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Abstract

Modeling is a necessary tool to understand the large volumes of data generated from quantitative

experiments on biological systems. It combines our knowledge of a phenomenon into a succinct

mathematical or computational description. In this dissertation, we first describe briefly two

applications of modeling in biophysics: loading of the replication clamp into the replisome in the

archæon Methanosarcina acetivorans and genome packing initiation during the self-assembly

of the T4 bacteriophage. We then describe in detail two systems: an improved model of the lac

genetic switch which includes DNA looping in its gene regulation mechanism, and a spatially

resolved, whole-cell model of ribosome biogenesis in Escherichia coli, which we then extend to

include cell growth and replication of its genome.

For the first system, conditions and parameters affecting the range of bistability of the lac

genetic switch in E. coli are examined for a model which includes DNA looping interactions with

the lac repressor and a lactose analog. This stochastic gene–mRNA–protein model of the lac switch

describes DNA looping using a third transcriptional state. We exploit the fast bursting dynamics of

mRNA by combining a novel geometric burst approximation with the finite state projection (FSP)

method. This limits the number of protein/mRNA states, allowing for an accelerated search of the

model’s parameter space. We evaluate how the addition of the third transcriptional state changes

the bistability properties of the model and find a critical region of parameter space where the

phenotypic switching occurs in a range seen in single molecule fluorescence studies. Stochastic

simulations show induction in the looping model is preceded by a rare complete dissociation of

the loop followed by an immediate burst of mRNA rather than a slower build up of mRNA as in the
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two-state model. The overall effect of the looped state is to allow for faster switching times while

at the same time further differentiating the uninduced and induced phenotypes. Furthermore,

the kinetic parameters are consistent with free energies derived from thermodynamic studies

suggesting that this minimal model of DNA looping could have a broader range of application.

For the second system, we study the biogenesis of the ribosome. Central to all life is the assem-

bly of the ribosome: a coordinated process involving the hierarchical association of ribosomal

protein (r-protein) to the RNAs forming the small and large ribosomal subunits. The process is

further complicated by effects arising from the intracellular heterogeneous environment and

the location of ribosomal operons within the cell. We provide a simplified model of ribosome

biogenesis in slow growing E. coli. Kinetic models of in vitro small subunit reconstitution at the

level of individual r-protein to ribosomal RNA (rRNA) interactions are developed for two tempera-

ture regimes. The model at low temperatures predicts the existence of a novel 5′ → 3′ → central

assembly pathway, which we investigate further using molecular dynamics. The high temperature

assembly network is incorporated into a model of in vivo ribosome biogenesis in slow growing

E. coli. The model, described in terms of reaction-diffusion master equations, contains 1336

reactions and 251 species that dynamically couple transcription and translation to ribosome

assembly. We use the Lattice Microbes (LM) software package to simulate the stochastic produc-

tion of mRNA, proteins, and ribosome intermediates over a full cell cycle of 120 minutes. The

whole-cell model captures the correct growth rate of ribosomes, predicts the localization of early

assembly intermediates to the nucleoid region, and reproduces the known assembly timescales

for the small subunit with no modifications made to the embedded in vitro assembly network.

Finally, we extend the spatially resolved whole-cell model of ribosome biogenesis to include

the effects of growth, DNA replication, and cell division. All biological processes are described

in terms of reaction-diffusion master equations and solved stochastically using LM. In order to

determine the replication parameters, we construct and analyze a series of E. coli strains with

fluorescently labeled genes distributed evenly throughout their chromosomes. By measuring

these cells’ lengths and number of gene copies at the single-cell level, we could fit a statistical

model of the initiation and duration of chromosome replication. We found that for our slow-
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growing (120 minute doubling time) E. coli cells, replication was initiated 42 minutes into the cell

cycle and completed after an additional 42 minutes. While simulations of the biogenesis model

produce the correct ribosome and mRNA counts over the cell cycle, the kinetic parameters for

transcription and degradation are lower than anticipated from a recent analytical time dependent

model of in vivo mRNA production. Describing expression in terms of a simple chemical master

equation, we show that the discrepancies are due to the lack of non-ribosomal genes in the

extended biogenesis model which effects the competition of mRNA for ribosome binding, and

suggest corrections to parameters to be used in the whole-cell model when modeling expression

of the entire transcriptome.
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Chapter 1

Introductory Theory and Methodology

The studies presented in this dissertation all revolve around some sort of system of chemical

reactions. The appropriate theoretical treatment of these systems depends on the concentration

and diffusivity of the species involved. Considering the limits of high to low concentration and

fast to slow diffusion, leads to four different theoretical representations of the chemical system

(Figure 1.1). For high concentration and fast diffusion, spatial dependence and particle number

fluctuations can be ignored allowing for the use of deterministic chemical kinetics (Section 1.1).

For low concentration and fast diffusion, we can no longer neglect particle number fluctuations

can must consider all possible chemical copy number configurations (Section 1.3). For high

concentration and slow diffusion spatial dependence must be considered, leading to a partial

differential equation description, combining reaction dynamics and diffusion (Section 1.5). Finally

with both low concentration and slow diffusion, considering both spatial dependence along with

particle fluctuations requires a probabilistic, spatially resolved treatment (Section 1.6).

1.1 Deterministic chemical kinetics

In this work, we will be mainly interested in the dynamics of so called “elementary” chemical

reaction kinetics. We will denote an arbitrary chemical reaction of Xi reactants forming Yi products

1



Figure 1.1 Theoretical treatments of biochemical systems are chosen based on how the diffusive timescale
compares to the timescale of the phenomenon of interest and how significant the fluctuations
due to discrete nature of particles are to the behavior of the system. A description of the system
using deterministic rate equations (ODE) is sufficient when single particle fluctuations are
insignificant and the dynamics are spatially homogeneous. When particle number fluctuations
become important yet the system remains well-mixed, it is necessary to consider the system
as a series of stochastic transitions between different copy number states whose dynamics are
described by the chemical master equation (CME). If instead the chemicals are slow to diffuse,
yet remain in high concentration, a description in terms of reaction–diffusion equations (PDE)
must be used. Finally, when the system contains slowly diffusing species found in low copy
numbers, the reaction–diffusion master equation (RDME) must be applied.

as ∑
i
νi Xi −→

∑
i
νi Yi (1.1)

where νi is the stoichiometry for reactant i and νi is the stoichometry for product i . The rate of

conversion through these elementary reactions take the form

dy

dt
= k

∏
i

ci
νi , (1.2)

where i indexes reactants, the extent of reaction y is defined to be

y(t ) = c j (t )− c j (0)

ν j −ν j
, (1.3)

for any chemical species j and the chemical concentration of species j is

c j =
n j

NAΩ
, (1.4)
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where ni is the particle count, NA is Avogadro’s number, andΩ is the volume of the system. Eq. 1.2

is not true in general. Only if the reaction is elementary, i.e. the reaction occurs in a single step

with a single transition state, does this theory apply. To apply this to non-elementary reactions,

the reaction mechanism must be known so that each step can represented as an elementary

reaction.

The form of Eq. 1.2 can be derived from collision theory, however a simple justification follows

from the fact that the reacting molecules must find each other in the reacting volumeΩ in order

to react. This means that the reaction rate must be proportional to the rate of reaction encounters.

The number of reaction encounters per unit time depends on the number of ways that the reactant

particles can come together to form a reacting complex. For example, the dimerization

2A −→ B (1.5)

requires two species to combine. There are nA species, and the number of possible interactions

is nA(nA − 1)/2 since in this reaction, a particle cannot interact with itself (the −1 term) and

swapping the particles does not change the reaction (the 1/2 term). This is clearly a binomial

coefficient, and indeed the rate law can be written generally

dy

dt
∝∏

i

(
ni

ν j

)
. (1.6)

In macroscopic systems, e.g. ni ∼ NA, we can expand the binomial coefficient

(
ni

νi

)
=

νi∏
k=0

(ni −k) = ni
νi

νi∏
k=0

(
1− k

ni

)
= ni

νi

[
1+O

(
1

ni

)]
(1.7)

and truncate to zeroth order, from which Eq. 1.2 follows from the definition of the concentration,

Eq. 1.4.

In order to maintain consistent units in Eq. 1.2, the dimensions of the chemical rate constant,

k, depends on the reaction order,

α=∑
i
νi (1.8)
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as

[k] = volumeα−1time−1. (1.9)

The reaction constant, k, encodes the details of the reaction kinetics. It depends on the tempera-

ture through the Arrhenius equation

k =A exp
−Eact

kBT
, (1.10)

with T the thermodynamic temperature, kB Boltzmann’s constant, and Eact is the activation

energy of the reaction. Other details come about through the pre-exponential factor A , such as

the diffusion rates of the reactants, the encounter geometry, and other microscopic details.

Since the systems considered in this dissertation are composed of many chemical reactions,

we must define a language to refer to them effectively. We will define the system of chemical

equations as

S ·X = 0 (1.11)

where we have defined the stoichiometric matrix,

S=ν−ν, (1.12)

and the stoichiometric vectors have been upgraded to matrices

(ν,ν) ∈ZNrxn×Nsp , (1.13)

and X symbolizes both the product and reactant chemical species. The system of chemical rate

equations is then

dc

dt
=ST ·Γ (1.14)

where the flux vector is defined as

Γr = kr

Nsp∏
i=1

ci
Sr i . (1.15)
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However in a numerical solution to the reaction kinetics, the product in Eq. 1.15 is taken over an

index set defined for each reaction to limit unproductive arithmetic.

1.2 Case study: Replication clamp loading during DNA replication*

In order for DNA replication to progress, DNA polymerase (DNAP) must be able to move between

nucleobases quickly without disassociating from the replication fork. The faster it translocates

along the DNA, the more likely a step would result in its disassociation. If this happens, replication

would halt since DNAP would diffuse away. To prevent this, DNAP associates to a molecule acting

as a sliding clamp. This clamp is a ring-shaped protein that goes around the DNA and prevents

the DNAP from diffusing away if it dissociates from the replisome.

To get the clamp around the DNA requires a second protein, the clamp loader, to break the

ring and place it around the strand. The currently accepted mechanism is that first the clamp

loader docks with the sliding clamp, which has self-assembled from three monomers. Then

the clamp loader breaks the ring, places it onto the strand, and closes it3. However, evidence

from the archæon Methanosarcina acetivorans shows2 that a second mechanism is possible

(Figure 1.2a). The trimers that compose the clamp—called proliferating cell nuclear antigen

(PCNA) in archaea—can assemble onto the clamp loader by using it as a template in an example of

reverse-chaperoning. This was shown using an ensemble fluorescence resonance energy transfer

(FRET) experiment where half of the clamp monomers were labeled with the fluorescent dye Cy5,

a FRET acceptor, and the other half was labeled with Cy3, a FRET donor. The FRET efficiency is

related to the number of clamp trimers assembled. It was discovered that upon the addition of

clamp loader, called replication factor C (RFC) in archaea, the assembly kinetics of the clamp

increased dramatically (Figure 1.2b). Numerous experimental tests were performed to ensure

that this result was interpreted correctly 2. It was also necessary to verify this claim (or at least to

ensure consistency) through kinetic modeling.

*Section 1.2 contains material reproduced with permission from Liu C, McKinney MC, Chen YH, Earnest TM, Shi X,
Lin LJ, Ishino Y, Dahmen K, Cann IKO, and Ha T (2011). Reverse-chaperoning activity of an AAA+ protein. Biophys. J.,
100(5), pp. 1344–1352. doi:10.1016/j.bpj.2011.01.057.
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Figure 1.2 (a) Proposed mechanism of replication clamp assembly. Here R is clamp loader and P is clamp
monomer. It is hypothesized that the complex formed from the first monomer binding to the
clamp loader must under go a rate limiting step to form an activated complex which can then
quickly assemble the remaining two monomers. (b) Bulk measurements of FRET efficiency
allow the inference of the quantity of clamp trimers assembled as a function of time. When
clamp loader is added at ∼2 min, the rate of assembly increases significantly. FRET efficiency of
the (c) self-assembly and (d) assisted assembly of the replication clamp, compared to the fitting
of the ODE model (Eqs. 1.16a–1.16b). Due to differing experimental conditions, the absolute
FRET efficiencies cannot be compared between the two experiments.
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1.2.1 Modeling

To fit the ensemble FRET data to the proposed model, the model was adapted to include parallel

self-assembly of PCNA and dissociation of the RFC–PCNA complex. The expanded model is

R+P
ko−*)−
k ′

o

RP
kact−−*)−−
k ′

act

RP∗+P
kaa−−*)−−
k ′

aa

RP2 +P
kab−−*)−−
k ′

ab

RP3
kd−*)−
k ′

d

R+P3 (1.16a)

2P
kt a−−*)−−
k ′

t a

P +P2
ktb−−*)−−
k ′

tb

P3 (1.16b)

where R represents RFC and P represents a PCNA monomer. The full scheme used to compute

the FRET efficiencies, includes three kinds of PCNA monomer species: P with no label, P ′ with a

Cy3 tag, and P ′′ with a Cy5 tag. All possible combinations of the PCNA monomers are considered,

increasing the number of equations to 27. The predicted signal from FRET is then proportional

to the sum of the concentrations of all species which are composed of at least one P ′ and one

P ′′ subunit. We follow the procedure of Brown and Sethna 4 , to fit the solution of the system of

chemical rate equations to the FRET efficiency data. To determine the goodness of fit, the cost

function

C (θ) =
Nex∑
ξ=1

Nξ

Nt (ξ)∑
i=1

[Fξ(ti )− Aξyξ(ti ;θ)]2 + f (θ) (1.17)

where the ξ index runs over the Nex different experimental conditions, i runs over the Nt (ξ) time

points recorded for experiment ξ, ti and Fξ(ti ) are the FRET measurements from time point i ,

yξ(t ) is the concentration of FRET active species predicted by the model, θ represents the set of

the logarithm of rate constants and

Nξ =
(
NexNt (ξ)[Fξ(∞)]2)−1

(1.18)

is a normalization factor to ensure that each experiment is considered equally regardless of

signal magnitude, where Fξ(∞) is the FRET signal at steady state. Since the rate constants span

many different orders of magnitude, it is easier to write the cost function as a function of the
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logarithm of the rate constants θi = lnki . The term Aξ is a scaling parameter which converts from

FRET signal to concentration. Since the instrument function which maps the observed FRET

signal to concentration is unknown, we assume direct proprotionality, and solve for the Aξ which

best fit the simulated concentration time courses. These prefactors can be obtained by solving

∂Aξ
C (θ) = 0 for Aξ,

Aξ =
∑Nt (ξ)

i=1 Fξ(ti )yξ(ti )∑Nt (ξ)
i=1 [yξ(ti )]2

. (1.19)

The nonleast-squares term f (θ) allows for finer control over the fit results, and is constructed

from a sum of functions of the form

g (x; x0, x1,α) = (x0 −x)αθ(x0 −x)+ (x −x1)αθ(x −x1) (1.20)

where θ(x) is the Heaviside function. These functions simply impose a penalty for values outside

of the interval [x0, x1]. We use this function to assert our prior knowledge of the biochemistry

of the system. This procedure is legitimate since the 14 rate constants are not all independent,

i.e. there exist subspaces of the full parameter space for which the cost function is constant. The

penalty function merely pushes the solver through these subspaces.

The penalty function is composed of a sum of four terms. The first term ensures that the

rate constants are realistic, i.e. not greater than the diffusion limited rate of 109 M−1s−1. The

second term imposes the fact that upon addition of RFC, the FRET signal increases by a factor of

∼20, by ensuring that y(∞)/y(0) ≈ 20. The third term imposes that the dimer concentration is

very low, by requiring ytri/ydi ¿ 1. Finally, the fourth term ensures that the calibration constants,

Aξ, are all similar. Since the self-assembly data were taken using the same PCNA stock, buffer,

and incubation times, it is reasonable to assume that the distribution of calibration constants

should have a small range compared to the mean. The self-assembly and assisted assembly data

are considered separately since the data were collected at different conditions. The constraint

function is constructed to minimize (maxξ Aξ−minξ Aξ)/〈A〉.
The chemical rate equations are integrated numerically. The cost function is minimized using

simulated annealing 5 and quenched using the Nelder-Mead algorithm 6. From the search we were
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Table 1.1 Rate constants used in PCNA assembly model

Reaction Parameter Value Units

R+P −→ RP ko 2.5726 nM−1min−1

RP −→ R+P k ′
o 1296.1 min−1

RP −→ RP∗ kact 9.5028 min−1

RP∗ −→ RP k ′
act 155.46 min−1

RP∗+P −→ RP2 kaa 25.349 nM−1min−1

RP2 −→ RP∗+P k ′
aa 8.8459×105 min−1

RP2 +P −→ RP3 kab 2478.5 nM−1min−1

RP3 −→ RP2 +P k ′
ab 8.5213×10−7 min−1

RP3 −→ R+P3 kd 15.944 min−1

R+P3 −→ RP3 k ′
d 71.678 nM−1min−1

P+P −→ P2 kta 1.3798 nM−1min−1

P2 −→ P+P k ′
ta 6.3886×105 min−1

P2 +P −→ P3 ktb 0.9943 nM−1min−1

P3 −→ P2 +P k ′
tb 0.21348 min−1

Rate constants obtained through minimizing the RMS error between the measured and model predicted
concentration time courses, subject to constraints (Eq. 1.17).

able to find a set of rate constants (Table 1.1) that fit the experimental data well (Figure 1.2cd).

This shows that the kinetic model describing the assisted assembly is reasonable and could be

the correct mechanism. Only in conjunction with other evidence2 does it make a convincing

argument.

1.3 Stochastic chemical kinetics

Eq. 1.14, being a deterministic, continuum treatment, does not capture the true nature of the

reactive dynamics of a chemical system at low particle numbers. The times in which reactions

occur are completely randomized due to Brownian motion of reactant and solvent molecules.

Any memory of the prior state of the system is washed out after a timescale much shorter than

the reaction timescale. The best that we can do is assign probabilities to the reactions and treat

the system as a stochastic process. We assume that the system is “well-stirred”, meaning that

the diffusion timescale is much shorter than the reaction timescale, which allows us to ignore
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spatial dependence. We also assume that the chemical reaction follow a Poisson process with a

rate which depends only on the current number of particles in the system. The defining equation

of stochastic chemical kinetics in a “well-stirred” environment is the CME,

dP

dt
(x , t ) =

Nrxn∑
r=1

ar (x −Sr )P (x −Sr , t )−
Nrxn∑
r=1

ar (x)P (x , t ) (1.21)

where ar (x) is the reaction propensity for reaction r while the system is in state x (a.k.a. transition

rate), and x is the state vector

x(t ) = [x1(t ) x2(t ) · · · xNsp (t )]T (1.22)

which enumerates the particle counts for each species in the system, and Sr is the row of the

stochastic matrix that corresponds to the change in species numbers resulting from the reaction

r . The first summation in Eq. 1.21 is the rate of probability entering the state x due to reactions

from neighboring particle number states, while the second summation represents the rate of

probability loss from x due to reactions leaving the state. The CME performs bookkeeping on the

states: probability lost from one state is immediately recovered in another.

A justification for Eq. 1.21 can be found using simple probabilistic arguments. We define the

transition rate wi→ j , which gives the probability of a transition from state i to state j per unit

time, to be constant with respect to time. The probability to find the system in state x after a short

time has passed is

P (x, t +dt ) = P (x, t )P (x ý |t ∈ [t , t +dt ])+ ∑
y 6=x

P (y, t )P (y → x|t ∈ [t , t +dt ]) (1.23)

where P (x ý |t ∈ [t , t +dt ]) is the conditional probability that if the system is in x, for t ∈ [t , t +dt ]

the system will not transition out of x. Likewise, P (y → x|t ∈ [t , t +dt ]) is probability that the

state transitions from y to x, conditioned on the time interval and initial state. These conditional

10



probabilities can be written in terms of the transition rates

P (i → j |t ∈ [t , t +dt ]) = wi→ j dt (1.24a)

P (i ý |t ∈ [t , t +dt ]) = 1− ∑
j 6=i

wi→ j dt . (1.24b)

Substituting Eq. 1.24a and Eq. 1.24b into Eq. 1.23 and rearranging produces

P (x, t +dt ) = P (x, t )−P (x, y)
∑
y 6=x

wx→y dt + ∑
y 6=x

wy→x P (y, t )dt +O(dt 2). (1.25)

The undetermined second order terms arise from the possibility of multiple transitions within

[t , t +dt ], and can be made insignificant with sufficiently small dt . Identifying the pieces of the

time derivative of P (x, t ), we rearrange Eq. 1.25 and take the limit dt → 0 to arrive at the CME,

dP

dt
(x, t ) = ∑

x 6=y
wy→x P (y, x)− ∑

y 6=x
wx→y P (x, y). (1.26)

For a more rigorous derivation of the CME, see Gillespie 7 .

Now we must compute the transition rates, i.e. reaction propensities. Again, we will only

consider elementary reactions. The reaction propensity is

ar (x) = κr

Nsp∏
i=1

(
xi

Sr i

)
, (1.27)

which follows from the same argument as Eq. 1.2, in that the overall rate of a reaction is propor-

tional to the number of ways to the reactants can be grouped. However, here κr is the “stochastic

rate constant” not the deterministic rate constant kr . They are related by

κr = (NAΩ)1−αkr (1.28)

since the deterministic rate equations are defined in terms of concentrations, where as the CME

is defined in terms of absolute numbers.
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1.3.1 Stochastic simulations

Generally it is difficult, if not outright impossible to solve the CME for the system of interest. A

way around this is to generate trajectories which attempt to sample the underlying probability

distribution the CME describes. The most simple algorithm is the Gillespie Direct Method 8,9, also

known as the stochastic simulation algorithm (SSA). Starting out with the initial species counts,

x0, the stoichiometric matrix, S, and the propensity functions, ai (x), defined for each reaction

i , the algorithm steps forward in time by randomly choosing the identity and time of the next

reaction event. The relative time that the next reaction fires is exponentially distributed, with rate

equal to the sum of all reaction propensities, atotal. This is easy to see if you consider the CME for

the current state and ignore incoming transitions,

dPreact

dt
=−

Nrxn∑
r=1

ar (x)Preact =−
(

Nrxn∑
r=1

ar (x)

)
Preact =−atotalPreact, (1.29)

whose solution is

Preact(t ) = atotale
−atotalt . (1.30)

The probability that a reaction i fires is then simply

Prxn(i ) = ai

atotal
. (1.31)

At each step of the SSA, a random reaction time τ∼ Exp(atotal) is computed, along with a random

reaction index i ∼ Prxn(a). The current state is advanced by adding τ to the current time, and

adding the net change of particles due to reaction i , i.e. the i th row of the stoichiometric matrix to

the current particle counts. Further details are given in Algorithm 1.1.

In Gillespie 9 , an alternate algorithm was presented as well, called the First Reaction Method.

It differs from the direct algorithm in that a putative reaction time,

τi ∼ Exp(ai (x)) (1.32)
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Data: Initial particle counts – x0, stoichiometric matrix – S, propensity functions – ar (x),
and maximum evaluation time – tf.

Result: Reaction firing times – T and species counts at firing times – X.

t ←− 0;
x ←− x0;
// The number of events is not known in advance, initialize empty lists
X←−;;
T ←−;;
while t < tf do

atotal ←− 0;
for i ← 1 to Nrxn do

atotal ←− atotal +ai (x);

ρ1 ←− uniformRand();
ρ2 ←− uniformRand();

τ←−− logρ1

atotal
; // τ∼ Exp(atotal)

for i ← 1 to Nrxn do // Reaction choice weighted by propensity
if ar−1(x) < ρ2·atotal ≤ ar (x) then

x ←− x +S i ; // Row i of S is the net change due to reaction i
break;

t ←− t +τ;
append(X, x);
append(T , t );

Algorithm 1.1 Direct stochastic simulation algorithm
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is computed for all reactions each time step. The smallest τi identifies both the time and the

reaction that fires. These two algorithms are mathematically equivalent9, however the direct

method is more computationally efficient.

Since Gillespie’s algorithms were published in 1976, many improved algorithms have been

published. From the for loops in Algorithm 1.1, it is clear that the computational complexity of

the algorithm is O(Nrxn). The Next Reaction Method10, which improves upon the First Reaction

Method, is able to achieve O(log Nrxn) complexity while only requiring a single random number

per reaction event. The main feature of this method is that it saves the absolute time that each

reaction fires, i.e. t +τi , for each reaction, and only updates the times if reactions occurred that

change the value of the reaction propensity. Techniques have been developed which improve

upon the direct method such as partial propensity calculations 11–13 which are O(Nsp) instead of

O(Nrxn), and methods which sort the reactions by propensity to decrease the number of iterations

necessary to find a reaction 11,14,15, among others. There are also approximate methods which are

appropriate for large particle numbers such as tau leaping 16,17 or for systems with a separation of

timescales18

1.3.2 Selected features of stochastic chemical systems

To show the necessity for a stochastic, particle-orientated point of view in certain situations, we

will investigate two simple systems of reactions.

Michaelis-Menten kinetics

The most simple and well-known model of enzyme catalysis is the Michaelis-Menten model 19,

E+S
kon−−*)−−
koff

ES
kcat−−→ E+P (1.33)

where the substrate S, binds to the active site of the enzyme E, to form the complex ES, which can

then either react releasing the product P , or release the substrate. To investigate how low particle

numbers affect the time course of the conversion of S to P, we have plotted the deterministic
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solution along with stochastic trajectories at four system sizes (Figure 1.3a). In order for the

stochastic trajectories to match the deterministic solution at each system size, the rate constants

must be scaled along with the initial conditions. For example, the equation for the enzyme

concentration

dcE

dt
=−koncEcS + (koff +kcat)cES (1.34)

under the transformation

ci →χci (1.35a)

koff →αkoff (1.35b)

kon →βkon (1.35c)

kcat →αkcat (1.35d)

becomes

d

dt
(χcE) =−βkon(χcE)(χcS)+α(koff +kcat)(χcES), (1.36)

is invariant if α = 1 and β = 1/χ. As the initial count of substrate molecules increases from 10

to 10000 in Figure 1.3a the trajectories approach the deterministic solution. Figure 1.3b shows

the deterministic solution juxtaposed with 100 stochastic realizations at a constant system size

(nS(0) = 100, nE(0) = 10), where some trajectories can be seen to vary from the deterministic

solution by 20%. Such low copy numbers are common in single cells.

Lotka-Volterra model

A more profound effect of stochasticity can be seen in the Lotka-Volterra predator–prey model 19,

Y
α−→ 2Y (1.37a)

R +Y
β−→ 2R (1.37b)

R
γ−→∅ (1.37c)
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Figure 1.3 Stochasticity in Michaelis-Menten Kinetics. (a) Product of enzymatic conversion at varying
system sizes. (b) Many stochastic trajectories with the same parameters and initial conditions
(black) compared to the deterministic solution (red).
Stochasticity in the Lotka-Volterra model. (c) Comparison of the deterministic solution to a
stochastic realization of the predator counts. Stochastic treatment of the model reveals the
existence of extinction events. The initial predator population is 50. At t = 28, both population
sizes reach zero. (d) Many stochastic realizations (black) compared to the deterministic solution
(red). Stochasticity leads to fluctuations in the phase with respect to the deterministic solution.
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where Y indicates “prey” species which can reproduce at a rate proportional to the number of prey

and R indicates “predator” species, which can either consume a prey species to create another

predator or die of natural causes. The deterministic equations are

dnY

dt
=αnY −βnYnR (1.38a)

dnR

dt
=βnYnR −γnR (1.38b)

and have three fixed points: nY = 0,nR = 0; nY =∞,nR = 0; and nY = γ/β,nR =α/β corresponding

to the extinction of Y, the extinction of R, and stable coexistence. Aside from the coexistence fixed

point and the lines nY = 0 and nR = 0, any set of initial conditions will lead to oscillatory solutions

where the predator population lags the prey population.

Consider a stochastic version of the system. If a fluctuation of the population of Y causes

nY → 0, it can never recover since the reaction propensity to produce Y is zero. Subsequently,

the population of R will fall to zero since the reaction propensity to produce R is also zero. This

phenomenon of extinction arises only once stochasticity is taken into account in the Lotka-

Volterra system. Figure 1.3c shows an example of this extinction behavior. Another effect of

stochasticity in this system is that the population time courses of independent realizations rapidly

fall out of phase with the deterministic solution (Figure 1.3d).

1.4 Case study: Viral capsid DNA packing†

When the bacteriophage T4 is replicated its entire genome must be packed into its preassembled

capsid—the outer protein shell of the virus21. To accomplish this, a motor protein called gp17

is used to force the genetic material into the capsid. To investigate the initiation of packing, the

mechanism in which the DNA starts being packed by the motor, single molecule studies using

capsid–motor complexes were performed. The viral capsids were immobilized on a microscope

†Section 1.4 contains material reproduced with permission from Vafabakhsh R, Kondabagil K, Earnest T, Lee
KS, Zhang Z, Dai L, Dahmen KA, Rao VB, and Ha T (2014). Single-molecule packaging initiation in real time
by a viral DNA packaging machine from bacteriophage T4. Proc. Natl. Acad. Sci. USA, 111(42), pp. 15096–15101.
doi:10.1073/pnas.1407235111.
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Figure 1.4 (a) Depiction of a packaging model in which DNA binding triggers a conformational change that
activates the motor. The activated complex then either packages the DNA or enters a paused
state. (b) The fit obtained from the proposed model (green line) to the experimental data for
the number of packaged DNA molecules over time (open circles). The heat map shows the
probability distribution to find a number of molecules packed at a point in time. (c) Prediction
of the model for the short packaging time (blue line) and long packaging time (green line) as a
function of DNA concentration. (d) Packaging time distribution predicted from model (blue
line) compared to experimental distribution (green line).

coverslip with the gp17 motor installed. Small DNA molecules labeled with a fluorescent dye can

be flowed into the coverslip/slide cell and be packed by the motor. When the DNA is packed, the

fluorescent molecule becomes tethered to the coverslip. By monitoring the intensity of a spot over

time, jumps in the fluorescence intensity can be associated with DNA packing events. The labeled

DNA are seen to pack in rapid bursts followed by periods of inactivity. They are also seen to stop

packing entirely. Similar research has been published recently22 on the stop-start behavior of

viral genome packing in T4, however this is for much longer strands of DNA and used optical trap

techniques.
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An order of magnitude difference between the short and long time constants suggests that the

packaging initiation events occur in bursts, with periods of activity where multiple DNA molecules

are packed consecutively, punctuated by long pauses. This bursting behavior could be produced

if the T4 motor can enter a quiescent state where it is trapped in an inactive conformation unable

to translocate. One model illustrating such a cycle is depicted in Figure 1.4a. In this model

the packaging complex M initiates packaging by first associating with a DNA molecule at a rate

proportional to the DNA concentration. DNA binding can trigger a conformational change in the

motor that results in the transition of the packaging complex DM into an activated state DM∗ from

which translocation can begin. Packaging then completes at an ATP-dependent rate. However,

from this activated DM∗ state the motor can transit into an inactive, quiescent state (DM0) with a

rate that is dependent on ATP concentration. In this state, the motor pauses, possibly because

ATP binding and DNA capture are not coordinated. Finally, the motor recovers from the pause

and resumes packaging initiation.

