantial computational economy as it 

would lead to 8-node bricks with 6 dof per node that can be evaluated using 2x2x2 or 3x3x3 

numerical integration rules.  

Our objective is to develop a numerical method for process modeling of fibrous composite 

materials. As noted earlier, although there are many theoretical and computational models that 

are available in the literature that can be used for performance modeling of laminated composite 

materials and structures, a robust theoretical framework along with computationally efficient 

algorithms and a scalable code that can be used for process modeling of fibrous composite 

materials is still not available. The process modeling phase requires (a) consideration of the 

reactions amongst the constituents, and (b) accounting for the thermal effects during chemical 

reactions that can then affect the residual stresses in the resulting material. The performance 

modeling of the fabricated composites needs to be carried out on this resulting material which in 

fact can have local variations in the mechanical material properties that get reflected in the tensor 

of material moduli as a function of spatial coordinates. Consequently, in this situation the 

material tensor is not given by closed form expressions that are typically employed in 

engineering analysis.  

A significant feature of the Mixture Theory model is the Interactive Force field that is 

generated due to the interplay of the constituents. Although in the homogenized mixture element 

an explicit discrete representation of the constituents is suppressed, however the interplay of the 

constituents is fully accounted for via interactive force fields and the corresponding coupling 

terms that emanate from the mixture modeling ideas. In Section 5.7, via numerical test cases we 
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try to highlight this unique feature of the method and show how it provides an insight into the 

material design process. We wish to state that these insightful features are not there in the 

competing homogenization methods that are available in the literature and can model kinematics 

of deformation, but cannot provide insight into the interplay of the constituents. 

The outline of the chapter is as follows. We first present the governing equations and the 

constitutive relations for a mixture theory for two-solid constituents with the objective to develop 

a numerical method for modeling processing and performance of composites. In Section 5.3, we 

present the variational multiscale method for modeling the higher order constitutive theory with 

lower order Lagrange elements in 1D context. This formulation is extended to three dimension in 

Section 5.4. In Section 5.5, the error estimation feature of the proposed framework is presented. 

Then, the material model employed in the numerical section is stated. The proposed VMS 

methods capability and feature are showcased in numerical section through curing of composite 

problem, 3D block problem under gravity. Finally, a comprehensive problem for both process 

modeling and performance modeling of the composite is presented.  

5.2 Mixture Theory for Two Solid-Constituents Material 

In Chapter 2 we presented the mixture theory in the context of fluid-solid constituents, and in 

Chapter 3 we presented a version of the theory that is appropriate for two solid constituent 

mixtures. The model in Chapter 3 was extended to 3D implementation with the objective to 

validate the model and simulate the curing process and interphase formation between matrix and 

fiber. In this model it is assumed that there is no mass exchange between the fiber and the matrix 

and the interphase material is formed in the matrix material along the contact surface with the 

fibers in a homogenized sense. 
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Figure 5.1. Mixture theory homogenization 

 

Figure 5.1 shows the schematics of the underlying mixture modeling idea in which an 

infinitesimal composite volume is considered that is comprised of fiber (indicated via orange 

circles) and matrix (represented via blue surrounding material). The constituents of this 

representative discrete volume element are segregated, and employing the notion of 

homogenization, some averaged parameters are introduced to describe the attributes of the 

segregated constituents. One such modeling parameter is the apparent density that is obtained by 

dividing the mass of the constituent with the total volume of the domain. In the schematic 

representation in Figure 5.1, this gives rise to the light blue and yellow regions that represent the 

equivalent matrix and fiber materials. These equivalent materials are also characterized via a 

second modeling parameter of porosity that is defined as ratios of volumes of the constituents to 

the volume of the domain. Governing systems of equations for each of the constituents is then 

developed wherein interaction amongst the constituents is accounted for via interaction and 

coupling terms. Consequently, these equivalent materials are then made aware of the coexistence 

of other constituents via the governing equations that bring into play the inter-constituent forces 

fields and stress fields. This mathematical coupling of the effects of constituents on each other 

yields an equivalent or homogenized mixture element that is schematically shown with the green 

block. Although in the homogenized mixture element an explicit discrete representation of the 

constituents is suppressed, however the interplay of the constituents is fully accounted for via 

interactive force fields and coupling terms that emanate because of the mixture modeling ideas 

and the material models on the homogenized constituents. 
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5.2.1 Governing equations for the mixture theory model 

The governing equations for the mixture theory were presented in earlier chapters, and 

therefore in the interest of brevity they are not being repeated here. However, to develop the 

variational formulation that goes together with the theoretical model we present the following. 

 

 

 

Figure 5.2. Mixture kinematics 

Consider the reference, initial and current configuration of the composite as shown in Figure 

5.2, where every point in the domain is co-occupied by the constituents. In reference 

configuration, these coexisting material points of each constituent are paired with each other, i.e., 

they are assumed to be bonded together. Thus in all the configurations, there exists a 

homogenized fiber, homogenized matrix and a homogenized composite domain.  W
r , Wm

 and  W
c . 

And similarly, the current configurations can be written as, 
  
W

j

r , W
j

m  and  W
c . Let the deformation 

map of matrix and fiber constituent be given as, , where 
   
X

r , X
m
 have the 

same material coordinates. But the deformation map of these material points can map 
   
X

r , X
m
 

to different spatial points ,r m
x x  in the current configuration. Though the material points are 

paired together and assumed to be perfectly bonded, as it is homogenized volumetrically, it is 

allowed to deform with respect to each other.  
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In the reference configuration, as the material points of each constituent are paired with each 

other, the composite density and second Piola-Kirchhoff stress are given as, 

 
c r m

R R R      (5.1) 

 
  
S

c = S
r + S

m
 (5.2) 

where, ,r m
S S  are the partial second Piola-Kirchhoff stress of the matrix and fiber, respectively.  

The composite deformation map is defined as,      c c r r r m m mX =V X V X   . We denote 

points in the reference configuration by  X and their corresponding images in the current 

configuration by 
 

x , where  ,r m   and r m   . The current position of each region  

 at time t  is given by the image of all points  X  under the deformation map  , t 
X

such that  ,t  
x X . We also define the displacement field associated with the deformation 

  as  ,t   u x X X     ( ) ,t ,t  u X x X X . Finally, the deformation gradient 

 , t 
F X  emanating from  , t 

X  is obtained as: 

  , t


 







x
F X

X
 (5.3) 

Thus, the equilibrium equation and boundary conditions for each region ( )  are combined with 

the statements of deformation continuity and balance of tractions along 
I  to yield the following 

system of equations for the composite domain  : 

Balance of linear momentum: 

 div( )r r r

e   0T b I  (5.4) 

 div( )m m m

e   0T b I  (5.5) 

where, 
T is the Cauchy stress, 

b
 
is the body force and 

I  is the interactive force acting on the 

th  component in the mixture. In this work, as we focus only on two consitutent mixture, 

according to Newton’w third law, the fiber and matrix interactive force satisfies the following 

equation:  
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 r r  0I I   (5.6) 

In the current mixture theory model we assume that there is no inter-conversion of mass between 

matrix and fiber material. The interphase is formed in the matrix material along the contact 

surface with fibers. It is also assumed that the reaction is affected by the reinforcement spacing 

that results in a potentially transversely isotropic interphase. These assumptions result in 

reducing the balance of mass equations to an algebraic equation 

 
r r r

RJ    (5.7) 

 
m m m

RJ   (5.8) 

 

5.2.2 Constitutive relations 

The constitutive relations for the partial stress in matrix and fiber and the interactive force for 

mixture theory is obtained by enforcing the constraint of maximization of rate of dissipation: 
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By assuming isothermal condition and ignoring the drag force for the solid-solid mixture, the 

interactive force for the fiber as given in eq. (5.11) can be further simplified and is written as, 

 
r m m r

r m r

m r

   



  
    

  
I F F

F F
 (5.12) 

The above equation in indicial notation is given as follows, 
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where, 
1 1

1 2  ,  ,  ,  
r m

m m r r m m m r r r
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5.2.3 Boundary conditions 

In mixture theory literature, a volumetric split of the traction fields is usually proposed, which 

however has the drawback of inconsistent deformation of the constituent boundaries. Following 

along the lines of the strategy adopted in interface problems, where continuity in the traction and 

displacement fields are weakly imposed, we propose a set of equations that ensures displacement 

continuity and traction equilibrium at the constituent boundary, that can be written in the spatial 

configuration as:  
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 (5.14) 

where, c
h  is the composite traction field on the boundary   and  is the specified composite 

displacement field, respectively. 

