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Abstract

This thesis presents a mathematical framework for precision attitude control of a

spacecraft using the inertial coupling between the spacecraft and solar arrays. The

spacecraft with solar arrays is modeled as a one degree of freedom cylinder (rigid body

rotation) with flexible appendages (infinite-dimensional system). The equations of

motion that describe system evolution are derived using the extend generalizations of

the Lagrangian for infinite dimension systems. Precision attitude control is achieved

by bending the flexible appendage using strain actuators. Global asymptotic conver-

gence of the controller’s is proved using the Lyapunov direct method, which ensures

that the control objectives of trajectory tracking and slewing are achieved. The

Input-to-State stability of these controllers is used to generalize the control laws in

terms of a variable that scales the stiffness term. The closed-loop system is simulated

numerically for different values of the variable to verify stability.

An experimental setup, that mimics a spacecraft with solar arrays is designed as

a cylinder that is secured to a flexible beam using an interference fit. The strain

actuation of the beam is achieved using piezoelectric actuators. The rotation of the

cylinder and bending in beam are estimated using measurements from a Vicon motion

capture system. The closed-loop system is tested in real-time to achieve controlled

rotation of the cylinder.
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1 Introduction

Space observatories call for precision attitude control and high pointing accuracy to

achieve a quality image (Hubble and James Webb Space Telescopes require 6 mil-

liarcsec and 15 milliarcsec pointing accuracies respectively [2]). A range of emerging

science missions (e.g., Asteria [3], Exo-C [4]) and technologies like laser communi-

cation [5], precision formation flying, and interferometric sensing, place stringent

requirements on spacecraft pointing accuracy and stability. Pointing error is mea-

sured relative to an inertial frame (called absolute pointing accuracy) or a reference

celestial body (called relative pointing accuracy) [1]. In this thesis, it is assumed that

there is no relative motion between the inertial frame and the reference celestial body

(often the body of interest); the absolute and relative error are the same. Pointing

error can be divided into a steady state DC (drift) component and an AC (jitter)

component [6]. The DC component is driven by the need to keep the object of in-

terest within the field of view of the scientific instrument, whereas pointing stability

is defined for a particular frequency of AC component, i.e., angular variation of the

pointing direction over the exposure time of the scientific instrument. For a detailed

account on pointing accuracy and stability see Refs. [1, 6].

The state-of-the-art control architecture for achieving high pointing accuracy and

stability of space observatories involves two stages [1, 4]: instrument pointing, which

is achieved using a spacecraft Attitude Control System (ACS), and precision pointing

and jitter reduction, which is achieved with a Fast Steering Mirror (FSM) in the

payload. This architecture includes: 1) Fine Guidance Sensor (FGS), located on the

focal plane of the telescope that provides high-rate pointing measurements that are

fed back to the controller, 2) FSM that has high bandwidth due to its small inertia

compared to the spacecraft to compensate for the jitter. The control architecture also
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involves design decisions such as choosing Earth-trailing orbits, designing spacecraft

structures to be as rigid as possible to eliminate control structure interaction i.e.,

avoiding excitation of structural vibration modes, and passive vibration isolators for

Reaction Wheels Actuators (RWAs) to reduce jitter. For a comprehensive review of

control architectures for high pointing precision see Refs. [1, 4].

The current technology for attitude control relies primarily on RWAs and thruster-

based Reaction Control Systems (RCSs). RWAs have reliability issues [7, 8], and

are primary source of jitter. RCSs are limited by the fuel carried on the spacecraft.

Consequently, there is a patent need to develop better technology to achieve precision

pointing. Traditionally, fraction of the control effort is used to keep the structural

deflections small and damp different modes as shown in Fig. 1 and another part

of the control effort is used to control the spacecraft as a rigid body [9]. In this

thesis, we design a controller exploiting the Control Structure Interaction (CSI) by

using the coupled dynamics of satellite hub and flexible solar array. Solar array

bending is achieved by strain-actuation to perform trajectory tracking and slewing

maneuvers. The maximum attitude rotation that can be achieved by bending the

solar array is constrained by the maximum stress that can be applied to the solar

array without compromising its structural integrity (also, within the elastic limit

of the solar array). In Ref. [10], a preliminary analysis of Strain-Actuated Solar

Array (SASA) technology was conducted by modelling the solar array as pseudo

rigid body dynamic model, where the infinite-dimensional system is modelled as a

finite-Degree of Freedom (DOF) system. As a consequence, this model is prone to

spillover [11] as high frequency modes of the flexible appendage are not modelled.

A preliminary investigation on using SASA technology to replace RWA assemblies

with solar arrays of large inertia to achieve spacecraft slewing, attitude control, and

momentum management was studied in Ref. [12]. Considering the critical nature

2



Frequency

Structural 
modes

Damping 
strategies

Rigid body mode Solar array modes Flexible structural modes

Attitude Control System

Active Stabilization
Passive vibration isolation

Solar array damper RWA isolator

Frequency

Figure 1: Structural modes and damping strategies used for attitude control
taken from [1].

of the application, a simultaneous co-design of both the control architecture and

structural design was conducted, and results are presented in Refs. [13,14]. Here, we

develop an accurate representation of the dynamics and distributed control design for

attitude control.

In this thesis, we present a nonlinear ODE-PDE dynamical model for the 1-DOF

rotation of the spacecraft with flexible appendages and two nonlinear ODE-PDE

distributed controllers to achieve attitude control of the spacecraft. The combined

finite and infinite-dimensional dynamics are modeled using an ODE-PDE system.

The infinite-dimensional nature of the flexible appendage is modelled using Euler-

Bernoulli beam theory [15,16], which gives rise to a fourth-order PDE with boundary

conditions given by the fixed root and free end of the solar array. The linear model

for a circular hub with flexible appendages, Ref. [17], is extended by taking into

consideration axial stiffness in the beam due to rotation and gyroscopic terms. The

dynamics of the system is coupled, nonlinear and under-actuated in nature [18, 19].

This is because there is no actuator to control the rigid body rotation of the bus

3



directly. We exploit the structure in the dynamics and the kinetic symmetry [20] in the

system to design the nonlinear controllers, which actuate the flexible beam to achieve

satellite slewing using coupled nonlinear dynamics. Given a slewing trajectory, the

controllers compute the flexible dynamics required to achieve the trajectory and give

an appropriate command to the strain-actuators to bend the beam. The control laws

are designed in terms of a variable ‘δ’, it is shown that the closed-loop system is stable

for a range of values of ‘δ’. The stability of the closed-loop system is proved for δ = 1

using the Lyapunov direct method (See Ref. [21] for application of the Lyapunov

direct method to prove the stability of infinite-dimensional systems). It is observed

that the closed-loop system with δ = 1 is Input-to-State Stable [22], which is used to

define a range of ‘δ’ values for which the closed-loop system is stable. The infinite-

dimensional ODE-PDE system was discretized using Galerkin method [15–17, 23] to

form an ODE system. Galerkin functions were chosen based on the recommendations

from Ref. [17].

The control law along with the dynamics is simulated numerically using MATLAB R©

and Simulink R© for trajectory tracking and slewing. Here, we choose four Galerkin

functions for discretization, which describe the dynamics of the flexible solar array.

An experimental setup was built to test the ODE-PDE control law in real-time for

slewing and tracking a sinusoidal trajectory. The test setup has a cylinder with beams

symmetric about the axis of rotation. The term slewing in this paper means rotating

to a given attitude from initial attitude and maintaining that attitude. The strain

actuation in the beams is achieved by bonding piezoelectric (PZT) actuators asym-

metrically about the axis of the cylinder. PZT actuators undergo uniform strain when

an electric field is applied across them [24]. Due to their properties, PZT find applica-

tions in design of intelligent structures, active vibration control, and strain-actuated

beams [11,25–29]. The PZTs can be bonded to the surface of solar array or embedded
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within the solar array substructure it for actuation [26,30]. References [26,30] discuss

actuator models for SASA configurations described above, with and without perfect

bonding. We present a quasi-static actuator model for the surface bonded PZT taken

from [31], but corrected for the errors in the final model and validated experimentally

using a cantilever beam setup. The actuator model can be extended to a distributed

actuation configuration with multiple PZTs, using step functions.

The thesis is organized as follows. The kinematics and dynamics of the system,

along with the actuator model of the composite beam (PZT and beam), are discussed

in Chapter 2. Nonlinear ODE-PDE control law design and the stability proof using

the Lyapunov direct method and Input-to-State Stability property are presented in

Chapter 3. In Chapter 4, we derive the Galerkin implementation of the closed-loop

system. We discuss the numerical implementation and results for trajectory tracking

and slewing in Chapter 5. In Chapter 6, we present the experimental results to

validate the actuator model and real-time trajectory tracking of the bus rotation.

The results are enumerated in Chapter 7.

1.1 Piezoelectric Material (Background)

This section is taken from Refs. [28,32] and is added here for completeness. Piezoelec-

tric phenomenon means electricity generated when pressure is applied on the surface.

Materials which have this property are called piezoelectric materials (PZT), and can

be used as a sensor or actuator (using the inverse piezoelectric phenomenon). PZT’s

are made from a ceramic powder of component metal oxides. The ceramic powder

is formed into specific shapes and heated to a specific temperature to form a dense

crystalline structure. The heated ceramic crystal below a critical temperature, called

Curie temperature, has multiple domains with an associated dipole moment. The
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dipole moments align when a high electric field is applied across the crystal, creating

a net polarization in the material. This process is called poling. The aligned dipole

moments are locked in this configuration even after the electric field is removed. When

used as an actuator’ piezoelectric material extends when voltage of same polarity as

the poling voltage is applied across it. For further discussion on poled materials see

Ref. [28].

X, 1

Z, 3 Z, 3

Y, 2

SIDE VIEW FRONT VIEW

SURFACE 
ELECTRODES

PIEZO 
MATERIAL

Figure 2: Piezoelectric actuator side and front view.