This model can be expressed through the master equations

∂t P M
n = kpack[ATP]P DM∗

n−1 +kdnaoffP
DM
n −kdnaon[DNA]P M

n (1.39a)

∂t P DM
n = kdnaon[DNA]P M

n − (kdnaoff +kinit)P DM
n (1.39b)

∂t P DM∗
n = kinitP

DM
n +kunpauseP DM0

n − (kpause[ATP]+kpack[ATP])P DM∗
n (1.39c)

∂t P DM0

n = kpause[ATP]P DM∗
n −kunpauseP DM0

n , (1.39d)

where P X
n (t) is the probability mass function to find the motor in the state X with n molecules

packed at time t . The experimental data describing the packing process is in the form of DNA

molecules counted per viral motor. We fit this model to that data by maximizing the likelihood

function

L(θ) =
Nexpt.∏
i=1

Nmotor,i∏
j=1

Nevent,i , j∏
k=1

Pni , j ,k (ti , j ,k |[ATP]i , [DNA]i ,θ), (1.40a)

over

θ = {kdnaon,kdnaoff,kinit,kpause,kunpause,kpack}, (1.40b)
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where the probability to find a capsid with exactly n packed molecules at time t is

Pn(t ) = P M
n (t )+P DM

n (t )+P DM∗
n (t )+P DM0

n (t ). (1.41)

The experimental data is described through ti , j ,k and ni , j ,k which are the packing event times

and number of molecules packed respectively for experiment i , capsid j , and event k, where the

packing time is measured starting from the addition of DNA. Nexpt. is the number of experimental

conditions, Nmotor,i is the number of immobilized capsid/motor complexes for experiment i , and

Nevent,i , j is the number of packing events for motor j .

1.4.1 Numerical solution

To compute Eq. 1.41 we must solve Eqs. 1.39a–1.39d, however an analytic solution will be enor-

mously complicated. Instead, we take advantage of the fact that it is highly unlikely that there will

be more than ∼50 molecule packing events observed for a single motor. If we modify Eqs. 1.39a–

1.39d to only include terms up to a finite N , we receive a linear system of ODEs with 4N equations

which can be solved numerically. We replace the transitions between P DM∗
N−1 to P M

N with a transition

to an absorbing boundary state, ε. No transitions from ε are allowed, so the probability to find

the system in that state increases monotonically with time. To choose the optimal N such that

the error in the solution is acceptable and the number of states of the system is minimized, we

use Pε(t) to monitor the total probability lost due to the truncation. If Pε(t) increases above a

threshold, we must restart the solution with a larger value of N . This procedure forms the basis of

the finite state projection (FSP) 23,24 which will be discussed in detail in Section 2.3.

Armed with a recipe to compute Eq. 1.41, we use the Nelder-Mead algorithm to minimize the

objective function

Φ(θ) =− logL(θ), (1.42)

where we take the logarithm in order to ensure that the numerical evaluation of the objective

function does not exceed the range of a standard 64-bit floating point number. Figure 1.4b shows

an example of the fitting of a single experiment, the long and short packaging time constants,
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Table 1.2 Four-state T4 capsid motor packing model parameters.

Parameter Value Units

kdnaon 355.1±5.9 nM −1s−1

kdnaoff 2±103 s−1

kinit 761.0±4.0 s−1

kunpause 0.02±0.18 s−1

kpause 383.5±7.0 mM −1s−1

kpack 515.8±6.6 mM −1s−1

Model parameters are computed from maximizing Eq. 1.41. Parameter values are given as mean±std,
computed from bootstrapping.

predicted from this model, are shown in Figure 1.4d, and an example of the predicted inter-packing

time distribution for an experiment is shown in Figure 1.4e.

1.4.2 Analytic solution

Since the transition probabilities do not depend on the number of molecules packed, we can

simplify the problem by considering the process of packing a single molecule,

∂t P M
0 = kdnaoffP

DM
0 −kdnaon[DNA]P M

0 (1.43a)

∂t P DM
0 = kdnaon[DNA]P M

0 − (kdnaoff +kinit)P DM
0 (1.43b)

∂t P DM∗
0 = kinitP

DM
0 +kunpauseP DM0

0 − (kpause[ATP]+kpack[ATP])P DM∗
0 (1.43c)

∂t P DM0

n = kpause[ATP]P DM∗
0 −kunpauseP DM0

0 (1.43d)

∂t P M
1 = kpack[ATP]P DM∗

0 , (1.43e)

and assume that the motor in state M with one molecule packed is an absorbing state. Then,

P M
1 (∆t) can be interpreted as the cumulative distribution function (CDF) of packing times, ∆t ,

and it then follows that Eq. 1.43e yields the probability distribution function (PDF) of packing

times,

P∆t (t ) = ∂t P M
1 (t ) = kpack[ATP]P DM∗

0 . (1.44)
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A closed-form expression for Eq. 1.44 can be derived by first computing the Laplace transform

of Eqs. 1.43a–1.43e and solving for P M
1 (s):

P̂∆t (s) = kinitkdnaonkpack[DNA][ATP](s +kunpause)

(s +k1)(s +k2)(s +k3)(s +k4)
, (1.45)

where the rate constants are:

k1 = 1

2

(
kinit +kdnaoff +kdnaon[DNA]

+
√

(kinit +kdnaoff +kdnaon[DNA])2 −4kinitkdnaon[DNA]

)
(1.46a)

k2 = 1

2

(
kinit +kdnaoff +kdnaon[DNA]

−
√

(kinit +kdnaoff +kdnaon[DNA])2 −4kinitkdnaon[DNA]

)
(1.46b)

k3 = 1

2

((
kpack +kpause

)
[ATP]+kunpause

+
√[(

kpack +kpause
)

[ATP]+kunpause
]2 −4kpackkunpause[ATP]

)
(1.46c)

k4 = 1

2

((
kpack +kpause

)
[ATP]+kunpause

−
√[(

kpack +kpause
)

[ATP]+kunpause
]2 −4kpackkunpause[ATP].

)
(1.46d)

To compute the time domain PDF of packing times, we compute the inverse Laplace transform

of Eq. 1.45 by explicitly evaluating the contour integral

P∆t (t ) = 1

2πi
lim

T→∞

∫ γ+iT

γ−iT
ds est P̂∆t (s) (1.47)

using the residue theorem. This yields a first passage time distribution in the form of a sum of
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exponentials,

P∆t (t |[ATP], [DNA]) = kinitkdnaonkpack[DNA][ATP]

(
(kunpause −k1)e−k1t

(k2 −k1)(k3 −k1)(k4 −k1)

+ (kunpause −k2)e−k2t

(k1 −k2)(k3 −k2)(k4 −k2)
+ (kunpause −k3)e−k3t

(k1 −k3)(k2 −k3)(k4 −k3)

+ (kunpause −k4)e−k4t

(k1 −k4)(k2 −k4)(k3 −k4)

)
. (1.48)

1.5 Reaction/diffusion systems

Though reaction–diffusion equation modeling is not used in this dissertation, a brief introduction

for the sake of symmetry follows. For chemical systems for which stochastic effects are not

important but cannot be assumed to be well-stirred, the diffusion equation can be combined

with a reaction term to form the reaction–diffusion equation,

∂t ci =∇∇∇· (Di ·∇∇∇ci )+ f (c), (1.49)

where ci (x , t ) is the space- and time-dependent concentration for species i , Di is the (potentially

spatially dependent) diffusion tensor for species i , and f (c) is a term representing the gain and

loss of material due to chemical reactions. If only elementary reactions are considered, then

f (c) =ST ·Γ(c(x , t )) (1.50)

where S is the stoichiometric matrix (Eq. 1.12) and Γ is the flux vector (Eq. 1.15) which now

depends on space implicitly.

As a simple example whose result will become useful once we begin to study the ribosome

biogenesis model developed in Chapter 3, consider a system with the following reactions,

∅ λ−→ A (1.51a)

A
γ−→∅ (1.51b)
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where the birth process (Eq. 1.51a) only occurs at a point source located at the origin of the

reaction volume,Ω, which we take to be all of R3. The reaction–diffusion equation is then simply

∂tφ= D∇2φ−γφ+λδ(x) (1.52)

with D the diffusion coefficient, γ the first order decay rate of A, λ the zeroth order birth rate of A,

and φ=φ(x , t ) the time-dependent concentration field of A, with the boundary conditions

 φ(x , t ) = 0

∇∇∇φ(x , t ) = 0
, ∀t ≥ 0, x ∈ ∂Ω (1.53)

This PDE is not difficult to solve. First, we Fourier transform Eq. 1.52 over x ,

∂t φ̂=−D(k2 +γ)φ̂+λ (1.54)

and solve the resulting ODE for the time-dependent, Fourier-transformed concentration field

φ̂(k , t ) = λ/D

k2 +γ/D
+ φ̂0(k)e−(k2+γ)Dt . (1.55)

Here our constant of integration was φ̂0(k), which is the Fourier transformed initial concentration.

For the sake of simplicity, let us take φ̂0(k) = n0, i.e. a delta distributed initial concentration profile

of total amount n0. Now transforming Eq. 1.55 back, we use the central symmetry of the problem

to simplify the Fourier integral and arrive at the solution

φ(r, t ) = λ

4πDr
e−

p
γ/Dr + n0p

4πDt
e−γDt e−r 2/4Dt , (1.56)

where the first term is the steady-state concentration profile arising from the central source, and

the second term is the usual diffusion kernel arising from the initial amount of chemical at the

origin at t = 0. This result is applicable to whole-cell simulations where a species is produced at

a point in space at a constant rate and has a fast decay time. For example, the 16S rRNA which
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forms the foundation of the ribosomal small subunit is transcribed from fixed locations within

the cell. In order to see any appreciable spatial heterogeneity of the fully assembled particles, we

would have to have that √
D

γ
< ` (1.57)

where ` is the length of the cell. Taking values of D = 0.5 µm2 s−1 for the diffusion constant of

assembly intermediates and `= 4.0 µm for the cell length, the half life of assembly intermediates

would have to be on the order of 5 s. This is not the case, however as we will see later the half lives

of particular classes of assembly intermediates can be much smaller than this.

1.6 Stochastic chemical kinetics with spatial resolution

In vitro systems can contain small copy numbers of chemical species which diffuse slowly through

a complex, crowded environment. To correctly model these sorts of systems requires a stochastic,

spatially resolved approach. There are two classes of simulation algorithms for these sorts of

problems. First, particle-based methods25–27 track the position and identity of each particle in

space, and evolve their positions in time using Brownian dynamics where the position of each

particle i is updated as

x(ti+1) = x(ti )+ 1

ζi
f i ({x}, t )τ+

√
2Diη(t )

p
τ, (1.58)

where τ is the time step, Di is the diffusion constant which is related to the drag coefficient

ζi through the Einstein relation Dζ = kBT , f i ({x}, t) is the sum of forces acting on the particle,

and η(t) is a Gaussian random variable with zero mean and unit variance. Reactions between

particles are implemented through assigning reaction probabilities to interacting particles if their

separation ‖x i −x j‖ is less than the sum of their reaction radii. Excluded volume interactions are

accounted for in these methods through the force term, which allows for a realistic simulation of

molecular crowding.

The other methods sample solutions from the probability distribution described by the
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RDME—a version of the CME generalized to include spatial degrees of freedom. These RDME 28–31

methods do not track individual particles, but rather track the populations of chemical species

within subvolumes of the simulation domain. Each subvolume is treated as well-stirred reaction

volume, allowing for the reactions in each subvolume to be simulated independently. These

methods are generally less computationally expensive than particle-based methods, however

excluded volume effects between reacting particles are neglected. Molecular crowding due to

other molecules in the cell can be modeled through the introduction of obstacles in the lattice ge-

ometry 32,33, however. The use of spatial discretization could lead to reduced accuracy compared

to particle methods, however it has been shown that RDME methods approach the same level of

accuracy when the reaction radii are much smaller than the lattice spacing34–37.

The RDME is defined as

dP (x , t )

dt
=

V∑
ν

R∑
r

[−ar (xν)P (xν, t )+ar (xν−Sr )P (xν−Sr , t )]

+
V∑
ν

±î , ĵ ,k̂∑
ξ

N∑
α

[−dα
ν xανP (x , t )+dα

ν+ξ(xαν+ξ+1)P (x +1αν+ξ−1αν , t )], (1.59)

where P (x , t ) is the probability distribution to find a configuration x at time t . The configuration

vector x contains the number of species present at each individual lattice site, e.g.

x = [
x1,1,1 x1,1,2 · · · x1,1,Nz x1,2,1 · · · · · · x1,NyNz · · · · · · · · · x Nx,Ny,Nz

]T (1.60a)

x i , j ,k =
[

x1
i , j ,k · · · x

Nsp

i , j ,k

]T
. (1.60b)

The first term in Eq. 1.59 describes the flow of probability between different copy number states at

every lattice site. The reaction propensities ar (xν) give the transition probabilities due to reaction

r firing at site ν, and are computed following Eq. 1.27. The r row of the stoichiometry matrix S

is the change in species counts when reaction r occurs. The second term describes the flow of

probability due to diffusion between neighboring lattice sites, indexed by ξ. For a cubic lattice
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with spacing λ, the diffusive propensity is

dα
ν = Dα

ν

λ2 , (1.61)

and is computed by treating diffusion as a discrete random walk of step size λ and associating

the diffusion constant Dα
ν with the discrete step probability. The notation 1αν represents a single

molecule of species α in volume, i.e. (1αν )βµ = δαβδµν.

We utilize Lattice Microbes (LM)—a suite of highly parallel graphics processing unit (GPU)

accelerated algorithms for stochastic simulations of complex biochemical reaction networks

under realistic cellular conditions28,29,32,33,38,39 developed by the Luthey-Schulten group—for

all RDME simulations presented in this dissertation. The software includes implementations

of both CME and RDME sampling algorithms, including a unique multiple particle diffusion

(MPD-RDME)32 algorithm, which splits the diffusion operator into x-, y-, and z-components,

allowing for more efficient processing on the GPU. LM trajectories are capable of reaching hour

long timescales—orders of magnitude longer than competing codes 25–27,30. By taking short time

steps such that active particles are unlikely to take part in multiple reactions, the subvolumes are

rendered independent, and can be calculated in parallel (implementation details can be found in

Roberts et al. 32 , Roberts et al. 28 , and Hallock et al. 29 ).

The multi-particle diffusion RDME (MPD-RDME) algorithm represents the simulation vol-

ume as a cubic lattice, where each site contains a finite number of particles. The particles are

represented by an array of integers, where the value of each integer greater than zero identifies

the presence of a particle and its species type and a value of zero indicates an vacancy. The

simulation loop proceeds by executing the GPU-based procedures (called kernels) for diffusion

in the x, y , and z directions sequentially, followed by the reaction kernel. The simulation time

is updated ti+i = ti +τ, and once t > tfinal the loop exits and the simulation terminates. These

kernels are executed in parallel on the GPU where each thread is responsible for a single site. The

simulation algorithm takes regular time steps, as opposed to the Gillespie direct algorithm which

takes time steps of varying length, sampled from an exponential distribution. This could lead to
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inaccurate sampling of the underlying probability distribution, however each lattice site must be

synchronized in time to all other sites in order to perform diffusion.

Data: Initial particle lattice – x , stoichiometric matrix – S, propensity functions – ar (xν),
time step – τ, and maximum evaluation time – tf.

Result: Final particle lattice – x

t ←− 0;
while t < tend do

for ξ ∈ {x, y, z} do
parfor ν ∈V do // Execute on GPU

diffusionKernel(ξ,ν);

parfor ν ∈V do // Execute on GPU
reactionKernel(ν);

t ←− t +τ;

Algorithm 1.2 The multi-particle diffusion RDME algorithm

// Perform a single diffusion time step at the lattice site ν in the ±ξ
direction.

for α ∈ xν do
ρ←− uniformRand();
// Here ν±ξ refers to the index of the neighboring site in the ±ξ

direction, and ν→ ν±ξ indicates the site transition probability
if the starting and ending site types differ.

if ρ ≤ dα
ν→ν+ξ then

moveParticle(α,ν,ν+ξ);
else if ρ > 1−dα

ν→ν−ξ then

moveParticle(α,ν,ν−ξ);

Function 1.3 diffusionKernel(ξ,ν)

During a time step [t , t +τ], the probability of a reaction occurring is simply

Preact =
∫ τ

0
dt atotale

−atotalt = 1−e−atotalτ (1.62)

following Eq. 1.30. Each time step, a random number ρ ∼ Uniform(0,1) is drawn and if ρ < Preact,

then a reaction will occur at that time step, chosen using Eq. 1.31 as in the exact stochastic
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// Perform a single reaction time step at the lattice site ν.
for r ← 1 to Nrxn do

atotal ←− atotal +ar (xν);

ρ1 ←− uniformRand();
if ρ1 ≤ 1−e−atotalt then

ρ2 ←− uniformRand();
for r ← 1 to Nrxn do

if ar−1(xν) < ρ2·atotal ≤ ar (xν) then
executeReaction(ν,Sr );
break;

Function 1.4 reactionKernel(ν)

simulation algorithm. The diffusion kernels proceed similarly. The probability that the particle

leaves its site is

Preact = 1−e−adifτ, (1.63)

where adif is the sum of the two diffusive propensities to transition along the diffusion kernel axis,

e.g. 2dα
ν in the case where the site types of the sites -1, 0, and +1 are all identical. Algorithm 1.2

summarizes the MPD-RDME algorithm. The details of the lattice modifying functions executeRe-

action() and moveParticle() are involved. Adding or removing a particle from the lattice must be

done such that the array of particles remains compacted, i.e. ensuring that all vacancies are after

the particles. Moving a particle requires communication between threads, since each thread is

responsible for a single lattice site. A description of how this is achieved will require a digression

into how GPU hardware is exposed to the programmer.

When a kernel is launched on the GPU, many instances of the code will be executing at once.

These instances are grouped into thread blocks, where each thread in a block has access to small

amount (NVIDIA TITAN X: 48 kB) of low latency memory shared among all threads in the block,

referred to as shared memory. Reading and writing to this memory can be 100× faster than the

main GPU memory, referred to as global memory (NVIDIA TITAN X: 12 GB), the large pool of

memory where the full lattice data structure is stored. Sharing the list of particle movements must

be done through shared memory in order to maximize performance. However due to the small
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size of the available shared memory, the thread blocks must be significantly smaller than the full

lattice. When a block of the lattice is loaded into shared memory, so is its “apron”. The apron

includes all lattice sites bordering the lattice block. These sites are not modified, however the

movement of their particles is recorded so that diffusion from apron sites into the lattice block

is accounted for. Since a particle can move at most one lattice site per time step, an apron of a

single lattice site is sufficient. The outcome of diffusion will be computed multiple times in these

apron sites from other thread blocks, so the outcome must be identical each time. The seed of

the random number generator is computed from the site index, so that two different threads

will compute the same random diffusion events for the same site. The main benefit of splitting

the diffusion operator into orthogonal axes is that it decreases the size of the apron dramatically,

reducing the number of unproductive calculations.

The nature of the MPD-RDME algorithm places constraints on the model parameters and

the coarseness of the lattice. The largest diffusion constant in the system and the lattice spacing

dictates the largest valid time step,

τ< λ2

2maxαDα
, (1.64)

that can be taken. This relationship is a consequence of the fact that diffusion in the RDME is a

discrete random walk. The decoupling of reactions from diffusion used in this method relies on a

separation between diffusive and reaction timescales. We define the diffusive timescale to be

τD = λ2

6Dmax
(1.65)

and the reaction timescale to be

τR = 1

amax
, (1.66)

where amax is the largest reaction propensity. Then

τR À τD (1.67)
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implies that

λ¿
√

6Dmax

amax
. (1.68)

Substituting in the expressions for reaction propensities (Eq. 1.27), we see that there are upper

and lower bounds on the lattice size:

λ¿
(

6Dmax

Γ(0)
maxNA

)1/5

(zeroth-order) (1.69)

λ¿
√

6Dmax

Γ(1)
max

(first-order) (1.70)

λÀ Γ(2)
max

6DmaxNA
(second-order), (1.71)

where Γ(i )
max is the maximum i th-order flux (Eq. 1.15) evaluated using typical lattice site concentra-

tions.

In the implementation of the MPD-RDME algorithm used by LM, the simulation volume is

represented by an Nx ×Ny ×Nz ×Np array of integers, where Nx,y,z are the number of lattice sites

in each dimension and Np is the lattice occupancy. The finite lattice occupancy is a consequence

of the GPU oriented design of LM, and allows the GPU to access the lattice memory in a regular

pattern. This implies that the maximum lattice size available to the modeler is constrained by the

total concentration of particles in the system. Currently, LM allows for either 8 or 16 particles per

site. If a reaction or diffusion event causes any subvolume to exceed its capacity, the computation

on the GPU must be placed on hold so that a process can run on the host to correct the overflow.

Particles in the offending site are redistributed among the neighboring subvolumes which have

empty particle slots available. Frequent overflows will cause the computational efficiency to

plummet due to the repeated shuffling of the lattice data between the host and GPU.

The probability of an overflow occurring due to diffusion can be computed by considering

particle placement as a series of Bernoulli trials32. Consider an empty lattice containing Ls

subvolumes, each having a maximum occupancy of nmax, to which we add N particles. The

trial in this case is whether or not a particle is placed randomly at a particular lattice site. If all

lattice sites are equally likely to receive a particle, then the probably of the success of a single
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trial is p = 1/Ls. The probability that a particular subvolume receives n particles then follows the

binomial distribution

P (n) =
(

N

n

)(
1

Ls

)n (
1− 1

Ls

)N−n

. (1.72)

The overflow probability of a single site is then 1−∑
1≤n≤nmax

P (n), from which it follows that the

expected number of overflows, Nof, is

E[Nof|nmax,Ls, N ] = Ls

[
1− ∑

1≤n≤nmax

(
N

n

)(
1

Ls

)n (
1− 1

Ls

)N−n
]

. (1.73)

An acceptable number of time steps between overflows should be 100 – 1000. Eq. 1.73 can be

solved numerically to find the appropriate lattice occupancy for a required particle density.
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Chapter 2

DNA looping increases the range of
bistability in a stochastic model of the
lac genetic switch*

2.1 Introduction

The lac circuit in Escherichia coli is one of the most well-studied examples of gene regulation,

dating back to the classic experiments by Novick and Weiner 41 in 1957 and Jacob and Monod 42

in 1961. Since then much has been learned about the system, including the effect of DNA

looping on the effectiveness of the switch43–46. The lac operon controls the translation of genes

necessary for the utilization of lactose. Three gene products are translated from the operon:

β-galactosidase (LacZ) is responsible for cleaving the β-1,4 glycosidic bond in lactose to yield

glucose and galactose, β-galactoside transacetylase transfers an acetyl group to aid in lactose

metabolism, and β-galactoside permease (LacY) is a membrane bound transporter protein, which

actively imports lactose from the environment into the cell. A fourth constitutive protein, lac

repressor (LacI), is coded for upstream of the lac promoter. This protein binds to the lac operators

*Chapter 2 contains material reproduced from Earnest TM, Roberts E, Assaf M, Dahmen K, and Luthey-Schulten Z
(2013). DNA looping increases the range of bistability in a stochastic model of the lac genetic switch. Phys. Biol., 10(2),
p. 026002. doi:10.1088/1478-3975/10/2/026002. © IOP Publishing. Reproduced with permission. All rights reserved.
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to inhibit transcription. When lactose enters the cell, some of it is converted to the lac inducer,

allolactose. This binds to LacI, decreasing its binding affinity for the lac operators, which allow

for more lac proteins to be translated. The lac circuit responds to glucose concentration by

only producing the lac proteins when glucose is unavailable. During glucose starvation, cyclic

adenosine monophosphate is produced which binds to the catabolite activator protein (CAP),

allowing CAP to bind upstream of the lac promoter and recruit RNA polymerase (RNAP) to start

transcription. Thus the lac switch acts as an AND gate to the signals “low glucose” and “high

lactose”, only switching on when both are true. We are primarily concerned with the switch’s

response to the lactose signal.

Since producing more LacY leads to higher intracellular inducer concentrations, a positive

feedback loop is set up allowing the cell to switch between two phenotypes: uninduced (LO),

which produces a basal level of lac proteins and induced (HI), where the lac proteins are produced

at their maximum rate. By increasing the extracellular inducer concentration the population of

cells switch between uninduced, to a heterogeneous mixture of induced and uninduced, to all

induced. Cells do not persist in intermediate states. These heterogeneous populations could

enjoy a fitness advantage since some fraction of cells will always be prepared for changes in

environmental conditions47–49. Although the lac system does not appear to be bistable except

when a gratuitous inducer such as thiomethyl-β-D-galactoside (TMG) is used50, this system

is useful for studying the general phenomena of genetic switches. In the presence of minimal

external glucose, LacI controls the production of messenger RNA (mRNA). The lac repressor binds

to the main operator (O1) to prevent transcription. The binding affinity of LacI to the operator

is controlled by the number of inducer molecules bound to the repressor. The lac repressor is

a homo-tetramer, which can bind to two operators simultaneously: each dimer can bind to an

operator individually. Each monomer can bind one inducer molecule for a maximum of four

inducer molecules bound to the repressor.

The DNA sequence near the lac operon contains two auxiliary operators, which allow the

local structure of the DNA to assume a looped conformation. DNA loops are ubiquitous in all

domains of life as a regulatory tool, including transcriptional regulation in prokaryotes, enhancer
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sequences in eukaryotes, the lysis/lysogeny switch in phage λ, site-specific recombination, and

DNA replication51. These loops occur when a protein or complex binds to two different sites

along the DNA molecule, which could be separated by tens to thousands of base pairs. The

regulatory effect can be understood as increasing the effective concentration of transcription

factor near the binding site since the protein cannot diffuse away from the DNA unless both

binding sites are dissociated 52. All three operators O1, O2, and O3 are involved in the formation of

DNA loops. Binding to either of the auxiliary operators, O2 or O3 only, is not sufficient to suppress

transcription. However if both auxiliary operators are removed, the repression level is reduced by

a factor of 100 46. Thus DNA loops appear to increase the ability of LacI to repress transcription.

A molecular mechanism for the induction of the lac operon both in the presence and ab-

sence of DNA loops was presented by Choi et al. 53 43,53. In their study mutants were designed

such that LacY was labeled with yellow fluorescent protein (YFP). Using the non-metabolizable

inducer TMG, they were able to observe bistability in genetically identical populations of E. coli at

concentrations of 40–70 µM of extracellular TMG. However using a population of mutants with

both auxiliary operators removed, all cells deterministically switched into the induced state for

concentrations of inducer as low as 20 µM. They argued that LacI must dissociate from both

operators for induction to occur and that basal levels of LacY are due to partial dissociation of the

DNA loop, leaving the operator downstream of the lac promoter free, allowing single transcripts

to be produced infrequently before the loop reforms.

The lac switch has been a frequent subject of mathematical modeling. There have been

many attempts to describe the system deterministically using chemical rate equations50,54–58

with varying levels of complexity. These models are successful in capturing much of the exper-

imental behavior of the switch, such as identifying the number of phenotypes and the mean

species numbers, however they cannot capture the full range of behavior of the lac system since

they neglect the stochastic and discrete nature of chemical reactions. Indeed, it was shown in

Stamatakis and Mantzaris 54 that changing certain ratios of parameters that have no effect on

a deterministic model, can have a strong effect on the corresponding stochastic model. It was

also shown in Vilar et al. 56 that the ranges of bistability predicted by deterministic modeling are
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much larger than what is realizable in a stochastic model. Deterministic models are also unable to

compute switching times between states of induction since switching is a stochastic phenomenon.

Stochastic models of lac have been developed to take this deficiency into account 53–55. It is also

possible to model genetic switches by not invoking a microscopic model, and instead focusing

on the experimental copy number trajectories using the MaxCal method59,60. This technique

can provide a description of the intrinsic noise arising from small copy numbers61–63. Theory

developed in general for stochastic gene expression 64–71 can also provide a reasonable description

of the system. However, none to our knowledge attempt to include the effect of DNA loops on the

range of bistability and switching rates.

Here we present a stochastic treatment of a gene–mRNA–protein model of the lac operon in

E. coli interacting with extracellular inducer that includes transitions to looped DNA states. We

develop a novel combination of the finite state projection (FSP)23 and geometric burst approxi-

mation (see below) to render the CME computationally tractable and show that rare random loop

dissociation events are responsible for the LO→HI phenotypic transition. Our results show that

the process of induction in the lac operon is preceded by the total dissociation of the DNA loop.

We show that the microscopic mechanism of switching in the three-state model is fundamentally

different than the mechanism in a model without DNA looping. The looped state alters the

switching dynamics such that fast switching times between the metastable states are possible

while minimizing noise within those states. A model without the looped state shows a minimal

range of bistability below 20 µM of external inducer concentration33, whereas the three-state

model shows the full range of bistability as observed in experiments.

2.2 Model

In this work, we consider two models for gene expression from the lac operon. The first model

is the standard two-state model of gene expression in which the two states represent the DNA’s

transcriptional state, either repressed or active. The second model adds an additional third state

to account for the possibility of a potentially long-lived looped state with different transcriptional
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properties. Figure 2.1 shows a schematic representation of the two models. All parameters are

defined and values given in Table 2.1.

2.2.1 Two-state model — no DNA looping

The two-state model contains two transcriptional states for the DNA, Off and On where the

operon is transcriptionally inactive and active, respectively. DNA looping in not possible in this

two-state model. When the operon is in the On state, transcription proceeds as a first order

reaction:

On
kts−→ On+m. (2.1a)

Protein (Y ) is translated at a rate that is proportional to the mRNA (m) copy number

m
ktl−→ m +Y (2.1b)

and protein and mRNA degrade at a rate proportional to their respective abundances

m
kdegm−−−→∅, (2.1c)

Y
kdegp−−−→∅. (2.1d)

Due to interactions between the lac repressor and inducer molecules, switching between the

active and inactive transcriptional states occurs at a rate dependent on the inducer concentration

inside the cell,

On
knf([I])−−−−*)−−−−
kfn([I])

Off . (2.1e)

The switching rate functions kfn([I]) and knf([I]) are determined by the microscopic interac-

tions between the repressor and inducer. It was previously shown 33 that a particular microscopic

model for these interactions gave rise to switching rates that were first-order for a given constant

inducer concentration and with functional dependencies on inducer concentration that could

be well-described by Hill-like functions. We fit the simulation data from Roberts et al. 33 (see
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Figure 2.1 Cartoon schematic of the three-state model of the lac circuit. The two-state model is exactly
the same except without the Loop state. There are three states controlling the transcriptional
state of the switch: On producing transcripts at the nominal rate with O1 free, Off where no
transcription is possible due to O1 being bound to LacI, and Loop which is a coarse-grained state
representing any of the possible looped states and singly bound DNA/Repressor states which
do not inhibit transcription. This state models the proposed phenomenon of transcriptional
leakage in which fluctuations of the repressor/DNA complex can allow rare transcription events
to occur while in an otherwise looped conformation 43. The switch can be induced by adding
external inducer to the environment. The inducer is then transported into the cell via diffusion
and active transport by lactose permease where it binds to the lac repressor, decreasing its
binding affinity for the lac operators. This decreased affinity allows the lac repressor to fall off
and allow RNA polymerase to bind and transcribe mRNA. The system now transitions from
Loop through Off to On where transcripts are produced at a higher rate, setting up a positive
feedback loop where more transporter protein is translated.
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Appendix A) to the functions

kfn([I]) = k0
fn + (k1

fn −k0
fn)

[I]Hfn

Ifn
Hfn + [I]Hfn

(2.2)

and

knf([I]) = k0
nf + (k1

nf −k0
nf)

[I]Hnf

Inf
Hnf + [I]Hnf

. (2.3)

and obtain Hill-like expressions for the rate functions in our model in terms of internal inducer

concentration. Here the parameters k0
x and k1

x determine the minimum and maximum transition

rates, Ix is the internal inducer concentration that the transition rate is 1
2 (k0

x +k1
x ), and Hx is the

Hill coefficient, which is proportional to the slope at [I ] = Ix .