5.2.4 Functional spaces for the higher order constitutive models  

In the mathematical analysis of boundary-value problems, and consequently in finite 

element analysis, we need to introduce classes of functions that possess generalized derivatives 

and, in addition, certain integrability properties. From equation (5.12), it is observed that the 

interactive force is a function of the gradient of deformation gradient. Therefore, the 

displacement field needs to be at least quadratic so that gradient of the deformation gradient is 

non-zero, and this component of the interactive force field can be modeled. Furthermore, this 
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interactive force field for the matrix m
I and the fiber r

I appears in the equilibrium equations 

(5.4) and (5.5). From the mathematical theory of BVPs we need the class of functions that are 

continuous as well as their first derivatives are also continuous. These functions are called 1C  

functions and therefore from a Finite Element perspective this mixture theory is a higher order 

theory that requires 1C  continuity of functions for numerical modeling. This has implications 

with the continuity and differentiability of the polynomials employed, and therefore this issue in 

turn feeds into the type of elements that can be developed and the cost of computation associated 

with these elements. 

Based on the discussion presented above, we make two observations. 

1. The only terms in the governing equilibrium equations that necessitate the use of 1C   

continuity are these terms in the interactive force field. 

2. These terms become zero when approximated via linear shape functions. 

Generally, finite element functions are smooth on element interiors but possess only low-

order continuity across element boundaries. One might characterize them as locally smooth but 

globally rough. The piecewise linear finite element functions are of class 0Cb
, which means these 

functions are continuous and possess square-integrable first derivatives, but the derivatives are 

not globally continuous. To calculate derivatives of 0C  functions we need to employ the notion 

of generalized derivatives. For example, the first derivative of a piecewise linear finite element 

functions is a generalized step function; second derivative is a Dirac delta function (i.e., Delta 

functions of various amplitudes, acting at the nodes). 

On the other hand Hermite Cubic functions are 1Cb
 functions, i.e., these functions are 

continuous and their first derivatives are also continuous functions, while their second derivative 

is a generalized step function, and so on. Although, one would need Hermite cubic type functions 

for this mixture theory [13], one has to consider that generalizing Hermite cubic functions to 2D 

and 3D is neither easy nor straightforward. A literature review reveals that this 1C  continuity 

requirement has been the reason for the demise of several theoretical models in solid and fluid 

mechanics. 
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At this point we pose a question: To model the interactive force via finite element 

discretization, the shape functions should be at least quadratic or higher-order. Is it possible that 

we can employ linear Lagrange shape functions for this otherwise higher-order mixture model? 

Our objective is to develop a numerical method where we can use 0C functions and wherein the 

displacement field is continuous but derivatives may be discontinuous, and still we are able to 

model the physics in the higher order constitutive equations of the mixture theory model.  

 To address these issues we have employ the Heterogeneous Variational Multiscale Method of 

Masud and Scovazzi [60] and develop a multiscale numerical method for the mixture theory. Our 

new developments that are outlined in Section 4 below possesses two significant mathematical 

attributes that are uniquely important for the mixture theory model employed here:  

1. It helps in effective modeling of scale even when cruder mesh discretizations are 

employed. 

2. It facilitates an algorithmic treatment wherein higher-order Lagrange functions are 

employed only within the element and not across the inter-element boundaries, thereby 

reducing the inter-element continuity requirement. These internal nodal contributions can 

then be statically condensed out, yet retaining the higher order effects.  

Consequently, at the coarse-scale level when lower order Lagrange functions are employed and 

some of the higher-order terms in the constitutive equation are lost, the overall model will still 

retain their effect, which will get manifested via the fine-scale terms. This aspect of VMS 

formulation is highlighted in the following sections.  

5.3 Development of the Multiscale Finite Element Method 

The numerical implementation of the mixture theory requires at least quadratic Lagrange 

polynomials to accurately capture the interactive force effects between the matrix and 

reinforcement. In Chapter 4 it was implemented with quadratic brick element in 3D that helped 

preserve the dominant terms in the interactive force field which is an important tenant of the 

mixture model and keeps the constituents interact in domain interiors. However, the resulting 

method is computationally expensive for larger applications. In addition, there are not many 

mesh generation tools for complex geometries using 27 noded brick elements.  
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With these two as the bottlenecks for the generalization of the mixture theory for general 

applications, we embark upon in this Chapter to develop a method that can work with lowest 

order Lagrange functions even for the higher order constitutive relations facilitated by the 

mixture theory.  In this section, we derive a Variational Multiscale framework for the two-solid 

mixture theory to capture the fine scale effects through the fine-scale sub-problem that provides 

us an option to use higher order functions locally, thereby capturing part of physics that is 

otherwise lost at the coarse-scale level if lower-order Lagrange interpolation functions are used. 

In addition, for the class of incompressible or nearly incompressible materials in the finite strain 

regime, one needs to use enhanced strain formulations that do not lock in the incompressible 

limit. More advanced versions of enhanced assumed strain formulations have been proposed 

over the years that exhibit improved performance for both incompressible material behavior as 

well as for bending-dominated problems, although hourglassing and other instabilities have been 

concerns for some elements [63,64]. We wish to highlight that the developments presented in 

this section result in a formulation that successfully overcome volumetric locking. Specifically, 

one can show that the formulation that we derive in the pure displacement context below has 

equivalence under simplifying assumptions with the F  method [42]. 

The hallmark of the VMS approach is the decomposition of the primary field into overlapping 

coarse- and fine-scale components. The coarse-scale part corresponds to the portion of the total 

solution that is resolvable by a given numerical discretization while the fine-scale part is beyond 

the resolution capacity of the coarse scales system and therefore must be modeled in a variational 

setting. In the context of finite deformations, this concept yields a decomposition of the 

deformation mapping   into a coarse-scale mapping   corresponding to the deformations 

representable by the given discretization and a fine-scale mapping   representing the smooth yet 

higher order effects. We denote the intermediate configuration obtained from the coarse-scale 

mapping as     . These mappings can be expressed in terms of coarse- and fine-scale 

components of the displacement field 
u  and 

u , respectively, as follows: 

    u u u   (5.15) 
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These mappings can be expressed in terms of coarse- and fine-scale components of the 

displacement field u  and u , respectively, as follows: 

  ,t    X 1 X u x  (5.16) 

  ,t


  x 1 x u  (5.17) 

    , ,t t 
            X X 1 1 X u u 1 X 1 u u     (5.18) 

Similar to the classical F  method, the multiscale decomposition of mappings leads to a 

multiplicative split of the deformation gradient  , tF X . Substituting (5.18)(28) into (5.3)(9), 

we obtain: 

   ' ˆ

ˆ ˆˆ, GRAD GRAD
ˆ

t  

              
     

x x x
F X 1 u 1 u F F

X x X
 (5.19) 

 

5.3.1 Development of the multiscale finite element method in 1D context 

In order to keep the presentation as clear as possible, we will first present the details of 

the derivation in the context of 1D finite strain VMS formulation. Once made precise, we will 

follow in Section 5.4 with a general three dimensional version of the stabilized finite element 

formulation for finite deformations. 