Here, we describe the linear constitute equations of the PZTs according to IEEE

standard. References [28, 32] outline the relationship between strain and the applied

electric field when used as an actuator. Figure 2 shows the piezoelectric material

bonded with surface electrodes, on which wires are soldered to apply a potential

difference. The axis definitions are numbered 1, 2, 3. It is assumed here that there

is no mechanical stress on the PZT and it is poled only in direction 3. The strain in

the piezo (ε) is only due to the applied electric field (Ef ) (see Eq. (1)).

ε = DEf (1)
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
ε1

ε2

ε3

 =


d11 d21 d31

d12 d22 d32

d13 d23 d33



E1

E2

E3

 (2)

D =


0 0 d31

0 0 d32

0 0 d33

 (3)

E3 =
V

t
(4)

ε1 = d31
V

t
(5)

The symbol ‘εi’ corresponds to the axial strain, and ‘Ei’ is the electric field applied

in ‘i’th direction. ‘D’ is the matrix of piezoelectric strain constants. Most piezo

materials are transversely isotropic , allowing a simplified ‘D’ matrix representation as

shown in Eq. (3). The coefficient ‘dij’ is the ratio of strain produced in ‘j’th direction

due to the electric field applied in ‘i’th direction with all external mechanical and

thermal stresses held constant. If the thickness of the piezo material is ‘t’ and voltage

applied ‘V ’, the strain is given by Eq. (5). Note that due to the above assumptions,

we only consider the effect of ‘d31’ (Eq. (5)) in the final model, which is used in the

following Chapters.
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2 Kinematics and Dynamics of a 1-DOF Satellite

with SASA

The spacecraft with asymmetric SASAs is modeled as a cylinder with flexible ap-

pendages that are fixed symmetrically to the rotational axis of the cylinder as shown

in Fig. 3. The dynamics of the system include planar rotation of the spacecraft hub,

and bending in the flexible composite beam due to strain-actuation. Our modelling

approach uses explicit generalization of Lagrange’s equations discussed in Ref. [17].

The equations of motion of the ODE-PDE system can also be derived by following

the approach discussed in Ref. [33, 34]. Before proceeding to the derivation of the

ODE-PDE, we briefly discuss system kinematics of the system, physical properties of

the composite beam, and the actuator model for strain-actuation using PZTs.

2.1 Kinematics

θ

dx
ξ

x

PZT
SOLAR 
ARRAY(SA)

O x3

y2
x2

y3
x1

y1 P

A

Figure 3: 1-DOF cylinder and flexible solar array model.
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The spacecraft body is modeled as a cylinder of radius ‘r’, and the solar array is

modeled as a composite beam with PZT actuators bonded to the surface of a beam

with length ‘`’. It is assumed that the beam does not undergo any longitudinal

vibration. The coordinate systems used in the derivation of kinematics are shown in

Fig. 3. In the (x1, y1) coordinate system, the location of a point ‘P ’ an element ‘dx’ on

the beam is given by RP/A = [x, ξ] where ξ(x, t) : (0, `)×R+ → R is the displacement

due to bending in y1 direction. The spacecraft body rotation angle about origin ‘O’

is ‘θ(t)’, where θ(t) : R+ → [−π, π] . The position and velocity of ‘P ’ with respect

to origin of the spacecraft ‘O’ are given by Eq. (6) and Eq. (7), respectively. These

equations are used to compute ‘ξ’ and ‘x’ using ‘x3’ and ‘y3’ obtained from the Vicon

motion tracking system during real time experiments.

x3
y3

 =

cos(θ) − sin(θ)

sin(θ) cos(θ)


r + x

ξ

 (6)

The velocity kinematics are given by:

ẋ3
ẏ3

 =

− sin(θ) − cos(θ)

cos(θ) − sin(θ)


(r + x)θ̇ + ξ̇

ξθ̇

 (7)

2.2 Mass Per Unit Length and Total Rigidity of the Com-

posite Beam

The physical properties of the solar array, such as mass per unit length and location

of the neutral axis, play an important role in the evolution of the system dynamics,

are functions of the spatial variable ‘x’ due to the composite nature of the beam. The

mass per unit length of the composite beam is given in Eq. (8). Here ‘ρb’ and ‘ρp’
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are the densities of the beam and the PZT, respectively. ‘Ab’ and ‘Ap’ are the cross

sectional areas of the beam and the PZT, respectively. ‘Eb’, ‘Ib’, ‘tb’, ‘Ep’, ‘Ip’, and ‘tp’

are the Young’s modulus, area moment of inertia about neutral axis, and thickness of

the beam and PZT, respectively. The function k (x) = 1 at the locations where the

PZT is bonded, and k (x) = 0 otherwise. For simulations and experiments conducted

we use mass per unit length as in Eq. (9), which takes into account the effect of Vicon.

The symbol ‘mv’ is Vicon marker mass, ‘δd’ is the Dirac delta function, ‘`vi ’ is the

distance to the ‘i’th point mass (Vicon marker) on the beam from the root, and ‘n′v

is the number of point masses (Vicon markers).

mR = mb + k (x)mp, mb = ρbAb, mp = ρpAp (8)

mR = mb + k (x)mp +
nv∑
i=1

mvδd(x− `vi) (9)

The physical, structural, and geometric properties of the PZT and beam; as a

result the neutral axis of the composite beam is offset from the geometric centroid.

The distance between the top surface of the composite beam to the neutral axis ‘hn’

is given in Eq. (10). See Fig. 4 for definition of ‘hn’.

hn =
Ept

2
p + Ebtb (tb + 2tp)

2 (Eptp + Ebtb)
(10)

The total rigidity of the beam EI, with area moment of inertia about the new

neutral axis is given by EIt in Eq. (11) at the locations where PZT’s are bonded.
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EIt = EbIb + EpIp

Ib =
wt3b
12

+ wtb

(
tp +

tb
2
− hn

)2

Ip =
wt3p
12

+ wtp

(
hn −

tp
2

)2

(11)

The total rigidity of the beam at locations with k(x) = 0 is given by ‘EIb’ in

Eq. (12).

EIb =
Ebwt

3
b

12
(12)

2.3 Actuator Model

Piezoelectric materials undergo an approximately uniform strain when a potential

difference is applied across them. This property is used to achieve actuation of the

beam by bonding PZT to its surface or by embedding it inside the beam. The actuator

model gives the mathematical frame work for the response (internal moments) of the

beam due to a voltage ‘V ’ applied across the PZT bonded on the surface of the

beam. It is assumed that the bonding between the PZT and beam is perfect and the

composite beam is of constant width ‘w’. Since the PZT is bonded only on the top

surface, the strain distribution ‘ε’ along the cross section of the composite beam is

assumed to be linear. In Eq. (13), ‘κ’ is the slope of the strain distribution due to

bending and ‘ε0’ corresponds to the extension of the beam due to the offset of the

neutral axis. The PZT bonded to the surface of the beam and strain distribution

along the cross section of the composite beam can be seen in Fig. 4. The following

derivation is taken from Ref. [28], but the final model given in the reference has errors,

so it is repeated here with corrections. The force and moment equilibrium are used
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to calculate the values of ‘κ’ and ‘ε0’. The static model derived here is used in the

dynamic model, assuming that the process is quasi-static in nature.

1

tb

tp

PZT
SOLAR ARRAY(SA)

κ

z

x
NEUTRAL AXIS

CENTRAL AXIS 
OF THE SA

O

V
hn

Figure 4: Strain distribution.

1

O X

Z
ith PZT

SA
l1i l2i

O X

V

Vi-1
Vi Vi+1

Figure 5: Distributed Piezo.

ε = αz + ε0 (13)

In the following analysis, ‘εp’ is the strain of an unconstrained PZT when a voltage

‘V ’ is applied across it. This strain is given by εp = d31V
tp

(Ref. [28]). The piezoelectric

coefficient ‘d31’ is the ratio of strain in direction 1 when an electric field applied across

PZT in direction 3. The stresses in the piezo (σp) and beam (σb), respectively, are
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given in Eq. (14).

σp = Ep(κz + ε0 − εp)

σb = Eb(κz + ε0)

(14)

The force equilibrium equation is:

∫ tb/2

−tb/2
σb(z)dz +

∫ tb/2+tp

tb/2

σp(z)dz = 0 (15)

The moment equilibrium equation is:

∫ tb/2

−tb/2
σb(z)zdz +

∫ tb/2+tp

tb/2

σp(z)zdz = 0 (16)

Substituting the stress distributions in the above equilibrium equations we get:

κ

(
Ep (tptb + t2p

)
2

)
+ ε0 (Ebtb + Ebtb)− Epεptp = 0 (17)

κ

(
Ep
3

((
tp +

tb
2

)3

−
(
tb
2

)3
)

+
Ebt

3
b

12

)
+ ε0

(
Ep
(
tptb + t2p

)
2

)

−
EpEb

(
tptb + t2p

)
2

= 0

(18)

Solving the above two equations we can obtain expressions for ‘κ’ and ‘ε0’

κ =
6EbEpεptbtp(tb + tp)

E2
b t

4
b + 4EbEpt3btp + 6EbEpt2bt

2
p + 4EbEptbt3p + E2

pt
4
p

(19)

ε0 =
εpEptp(Ept

3
p + Ebt

3
b)

E2
b t

4
b + 4EbEpt3btp + 6EbEpt2bt

2
p + 4EbEptbt3p + E2

pt
4
p

(20)

The moment in the beam, due to the uniform PZT strain produced by the applied

13



voltage V is given by Eqs. (21) and (22).