However, including the inducer as a separate species would dramatically increase the com-

plexity of the model. Instead we express the transition rates in terms of the number of LacY

proteins in the cell membrane,

On
knf(Y )−−−−*)−−−−
kfn(Y )

Off . (2.4a)

Consider that inducer (I ) can enter the cell either through passive diffusion from the environment

(with constant concentration [I]ex ),

Iex
kid−−*)−−
kid

I , (2.4b)

or through active transport by the LacY protein (modeled using irreversible Michaelis-Menten

kinetics),

Y + Iex

kyion−−−*)−−−
kyioff

Y I
kit−→ Y + I . (2.4c)

If we assume that inducer responds very quickly to a change in the LacY concentration, we can

solve for the steady-state concentration of internal inducer as a function of the LacY and external

inducer concentrations:

[I]([Y], [I]ex) = [I]ex

(
1+ kit

kid
· [Y]

[I]ex +KM

)
(2.5)
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with

KM = kyioff +kit

kyion
. (2.6)

Substituting Equation Eq. 2.5 into Equations Eq. 2.2 and Eq. 2.3 we obtain expressions for kfn(Y )

and knf(Y ) with a little algebra.

2.2.2 Three-state model — with DNA looping

Since the lac operon has three operators to which LacI can bind, the transcriptional states are

more complicated than On and Off alone. The simplest modification to the two-state model to

handle this complexity is to add a third state—Loop—that describes the operon when it is in a

looped conformation with the repressor. It was hypothesized that in a looped conformation the

LacI–O1 binding can fluctuate allowing RNAP to bind and transcribe while O1 is unoccupied with

LacI nearby 43. We introduce the Loop state to model this effect. This third state should not be

interpreted as a specific conformation of the operon/repressor complex. Instead it should be

understood as a coarse-grained state that represents all DNA/repressor looped conformations

(O1-O2 and O1-O3) as well as bound conformations in which transcription is not repressed (O2,

O3, or both bound.) This state allows for the slow leakage of transcripts. We model this leakage by

allowing transcription from the Loop state at a rate ε times the normal On transcription rate by

adding the reactions

Off
kfl−−−−*)−−−−

klf([I])
Loop (2.7a)

and

Loop
εkts−−→ Loop+m (2.7b)

to our model. The leakage factor ε is conditional probability to have repressor bound to O2, O3,

or both O2 and O3 while in the Loop state. The schematic representation of the two models are

shown in Figure 2.1. This three-state model is similar to another three-state promoter model,

which has been investigated recently72. This work focused on the stochastic mutual repressor

model and described the state of the operators using three transcriptional states. Their methods
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would be difficult to implement for our models due to the noise in the translation rate arising

from fluctuating mRNA abundance.

We estimated ε from Choi et al. 43 . They measured the distribution of YFP counts in a mutant

with the lac circuit modified to disable positive feedback while allowing DNA loops to form. This

experiment was conducted by replacing LacY with a Tsr-YFP fusion protein, which also localizes

in the cell membrane, but cannot import allolactose into the cell. These distributions were

well-described by a gamma distribution parameterized by the burst rate a and the burst size b.

This approximate result was derived from a gene–mRNA–protein model with one transcriptional

state66. The burst rate a ≡ kts/kdegp can be interpreted as the number of transcripts produced

per cell cycle and the burst size b ≡ ktl/kdegm refers to the average number of protein transcribed

from a single mRNA. The burst rate and the burst size were measured for TMG concentrations

between 0 and 200 µM and found to be relatively constant over this range: 0.34 < a < 1.25 and

1.29 < b < 2.59. We used this measurement to estimate that 5.7× 10−4 < ε < 2.1× 10−3 and

assumed ε= 8.3×10−4 for our model. The two transcription rates kts and εkts are responsible for

the different burst sizes observed in Choi et al. 43 . “Small” bursts of transcription occur due to

leakage whereas “large” bursts occur due to full dissociation of the complex (Loop→Off →On.)

Since the On↔Off switching rate functions were well-described by a Hill function, we assume

that the Loop to Off rate function could also take that form. Thus

klf([I]) = k0
lf + (k1

lf −k0
lf)

[I]Hlf

Ilf
Hlf + [I]Hlf

. (2.8)

We will assume that the Off to Loop rate is constant in inducer concentration, since transitions into

the looped state must occur via thermal fluctuations that take the singularly bound inducer/DNA

complex into a conformation in which the unoccupied binding site on the lac repressor can

reach a free operator. It is not possible to determine these switching rates directly from the data

available from the literature, so we search the parameter space to determine for which values

of these parameters the system exhibits the desired response. Of the parameters presented in

Table 2.1, only the five parameters describing the constant Off →Loop rate and the Loop→Off
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Hill function Eq. 2.8 are predicted. The remaining parameters are taken from the literature 33,43,54.

2.2.3 Deterministic and stochastic representation

The deterministic rate equations for mRNA and LacY abundance are

dx

dt
= ktsF (y)−kdegmx (2.9a)

dy

dt
= ktlx −kdegp y (2.9b)

where x and y are (continuous) concentration variables for mRNA and LacY respectively. Here we

have defined the total transcription probability,

F (y) = Pon(y)+εPloop(y)

Pon(y)+Poff(y)+Ploop(y)
, (2.10)

where the Pz (y) functions are the probability to find the system in the transcriptional state z

at fixed protein abundance y and are computed simply from considering the steady state of a

Markov process consisting of the three transcriptional states alone. This process is represented by

On
knf(y)−−−−*)−−−−
kfn(y)

Off
kfl−−−*)−−−

klf(y)
Loop, (2.11)

which at steady state is governed by the master equation

A ·P =


−knf(y) kfn(y) 0

knf(y) −(kfn(y)+kfl) klf(y)

0 kfl −klf(y)




Pon

Poff

Ploop

= 0, (2.12)
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whose normalized solution is

Pon =C −1kfn(y)klf(y) (2.13a)

Poff =C −1knf(y)klf(y) (2.13b)

Ploop =C −1kflknf(y) (2.13c)

with C = kfn(y)klf(y)+knf(y)
(
kfl +klf(y)

)
, and y is computed from [I] by Eq. 2.5.

To investigate the fixed points of equations Eqs. 2.9a–2.9b, we take the time derivatives to be

zero and solve for y to get

dy

dt
= kdegp[N F (y)− y] = 0 (2.14)

where

N = ktsktl

kdegmkdegp
(2.15)

is approximately the mean population of the induced state. For a set of parameters exhibiting

bistability over some range of [I]ex, the form of F (y) allows the dynamical system to exist in

three distinct phases. For low values of [I]ex, the system has a single stable fixed point at nLO

corresponding to the uninduced phenotype. For high values of [I]ex the system has a single fixed

point at nHI corresponding to the induced phenotype. For intermediate values of [I]ex, there is a

range in which the dynamical system has three fixed points: two stable fixed points nLO and nHI

and an unstable fixed point n0. This external inducer regime corresponds to a heterogeneous

population containing both phenotypes. The locations of these fixed points are not fixed, but can

change with the inducer concentration. For the transcription state transition functions considered

here, Eq. 2.14 is generally not solvable analytically due to the form of transcriptional state rate

functions used.

The probability to be in a particular transcriptional state at a specific mRNA and protein

abundance can be determined by solving the CME for the system 73. These equations govern the

time evolution of the probability, P s
mn , to find m mRNA molecules and n proteins, when being in
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transcriptional state s. Writing out the transcriptional states explicitly we have

dP on
mn

dt
=kfn(n)P off

mn −knf(n)P on
mn

+ [
kts(E−1

M −1)+kdegm(E+1
M −1)m +ktl(E

−1
N −1)m −kdegp(E+1

N −1)n
]

P on
mn (2.16a)

dP off
mn

dt
=knf(n)P on

mn +klf(n)P loop
mn − (kfn(n)+kfl)P off

mn

+ [
kdegm(E+1

M −1)m +ktl(E
−1
N −1)m −kdegp(E+1

N −1)n
]

P off
mn (2.16b)

dP loop
mn

dt
=kflP off

mn −klf(n)P loop
mn

+ [
εkts(E−1

M −1)+kdegm(E+1
M −1)m +ktl(E

−1
N −1)m −kdegp(E+1

N −1)n
]

P loop
mn (2.16c)

where E±i
M ,N are step operators that increment/decrement the mRNA index (M) or protein index

(N ) by i . The rates ktl, kdegm, and kts,kdegp are the mRNA birth and death rates and protein birth

and death rates respectively. The functions knf(n), kfn(n), kfl, klf(n), are the transcriptional state

switching rates for On→Off , Off →On, Off →Loop, and Loop→Off .

2.3 Methods

The CME Eqs. 2.16a–2.16c, being two-dimensional, are unsolvable analytically. An approximate

solution was derived65 for the two-state system without feedback in the limit

γ≡ kdegm

kdegp
→∞, (2.17)

however this approximation is infeasible here since they used a generating function technique

which is not applicable when the feedback functions are non-polynomial. A solution in this

same limit is also possible for the two-state system with arbitrary feedback functions. This

solution was derived using the Wentzel–Kramers–Brillouin (WKB) approximation74 to the CME,

which allowed for the accurate calculation of the mean switching times between the metastable

states 64. We attempted a similar solution to our three-state problem by taking the CME Eqs. 2.16a–

2.16c in the quasi-stationary approximation and applying the WKB ansatz P (x, y) ∼ e−N S(x,y).
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Table 2.1 Selected parameter set from mean of parameter search.

Symbol Description Value Units

Selected from parameter search

k0
lf Loop→Off rate at zero inducer 1.45×10−4 s−1

k1
lf Loop→Off rate at saturating inducer 3.31×10−3 s−1

Hlf Hill coefficient for Loop→Off 3.12
Ilf Hill concentration for Loop→Off 3940. µM
kfl Constant Off →Loop rate 3.83×10−3 s−1

Fixed parameters

k0
nf On→Off rate at zero inducer 5.04×10−2 s−1

k1
nf On→Off rate at saturating inducer 5.04×10−4 s−1

Hnf Hill coefficient for On→Off 1.
Inf Hill concentration for On→Off 17.4 µM
k0

fn Off →On rate at zero inducer 6.30×10−4 s−1

k1
fn Off →On rate at saturating inducer 3.15×10−1 s−1

Hfn Hill coefficient for Off →On 1.67
Ifn Hill concentration for Off →On 5680. µM
kts Transcription rate 1.26×10−1 s−1

ktl Translation rate 4.43×10−2 s−1

ε Leakage factora 8.33×10−4

kdegm mRNA degradation rate 1.11×10−2 s−1

kdegp LacY degradation rate 2.10×10−4 s−1

kit Turnover number for active transport 1.20×101 s−1

kid Rate of LacY diffusion across membrane 2.33×10−3 s−1

Km Michaelis constant for active transport 400. µM
Vcell Volume of cell 8.00×10−16 L

aEstimated from Choi et al. 43 .

The fixed parameters were taken from Roberts et al. 33 or extracted from fits to data therein.
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This substitution yields a stationary Hamilton-Jacobi equation to leading order in 1/N with

hamiltonian

H (x, y, px , py ) =OoffOon +OoffOloop −OoffOonOoffOloop. (2.18)

Here the species numbers are scaled by the system size Eq. 2.15, x = m/N , y = n/N , pi is the

momentum conjugate to coordinate i (pi = ∂i S) and

Oon = 1

knf(y)kfn(y)

[
kts(epx −1)+kdegm(e−px −1)x

+ktl(epy −1)x − (e−py −1)y
]− 1

kfn(y)
(2.19a)

Ooff = kdegm(e−px −1)x +ktl(epy −1)x − (e−py −1)y −kfn(y)−kfl (2.19b)

Oloop = 1

klf(y)kfl

[
ktsε(epx −1)+kdegm(e−px −1)x

+ktl(epy −1)x − (e−py −1)y
]− 1

kfl
(2.19c)

in units where kdegp ≡ 1. However, due to the fast switching times between the metastable states

(see below) the WKB method is inapplicable here since it requires that the escape time from the

metastable state be exponentially large in the typical system’s size 75–77.

Direct numerical solutions will be computationally intensive and not feasible for optimization

due to the dimensionality of the resulting system of ODEs. Reasonable values of maximum protein

number and maximum mRNA number lead to a system of 450000 equations. In order to make

progress we must employ some method of approximation.

2.3.1 FSP solution of CME using the geometric burst approximation for mRNA

In bacteria the ratio γ is typically large. We can use this fact to eliminate the mRNA degree of

freedom from the CME. It is well-known that it is not sufficient to replace the mRNA dynamics with

the average mRNA abundance while studying the switching times64,78,79. Transcriptional noise

will lead to increased noise in protein abundance, which will affect the switching rates between

induced and uninduced phenotypes. Another option would be to apply the quasi-steady-state
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approximation to the CME 80, however due to the stochastic switching of the transcriptional states,

the transcription rate is not constant and thus the mRNA distribution is not at steady-state. We

need to apply a different tack.

To remove the mRNA degree of freedom while still accounting for transcriptional noise we will

exploit the fact that the number of protein molecules translated from a single mRNA is distributed

geometrically. In the limit γ→∞ an effective CME can be written without mRNA dependence

by assuming that translation occurs in bursts with sizes that are geometrically distributed81.

Figure 2.2b describes this pictorially. Since the probability that a single mRNA molecule is

translated n times before decaying is

Ptl.dec.(n) =
(

ktl

ktl +kdegm

)n (
1− ktl

ktl +kdegm

)
= P n

tl (1−Ptl), (2.20)

the translation terms in Eqs. 2.16a–2.16c can be rewritten as

ktl(E
−1
N −1)m → kts

[
(1−Ptl)

n∑
r=0

(
PtlE

−1
N

)r −1

]
, (2.21)

and we can drop the transcription terms, mRNA degradation terms, and mRNA indices. For

example, consider the one-state model with the master equation

dPmn

dt
=kts(E−1

M −1)Pmn +kdegm(E+1
M −1)mPmn

+ktl(E
−1
N −1)mPmn −kdegp(E+1

N −1)nPmn . (2.22)

This transforms to

dPn

dt
= kts

[
(1−Ptl)

n∑
r=0

(
PtlE

−1)r −1

]
Pn −kdegp(E+1 −1)nPn . (2.23)

All mRNA dependence is removed and now the translation term is that of a multi-step process

where for a protein state n, transitions into that state can come from any protein abundance state

from 0 to n−1. Transitions out of the state n for translation can go to any state greater than n. These
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transitions are accounted for by the 1 in the translation term since the geometric distribution

is normalized and the probability for a single transcription is Ptl. The protein decay term is not

affected by this manipulation. This substitution is an adiabatic approximation that assumes

that all mRNA is created or degraded between each protein reaction. This approximation is only

valid when there is a large difference in timescales between the mRNA and protein dynamics.

For E. coli, γ≈ 53 based on degradation rates assumed for our model (cf. Table 2.1). This ratio

is sufficient large that the mRNA and protein dynamics are well-separated. For the three-state

model, this approximation reduces the dimensionality of the underlying system of equations

by a factor of mmax (≈ 50) and significantly decreases the computational time. Analytically, this

reduces Eqs. 2.16a–2.16c to a single dimension. A similar geometric bursting approximation for

mRNA was used in a previous calculation 82 however only the average and variance of the protein

abundance at steady-state could be calculated. To compute the full probability distribution of

protein abundances and the switching rates between the induced and uninduced phenotypes a

different method of solution must be employed.

We numerically integrate the CME using the FSP to compute an approximate solution23,24.

This method is significantly faster than directly sampling the CME using the stochastic simulation

algorithm (SSA). Computational time can be over 100 times shorter using this method compared

to using the SSA with a sufficient number of realizations to be comparable to the error achieved

from the FSP. To achieve this level of performance, this method truncates the state space at copy

numbers that are not expected to be well-populated. The error due to the truncation is controlled

adding fictitious states denoted sinks that accumulate probability that leaves the projection.

Any transitions to states outside the projection are rerouted to these states. For example see

Figure 2.2a, where the sink states are labeled η. The total probability lost due to the projection

is the sum of probability in the sinks, which estimates the total error due to the truncation of

state space. To find the optimal size of the projection, the system of ODEs is integrated while

monitoring the accumulated probability in the sinks. If the sink probability increases past a

threshold, the calculation is restarted with a larger projection space. The method for increasing

the projection space depends on the type of problem being considered23,83,84. For our simple
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Figure 2.2 (a) Finite state projection. Consider a gene–mRNA–protein model having only one transcrip-
tional state. The FSP method truncates the state space, eliminating states that are not well-
populated. Here we have chosen the projection n,m < 5. Transitions that would lead to n or
m = 5 are rerouted to the sink η. As the equations are evolved in time, the total probability
accumulated in η is monitored. If η increases past a threshold, the calculation is restarted
with a projection including more states. This technique can also compute mean first passage
times. The state n = 2,m = 2 is replaced by a sink state η′ from which no probability can flow
out. The accumulated probability in η′ is the distribution of first passage times to n = 2,m = 2.
(b) Geometric burst approximation. Each time a mRNA is transcribed, it can be translated
increasing n by 1 or be degraded and become unable to be transcribed further. This process
leads to a geometric distribution of protein translated from a single mRNA.
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1-D CME, we choose for our state projection n ∈ [0,αN ] where α is 1.25 initially and is increased

when the calculation must be restarted.

Writing the CME in matrix form would lead to a large non-sparse matrix due to the tail

of the burst distribution, because each state (n, s) can transition to (m, s) where n < m ≤ αN .

Considering protein burst reactions alone, this situation leads to a block diagonal matrix where

each of the three blocks are lower triangular. This problem can be solved by truncating the

geometric series used in the burst approximation leading to a generator with a band structure.

Any transitions from translation where the change in protein number is larger than a threshold

are rerouted to a sink. Error due to the truncation of the geometric expansion is monitored by

watching the accumulation in this sink. We found that 120 terms in the expansion were sufficient

to achieve a total error of less than 10−7. Since Eqs. 2.16a–2.16c are not explicitly dependent on

time, we integrated the equations using an off-the-shelf matrix exponentiation package 85.

2.3.2 Mean First Passage Times

We are interested in the mean switching rates between the induced and uninduced metastable

states. These rates can be computed from the mean first passage time (MFPT) for the system

to evolve from a stable fixed point of the deterministic rate equations Eq. 2.14—either nLO or

nHI—to the unstable fixed point n0. Although there are elegant techniques available for estimating

the stability of metastable states86–88, we can compute these rates quickly and accurately using

the geometric burst approximation coupled with the FSP. We compute the MFPT by adding an

additional sink at n0, and integrating the equations with the initial condition that the copy number

probability at the initial stable fixed point is unity 89.

The probability accumulated in this sink, η(t ), is the cumulative distribution function (CDF)

of first passage times. Aside from an initial transient period, the time evolution of η(t) is well-

described by η(t) = 1− e−t/τ. We could then integrate the equations out to a time t f where

η(t f ) ≈ 1 and extract the MFPT τ by curve fitting. To save computational resources we use a

different approach which does not require the equations to be integrated to t f .

The mean of a distribution can be computed from its CDF by integrating the complementary
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CDF over its full domain. We will use this fact to estimate the MFPT by integrating over the known

part of the full domain and adding to this value an estimate of the rest of the integral. At each time

ts during the integration of the CME, we integrate the complementary CDF 1−η(t ) numerically

up to the current time step ts and estimate the contribution from the integral from ts to ∞ by

assuming the complementary CDF decays exponentially for times greater than ts . Thus at each

time step we compute

τ(ts) =
∫ ts

0
(1−η(t ))dt + 1

r (ts)
η(ts) (2.24)

where

r (ts) = − d

dt
ln

(
1−η(t )

)∣∣∣∣
t=ts

. (2.25)

We stop when the change in τ(ts) per time step is less than a threshold:

∣∣∣∣dτ(t )

dt

∣∣∣∣
t=ts

< ηconverge. (2.26)

For a tolerance of total error less than 5×10−4, the algorithm requires ≈ 300 steps to converge.

2.3.3 Calculating the range of bistability

We define the macroscopically bistable range to be the range of inducer concentrations where the

probability to be either LO or HI is greater than 10%. We find this range for a given set of parameters

by first finding the range of external inducer concentrations that lead to three fixed points in the

deterministic rate equations by counting the roots of Eq. 2.14. This range of concentrations is

then searched, looking for where the probability to be in the induced state

P (HI) = τHI

τHI +τLO

(2.27)

is 0.1 and 0.9. Here τx is the MFPT out of the phenotype x. We then search this bistable range

for the concentration that either induction state is likely (P (HI) = 0.5), and ensure that the rate at

the candidate concentration is greater the minimum acceptable value. The search is performed
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using the MFPT computed from geometric burst/FSP method using using standard root finding

algorithms.

2.3.4 Sampling the CME using the stochastic simulation algorithm

To test our results from the FSP calculations, we used the SSA 8 to compute the PDF and MFPT. To

look at the microscopic dynamics of switching events, the trajectories from the SSA simulations

were segmented into induced, uninduced, and switching sections using thresholding heuristics

that allow for arbitrarily long switching trajectories.

The heuristics first mark regions of the trajectory as LO if the protein number is lower than

the unstable fixed point, and HI otherwise. An acceptable switching event is a segment of time t0

long that does not leave LO (HI) followed by an intermediate segment less than δtmax long that

fluctuates between the two states followed by a segment of time t0 long that stays in HI (LO). The

lead-in and lead-out times will not affect the results since the model is Markovian. We chose

t0 = 10 cell cycles. The maximum switching time δtmax was chosen so greater than 99.9% of the

trajectories with long enough lead-in and lead-out times were accepted. The necessary δtmax

depends on the particular parameter set but was generally of the order of 50 cell cycles.

2.4 Results

2.4.1 Looping parameters that reproduce lac bistability

A primary goal for the work is to determine if a minimal three-state model is able to recover the full

range of bistability that was experimentally observed for the lac circuit with looping, compared to

the behavior observed for the circuit where looping was prohibited. However, the model’s looped

state represents a coarse-grained state composed of many different microscopic states and no

experimental data regarding microscopic transition rates are known. We therefore searched the

space of all possible parameters related to the loop state to characterize how its addition changes

the behavior of model. The Off →Loop transition has a single parameter kfl and the Loop→Off
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transition function has four parameters: k0
lf, k1

lf, Ilf, and Hlf. We randomly choose parameter

values from this five-dimensional space while keeping all other model parameters fixed and tested

the model’s bistability properties.

To limit the size of the search, we bounded the parameter space such that only biologically

reasonable parameter sets were sampled. The Off →Loop transition models the physical process

of forming a DNA loop. If it is too slow to observe, the three-state model reverts the two-state

model so we set the minimum rate of kfl to be one event per 100 cell cycles. Likewise, loop

formation requires the binding of a repressor-operator complex to a second operator and must be

slower than repressor binding, so we set the maximum of kfl to be one-half the rate of repressor

binding, k0
nf/2.

For the Loop→Off transition Hill function klf(n), the parameter Ilf determines the approxi-

mate inducer concentration at which the transition rate will start to increase, i.e., at what inducer

concentration the loop starts to become destabilized. We bounded this parameter such that the

denominator in Eq. 2.8 is O (1) for inducer concentrations between 1 µM and 100 µM. This bound

ensures that the transition rate function is able to switch between its low and high ranges over the

experimentally relevant range of inducer concentrations. If Ilf was too large or too small, klf(n)

would be effectively constant over the full range of LacY abundances and not provide feedback.

The Hill coefficient Hlf determines the sharpness of the response and was restricted to be between

2 and 4 since inducer–repressor binding is cooperative with 4 binding sites. An in vitro study of

DNA loop stability for the wild-type lac operon reported the mean lifetime of the loop to be on

the order of the cell cycle 90. In light of this observation, for the minimum transition rate k0
lf (in the

absence of inducer) we generously bounded this value by setting the minimum rate for the search

to be one dissociation per ten cell cycles and the maximum rate to be one-half of the repressor

unbinding, k0
fn/2, since by definition loop dissociation must be slower than repressor unbinding.

The maximum transition rate k1
lf (in the presence of saturating inducer) was restricted to be faster

than twice the zero inducer rate k0
lf but slower than 100 events per cell cycle.

We scanned 125113 unique parameter sets by uniformly drawing a random value for each

parameter from the above ranges. For each set we calculated the range of macroscopic bistability,
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defined at the low end by the inducer concentration where 10% of the steady state population

is induced and at the high end by the inducer concentration where 90% of the population is

induced (see section Section 2.3.3). Whereas the two-state model exhibits bistability near 10 µM

(10.1–10.9 µM), the three-state model can produce bistability at inducer concentrations anywhere

from 10.6–518 µM for sets of parameters constrained to the range above. Additionally, the range

of macroscopic bistability for the two-state model is very small, 0.8 µM, while the addition of a

third state can produce much wider ranges, up to 300 µM. As the overall switching rate to Loop

decreases, the bistability range increases on average.

For each set we calculated the mean switching time at the inducer concentration where 50%

of the steady-state population is uninduced and 50% is induced. At this concentration the time

to switch to LO or to HI is identical and we use this time (τ50%) as a measure of a parameter set’s

characteristic switching time. For the two-state model, τ50% was 55 cell cycles, but with the three-

state model τ50% values could be obtained anywhere from 26–9.5×105 cell cycles. Decreasing Ifl

has the effect on average of increasing the switching time τ50% (see Section A.3.)

Having performed a parameter search for the looped state, we then selected for further study

only those parameter sets that reproduced the range of bistability seen in one experiment43. A

parameter set was deemed acceptable if its range of bistability contained the range 50–60 µM

and τ50% was less than 100 cell cycles. Approximately 0.9% of the random samples satisfied these

criteria. Figure 2.3 shows how the accepted parameters were distributed in the search space.

The absolute value for several of the parameters appear to be unimportant to the switching

properties. The Hill coefficient Hlf and the basal Loop→Off rate k0
lf are well-distributed within

their allowed ranges. Likewise, the Off →Loop rate kfl is uniformly distributed below 45 cell cycles.

On the other hand, the inducer transition concentration Ilf and the maximum Loop→Off rate k1
lf

are more likely to take on values in certain ranges of the search space, high and low, respectively.

Some parameters showed a degree of mutual dependence. The basal Loop→Off rate k0
lf and

the Off →Loop rate kfl have a strong linear dependence (r 2 ≈ 0.6). Together with their uniform

distribution, this dependence suggest that the total fraction of the time spent in the looped state

in the absence of inducer, which determines the basal permease copy number, is an important
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Figure 2.3 Two-dimensional distributions of parameter values in sets with bistability ranges including
50–60 µM. Lighter areas indicate greater density. A large range of parameter sets exhibiting
bistability with fast switching rate were found. The dot marks the mean of the distribution. This
parameter set is investigated in later figures.
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property for switching, but the rate of cycling between the looped and unlooped states is relatively

unimportant.

The inducer transition concentration Ilf and the maximum Loop→Off rate also appear to be

dependent. All of the accepted sets fall above a convex region of the Ilf–k1
lf phase space: k1

lf . Ilf
4.

If the maximum Loop→Off transition rate is high, then the transition concentration must also be

high and if the transition concentration is low the Loop→Off transition rate must be low. A similar

but less pronounced dependence is seen between the maximum Loop→Off rate and the Hill

coefficient Hlf. This dependence is simply because there appears to be a maximum Loop→Off

rate. When Ilf is large, klf(n) will not be able to reach its saturating level so values of k1
lf larger than

the maximum rate can be used.

The distribution of calculated switching properties for the accepted parameter sets is shown

in Figure 2.4a-e. The onset of bistability, the external inducer concentration necessary for 10%

induction probability can begin, as low as 30 µM and can last through 120 µM. The width of the

bistable range can be from 20–80 µM. τ50% values fall between 25–100 cell cycles. The properties

of LacY in these cells is also of interest. The uninduced states were centered at zero LacY for all

acceptable sets and the induced state means were found at 2350±10.

We tested the sensitivity of the model to changing the leakage factor ε. Over the likely range of

ε from 5.7×10−4 to 2.1×10−3, the range of bistability only changed from 23.0 µM to 22.75 µM. The

switching lifetime τ50% only changed from 54.7 to 53.8 cell cycles.

2.4.2 Details of a representative parameter set

We chose as a representative parameter set the mean of the acceptable parameter set distribution

since that approximates the centroid of the hypervolume that encloses all acceptable parameters.

In Figure 2.3 this parameter set is indicated by a white point, the details of these parameters are

enumerated in Table 2.1, and the transcription state transition functions are plotted in Figure 2.8.

The PDF computed for this parameter set and the two-state model are shown in Figure 2.7 com-

pared to the PDF computed from the SSA. The combined FSP and geometric burst approximation

predict the probability distributions with a high degree of agreement. The total probability lost
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Figure 2.4 Distributions of calculated values from the set of parameters with bistability. The dotted line
marks the values computed from the selected set in Figure 2.3. These are distributions of inducer
concentrations at (a) 10%, (b) 50%, and (c) 90% probability to be induced, (d) extent of the
bistable range, (e) metastable state lifetimes at 50% induction probability, and (f) average LacY
count in the induced state.
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from transitions out of the projection was less than 10−4, and the probability lost from truncating

the geometric distribution was less than 10−7. The deviations of the FSP PDF from the SSA PDF

are due to the adiabaticity assumption of the geometric burst approximation, not from probability

loss from truncation. A numerical solution of the CME for the two-state model with explicit

mRNA dependence showed exact agreement with the simulated distribution (see Section A.2)

with drastically increased computational cost.

The dependence of induction state lifetime on the external inducer concentration is generally

exponential as shown in Figure 2.5. Since changing the inducer concentration just affects the

effective transcription rate, this functional dependence is in agreement with what is known about

the dependence of switching rates in genetic networks78. This parameter set is bistable within

the external inducer concentration range of 42–66 µM using 10% minority as the bistability

metric. The switching time at equal induction probability is 63 cell cycles. For the two-state

model, the bistability range was 10.1–11.0 µM with a switching time of 52 cell cycles. These

values are in agreement with the results presented in Choi et al. 43 however the bistability of the

non-looping mutant was only tested down to 20 µM external inducer so a transition from the

induced phenotype to uninduced could not observed.

The mean protein number in the uninduced states appear to be in agreement with experiment.

This parameter set exhibits an uninduced state centered at 0 LacY whereas the two-state model

has an uninduced state centered at 41. The location of the modes is in agreement with Choi

et al. 43 since they showed for mutants unable to produce permease that the LacY distribution

was centered at 0 for low inducer concentrations and the LacY distribution for mutants that

cannot form DNA loops or produce permease was centered around 75. They did not report

copy numbers for the induced state, however we found that adding DNA looping resolved the

differences between the induced and uninduced states by moving the induced maximum from

1778 to 2351 and decreasing the width of the distribution by a factor of 2.7.
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Figure 2.5 Comparison of LO and HI metastable state lifetimes for both (a) the two-state model, (b) the
three-state model computed via simulation (SSA) and using the geometric burst approximation
(FSP) reported in cell cycles. The deviations from simulation are due to the geometric burst
approximation. The point where the two lifetime functions cross is the equal probability concen-
tration, and the lifetime here sets the scale for switching times. Dependence of PDF on external
inducer concentration for (c) the two-state model and (d) the three-state model computed using
the geometric burst approximation.
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Figure 2.6 Distributions of protein and mRNA abundance as a function of time for (a) the two-state model
transitioning LO→HI, (b) transitioning HI→LO, (c) the three-state model transitioning LO→HI,
and (d) transitioning HI→LO. Induction and uninduction events in the two-state model are
driven by protein number fluctuations, however in the three-state model fluctuations of the
transcriptional state drive the switch, leading to quasi-deterministic behavior.

2.4.3 Microscopic dynamics of induction state transitions

To investigate how the system transitions between the two phenotypes, we plotted protein and

mRNA abundance histograms at regular time steps during a switching event in Figure 2.6. We

computed multiple trajectories using the SSA and searched them for segments in which the

system switched between metastable states. All segments were then translated in time such that

the first transcriptional state change event before switching is at t = 0.