In Variational Multiscale method, as the underlying field is decomposed into a coarse scale field 

and a fine scale field, the compositional mapping gives rise to a multiplicative split of the 

deformation gradient that can be written as 

 11 11 11F F F     (5.20) 

By employing the linearity in the weighting function slot in the weak form of the mixture theory 

governing equations, the coarse and fine scale residuals in reference configuration of each 

constituents are given as follows: 

Coarse-Scale Problem  
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1

11 1 1 1 1R

V V V

W
R P dX W B dX W J I dX

X


       


  

    (5.21) 

Fine-Scale Problem  

 
1

11 1 1 1 1R

V V V

W
R P dX W B dX W J I dX

X


       


  

    (5.22) 

The objective at this point is to solve the fine-scale problem (5.22) either via analytical or via 

computational method and extract an expression for the fine-scale field. This fine-scale field can 

then be substituted in the corresponding coarse-scale formulation given by (5.21), thereby 

eliminating the explicit appearance of fine-scales in those equations. Consequently, the 

additional terms that are thus inducted in (5.21) serve the role of modeling terms for the fine 

scales. 

5.3.1.1 Step A: Modeling of fine scales 

As stated earlier, the objective now is to solve the fine-scale problem. Since the problem 

at hand is nonlinear, therefore a closed form solution of the fine-scale problem may not be 

possible. As such, we will try to extract a closed-form expression, which in fact may need some 

coefficients to be determined via numerical techniques. To obtain an explicit expression for the 

fine scale, equation (5.22) is linearized with respect to fine scale field and is given as,  

  1 1D 0R R u       (5.23) 

For the matrix, the consistent tangent term in equation (5.23) is given as, 
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 (5.24) 

where, the first term is the tangent moduli that arises due to the stress term and the rest of the 

terms are the contributions from interactive force term.  

5.3.1.2 Hierarchical bubbles for fine scale field 

Unlike the conventional application of VMS for the development of stabilized methods 

for the PDEs, in the present case fine scales are not just the corrections terms to the coarse scale 

fields. Rather, they are also part of the physics that is otherwise not accounted for in the coarse 

scales system due to the use of lower order Lagrange polynomials employed to expand the 

coarse field. Consequently, these fine scales are nonlinear and history dependent, and therefore 

need to be stored and transferred forward. In order to model the higher order terms in the 

interactive force field, the displacement field is not just the coarse scale field as modeled 

conventionally, but it is a sum decomposition of the coarse scale field and fine scale field. The 

incremental fine scale solution given by equation (5.23) is added to the previously converged 

fine scale field at the last load step. Thus, in this formulation, the fine scale fields are not 

independent of the previous load step and iteration, but it is a continuously evolving field that 

captures the physics that is lost by linear Lagrange function employed to model the coarse scale 

field. Hence, the total displacement field in the interactive force term is summation of coarse 

scale field and fine scale field, where the coarse scale field is discretized using linear Lagrange 

function and fine scale field is modeled using quadratic bubble function. Thus, though the second 

derivative of the coarse scale displacement field is zero, due to the evolving fine scale field, the 

interactive force field is non-zero.  
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To present the development of the method where fine scales are modeled using bubble functions, 

we employ a representative bubble function for linear Lagrange elements as shown in Figure 5.3. 

Observe that (5.23) is defined over the entire domain  . In view of computational expediency, 

we assume that the fine scales vanish over the boundaries e

  of the subdomains in the reference 

configuration. This is done by employing bubble functions that are polynomial functions, non-

zero within the element and are assumed to vanish at element boundaries. Accordingly, fine 

scales are given as, 
1 10,   W 0U    on 

e

   and 

  1 1
e

eU b  

  (5.25) 

  1 1
e

eW b  

  (5.26) 

 

Figure 5.3. 1D bubble function 

Substituting the assumed form of fine scales in (5.23) we obtain, 
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 (5.27) 

Equation (5.27) can be resolved locally, and the fine scales can be written as,  

  
1

1 1 1 2

m e eU b b Y Y


    (5.28) 
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wherein various quantities are defined as follows: 
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 1 11 1 1

e e e

e
m e m m e m m

R

V V V

b
Y P dX b B dX b J I dX

X



   

    
(5.30) 

Equation (5.30) shows an important relation that fine scale displacement field is proportional to 

the residual of the Euler-Lagrange equations over the sum of element interiors. Consequently, 

fine scales are residual based, and therefore the formulation emanating from embedding the fine 

scale solution into the coarse scales will be a variationally consistent formulation. 

    
1

1 2x Y Y


  (5.31) 

At this point we wish to emphasize that an important aspect of this derivation is that the 

stabilization tensor   that is given in equation (5.31) does not contain any approximation and for 

the case of finite deformation kinematics it evolves together with the solution. Since it 

incorporates equations (5.29) and (5.30), one can see that the mechanical parameters are 

represented in the expression of this tensor. In addition, this tensor evolves as the problem 

evolves, which is considered an important aspect of the formulation so that it is able to provide a 

stabilized response in the entire range of deformation.   

5.3.1.3 Step B: Variational embedding in coarse-scale problem 

With the fine-scale solution in hand, we return to the coarse-scale problem (5.21) to derive the 

stabilized multiscale formulation. Since (5.21) is a nonlinear function of 
1U  , we first linearize it 

with respect to 1U   so that the relationship (5.28) may be substituted. Accordingly, equation 

(5.21) is linearized with respect to fine scales,  
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 (5.32) 

Substituting (5.28) for the fine scales in the above equation, we obtain the multi-scale stabilized 

coarse-scale form, which is written here for the matrix constituent, in its residual form.  
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(5.33) 

A simiar expression can be obtained for the fiber constituent.  

5.3.1.4 Spatial description of the formulation  

At this point coarse scales can be solved by linearizing the above equation (5.33). The 

corresponding spatial form of the multiscale weak form of the matrix constituent can be obtained 

by pushing forward to the current configuration. 

  1 1D 0m m m mR R u    (5.34) 

Therefore, 
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 (5.35) 

where, the matrix stabilization tensor is given as,  
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(5.36) 

Since the multiscale formulation (5.35) is nonlinear, we need to linearize it in order to use 

nonlinear solution strategies such as the Newton-Raphson method. We perform linearization in 

the reference configuration and then push forward the results to the current configuration.  

Remark: Similar procedure can be used in deriving the corresponding equations for 

reinforcement and for the sake of brevity these equations are not shown here. 

5.3.1.5 Important feature of the VMS stabilized formulation  
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There are several important features in the modified weak-form presented above.  

1. The first line in (5.33) corresponds to the standard Galerkin method, and therefore this 

method is fully backward compatible with the standard Galerkin finite element 

techniques.  

2. The next four lines appear because of the assumption of fine-scales in the solution field. 

Accordingly, these terms are the fine-scale modeling terms, as they are representing the 

effects of the fine-scales that would otherwise be missed in the standard formulations. 