Mb = EbIbκ

=
6E2

b IbEpd31V tb(tb + tp)

E2
b t

4
b + 4EbEpt3btp + 6EbEpt2bt

2
p + 4EbEptbt3p + E2

pt
4
p

(21)

Mb = cV

c =
6E2

b IbEpd31tb(tb + tp)

E2
b t

4
b + 4EbEpt3btp + 6EbEpt2bt

2
p + 4EbEptbt3p + E2

pt
4
p

(22)

The moment is proportional to the voltage applied across the PZT. The constant ‘c’

depends on the geometric parameters, structural properties of PZT, and the elastic

modulus of the composite beam. The actuator model is extended to a scenario with

multiple PZT’s using step functions (see Fig. 5). The model with ‘n’ PZT’s on the

surface of the beam is given in Eq. (23), where ‘Vi’ is the voltage applied across ‘i’th

PZT, ‘ci’ is the proportionality constant corresponding to the structural and geometric

properties of the ‘i’th PZT, and u (x) is the step function with unit amplitude. ‘l1i’

and ‘l2i’ are defined for ‘i’th PZT as shown in Fig. 5.

Mb =
n∑
i=1

ciVi (u(x− l1i)− u(x− l1i)) (23)

The Eqs. (21) and (23) are used to compute voltage signals required to achieve attitude

control from control signal in the simulations and experiments.

2.4 Dynamics

The dynamics of the system include the bending of the composite beam, which is

modeled using Euler-Bernoulli beam theory, and slewing of the satellite, which is

planar rigid body rotation of the spacecraft. The dynamics of the rigid body and
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flexible beam evolves based on the ODE-PDE system with fixed root and free end

boundary conditions, forming a hybrid coordinate system with one rigid body and

an infinite-dimensional system (also called as distributed parameter system). See

Ref. [17] for a discussion of this type of hybrid system, which is distinct from hybrid

dynamic systems that combine discrete and continuous dynamics. In deriving the

model, we assume that the deflections due to bending are small and that the beam

has no longitudinal vibration; the effect of ‘ε0’ in Eq. (20) is assumed to be negligible.

The state of the system corresponding to beam deflection is ‘ξ(x, t)’, described by a

continuous function of space ‘x’ and time ‘t’.

2.4.1 Euler-Lagrange Equations

The Lagrangian of the system, with mass moment of inertia of the spacecraft bus

(cylinder) — ‘Jθ’, includes rotational kinetic energy of the spacecraft body —‘Ts’ (de-

fined in Eq. (24)), kinetic energy of the beams assuming asymmetric strain-actuation

— ‘Tb’ (defined in Eq. (25)), elastic potential energy and axial stiffening of the beams

due to centrifugal force from bus rotation —‘U ’ (defined in Eq. (26)). For deriva-

tion of equations of motion for a linear hybrid coordinate systems using a system’s

Lagrangian, see Ref. [17].

Ts =
1

2
Jθθ̇

2 (24)

Tb =

∫ `

0

mR

(
ẋ23 + ẏ23

)
dx

=

∫ `

0

mR

[
θ̇2(r2 + x2 + ξ2) + ξ̇2 + 2rξ̇θ̇ + 2rθ̇2x+ 2ξ̇θ̇x

]
dx

(25)

U =

∫ `

0

[
EI
(
ξ
′′
)2]

dx+

∫ `

0

[
P
(
θ̇, x
)(

ξ
′
)2]

dx (26)
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where ()
′

= ∂
∂x

(), and P
(
θ̇, x
)

=
∫ r+`
r+x

[
mRθ̇

2s
]
ds = p(x)θ̇2 is the axial tension in

the beam due to rotation, where ‘mR’ is expressed as a function of ‘s’, and s = r+x.

The definition of total rigidity ‘EI’ of the composite beam is given in Section. 2.2.

The Lagragian of the ODE-PDE system in terms of state variables is given in Eq. ??

L = Ts + Tb − U (27a)

=
1

2
Jθθ̇

2 +

∫ `

0

mR

[
θ̇2
(
r2 + x2 + ξ2

)
+ ξ̇2 + 2rξ̇θ̇ + 2rθ̇2x+ 2ξ̇θ̇x

]
dx

−
∫ `

0

[
(EI

(
ξ
′′
)2]

dx−
∫ `

0

P (θ̇, x)
(
ξ
′
)2
dx

(27b)

The nonconservative work done ‘Wnc’ due to moment applied by strain actuation is

given by Eq. (28). Here ‘Mb(x, t)’ is the response of the beam (see Eq. (22)) due

to the strain produced by the bonded piezo. The equations of motion are obtained

by using the explicit generalization of Lagrange’s equations for infinite-dimensional

systems approach (see Ref. [17] for more details). The extended Hamilton’s principle

can be stated as, in Eq. (29), where ‘t0’ and ‘tf ’ are the initial and final time values,

respectively.

Wnc =

∫ `

0

Mb(x, t)
2

EbIb
dx (28)

∫ tf

t0

(δL+ δWnc) dt = 0 (29)

Applying integration by parts to the expanded variations in terms of state variables,

and using boundary conditions, we obtain the equations of motion in terms of La-

grangian as given in Eqs. (30) and (31).
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d

dt

(
∂L

∂ξ̇

)
− ∂L

∂ξ
+

∂

∂x

(
∂L

∂ξ′

)
− ∂2

∂x2

(
∂L

∂ξ′′

)
=

∂2

∂x2
(Mb(x, t)) (30)

d

dt

(
∂L

∂θ̇

)
− ∂L

∂θ
= 0 (31)

The structural damping in the system is modeled using Kelvin-Voigt constant ‘µ’.

The equations of motion after substituting the Lagrangian are:

(
1

2
Jθ +

∫ `

0

(
mR

(
(x+ r)2 + ξ2

)
− p(x)ξ

′2
)
dx

)
θ̈ +

∫ `

0

mR (r + x) ξ̈dx

+

∫ `

0

2mRξξ̇θ̇dx−
∫ `

0

2θ̇p(x)ξ
′
ξ̇′dx = 0

(32a)

mR (r + x) θ̈ +mRξ̈ −mRθ̇
2ξ −

(
θ̇2p(x)ξ

′
)′

+
(
EIξ

′′
+ µEIξ̇

′′
)′′

= (Mb(x, t))
′′

(32b)

The boundary conditions for the beam are due to fixed root and free end:

ξ(x, t)|x=0 = ξ
′
(x, t)

∣∣∣
x=0

= 0,

(EIξ
′′

+ µEIξ̇
′′
)
∣∣∣
x=`

= 0, (EIξ
′′

+ µEIξ̇
′′
)
′
∣∣∣
x=`

= 0

(33)

2.4.2 Matrix Form of Euler-Lagrangian System

∫ `

0

Ms

θ̈
ξ̈

 dx+

∫ `

0

Cs

θ̇
ξ̇

 dx+

 0

Ss

 =

 0

2
∫ `
0
(Mb(x, t))

′′
dx

 (34)
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Ms =

m11(ξ) m12

m12 m22


=


(
Jθ/`+ 2

(
mR ((x+ r)2 + ξ2)− p(x)ξ

′2
))

2mR (x+ r)

2mR (x+ r) 2mR


Ss = 2

∫ `

0

(
EIξ

′′
+ µEIξ̇

′′
)′′

dx

Cs =

 c11(ξ, ξ̇) c12(ξ, θ̇)

−c12(ξ, θ̇) 0


=

 2
(
mRξξ̇ − p(x)ξ

′
ξ̇′
)

2
(
mRξθ̇ + (p(x)ξ

′
)
′
θ̇
)

−2
(
mRξθ̇ + (p(x)ξ

′
)
′
θ̇
)

0



(35)

Equations (32a) and (32b) are expressed in standard Euler-Lagrangian matrix

form in Eq. (34), with matrices ‘Ms’ and ‘Cs’ defined in Eq. (35). The boundary

conditions still apply.
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3 Nonlinear ODE-PDE Control Design of SASA

3.1 Properties of the Underactuated Hybrid System

The dynamics in Eq. (34) possesses kinetic symmetry [20] with respect to the space-

craft attitude, ‘θ’, since the inertia matrix per unit length is independent of ‘θ’. The

kinetic symmetry with respect to ‘θ’ in the absence of gravitational effects leads to

symmetry in mechanics satisfying Eq. 3.1.

∂K

∂θ
=
∂L

∂θ
= 0 (36)

since the corresponding Lagrangian ‘L’ is independent of ‘θ’. Note that the first

generalized angular momentum for the variable ‘θ’, which is denoted by ‘z1’ is given

in Eq. 3.1.

z1 =
∂L

∂θ̇
=

∫ `

0

(m11θ̇ +m12ξ̇)dx, ż1 =
d

dt

∂L

∂θ̇
=
∂L

∂θ
= 0 (37)

We can verify that c11 = ṁ11

2
and

∫ `
0

(
Ṁs −

(
Cs + CT

s

))
dx is skew-symmetric, which

is exploited in the control design.

3.2 NonLinear ODE-PDE Control Law

In this section, we present nonlinear ODE-PDE control laws designed using the prop-

erties discussed in Section. 3.1 for trajectory tracking. In order to track a desired

rotation signal ‘θd’, with angular speed ‘θ̇d’, and angular acceleration ‘θ̈d’, a reference

rotation signal Eq. (38a), (38b) is computed using the desired signal to use in the

control law. The reference signal ‘θr’ converges exponentially to desired signal ‘θd’

19



with the convergence rate depending on the gain value ‘λθ’.

θ̇r(t) = θ̇d(t)− λθ(θ − θd(t)) (38a)

θ̈r(t) = θ̈d(t)− λθ(θ̇ − θ̇d(t)) (38b)

The reference rotation signal ‘θr’ is used to compute reference deflection signal ‘ξr’

using Eq. (39), which is the ‘θ’ dynamics for the reference signal ‘θr’ augmented with

the error feedback term Kθ

(
θ̇ − θ̇r

)
, where ‘Kθ’ is gain.

m12ξ̈r +m11θ̈r + c11θ̇r + c12ξ̇r = Kθ(θ̇ − θ̇r) (39)

Using Eqs. (38a), (38b), (39) and variables sθ = θ̇− θ̇r and sξ = ξ̇− ξ̇r, we can design

control laws to achieve trajectory tracking and slewing as described in the following

sections.