For the LO→HI transition, the three-state model shows quasi-deterministic switching behavior

with an average switching time of 2.9 cell cycles. The duration and shapes of the protein trajectory
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during a switching event are all uniform. The two-state model does not exhibit this behavior.

Instead the transitions are stochastic and irregular. The reason for this behavior appears to be

that the three-state model stays in the Loop state in the uninduced phenotype and very rarely

switches into Off . Prior to switching the mRNA population increases leading to more frequent

bursts of protein, which can carry the system from the Off transcriptional state into On. Once On

is reached switching back to Off is rare, leading to the deterministic switching behavior.

The HI→LO transition is also quasi-deterministic and is slower than the LO→HI transition (8.3

cell cycles). However the mechanism triggering the transition out of the induced state is different.

Here random fluctuations of repressor binding are what drive the transition. The transcriptional

state fluctuates into Loop by quickly passing through Off . If the system stays too long in the Loop

state, the mRNA number will have decayed back to the distribution found in LO and the protein

number will fall deterministically.

2.5 Discussion

Our three-state model attempts to incorporate more of the biological details of lac regulation than

previous mathematical models. The coarse-grained loop state captures the essence of the DNA

looping regulatory element by providing a long-lived state with alternative transcriptional proper-

ties. Our model gives good agreement with the limited lac bistability data that is available. In order

to select better parameters and to determine whether our coarse-grained loop state captures all

of the relevant dynamics, better experimental characterization of the switching properties of lac

are required. Specifically, the mean switching times as a function of inducer concentration, for

both induction and uninduction are key observables that are currently unknown.

Our model is relatively robust to variations in most parameters; a wide distribution of pa-

rameter sets satisfy the experimental criteria. Most fluctuations in the parameters should not

disproportionately affect the behavior of the switch. We speculate that this parameter insensitivity

would allow the genetic switch to function in conditions such as varying ribosome numbers,

mutations that affect the reaction rates between DNA/inducer states, or abnormal environmental
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conditions.

We applied the results of a thermodynamic model of DNA looping in the lac system91 to

compare to our three-state model. This thermodynamic model uses in vitro data from Oehler

et al. 46 to compute the free energies of operator/repressor binding and DNA looping. From these

free energies we are able to estimate the population of our transcriptional states at zero external

inducer. We consider the On state to be the operon with no operators bound, the Loop state to be

all looped states and all states with only auxiliary operators bound, and the Off state to be the

remaining possible DNA/repressor configurations. Using the free energies of these states we found

that P (On) = 4.7×10−6, P (Off ) = 2.2×10−2 and P (Loop) = 0.978 (see Section A.4). Setting external

inducer to zero, the FSP calculation for our mean parameter set yields transcriptional state

probabilities of P (On) = 4.6×10−4, P (Off ) = 3.7×10−2 and P (Loop) = 0.963. Our Off probability

compares well with the probabilities computed from in vitro data. It is also possible to estimate

the leakage factor ε from free energies. When the system is in the Loop state, it is transcriptionally

active only in a non-looped conformation. The leakage factor then must be the conditional

probability to be in an unlooped conformation while in the Loop state. Using the data from Oehler

et al. 46 we find that ε = 1.24×10−4. This result compares within an order of magnitude of the

value estimated from the burst size of the uninduced state experimentally measured in Choi

et al. 43 used in our modeling. These values computed from Oehler et al. 46 are for a LacI count

of 50. However, in this work we are using ten LacI per volume. Extrapolating these free energies

to ten LacI shows better agreement (see Section A.4). This is all suggestive that the parameters

selected from the parameter search are reasonable for the lac system.

The PDF of a stochastic system fully describes its switching properties and when comparing

the shapes of the PDF for the two- and three-state models (see Figure 2.7) one can see significant

differences. In the three-state model, the transition between the two stable phenotypes has a

sharp change in slope on each side, leading to a shallower transition basin between the two states.

Also, the peaks in the three-state model are significantly narrower and further separated than in

the two-state model. The net effect of these properties of the PDF is to allow the three-state model

to have two well-separated phenotypes while still allowing relatively easy transitions between
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Figure 2.7 Protein number PDF computed from simulation (SSA) and the geometric bursting approxima-
tion (FSP) for (a) the two-state model and (b) the three-state model. The inducer concentration
was chosen such that the system was equally likely to be in either induction state. The inset
shows a closer look at the uninduced state distribution on a log-log scale. Slight deviations from
simulation are due to the geometric burst approximation. Computations of the PDF including
explicit mRNA dependence (not shown) fit the simulation identically.

them. In the two-state model, as the LO and HI phenotypes become further separated it becomes

more difficult for a random fluctuation to move the system between them. The three-state model

breaks this dependence by creating a higher-probability connecting basin. These characteristics

may be desirable from a biological perspective by allowing a population to be prepared for and to

react quickly to changing environmental conditions and are the hallmark of an effective bistable

switch.

In our two-state model, the Hill functions describing the regulation appear to prohibit sharply

defined phenotypes while maintaining fast switching rates. We wondered if there was another reg-

ulatory function that could impart these properties to the two-state model. To check, we calculate

the effective Off →On transition function that yields the most similar probability distribution and

switching times when used in a two-state model. The Off and Loop states are combined into a

single slowly transcribing state, Off ′. The necessary leakage factor for this aggregated state can be

estimated by considering the Off and Loop states at zero external inducer. Since no transcription
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Figure 2.8 Comparison of the transcriptional state switching functions used. (a) Functions used in the
two-state model at [I]ex = 10.5µM. (b) Functions computed using values from the mean of the
parameter search distribution for the three-state model at [I]ex = 55.3µM. The function kf′n(n)
is the extracted switching function from an effective two-state model built from the results of
the three-state parameter search.

occurs in the Off state, the new leakage factor is

ε′ = εP (Loop)

P (Off )+P (Loop)
≈ 0.96ε. (2.28)

We can now compute an effective switching rate from Off ′ to On from the FSP results.

The probability to be in On as a function of LacY abundance is approximately

P (On|LacY) = kf′n(n)

kf′n(n)+knf′(n)
(2.29)

where knf′(n) = knf(n) since the On state is not affected by combining Loop and Off . From the FSP

results we compute P (On|LacY) using Bayes’ rule and solve for kf′n(n). The resulting function is

plotted in Figure 2.8b.

When used in the two-state model, the new rate function yields a similar protein number

probability distribution to the three-state model with similar switching rates between LO and HI.

However the switching dynamics are different, and they must be due to the reliance on the Loop
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state transitions. Switching on is similar to the full three-state model, however switching off is

different. The transitions are more rounded and not as sharp.

In order to get a PDF with fast switching between the metastable states without increasing

the noise of each state, a switching function like the one computed for the effective two-state

model is required. This dependence of switching rate on inducer concentration is not likely to be

achieved with a single transcription factor binding. The double step is not realizable in a single

reaction and the effective Hill coefficients of these steps are large with the first step having a Hill

coefficient of 3 and the second having 18.

The microscopic dynamics of the induction event in the three-state model showed that

in order for the switch to induce, the system must switch from Loop to On through Off . This

observation supports the argument made in Choi et al. 43 , in which a single molecular event

triggers the induction of the switch. They claim that dissociation of the DNA/repressor complex

causes a large burst of transcription that induces the cell. This phenomenon is seen in the

stochastic simulations of the three-state model. Transitions from the Loop state are what drives

the transition, not fluctuations in protein number as seen in the two-state model.

In Choi et al. 43 , they were not able to observe bistability for external TMG concentrations

above 20 µM for mutants without the ability to form DNA loops. Our two-state model predicts a

small window of bistability between 10.1 and 11.0 µM of external inducer. It might not be possible

to observe bistability in this mutant, however a minimum inducer concentration for induction

should be measurable. This model could also be tested further through experiments to measure

the induced and uninduced state lifetimes as a function of external inducer concentration. We

expect an exponential dependence on the TMG concentration.

Adding a looped state to the two-state model vastly increases the range of bistability. The

bistability range for the three-state model is on average 43 times larger for the parameter sets that

meet our selection criteria, and for any three-state parameter set that is biologically reasonable

it can be up to 370 times greater. It should be possible to investigate this enhanced range by

increasing the stability of the loop. It has been shown that changing the distance between

operators and the sequence of the operators allows one to directly control the loop stability 92. A
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way to modify the stability of the loop without changing other parameters could be to change the

sequences and locations of the secondary operators since this perturbation should not affect the

binding affinity for primary operator and thus change the On↔Off rates. Increasing the distance

between the main and auxiliary operators should only affect the rate kfl. Manipulating this rate

could allow one to continuously transform the three-state model into the two-state model.

The transition rate kfl is a complicated function of the operator spacings, because it depends

on the effective concentration of the operator around the operator binding site on LacI. This

effective concentration is called the J factor and it depends on the tension in the DNA molecule

required to bend the operator site to the operator binding site, the torsion in the strand due to

matching the correct side of the DNA molecule to the operator binding site, and the configu-

rational entropy of bringing the operator binding site and operator together. This dependence

highly complicates how the looping rate is affected by changing the operator separation. Instead,

one could measure the transition rate and bistability properties simultaneously to verify our

results.

The bistability range and phenotypic lifetime at 50% induction probability are plotted in

Figure 2.9 as a function of the looping rate. We predict that at faster looping rates, the bistability

range widens while the onset of bistability occurs at greater inducer concentrations. The lifetimes

of the metastable states increase with looping rate as well. A way to experimentally confirm these

results may be to prepare an ensemble of mutants with differing spacing between O1-O3 and

O1-O2 and measure both the bistability range and the looping rate of each mutant. The looping

rates could be measured using single molecule FRET measurements between the operators 93.

2.6 Conclusions

The geometric bursting approximation coupled with FSP is a fast way to numerically solve CME

involving transcription while accurately accounting for transcriptional noise. Formation of DNA

loops in a genetic switch has a profound effect on the sensitivity of the switch to external inducer

concentration, allowing it to be bistable over a much larger range of concentrations. Looping also
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Figure 2.9 Dependence of the bistability range and metastable lifetime τ50% at equal induction probability
on the looping rate kfl. By increasing the distance between the primary and auxiliary operators,
the three-state model can be continuously changed into a two-state model. In general, faster
looping rates lead to greater ranges of bistability. The minimum inducer concentration necessary
for bistability also increases with the looping rate. The curves appear noisy since the fixed point
n0 changes as kfl changes. See Section A.3 for details.

affects the PDF of protein copy number, allowing for fast switching times between metastable

states while maintaining sharply differentiated states of induction, hinting at a possible design

methodology in synthetic biology where fast, highly resolved switch states are needed.
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Chapter 3

Towards a whole-cell model of ribosome
biogenesis: Kinetic modeling of small
subunit (SSU) assembly*

3.1 Introduction

Translation is the universal process that synthesizes proteins in all living cells. Sequence (and

structural) signatures in the ribosomal RNA (rRNA) were used to classify all living organisms

into the three domains of life 95,96. Ribosomal protein can themselves be signatures of ribosomal

evolution and, in the case of bacteria, roughly one third of them are unique with the remaining

common to all three domains of life96,97. Ribosomes constitute approximately one fourth of

a bacterial cell’s dry mass, and biogenesis of the ribosome, together with the other cellular

processes involved in translation, consume a significant fraction of the cell’s energy budget. A

whole-cell model of ribosome biogenesis is crucial for our understanding of cell growth, however

a comprehensive dynamical description of the biogenesis process is still missing.

In bacteria, the precise synthesis and assembly of a ribosome 98 involves at least four critical

*Chapter 3 contains material reproduced with the permission of Elsevier from Earnest TM, Lai J, Chen K, Hallock MJ,
Williamson JR, and Luthey-Schulten Z (2015). Toward a whole-cell model of ribosome biogenesis: Kinetic modeling of
SSU assembly. Biophys. J., 109(6), pp. 1117–1135. doi:10.1016/j.bpj.2015.07.030.
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steps: transcription of rRNA from multiple ribosomal operons; synthesis of the r-proteins, which is

regulated on the translational level based on organization of the r-protein operons in the genome;

post-transcriptional processing and modification of both the rRNA and r-proteins; and highly

coordinated assembly of r-proteins and rRNA towards the mature ribosomal subunits. All these

events occur constantly and in parallel throughout the cell cycle.

Ribosomal assembly involves the cooperation of many molecular components. The 30S small

subunit (SSU), tasked with the initial binding of messenger RNA (mRNA) and its decoding, is

composed of the 16S rRNA and 21 r-proteins. The 50S large subunit (LSU), tasked with channeling

growth of the nascent polypeptide chain through peptide bond formation, is composed of the 5S

and 23S rRNA and 33 r-protein. These 54 proteins must diffuse through the cell to find their rRNA

and bind in a well-defined assembly order. These proteins are classified by their order of binding

to the rRNA. Primary proteins bind to the bare rRNA, secondary proteins require the presence of

certain primary protein in order to bind, and tertiary proteins require the presence of a secondary

protein to bind. The r-protein can compose 9 – 22 % of the total protein counts in the cell 99,100.

In addition, approximately 20 assembly cofactors are engaged to facilitate the process at various

assembly stages.

The rich complexity of 30S assembly process attracted Nomura et al.101, who first observed

how the binding stability of r-proteins can depend on the prior binding of other r-proteins. Using

equilibrium reconstitution experiments at temperatures optimal for the growth of Escherichia

coli (37 ◦C), Nomura constructed a hierarchical dependency map of the assembly process (Fig-

ure 3.1). Progress in biophysical approaches has increased our understanding of in vitro ribosomal

self-assembly through the protein assisted dynamics of RNA folding102–104, and the kinetic co-

operativity of protein binding105–109. All of the studies suggest that assembly of the E. coli 30S

subunit proceeds through multiple parallel pathways, starting with the proteins associated with

the 5′ domain of the 16S rRNA binding first, followed by the central domain proteins, and finally

the 3′ domain proteins.

Using the Nomura map of thermodynamic binding dependencies and kinetic data of protein

incorporation, we have constructed comprehensive in vitro kinetic models that capture the
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topology of the r-protein/rRNA interaction network and reproduce the protein binding kinetics of

assembly, starting from the bare 16S rRNA or from pre-prepared assembly intermediates, at low

and high temperatures 107,108. Both models are consistent with an assembly mechanism inferred

from cryo-electron microscopy (cryo-EM) of 30S assembly intermediates. MD simulations of

the early intermediates in the in vitro assembly model suggest a molecular basis for the two

distinct assembly pathways predicted by the low temperature kinetic model. The low temperature

model reproduces all of the control and prebinding experimental kinetics108,109. Furthermore,

both models predict intermediates central to the assembly process that which would be good

candidates for further experimental and computational studies.

The in vivo biogenesis of the ribosome is further complicated by spatial segregation of the

ribosomes from the nucleoid region33,110–113. Cryo-electron tomograms and single molecule

experiments have indicated that the full 70S ribosomes33,114 are partitioned such that 80% are

found outside of the nucleoid region; however, the 30S and 50S subunits are found uniformly

throughout the cell 113. In slow-growing E. coli (grown in minimal media), roughly 3000 ribosomes

accumulate at the cell poles and are almost entirely excluded from the nucleoid33,110. In living

E. coli cells, there can be be as little as one copy of the gene coding for an r-protein. Due to the

relatively small number of 30S particles in the process of assembly and the large range of possible

intermediates, the counts of specific 16S/r-protein configurations can be of the order of one per

cell. To describe the effects and fluctuations arising from the spatial segregation of ribosomes and

the low copy number of genes and assembly intermediates, a spatially resolved representation

accounting for the discreteness of chemical species is essential for a more realistic treatment of

the problem115.

We present a detailed reaction–diffusion master equation representation of the in vivo bio-

genesis of the SSU, incorporating the spatially inhomogeneous environment of the cell and the

stochastic nature of chemical reactions. We have adapted our high temperature in vitro assembly

model—developed from kinetic studies utilizing pulse/chase quantitative mass spectrometry

(P/C qMS)—to an in vivo model of ribosome biogenesis including transcription of mRNA and

rRNA from DNA localized at their genetic loci, translation of r-protein, and loss of species due to
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Figure 3.1 Graph of thermodynamic protein binding dependencies to the 16S rRNA 101. Only the major
dependencies used in the in vitro model are depicted here. Arrows point from a protein to the
protein that is dependent on it. uS2 and bS21, shown in open rectangles, are not included in
these models, due to difficulties in acquiring their kinetic data 107.

active degradation of mRNA and dilution arising from cell division. The cell is compartmentalized

into cytoplasm and nucleoid regions, which can have different diffusion and intercompartmental

transition rates for each chemical species. Our models of in vivo 30S biogenesis based on slow-

growing E. coli 33,114 roughly reproduce the timescale for assembly seen in live cells and predict

spatial inhomogeneity in the assembly process.

3.2 Materials and Methods

3.2.1 Generation of assembly networks

The network of r-protein association reactions is constructed programmatically by iteratively

adding species and reactions following a rule list. The reaction rule list is a representation of the

Nomura map of thermodynamic binding dependencies, in which the binding of a protein to an

intermediate is thermodynamically stable only if all of that protein’s upstream dependencies are

bound. Starting with a stack containing only bare rRNA, an intermediate is removed from the top

of the stack and stored in a list of visited species. All possible binding reactions from this species
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are computed using the reaction rules and their products are only added to the top of the stack if

they have not been previously visited. This process is iterated until the stack is empty.

Another rule set is used to assign rate constants to the generated reactions (See Table 3.1). A

sequence of rate rules are defined for each r-protein. They consist of additional requirements

on the composition of the intermediate independent of the thermodynamic dependencies. To

choose the rate parameter for that reaction, each rule is tested in order and the first to succeed

is applied to the reaction. These rates are derived from kinetic experiments using pre-prepared

intermediates with various proteins bound to the rRNA. For the low temperature model, a rich va-

riety of prebinding experiments are available to derive these rules from. For the high temperature

model, no prebinding data is available so only one parameter is used for the binding of a protein

to any intermediate. Parameter values are given in Table B.3.

3.2.2 Deterministic modeling and optimization of rate constants at low temperature

The in vitro binding process at 15 ◦C is simulated using the same initial conditions used in the

P/C qMS study, which had a 50% excess of r-protein over the 16S rRNA (0.458 µM r-protein versus

0.305 µM 16S rRNA) 107. The system of ordinary differential equations is solved numerically using

using the CVODES package116 (solver equations derived in Section B.1.) Goodness of fit to the

experimental protein binding curves is measured using the objective function

Φ({ki }) = 1

Nexpt.Nprot.(T1 −T0)

∑
e∈{expts.}

∫ T1

T0

dt

t

∑
s∈{r-prot.}

[
χ(ye,s(t ))−χexpt

e,s (t )
]2

(3.1)

which computes the mean-squared error between the experimental and simulated assembly

progress curves for the parameters {ki }. Here ye,s(t) is the protein concentration s at time t

starting from the initial prebinding intermediate e, χexpt
s,e (t ) is a single exponential fit to the actual

P/C qMS experiment, and

χ(y) = p0

p∗
0 +p0

+ p∗
0 (p∗

0 − r0 +p0)

r0(p∗
0 +p0)

(
p0 − y

p∗
0 + y

)
, (3.2)
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which converts protein concentrations to an idealized pulse/chase fraction where p0 is the

concentration of labeled protein due to the pulse, p∗
0 is the concentration of unlabeled protein

due to the chase, and r0 is the initial rRNA concentration. This assumes that binding is irreversible

and all rRNA is converted to intermediates (derived in Section B.2.) The integration is performed

over the same time interval as the experiment, with a weighting of 1/t in order to treat each

decade in time equally. Using the adjoint sensitivity analysis capabilities of the CVODES package,

we are able to compute the gradient of Eq. 3.1 with respect to the reaction rates to enable rapid

minimization of the objective function using a gradient based optimization algorithm.

The rate constants are derived from single exponential fits to the kinetic data. This exponential

rate is converted into a second-order rate constant by assuming that the protein concentration

remains constant over the assembly process. At 50% excess, this is a poor approximation and

the converted second-order rate constant will not be measuring the binding rate directly for

the secondary and tertiary proteins, but instead a composite rate that includes the time for

the dependent proteins to bind. We will use local optimization from these initial values using

the L-BFGS method117 informed with true gradient information from CVODES to find proper

second-order rate constants for these reactions.

3.2.3 Reduction of kinetic model

To increase the speed of our whole-cell simulations, the assembly network must be pruned of

species which do not contribute significantly to the assembly process. This is accomplished

by iteratively removing the species, s, which contributes the least to the total amount of 30S

assembled. This contribution is quantified as the total reaction flux consuming that species, Fs ,

which is computed from the integral

Fs =
∑

r∈Rs

∫ T1

T0

dt kr [Pr ][Is], (3.3)

where the summation is over all reactions consuming species, s. The quality of the reduced

low temperature model is monitored by computing the root mean square (RMS) error of the
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protein binding curves between the initial and modified networks. The modified network with

the minimal number of intermediates not exceeding the error tolerance of 2×10−2 is accepted.

Due to limited data available for the high temperature model, we instead monitor the difference

in free protein half-lives between the reduced and unmodified models and accept the smallest

network which does not exceed an average of 6% log10 difference in half-lives.

3.2.4 Construction of ribosomal biogenesis network in vivo

The in vivo biogenesis model consists of the assembly network determined from the in vitro data

at 40 ◦C as well as transcription, translation, mRNA degradation, and dilution reactions, along

with the cellular geometry and diffusion constants for all species. Transcription is modeled as

a first-order birth process, where RNA production is localized at points in the cell representing

their originating operon in the genome. The rates of the mRNA and rRNA birth processes are

tuned to an intended expression level, with no gene regulation included in the model. RNA is

produced from nine r-protein and seven rRNA operons placed throughout the cell according to

their genomic position. Assembly of the large subunit is not included in this model. Instead,

the LSU is introduced into the system as a zeroth-order birth process which creates LSU species

uniformly throughout the cell at a rate matching 16S rRNA expression to ensure that the 30S and

50S copy numbers remain balanced.

The rates for translation depend on the operon structure taken from E. coli K-12 MG1655

genome (accession number: U00096 118; genomic data processed using Biopython119.) Translation

elongation is modeled by a series of reactions. Each reaction represents the combination of the

formation of a r-protein associated and the advancement of the ribosome along the transcript

to the next r-protein gene. The transition rate between positions along the mRNA is simply the

translation rate per nucleotide divided by the number of bases between the start of the protein

created during this step and the beginning of the next protein to be produced (or the end of the

transcript). The lengths of intervening genes which code for proteins not included in the model

are included in the genomic distance used to compute the transition rate. Rates of transcription

from the operons considered in our model are chosen such that the proteins reach a realistic
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steady-state concentration. The values of parameters used the in vivo model are summarized in

Table B.3. All parameter values are reported in Table B.3.

3.2.5 Spatially resolved simulations of in vivo biogenesis network

Spatially resolved chemical reaction trajectories are sampled from the solution to the RDME

describing the in vivo network and cell geometry discretized onto a lattice. The RDME is

dP (x , t )

dt
=

V∑
ν

R∑
r

[−ar (xν)P (xν, t )+ar (xν−Sr )P (xν−Sr , t )]

+
V∑
ν

±î , ĵ ,k̂∑
ξ

N∑
α

[−dα
ν xανP (x , t )+dα

ν+ξ(xαν+ξ+1)P (x +1αν+ξ−1αν , t )], (3.4)

where P (x , t ) is the probability distribution to find a configuration x at time t . The configuration

vector x contains the number of species present at each individual lattice site. The first term in

Eq. 3.4 describes the flow of probability between different copy number states at every lattice site.

The reaction propensities ar (xν) give the transition probabilities for reaction r at site ν. The r row

of the stoichiometry matrix S is the change in species counts when reaction r occurs. The second

term describes the flow of probability due to diffusion between neighboring lattice sites, indexed

by ξ. Here dα
ν is the diffusive propensity for species α in volume ν to leave its lattice site. Lattice

Microbes (LM) 29, a software package designed to simulate stochastic reaction-diffusion systems

using the multi-particle diffusion RDME (MPD-RDME) algorithm32,120,121, is used to sample

trajectories from the solution to Eq. 3.4. This software is highly optimized to take advantage

of general-purpose computing on graphics processing units on NVIDIA hardware allowing for

simulation times reaching cell cycle timescales.

Since this is the most complex RDME model simulated by LM to date, modifications to the

code base were necessary to increase the performance of models with many chemical species and

reactions. The reaction kernel, responsible for selecting the reaction and performing the update

of species counts at each time step, was replaced with programmatically generated code with all

loops unrolled, and all constant factors to the propensity calculations replaced with immediate
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values. This leads to a speed up allowing for an hour of simulation time to complete within

approximately 3 days.

LM v2.2 simulations were executed on the XK7 nodes of NCSA Blue Waters (AMD 6276 In-

terlagos / NVIDIA Tesla K20X graphics processing unit (GPU) accelerators using CUDA 6.5) for

short trajectories (< 10 minutes) over 64 simultaneous replicates. Replicates covering an entire

cell cycle were performed on a local machine (2× Intel Xeon CPU E5-2640 / 4× NVIDIA GeForce

GTX 980 GPU using CUDA 6.5) allowing for 4 simultaneous replicates.

3.2.6 Molecular dynamics simulations of early intermediates†

Atomic models of the assembly intermediates are built using the crystal structure of the E. coli ribo-

somal SSU (PDB: 2I2P 122. Proteins and nucleic acids are parameterized with the CHARMM36 123,124

force fields. All systems are prepared using the protocol described in Section B.3. Systems are

neutralized with sodium ions. A total of 840 ns of MD simulation on the 16S intermediates are

reported.

Production runs are conducted using NAMD 2.10125 under the NPT ensemble at 1 atm and

300 K. Periodic boundary conditions are applied, and a 1 fs - 2 fs - 4 fs multiple time-stepping

approach was used. Long range interactions are calculated using particle mesh Ewald with 10 Å

switching/12 Å cutoffs. Each run uses approximately 40000 node-hours on NCSA Blue Waters’s

XE6 nodes (2× AMD 6276 Interlagos).

3.3 Results

3.3.1 Modeling in vitro small subunit assembly

Construction of in vitro low temperature kinetic model of SSU assembly

The assembly process of the E. coli small subunit can be described by a network of binding

reactions of the 21 r-proteins to the 16S rRNA and subsequent assembly products. We are omitting

†Molecular Dynamics simulations and their analyses were performed by Jonathan Lai.
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bS1 in this model it is not an integral part of the mature 30S particle, and uS2 and bS21 due to

the lack of kinetic data, owing to their transient binding nature. We have adopted nomenclature

for the r-proteins which emphasizes their homology or lack there of between the three domains

of life 97. Because bS6 and bS18 form a stable heterodimer in solution126, they are treated singly

as the dimer bS6:bS18 in all the binding reactions, and is assumed to have already formed. The

naïve assumption is that these proteins can bind in any order. If this is the case, then the network

will include 217 (105) species and 17! (1014) reactions. To reduce this complexity, the Nomura

map of thermodynamic dependencies among r-protein101 is used to determine under which

circumstances a protein can bind to an intermediate. Imposing this requirement leads to 1612

SSU assembly intermediates and 6997 reactions.

Initially, the rate constants are taken from a P/C qMS study of the reconstitution of the

SSU in vitro107. Curves tracking the progress of r-protein binding to assembly intermediates

were measured starting with no proteins bound initially (control experiment) and to various

r-protein/16S intermediate configurations, i.e. prebinding experiments (Figure 3.2). From single-

exponential curves fit to these data, an initial rate constant is approximated by assuming the

exponential rate is a pseudo-first-order rate constant and converting to a proper second-order

rate constant using the initial protein concentration. The rates are chosen from the prebinding

experiments where the protein binds directly without requiring any dependent proteins to be

present. This study revealed that the rates for several protein binding reactions are significantly

increased for initial intermediates configured with proteins for which the binding protein is

not thermodynamically dependent. These situations are referred to as kinetic cooperativity to

differentiate the phenomenon from the thermodynamic cooperativity observed by Nomura101.

For binding reactions exhibiting kinetic cooperativity, an ancillary rate constant is used to take

this behavior into account. New rates are only introduced if there is a 2× or greater difference

compared to the slowest rate observed for binding of that protein. This criterion ensures that the

general character of kinetic cooperativity is represented in the model while minimizing the set of

unnecessary parameters. A summary of the fold increases due to this phenomenon is provided

Table B.1 for all P/C qMS experiments used in this model.
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Figure 3.2 Schematic of P/C qMS experiments. The prebinding intermediate is constructed initially from
rRNA and the initial set of unlabeled r-proteins by incubation at 40◦C. The labeled proteins are
added and incubated at 15◦C until the chase of 5× molar excess of unlabeled proteins is added.
This is incubated at 40◦C again to allow all binding to complete. The 30S particles are purified
and mass spectrometry is used to analyze the fraction of labeled proteins, χ, for all r-proteins
simultaneously. This process is performed many times to build up the pulse/chase curves.
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Figure 3.3 Comparison of experimental P/C qMS measurements of ribosome assembly starting with
bare 16S rRNA (error bars) to the 15 ◦C model (solid curves). Raw concentration data from the
model is transformed into an idealized pulse/chase curve assuming the same ratios of labeled
to unlabeled species used in the experiments 107. Using the rates estimated by fitting to the
experimental curves yields the red curve. Improvement on this curve is made by optimizing the
model parameters over P/C qMS experiments starting with nine different initial intermediates
(Figure B.2). By reducing the intermediate count from 1612 to 134 by removing the least impor-
tant intermediates, a simplified model (green curve) is generated which quantitatively matches
the full model.
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The proteins uS3, uS5, bS6:bS18, uS11, uS12, uS14, and bS16 show no significant kinetic

cooperativity. In this model each of these proteins bind to allowed intermediates at a rate inde-

pendent of the intermediate composition. All other proteins bind using some manner of kinetic

cooperativity. The rate rules for assigning parameters to reactions are derived by considering the

kinetic data for each protein individually. When all rules fail to apply to a reaction, a default rate

is used. This rate is chosen from the prebinding experiment in which the initial intermediate

satisfies all of the dependencies with the least total number of protein bound.

The most significant examples of kinetic cooperativity were observed in binding to the 3′

domain. For uS9, its binding rate is increased by over 200× if the intermediate it binds to includes

uS19 (and uS7 from Nomura dependencies). The minimum rate was observed for binding to

the intermediate with all primary proteins prebound. If uS7 is present alone, the rate is 20×
the minimum, however if uS7 and uS13 are present as well, the rate drops to 4×. Finally if all 5′

and central domain proteins and uS7 are prebound, the rate is 5× the minimum rate, implying

that some or all of the secondary and tertiary proteins binding to the 5′ and central domains

increase the binding efficiency. Assuming that the effect of uS19 is dominant, the rate rule list

for uS9 is developed by first testing for the presence of uS19 ignoring any other non-dependent

species to uS9, such as the 5′ domain and central domain proteins. Each rule defines a new rate

parameter for the model. The value of this parameter is taken from the prebinding study that the

rate originates from. Second, the presence of uS13 is tested since this appears to decrease the

binding efficiency compared to the case of uS7 bound alone. Third, the presence of all primary

and secondary 5′ and central domain proteins is tested for, ignoring the tertiary proteins. Fourth,

the presence of all primary binding proteins is tested and finally the default rate is chosen to be

from the uS7 prebinding experiment since this prebinding intermediate minimally satisfies the

thermodynamic dependencies for uS9. The parameter assignment rules are developed similarly

for all other proteins. A summary of the 32 parameters and their rules are provided in Table 3.1.

This method gives rise to an enormous reduction of the parameter space dimensionality, leading

to 15 parameters describing kinetic cooperativity, and 17 default rates. Since we are fitting to

107 curves which are all parameterized by a single rate constant, overfitting of the model is not a
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concern.