3. It is important to note that this formulation, by design, is a residual based formulation. 

This has important implications from a mathematical perspective. If the mesh generated 

to solve the problem is fine enough to resolve all the scales, as is done in direct numerical 

simulations, then the residual of the Euler-Lagrange equations for the coarse-scales are 

zero over sum of element interiors. As such, the driving term for the fine-scale problem 

becomes zero, and therefore fine-scales automatically disappear.  

4. Due to item 3 listed above, the formulation is mathematically consistent as it is fully 

capable to accommodate exact solution to the problem wherever the solution lies in the 

admissible space of functions employed in the finite element calculations. 

5. As the fine scale are allowed to evolve and kept track at every load step, the second order 

derivative of the displacement field in the interactive force term is non-zero. Thus, the 

lost physics due to the discretization of the coarse scale field using linear Lagrange 

element is captured through the evolving fine scale field.  

5.4 Three Dimensional Extension of the Stabilized Finite 

Element Formulation for Finite Deformations 

Following along the lines of the 1D case, we perform additive scale decomposition of the 

displacement field as follows: 

    u u u   (5.37) 

        (5.38) 

where, 
u  is displacement field and   is the weighting function field of the th  constituent. By 

substituting the additive decomposition of the fields into the weak form associated with each of 
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the constituents and employing linearity of the weighting function slots in these system, we 

recover the set of coarse and fine scale problem for each of the constituents. Since the procedure 

for multiscale form for each constituent is same, we present it in the generic form in reference 

configuration. 

Coarse-scale problem : 

   : d d d 0X RR J          
  

             u P b I  (5.39) 

Fine-scale problem : 

   : d d d 0X RR J          
  

             u P b I  (5.40) 

In order to solve the fine scale problem (5.40), we first linearize the above equation with respect 

to the fine scale field. The linearized fine scale problem is given as,  
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In order to obtain a closed form approximation of the incremental fine scale fields, we impose 

the following conditions on the fine scale space, 

 ;              on   e

    0 0u   (5.42) 

This reduces the linearized fine scale problem to be defined over each element and can be written 

as,  
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 (5.43) 

In the stabilized finite element literature, it is customary to discretize the fine scale space with a 

single bubble function , which has been found sufficient for stability of mixed field problems, 

interface problem and diffusion-advection equations. The objective of this chapter is to develop a 

method where the fine scales are employed to model the lost physics in the higher order mixture 
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constitutive theory when modeling using linear Lagrange elements. In order to achieve this goal, 

we approximate the fine scale using multiple bubble functions as given below 

 ;         e eb b      u     (5.44) 

Substituting the above discretization of the fine scale field into (5.43), the closed form 

approximation of the incremental fine scale field can be given as,  

 eb     u R   (5.45) 

where the residual is given as:  

 DIV RR J         P b I   (5.46) 

The stabilization tensor of the constituent in this formulation is not a square matrix of dimension 

3, but a rectangular matrix of dimension of 3 3n , where n is the number of bubble functions 

employed. 

5.4.1 Variational embedding into coarse scales 

Consider the coarse-scale probem (5.39) which is a function of both coarse scale and fine scale 

displacement. In order to solve this equation, the coarse scale problem is first linearized with 

respect to the fine scale field and given as,  
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where the first three terms are the standard Galerkin terms and the last three terms are the terms 

that arise due to linearization with respect to the fine scales that enhances the stabilization of the 

formulation. To keep the formulation simple, the contribution of the interactive force terms to the 

stabilization is ignored, i.e. the last term in (5.47).  

5.4.2 Multiscale and stabilized formulation for mixture theory 
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By substituting the incremental fine scale field (5.45) into (5.47), we obtain the multiscale form 

of the matrix governing equations:  
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where   is the volume fraction of the th  constituent. The interactive force terms in equation 

(5.48) is a higher order term which is the second order derivative of the displacement field. In 

this formulation, the incremental fine scale field is tracked and total final scales are allowed 

evolve as a function of the total residual. This fine scale field along with the coarse scale field is 

employed in evaluating the interactive force. To keep the computations simple and achieve 

quadratic convergence rate in the Newton-Raphson scheme, the fine scales field are updated only 

for the first three iterations.  

5.5 Employing Inherent Post-erriori Error Estimation of 

VMS method for spatial distribution of error 

A hallmark feature of the Variational Multiscale method is that it naturally gives rise to an 

error estimation procedure which quantifies numerical solution accuracy. This procedure was 

described in the context of linear elasticity by Masud and coworkers in [39] and [42] and other 

techniques are referenced therein. In this chapter we extend these arguments to the finite 

deformation problem in the context of the higher order mixture theory. 

 

Figure 5.4. Multiscale decomposition of the total solution into coarse and fine scales. 
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In the context of residual based stabilized methods, the total error k e u u   is due to the 

difference between the exact solution u  and the discrete solution h
u . As shown in Figure 5.4, we 

split our total solution into the coarse solution u  and fine solution u . As we use bubble function 

to represent the fine scale solution, our modeling of the fine scale may not capture all the 

unsolved features. Thus, there exists some localized error L  e u u   between the true fine scales 

and the modeled fine scales u . In additional, when we plug back the fine solution to find the 

coarse scale solution, i.e.  h u u u . Therefore, we represent the difference between the true 

coarse scale solution û  and the modeled discrete solution h
u  as the global error h

G  e u u . 

Thus we can get the total error in the following expression: 

 
h

G L G L      e u u e e u e e  (5.49) 

Where L Le e + u   is the total local errors, which represent the local errors below the level of the 

mesh ( û ) arising from modeled fine scales u  and the inaccuracies in these models Le . Referring 

back to Figure 5.4 Ge  represents how far off the red (long-dashed) curve û  is from interpolation 

the purple (solid) curve u , and Le   measures the inaccuracy in the blue (short-dashed) curve u . 

Due to the nonlinearity of the multiscale problem under consideration, the equation for these 

error components are also nonlinear. To ensure the economy of the error estimation method, we 

seek a linearized approximation that incrementally improves the computed multiscale solution. 

Thus, we focus on the linearized system of fine-scale equation and the coarse-scale equation. 

5.5.1 Local Error 

Within the context of the present version of residual based multiscale method, the very first 

calculation of the fine scale in any time step is in fact driven by the computed total solution from 

the last converged step. As such, as one goes to the next load level and computes the fine-scale 

via (5.28), it provides a first order estimate of the local error. As stated, the total local error is 

comprised of localized error L  e u u    between the true fine scales and the modeled fine scales 

u , as well as of the assumption inherent in the use of bubble functions that consider the error to 

be zero at the inter-element boundaries. Consequently, this computed value via (5.28) is only a 
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part of the local error. However, based on our earlier experience, it is a good indicator for use in 

case if adaptive mesh refinement strategies are to be employed. 

From Section 5, the local error has two components as u  and Le . For simplicity, we ignore Le   

and take L e u   as an assumption. Since u  is the modeled fine scale solution, we get the 

following expression for the incremental fine scale solution: 

  
L

   ue u R  (5.50) 

where the residual and the proportionality tensor is given as    DIV o   R u FS u b . As can 

be seen, the last converged solution is fully represented in this residual, and therefore (5.50) is a 

measure of the local error. This idea will be exploited in the numerical test cases presented in 

Section 9. 