3.2.1 Controller 1

Let τ = (Mb(x, t))
′′
. The control effort τ is computed using Eq. (40). The closed-loop

system with this controller is given in Eq. (41), where ‘δ’ is a constant and ‘Kξ’ is

gain.

τ = m12θ̈r +m22ξ̈r + c12θ̇r + 2
(
δEIξ

′′
+ µEIδξ̇

′′
)′′

−Kξsξ (40)

∫ `

0

Ms

ṡθ
ṡξ

+ Cs

sθ
sξ

+

 0

(1− δ)
(

2EIξ
′′

+ µ2EIξ̇
′′
)′′


 dx

+

∫ `

0


Kθ 0

0 Kξ


sθ
sξ


 dx =

0

0


(41)
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Before proving the stability of the closed-loop system in Eq. (41), we will prove

stability for a special case with δ = 1. The closed-loop system with δ = 1 is given

in Eq. (42). The Input-to-State Stability [22] of this special case is used to define a

range for ‘δ’ which stabilize the closed-loop system Eq. (41).

Lemma 3.1. The closed-loop system with dynamics Eq. (34), control law

Eqs. (38a-40), in Eq. (42) is globally asymptotically stable.

∫ `

0

Ms

ṡθ
ṡξ

 dx+

∫ `

0

Cs

sθ
sξ

 dx+

∫ `

0

Kθ 0

0 Kξ


sθ
sξ

 dx =

0

0

 , (42)

Proof. We use the Lyapunov direct method [21] to prove the stability of the closed-

loop system, which ensures trajectory tracking. The Lyapunov function in Eq. (43)

is positive definite as ‘Ms’ is the mass matrix in the open loop dynamics.

VL1 =

∫ `

0

1

2

sθ
sξ


T m11(ξ) m12

m12 m22


sθ
sξ

 dx (43)

V̇L1 =

∫ `

0

sθ
sξ


T m11(ξ) m12

m12 m22


ṡθ
ṡξ

 dx+

∫ `

0

1

2

sθ
sξ


T ṁ11(ξ) 0

0 0


sθ
sξ

 dx (44)

Using the equations of motion, and dynamic properties, the derivative of the Lya-

punov function can be simplified to Eq. (45).

V̇L1 =

∫ `

0

sθ
sξ


T −Kθ 0

0 −Kξ


sθ
sξ

 dx (45)

The Lyapunov derivative V̇L1 is negative definite provided that the gain values Kθ

and Kξ are chosen to be positive. By the Lyapunov direct method, the closed-loop
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system is globally asymptotically stable. Therefore sθ → 0 and sξ → 0, implying

θ̇ → θ̇r and ξ̇ → ξ̇r. To prove θ → θd we need to subtract θ̇ from both sides of

Eq. (38a), and use the fact that
(
θ̇ − θ̇r

)
→ 0 (see Eqs. (46a), (46b)).

θ̇r(t)− θ̇ = θ̇d(t)− θ̇ − λθ(θ − θd(t)) (46a)

θ̇ − θ̇d(t) = −λθ(θ − θd(t)) (46b)

Equation (46b) is of the form ė = −λe, where e = θ− θd(t), which implies θ → θd

exponentially with a rate of convergence that depends on the constant ‘λθ’.

The term (1 − δ)
(

2EIξ
′′

+ µ2EIξ̇
′′
)′′

describes strain energy and the dissipa-

tion modelled in terms of strain rate. Let d1 = (1 − δ)
(

2EIξ
′′

+ µ2EIξ̇
′′
)′′

; ‘d1’ is

bounded because the strain energy should be bounded so as not to compromise the

structural integrity of the solar array, to maintain internal stress in the beam with

in the elastic limit of the solar array. Let the bound on d1 be ρd1 , i.e, ||d1|| ≤ ρd1 .

Using the Lyapunov function Eq. (43), closed-loop system Eq. (41) the derivative of

the Lyapunov function can be simplified to following:

V̇L1g
=

∫ `

0

sθ
sξ


T m11(ξ) m12

m12 m22


ṡθ
ṡξ

 dx+

∫ `

0

1

2

sθ
sξ


T ṁ11(ξ) 0

0 0


sθ
sξ

 dx
(47a)

=

∫ `

0

−Kθs
2
θdx−

∫ `

0

Kξs
2
ξdx−

∫ `

0

d1 sξdx (47b)

≤
∫ `

0

−Kθs
2
θdx−

∫ `

0

Kξs
2
ξdx+

∫ `

0

||d1|| ||sξ||dx (47c)

≤
∫ `

0

−Kθs
2
θdx−

∫ `

0

Kξ||sξ|| ||sξ||dx+

∫ `

0

||d1|| ||sξ||dx (47d)
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≤
∫ `

0

−Kθs
2
θdx−

∫ `

0

(Kξ||sξ|| − ||d1||) ||sξ||dx (47e)

Note that V̇L1g
is negative definite provided that ||d1|| < Kξ|||sξ||, which proves

that the Lyapunov function is an ISS-Lyapunov function [22]. For trajectory tracking,

we need to choose ‘Kξ’ and ‘δ’ to ensure that ||d1|| < Kξ|||sξ||. It was observed during

the simulations and experiments that the control law works for a range of ‘Kξ’ and

‘δ’ values. This range can be found easily with the help of simulations).

3.2.2 Controller 2

The control objective of trajectory tracking can also be achieved by using the reference

deflection signal ξr instead of the deflection ξ in the control law. Here we assume

that reference signal ξr satisfies the same boundary conditions (see Eq. (48)) as the

dynamics ξ in Eq. (33). The closed-loop system with the controller Eq. (49) is given

in Eq. (50).

ξr(x, t)|x=0 = ξ
′

r(x, t)
∣∣∣
x=0

= 0,

(EIξ
′′

r + µEIξ̇
′′

r )
∣∣∣
x=`

= 0, (EIξ
′′

r + µEIξ̇
′′

r )
′
∣∣∣
x=`

= 0

(48)

τ = m12θ̈r +m22ξ̈r + c12θ̇r + δ
(

2EIξ
′′

r + µ2EIξ̇
′′

r

)′′

−Kξsξ (49)

∫ `

0

Ms

ṡθ
ṡξ

+ Cs

sθ
sξ

+

 0

2
(
EI (ξ − δξr)

′′
+ µEI(ξ̇ − δξ̇r)

′′
)′′


 dx

+

∫ `

0


Kθ 0

0 Kξ


sθ
sξ


 dx =

0

0


(50)

Similar to the development in Section. 3.2.1 we prove the stability of the closed-loop

system in Eq. (50) for δ = 1, and then use the ISS property to define conditions for
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which controller in Eq. (49) achieves trajectory tracking.

Lemma 3.2. The closed-loop system with dynamics Eq. (34), control law

Eqs. (38a)-(49), given in Eq. (50) is globally asymptotically stable.

∫ `

0

Ms

ṡθ
ṡξ

+ Cs

sθ
sξ

+

 0

2
(
EI (ξ − ξr)

′′
+ µEIs

′′

ξ

)′′


 dx

+

∫ `

0


Kθ 0

0 Kξ


sθ
sξ


 dx =

0

0


(51)

Proof. We need the equalities in Eqs. (52a) and (52b) to prove the stability of Eq. (51),

which can be proved by applying integration by parts twice to the left hand side of

the equation and using boundary conditions of both the reference signal ‘ξr’ and the

dynamics ‘ξ’.

∫ `

0

(
EI (ξ − ξr)

′′
)′′ (

ξ̇ − ξ̇r
)
dx =

∫ `

0

EI (ξ − ξr)
′′
(
ξ̇ − ξ̇r

)′′

dx (52a)∫ `

0

(
EI
(
ξ̇ − ξ̇r

)′′)′′ (
ξ̇ − ξ̇r

)
dx =

∫ `

0

EI

((
ξ̇ − ξ̇r

)′′)2

dx (52b)

Consider the Lyapunov function VL2 in Eq. (53):

VL2 =

∫ `

0

1

2

sθ
sξ


T m11(ξ) m12

m12 m22


sθ
sξ

 dx+

∫ `

0

(
EI (ξ − ξr)

′′
)2
dx (53)
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V̇L2 =

∫ `

0

sθ
sξ


T m11(ξ) m12

m12 m22


ṡθ
ṡξ

 dx+

∫ `

0

1

2

sθ
sξ


T ṁ11(ξ) 0

0 0


sθ
sξ

 dx
+ 2

∫ `

0

EI (ξ − ξr)
′′
(
ξ̇ − ξ̇r

)′′

dx

(54)

Using the equations of motion, the derivative of the Lyapunov function can be sim-

plified to Eq. (55):

V̇L2 =

∫ `

0

sθ
sξ


T −Kθ 0

0 −Kξ


sθ
sξ

 dx− 2µ

∫ `

0

EI

((
ξ̇ − ξ̇r

)′′)2

dx (55)

It can be observed that Eq. (55) is negative definite for positive gains Kθ and Kξ,

and µ > 0. θ → θd due to the same argument used for the proof of controller 1.

Consider the Lyapunov function in Eq. (56), for defining the values of δ for

which the closed-loop system in Eq. (50) is stable. Let d2 =
(
EI (ξ − δξr)

′′
)′′

+(
EI
(
ξ̇ − δξ̇r

)′′)′′

; ‘d2’ is bounded due to the structural constraints on the system as

explained in Section. 3.2.1. As can be seen in the Eq. (57c), if we find ‘Kξ for given

‘δ’ such that ||d2|| ≤ Kξ||sξ||, the closed-loop system in Eq. (50) is stable.