The initial conditions are chosen to match the experimental conditions used in the P/C qMS

experiments: 0.305 µM of 16S rRNA and 0.458 µM of each r-protein. The model is integrated

from 6 seconds to 2000 minutes. Figure 3.3 (red curve) compares the protein binding curves from

the model to the control prebinding experiment. The experimental pulse/chase curves do not

compare directly to the simulated ideal pulse/chase curves since experimentally the reactions

are not 100% efficient. To correct for this a linear transformation is applied to the simulated data

to match the starting and ending fraction of the experimentally measured curves. To compute

the initial second-order rate constants, a single exponential is fit to the experimental assembly

progress curves for the proteins and experiments referenced in Table 3.1. The exponential rate

from this fit is then used to compute a second-order rate constant assuming pseudo-first-order

conditions with constant protein concentration. This is not a necessarily a good approximation

in this situation, however it is sufficient to compute an initial parameter set to perform a local

optimization.

Optimization of Assembly Parameters and Kinetic Rules

Since there is some variability between rates taken from different experiments and our initial rates

were derived using a pseudo-first-order approximation, it is justified to perform optimization

on our network to tune the parameters toward a better fit. Biologically reasonable limits on the

parameter space were used: 4×10−6 µM−1s−1 for the lower limit which corresponds to a reac-

tion timescale an order of magnitude larger than the duration of the P/C qMS experiments, and

3.5×103 µM−1s−1 for the upper limit corresponding to the fastest diffusion limited association

of r-protein to the 16S rRNA. By minimizing Eq. 3.1, we reduced the MSE between the P/C qMS

experiments and our model to 6.5% of the error computed from the initial rates (Figure 3.3, blue

curve.) The majority of parameters change within an order of magnitude or less, however signifi-

cant deviations in the parameters for uS3 and uS5 between the estimated and optimized rates

were observed.
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Table 3.1 Assembly rate constants for the in vitro ribosome biogenesis kinetic model at 15◦C.

Rate (µM−1s−1) Rules

Protein Symbol # Rxn. Experiment Initial Optimized Present Absent

uS4 k4,o7 32 uS7 1.713×10−1 2.918×10−1 uS7 uS9, uS13, or uS19
k4,def 512 Control 8.383×10−2 2.173×10−1

uS17 k17,13o19 120 uS7 & uS19 5.285×10−2 1.152×10−1 uS13 or uS19 uS9
k17,def 560 Control 1.421×10−1 1.614×10−1

bS20 k20,7 32 uS7 4.483×10−1 9.325×10−1 uS7 uS9, uS13, or uS19
k20,def 512 Control 2.005×10−1 4.968×10−1

bS16 k16,def 272 1◦ 5.103×10−2 7.655×10−2

uS5 k5,def 136 1◦ & 2◦ 7.29×10−4 1.701×10−4

5′
d

o
m

ai
n

uS12 k12,def 160 1◦ & 2◦ 1.895×10−3 1.806×10−4

uS8 k8,7r9 120 uS7 & uS9 2.223×10−2 3.419×10−2 uS7 or uS9 uS13 or uS19
k8,13 320 uS7 & uS13 6.488×10−3 3.429×10−3 uS13
k8,def 240 Control 1.531×10−3 4.52×10−4

uS15 k15,13o19 92 uS7 & uS13 5.176×10−4 MIN uS7, uS13, or uS19 uS9
k15,def 311 Control 1.276×10−3 1.265×10−3

bS6:bS18 k6,def 403 1◦ 1.257×10−1 2.89×10−1

ce
n

tr
al

d
o

m
ai

n

uS11 k11,def 403 1◦ 1.166×10−2 2.441×10−2

uS7 k7,5c 1 5′ & cent. 2.333×10−3 5.146×10−3 5′ and cent.
k7,def 91 Control 7.654×10−4 1.665×10−3

uS9 k9,19 184 uS7 & uS19 1.786×10−1 4.456×10−1 uS19
k9,13 92 uS7 & uS13 2.989×10−3 3.007×10−3 uS13
k9,5c 8 5′, cent., & uS7 4.374×10−3 1.027×10−3 1◦ & 2◦ of 5′ and cent.
k9,pri 7 1◦ 8.019×10−4 MIN 1◦

k9,def 77 uS7 1.713×10−2 2.572×10−2

uS13 k13,19 476 uS7 & uS19 1.13×10−1 1.134×10−1 uS19
k13,pri 51 1◦ 2.187×10−3 MIN 1◦

k13,def 233 uS7 4.009×10−4 MIN

uS19 k19,pri 102 1◦ 1.713×10−3 1.838×10−3 1◦

k19,def 466 uS7 1.093×10−3 5.718×10−4

uS3 k3,def 48 1◦ & 2◦ 1.13×10−3 3.703×10−2

uS10 k10,19 368 uS7 & uS19 4.592×10−2 6.584×10−2 uS19
k10,def 184 uS7 & uS9 4.738×10−4 4.008×10−4

3′
d

o
m

ai
n

uS14 k14,def 384 1◦ & 2◦ 1.749×10−3 1.173×10−3

The 32 parameters in the ribosome assembly kinetic model shown are separated by domains and listed in
decreasing rule precedence. The initial reaction rate constants are estimated from Bunner et al. 107 and
the final reaction rate from global optimization are shown for each parameter. The parameters are sorted
by decreasing rule precedence. If an intermediate does not satisfy the rules for a parameter (presence or
absence of certain r-proteins), the next parameter in the list is tested. MIN indicates that the local optimizer
has driven this parameter to the lower limit of 4×10−6 µM−1s−1.
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Analysis of Low Temperature Binding Reaction Network

To gain a better understanding of the core of the binding reaction network, we simplified the

full kinetic model by eliminating species with the smallest contribution to the overall integrated

flux (Eq. 3.3) through the assembly network. The network was reduced from 1612 species to 134

species. Using a simple mean-square error metric, the protein binding curves of the reduced

network match that of the full network with an average error of 1.8×10−2 (Figure 3.3, green curve.)

With the network thinned out, one can readily visualize the distribution of reaction fluxes by

drawing a network diagram (Figure 3.4) where the thickness of each edge from intermediate A to

B represents the integrated fluxes or, equivalently, total amount species A converted to B over the

entire assembly time (summand of Eq. 3.3.)

To discuss individual assembly intermediates, we must first develop a concise nomencla-

ture to uniquely specify its protein/rRNA configuration. The states are labeled by the symbol

{x y z : si , s j , . . ., sk }, which consists of two parts. The first part indicates the level of completion

of the 5′ domain (x), central domain (y), and 3′ domain (z) respectively. The letters here are

placeholders for integers that indicate that all not all primary proteins are bound to that domain

(0), all primary proteins bound (1), all primary and secondary proteins bound (2), or all proteins

for that domain are bound (3). The second term indicates the specific proteins bound in the

intermediate which were not included in the first domain label. For example, {000: 4} describes

the 16S rRNA with the only primary 5′ domain proteins uS4 bound, and {100} describes the state

with all primary 5′ domain proteins, uS4, uS17, and bS20, present.

A dominant pathway emerges from the reduced network diagram (Figure 3.4) where the 30S

is assembled in the order 5′ → central → 3′. This result confirms the observed 5′ to 3′ binding

order seen in experiments 105,127–129. This main pathway contains intermediates seen in cryo-EM

maps of in vitro SSU assembly at higher temperatures: {100}; {232}; {232: 5,10,14}; {233: 5}; and

{332: 10,14} 108. With the exception of {100}, these intermediates are all found late in the assembly

process. An ensemble of binding order sequences can be constructed through random walks over

the network using the amount of intermediate converted to weight the transition probabilities.

These sequences cluster well into two classes. The first cluster is associated with the dominant
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Figure 3.4 Reduced network for 30S assembly at 15 ◦C. Each node is an assembly intermediate, labeled
according to which proteins are bound. A three digit number describes the set of r-proteins
bound to each domain (5′-, central-, and 3′- respectively), and all remaining r-proteins are listed
after the three digit number. The edges connecting the intermediates represent the r-protein
binding reactions. The width represents the total amount of intermediate converted by that
reaction, and the color indicates the binding domain of that protein (5′-red, central-yellow,
and 3′-blue.) The color of each node indicates its bias toward its use of the two assembly
pathways. Green indicates that clustering of protein binding order trajectories have indicated
that this species is more likely to take part in the 5′ → central → 3′ pathway. Predicted assembly
intermediates from P/C qMS and cryo-EM 108 are represented using rectangles.
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5′ → central → 3′ ordering and contributes 70% of the total reaction flux. The other appears to

assemble in a general 5′ → 3′ → central binding sequence and contributes the remaining 30%.

Both binding order clusters start out by binding all of the primary and secondary r-protein in

the 5′ domain, forming {200}. This intermediate is the bifurcation point in which both assembly

pathways begin to diverge The majority of trajectories from the major pathway complete the

central domain before starting the 3′ domain, however the minor pathway switches between

binding 5′ and central domain proteins until it reaches {201: 8}. This is another branch point in

which the minor path can either rejoin the major pathway, or continue finishing the 3′ domain.

With the exception of {200: 8}, no intermediates predicted using cryo-EM and P/C qMS are present

on the minor pathway. State {200: 8} feeds about half of the reaction flux from that species back

into the major pathway. The majority of the remaining flux ends up at {201: 8,9}, from which

half of the flux flows back to the major pathway as well. Though the clustering analysis identified

{200: 8} as a minor pathway species, it contributes equally to each path. Finally, both pathways

converge in the vicinity of {232: 10}, from which the remaining tertiary 5′ and 3′ domain proteins

bind to complete the 30S.

MD Simulations to probe network bifurcation and structural barriers at 15 ◦C

The minor pathway in the kinetic model has not been experimentally observed; however, the

proteins bound to the in vitro {100} and {200: 8}, appearing before and after the bifurcation

point, have been predicted using cryo-EM and P/C qMS108. Using MD simulations, we probed

the ensemble of conformations of {201}, {200: 8}, and {200: 15} near the bifurcation point at

{200} (Table B.2). All states contain the intact 16S rRNA and are prebound with uS4, uS17, bS20, and

bS16 while {201}, {200: 8}, and {200: 15} have in addition uS7, uS8, and uS15 bound respectively.

To observe the maximum fluctuations in the nucleic acid conformations, we prepared the MD

simulations with a neutralizing concentration of sodium ions with no magnesium ions present.

In our previous MD simulations and experiments104,130,131 on the motions of the 5′ domain

under similar conditions, we saw that the dominant role of uS4 in {100} and {200} is to bring

together helices h16 and h18, while r-proteins uS17, bS20, and bS16 tighten helices in their

84



Figure 3.5 (a) Secondary structure diagram of the 3′ domain 132. Center of masses are computed from
the lower four-way junction helices h29, h30, h41–h43 (green region) and the upper three-way
junction helices h34–h40 (red region). These centers are separated by the structural signature
h33 (gray region) 96. (b) Time traces of center of mass distances in the 3′ domain. The r-
protein binding sites in the folded small subunit for each domain are provided in Figure B.3 and
Figure B.3.

binding sites on the 5′ and central domain. Because the central domain is already partially formed

in {200}, it is expected that the main role of uS8 and uS15 is to add rigidity to the central domain.

uS7 binds to the partially formed 3′ domain while uS8, and uS15 binds to regions in the central

domain already formed (see Figure B.3 and Figure B.3.)

In the 3′ domain, all four simulations showed similar motions. These fluctuations are domi-

nated by the partial unfolding of the 3′ domain. Helices in the lower four-way junction (h29, h30,

h41–h43) separate from helices in the upper three-way junction (h34–h40) (Figure 3.5a). Time

traces of the center of masses for the different junctions in all four MD simulations show that the

helices separate from 40 Å to over 60 Å after 140 ns (Figure 3.5b). Simultaneously, the structural

signature 96 h33 separates from h31 and h32 and becomes more solvent exposed. This is expected

since h33 is connected to these junctions. Similar results are seen in simulations of the Thermus

thermophilus small subunit (Figure B.1), suggesting that these motions are probably common

to all bacterial organisms. The fact that states {200}, {201}, {200: 8}, and {200: 15} all have similar

motions suggests that there is no strong bias to binding either uS7, uS8, or uS15 and that the
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next major assembly barrier, the opening of the 3′ domain, occurs further along in the assembly

pathway.

Because the binding of uS7 and uS8 have a minimal effect globally on the structure of the

ribosome assembly intermediates, we probed the effect of adding the 3′ domain binding r-proteins

uS9 and uS19. In the folded SSU, uS9 binds to both the lower four-way and upper three-way

junction while uS19 binds to the structural signature h33 (Figure B.3). As the uS19 binding site is

more local than uS9, we investigated the binding of uS19 first (Figure B.3). Adding uS19 to the

simulations (moving from state {200: 8} to {201: 8,19}), tightens the structural signature in h33

and keeps h33 packed against h31–h32 and like the four previous simulations, {201: 8,19} also

shows similar unfolding of the 3′ domain (Figure 3.5b). State {201: 8,9,19}, on the other hand,

does not have the separation in the 3′ domain (Figure 3.5b). Interestingly, all six MD simulations

showed the 3′ domain rotating away from the five-way junction in the 5′ domain, suggesting that

there is another folding barrier further along in the assembly pathway. This motion might only be

arrested upon the addition of uS5.

Construction of in vitro high temperature kinetic model of SSU assembly

The previously described model fits the experimental data well over many different initial inter-

mediate configurations and has predictive power, however it is not adequate for use in a in vivo

model of E. coli since it describes the reconstitution of the 30S at a temperatures much lower

than that required for optimal E. coli growth. Since the rates of binding for each protein will vary

independently with temperature in ways that are difficult to predict, it is not sufficient to simply

scale the rates of the low temperature model to match the observed assembly time in vivo. To

prepare a kinetic model of SSU assembly at physiologically optimal temperatures, we constructed

a model based on in vitro reconstitution experiments performed at 40 ◦C 108. These experiments

were performed at lower concentrations than the low temperature model: 0.02 µM 16S rRNA and

0.04 µM labeled r-proteins, however the 5× molar excess of the chase unlabeled proteins was the

same as before. Since only the control protein binding curves were measured in this work, we are

not able to include the effect of cooperative binding. Due to the lack of these reactions, the high
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Figure 3.6 Fitting of protein binding curves from the high temperature in vitro model to the curves
measured from the 40 ◦C experiment. Deviations of the reduced model with respect to the full
model tend to only impact the 3′ domain binding proteins.

temperature model does not fit to the experimental data as well as the low temperature model

(Figure 3.6.) However, the correct protein binding order is represented and protein abundance

half-lives are reproduced within 6%.

The reduced network assembly model at 40 ◦C contains 145 unique intermediates and 325

protein binding reactions. The number of intermediates was set to focus on the core binding

network and to allow efficient RDME simulations of the in vivo model discussed below. While

Figure 3.6 shows the reduced set captures the binding kinetics well, we carried out additional

simulations to investigate whether important assembly pathways are being removed. Reducing

the full high temperature model from 1612 to 638 states, we repeated the previous analysis of

the assembly network. It was observed (data not shown) that there is a minor partitioning of

protein binding order trajectories into the two pathways seen in the 15 ◦C data. However, the

5′ → central → 3′ trajectories occur greater than 90% of the time compared to the 70% seen in the

low temperature network. The dominance of the 5′ → central → 3′ pathways is likely due to the

effects of the higher temperature which increase the rates of binding in the primary proteins and

diminishes the differences previously observed between the secondary and tertiary proteins.
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Since the rate constants have changed significantly with respect to the low temperature model,

the reduced network structure has as well. The problems we experienced with uS3 and uS5 were

not repeated here since the experimental binding order of these proteins was consistent with the

Nomura map. The assembly pathway is much less directed, i.e. for most states there are many

binding reactions that occur at similar reaction rates (Figure 3.7). It is evident that the temperature

has had a large effect on the utilization of assembly pathways. The bifurcation into two distinct

pathways seen in the low temperature model is absent in the high temperature model (Figure 3.7).

Though the binding order is less well-defined at higher temperatures, the assembly still progresses

in a 5′ → central → 3′ directionality, with the 5′ and central domain proteins binding in parallel,

followed by the 3′ domain proteins, and finally the remaining tertiary proteins from the 5′ domain.

Binding of the primary proteins uS4 and uS15 to the 5′ and central domains respectively,

dominate the nucleation of the nascent 30S. The most highly traversed intermediates seen at

low temperatures, states {100} and {200}, appear less prominent at high temperatures. State {100}

appears 1 minute into the assembly process in both the proposed mechanism 108 and our kinetic

model. The state {220} acts as a central hub for most assembly paths in our network and is also

predicted as an intermediate in the proposed mechanism. It reaches its peak concentration

at 2.2 minutes which is comparable to the time of 3 minutes inferred from P/C qMS and cryo-

EM. The following state, {221}, appears in both our model and the predicted mechanism as well

however the timings are different. It was predicted to bind 8 minutes into the assembly process,

however we are observing the intermediate {221} coming in about 6 seconds after {220}. The next

predicted assembly intermediate is {232} which is less prominent in our model than what would

be expected from the P/C qMS and cryo-EM data. The maximum concentration of {232} is reached

much sooner than expected from the proposed mechanism, coming in at 5 minutes instead of

12 minutes as predicted. The latest predicted intermediate, {332: 10,14}, which is missing only

uS3, comes in at 20 minutes instead of 70 minutes as predicted. The timing discrepancies between

the experiments and our results is likely due to the lack of kinetic cooperativity in our model.

Though there are differences between these times, the P/C qMS study did not identify exact

intermediates experimentally, instead they are inferred from the data. The relative ordering of
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intermediates is suggestive that this model and the published mechanism are in agreement.

3.3.2 Modeling in vivo ribosome biogenesis

Construction of the Ribosome Biogenesis Model

In addition to the hierarchical assembly of the SSU described above, the process of ribosome

biogenesis in the cell must also include the transcription of rRNA and mRNA coding for r-proteins,

the translation of r-protein, and the degradation of mRNA. The high temperature in vitro model

of SSU assembly developed from kinetic experiments with well-mixed solutions of rRNA and

r-proteins is now applied to biogenesis in the heterogeneous cellular environment. For the full

ribosome biogenesis model, we control the birth rate of the LSU to match that of the SSU without

explicitly including LSU assembly and include 70S formation and dissociation reactions with

rates taken from the literature 133–135.

We present a spatially resolved model of the process in a simulation of a slow growing E. coli

cell, of dimensions 4.0×0.9×0.9µm3, and initially containing approximately 3000 ribosomes 33,114.

Using our LM v2.2 we monitor the stochastic changes in the number of species over in a cell over

its doubling time of 120 minutes. The capsule shaped cell is discretized onto a lattice with 32 nm

spacing between lattice sites, allowing us to neglect excluded volume effects from the 20 nm

diameter 70S particles. The nucleoid region of dimensions 3.1×0.45×0.45µm3 is centered within

the cell volume (Figure 3.8a). At each lattice site, we assume the well-stirred approximation to

evaluate the reaction time course using the Gillespie algorithm8.

The protein diffusion constants are estimated based on their mass using a scaling relation

between the diffusion constant in water versus cytosol136 leading to diffusion constants in the

range 8 – 20 µm2 s−1. The maximum time step ∆t that can be used in the MPD-RDME simulation

is determined by the fastest diffusing species, which in this case is bS18. To ensure no particles

diffuse more than a single lattice site per step, the maximum time step is chosen to ensure that

the RMS displacement of a Brownian particle,
p

6D∆t , is shorter than the lattice spacing. In order

to speed up the simulation, the protein diffusion constants were all scaled by a factor of 0.3 to
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allow for longer time steps, resulting in a maximum time step of 25µs. This should not have a

significant effect on the outcome of the simulation since the slowest protein diffuses at a rate

nearly an order of magnitude faster than the fastest non-protein species.

Messenger RNA diffuses at 0.3µm2 s−1 as measured in the literature 137. The diffusion constant

for rRNA is computed from the radius of gyration 138 using the same scaling relationship to account

for diffusion in cytosol as for r-protein. Assembly intermediate diffusion rates are assigned by

counting the number of protein bound and using this number to linearly interpolate between the

diffusion constants of 16S and 30S species. Transition rates between compartments are computed

from the geometric mean of the diffusion rates for each compartment.

Single particle tracking experiments of individual small and large subunits as well as com-

plete ribosomes have shown that ribosomes are partially excluded from the nucleoid region and

diffuse at a rate 10× slower than individual subunits113. From this study, we take the rates of

0.4 µm2 s−1 113 for both SSU and LSU and 0.055 µm2 s−1 111,113 for full 70S ribosomes. We decrease

the diffusion constant of ribosomes, ribosomal subunits, and assembly intermediates within the

nucleoid region by a factor of 10× to account for the increase in molecular crowding due to the

presence of a compacted chromosome. The 70S particles are observed to be partially excluded

from the nucleoid region. The reason for this is not well-understood 111,113, however is most likely

a result of the excluded volume interactions between the ribosomes and DNA. To account for

ribosome exclusion without explicitly simulating the chromosome, we bias the transition rates

between the nucleoid and cytoplasm by a factor of 4.0. A summary of the diffusion parameters

are given in Table 3.3, and the complete list can be found in Table B.3.

The initial species counts (see Table B.4) are determined from the mean copy numbers at

the steady state of a well-stirred stochastic simulation of the in vivo network within a volume

equal to the cell (2.37 fl) using LM. The freely diffusing species are placed uniformly throughout

the cell, the translating ribosomes are placed outside the nucleoid uniformly in the cytoplasm,

and the operons are placed based on their genetic loci. These seven rRNA operons and nine

r-protein operon species are placed in the nucleoid region at randomly about the central axis.

Assuming that the origin of replication is at the center of the cell and the chromosome is linearly
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organized139, operons are placed along the cell axis at positions relative to their distance from

oriC (Figure 3.8b). Subsequent simulations are initialized from random time steps taken from a

long running simulation approaching steady state (Figure 3.8c).

The next step towards a spatially resolved model of ribosomal biogenesis is to provide con-

stant and balanced production of rRNA and r-protein through transcription, translation, and

degradation in the cell. Transcription is modeled as a simple birth process localized at operon

sites within the nucleoid region. Transcription of 16S rRNA occurs from seven ribosomal oper-

ons (rrnABCDEGH) at a birth rate resulting in a mean count of 4500 ribosomes at steady state.

This number is chosen in order to approximate a cell which initially contains 3000 ribosomes

immediately following cell division, and doubles to 6000 ribosomes over its 120-minute cell cycle.

Transcription of messenger RNA from the nine r-protein operons is modeled similarly to rRNA.

Since mRNA is actively degraded by RNase E at various rates depending on the content of the

transcript, we use data from a genome wide microarray study of E. coli mRNA half-lives140 to

estimate the decay rate for each messenger species individually. In lieu of explicit gene regulation,

we tune the mRNA birth rates such that the steady-state copy numbers are roughly equal for

each r-protein species. Since the volume of the cell does not change in our simulations, dilution

reactions (modeled as a first-order death process) are added to account for the effect of increasing

cell volume as the cell grows. Dilution reactions in addition to the mRNA degradation reactions

are added for all species with the exception of the operons. These reactions occur at a rate of

ln2/120min., approximating a slow growing cell with a doubling time of two hours.

Our model of transcription and translation takes the operon structure in the mRNA transcripts

into account and allows for multiple gene products to be produced from a single mRNA molecule.

Translation is modeled in three stages. First, initiation occurs by the association of the messenger

and small subunit, followed by the association of the large subunit to this complex to form a

translating ribosome. Since a model of LSU assembly has yet to be developed, we simply add 50S

species to the system at a rate that matches the production rate of 30S small subunits. Second,

translation of the ribosome along the mRNA strand is simulated by assuming that once a 50S

species associates to the 30S/mRNA complex, the ribosome translates with a constant speed
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until it dissociates from the end of the transcript. Each SSU r-protein is made sequentially at a

rate ktl/Ni where ktl is the translation rate per amino acid (10 aa/sec, estimated from Bremer

and Dennis 99) and Ni is the number of codons between the stop codon of the previous and

current SSU r-protein genes, including the length of any intervening genes not represented in

the model (e.g. LSU r-protein.) Genomic data is taken from the E. coli K-12 MG1655 genome

(GenBank accession number: U00096118.) Finally, termination occurs following translation

past any remaining genes not considered in the model, by the simultaneous dissociation of the

ribosome into mRNA, 30S, and 50S subunits. An example of the derivation of the translation

reactions from genomic data is given in Section B.4 for the spc operon. No post-processing is

assumed to occur for protein. However, bS6 and bS18 dimerize prior to associating with rRNA

at an assumed rate of 1.0µM−1s−1 141 and dissociate at a rate 8.7×10−3 s−1 computed from the

dissociation constant reported in Recht and Williamson 126 . A summary of the in vivo reactions,

rate constants and diffusion parameters are presented in Table 3.2 and Table 3.3. All parameters

are reported in Table B.3.

Simulation Results of the Ribosome Biogenesis Model

We start with the initial conditions derived from the steady-state well-stirred simulation. Since

these initial conditions describe the mean of a growing cell—starting at 3000 ribosomes and

ending at 6000 ribosomes—we scale all species counts by 2/3 in order to approximate the initial

conditions of a newly divided cell. The initial rRNA and 30S intermediate counts are set to zero

so that the birth of new ribosomes over the 120-minute cell cycle can be monitored. The first

new 30S begin to appear after 17 seconds (Figure 3.8c), and the cell quickly reaches a stable-

state bulk 30S production rate of 27 per minute (from slope of production line), with new SSU

appearing uniformly within the cell. The production rate is accelerated with respect to the in

vitro simulations and is due to the greater r-protein concentration in the in vivo simulations. The

total ribosome count, using the sum of 30S, 30S:mRNA, and 70S particles, increases from 3000

to 6000 over the 120-minute cell doubling time. The assembly intermediate counts fluctuate

significantly over the course of the cell cycle with a mean count of 9.7 and standard deviation of 3.8
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to find 30S particles (green) upon which a 50S subunit (purple) joins the complex forming a
translating ribosome (pink). The ribosome emits r-protein (gray) which diffuse away and bind
to small subunit intermediates (cyan). Translating 70S particles are excluded from the nucleoid
region through a bias in their intercompartmental transition rates. (b) Genome diagram of the
operons transcribed in the in vivo biogenesis model. (c) Species counts for a single replicate
during a full 120-minute cell cycle. The initial species counts are set to their mean values from a
well-stirred simulation at steady state. The counts of 16S rRNA and assembly intermediates are
set to zero to investigate the formation of new intermediates. Dilution reactions are omitted from
this simulation in order to investigate the change in particle count over a cell cycle. The curve
“Bound SSU” measures the total count of 30S particles which are not bound to other species in
the cell, i.e. all translating ribosomes and 30S/mRNA complexes. “Total SSU” measures all 30S
particles in the cell, including both free species and bound.
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(coefficient of variation: 0.39). All 145 intermediates appear with non-zero counts at some point

during the cell cycle. Intermediate {233: 5} (30S missing uS12) had a maximum copy number of

12 which is greater than that of any other intermediate during the cell cycle. None of the other

final intermediates (Figure 3.7) were found in such high quantities.

In order to gather more statistics on the formation times of the intermediates and new sub-

units, we designed simulations based on the previous cell-cycle long simulation (Figure 3.8c)

to measure the delay between the appearance of rRNA and formation of intermediate species.

Since the assembly time of the 30S is of the order of a few minutes, we performed 5 minutes of

simulation time over 64 replicates to collect sufficient data to compute distributions of assembly

times. The initial conditions for each replicate are selected from random time points during the

cell cycle simulated previously, and have been modified to remove all assembly intermediates.

The rRNA operons are removed and 100 rRNA molecules are distributed uniformly throughout

the cell, allowing for the measurement of the time interval between the formation of 16S rRNA

and the subsequent intermediates. Since the protein count (Figure 3.8c) is much higher than the

initial rRNA count, the results from these simulations will be comparable to the full cell cycle.

From these formation time simulations, we measure the birth times of the species of interest from

the start of the simulation. The results of this process are equivalent to computing the species

birth times by following the fate of each rRNA in the cell-cycle simulation.

To investigate the spatial distribution of assembly intermediates, we perform clustering in

time to partition the set of intermediates into classes of species which are correlated in time. We

use the data from the formation time simulations to compute mean copy number versus time

curves for each intermediate. The curves from each intermediate are scaled to unit amplitude to

treat each species equally with respect to its maximum concentration, and are compared using

an RMS difference metric. Hierarchical clustering is used to partition the intermediates into

6 classes (T0–T5), where each class contains species which are formed at similar times. The

fraction of the total rRNA that contributes to each temporal class (derived from the formation

time simulations) is provided in Figure 3.8a, and the membership of all intermediates to each

cluster is provided in Figure B.5. To achieve adequate sampling of the spatial distribution of all
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Table 3.2 Summary of reactions and rate constants for the in vivo ribosome biogenesis model

Type Reaction Parameter values Units Compartments

Assembly Ii +P j −→ Ii+1 (1◦ prot.) 0.041 – 1.69 µM−1 s−1 cyt., nuc.
Ii +P j −→ Ii+1 (2◦ prot.) 0.24 – 31. µM−1 s−1 cyt., nuc.
Ii +P j −→ Ii+1 (3◦ prot.) 0.025 – 1.75 µM−1 s−1 cyt., nuc.

Degradation mRNAi −→∅ 1.0×10−3 – 1.4×10−3 s−1 cyt., nuc.

Dilution x −→∅ 9.6×10−5 s−1 cyt., nuc.

Transcription DNArrnX −→DNArrnX +16S 0.062 s−1 nuc.
DNAx −→DNAx +mRNAx 4.9×10−3 – 0.012 s−1 nuc.

Translation mRNAx +30S−→Ribx
init 1.0×102 µM−1 s−1 cyt., nuc.

Ribx
init +50S−→Ribx

0 3.0 µM−1 s−1 cyt., nuc.
Ribx

i −→Ribx
i+1 +Pxi 0.019 – 0.27 s−1 cyt., nuc.

Ribx
term −→30S+30S+mRNAx 0.015 s−1 cyt., nuc.

LSU birth ∅−→50S 3.1×10−4 µM s−1 cyt., nuc.

Dimerization bS6+bS18−→bS6: bS18 1.0 µM−1 s−1 cyt., nuc.
bS6: bS18−→bS6+bS18 8.7×10−3 s−1 cyt., nuc.

intermediates, we performed 128 short (5 minute) simulations from multiple starting conditions

sampled randomly from the cell-cycle simulation. Using the temporal clustering, we computed

mean intermediate distributions over the whole cell volume and projected the distribution onto

the xz plane, leading to a qualitatively similar measurement of density as would be performed

using an optical microscope.

The first class, designated T0, contains the 16S rRNA and 40 early intermediates and is formed

at the sites of the rRNA operons. These intermediates are localized because the timescale of the

protein binding reactions of the primary and secondary proteins of the 5′ and central domains

are of the same order as the rRNA diffusion time (Figure 3.9b). In the next class, T1, the 3′ primary

and secondary proteins uS7 and uS9 bind (Figure 3.9c), and the distribution of intermediates

in this class begins to leave the nucleoid region. T2 contains the main bottleneck species 200,

and includes intermediates as late as {220: 10}. Because of this, there is a path through the

network which can skip over T3 entirely. T3 consists of less common intermediates undergoing

the binding of 3′ domain proteins and later binding 5′ domain proteins. This is the last cluster

where any spatial heterogeneity is evident. T4 consists of more common late stage intermediates
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Table 3.3 Summary of diffusion constants for the in vivo ribosome biogenesis model.