5.5.2 Global Error 

With the fine scales computed, we get the total finite element solution to current point in time as: 

 ˆ
h

   u u u  (5.51) 

As mentioned, we seek incremental improvements to allow for a linear approximation and thus 

give the following representations of the coarse scale: 

 ˆ
h G

  u u e  (5.52) 

To obtain equations for this quantity, we generalize the derivation of the global error equations 

performed in [150] to the current system of nonlinear equations. We start by returning to the 

coarse-scale problem linearized about the fine scales, given by (5.35). Expression for the fine 

scales '

Lu e    is substituted in place of u , and then integration by parts is applied along with 

the formula for the local-explicit error (5.50) to arrive at equations analogous to (56) but 

containing additional terms involving Le  . Next, we linearize these equations about the coarse 

scale in the same manner as in Section 5.1. Finally, noting that  ; 0h h

u oR η u  because h
u  is the 

converged solution from the Newton-Raphson algorithm, the contributions from h
u and Le  
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vanish identically. Thus, we obtain a reduced system of equations to be solved for the global 

error components. 

      s s

,, : : : d dh h h h

G L La J
 

     


 

           η e η e σ η c e I  (5.53) 

Remark: We highlight that the left-hand side of the system attained above is completely 

identical to the left-hand side from the last iteration of the Newton-Raphson algorithm applied to 

the linearized coarse-scale system (56). Therefore, if this stiffness matrix was previously 

factorized and stored, then the calculation of ,G u
e  involves only a back-substitution with an 

updated right-hand side evaluated according to (81). 

 

5.5.3 Multiscale and stabilized formulation for mixture theory 

The estimated error components presented in the preceding sections can be combined into a total 

estimate for the discretization error. As proposed in [41], an algorithmic simplification can be 

obtained by dropping the local-implicit component that corresponds to the assumption that fine-

scales are nodally exact, to obtain an explicit error estimate, thereby saving on the computational 

cost of solving the local problems:  

 L Ge e e      (5.54) 

Remark: The key conclusion from the preceding discussion is that the error estimation method 

contained in the VMS approach carries over from linear to nonlinear problems. Other remarks 

on these error estimation techniques are contained in [41] and [42]. 

5.6 Material Model for the Matrix and the Fiber 

Following material model are employed for the constituents, where the matrix is considered 

to be isotropic and the fiber to be transversely isotropic.  

      
2 21 1

,
2

m m m m m

m

T

x t tr tr  


       
   (5.55) 
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(5.56) 

In mixture theory, as each constituent is homogenized, the fiber material property is to be 

modeled such that it can represent the effective composite behavior. Let us consider a glass 

epoxy composite, whose properties are provided in Table 5.1. For the single continuum effective 

composite material, the material properties are obtained using self-consistent field (SCF) model. 

For mixture theory, the homogenized fiber properties are obtained using the eq. (5.57), where 
  
C

c
 

represents the effective material moduli of the composite obtained from SCF model, 
  
C

m
 is the 

material moduli of the matrix material and 
  
C

r
 is the material moduli of the fiber material. 

 
c m m

r

r

V

V




C C
C  (5.57) 

This is shown schematically in Figure 5. First, the underlying discrete fibers and matrix materials 

are segregated. Then their material effects are homogenized across the entire domain; the 

anisotropic character of the fiber preform is still maintained, as is shown in the blue hatched 

subdomain. Then these two distributed materials are combined in an overlapping sense into a 

single mixture across the entire domain, and the anisotropy induced by the oriented fiber 

subdomain is inherited by the resulting material. Each material particle can be viewed as 

containing a portion of each underlying constituent material, apportioned according to the 

volume fraction of each constituent. The discrete interactions between the constituents are then 

accounted for through the interaction force terms in the governing equation of balance of linear 

momentum. 
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Figure 5.5. Mixture theory homogenization 

                                         Table 5.1: Glass-epoxy composite properties 

Vf = 0.5 E1 (GPa) E2 (GPa) ν12 G12 (GPa) G23 (GPa) 

Matrix (Epoxy) 3.45  0.3   

Fiber (Glass) 73  0.22   

Composite (SCF) 38.23 8.62 0.251 3.565 3.131 

 

In the current implementation of the model, the fiber-matrix volume fraction is assumed 

to be constant all over the domain. As such, the respective volume fractions are constants. This 

restriction can however be removed for cases where a non-uniform distribution of reinforcing 

fibers is encountered. In that case the rV  will be a function, varying as a function of the spatial 

coordinates. Accordingly, mV  would also vary smoothly and therefore the resulting composite 

would inherit anisotropy and material heterogeneity. This aspect of functional form of rV will be 

pursed in future extensions of this work, and it will account for the uncertainty in the designed 

microstructure of the material. It is important to note that the underlying framework would allow 

for a rapid variation in the value of rV  and this would indicate a local defect in the material. 

However, rapid variation in rV  will lead to rough coefficients in the discrete nonlinear coupled 

system of equations.  
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In the current framework, once the value of m
C  is obtained at time zero, then material 

properties evolve as the Helmholtz functional for the fiber-matrix system evolve. Furthermore, it 

is important to realize that from a discrete constituents viewpoint,  r
C  does not evolve because 

we have assumed that the reaction takes place in the matrix material and not in the fiber. 

Consequently, it is the matrix material at the fiber-matrix interface that evolves and makes the 

interphase, and thereby m
C  continuously evolves. As a consequence, m

C evolves continuously 

and provides us the provision to be able to track the evolution of the mechanical material 

properties of the resulting material. 

5.7 Numerical Results 

In this section, the performance of the variational multiscale method presented in section 5.3.1 

and section5.4 is analyzed through 1D and 3D numerical examples. In section 5.7.1, a one 

dimensionsal curing of the composite is considered, where the interactive forces modeled 

through standard linear, quadratic Lagrange element is compared with 8 VMS Lagrange element. 

In section 5.7.2, matrix and fiber constituents are modeled individually as a three dimensional 

block where the interactive force modeled through the VMS element is highlighted. In section 

5.7.3, we present a holistic numerical problem of process modeling and performance modeling of 

a composite plate with hole.  

5.7.1 Curing of composite 

In this section, we present the numerical results for curing of composites using Ruiz 

model [54] with quadratic elements, linear elements and linear-VMS elements. This problem was 

introduced in Section 3.4.1, where we had employed quadratic/cubic Lagrange functions to show 

the features of the mixture model. The results for the Linear VMS Lagrange elements are 

presented, where for the coarse scale fields, linear Lagrange functions are employed and for fine 

scales, quadratic bubble functions are employed. The matrix stress and interactive force between 

these elements are compared and the capability of the variational multiscale framework to 

capture the interactive force higher order effect with linear elements, which otherwise could be 

modeled only using quadratic or higher order elements, are highlighted.  
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The one-dimensional problem with a prescribed displacement of 0.1 was run for 600 

seconds with a time step size of 5 seconds. The temperature was assumed to be uniform and 

constant and assigned a value of 393 K. Figure 5.6 shows the degree of cure as a function of time 

with Linear-VMS elements. Figure 5.7 shows the interactive force along the rod at 600 seconds 

obtained using quadratic, linear and linear-VMS elements. From equation (5.12)  it can be seen 

that the interactive force is a function of the spatial gradient of the Helmholtz free energy 

function. As seen in Figure 5.7, under the standard Galerkin method, linear elements are unable 

to model the evolution of the interactive force due to chemical curing, and the computed value is 

zero in the domain. The quadratic elements can however provide a piecewise linear 

representation of the interactive force due to interphase evolution and is around 120 N along the 

domain. This requirement for the use of higher order functions arises due to the spatial gradient 

of the deformation-gradient present in the interactive force term. The Variational multiscale 

framework with locally defined higher order bubble functions is shown to capture almost 90% of 

the physical value via the fine scale modeling terms. The computed value with Linear-VMS 

elements is 109 N.  