VL2g
=

∫ `

0

sθ
sξ


T m11(ξ) m12

m12 m22


sθ
sξ

 dx (56)
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V̇L2g
=

∫ `

0

sθ
sξ


T m11(ξ) m12

m12 m22


ṡθ
ṡξ

 dx+

∫ `

0

1

2

sθ
sξ


T ṁ11(ξ) 0

0 0


sθ
sξ

 dx
(57a)

=

∫ `

0

−Kθs
2
θdx−

∫ `

0

Kξs
2
ξdx−

∫ `

0

d2 sξdx (57b)

≤
∫ `

0

−Kθs
2
θdx−

∫ `

0

(Kξ||sξ|| − ||d2||) ||sξ||dx (57c)

The closed-loop ODE-PDE system for both controller 1 and controller 2 is de-

scribed in the flow chart Fig. 6.

26



De
si

re
d 

At
tit

ud
e

Tr
aj

ec
to

ry

Re
fe

re
nc

e 
At

tit
ud

e
Tr

aj
ec

to
ry

 𝜽𝜽
𝒓𝒓

Re
fe

re
nc

e 
So

la
r A

rr
ay

 M
ot

io
n

Tr
aj

ec
to

ry
𝝃𝝃 𝐫𝐫

PD
E 

co
nt

ro
l L

aw
(P

DE
-O

DE
) 

Dy
na

m
ic

s

De
fle

ct
io

n 
an

d 
At

tit
ud

e 
Se

ns
or

s

Figure 6: Closed-loop of the ODE-PDE system.
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4 Finite Dimensional Approximation of ODE-PDE

Dynamics and Control Law

The hybrid ODE-PDE model is discritized to obtain an ODE model using Galerkin

method [15, 17] for numerical simulations and experiments. The deflection in the

beam is approximated as ξ(x, t) = φT (x)η(t), where ‘φ(x)’ are Galerkin functions.

The ‘j’th Galerkin function φj(x) in Eq. (58) is taken from Ref. [17], and is chosen

to satisfy the boundary conditions. The discretization is implemented by minimizing

the weighted residual of the ‘ξ’ dynamics (see Eq. (59)). Here, we use four Galerkin

functions (j = 1, 2, 3, 4) which sufficiently describe the dynamics for a sinusoidal

attitude trajectory and slewing.

φj(x) = 1− cos

(
jπx

`

)
+

1

2
(−1)j+1

(
jπx

`

)2

(58)

∫ `

0

φ

(
mR (r + x) θ̈ +mRξ̈ −mRθ̇

2ξ −
(
θ̇2p(x)ξ

′
)′

+
(
EIξ

′′
+ µEIξ̇

′′
)′′)

dx

−
∫ `

0

φM
′′

b (x, t)dx = 0

(59)

4.1 Dynamics in Galerkin Form

The equations of motion in Galerkin form are given in Eq. (60). The matrices

[A], [B], [C] are used to define the mass matrix [Mg] and gyroscopic cross cou-

pling terms in matrix [Cg]. The matrix [E] corresponds to the stiffness of the beam.
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The matrices in Eq. (62) are referred to as Galerkin matrices in this paper.

[Mg]

 θ̈
η̈

+ [Cg]

 θ̇
η̇

+

 0

2[E](η + µη̇)

 =

 0∫ `
0

2φM
′′

b dx

 (60)

[Mg] =

m11g m12g

m21g m22g

 =


(
Jθ + 2

∫ `
0
mR (x+ r)2 dx+ 2ηT ([A]− [B])η

)
2[C]

2[C]T 2[A]


[Cg] =

c11g c12g

c21g c22g

 =

2η̇T ([A]− [B])η 2ηT ([A]− [B]) θ̇

−2([A]− [B])ηθ̇ 0


(61)

[A] =

∫ `

0

mRφφ
Tdx, [B] =

∫ `

0

pφ
′
φ

′Tdx,

[C] =

∫ `

0

mR(x+ r)φTdx, [E] =

∫ `

0

φ(EIφ
′′T

)′′dx

(62)

4.2 NonLinear Controller in Galerkin Form

The reference signal can be approximated using Galerkin functions, ξr = φT (x)ηr(t),

as ‘ξ′r also satisfies the boundary conditions in Eq. (48). The control laws designed

in Section. 3.2 are expressed in Galerkin form as follows:

sθ = θ̇ − θ̇r, sξ = φT (η̇ − η̇r) (63)

m12g η̈r + c12g η̇r = Kθ(θ̇ − θ̇r)`−m11g θ̈r − c11g θ̇r (64)

Controller 1:∫ `

0

2φM
′′

b dx = m21g θ̈r+m22g η̈r+c21g θ̇r+2δ[E](η+µη̇)−Kξ

∫ `

0

φφTdx (η̇ − η̇r) (65)
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Controller 2:∫ `

0

2φM
′′

b dx = m21g θ̈r +m22g η̈r + c21g θ̇r + 2δ[E](ηr + µη̇r)−Kξ

∫ `

0

φφTdx (η̇ − η̇r)

(66)

4.3 Computation of Voltage Signal from Control Signal

For actuation, a potential difference is applied across the PZT material, bonded onto

the beam. The voltage signal, which is the input to the actuator, is computed from

the control signal defined in Eqs. (65) and (66). Consider ‘n’ discrete PZT actuators

bonded onto the solar array (see Fig. 5), where l1i and l2i are distances of two ends of

the ‘i’th PZT from the root of the solar array. For ‘n’ PZTs, the moment produced

can be modeled as described in Eq. (23), which is used in the following model:

τ =

∫ `

0

φM
′′

b dx (67a)

=

∫ `

0

φ
n∑
i=1

ciVi(t) (u(x− l1i)− u(x− l1i))
′′
dx (67b)

=
n∑
i=1

ciVi(t)

∫ `

0

φ (u(x− l1i)− u(x− l1i))
′′
dx (67c)

The function ‘u’ used in the above equations is a step function, whose derivative

is the dirac delta function ‘δ′d. The term
∫ `
0
φ (u(x− l1i)− u(x− l1i))

′′
dx can be

simplified to
∫ `
0
−φ′

(δd(x− l1i)− δd(x− l1i) dx using integration by parts. Using the

shifting property of the impulse function, we get Eq. (68):

τ =
n∑
i=1

ciVi(t)
(
φ

′
(l2i)− φ

′
(l1i)

)
(68)
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With two PZT actuators on the beam, the voltage signal is computed using Eq. (68)

as follows:



φ
′
1 (l21)− φ

′
1 (l11) φ

′
1 (l22)− φ

′
1 (l12)

φ
′
2 (l21)− φ

′
2 (l11) φ

′
2 (l22)− φ

′
2 (l12)

φ
′
3 (l21)− φ

′
3 (l11) φ

′
3 (l22)− φ

′
3 (l12)

φ
′
4 (l21)− φ

′
4 (l11) φ

′
4 (l22)− φ

′
4 (l12)


V1
V2

 = τ (69)

V1
V2

 =





φ
′
1 (l21)− φ

′
1 (l11) φ

′
1 (l22)− φ

′
1 (l12)

φ
′
2 (l21)− φ

′
2 (l11) φ

′
2 (l22)− φ

′
2 (l12)

φ
′
3 (l21)− φ

′
3 (l11) φ

′
3 (l22)− φ

′
3 (l12)

φ
′
4 (l21)− φ

′
4 (l11) φ

′
4 (l22)− φ

′
4 (l12)





−1

τ (70)

Equation (70) is the optimal least squares solution to Eq. (69). The model can be

simplified to the case with one PZT, by replacing the second column of the Galerkin

function dependent matrix in Eq. (69) with zeros.
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5 Numerical Simulations

5.1 Formulation

The closed-loop system is simulated in Simulink nased on the flowchart in Fig. 8.

The system properties used for simulation are given in Table 1 and correspond to the

experimental setup described in Chapter 6.

Table 1: Physical, geometrical and structural parameters of Bus, Array and
PZT.

` 29.7× 10−2 m Eb 68.9 GPa Ep 66 GPa
tb 0.45× 10−3 m ρb 2738 kg/m3 ρp 7800 kg/m3

w 0.036 m µ 10−4 tp 0.48× 10−3 m
d31 190× 10−12 m/V `11 1.1× 10−2m `21 8.144× 10−2 m
`12 8.614× 10−2 m `22 15.858× 10−2 m r 0.6× 10−2

Jθ 1.0759× 10−6 m - - - -

FLEXIBLE 
BEAM

PZT

CYLINDER

VICON 
MARKER

PZT LEFT 1 PZT RIGHT 1 PZT RIGHT 2PZT LEFT 2

𝑙𝑙𝑙𝑙11

𝑙𝑙21𝑙𝑙12
𝑙𝑙22

Figure 7: Front and Top view of the experimental setup.
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Figure 8: Closed-loop ODE system as implemented in Simulink.