Species Compartment D/µm2 s−1

Ribosome cytoplasm 0.055
nucleoid 0.0055

cytoplasm → nucleoid 0.0043
nucleoid → cytoplasm 0.0017

Subunit cytoplasm 0.4
nucleoid 0.04

cytoplasm ↔ nucleoid 0.126

Protein cytoplasm, nucleoid 2.6 – 6.4

mRNA cytoplasm, nucleoid 0.3

Intermediate cytoplasm 0.15 – 0.39
nucleoid 0.015 – 0.039

cytoplasm ↔ nucleoid 0.047 – 0.122

Transition rates between compartments are computed from the geometric mean of their diffusion con-
stants.

undergoing similar binding as T3. The distribution of T4 is effectively uniform over the cell.

Finally, T5 contains species missing tertiary proteins and is distributed uniformly. This leads to

production of new 30S occurring uniformly throughout the cell. The temporal class membership

of all intermediates is given in Figure B.5.

The complex formed from the binding of mRNA to the SSU is found either in the cytoplasm or

close to the messenger’s originating operon. The mRNA cannot diffuse far from its originating

transcription site because of the high concentration of 30S particles throughout the cell. Once the

translating complex is formed by binding a 50S particle to the 30S/mRNA complex, the particle

will diffuse out of the nucleoid. Its diffusion back into the nucleoid is hampered by the biased

intercompartmental transition rates. Once translation completes, the 70S dissociates leaving 30S,

50S and mRNA species free outside the nucleoid region. This leads to a distribution where the

30S/mRNA binding events are localized around their originating operons and in the cytoplasm

compartment. The termination of translation appears to occur almost entirely outside of the

nucleoid region, since the translation process is slow enough to allow the ribosome to completely

diffuse out of the nucleoid (Figure 3.9e.)

The mean assembly time for individual subunits was measured to be 30 seconds. The distribu-
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tion of assembly times is approximately gamma distributed with a scale parameter of 2.35 seconds

and a shape parameter of 0.208 (Figure 3.9d.) This mean assembly time is similar to the experi-

mentally measured in vivo maturation time for the 30S of 1.3 – 3.5 minutes at a cell doubling time

of 100 minutes142.

Performance of LM software‡

To our knowledge our simplified model, with its 251 unique species and 1336 reaction (676 within

the nucleoid region and 660 in the cytoplasm), is the largest time dependent simulation of of

in vivo ribosome biogenesis to date. The cell model tests the limits of LM v2.2 with regard to

its handling of the number of species and reactions. Two major data structures used by LM are

the stoichiometric matrix, S, with dimensions of Nreactions ×Nspecies and the reaction location

matrix, RL with dimensions Nreactions ×Ncompartments, specifying the reactions that can occur in

a given compartment. Both of these structures are typically stored in GPU constant memory

which is limited to 48 KB in size in most GPU. The size requirements of S and RL are 16 KB and

10 KB respectively, so for the species count required for the ribosome biogenesis model, only

64 reactions could have been supported. In LM v2.2, we added the functionality to relocate S

and RL to GPU global memory and access them via the read-only data cache path added to the

Kepler-class GPU. Current GPU constant memory usage now only handles the remaining data

structures, allowing simulations of 2400 reactions without any additional changes.

The performance of the MPD-RDME simulations is determined by the wall-time required for

particle diffusion, reaction evaluations, and handling of input/output and simulation overflows.

The scaling of computational time of a single time step is consistent with the previous version

developed for the multi-GPU simulations29, where the evaluation of reactions is a linear time

operation in the number of reactions since the reaction list must be traversed for every non-empty

lattice site. Because of this, a single time step on Kepler class NVIDIA GPU (K20X; CUDA 6.5) on

the NCSA Blue Waters supercomputer takes approximately 18 ms. At a time step of 25µs, one

hour of simulation time requires 21 days of wall time. On Maxwell-class CPUs (GTX 980; CUDA

‡Benchmarking and performance tuning of LM was performed by Michael J. Hallock.
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Figure 3.9 The assembly process of the 30S particle is spatially dependent. (a) Fraction of intermediate
temporal clusters present as a function of time. Temporal clustering groups the 145 intermedi-
ate species into mutually exclusive groups based on their order of appearance in the assembly
process. The precise assignment of intermediates to clusters is provided in Figure B.5. (b) Projec-
tions of the intermediate spatial probability distributions for the 6 temporal classes (T0–T5) onto
the xz axis. The distribution of individual intermediates are reported in Figure B.4. (c) Distribu-
tion of protein binding events in each temporal class, providing a timeline of protein binding
reactions. For example, all uS4 binding reactions occur in group T0 and all uS15 and bS6:bS18
binding reactions occur in T0 and T1. (d) Distribution of assembly times for the SSU. The birth
time distribution, measured as the time from birth of 16S to birth of 30S, is approximately
gamma distributed. (e) Translation is spatially dependent. Central y-slices of the 3D probability
density of binding events: (left) 30S associating with mRNA from the alpha operon, and (right)
dissociation events of ribosomes translating alpha mRNA. Binding of messenger to SSU appears
to happen in two locations: outside the nucleoid region, and inside the nucleoid region local-
ized near the originating operon. From the dissociation events, it is clear that the translating
ribosomes are correctly excluded from the nucleoid region as intended.
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6.5) in a desktop computer, the time step is approximately 6 ms and one hour of simulation time

will finish within a week.

To further accelerate the reaction kernel runtime, we investigated specialization and employed

code generation techniques to write a reaction kernel to solve the specific model being simulated.

This has the benefit of requiring even fewer data structures to be accessed in constant memory

as memory references are now replaced with immediate value loads, and loops that could not

be unrolled at compile-time are flattened before compilation. Using this technique, runtimes

on on GTX 980 GPU and the K20X accelerators was reduced to 1.9 ms and 4.0 ms per time step

respectively, allowing one hour of simulation time to be completed in approximately 3 to 6 days.

Simulations of the full 120-minute cell cycle would require 6 – 12 days depending on the GPU used.

The enormous improvement in performance is achieved by applying algorithms that exploit the

newest features in the rapidly developing field of GPU computing. These improvements will allow

us to add more species and reactions to a simplified model describing regulation and coupling to

the metabolic network.

3.4 Discussion and Outlook

Here we report on the progress to develop a simplified reaction-diffusion master equation descrip-

tion of the transcription, translation, and protein/rRNA association events comprising ribosome

biogenesis in whole-cells. We have constructed an assembly model of the SSU, which is to our

knowledge the most detailed description to date. Our whole-cell model accurately reproduces the

assembly timescales of the SSU, and predicts both the identity of major assembly intermediates

and their spatial distributions throughout the cell. By tuning the formation rate of the large

subunit to match the formation rate of the SSU, we capture the increase of the ribosome count

from 3000 to 6000 over the full 120-minute cell cycle. Nevertheless, there are several important

features and reactions that a more complete model of ribosome biogenesis requires.

The low temperature assembly model predicts a heretofore unrecognized assembly pathway,

through which the SSU is assembled in a 5′ → 3′ → central directionality. However, it is unlikely
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that this assembly pathway is biologically relevant due to the conditions from which it emerges. It

appears to be an artifact of the low temperature (15 ◦C) in vitro conditions. This pathway is not

seen in the reduced high temperature (40 ◦C) network, used as the basis of the whole-cell RDME

simulations. Additionally, if in vivo assembly occurs cotranscriptionally, the proteins will bind in

the order 5′ → central → 3′ as the transcript leaves the polymerase. Though not directly relevant

to ribosome biogenesis in vivo, this alternate pathway illustrates the sensitivity of coordinated

assembly networks to varying conditions such as temperature.

The spatially resolved simulations exhibit strong localization of early SSU intermediates

within the nucleoid region, even without explicitly treating cotranscriptional assembly. Our model

predicts that 50% of the SSU will be assembled within 42 seconds which is faster than the accepted

30S maturation time of 30 – 90 seconds in rich media or 78 – 150 seconds in minimal media142.

The two main contributions to the assembly time difference are the lack of uS2 and bS21 in our

model and the omission of rRNA processing. These remaining tertiary proteins would be expected

to have slow binding rates, on the order of uS3 and uS5, and could add 10 – 15 seconds to the

assembly time.

An important additional feature to consider is rRNA processing and maturation reactions. We

assume in the simplified model that the 16S is emitted from the ribosomal operons completely

processed, however the transcript is actually polycistronic and includes the 16S, 5S, and 23S rRNA,

and tRNA as well. Each gene in the transcript has to be processed individually. The processing of

the rRNA involves a number of enzymes and is considered to take place primarily in the nucleoid

region, although there are suggestions in the literature that some processing may occur at the

inner membrane. The maturation processes are still being investigated, but as soon as a consistent

understanding emerges these reactions can be included143–145.

Another feature missing in our model is the action of assembly cofactors. Though the ribo-

some is capable of being reconstituted in vitro from only rRNA and r-protein, in living cells the

process is aided by RNA chaperones, RNA helicases, ribosome-dependent GTPases, and other

maturation factors98. These species act to improve the speed and efficiency of assembly by

minimizing the misfolding of nascent subunits into kinetic dead ends. Pulse/chase quantitative
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mass spectrometry experiments have shown that the assembly cofactors RimM, RimP, and Era

significantly increase the binding rates of particular r-protein during the in vitro assembly of

the 30S146. However, kinetic data with varying cofactor concentrations is unavailable, limiting

its applicability to our model. KsgA is an assembly cofactor which appears to have its greatest

effect during in vivo assembly. Inclusion of this cofactor could significantly change the assembly

landscape as well, since it functions as a checkpoint which blocks binding sites until the interme-

diate reaches the correct conformation to continue assembly 147. However, the kinetics are likely

difficult to measure since they must be measured in vivo.

The actual distribution of messengers in bacteria and their diffusive behavior is not well-

understood and conflicting reports have been published stating that mRNA are freely diffusing

throughout the cell111, mRNA are addressed to certain subcellular areas in a sequence specific

way 148, and that mRNA is localized near its originating operon149. Though we assume that the

mRNA can diffuse freely, we see that the regions with the largest density of 30S/mRNA association

reactions are found near the originating operon of the messenger and outside of the nucleoid

region. This distribution arises due to two effects. First, the new messenger are created at the

location of its operon and cannot diffuse far before association with a SSU. Second, translating

ribosomes are excluded from the nucleoid region, which leads to an accumulation of mRNA

outside the nucleoid region from the dissociation into 30S, 50S, and mRNA.

In our whole-cell simulations, the ribosomes are distributed such that only 7% are found in

the nucleoid region. In fast-growing E. coli, 12% are found in the nucleoid region111. This is a

reasonable result, since we are modeling slow-growing E. coli where the chromosome is assumed

to be densely packed into a single copy of the genome. It has been proposed that the segregation

arises from maximizing the conformational entropy of the chromosome and the translational

entropy of the ribosomes 150, however this alone does not explain compaction of the chromosome

seen in stationary phase and translationally arrested cells. Our method for imposing a difference

in ribosome densities between the two compartments is rather simplistic, however since the

exact reason ribosomes are excluded from the nucleoid region is not clear, implementing a more

physically realistic segregation mechanism may be premature. In the future we will include the
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full DNA in our model in the form of a biased random walk as used in our previous work 33.

It is known that in living E. coli cells 15% of the ribosomes are not actively engaged in transla-

tion 151. Only approximately 25% of the 30S subunits are found in translating ribosome complexes

in our simulations. This seems problematic, however in this model only messengers which code

for the SSU r-proteins uS3 – bS20 are transcribed. This leads to overexpression of the r-protein,

as well as the underutilization of the available ribosomes. Transcription of mRNA that does not

code for the r-proteins used in this model could restore the correct balance of free/transcribing

ribosomes, as well as correct the steady-state levels of protein and free messenger.

The number of ribosomes in a bacterial cell is observed to be roughly linearly correlated

with the cell’s growth rate. Such relationship is captured by the empirical growth law152,153 that

parallels growth rates of bacterial cells with how they allocate resources to protein synthesis and

metabolic functions. However, the cell’s effort to enforce such balance between metabolism and

macromolecular synthesis is yet to be understood. This SSU assembly model can be combined

with genome scale models of metabolism and protein expression 154,155. Through network reduc-

tion methods and parameter space searches, these models could be integrated into our RDME

simulations to simulate living cells.

The integration of metabolism with the model of ribosomal biogenesis would require the

explicit regulation of rRNA and r-protein expression. Currently, we prescribe a constant tran-

scription rate for each operon such that all r-protein is produced at approximately the same rate.

Introducing gene regulation would alleviate the necessity of fine-tuning these rates. The two

most important modes of regulation to model are the autoregulation of translation of r-protein

mRNA and the regulation of transcription by guanosine tetraphosphate (ppGpp)98. In the au-

toregulation mechanism, certain free r-proteins can bind to their own transcripts, though at an

affinity lower than that they bind to rRNA, inactivating the mRNA by blocking its translation. Any

excess of r-protein will downregulate its own expression, leading to a small free r-protein pool.

Most of r-protein operons are regulated this way. The other mode of regulation is transcription

deactivation via the global regulator, ppGpp, which is produced through the stringent response,

i.e. during amino acid starvation conditions. The molecule binds to RNAP affecting its affinity to
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specific promoters. This effect depends on the sequence of the promoter: downregulating most

of the genes necessary for growth including r-protein and rRNA, and upregulating various stress

regulation genes and genes necessary for amino acid synthesis.

In summary we have presented the first steps toward a whole-cell level model of ribosome

biogenesis in E. coli, starting with the assembly of the SSU. Our low temperature in vitro assembly

model fits the experimental kinetic data extraordinary well, and predicts previously unobserved

assembly pathways. The high temperature model reproduces the same binding timescales for

all proteins measured in in vitro studies and predicts key assembly intermediates in agreement

with the cryo-EM data. The high temperature model was used to construct a spatially resolved,

whole-cell model of ribosome biogenesis taking transcription and translation into account. The

cellular environment was constructed to approximate slow growing E. coli with a densely packed

nucleoid region that excludes ribosomes. Although the assembly model was developed from

experiments performed in vitro, with the increased cellular concentrations of r-protein it yielded

30S assembly times comparable to experiments performed in vivo. The RDME model predicted

non-uniform spatial distributions of mRNA and early 30S intermediates. Though simplified,

this model has real predictive power and will be used as the basis for more complete models of

ribosome biogenesis and cellular metabolism. Systems Biology Markup Language versions of

the well-stirred simulation and LM v2.2 input files of the whole-cell simulations will be made

available on our website: http://www.scs.illinois.edu/schulten/research/ribosome_

biogenesis_2015/. A tutorial describing the use of LM is available on our website as well.
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Chapter 4

Ribosome biogenesis in replicating cells:
integration of experiment and theory*

4.1 Introduction

In Escherichia coli, ribosomes account for approximately one fourth of the cellular dry mass and

the majority of the total RNA 157. It can be tempting, then, to think of the bacterial cell as a finely

tuned machine for building ribosomes. Their ubiquity and high sequence conservation has made

them an invaluable window into the process of evolution at the molecular level 96,158–160, and their

role in protein synthesis involves them (either directly or indirectly) in essentially every process

within the cell.

Ribosome production has evolved to be tightly regulated by the cell. This is no small feat,

considering that each 70S ribosome involves the coordinated transcription, translation, folding,

and hierarchical assembly of three strands of ribosomal RNA (rRNA) and over four dozen proteins,

all within the heterogeneous, crowded intracellular space. Starting as early as 1966, pioneering

in vitro studies began to unravel some of the mechanistic details of this process161. Work on the

30S small subunit (SSU) which is largely responsible for recognizing and decoding messenger

*Chapter 4 contains material reproduced with permission from Earnest TM, Cole JA, Peterson JR, Hallock MJ,
Kuhlman TE, and Luthey-Schulten Z (2016). Ribosome biogenesis in replicating cells: integration of experiment and
theory. Biopolymers, 105(10), pp. 735–751. doi:10.1002/bip.22892.
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RNA (mRNA), showed that assembly nucleates with the folding of the so called five-way junction

in the 16S rRNA of the SSU (residues 27–45 and 394–554 in E. coli), and then proceeds through

the hierarchical association of sets of ribosomal protein (r-protein), each progressively folding

and stabilizing the rRNA growing tertiary structure 104,107–109,130,131. Interestingly, a number of in

vitro studies have observed this process proceeding over timescales on the order of the cell cycle

or longer107–109, while in vivo it can take just a few minutes142. Moreover, single cell-imaging

studies on both slow- and fast-growing cells have also shown that complete ribosomes are not

uniformly dispersed throughout the cytoplasm, but rather they tend to aggregate to the cell

poles33,110,111,113,162. Understanding these phenomena requires a model with both a complete

(or nearly complete) kinetic description of the assembly process and fine spatial resolution.

Recently, Earnest et al. 94 reported the first spatially resolved stochastic simulations of ribo-

some biogenesis for slow-growing E. coli. In that work, a model involving 251 different species

(including the SSU, large subunit (LSU), rRNA, 18 proteins that bind to it, the genes and mRNA that

code for them, and over 140 possible intermediates in the SSU assembly) and approximately 1300

reactions for transcription, translation, and ribosome assembly were developed and parameter-

ized along with diffusion constants for all species. The use of a stochastic simulation methodology

was important for a number of reasons. First and foremost, gene expression has been shown to

be highly variable from cell-to-cell; this is especially pronounced when the molecules involved

are in low copy numbers 65,66,163. Ribosomal RNA is transcribed from seven operons interspersed

throughout the E. coli genome, and many of the intermediate structures along the assembly

pathways can exist in very few copies due to the rapid binding of additional proteins 94. Accurately

modeling the random diffusive motions and reactions of the individual substrates allowed Earnest

et al. 94 not only to investigate the mean behavior of the assembly network, but also the inherent

variability in it.

Although unprecedentedly complete, the model did not account for some of the most basic

functions of the cell—namely, replication of the genome, cell division, and metabolism. Using

mRNA distributions obtained from super-resolution imaging experiments, recent articles by

Peterson et al. 1 and Jones et al. 164 showed that mRNA copy numbers exhibit a significant amount
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of variability simply by virtue of the fact that the genes that encode them are duplicated at some

point during the cell cycle (which, in turn, depends on the genes’ positions on the chromosome.)

To quantitatively describe the replicative dynamics of the chromosome, we have generated a

series of E. coli strains with gene loci labeled by a fluorescent repressor–operator system (FROS)

distributed evenly around the chromosome. High-throughput imaging of these strains and identi-

fication and quantification of the gene copy number in each cell allows us to fit simple models of

cell growth and genome replication to extract estimates for the timing of replication of each gene

as a function of its position on the chromosome. We use these results to extend the ribosome bio-

genesis model to explicitly include cell growth, gene duplication, and division (henceforth referred

to as the ribosome biogenesis model (RBM), for ribosome biogenesis model). Although single-cell

rRNA and r-protein mRNA distributions are not available for direct comparison, a number of

theoretical models of mRNA statistics—including some that account for gene duplication—have

been proposed1,164, although, importantly, they do not explicitly account for mRNA–ribosome

interactions. The transcription and mRNA degradation rates in the RBM differ from those gener-

ated by the theoretical model in fitting the simulated mRNA distributions. We ultimately attribute

this discrepancy to the fact that the RBM does not account for competition from non-ribosomal

gene expression (e.g. genes involved in metabolism, regulation, etc.) We derive a simple statistical

model that accounts for messenger production, degradation, and interactions with the ribosomes

(henceforth referred to as the semi-analytic model (SAM), for semi-analytical model) which we

use to investigate the dependence of mRNA statistics on chromosome duplication as well as the

expression of non-ribosomal genes within the cell.

4.2 Results and Discussion

4.2.1 Determining replication initiation timing and progression†

To track the progress of replication in living cells, we constructed strains of E. coli where an array

of 240 specific operators for tet repressor (TetR) was inserted chromosomally. The position of

†All experimental work was performed by Thomas E. Kuhlman. Image analysis was performed by TME.
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the tetO array was varied to evenly sample loci over the full genome (Figure 4.1b) at 14 positions.

Expression of TetR–EYFP in trans from the plasmid pBH74 allows for the direct visualization of

genomic loci and observation of operon counts to be gathered from populations of cells. These

statistics can be combined with a model of cell replication to determine initiation time, replication

time and quiescent phase time.

The strains were grown to exponential steady-state, doubling every 120 min. Approximately

1000 epifluorescence and phase-contrast images were taken of each of the 14 strains. The data

processing procedure was automated such that the detection of cells in a frame, the measurement

of length and width of each cell, and the counting of fluorescent peaks were all handled without

human intervention (Figure 4.1a). This yielded ∼7600 total cells with an average length of 3.2 µm

and width of 0.7 µm.

To extract the cell cycle parameters from these data, we have developed a probabilistic model

linking cell growth with DNA replication. We assume the following about the nature of cell growth

and DNA replication. Cell volume is proportional to length since the width of cells do not vary

significantly over their cell cycle 165. Individual cells show variability in widths, however not more

than 10% (see Figure C.3 for the distribution of cell widths.) Cell lengths immediately prior to cell

division, `0, are distributed log-normally

Plen0(`0) = 1p
2πσlen0`0

e
− 1

2σlen0
2 [ln(`0/µlen0)]2

(4.1)

with location parameter µlen0 and shape parameter σlen0. We base this assumption on experimen-

tal histograms of cell division lengths showing positive skewness 165 and recent theoretical analysis

showing that under the influence of Gaussian random noise in the cell division time, the cell

division length distribution is log-normal. 166. Since we are modeling E. coli with a mass doubling

time of 120 min, we assume that only one round of replication occurs per cell cycle. We assume

the duration of DNA replication, Trep, (i.e. the C period, Figure 4.2) is constant. Experimental

measurements of the distribution of replication initiation times (i.e. duration of B period) over

single cells is limited in the literature, however one study reports a broad distribution that could
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Figure 4.1 (a) Composite phase-contrast and epifluorescence images of representative imaging data
used to determine cell length and operon positioning. The cell boundaries (cyan) and operon
locations (green) are determined computationally. Examples of rejected cells are presented
in Figure C.1. (b) Diagram showing the position of labeled genes used to track DNA replica-
tion (fiducial, orange) and those involved in ribosome biogenesis (rRNA, red; r-protein, blue).
The black lines indicate the origin of replication (oriC) and the replication terminus (terC)
(c) Abundance of cell lengths (green histogram) from imaging experiments are fitted to a simple
exponential growth model (orange line, Eq. 4.6) to estimate the average and variance of cell
lengths after division (black line). Approximately 7600 cells are included in this histogram.
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Figure 4.2 A schematic of the replication time parameters extracted from experimental images in the
context of a 120 minute doubling cell.

be approximated by a truncated normal distribution 167. For the sake of simplicity and to allow for

some variability we have assumed the DNA replication initiation times, trep, are distributed via a

normal distribution truncated at zero:

Ptrep(trep) = Ntrepp
2πσtrep

e
− 1

2σtrep2 (trep−µtrep)2

, (4.2)

where the normalization is

Ntrep
−1 = 1

2
+ 1

2
erf

µtrepp
2σtrep

. (4.3)

We assume that the cells expand in length exponentially following the growth law

`(t ) = `02t/µtdiv−1, (4.4)

where µtdiv is the mean division time. This assumption is supported by a great body of experimen-

tal evidence 165,168–172. Finally, we assume that the cell length at birth and the replication initiation

times are uncorrelated. There is evidence that the initiation time is correlated with the cell length

at birth167, however including this effect would make analysis of the model significantly more

difficult. Using an analytical form for the distribution of cell mass, m, of exponentially growing
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bacteria 173,174,

Pmass(m) = N

2m2

(∫ 2m

0
dm0 Pmass0(m0)−

∫ m

0
dm0 Pmass0(m0)

)
, (4.5)

and assuming that m ∝ `, we derived the distribution of cell lengths,

Plen(`) = µlen

2`2 e−σlen0
2/2

(
erf

ln(2`/µlen0)p
2σlen0

−erf
ln(`/µlen0)p

2σlen0

)
, (4.6)

by substituting Eq. 4.1 into Eq. 4.5 and normalizing the distribution over positive lengths.

In order for our model to describe the relationship between the data we measure for each

cell—its length, the identity of the labeled gene, and the number of copies of that gene—we must

somehow theoretically connect the length of a cell with its gene copy number. To do this we use

the cell age, tage—a latent variable of our model. We must first compute the distribution of cell

ages conditioned on cell length. By performing a change of variables on Eq. 4.1 using Eq. 4.4, we

are left with a normal distribution of cell ages, where the mean age is a function of the cell length,

µtage(`) =µtdiv log2
2`

µlen0
(4.7)

and the standard deviation of the age is

σtage = µtdivσlen0

ln2
. (4.8)

To prevent negative ages, we truncate the distribution and renormalize:

Ptage(tage|`) = Ntage|len(`)p
2πσtage

e
− 1

2σtage2 (tage−µtage(`))2

, (4.9)

where the normalization is

[Ntage|len(`)]−1 = 1

2
+ 1

2
erf

µtage(`)p
2σtage

. (4.10)
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The joint–conditional distribution function of cell ages and replication times given length is

Ptage,trep|len(tage, trep|`) = Ptrep(trep)Ptage(tage|`). (4.11)

We consider a gene i to be copied if the age of the cell, tage, is greater than the DNA replication

initiation time, trep, plus the time required to copy up to and including gene i . Written in terms of

the relative replication fork position χ̂, we have that

χ̂= trep − tage

Trep
> dist(i ,oriC)

dist(terC,oriC)
=χi (4.12)

when a cell has two copies of gene i . Here dist(x, y) refers to the distance between two genes along

its replichore. Using the growth law, the distribution of lengths at cell division, the distribution of

all cell lengths, and the replication time distribution, we can derive the probability to find a cell

with length, `, whose replication progress is further than χi , P (χ̂>χi ,`).

To compute the probability that a gene, i , has been replicated, we change variables to χ̂ in

Eq. 4.11 and integrate over all χ̂ less than χi

Crprg(χi |`) =
∫ ∞

0
dtrep Ptrep(trep)

∫ trep+χi Trep

0
dtage Ptage(tage|`)

= 1− 1

2
Ntage|len[1−Ntrep f (µrprg,σrprg)]. (4.13)

where

f (µrprg,σrprg) = 1p
2πσχ

∫ ∞

0
dx e

− 1
2σrprg2 (x−µrprg)2

erf x, (4.14)

µrprg =
µrep +χi Trep −µtagep

2σtage
, (4.15)

and

σrprg =
σtrepp
2σtage

. (4.16)
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The probability to find a cell with length ` and n copies of gene i is then

P (`,n; i ) =



Crprg(χi |`)Plen(`), n = 1

[1−Crprg(χi |`)]Plen(`), n = 2

0, otherwise

. (4.17)

Thus the likelihood function is

L (θ|{data}) = ∏
(`,n,i )∈{data}

P (`,n; i ;θ) (4.18)

with

θ = (µlen0,σlen0,µtrep,σtrep,Trep). (4.19)

and the data for each cell is its length, `, observed from the phase-contrast images, the copy

number of the labeled gene, n, observed from the fluorescence data, and the identity of the

labeled gene, i . Fitting Eq. 4.18 to the data simultaneously determines the mean cell division

length and its variance, the mean DNA replication initiation time and its variance, and the time

necessary to replicate the full genome.

The model parameters were determined by maximizing the logarithm of Eq. 4.18 over 7600

observed cells. To ensure that each operon contributed equally to the likelihood, we used the

sum of the mean log-likelihood computed for each for each gene. We used a bounded, global

optimization scheme, differential evolution175, to maximize the objective function. The lower

bounds were set to 10−6 to prevent numerical divergence and the upper bounds were set to 10 µm

and 4 for the cell division length location and scale parameters, and 240 min for the replication

time parameters. Uncertainties in the parameters were computed via bootstrap, using 15000

resamplings of the data. A summary of the fitting parameters and their uncertainties are provided

in Table 4.1.

The cell length distribution is well-described by the model (Figure 4.1c). The location

parameter of the log-normal distribution describing the cell lengths prior to cell division is
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Table 4.1 Cell cycle parameters inferred from probabilistic model

Symbol Description Value from fit (mean ± std)

µlen0 Location parameter of cell lengths immediately prior to division 4.772 ± 0.021 µm
σlen0 Scale parameter of cell lengths immediately prior to division 0.1560 ± 0.0050
µtrep Mean replication initiation time 42.2 ± 3.0 min
σtrep Standard deviation of replication initiation time 22.1 ± 1.9 min
Trep Replication duration (C period) 42.4 ± 5.0 min
µtdiv Mean time between divisions 120 mina

σtdiv Standard deviation of time between divisions 12 minb

aFrom experiment
bAssumed

Parameters derived from model fitting along with uncertainties computed from bootstrapping.

4.772±0.021 µm and the shape parameter of the distribution was 0.1560±0.0050. These pa-

rameters converted to the arithmetic mean and standard deviation are 4.830 µm and 0.575 µm

respectively, implying that new born cells are 2.415 µm long on average. These measurements

can be compared to the division length reported for E. coli at a doubling time of 51 min reported

by Taheri-Araghi et al. 165 of 4.40±0.54 µm. The model predicts a mean replication initiation

time of 42.2±3.0 min (duration of B period) with a standard deviation of 22.1±1.9 min, and a

replication duration of 42.4±5.0 min. These results are reasonable in light of the experiments

of Skarstad et al. 176 who measured a B period of 34 min from E. coli B/r A doubling at 113 min

and Adiciptaningrum et al. 167 measured the B period distribution for E. coli with at 130 min

doubling time and reported a broad distribution with a mean of 30 min and a standard deviation

of 21 minutes. Michelsen 177 reports a B period of 32 min and a C period of 52 min in E. coli

K-12 MG1655 doubling at 137 min and shows that the C and D periods increases linearly with

generation time when the doubling time is greater than 70 min, however these measurements

tend to vary depending on the particular strain and the method of analysis.

Figure 4.3a shows the agreement of the experimental data to our model; fitting plots for all

data are provided in Figure C.4 and Figure C.5. The model tends to underestimate the number

of cells with two copies for genes near the origin and overestimates for genes near the terminus.

However the peaks and dispersion in the model distributions reflects the experimental data well.

We also computed the probability of finding a cell with one copy of a gene. This was accom-
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Figure 4.3 (a) Fraction of cells found with one gene copy (green) and fraction predicted by the model
(blue). The distance from the origin of replication to the gene, relative to the distance between
oriC and terC along its arm of the chromosome is plotted in black. (b) Abundance of cells with
length ` and either one (green histogram) or two (blue histogram) gene copies. The probability
densities associated with these histograms predicted from the model Eq. 4.17 are plotted as
lines. (c) Abundance of cells with age t ≈µdiv log2

2`
µlen0

and either one (green histogram) or two
(blue histogram) gene copies for the same genes as shown in (a). The cumulative distribution
function of gene replication times is plotted with a black line. Plots for all operons are available
in Appendix C.
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plished by considering an expression for the distribution of cell ages178,

Ptage(tage) = 2e−νtage

∫ ∞

tage

dt Ptdiv(t ), (4.20)

and assuming that the individual cell division times are distributed normally with a standard

deviation of 10% (σtdiv = 12min). Assuming that the bulk mass doubling rate, ν, is approximately

equal to the mean cell division rate, µtdiv, and evaluating the integral we have

Ptage(tage) =Ntage2−tage/µtdiv erfc
tage −µtdivp

2σtdiv
(4.21)

with

Ntage
−1 = µtdiv

ln2

(
1+erf

µtdivp
2σtdiv

− 1

2
exp

(ln2)2σtdiv
2

2µ2
tdiv

erfc
(ln2)2σtdiv

2 −µ2
tdivp

2σtdivµtdiv

)
. (4.22)

The probability to find a cell that has not replicated its labeled gene is

P (ni = 1) =
∫ ∞

0
dtage Ptage(tage)P (ni = 1|tage) (4.23)

where

P (ni = 1|tage) = 1

2
erfc

tage − (µtrep +Trepχi )p
2σtrep

(4.24)

follows directly from Eq. 4.2. Rewritten in a form amenable to numerical integration,

P (ni = 1) = µtdivNtage

ln2

∫ ∞

0
du e−u erfc(m1u +b1)erfc(m2u +b2) (4.25)
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with the constants

m1 = µtdivp
2(ln2)σtdiv

(4.26a)

b1 = −µtdivp
2σtdiv

(4.26b)

m2 = µtdivp
2(ln2)σtrep

(4.26c)

b2 =
−µtrep −Trepχip

2σtrep
. (4.26d)

The probability to find a cell with one copy of each of the 14 genes is shown in Figure 4.3c,

using the previously computed fitting parameters (Table 4.1). Genes yrfE, yfcN , and ycaK show the

worst agreement, neither following the model predictions nor the trend of the other experimental

data, however the single copy fraction data for the remaining 11 genes follow the expected trend

and are well-described by the model parameters.