 

Figure 5.6. Degree of cure as a function of time with Linear-VMS elements 
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Figure 5.7. Comparison of Interactive force along the rod using Quadratic-Galerkin, Linear-

Galerkin, and Linear-VMS elements 

 

Figure 5.8. Comparison of matrix stress along the rod using Quadratic-Galerkin and                 

Linear-Galerkin elements 

Figure 5.8 shows the comparison of the matrix strain along the rod at 600 seconds obtained from 

linear-Galerkin and linear-VMS elements. While linear-Galerkin elements only provide a first-

order approximation to the strain field, the linear-VMS can model the uniform strain field in the 

domain. We show in Figure 5.9 that the matrix stress response of linear-VMS elements that 

employ quadratic bubble functions in the modeling of fine-scales is similar to that from the 

quadratic Lagrange elements. As stated earlier, the major advantage of using linear-VMS 

element is the reduced computational cost in comparison to quadratic element. Through 



 

133 

additional local element calculations, the interactive force is modeled to a reasonable accuracy, 

which is impossible with the standard linear Lagrange elements.  

 

 Figure 5.9. Comparison of matrix stress along the rod using Quadratic-Galerkin and                 

Linear-VMS elements 

5.7.2 Fine scale evolution 3D 

In this section, a 3D block of dimension 1.0x0.1x0.1 mm is considered. The domain is 

discretized using 8-noded Lagrange elements, 8-noded VMS Lagrange elements and 27-noded 

Lagrange elements. The x=0, y=0, z=0 face is constrained in u, v, w directon respectively. The 

x=1.0, y=0.1 and z=0.1 plane is subjected to u, v and w displacement of -0.001 respectively. 

Similar to section 5.7.1, the axial stress and interactive force in x and y direction are compared 

with all three elements as mentioned above. The results are presented first for matrix material 

and then for fiber material. The matrix material is subjected to a gravity of 9810000 mm/s2 in x, 

y and z direction and the results are presented Figure 5.10-Figure 5.13. Figure 5.10 shows the 

matrix axial stress for 8-noded Lagrange element, 27-noded Lagrange element and 8-noded 

VMS Lagrange element. It can be observed that the matrix axial stress profile for all three 

elements are similar. Figure  and Figure 5.12 shows the interactive force contour in the domain 

in X and Y direction respectively. The interactive force in X direction for 8-noded Lagrange 

element varies between -0.00255 and 0.00211 N/mm3 while for the quadratic Lagrange element 

varies between -0.897 to 0.151 N/mm3. By allowing the fine scales to evolve, the 8-noded VMS 

Lagrange element is able to capture the interactive force similar to the quadratic Lagrange 
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element and achieves a minimum and maximum of -0.909 and 0.13 N/mm3. A similar trend is 

observed for the interactive force in Y direction as shown in Figure 5.12. The interactive force in 

X and Y direction are plotted along the length of the domain at the center of the block in Figure 

5.13. The line plot clearly shows the advantage of the proposed variational multiscale method in 

comparison to the linear Lagrange and quadratic Lagrange element.  

                    

            (a) B8 element                                                                       (b) B27 element 

 

(c) B8-VMS element 

Figure 5.10. Matrix axial stress 

               

             (a) B8 element                                                                     (b) B27 element 

Figure 5.11. Matrix Interactive force in X direction 
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(c) B8-VMS element 

Figure 5.11 (cont.). Matrix Interactive force in X direction 

               

        (a) B8 element                                                                       (b) B27 element 

 

(c) B8-VMS element 

Figure 5.12. Matrix Interactive force in Y direction 
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                (a) Interactive force in X direction                        (b) Interactive force in Y direction 

Figure 5.13. Interactive force along the length of the domain 

                    

        (a) B8 element                                                                          (b) B27 element 

 

(c) B8-VMS element 

Figure 5.14. Fiber axial stress 
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                (a) B8 element                                                              (b) B27 element 

 

(c) B8-VMS element 

Figure 5.15. Fiber Interactive force in X direction 

               

                (a) B8 element                                                                   (b) B27 element 

Figure 5.16. Fiber Interactive force in Y direction 
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(c) B8-VMS element 

Figure 5.16 (cont.). Fiber Interactive force in Y direction 

  

                (a) Interactive force in X direction                        (b) Interactive force in Y direction 

Figure 5.17. Interactive force along the length of the domain 

Next, the same problem is solved for the fiber material which is transversely isotropic and is 

subjected to a gravity force of 98100000 mm/s2. This problem is solved to showcase the 

proposed method’s capability to capture the interactive force in X and Y direction due to 

material directionality. From Figure 5.17, it can be inferred that the 8-noded VMS Lagrange 

element models the interactice force in X and Y direction similar to the quadratic Lagrange 

element.  

5.7.3 Plate with a hole 

The objective of this section is to showcase the proposed method’s capability to model both 

process modeling and performance modeling of the composite. Most available methods in 
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literature, perform process modeling independent of the performance modeling of the material. 

Homogenized idealized material models are employed in determining the load carrying capacity 

of the material involved. In this process, the inhomogeneity in the material property distribution, 

residual stresses due to differential cooling of the constituents are neglected and hence, the 

design of structures with these mateials requires a certain amount of factor of safety to ensure 

robustness. In this section, we consider a rectangular prismatic domain of dimensions 

60×20×2.5  mm with a circular hole of radius of 1.0 mm. This pre-impregnated composite with 

a fiber orientation of zero degrees has a epoxy resin with properties as shown in Table 5.2. 

Initially, the resin is assumed to have a very low Youngs modulus. This pre-impregnated 

composite is then allowed to cure until the matrix reaches a fully cured state of 0.99. In this 

problem, a temperature field as shown in Figure 5.18a is specified to model the thermal field 

variation in the actual curing process. The temperature is assumed to have a maximum value of 

413 K at x=+/-30 plane and reaches a minimum of 393K at x=0 plane.  The lamina is subjected 

to an axial pressure of 2 MPa at x=+/-30 plane in the axial direction until the matrix reaches a 

cure value of 0.99. The nodes are appropriately constrained at 0x   plane to avoid rigid body 

motion. Once the matix is fully cured, the laminate is unloaded. To study the performance 

modeling aspect due to the variation in material properties after curing, an axial pressure of 200 

MPa is applied at x=+/- 30 plane. The hoop stress vs applied pressure ratio along the 

circumference of the hole is compared with the exact solution provided in [51].  

Table 5.2. Material properties of the lamina 

    (MPa)   (MPa)   (MPa) 
L (MPa) T (MPa)    

(kg/mm3) 

Volume

Fraction 

Fiber 1.314E+03 -3.86E+03 2.252E+05 9.674E+03 3.531E+03 1550E-09 0.7 

Matrix 3.4315 - - 2.2877 - 1200E-09 0.3 

 

Figure 5.18 presents the temperature profile, degree of cure and Youngs modulus variation at 

300 seconds of the cure cycle. It can be observed from Figure 5.18b that the matrix material 
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cures faster in the region close to the boundary in comparison to the middle region of the lamina. 

This is due to the temperature distribution as shown in Figure 5.18a, where the temperature is 

higher close to the boundaries and hence faster cure rate.  Figure 5.18c shows the Youngs 

modulus distribution of the matrix material at 300 seconds. The matrix Youngs modulus peaks at 

x=+/- 15 plane, while it has a lower Youngs modulus at the fully cured boundary region. Though 

the curing rate is faster near boundaries, this distribution is due to the fact that the fully cured 

matrix Youngs modulus at higher tmperature is lower than the middle region where the 

temperature is cooler by 20K. Figure 5.19 shows the composite axial stress profile across the 

domain at 300 seconds. It can be seen that the axial stress is higher in the region around the hole, 

where the tensile stress is 13.6 MPa for an applied pressure of 2 MPa.  