The Galerkin matrices are computed using Eq. (81) for the configuration shown in

Fig. 7. The functions in Eqs. (71 - 80) define axial stiffness at different cross sections

of the beam. Using the Galerkin matrices, the closed-loop system defined by the ODE

given in Eqs. (60)-(62), and Eqs. (64)-(66) can be integrated using Euler’s method.
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p10(x) =

∫ r+`

r+x

mbsds+mv(r + `v6), (71)

p9(x) = mb

∫ r+`v5

r+x

sds+mb

∫ r+`

r+`v5

sds+mv(r + `v5) +mv(r + `v6) (72)

p8(x) = mb

∫ r+`v4

r+x

sds+mv(r + `v4) +mb

∫ r+`v5

r+`v4

sds+mb

∫ r+`

r+`v5

sds

+mv(r + `v5) +mv(r + `v6)

(73)

p7(x) = mR

∫ r+`22

r+x

sds+mb

∫ r+`v4

r+`22

sds+mv(r + `v4) +mb

∫ r+`v5

r+`v4

sds

+mb

∫ r+`

r+`v5

sds+mv(r + `v5) +mv(r + `v6)

(74)

p6(x) = mR

∫ r+`v3

r+x

sds+mR

∫ r+`22

r+`v3

sds+mb

∫ r+`v4

r+`22

sds+mv(r + `v4)

+mb

∫ r+`v5

r+`v4

sds+mb

∫ r+`

r+`v5

sds+mv(r + `v5) +mv(r + `v6)

(75)

p5(x) = mR

∫ r+`v2

r+x

sds+mv(r + `v2) +mR

∫ r+`v3

r+`v2

sds

+mR

∫ r+`22

r+`v3

sds+mb

∫ r+`v4

r+`22

sds+mv(r + `v4) +mb

∫ r+`v5

r+`v4

sds

+mb

∫ r+`

r+`v5

sds+mv(r + `v5) +mv(r + `v6

(76)

p4(x) = mb

∫ r+`12

r+x

sds+mR

∫ r+`v2

r+`12

sds+mv(r + `v2) +mR

∫ r+`v3

r+`v2

sds

+mR

∫ r+`22

r+`v3

sds+mb

∫ r+`v4

r+`22

sds+mv(r + `v4) +mb

∫ r+`v5

r+`v4

sds

+mb

∫ r+`

r+`v5

sds+mv(r + `v5) +mv(r + `v6)

(77)
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p3(x) = mR

∫ r+`21

r+x

sds+mb

∫ r+`12

r+`21

sds+mR

∫ r+`v2

r+`12

sds+mv(r + `v2)

+mR

∫ r+`v3

r+`v2

sds+mR

∫ r+`22

r+`v3

sds+mb

∫ r+`v4

r+`22

sds+mv(r + `v4)

+mb

∫ r+`v5

r+`v4

sds+mb

∫ r+`

r+`v5

sds+mv(r + `v5) +mv(r + `v6)

(78)

p2(x) = mR

∫ r+`v1

r+x

sds+mv(r + `v1) +mR

∫ r+`21

r+x

sds+mb

∫ r+`12

r+`21

sds

+mR

∫ r+`v2

r+`12

sds+mv(r + `v2) +mR

∫ r+`v3

r+`v2

sds

+mR

∫ r+`22

r+`v3

sds+mb

∫ r+`v4

r+`22

sds+mv(r + `v4) +mb

∫ r+`v5

r+`v4

sds

+mb

∫ r+`

r+`v5

sds+mv(r + `v5) +mv(r + `v6)

(79)

p1(x) = mb

∫ r+`11

r+x

sds+mR

∫ r+`v1

r+`11

sds+mv(r + `v1) +mR

∫ r+`21

r+x

sds

+mb

∫ r+`12

r+`21

sds+mR

∫ r+`v2

r+`12

sds+mv(r + `v2) +mR

∫ r+`v3

r+`v2

sds

+mR

∫ r+`22

r+`v3

sds+mb

∫ r+`v4

r+`22

sds+mv(r + `v4) +mb

∫ r+`v5

r+`v4

sds

+mb

∫ r+`

r+`v5

sds+mv(r + `v5) +mv(r + `v6)

(80)

[A] =

∫ `11

0

mbφφ
Tdx+

∫ `21

`11

mRφφ
Tdx+

∫ `12

`21

mbφφ
Tdx+

∫ `22

`12

mRφφ
Tdx

+

∫ `

`22

mbφφ
Tdx+mvφφ

T |x=lv1 +mvφφ
T |x=lv2 +mvφφ

T |x=lv3

+mvφφ
T |x=lv4 +mvφφ

T |x=lv5 +mvφφ
T |x=lv6

(81a)
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[C] =

∫ `11

0

mb(x+ r)φdx+

∫ `21

`11

mR(x+ r)φdx+

∫ `12

`21

mb(x+ r)φdx

+

∫ `22

`12

mR(x+ r)φdx+

∫ `

`22

mb(x+ r)φdx+mvφ(x+ r)|x=lv1

+mvφ(x+ r)|x=lv2 +mvφ(x+ r)|x=lv3 +mvφ(x+ r)|x=lv4

+mvφ(x+ r)|x=lv5 +mvφ(x+ r)|x=lv6

(81b)

[E] =

∫ `11

0

EIbφφ
′′′′T
dx+

∫ `21

`11

EItφφ
′′′′T
dx+

∫ `12

`21

EIbφφ
′′′′T
dx

+

∫ `22

`12

EItφφ
′′′′T
dx+

∫ `

`22

EIbφφ
′′′′T
dx

(81c)

[B] =

∫ `11

0

p1(x)φ
′
φ

′T
dx+

∫ `v1

`11

p2(x)φ
′
φ

′T
dx+

∫ `21

`v1

p3(x)φ
′
φ

′T
dx

+

∫ `12

`21

p4(x)φ
′
φ

′T
dx+

∫ `v2

`12

p5(x)φ
′
φ

′T
dx+

∫ `v3

`v2

p6(x)φ
′
φ

′T
dx

+

∫ `22

`v3

p7(x)φ
′
φ

′T
dx+

∫ `v4

`22

p8(x)φ
′
φ

′T
dx+

∫ `v5

`v4

p9(x)φ
′
φ

′T
dx

+

∫ `v6

`v5

p10(x)φ
′
φ

′T
dx

(81d)

[A] =



0.264 −0.6009 1.6038 −2.6446

−0.6009 1.4694 −3.6984 6.2020

1.6038 −3.6984 9.8163 −16.1620

−2.6446 6.2020 −16.1620 26.8670


(82a)

[C] =

[
0.0141 −0.0298 0.0850 −0.1367

]
(82b)
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[E] = 1.0e+ 05



0.0004 0.0250 0.0908 −0.2259

−0.0024 −0.0160 −0.0887 0.4024

0.0015 0.1299 0.6259 −1.0887

−0.0072 −0.1983 −0.7193 2.5227


(82c)

[B] =



0.3326 −0.8411 1.9941 −3.5240

−0.8411 2.5495 −5.3221 9.5762

1.9941 −5.3221 12.7840 −21.6810

−3.5240 9.5762 −21.6810 39.3600


(82d)

c = −1.2028e− 05 (82e)

5.2 Results

The Galerkin matrices are computed offline using Eqs. (81a-81d), given in Eqs. (82).

The closed-loop system is simulated using Simulink, with the Galerking matrices.

Here we track a sinusoidal signal of amplitude 0.001 radians and frequency 0.02Hz, and

slew from a zero initial attitude to 0.001 radians using both controller 1 and controller

2 for different values of ‘δ’. We present results for two cases: 1) Configuration 1: with

only ‘PZT LEFT 1’ and ‘PZT RIGHT 1’ active (see Fig. 7), and 2) Configuration 2:

Distributed configuration, with all the four PZTs active. For controller 1 and 2, it

was observed that trajectory tracking and slewing is achieved for δ ∈ [0, 1] with the

specified gain values.

For controller 1, in configuration 1 we present results for δ = {1, 0.5, 0}, (see

Figs. 9–11) for trajectory tracking and (Figs. 12–14) for slewing. If the closed-loop

simulation is performed with the same gain values for the three δ values, it was
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observed that the tracking error is inversely proportional to the ‘δ’ value in the range

[0, 1]. The voltage signals were computed from the control signal online using Eq. (70).

Note that the maximum voltage required to do the tracking and slewing is well within

±200V (the saturation limit of the PZT actuator used in experiments). It is observed

that the controller 1 predominantly uses first free vibration mode of the beam to

achieve tracking. The deflections in the beam during the closed-loop simulations are

shown in Fig. 52 (although not plotted here, the bending in all the cases is the same

as shown in Fig. 52). Note that for an anti-clockwise rotation of the spacecraft, the

solar array bends in the clockwise direction. For slewing results, the time to reach

steady state is increased for smaller δ. Figures 15–16 show tracking and slewing in

configuration 2.

For controller 2 in configuration 1, the closed-loop system is simulated for δ =

{1, 0.0001, 1e − 5} using different gain values. See Figs. 9–21 for trajectory tracking

and Figs. 22–24 for slewing. In configuration 2, trajectory tracking and slewing are

simulated for δ = 0.0001 (Figs 25–26). Similar to controller 1, as δ value gets close to

one, the tracking error becomes small for the gain values chosen. Unlike controller 1,

for δ = 1 the control effort is high and would saturate the PZTs during the experiment.

To avoid saturation, we choose smaller δ values to make sure that the control effort is

within the saturation limit. While for δ = 0.0001 the control effort is more than that

predicted by controller 1, it is within the saturation limit. Based on these simulation

results, experiments are performed for values of δ for which control effort is within

±200V .
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(9b) Trajectory tracking.
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(9c) Control effort in Volts.

Figure 9: Trajectory tracking (Simulation) for δ = 1 using controller 1 with
gains λ = 3, Kθ = 0.5, Kξ = 0.5.
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(10a) Tracking error.
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(10b) Trajectory tracking.
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(10c) Control effort in Volts.

Figure 10: Trajectory tracking (Simulation) for δ = 0.5 using controller 1 with
gains λ = 3, Kθ = 0.5, Kξ = 0.5.
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(11a) Tracking error.
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(11b) Trajectory tracking.
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(11c) Control effort in Volts.

Figure 11: Trajectory tracking (Simulation) for δ = 0 using controller 1 with
gains λ = 3, Kθ = 0.5, Kξ = 0.5.
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(12a) Slewing error.
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(12b) Slewing.
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(12c) Control effort in Volts.

Figure 12: Slewing (Simulation) for δ = 1 using controller 1 with gains λ = 3,
Kθ = 0.5, Kξ = 0.5.
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(13a) Slewing error.
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(13b) Slewing.
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(13c) Control effort in Volts.

Figure 13: Slewing (Simulation) for δ = 0.5 using controller 1 with gains λ = 3,
Kθ = 0.5, Kξ = 0.5.
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(14a) Slewing error.
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(14b) Slewing.
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(14c) Control effort in Volts.

Figure 14: Slewing (Simulation) for δ = 0 using controller 1 with gains λ = 3,
Kθ = 0.5, Kξ = 0.5.
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(15b) Trajectory tracking.
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(15c) Control effort in Volts.