As a final test of the fitting of our model parameters, our expression for the probability of

finding a cell with a single gene copy was used to independently estimate the replication initiation

timing, and the replication duration (see Section C.2). This somewhat less-sophisticated treatment

yielded values of µtrep = 34.4 minutes, and Trep = 45.9 minutes. Importantly, although different in

their approaches, both methods estimate similar C and D periods of around 40 minutes each.

It is remarkable that a reasonable measurement of the growth parameters can be made indi-

rectly without monitoring individual cell lineages and labeling the replisome. Cell cycle control in

bacteria is highly complex and not completely understood165,166,172,174,179–182. There have been

at least three classes of cell growth models described in the literature: size-dependent division

(“sizer”)174, time-dependent division (“timer”)181,182, and constant extension (“adder”)172,180

models, as well as more complicated mixed models 165,166 have all been proposed. A major result

of many of these works is the fact that the size of a cell before and after division is correlated. We

are unable to account for this in our model since our experiments do not track individual cell

lineages. Thus we use a simple model which ignores the correlations between generations.
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4.2.2 Modeling the effects of DNA replication on ribosome biogenesis

We built upon our previous kinetic model of ribosome biogenesis in E. coli 94 to construct the RBM,

in order to investigate the effect of both gene duplication and changing volume due to cell growth.

This model is simulated using Lattice Microbes (LM) 28,29, a software package designed to simulate

stochastic reaction-diffusion systems through sampling of the underlying reaction–diffusion

master equation (RDME). The spatial domain of the problem is discretized onto a lattice, with

each lattice site containing discrete particles. Particles diffuse between lattice sites according to

diffusion constants that are local to each cellular region and specific for each species. A Gillespie

type kinetic Monte Carlo simulation determines which reaction occurs at each lattice site and

which particles diffuse to neighboring sites. Since this technique is highly parallelizable; it is

implemented in CUDA to take advantage of NVIDIA GPU, allowing for a complete cell cycle to be

simulated in a single day.

The previous ribosome biogenesis model 94 has between modified such that new r-protein

and rRNA operons (see Figure 4.1b for their loci) are added to the simulation at times reflecting

their position in the genome using the parameters derived in Section 4.2.1, while dynamically

growing the cell volume as the simulation progresses. Psuedocode describing the generation

of the reduced assembly model (Algorithm C.1), the dynamic construction of cell geometry

(Algorithm C.3), and the simulation procedure (Algorithm C.2) are provided in Appendix C. The

kinetic model of ribosome biogenesis includes seven ribosomal RNA operons which code for the

16S rRNA and nine operons coding for the 18 r-protein, which along with the 16S rRNA, compose

the 30S SSU of the ribosome. Transcription of these operons is explicit in this model—the particles

representing the operons are placed in the cell nucleoid region based on their genomic position

and emit messenger RNA species at a constant rate, i.e. unregulated, constitutive expression.

Translation of r-protein is explicit as well—the mRNA engage in a diffusive search in order to

bind to the SSU. The resulting complex associates with the LSU to form a translating ribosome.

R-protein are emitted from the translating ribosome in the order in which the genes appear in

the transcript. Upon completion, the complex dissociates into free mRNA, LSU, and SSU species,

allowing the cycle to begin anew. Newly translated r-protein diffuse away and associate to SSU
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Table 4.2 Summary of reactions in the whole-cell model

Type Reaction Parameter values Units Compartments

Assembly Ii +P j −→ Ii+1 (1◦ prot.) 0.041 – 1.69 µM−1 s−1 cytoplasm, nucleoid
Ii +P j −→ Ii+1 (2◦ prot.) 0.24 – 31. µM−1 s−1 cytoplasm, nucleoid
Ii +P j −→ Ii+1 (3◦ prot.) 0.025 – 1.75 µM−1 s−1 cytoplasm, nucleoid

Degradation mRNAi −→∅ 1.0×10−3 – 1.4×10−3 s−1 cytoplasm, nucleoid

Transcription DNArrnX −→DNArrnX +16S 0.037 (0.062) s−1 nucleoid
DNAx −→DNAx +mRNAx 3.2×10−3 – 7.8×10−3 s−1 nucleoid

(4.9×10−3 – 0.012) s−1

Translation mRNAx +SSU−→Ribx
init 1.0×102 µM−1 s−1 cytoplasm, nucleoid

Ribx
init +LSU−→Ribx

0 3.0 µM−1 s−1 cytoplasm, nucleoid
Ribx

i −→Ribx
i+1 +Pxi 0.019 – 0.27 s−1 cytoplasm, nucleoid

Ribx
term −→SSU+SSU+mRNAx 0.015 s−1 cytoplasm, nucleoid

LSU birth ∅−→LSU 6.5×10−4 (3.1×10−4) 3.1×10−4 cytoplasm, nucleoid

Dimerization bS6+bS18−→bS6:bS18 1.0 µM−1 s−1 cytoplasm, nucleoid
bS6:bS18−→bS6+bS18 8.7×10−3 s−1 cytoplasm, nucleoid

Parameters which differ between the RBM and RBMfv are provided for each with the RBMfv parameter in
parenthesis. The complete assembly network is provided in Figure C.8 of Appendix C, the complete list of
all 1300 reactions is available Appendix B.

assembly intermediates following the assembly network described in Earnest et al. 94 . A diagram

of the assembly network is shown in Figure C.8 of Appendix C. DNA replication is implemented

by choosing a replication initiation time trep, from a normal distribution with mean µrep and

variance σrep
2. New operon copies are added to the simulation at times ti = trep +χi Trep which

are taken directly from the experimental analysis in Section 4.2.1. The operon species are not

subject to diffusion in our model, rather they are moved along the long axis of the cell such that

they will be found in the same position in the daughter cells as in the mother cell at the start

of the cell cycle (Figure 4.4b). This is a vast simplification of the dynamics of the chromosome,

however it is the simplest approach given the lack of detailed time-dependent gene localization

information available in the literature.

We use 1
2µlen0=2.4 µm from the modeling of the experimental data (Section 4.2.1) as the

initial length of the cell and the mean cell width, 0.7 µm computed from the raw cell data, as

the simulated cell’s width. The cell grows to µlen0=4.7 µm over the course of its 120 minute cell

cycle following the growth law, Eq. 4.4. The new cell geometry, which includes the membrane,

cytoplasm, and nucleoid cellular compartments, is computed using constructive solid geometry
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Figure 4.4 (a) Schematic of geometry used in RBM simulations. The lattice is 32×32×192 sites in the x, y ,
and z directions respectively, with a lattice spacing of 32 nm. The simulation volume consists of
4 regions: (1) extracellular space (gray), (2) membrane (green), (3) cytoplasm (orange), and (4)
nucleoid (not colored, found in center of cytoplasm). The initial length, 2.4 µm, and the width
of the cell, 0.7 µm, were chosen from the previous experimental analysis (Section 4.2.1). The
proportion of the nucleoid region to the cytoplasm is based on measurements of cryo-electron
tomograms of slow-growing E. coli 33. Operon species are placed within the nucleoid region
based on their genomic loci and replicated at times computed from their genomic distance to
the origin of replication. The position of the operon species is evolved in time such that the
operons in the daughter cell are found in the same position as the operons in the mother cell.
The cell volume grows constantly throughout the cell cycle at an exponential rate, where upon
it divides into two daughter cells of length 2.4 µm. (b) Kymograph showing the evolution of
spatial compartments and operon locations over one cell cycle. The jagged steps arise from the
discreteness imposed by the 32 nm lattice. (c) Comparison between RBM (green) and RBMfv
(blue) models using 16 replicates. Means are represented by solid lines and the interquartile
range is given by the shaded area. There is an significantly lower average SSU intermediate
count seen in the RBM compared to the RBMfv (top panel), which is a result of the changing
cell volume. In the last three panels are plotted the absolute count of ribosomes (translating
as well as dissociated), the absolute ribosome concentration, and the cell volume. The RBM
produces ribosomes at approximately the same pace as volume expansion, leading to a constant
ribosome concentration over the cell cycle.
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directly into the lattice data structure. The nucleoid compartment dimensions are chosen to

match the proportions of nucleoid to cytoplasm observed in cryo-electron tomograms of slow-

growing E. coli 33 (available in Figure C.7). When the lattice changes, sites where particles were

once forbidden are now allowed and the chemical species rapidly undergo diffusive relaxation to

fill the empty space. During the constriction of the cell during division, particles in sites which

were once cytoplasm can end up outside of the cell. This problem is mitigated by using the

membrane compartment to direct outlying particles back into the cytoplasm. For all particles

in the simulation, their transition rate from the membrane to the cytoplasm site type is set to

the maximum diffusion rate, a2/4∆t , where a is the lattice constant, and ∆t is the time step.

Transitions from the cytoplasm into membrane sites are all set to zero. By changing the lattice

slowly as well as using the membrane sites to redirect straying species, no particles are lost into

the extracellular compartment.

Since the volume of the cell and number of gene copies change throughout this simulation,

the original parameters used in Earnest et al. 94 were slightly modified. The mRNA and rRNA

transcription rates were scaled by a factor of 0.65 and 0.60, respectively, and the zeroth-order

LSU birth rate was scaled by 2.1. The change in the transcription rates reflect the changing copy

numbers, where as the change in the LSU birth rate is a consequence of the changing volume.

These changes were executed in order to ensure the same particle copy numbers at the end of the

cell cycle were reached as in the original simulations 94 (RBMfv) to allow for a direct comparison

which investigates the effect of cell growth and gene duplication. In order to compare the RBM

on even footing with the RBMfv, the RBMfv was simulated again using the current development

version of LM (version 2.3a) over 16 replicates.

Comparing the two models, the initial and final species counts are practically identical for all

classes of particles with the exception of the SSU intermediates (see Figure 4.4c and Table 4.3.)

Here we see that the final intermediate count in the RBMfv is approximately a factor of five larger

than the count seen in the RBM. The origin of this effect is due in part to the increased protein

concentration at the start of the cell cycle in the RBM. Though the absolute protein numbers are

approximately equal, the RBM volume is smaller than the constant cell volume over the full cell
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Table 4.3 Particle counts in RDME simulations

RBM counts RBMfv counts

Particle Class Initial Final Initial Final

All ribosomes 3125 ± 54 6191 ± 58 3094 ± 49 6208 ± 73
Translating ribosomes 545 ± 15 1088 ± 23 528 ± 18 1045 ± 26
Dissociated ribosomes 2580 ± 57 5103 ± 60 2566 ± 53 5163 ± 71
SSU intermediates 1.1 ± 1.4 1.2 ± 1.2 11.4 ± 3.5 5.8 ± 2.7
Ribosomal protein 34000 ± 3500 69800 ± 4800 33200 ± 2700 66400 ± 4200

Initial and final particle counts from the RBM and RBMfv trajectories (mean±std).

Table 4.4 Particle concentrations in RDME simulations

RBM concentrations [µM ] RBMfv concentrations [µM ]

Particle Class Initial Final Initial Final

All ribosomes 6.11 ± 0.10 6.055 ± 0.056 2.184 ± 0.034 4.382 ± 0.052
Translating ribosomes 1.065 ± 0.030 1.064 ± 0.023 0.373 ± 0.013 0.738 ± 0.018
Dissociated ribosomes 5.04 ± 0.110 4.991 ± 0.059 1.811 ± 0.038 3.644 ± 0.050
SSU intermediates 0.0022 ± 0.0028 0.0012 ± 0.0011 0.0081 ± 0.0024 0.0041 ± 0.0019
Ribosomal protein 66.5 ± 6.9 68.2 ± 4.6 23.5 ± 1.9 46.9 ± 2.9

Initial and final concentrations from the RBM and RBMfv trajectories (mean±std).

cycle. The RBMfv cell geometry is significantly greater than the RBM geometry since we had used

dimensions of 4µm×0.9µm in the original study 94. However there appear to be other effects at

play since the volume difference of 1.4× is not enough to account for the total difference.

The changing volume due to cell growth causes particle concentrations to remain relatively

constant throughout the cell cycle (Table 4.4). For example the ribosome concentration in the

RBM spans 5.5–5.9 µM over the cell cycle, where as in the RBMfv the concentration spans 2.4–

4.16 µM. However in the RBM the concentration tends to peak before and after cell division

(Figure 4.4c). In the bottom panel of Figure 4.4c, the increase in volume slows down near the end

of the cell cycle when the cell begins dividing. The ribosome number increases linearly over the

whole cell cycle, however the growth of the cell volume can no longer keep the pace with ribosome

production during this slowing, leading to an increase in ribosome concentration at the end of

the cell cycle. When the cell finally divides, the protein concentration can now relax to the steady

state concentration.

Though the majority of the chemical species in the RDME simulations show no spatial hetero-
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Figure 4.5 xz copy number projections of cells at evenly spaced times throughout the cell cycle. The
time evolution of the cell geometry is evident in this series of projections. Constriction begins
approximately 100 minutes into the cell cycle through the constriction of the cell membrane.
Ribosomal protein (top) diffuses rapidly through all compartments, leading to a distribution
which mirrors the thickness of the cell at each (x, z) coordinate. The transition rates of translating
ribosomes (middle) between the nucleoid and cytoplasm regions is biased to limit the number of
ribosomes in the nucleoid, leading to localization of ribosomes to the cell poles and membrane.
The most pronounced spacial heterogeneity is due to the SSU intermediates (bottom), where
the earliest intermediates which result from the binding of primary proteins are found near the
rRNA operon from which the 16S rRNA was transcribed.
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geneity, e.g. r-protein (Figure 4.5, top), two classes of particles exhibit nonuniform distributions

throughout the cell. Translating ribosomes, composed of an SSU particle, an LSU particle, and an

mRNA, are partially excluded from the nucleoid region by imposing a bias in the transition rates

between the nucleoid and cytoplasm compartments. The transition rate from the nucleoid region

to the cytoplasm is four times greater than the reverse transition. These biased transition rates

model the excluded volume effects arising from the folded chromosome which is not included

in the simulation due to a restriction of the number of species allowed in the present version of

LM. Heterogeneous distributions of ribosomes have been observed in single particle tracking

experiments, which showed that the fully associated ribosome is partially excluded from the nu-

cleoid 111 region while the individual subunits are not 113, as well as in cryo-electron tomography

of slow-growing E. coli 33 (see Figure C.7.) Since the fate of particles in these RDME simulations

are determined by reaction and diffusion processes alone, biased transition rates are necessary to

implement excluded-volume effects which arise due to intermolecular forces between particles.

Though this is a simplistic approach, it is sufficient for the needs of this study.

The other particle class exhibiting a nonuniform spatial distribution are the SSU assembly

intermediates (Figure 4.5 bottom). Ribosomes assemble in a well-defined binding order, where

some proteins can only bind once other proteins are associated with the nascent subunit (see

Figure C.8.) The earliest SSU intermediates, consisting of the primary and secondary binding

proteins associated with the 5′ and central domains of the 16S rRNA94, are short lived and are

found only within a few hundred nanometers of the site from which the rRNA was transcribed.

Due to their short lifetime, their density tracks the position of the rRNA operon tightly. Later

intermediates which are beginning to include tertiary binding proteins diffuse farther away from

the originating rRNA operon until all memory of their birthplace is washed out.

4.2.3 Effects of DNA Replication and Translation on mRNA Statistics‡

As there are no experimental distributions available, computed distributions of the rRNA and r-

protein operon mRNAs obtained from our simulations were compared to theoretical results from

‡Semi-analytic model developed and tested by John A. Cole and Joseph R. Peterson.
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Peterson et al. 1 . The theory derived in Peterson et al. 1 considers a constitutively expressed gene

that is replicated during the cell cycle and includes the time-dependent messenger degradation.

It was found that modeling the time-dependence was critical to capturing the correct shape and

statistical features of the messenger distribution for highly expressed genes or genes with long

half-life, both criteria which are met by the r-protein operon genes. We found that the simulated

RNA exhibited significantly higher expression and greater variability than the theory of Peterson

et al. 1 predicted. Attempts to fit the messenger distributions to theoretical distributions (see

Figure 4.6 green lines; described in Section C.3) yielded estimates of kt ,eff and kd ,eff (the messenger

transcription and degradation rates, respectively) that differed systematically from the rates used

in the RBM simulations—fit kt ,eff values were approximately four times larger than those used

in the RBM simulations while fit kd ,eff values are about four times smaller (see Table 4.5 and

Figure C.9). We note, however, that the distributions based on the results of the theory 1 do show

better agreement than those of an earlier model of mRNA production that accounted for gene

duplication, but neglected mRNA decay 164. This is due to the high expression value of the mRNA

and the long half-life of the messengers (8–12 min) both of which require the mRNA relaxation to

be explicitly accounted for to capture the correct statistics1.

An important omission in the RBM, and the underlying reason for the disagreement we see

with the results of Peterson et al. 1 , is that the simulated cells express only the genes involved in

ribosome biogenesis. In reality, cells express a multitude of other mRNA and proteins in order to

perform other cellular functions (e.g. metabolism and gene regulation, etc.) In order to investigate

how these “missing” mRNA may affect our r-protein mRNA statistics, we constructed a simple

model of messenger production that accounts for both gene duplication and interactions with

the cell’s ribosomes (denoted SAM) consisting of the reactions

D(t )
kt−→ D(t )+m (4.27a)

m
kb−*)−
ku

n (4.27b)

m
kd−→∅ (4.27c)
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Here D(t) represents the gene copy number on the DNA; its time-dependence signifies that at

some time tr (the replication time) it will double from one copy to two copies, and kt and kd are

the transcription and degradation rate of the mRNA, respectively. Importantly, this model includes

transitions of the messenger, m, into and out of a second state, n, which represents the ribosome-

bound mRNA. The ribosome binding and unbinding rates are denoted kb and ku , respectively,

and the binding rate is understood to be a function of the free ribosome concentration. The

binding rate is kb = 4.2×108M−1s−1 while the unbinding constants can be estimated as described

in Section C.1.2 (also found in Table 4.5). This model assumes (as do our simulations) that

ribosome-bound messengers are protected from degradation.

A chemical master equation (CME) corresponding to Eq. 4.27a (see Eq. C.1) was used to derive

a set of ODEs and boundary conditions that describe the mean and variance of m and n (see

Eq. C.2 and Eq. C.3). By assuming some number, c, of other genes whose mRNA compete for the

available ribosomes, we estimated the equilibrium concentration of free ribosomes by solving

the system numerically. Subsequent time-averaging over the cell cycle1 yielded values for the

mean and variance of the modeled mRNA. We computed the mean and Fano factor for each of

the r-protein operons based on their respective rate parameters and gene doubling times (see

Table 4.5). When c = 8, which approximates the case of the RBM simulations (there are a total of 9

r-protein operons in E. coli; messengers from 8 operons actively compete with the messengers

from the operon of interest), we found that the resulting means from the SAM showed very good

agreement with simulated RBM values, although the resulting Fano factors tended to be slightly

overestimated (see Figure C.10 a, red and blue dots). However, when the value of c in the SAM

was set closer to a biologically realistic value (on the order of 1000, assuming roughly 25% of the E.

coli genome is actively expressed183), the resulting means and Fano factors essentially matched

those predicted by Peterson et al. 1 (see Section C.4 and Figure C.10 a, green triangles and black

“+” signs). These results underscore the need for including the expression of other non-r-protein

messengers in future RBM simulations.

Our analysis of the SAM indicates that when in the biologically realistic regime (c ≈ 1000),

messengers are generally not bound by ribosomes and their statistics can be described by the the-
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ory of Peterson et al. 1 . The question then arises: What is the expected mean count of messengers

for each of the r-protein operons and how should the RBM be modified when competing mRNA

are modeled? Using values from the CyberCell Database, which tabulates statistics describing

an average E. coli cell184, we estimate that the total count of mRNA to be between 3800 and

10000 in cells with our measured average length and width (3.2 µm and 0.715 µm, respectively;

see Figure 4.1c and Figure C.3). Using relative gene expression values from high-throughput

sequencing data for E. coli 185 we then estimate the mean mRNA counts for the ribosomal operons

are between 20 and 120, which are in good agreement with the RBM values (55 and 145). In the

biologically realistic regime for c the transcription and degradation kinetics used in the RBM

give mean and noise values that are much lower than these estimates (Figure C.10 a green dots).

This indicates that future applications of the RBM which include competing mRNA will require

transcription rate parameters that are about four times higher and degradation rate parameters

that are about four times lower than in the current RBM to achieve mean mRNA counts that

match experiments (as indicated by linear regression between fit and RBM rate parameters; see

Figure C.9). Using the theory of Peterson et al. 1 we have estimated that the kt and kd values

required for the r-protein operons necessary to capture the correct mean messenger counts when

modeling all competing mRNA (see Table 4.5).

4.3 Conclusions

In this article we performed fluorescence imaging studies at the single-cell level in order to

estimate the timing and duration of DNA replication in slow-growing E. coli (doubling time of

approximately 120 minutes). We described a simple analytical model describing growth and DNA

replication in slow-growing E. coli (only one replication process per cell cycle) which does not

require the explicit tracking of cell lineages and applied it to our single-cell studies. The B and C

parameters determined by the model, 42.2 min and 42.4 min respectively, are reasonable when

compared more direct measurements in bulk176,177 or in single cells165,167. These parameters

were used to improve a recent spatially resolved, whole-cell model of ribosome biogenesis94
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Figure 4.6 Messenger distributions simulated in the ribosome biogenesis model (RBM; blue histogram)
with fits from the theory of Peterson et al. 1 (red curve.) Fit parameters for the theory with mRNA
relaxation can be found in Table 4.5.
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Table 4.5 Rate parameters for the r-protein operon mRNA in the RBM

Operon kt (s-1) kd (s-1) ku (s-1) kt ,eff (s-1) kd ,eff (s-1)

alpha 0.0047 8.363×10−4 0.0079 0.01813 0.00023
rplM 0.0030 1.197×10−3 0.0119 0.01431 0.00030
rpsF 0.0036 8.955×10−4 0.0103 0.01513 0.00027
rpsJ 0.0060 1.029×10−3 0.0059 0.02091 0.00022
rpsO 0.0045 1.238×10−3 0.0082 0.01810 0.00025
rpsP 0.0038 9.785×10−4 0.0092 0.02220 0.00037
rpsT 0.0027 1.144×10−3 0.0139 0.01519 0.00036
spc 0.0069 9.206×10−4 0.0055 0.02225 0.00020
str 0.0058 8.062×10−4 0.0063 0.02065 0.00022

Mean 0.0042 9.8359×10−4 0.0080

Transcription (kt ), degradation (kd ), and messenger unbinding (ku) rate parameters for the r-protein
operon mRNA in the RBM (scaled from those in Earnest et al. 94 as discussed in Section 4.2.2). Each value
for the unbinding rates ku was estimated according to Eq. C.9. The last line gives the harmonic mean over
all individual operon rate parameters. These mean values were used to make Figure C.10 b. Effective rate
parameters (kt ,eff, kd ,eff) are from fitting the simulated messenger distributions with the theory of Peterson
et al. 1 .

that involved the transcription and translation of the rRNA and r-protein operons involved

in production of the ribosomal 30S small subunit, as well as its assembly. This model was

augmented through the use of the experimentally measured parameters to include the effects

of cell growth and gene replication, the latter of which has been shown to significantly impact

the copy number statistics of mRNA in models of gene regulation1,164. We found that the r-

protein operon messenger counts that emerged from our ribosome biogenesis model without

regulation did not appear to be well-described by published theoretical models 1,164. Specifically,

the simulated messengers were expressed in greater numbers and with greater variability than

the theory of Peterson et al. 1 predicted. We found that this was associated with the low number

of non-ribosomal genes in the RBM. By constructing a simple semi-analytical model SAM that

accounts for varying numbers of non-ribosomal genes to be expressed, we showed that the

mRNA statistics of a cell expressing realistic numbers of non-ribosomal genes should be close

to those predicted by Peterson et al. 1 . This means that in order to recover the proper ribosomal

messenger counts, future versions of the RBM that include other cellular networks like metabolism
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and regulation will also require adjustments to the r-protein operon transcription and mRNA

degradation parameters.

4.4 Materials and Methods

4.4.1 E. coli operon quantification

Strains and plasmids All strains used in this study are derivatives of E. coli K-12 MG1655

∆lac 186–188, in which the entire lac operon has been deleted from the N-terminus of lacI to the

C-terminus of lacA using the method of Datsenko and Wanner189. Gene locations and numbers

were determined using the FROS, where of the integration of an array of 240 operators for TetR,

was performed at each of 14 loci at evenly spaced intervals around the chromosome using Landing

Pad technology 186–188,190,191.

Fluorescent repressor operator system Gene locations were determined using the FROS

performed as described192. Integrations were made at each site consisting of an array of 240

operators for TetR using Landing Pad technology. After growth to steady state as described below,

0.01% L-arabinose was added to each culture 1 hour before fixation to induce expression of TetR

tagged with fluorescent EYFP in trans from the plasmid pBH74192. Cells were then fixed and

processed as above.

Media and growth conditions At the start of an experiment, a seed culture of each strain

was inoculated from a glycerol stock into 2 ml lysogeny broth with appropriate antibiotics in 14 ml

polypropylene round bottom tubes (Falcon) and allowed to grow to saturation in a 37 ◦C shaking

water bath. This seed culture was then diluted 1000× into 3 ml of M63 minimal medium (100 mM

KH2PO4, 15 mM (NH4)2SO4, 1.7 µM FeSO4, 1 mM MgSO4) + 0.5% glycerol in 20 mm diameter

glass test tubes and allowed to grow with extremely vigorous shaking in a 37 ◦C water bath (New
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Brunswick Scientific model G76) until OD600 of the culture reached 0.5–0.6 as measured with

a spectrophotometer (Bio-Rad SmartSpec 3000). These cultures were then used to inoculate

another 25 ml baffled Erlenmeyer flasks of identical fresh medium pre-warmed to 37 ◦C at an

initial density of OD600 = 0.005 and again grown with vigorous shaking in a 37 ◦C water bath.

Samples were taken and the OD600 of the culture was measured at regular intervals to determine

the doubling time of the culture. When the density of the culture reached OD600 = 0.2–0.4, the

culture was harvested and fixed by the direct addition of an equal volume of freshly prepared

and filtered 5% paraformaldehyde in phosphate buffered saline (PBS). The resulting solution was

allowed to continue shaking at 37 ◦C for 10 minutes and was then placed on ice for 30 min. Cells

were washed three times via centrifugation and resuspension in 1 ml filtered, ice-cold PBS. At the

time of harvest, we estimate that the cultures had been growing in exponential steady-state for

∼10 generations.

Microscopy After preparation, samples were mounted on glass slides using 40% glycerol.

Imaging was performed using a Nikon Eclipse TE2000U microscope with an Applied Scientific

Instruments PZM-2000 automated stage utilizing Metamorph automation software. 1000 images

per strain were collected using epifluorescent illumination with a 100× phase-contrast objective

combined with a 4× telescope attachment using a Roper Scientific Cascade:512 camera.

4.4.2 Data analysis

Image analysis All image analysis was performed in performed in the Jupyter environ-

ment193 using the SciPy Stack194 and scikit-image195. Following background subtraction of all

phase-contrast images, a binary mask was computed from each frame using adaptive thresholding

to identify potential cells. The potential cell regions from the phase-contrast images were then

normalized to [0,1], where by a second binary mask of the cell was constructed from pixels with

a normalized intensity less than 0.37. Cell lengths were measured from the arc length of a 5th

degree polynomial fit to the cell mask in order to prevent measurement error due to cell curvature.
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Regions of EYFP fluorescence were evaluated for suitability by computing the intensity histogram

and only accepting regions with a skewness greater than 1. Locations of labeled operons were

determined by finding the local maxima of the Gaussian filtered fluorescence image and accepting

only peaks with values 1.45× greater than the median signal over the cell mask.

Model fitting The gene replication model was fit to the experimental data by maximizing the

objective function Eq. 4.17, which was implemented in Cython196 for fast numerical optimization

using differential evolution175 implemented in the SciPy194. Uncertainty calculations using

bootstrapping were performed on NCSA Blue Waters.

4.4.3 Simulations

All simulations were performed using LM v2.3a on a local cluster consisting of three Cirrascale

GB5600 Multi-GPU nodes, two equipped with 8 NVIDIA GeForce GTX TITAN X GPU, and one

equipped with 4 NVIDIA Tesla K80 GPU. Analysis of simulation data was performed in the Jupyter

environment193 using the SciPy stack. LM v2.3a expands the capability of the GPU-based multi-

particle diffusion RDME (MPD-RDME) algorithm28 by adding support for extended capacity

lattices where sixteen different particles may occupy each lattice site. Previous versions allowed

up to eight particles per site. When more particles occupy a lattice site than capacity allows,

the extra particles are said to have “overflowed” and special handling is required to rectify the

situation. A procedure on the CPU locates candidate neighboring lattice sites and moves the

excess particles into them. This is costly, as the lattice must be copied to host memory and then

back to the GPU after overflows are corrected. Additionally, a higher capacity lattice incurs a

cost as well, as the diffusion and reaction operators must access a larger amount of memory to

account for the greater number of particles. However, simulations that experience overflows on a

frequent basis benefit from the greater capacity, as the cost of accessing more memory is offset by

the savings gained from not needing to perform overflow handling.
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RDME Running a single replicate per GPU, the simulations completed 120 minutes of

simulated time in 29 hours on the TITAN X nodes at a time step of 25 µs 39. Cell growth and DNA

replication was implemented using a custom RDME solver using pyLM38, whereby the lattice of

site types was modified in situ every 2000 time steps. Initial species counts were taken from a

chemical master equation based simulation of the growth ribosome biogenesis model at steady

state. Operon placement was performed by estimating the position of a locus along the cell axis

assuming that the chromosome is organized linearly. The operon position in the cross-sectional

plane of the cells is distributed uniformly within the nucleoid region.

CME Cell growth and DNA replication was implemented using a custom chemical master

equation solver implemented using pyLM38. CME simulations of the SAM,

Di (t )
kt−→ Di (t )+mi (4.28a)

mi
kb−*)−
ku

ni (4.28b)

mi
kd−→∅ (4.28c)

were used to validate the semi-analytic theory derived in this paper by varying the number of genes

c = ||D || from 10 to 500 and the position of the gene between the oriC and terC in increments

of 10%. In each simulation, c identical genes were produced. Each gene is associated with

three species in the simulation, a gene (Di ) that is transcribed to produce unbound messengers

(mi ) which can bind and unbind to a ribosome to become sequestered messengers (ni ). The

rates transcription, degradation, ribosome binding and unbinding rates (kt , kd , kb , and ku ,

respectively) were taken to be identical for each gene. Simulations of 100 replicate cells growing

for 11 generations were performed to acquire convergent statistics. Each cell was seeded with

identical initial conditions; therefore, the first generation was excluded when computing statistics

(therefore, each average was over 100 replicate cells each growing for 10 generations). Each gene

(Di ) was replicated according to the fitted replication start (ts) and replication (Tr ) times, and

its position along the genome. Cell division was performed every tD = 120 minutes with cell
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components binomially distributed between daughter cells. Only a single daughter cell was

followed after each cell division event. To allow comparison with theory a single set of rate were

used for all genes, namely kt = 0.0042s−1, kb = 0.079s−1, ku = 0.008s−1 and kd = 9.84×10−4s−1.
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Chapter 5

Conclusions

5.1 Summary

The three-state stochastic model of the lac switch (Chapter 2) has shown the necessity of a third

transcriptional state of the operon in producing bistable behavior. Our novel computational

technique, the geometric bursting approximation, coupled with the finite state projection (FSP)

has allowed for a sufficiently fast model solution such that an exhaustive search of the model

parameter space could be made, while maintaining high accuracy in the solution to the chemical

master equation (CME). Our results appears to have inspired further analytical work on the

three state lac switch. Choudhary et al. 197 have computed analytical protein distributions using

constant switching rates between the transcriptional states.