       

    (a) Temperature profile across the domain                                (b) Degreee of cure 

 

(c) Matrix modulus 

Figure 5.18. Temperature, Cure, Matrix modulus variation at 300 seconds 
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Figure 5.19. Composite axial stress at 300 seconds cure cycle 

 

Figure 5.20. Matrix modulus of a fully cured matrix, cure = 0.99 

                     

                (a) Composite axial stress                              (b) Composite axial stress – Zoomed view 

Figure 5.21. Composite axial stress of a fully cured composite at 200MPa loading 
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        (a) Interactive force in X direction                                (b) Interactive force in Y direction 

Figure 5.22. Interactive force of a fully cured composite at 200 MPa loading 

    

             (a) Hoop stress vs applied pressure                               (b) Matrix Youngs Modulus 

Figure 5.23. Variation of the hoop stress and matrix modulus along the circumference of the hole 

Figure 5.20 show the matrix modulus variation once the matrix is fully cured, where the degree 

of cure reaches a value of 0.99 at every spatial point in the domain. As mentioned earlier, due to 

the specified temperature variation, the matrix Youngs modulus is higher in the middle region in 

comparison to the regions near the boundaries. This is a representative simulation of how curing 

can affect the distribution of the resin properties in the manufactured composite due to heat 

treatment. This composite is subjected to an axial loading of 200 MPa at x=+/- 30 plane. Figure 

5.21 shows the composite axial stress contour in the lamina, where the maximum axial stress of 

1.36e3 MPa occurs at 900 position along the circumference of the hole with respect to the axial 

direction. Figure 5.22a and Figure 5.22b shows the interactive force profile in X and Y direction 
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respectively. Both these plots shows that the interactive force in X and Y direction achieves a 

maximum at 900 position along the circumference of the hole, suggesting the failure initiation 

location. Figure 5.23a shows the distribution of the hoop stress vs applied pressure along the 

circumference of the hole for fiber orientation of 00 degree. The hoop stress vs applied pressure 

is plotted for two cases: (i) At 300 seconds of cure cycle, where a pressure of 2 MPa is applied, 

(ii) For a fully cured material, where a pressure of 200 MPa is applied. As the material model 

employed in this work is nonlinear elastic and as shown in Figure 5.23b, the temperature 

variation along the circumference of the hole is almost constant, the hoop stress vs applied 

pressure for both the materials overlap over each other and compares well with the exact 

solution.  

5.8 Conclusions 

In this chapter we have presented a numerical scheme that is based on a new variational 

formulation that possesses enhanced stability properties as well as an ability to account for 

multiple spatial scales in the solution. Specifically, it is shown that linear Lagrange functions 

with VMS based fine-scale modeling leads to an enriched method that can capture the physics 

that is otherwise captured only via quadratic or higher order Lagrange interpolation functions. A 

capstone problem which starts with process modeling of composite followed by the performance 

modeling of the cured material under one framework is presented. The variation in the material 

properties due to the thermal field and degree of cure is highlighted and its impact of stress 

distribution is studied.  
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Chapter 6 

Concluding Remarks and Future Work 

6.1 Concluding Remarks 

An objective of this research was to develop a unified theoretical and computational 

framework for process modeling and performance modeling in fibrous composite materials. A 

literature review reveals that laminated composites made of directionally oriented fibrous 

materials are of prime interest for application in military and commercial planes, as well as in a 

variety of products of commercial interest. Although there are many theoretical and 

computational models that are available in the literature that can be used for performance 

modeling of laminated composite materials and structures, robust theoretical frameworks along 

with computationally efficient algorithms that can result in scalable codes which can be used for 

process modeling of fibrous composite materials are still under development. Another prime 

objective of this research was to be able to employ the same framework for modeling of interface 

and interphase evolution in fibrous composite materials. To this end we employed a 

thermodynamically consistent mixture theory that formed the theoretical basis of developments 

presented here, and we employed and further developed the Discontinuous Galerkin Variational 

Multiscale (DGVMS) method for application to multi-constituent materials in a coupled chemo-

mechanical environment. 

We started our developments in Chapter 2 with the presentation of a new stabilized finite 

element method [23-25] for the fluid-solid mixture theory model of Hall and Rajagopal [13] that 

is based on the constituent equations of motion and mass balance. The model addresses the 

energy and entropy production equations through an equation for Lagrange multiplier that results 

from consideration of the full set of balance equations as a constraint during the process of 

maximization of entropy production. The resulting system of equations is applied to isothermal 

processes in the one-dimensional context.  Employing VMS ideas, a multiscale decomposition of 
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the fluid density field into coarse and fine scales and a-priori unique decomposition of the 

admissible spaces of functions leads to two coupled nonlinear problems termed as the coarse-

scale and the fine-scale sub-problems. The fine-scale solution is extracted from the nonlinear 

fine-scale sub-problem which is then variationally projected onto the coarse-scale space, leading 

to a formulation that is expressed entirely in terms of the coarse-scales. Although the final 

formulation does not depend explicitly on the fine-scale density field for the fluid, the effects of 

fine-scales are consistently represented via the additional residual based terms, and they add to 

the stability of the numerical method. The resulting stabilized method for the mixture model is 

applied to hyperbolic propagation while recovering Fickian diffusion, anisotropic oxidation in 

composite materials recovering the data of Tandon et al. [14], and mass deposition. Results of 

the oxidation modeling of Tandon et al. [14] are recovered by employing the reaction kinetics 

model and properties assumed therein; the only additional assumed properties are two constants 

describing coupled chemo-mechanical and purely chemical dissipation. In all of these cases the 

mixture provides rich detail concerning the kinematic and kinetic behaviors of the constituents, 

in contrast to standard effective media approaches. 

In Chapter 3 we presented a model for interphase formation during the curing process of 

composite materials in the context of mixture theory and cast in a finite strain framework. The 

model is based on the maximization of the rate of entropy production constraint and 

accommodates anisotropic effective reaction rates accompanied with an anisotropic tensor that 

provides coupling of chemical reaction and mechanical stresses. In this multi-continuum theory 

for composites, the material particles of different constituents are grouped together at reference 

configuration to define a composite particle. Though these constituent particles occupy different 

spatial points as the material deforms, the interactions between constituents are evaluated in the 

reference configuration using the composite particle. A significant feature of the mixture model 

is the interactive force field that is generated due to the interplay of the constituents. Even though 

in the homogenized mixture element an explicit discrete representation of the constituents is 

suppressed, the interplay of the constituents is fully accounted for via interactive force fields and 

the corresponding coupling terms that emanate from the mixture modeling ideas. It is important 

to realize that the standard single continuum homogenization theories do not possess this feature 

and while they can model kinematics of deformation, they cannot provide an insight into the 

interplay of the constituents. As such they are not able to identify the regions in the composite 
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where interactive force fields can exceed the load transfer capability between fiber and matrix 

which can lead to the initiation of localized damage. 