Figure 15: Trajectory tracking (Simulation) for δ = 0.5 using controller 1 dis-
tributed PZT (configuration 2) with gains λ = 3, Kθ = 0.5, Kξ = 0.5.

45



0 20 40 60 80 100 120 140 160 180 200

time (seconds)

-2

-1

0

1

2

Tr
ac

ki
ng

 E
rr

or
 (
3

d - 
3
 ) 

in
 ra

di
an

s

#10-4

(16a) Tracking error.
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(16b) Trajectory tracking.
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(16c) Control effort in Volts.

Figure 16: Trajectory tracking (Simulation) for δ = 0 using controller 1 dis-
tributed PZT (configuration 2) with gains λ = 3, Kθ = 0.5, Kξ = 0.5.
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(17a) Slewing error.
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(17b) Slewing.
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(17c) Control effort in Volts.

Figure 17: Slewing (Simulation) for δ = 0.5 using controller 1 distributed PZT
(configuration 2) with gains λ = 3, Kθ = 0.5, Kξ = 0.5.
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(18a) Slewing error.
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(18b) Slewing.
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Figure 18: Slewing (Simulation) for δ = 0 using controller 1 with gains dis-
tributed PZT (configuration 2) λ = 3, Kθ = 0.5, Kξ = 0.5.
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(19a) Tracking error.
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(19b) Trajectory tracking.
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(19c) Control effort in Volts.

Figure 19: Trajectory tracking (Simulation) for δ = 1 using controller 2 with
gains λ = 3, Kθ = 0.5, Kξ = 0.5.
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(20a) Tracking error.
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(20b) Trajectory tracking.
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(20c) Control effort in Volts.

Figure 20: Trajectory tracking (Simulation) for δ = 0.0001 using controller 2
with gains λ = 10, Kθ = 5, Kξ = 5.
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(21a) Tracking error.
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(21b) Trajectory tracking.
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Figure 21: Trajectory tracking (Simulation) for δ = 1e−5 using controller 2 with
gains λ = 3, Kθ = 0.5, Kξ = 0.5.
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(22a) Slewing error.
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(22b) Slewing.
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(22c) Control effort in Volts.

Figure 22: Slewing (Simulation) for δ = 1 using controller 2 with gains λ = 3,
Kθ = 0.5, Kξ = 0.5.
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(23a) Slewing error.
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(23b) Slewing.

0 5 10 15 20 25 30 35 40 45 50

time (seconds)

0

5

10

15

20

25

30

35

40

V
ol

ta
ge

 a
pp

lie
d 

ac
ro

ss
 P

ZT
1(

V
ol

ts
) Voltage signal

(23c) Control effort in Volts.

Figure 23: Slewing (Simulation) for δ = 0.0001 using controller 2 with gains
λ = 10, Kθ = 5, Kξ = 5.
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(24a) Slewing error.
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(24b) Slewing.
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Figure 24: Slewing (Simulation) for δ = 1e−5 using controller 2 with gains λ = 3,
Kθ = 0.5, Kξ = 0.5.
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(25a) Tracking error.
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(25b) Trajectory tracking.
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(25c) Control effort in Volts.

Figure 25: Trajectory tracking (Simulation) for δ = 0.0001 using controller 2
distributed PZT (configuration 2) with gains λ = 10, Kθ = 5, Kξ = 5.
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(26a) Slewing error.
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(26b) Slewing.
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(26c) Control effort in Volts.

Figure 26: Slewing (Simulation) for δ = 0.0001 using controller 2 distributed
PZT (configuration 2) with gains λ = 10, Kθ = 5, Kξ = 5.
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6 Experiments

6.1 Actuator Model Validation

The quasi-static actuator model in Eq. (22) is validated using a cantilever beam setup

(see Fig. 27). The system parameters of the setup are given in Table 2, density of the

beam and PZT are taken from Table 1. The dynamics of a cantilever beam in PDE

form is given in Eq. (83) (see Ref. [15]). The Galerkin method was used to discretize

the PDE equation to form the ODE in Eq. (84). In Figs. 28, we compare the open-loop

response of the beam computed from simulations against results measured using the

Vicon motion capture system during experiments at different location on the beam.

For a sinusoidal input, the frequency of the simulated response matches experimental

results. The amplitude of the response is not an exact match because 1) we assume

there is perfect bonding between beam and PZT, 2) the beam is fixed at the root

using a ‘C-clamp’, which is not an ideal cantilever beam, and 3) the Vicon marker

effect on the beam is not is not modeled. We proceed and use this model in the real

time experiments as the difference between the simulation and experiments can be

compensated with extra control effort (it can be considered as a bounded uncertainty

at the input of the system Eq. (34)).

mRξ̈ +
(
EIξ

′′
+ µEIξ̇

′′
)′′

−M ′′

b (x, t) = 0 (83)

(∫ `ab

0

mRφφ
Tdx

)
η̈ +

(∫ `ab

0

φ
(
EIφ

′′T
)′′

dx

)
(η + µη̇)−

∫ `ab

0

φM
′′

b (x, t)dx = 0

(84)
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Table 2: Beam geometrical parameters.

`ba 24.4× 10−2 m `1pa 0.9× 10−2 m `pa 7.244× 10−2 m

(27a) Beam test setup.

BEAM
PZT

𝑙𝑙𝑏𝑏𝑏𝑏

𝑙𝑙1𝑝𝑝𝑝𝑝 𝑙𝑙𝑝𝑝𝑝𝑝

(27b) Beam schematic.

Figure 27: Beam Schematic and test setup with Vicon markers.
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(28a) Response to step input.
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(28b) Response to a sinusoidal in-
put.

Figure 28: Open-loop experiment vs simulation, tip deflection of the beam.

6.2 SASA Experimental Setup

The entire experimental setup is shown in Fig. 29, which includes SASA setup, Vicon

system, amplifiers, and the controller. The top and side view of the SASA setup are

shown in Fig. 30. The setup has a cylinder, a beam, and two plates. These compo-

nents are machined to the dimensions specified in Figs. 31 and 32. The properties of

the beam and PZT used are given in Table 1. The cylinder has a slot manufactured

using wire cut Electrical discharge machining (EDM), through which beam is fitted
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to the cylinder. The ball bearings are secured to the plates using an interference fit

and the cylinder is press fit into the inner bearing race. The ball bearings are fitted at

two vertical locations as a strategy to resist a torque perpendicular to the axis of the

cylinder and to allow for rotation about axis of the cylinder. Here, we use T120-A4E-

602 PZT sheet manufactured by Piezo Systems, Inc. with a maximum input voltage

of ±200V . Two PZTs are bonded on each side of the beam using superglue1 (the

results obtained in the cantilever beam experiments use this bonding agent as well),

for asymmetric actuation. Voltage is supplied to the PZTs using a Humusoft MF624

controller, which can produce up to ±10V . We use linear amplifiers manufactured

by Piezo systems to amplify the voltage supplied by the controller before applying

it across the PZTs. The real-time code for experiment was setup in Matlab using

Simulink R© Desktop real-timeTM toolbox. For computation of derivatives and integrals

we used the discrete time function blocks2 available in Simulink R©. The flowchart in

Fig. 35 shows the flow of real-time implementation. As seen in Fig. 35, we use three

Vicon cameras to measure the beam deflection and rotation of the cylinders. The

Simulink implementation for Vicon system is taken from Ref. [35]. The Vicon system

communicates with the controller (computer with the Humusoft controller) using a

local wireless area network.

1Loctite R© Super Glue
2http://www.mathworks.com/help/simulink/discrete.html
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Figure 29: SASA experimental setup.
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PZT

(30a) Side view.

AMPLIFIER

(30b) Top view with amplifiers.

Figure 30: SASA setup views.
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Figure 31: Cylinder projections.
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Figure 32: Plates used for support.

The properties in Table 1 are estimated using physical properties of the Aluminum

beam, cylinder, and steel ball bearings. The experimental system is built to be sym-

metric so that we can use measurements from a single beam to compute control effort

during the real-time experiments. To use the dynamics and control laws derived, we

transform the Vicon system’s world coordinate system ea1 , ea2 to an inertial coordi-

nate system fixed to the center of the cylinder ec1 , ec2 . The location of the center of

the cylinder is determined using the Vicon system by a hit and trial method. This

point is marked with a Vicon marker for further experiments. The angle ‘α’ can also

be inferred from Vicon measurements without actuation. Note that in Figs. 7, 29,

and 33, there are 12 Vicon markers at 6 locations on each beam. The Vicon system

calculates x, y coordinates of these Vicon markers with respect to coordinate system

ec1 , ec2 . The deflection at the 6 Vicon marker locations is computed by solving an

inverse kinematic problem Eq. (85), where ‘θ’ is measured using the Vicon marker as

shown in Fig. 33.
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rotation

Figure 33: Top view of the setup showing coordinate systems used in experi-
ments.

r + x

ξ

 =

 cos(θ) sin(θ)

− sin(θ) cos(θ)


x
y

 (85)

Let the deflection measured at the 6 Vicon marker locations (with distances from

root [`v1 `v2 `v3 `v4 `v5 `v6 ]) using the Vicon system be ξexp = [ξ1 ξ2 ξ3 ξ4 ξ5 ξ6].