In Chapter 4 we presented a mixture based model for multi-constituent solids where 

constituents are governed by their individual balance laws and are cognizant of the presence of 

other coexisting constituents via the interactive forces that emanate from maximizing the entropy 

production. The model is locally homogeneous while the structural layout of the fiber component 

introduces directionality as well as heterogeneity at the mesoscale. The coexisting constituents 

are represented independently inside the domain, weighted by their volume fractions and coupled 

via the interactive force field. To model the damage-free boundaries of the composite, a method 

is presented to tie the constituents at the Neumann boundaries. The boundary constraint 

equations find roots in the interface mechanics literature and they are modified to account for the 

non-zero applied tractions. The resulting computational method draws from the stabilized 

Discontinuous Galerkin method for finite strain kinematics where VMS based multiscale 

decomposition of the deformation map at the Neumann boundary and subsequent elimination of 

the underlying Lagrange multiplier via local modeling of the edge fine scales via edge bubble 

functions results in terms that self-consistently tie the multiple constituents. The resulting terms 

that enable the condensation of the multiplier field from the formulation also provide an edge 

based stabilization of the method. Closed-form expressions are derived for a generalized penalty 

tensor and a weighted numerical flux that are free from any tunable stability parameters. 

Numerical tests verify that the consistently derived constituent coupling parameters 

automatically evolve with evolving material and geometric nonlinearity at the boundaries. 

Several three-dimensional test cases are presented to validate the method via comparison with 

experimental, numerical and analytical data published in the literature. In all the cases the 

representative volume element consists of overlapping and coexisting matrix and fiber domains 

where matrix constituent is considered to be homogenous and isotropic and the fiber constituent 

is considered to be a transversely isotropic material. The interactive force field plots for the 

various test cases highlight the region that are susceptible to peeling and debonding of the 

laminates and this insight can help in developing methods for delamination in composites that is 

one of the most dominant modes of failure of laminated material systems. A large deformation 

bending of a composite beam problem is presented that has an analytical solution. Rate of 
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convergence study in terms of H1 seminorm is presented that highlights the variational 

convergence of the method. 

6.2 Future Work 

The theoretical and computational framework developed in this work can be extended for a 

variety of problem classes in computational material science and engineering. One extension is 

to combine the mixture theory model with the DGVMS ideas employed at the laminate interfaces 

to model delamination of the compistes as shown in Figure 6.1. Since DG functions are 

employed between the lamina, the fields may or may not be continuous. The continuity of the 

fields can be weakly enforced via interface coupling terms [43,45,60]. 

 

Figure 6.1. Delamination of the lamina 

Another class of problem that can be considered is the modeling of laminates for macro-scale 

applications. As discrete modeling of the laminate for real world applications will be 

computationally intensive, the regions where the response will be homogenous can be modeled 

using mixture theory while the tow regions can be modeled in a discrete sense. These two class 

of PDE’s can be combined at the interface using the heterogeneous multiscale method [60].  

 

Figure 6.2. Heterogeneous modeling of composite 
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Appendix A 

Relation between Solid Diffusivity and Drag 

Coefficient 

In section 2.5, we have presented a reduced order mixture problem, oxidation of PMR-15 resin 

and slurry infiltration problem. A literature review reveals that the reduced order mixture 

problem and the oxidation problem is in general modeled via diffusion reaction equation, while 

the slurry infiltration problem is typically modeled via Darcy equation. In the context of the 

mixture theory model, the fluid solid interaction is accounted for via the interactive force field, 

which requires the specification of drag coefficient vA . The relation between the drag coefficient 

vA  and the diffusivity of the solid D  can be obtained by comparing the mixture theory equations 

and the Fick’s diffusion reaction equation. Similarly, the relation between the drag coefficient vA  

and the permeability of the solid K  can be obtained by comparing the mixture theory equations 

and the Darcy equations for the slurry infiltration problem.  

A.1 Fick’s Diffusion Reaction Equation 

The Fick’s diffusion reaction equation is written as follows:  
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f f
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where, D is the solid diffusivity.  Consider a semi-infinite domain, where the initial 

concentration in the domain at time 0t   is f

R  and 
0

f  is the specificed concentration at left 

end of the domain. For the case, where there is no chemical reaction, the exact solution for 

concentration f  and it gradient is given as,  
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A.2 Darcy Equation 

The fluid balance of mass and the Darcy’s law are given as follows: 
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where 1

fu  is the filtration velocity, K
 
is the permeability of the solid, and LA  is the viscosity of 

the fluid. Assuming that the pressure of the fluid follows ideal gas law, 
fp R  , eqs. (A.4) and 

(A.5) can be combined as follows, 
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where

 

s  is the solid porosity. Equation (A.6) can be written in an expanded form as: 
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A.3 Mixture Theory 

The fluid balance of mass and linear momentum are given as, 
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where, the fluid body force and inertial effects are neglected. 

A3.1 Reduced order mixture problem 

Consider the constitutive relations for the fluid stress and interactive force as given in eqs. (2.57) 

and (2.58). Substituting these constitutive relations in eq. (A.9), the fluid velocity can be written 

as, 
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Equations (A.6) and (A.8) can be combined to give,  
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Comparing eqs. (A.1) and (A.11), the drag coefficient can be written in terms of solid diffusivity 

as: 
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A3.2 Oxidation and slurry infiltration problem 

Consider a simplified form of the constitutive relations for the fluid given in eqs. (2.31) and 

(2.32), as given below,  
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Substituting the above eqs. (A.13) and (A.14) in eq. (A.8), the fluid velocity can be written as, 
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Fluid velocity given in the above expression is substituted in the fluid balance of mass, eq. (A.8) 

and is written as follows, 
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Comparing eq. (A.17) and eq. (A.1), we can obtain the following relation for solid diffusivity 

and drag coefficient for the oxidation problem as, 

 ( )
f

f

v

T

R
D

A


 

 
   (A.18) 

Comparing eq. (A.17) and eq. (A.7), we can obtain the relation between the drag coefficient and 

the permeability of the solid for the slurry infiltration problem as, 
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In the section 2.5.3, we have presented numerical results for a simplified form of the above 

relation, 
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Appendix B 

Consistent Linearization 

B.1 Stiffness Contribution from the Interactive force 

This section presents the expressions for the variational derivative of the interactive force with 

respect to the fine scale fields. 
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(B.2) 

The variation of the fiber interactive force with respect to the matrix fine scale displacement field 

is obtained by interchanging m and r indices in (B1) and (B2). 

B.2 Consistent Linearization 

This subsection provides consistent linearization of the final multiscale weak form, equation 

(4.49). It can be observed that equation (4.49) is a function of both matrix and fiber displacement 

fields. To solve this problem in a fully coupled fashion using Newton-Raphson scheme, we 

linearize the stabilized primal formulation with respect to both the constituents. The tangent 

stiffness matrix of the final multiscale weak form given in (4.49) can be written in symbolic form 

as, 

  (B.3) 

The variational derivative of the coarse scale residual with respect to both the constituents in 

reference configuration is given as, 
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  (B.4) 

The weighted average of flux term in the above equation can be further simplified as, 

  (B.5) 

and the linearization of the acoustic tensor term is written as, 
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Where, 
 is the sixth order tensor of material moduli and is defined as,  
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The final consistent tangent stiffness matrix contribution due to the constituent a  can be written 

as, 
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We now push forward the residual of the governing equations and the consistent tangent stiffness 

terms to the current configuration as follows.  

Residual vector: 

  (B.9) 

Stiffness matrix: 

 
(B.10
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B.3  Body Force and Traction Field for Large Deformation 

Bending of the Composite Beam 

For the case of fiber orientation along the axial direction, the first Piola-Kirchhoff stress and 

body force of the fiber are given as follows. 
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) 

Accordingly, the three components of the body force are given by, 
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B.4  Exact solution for plate with a hole problem 

The exact solution for the hoop stress to applied pressure ratio based on two dimensional 

anisotropic elasticity is given as,  
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where 
k

ijQ  is the stiffness coefficients of individual lamina, kh  is the plate thickness,   is the 

angle between the fiber and applied pressure and   is the angle around the hole.  