The ξexp is used to compute η for 4 Galerkin functions Eq. (86). The derivatives θ̇

and η̇ are estimated using discrete derivatives of the computed θ and η from Vicon

measurements.
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ξTexp =



φ1(`v1) φ2(`v1) φ3(`v1) φ4(`v1)

φ1(`v2) φ2(`v2) φ3(`v2) φ4(`v2)

φ1(`v3) φ2(`v3) φ3(`v3) φ4(`v3)

φ1(`v4) φ2(`v4) φ3(`v4) φ4(`v4)

φ1(`v5) φ2(`v5) φ3(`v5) φ4(`v5)

φ1(`v6) φ2(`v6) φ3(`v6) φ4(`v6)


η (86)
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Controller 
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Computer)
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Experimental
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Camera1
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Camera3

Voltage

Figure 34: Schematic of SASA test setup.
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Figure 35: closed-loop ODE system as implemented in Simulink for experi-
ments.
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6.3 SASA Open-loop Simulation vs Experiments

For the open-loop results, we measure the hub rotation due to an applied voltage

across PZT on the beam. The estimation errors are clearly seen in Figs. 36 and 37,

which illustrates a comparison of open-loop simulation and experiment. The response

to a sinusoidal input is a good match. For the step input, simulations predict larger

rotation. This difference is due to the estimation of system parameters and not

modelling the ball bearing friction. In spite of the modeling errors, the closed-loop

system achieves the control objectives (see Section. 6.4 for details).
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(36a) Response to step input of 160 volts.
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(36b) Response to a sinusoidal input of amplitude 160 V and 0.02 Hz.

Figure 36: Open-loop experiment vs simulation, cylinder rotation for 160 Volts
amplitude inputs.
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(37a) Response to step input of 100 volts.
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(37b) Response to a sinusoidal input of amplitude 100 V and 0.02 Hz.

Figure 37: Open-loop experiment vs simulation, cylinder rotation for 100 Volts
amplitude inputs.

6.4 Results

The experimental setup described above, is used to test the two control laws. Based

on the simulation results, we test controller 1 in configuration 1 for δ = {1, 0.5, 0}

(Figs. 38–45) and in configuration 2 for δ = {0.5, 0} (Figs. 44–47). Controller 2 was

only tested for δ = 0.0001 (Fig. 48-51) as it was observed that for values of ‘δ′ closer to

1 it induces oscillations and saturates the actuator. Similar to the simulation, we track

a sinusoidal signal of amplitude 0.001 radians, with a frequency of 0.02Hz, and slew

to 0.001 radians from a zero initial angle. As mentioned earlier, the real-time code

was setup using Simulink Desktop real-time toolbox. For all the ‘δ′ mentioned earlier

we achieve the control objectives. As Matlab is a single-threaded application, the

measurements are made and control signal is applied to PZT’s at the same frequency

(100 Hz) during the experiment. For controller 1 in configuration 2, the PZTs on
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each side become more active as ‘δ’ value is reduced to 0. Note that the controllers

work inspite of the modelling errors and parametric uncertainties. The control effort

computed by the control algorithm during experiments is atleast 20 Volts more than

predicted during simulations.
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(38a) Tracking error.
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(38b) Trajectory tracking.
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Figure 38: Trajectory tracking (Experiment) for δ = 1 using controller 1 with
gains λ = 1.5, Kθ = 0.5, Kξ = 0.5.
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(39a) Tracking error.
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(39b) Trajectory tracking.
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(39c) Control effort in Volts.

Figure 39: Trajectory tracking (Experiment) for δ = 0.5 using controller 1 with
gains λ = 1.5, Kθ = 0.5, Kξ = 0.5.
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(40a) Tracking error.
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(40b) Trajectory tracking.
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Figure 40: Trajectory tracking (Experiment) for δ = 0 using controller 1 with
gains λ = 2, Kθ = 0.5, Kξ = 0.5 .

71



0 10 20 30 40 50 60 70 80 90 100

time (seconds)

-1

-0.5

0

0.5

1

sl
ew

in
g 

er
ro

r (
3

d - 
3
 ) 

in
 ra

di
an

s

#10-3

(41a) Slewing error.
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(41b) Slewing.
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Figure 41: Slewing (Experiment) for δ = 1 using controller 1 with gains λ = 1,
Kθ = 0.25, Kξ = 0.5 .

72



0 10 20 30 40 50 60 70 80 90 100

time (seconds)

-1

-0.5

0

0.5

1

sl
ew

in
g 

er
ro

r (
3

d - 
3
 ) 

in
 ra

di
an

s

#10-3

(42a) Slewing error.
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(42b) Slewing.
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Figure 42: Slewing (Experiment) for δ = 0.5 using controller 1 with gains λ = 1,
Kθ = 0.25, Kξ = 0.5 .
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(43a) Slewing error.
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(43b) Slewing.
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Figure 43: Slewing (Experiment) for δ = 0 using controller 1 with gains λ = 1,
Kθ = 0.25, Kξ = 0.5 .
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(44a) Tracking error.
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(44b) Trajectory tracking.
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Figure 44: Trajectory tracking (Experiment) for δ = 0.5 using controller 1 dis-
tributed PZT (configuration 2) with gains λ = 2, Kθ = 0.5, Kξ = 0.5.
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(45a) Tracking error.
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(45b) Trajectory tracking.
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Figure 45: Trajectory tracking (Experiment) for δ = 0 using controller 1 dis-
tributed PZT (configuration 2) with gains λ = 2, Kθ = 0.5, Kξ = 0.5.
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(46a) Slewing error.
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(46b) Slewing.
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Figure 46: Slewing (Experiment) for δ = 0.5 using controller 1 distributed PZT
(configuration 2) with gains λ = 2, Kθ = 0.5, Kξ = 0.5 .
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(47a) Slewing error.

0 10 20 30 40 50 60 70 80 90 100

time (seconds)

0

5

10

15

ro
ta

tio
n 

(3
) i

n 
ra

di
an

s

#10-4

3

3
d

(47b) Slewing.
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Figure 47: Slewing (Experiment) for δ = 0 using controller 1 with gains dis-
tributed PZT (configuration 2) λ = 2, Kθ = 0.5, Kξ = 0.5 .

78



0 20 40 60 80 100 120 140 160 180 200

time (seconds)

-2

-1

0

1

2

Tr
ac

ki
ng

 E
rr

or
 (
3

d - 
3
 ) 

in
 ra

di
an

s

#10-4

(48a) Tracking error.

0 20 40 60 80 100 120 140 160 180 200

time (seconds)

-1

-0.5

0

0.5

1

1.5

ro
ta

tio
n 

(3
) i

n 
ra

di
an

s

#10-3

3

3
d

(48b) Trajectory tracking.
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Figure 48: Trajectory tracking (Experiment) for δ = 0.0001 using controller 2
with gains λ = 1, Kθ = 0.5, Kξ = 0.5 .
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(49a) Slewing error.
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(49b) Slewing.
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Figure 49: Slewing (Experiment) for δ = 0.0001 using controller 2 with gains
λ = 1, Kθ = 0.5, Kξ = 0.5 .
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Figure 50: Trajectory tracking (Experiment) for δ = 0.0001 using controller 2
distributed PZT (configuration 2) with gains λ = 2, Kθ = 0.5, Kξ = 0.5 .
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Figure 51: Slewing (Experiment) for δ = 0.0001 using controller 2 distributed
PZT (configuration 2) with gains λ = 2, Kθ = 0.5, Kξ = 0.5 .
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6.5 Comparison of Beam Deflection During Tracking (Simu-

lations vs. Experiments)

The deflections of the beam estimated from simulation and experiment, while tracking

the sinusoidal signal from 0 radians to 0.001 radians between the time interval 100 to

110 seconds using controller 1 is shown in Figs. 52 and 53. It can be observed that the

difference between the deflections obtained from simulations to that of experiments is

drastically different, which was observed in all the cases. To investigate this, we plot

tip deflection in both cases including the effect of ‘θ’ rotation (see Figs. 54 and 55).

The amplitudes of tip deflections are comparable. The phase difference between these

plots is the reason for disparity between beam deflections. Further analysis is needed

to quantify this difference exactly, this phase difference could be because of the ball

bearing dynamics and friction.
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Figure 52: Bending in the beam while tracking the sinusoidal signal from 0 to
0.001 radians using controller 1, computed from simulation.
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Figure 53: Bending in the beam while tracking the sinusoidal signal from 0 to
0.001 radians using controller 1, estimated from experiments.
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Figure 54: Tip deflection of the beam while tracking a sinusoidal signal using
controller 1, computed from simulation.

84



1

0 20 40 60 80 100 120 140 160 180 200

time (seconds)

-4

-3

-2

-1

0

1

2

3

4

de
fle

ct
io

n 
(m

)

#10-4

Figure 55: Tip deflection of the beam while tracking the sinusoidal signal using
controller 1, estimated from experiments .
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7 Conclusion

In this thesis, we derived nonlinear equations of motion that describe the 1-DOF rota-

tion of a spacecraft with strain-actuated solar arrays. The equations form a nonlinear

ODE-PDE model, with ODE describing the rotation of the hub and PDE describing

the flexible dynamics. The control objective of attitude control was achieved using

the inertial coupling between the cylinder and the flexible appendage. The control

law computes the beam dynamics required to achieve the attitude. These beam dy-

namics and desired attitude signal were used to close the loop of the system. The

control law’s were designed in terms of a variable (δ) that scales the stiffness term.

The stability of the closed-loop system for unit scaling (δ = 1) was proved using the

Lyapunov direct method. It was observed that this system is Input-to-State stable

with the help of an ISS-Lyapunov function. This property is used to define a range

of values for the variable (δ) that makes the closed-loop system stable. The closed

loop system was simulated for different δ values to verify trajectory tracking and

slewing. To test the control algorithms in real-time, we developed an experimental

setup. The setup includes a cylinder and a beam, connected using an interference fit.

Strain actuation in the beam was achieved using piezoelectric actuators. The quasi-

static actuator model used for SASA experiments, was validated by comparing tip

deflections of a cantilever beam obtained from simulations against experimental mea-

surements. On the experimental setup, we achieved controlled cylinder rotation using

the strain-actuation on the beam, which validates the SASA control algorithms. The

strain-actuation was extended to a distributed actuation configuration with multiple

PZTs. This model was used to test the controllers in distributed configuration for

trajectory tracking and slewing. The control effort in the experiments was more than

predicted during simulations due to modeling errors and parametric uncertainties.
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