Using kinetic data for the binding of ribosomal protein (r-protein) to partially assembled inter-

mediates, we were able to construct a kinetic model which accounts for the kinetic cooperativity of

r-protein binding. We were able to reproduce the well-known 5′ → central → 3′ order of assembly,

as well as a predict a secondary assembly pathway progressing via 5′ → 3′ → central. Since this

data was acquired at 15 ◦C, it was unsuitable for an in vivo model of Escherichia coli. Instead, we

used kinetic data taken at 40 ◦C to construct an assembly model appropriate to include in the

whole cell simulation, which reproduced the same binding timescales for all proteins measured in
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in vitro studies and predicted assembly intermediates observed through cryo-electron microscopy

(cryo-EM). These in vitro models of the assembly of the small subunit (SSU) are the first of their

kind. The procedural way that the reaction networks are constructed is easily adaptable to other

systems, all that is needed is a description of an assembly hierarchy and kinetic data which can be

compared to the solution to the deterministic rate equations defined by the generated reaction

network. This will allow for the rapid construction of a kinetic model of the assembly of the large

subunit (LSU), should the necessary data become available.

Using the 40 ◦C assembly model and a simplified model of transcription and translation, we

constructed the largest and most detailed computational model of a whole-cell to date. The

cellular environment was constructed using data from cryo-electron tomography and single

particle tracking experiments to approximate slow growing (120 min doubling time) E. coli with

a densely packed nucleoid region that excludes ribosomes. Although the assembly model was

developed from experiments performed in vitro, with the increased cellular concentrations of

r-protein it yielded SSU assembly times comparable to experiments performed in vivo. Using this

model, we predicted non-uniform spatial distributions of messenger RNA (mRNA) and early 30S

intermediates.

The whole-cell ribosome biogenesis model was then improved further to include cell growth

and gene replication. We developed a simple analytical model describing growth and DNA

replication in slow-growing E. coli which does not require the explicit tracking of cell lineages,

and applied it to experimental data to estimate the cell cycle parameters. These parameters

were then used to determine the cell geometry immediately after division, replication initiation

time, and duration of replication, which are the parameters which describe the growing cell.

With the addition of gene replication, the whole-cell model did not show the expected copy

number statistics predicted from analytical mRNA expression models in the presence of gene

replication1,164. The origin of this discrepancy was identified as a lack of competition between

the messengers for the ribosomes.
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5.2 Outlook

Though the ribosome biogenesis model is unprecedentedly complete, it is still lacking in many

ways. Before the model can be used as a viable platform to construct genome-scale models,

these deficiencies must be addressed. In order to hook ribosome production into other cellular

systems, such as core metabolism, we must include gene regulation of the ribosomal operons.

There are three mechanisms of regulation which will be necessary to include. The most trivial

regulation to add is translational inhibition arising from r-protein binding to its own mRNA,

which shuts down production if there are not enough intermediates present for the r-protein to

associate with98,198. This will lift the artificial tuning of r-protein transcription rates. Second is

transcriptional inhibition of ribosomal RNA (rRNA) operons through guanosine tetraphosphate

(ppGpp) during amino acid starvation 98,199. ppGpp is produced by RelA, which is associated with

approximately 0.5% of the ribosomes in the cell. When an uncharged transfer RNA enters the A

site of the ribosome, the ribosome-bound RelA is triggered and produces ppGpp. This will be

complicated to implement, since it would require accounting of the available amino acid pool in

the model. Finally, rRNA transcription is upregulated through the nucleoid-associated protein,

Fis, whose production is upregulated in nutrient-rich conditions and strongly downregulated in

stationary-phase cells 199. Though regulation of fis expression is complicated as well 200, it appears

to be an important link between ribosome production and metabolism.

The problem of insufficient mRNA to fully utilize the ribosomes should be alleviated auto-

matically once metabolism is integrated, however in the meantime it can be corrected through

the addition of “silent” mRNA. These species will be placeholders for the messengers in the cell

which produce proteins that are not included in the model. By using transcriptomics data, we can

determine the necessary number of silent mRNA to include as well as their translation rate which

would be used to determine how long the ribosome will be unavailable for translating messengers

described by the ribosome biogenesis model.

Finally, the largest issue with this model is the lack of non-reactive intermolecular interactions.

Currently, the diffusive behavior of species is determined only through their diffusion constants,
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which can vary across cellular compartments. However the presence of molecular crowders can

impact the spatial distribution of biomolecules. For instance, it is currently possible for multiple

ribosomes to occupy the same lattice site in spite of the fact that a ribosome is ∼20 nm in diameter

compared to the ∼32 nm lattice spacing—effectively an ideal gas of ribosomes. This means that

the spatial heterogeneity of ribosomes are not being realistically modeled in these simulations.

Other spatially resolved stochastic simulation software such as Smoldyn 25 use Brownian dynamics

to treat diffusion, which automatically includes excluded volume interactions. However these

methods are not fast enough to reach cell-cycle timescales, and genome-scale system sizes. To

go forward, we must augment our multi-particle diffusion RDME (MPD-RDME) algorithm to

somehow include these effects. One possibility is to keep track of the occupied volume in each

lattice site due to molecules, and compute the diffusive propensity based on the occupied volume

fraction of the originating and target lattice sites. 201–203 However in using such a coarse-grained

treatment, one must rigorously derive the transition probabilities and compare to Brownian

dynamics simulations to ensure that the approximation is valid.

With the addition excluded volume interactions, a realistic physical model of the conformation

of the chromosome can be added. Currently in development is a GPU-based Brownian dynamics

code to fold realistic conformations of the full, 4.64 Mbp E. coli genome. The DNA is represented

as a beads-on-a-string model, coarse-graining to 10 base pairs per bead. The beads interact

through bond potentials and an Lennard-Jones potential. The forces involved in the bonded

interactions are stretching, bending, and torsion. The force parameters are chosen to reproduce

the linear (∼50 nm) and twist (∼100 nm) persistence lengths of DNA. The integrator and force

field are similar to that used by Chirico and Langowski 204 and Klenin et al. 205 . Integration is

performed using an Euler-Maruyama scheme,

x(t +τ) = x(t )+ 1

ζ
F (x(t ))τ+

√
2kBT

ζ
η(t )

p
τ (5.1)

where ζ is the friction constant and ηi is a Gaussian random variable with zero mean and unit
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Figure 5.1 (a) Description of force field used in Brownian dynamics simulations used to fold the E. coli
chromosome. (b) Folded E. coli chromosome. The model consists of 464000 beads, with each
bead representing 10 base pairs. The first (green) and last (beads) are part of the origin of
replication (oriC), which is placed at the midpoint of the cell. Linear plectonemes form in the
structure due to the torsion interaction and negative supercoiling present in the model.

variance. The potentials from which the force F (x(t )) is computed are

U (st)
i = 1

2
kst(`i − ¯̀)2 (bond stretching) (5.2a)

U (bn)
i = 1

2
kbnβi

2 (bond bending) (5.2b)

U (tr)
i = 1

2
ktr(αi +γi )2 (bond torsion) (5.2c)

U (ev)
i j = 4ε

[(
σ

ri j

)12

−
(
σ

ri j

)6]
(excluded volume) (5.2d)

where αi , βi , and γi are the Euler angles transforming the coordinate system ( f̂ i−1, ĝ i−1, ê i−1)

centered on bead i −1 to the coordinate system ( f̂ i , ĝ i , ê i ) centered on bead i (see Figure 5.1a for

a depiction of the geometry).

We can currently construct structures of the folded genome by slowly inserting beads at

random locations in the ring polymer until the necessary polymer size has been reached. After

a prescribed number of time steps, dχn(t)e are inserted into random bond locations, and the
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bond topology is recomputed. By using a fraction χ of the total number of beads at that time

n(t) the growth can proceed exponentially. This prevents problems that arise due to adding a

constant number, such as instability (too many beads added at once) or slow growth times (too

few). Figure 5.1b shows an example of the structure that is generated using this technique. The

chromosome shows the expected linear organization139 and forms plectonemes. Currently, the

force constants and friction coefficients have not been calibrated to produce realistic DNA dynam-

ics, however this will not be difficult to accomplish once the simulation code has been effectively

optimized. We will later augment this model with chromosome capture data in order to generate

structures which reproduce the loci–loci contact probabilities measured experimentally 206.

In spite of these issues, the whole-cell model is predictive and represents the amalgamation of

theoretical biological knowledge and data from many disparate experiments into a cohesive whole.

Through the combination of this information, we have a framework from which further questions

can be answered through the augmentation of the model and perturbation of the parameters. I

hope that it will find use in the future as the computational simulation of living matter comes of

age.
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Appendix A

Supporting information for Chapter 2 *

A.1 Obtaining the switching rate functions kfn([I]) and knf([I])

In the present work we relied on a microscopic model previously developed to describe the lac
system in the absence of DNA looping33. In that work the authors developed a detailed model
of the microscopic interactions between inducer, repressor, and operator that could reproduce
the intrinsic noise of the lac system. They also noted that their microscopic model was well-
approximated by a two-state model with Off →On and On→Off rate functions that appeared
Hill-like when plotted against the inducer concentration. To obtain expressions for kfn([I]) and
knf([I]) to use in our study we fit the data describing the Off →On and On→Off transitions from
Roberts et al. 33 to the Hill-like functions:

kfn([I]) = k0
fn + (k1

fn −k0
fn)

[I]Hfn

Ifn
Hfn + [I]Hfn

(A.1a)

knf([I]) = k0
nf + (k1

nf −k0
nf)

[I]Hnf

Inf
Hnf + [I]Hnf

. (A.1b)

The k0
x and k1

x parameters in these equations describe the rates in the absence of inducer and
at saturating inducer, respectively. These values can be obtained directly from the microscopic

*Appendix A contains material reproduced from Earnest TM, Roberts E, Assaf M, Dahmen K, and Luthey-Schulten Z
(2013). DNA looping increases the range of bistability in a stochastic model of the lac genetic switch. Phys. Biol., 10(2),
p. 026002. doi:10.1088/1478-3975/10/2/026002. © IOP Publishing. Reproduced with permission. All rights reserved.
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Figure A.1 (a) Best fit of Eq. A.1a (red) to the Off →On transition rates shown in Figure 15E of Roberts
et al. 33 (blue). (b) The same as (a) for Eq. A.1b and the On→Off rates from Figure 15F.

model of Roberts et al. 33 as:

k0
fn = kroff = 6.30×10−4 s−1, (A.2a)

k1
fn = ki2roff = 3.15×10−1 s−1, (A.2b)

k0
nf =

NLacI ·kron

NA·V
= 5.04×10−2 s−1, (A.2c)

k1
nf =

NLacI ·ki2ron

NA·V
= 5.04×10−4 s−1, (A.2d)

where NA is the Avogadro constant, NLacI is the number of lac repressor dimers (NLacI = 10), and
V is the volume of the cell (8×10−16 L). The rate constants here are the binding and unbinding
rates of repressor to operator for repressor with no bound inducer (r) and with both inducer sites
bound (i2). To obtain values for the remaining H and I parameters for each equation we fit the
data plotted as the blue lines in Figure 15ef in Roberts et al. 33 to Eq. A.1a + Eq. A.1b, respectively,
using a nonlinear least squares method and the Matlab curve fitting toolbox. The fits are shown in
Figure A.1 and give the following values for the free parameters:

Ifn = 5.68×10−3 M , (A.2e)

Hfn = 1.67 (A.2f)

Inf = 1.74×10−5 M , (A.2g)

Hnf = 1.00 (A.2h)
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A.2 Comparison of approximation methods

To compare the major computational methods and approximations in this work, we have plotted
the probability distributions obtained from stochastic simulation algorithm (SSA) simulations
and finite state projection (FSP) solution ofEqs. 2.16a–2.16c. We compare to these two approx-
imate methods, the geometric bursting approximation and the mean messenger RNA (mRNA)
approximation. The results for the two-state model are presented in Figure A.2a. The SSA and
FSP distributions, aside from sampling noise in the SSA probability distribution function (PDF),
are indistinguishable. This suggests that the error from the use of the finite state projection is
minimal, or at least dominated by other sources.

The geometric burst approximation and the mean mRNA approximation both computed
using the FSP, are plotted in Figure A.2a in dash-dot green and dash-dot-dot magenta, respectively.
To see why eliminating the mRNA dependence using its mean is a poor approximation, we have
computed PDF for both the two- and three-state models using mean mRNA. This approximation
is applied by simply replacing the β-galactoside permease (LacY) translation propensity ktlm with

ktl〈m〉 = kdegp N F (n), (A.3)

and ignoring the mRNA terms. For the two-state model, the differences are subtle. The tails of the
distribution are shorter in the mean mRNA calculation for both populations (see inset). However
with the three-state model (Figure A.2b), the mean mRNA approximation fails completely. The
noise in the LO and HI states are not well represented using this method. It is clear that simply
eliminating the mRNA dependence with its average is unacceptably misrepresents the noise in the
two induction states. This will lead to inaccurate calculations of switching times. The geometric
burst approximation does not have this problem.

A.3 Parameter sensitivities

To see how the various parameters affect the bistability range and the characteristic lifetime τ50%,
we performed scans of the parameters over the likely range starting with the mean parameter
set (Figure A.3). The jagged nature of the curves is due to the fact that as the parameters change,
the location of n0 changes. Since we measure the switching time through a sink placed at n0, the
discontinuous change of the location of the unstable fixed point causes a discontinuous change
in the computed values. The parameters which appear to affect the bistability range and lifetime
the most over the biologically reasonable region of parameter space, are kfl (Figure A.3i) and
Ilf (Figure A.3f) respectively. The parameter k0

lf (Figure A.3ab) seems to be acceptable over the
broadest range compared to the other parameters. The Hill coefficient Hlf (Figure A.3gh) also
appears to be insensitive over its range. This is interesting since k0

lf seems to depend on kfl and Ilf

on Hlf. The values of k0
l and Ilf for the most part do not matter so long as kfl and Ilf are chosen to

satisfy their dependence.
We tested the sensitivity of the model to changing the leakage factor ε (Figure A.4). Over the

likely range of ε from 5.7×10−4 to 2.1×10−3, the range of bistability only changed from 23.0 µM to
22.75 µM. The switching lifetime τ50% only changed from 54.7 to 53.8 cell cycles.
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Figure A.2 Comparison of the different methods for computing the LacY abundance probability distri-
butions. (a) Two-state model. The stochastic simulation of Eqs. 2.16a–2.16c and the full FSP
calculation (explicit mRNA dependence) are shown in solid blue and dashed red, respectively.
The agreement between the two curves is high enough that they completely overlap in the
figure. The approximate solutions using the geometric burst approximation and mean mRNA
are shown in dash-dot green and dash-dot-dot magenta respectively. (b) Three-state model.
The mean mRNA approximation fails to estimate the width of the HI state.
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Figure A.3 Dependence of bistability range and τ50% on parameters. The dotted line indicates the values
for the mean parameter set. The shaded gray region denotes the range of acceptance for the
parameter searches.
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Figure A.4 Dependence on bistability range, equal induction probability concentration, and lifetime on
leakage factor ε. Over the uncertainty range, the computed values vary no more than 4%

A.4 Calculating transcription state probabilities from repression val-
ues

We use the repression values, defined by the ratio of the maximum β-galactosidase (LacZ) activity
to the repressed LacZ activity, to compute free energies for each possible repressor/operon state
(Figure A.5). From Eq. 1 in Vilar and Leibler 91 , the free energy of binding for an operator is

∆Gbn,O =− ln
RO −1

N
(A.4)

where RO is the repression value for a mutant with only operator O, placed in the O1 location in
the operon. The free energy of looping is computed from Eq. 3 in Vilar and Leibler 91 ,

∆Glp,OmOa,n =− ln
(ROmOa,n −1)(1+N e−∆Gbn,Oa )−N e−∆Gbn,Om −N (N −1)e−∆Gbn,Om−∆Gbn,Oa

N e−∆Gbn,Om−∆Gbn,Oa
, (A.5)

Where ROmOa,n is the repression level for a loop with Om in the O1 position and Oa in the position
of operator On . In both equations, N represents the total number of lac repressor (LacI) dimers
present.

From Oehler et al. 46 , these repression values are reported:

RO1 = 200 (A.6a)

RO2 = 21 (A.6b)

RO3 = 1.3 (A.6c)

RO1O2,2 = 2300 (A.6d)

RO1O3,3 = 6100 (A.6e)
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Figure A.5 Enumeration of the LacI/operator states included in each coarse-grained state.

for LacI count N = 50. The parameters used in our simulations are for N = 10. There appears to
be a dependence of these free energies to the number of LacI, however the dependence seems
small enough to neglect.

To compute probabilities, we use the free energies to calculate the Boltzmann factor for each
state. We will use the notation Psn to denote a single repressor bound to operator n, Psnm for two
repressors bound at n and m and P123 for three bound repressors. Looped states are represented
by Pln for the state with O1-On looped, and Psln for the state with O1-On looped and another
repressor bound on the remaining operator. The probabilities are

Psn = Z−1N e−∆Gbn,n (A.7a)

Psnm = Z−1N (N −1)e−∆Gbn,n−∆Gbn,m (A.7b)

Ps123 = Z−1N (N −1)(N −2)e−∆Gbn,1−∆Gbn,2−∆Gbn,3 (A.7c)

Pln = Z−1N e−∆Gbn,n−∆Gbn,1−∆GO1On,n (A.7d)

Psln = Z−1N (N −1)e−∆Gbn,1−∆Gbn,2−∆Gbn,3−∆GO1On,n (A.7e)

where Z is the partition function. Finally we can write the probabilities for each of our states

POn = Z−1 (A.8a)

POff = Ps1 +Ps12 +Ps13 +Ps123 (A.8b)

PLoop = Pl2 +Pl3 +Psl2 +Psl3 +Ps2 +Ps3, (A.8c)

and

ε= Ps2 +Ps3

PLoop
. (A.8d)

In Oehler et al. 46 , the repression values were measured for 50 and 900 intracellular LacI. If we
assume that the free energies depend on the repressor count linearly, we can extrapolate to the
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free energies at N = 10. This yields probabilities of

P ex
On = 6.0×10−5 (A.9a)

P ex
Off = 1.1×10−2 (A.9b)

εex = 2.6×10−4 (A.9c)

which compare better with our FSP results.
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Appendix B

Supporting information for Chapter 3 *

B.1 Derivation of user-supplied functions for ODE solver

B.1.1 Definitions

We are solving the system
ẏ = f (y , {R}) (B.1a)

where the concentrations are denoted by

y = [
y0 y1 y2 . . .

]T ∈RN (B.1b)

and the rate constants as
k = [

k0 k1 k2 . . .
]T ∈RM (B.1c)

The chemical reactions are from the set

(r1,r2, p,κ) ∈R (B.2)

where r1 is the binding protein index, r2 is the intermediate index, p is the product index, and κ is
the rate constant index.

To compute the derivative of functional of the solution to a system of ODEs, such as the root
mean square (RMS) error objective function used to fit the small subunit (SSU) assembly model
to experimental data, we use adjoint sensitivity analysis. This method requires the standard
numerical solution to the ODE system, as well as the solution to an auxiliary system which is

*Appendix B contains material reproduced with the permission of Elsevier from Earnest TM, Lai J, Chen K, Hallock
MJ, Williamson JR, and Luthey-Schulten Z (2015). Toward a whole-cell model of ribosome biogenesis: Kinetic modeling
of SSU assembly. Biophys. J., 109(6), pp. 1117–1135. doi:10.1016/j.bpj.2015.07.030.
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integrated backwards in time.

B.1.2 Derivation of functions describing forward problem

The right hand side function, f (y , {R}) is defined from the chemical reactions and concentrations
as

fi =
∑

(r1,r2,p,κ)∈R

kκyr0 yr2 (δp i −δr1 i −δr2 i ). (B.3)

Taking the derivative with respect to y we get the Jacobian

∂ j fi =
∑

(r1,r2,p,κ)∈R

kκ(δr1 j yr2 +δr2 j yr1 )(δp i −δr1 i −δr2 i ) (B.4)

The Jacobian-vector product function is then simply

∂ j fi v j =
∑

(r1,r2,p,κ)∈R

kκ(vr1 yr2 + vr2 yr1 )(δp i −δr1 i −δr2 i ). (B.5)

The right hand side function Eq. B.3 and the Jacobian-vector product function Eq. B.5 are sufficient
to define the forward system for the ODE solver.

B.1.3 Derivation of functions describing adjoint problem

To optimize the system to the experimental data, we construct the objective functional

Φ[y] =
∫ T1

T0

dt φ(y) (B.6a)

with

φ(y) = 1

Nexpt.Nprot.(T1 −T0)t

∑
e∈{expts.}
s∈{r-prot.}

[
χ(ye,s(t ))−χexpt

e,s (t )
]2

(B.6b)

where ye,s(t) is the concentration of protein s starting with an initial prebinding intermediate
from experiment e, χ(y) is the experiment function derived in Eq. B.28, and χ

expt
e,s (t) is a single

exponential fit to the pulse/chase quantitative mass spectrometry (P/C qMS) experiment. The t
in the denominator weights the mean-squared error to treat each time decade equally.

In order to compute the sensitivities of Φ[y] we will use adjoint sensitivity analysis, We are
going to compute dµΦ, where we are taking the convention that Greek indices are rate constant
variables and roman indices are concentration variables. The idea is we compute the derivatives
ofΦ[y ] with a Lagrange multiplier, λ, that forces y(t ) to solve Eq. B.1a. The augmented functional
is

Φ̃=Φ−
∫ T1

T0

dtλT(ẏ − f ) (B.7)

167



and its sensitivities are

dµΦ= dµΦ̃=
∫ T1

T0

dt
[
dµφ−λi (dµ ẏi −dµ fi )

]
(B.8a)

=
∫ T1

T0

dt
[
∂µφ+∂iφ∂µyi −λi (∂µ ẏi −∂µ fi −∂ j fi∂µy j )

]
. (B.8b)

Now we use integration by parts on the time derivative term,

dµΦ= −λi∂µyi
∣∣T
0 +

∫ T1

T0

dt
[
∂µφ+∂iφ∂µyi + λ̇i∂µyi +λi∂µ fi +λi∂ j fi∂µy j

]
, (B.9)

and require that the Lagrange multiplier solve the final value problem{
λ̇i =−∂i f jλ j −∂iφ

λi (T ) = 0
(B.10)

Substituting these definitions in, we have

dµΦ=λi (0)∂µyi (0)+
∫ T1

T0

dt [∂µφ+∂iφ∂µyi −∂i f j∂µyiλ j −∂iφ∂µyi

+λi∂µ fi +λi∂ j fi∂µy j ] (B.11a)

=λi (0)∂µyi (0)+
∫ T1

T0

dt
[
∂µφ+λi∂µ fi

]
(B.11b)

So to compute the sensitivities ofΦ[y ], we integrate Eq. B.10 backward in time using our previous
solution to Eq. B.1a and substitute into the integral Eq. B.11b. To avoid saving intermediate λi

values, we integrate Eq. B.11b backwards as well

dµΦ=λi (0)∂µyi (0)−
∫ 0

T
dt

[
∂µφ+λi∂µ fi

]
(B.12)

For the chemical reaction system, in the r.h.s. of Eq. B.10 the first term is just the product JTλ

∂ j fiλi =
∑

(r1,r2,p,κ)∈R

kκ(δr1 j yr2 +δr2 j yr1 )(λp −λr1 −λr2 ). (B.13)

The second term is
∂iφ= ∑

e∈{expts.}
s∈{r-prot.}

2δi s

(
χs(ys)−χexpt

s (t )
)
∂sχs(ys), (B.14)

where

∂sχs(ys) =−p∗
0 s(p∗

0 s +p0 s − r0)

r0 · (ys +p∗
0 s)2 (B.15)

The Jacobian with respect to the Lagrange variables is

∂ j ′ λ̇i =− ∑
(r1,r2,p,κ)∈R

kκ(δr1 i yr2 +δr2 i yr1 )(δ j ′ p −δ j ′ r1 −δ j ′ r2 ). (B.16)
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and the Jacobian vector product is

v j ′∂ j ′ λ̇i =− ∑
(r1,r2,p,κ)∈R

kκ(δr1 i yr2 +δr2 i yr1 )(vp − vr1 − vr2 ). (B.17)

There is no explicit parameter dependence in our objective function and the initial conditions
do not depend on our parameters either, so we need only worry about the second integral term in
Eq. B.11b:

∂µ fi =
∑

(r1,r2,p,κ)∈R

δµκyr1 yr2 (δp i −δr1 i −δr2 i ) (B.18)

λi∂µ fi =
∑

(r1,r2,p,κ)∈R

δµκyr1 yr2 (λp −λr1 −λr2 ). (B.19)

B.2 Pulse/chase simulation

A simple function can be derived to convert protein concentration to an idealized pulse/chase
fraction. Using the notation P for protein, R for any intermediate without P bound and B as the
intermediate with P bound, the binding reaction can be presented as

P+R −→ B (B.20)

From simple stoichiometry, its clear that

b(t ) = p0 − y(t ) (B.21)

and
r (t ) = r0 −b(t ) = r0 −p0 + y(t ) (B.22)

where y(t ) is the instantaneous protein concentration. We define the pulse/chase ratio to be

χ(tc) = b(tinc, tc)

b∗(tinc, tc)+b(tinc, tc)
(B.23)

where the ∗ indicates that the species is unlabeled. The time tc is the time of the addition of
chase 14N protein. The time tinc is the amount of time past the addition of chase protein that the
reaction is allowed to progress before measuring the pulse/chase ratio. If we assume that tinc goes
to infinity, we can simplify χ(tc) into a function of y(tc) alone, where the concentration of P is
measured immediately before the introduction of the chase.

The pulse/chase ratio can be written in terms of the molar quantities of the intermediates as

χ(tc ) = NB(tc )

NB∗(tc )+NB(tc )
(B.24)

after taking the limit tinc →∞. For brevity we will write the chase addition time as t without the
subscript. The molar amount NB is the sum of the amount of labeled intermediate created before
the addition of the chase and the amount created in the presence of the unlabeled protein after
chase addition. The molar amount of B at the chase is simply b(t) ·V0 using the volume of the
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system initially. The amount added after the chase, assuming all reactions go to completion, is
going to be the amount of ribosomal RNA (rRNA) at the time of the chase converted to labeled
intermediate. Assuming that labeled and unlabeled protein bind at the same rate, the amount of
unlabeled and labeled intermediate created after completion is the amount of remaining rRNA
times the fraction of unlabeled and labeled protein respectively. Thus

NB(t ) = b(t )V0 + r (t )V0 · y(t )V0

y(t )V0 +NP(t )
. (B.25)

The total amount of intermediate is

NB∗(t )+NB(t ) = r0V0, (B.26)

since all rRNA is converted to intermediate. Using Eq. B.24, Eq. B.25, and Eq. B.26 we have

χ(t ) = 1

r0

(
b(t )+ r (t ) · y(t )

y(t )+NP

)
. (B.27)

Substituting in Eq. B.21 and Eq. B.22 we get

χ(y) = 1

r0

(
p0 + y + (r0 −p0 + y) · y

y +p∗
0

)
(B.28)

where
p∗

0 = NP∗(t )/V0. (B.29)

We can then rearrange Eq. B.28 as

χ(y) = p0

p∗
0 +p0

+ p∗
0 (p∗

0 − r0 +p0)

r0(p∗
0 +p0)

(
p0 − y

p∗
0 + y

)
(B.30)

showing the contribution of the pulse/chase ratio at t → 0. The error in a Taylor expansion Eq. B.28
around y(t ) = 0 to first order can be shown to be

ε(y(t )) = (p0 +p∗
0 − r0) · y(t )2

p∗
0 · r0 · (p∗

0 + y(t ))
. (B.31)

Using r0 = 0.305µM, p∗
0 = 2.29µM, and p0 = 0.381µM, the maximum error is 18.5%. This means

that directly comparing intermediate concentrations to P/C qMS experiments after a reasonable
translation and scaling will introduce up to 18.5% error in the comparison.

B.3 Molecular dynamics protocol

Systems were neutralized by placing sodium ions according to the local electrostatic potential of
the RNA using Ionize 207. The systems were carefully solvated in two phases with the TIP3P water
model 208: first, Solvate 209 was used to place the first solvation layers (8 Å), and, second, the Visual
Molecular Dynamics solvate plugin 210 to complete the water box with a minimum of 20 Å buffer
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region on each side. The resulting systems had sizes similar to 1100000 atoms.
MD simulations were performed using the latest version of NAMD 2.10125. To guarantee

correct local solvent density and ion solvation shell around the highly charged backbone and
deep groove of the RNA molecules 211–213, all prepared systems were minimized and equilibrated
in a step-wise fashion. Minimization was carried out using the conjugate gradient method in
NAMD, first with positional constraints on all heavy-atoms for 2000 steps. Constraints were then
released for the water molecules for 3000 steps. Protein and nucleic acid side-chains, as well as
the ions were set free for the next 5000 steps. Finally all atoms were set free for the last 20000
steps of minimization. Thermalization was conducted using a temperature jump protocol with
step-wise positional restraints to allow waters and ions to diffuse slowly into and pack against
the RNA structure. The initial temperature was set to 100K, and ions and heavy atoms in the RNA
and protein were harmonically restrained for 25 ps. Then, the temperature was raised to 200K,
and ions and the backbone atoms were harmonically restrained for 25 ps. In the next step, the
backbone atoms were harmonically restrained at the temperature of 250K for another 50 ps. Force
constants for all harmonic restraints were set to 1 kcal·mol−1 ·Å−1. Finally the temperature was
raised up to 300K and all atoms were freed for further equilibration.

B.4 Example of translation rate derivation for spc operon
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Translation step Step length/aa Product
init → rpsN 524 uS14

rpsN → rpsH 142 uS8
rpsH → rpsE 476 uS5
rpsE → term 703

The translation of the messenger from the spc operon is broken into 5 reactions.

Initiation1 The SSU and messenger RNA (mRNA) associate to form pre-translation complex. The
rate constant for this reaction is chosen independently of the identity of the messenger.

Initiation2 The large subunit (LSU) associates to the SSU/mRNA complex to form the translating
ribosome. The same rate constant for this reaction is for all reactions of this type irrespective
of the messenger.

Elongation1 The ribosome translates from the start of the messenger to the end of the first SSU
r-protein on the transcript included in our model. The rate for this step is ktl1/524, where
ktl1 is the nominal translation rate per amino acid (10 a.a./sec), and 524 is the number
of intervening codons between the start codon, and the end of the first gene product
considered, rpsN . This reaction changes the ribosome state placing it now at the beginning
of rpsH and creates the product of rpsN , uS14.
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Elongation2 The ribosome is now at the starting position of rpsH, the next reaction moves the
ribosome to the end of the gene, with no intervening genes to consider. This reaction
progresses at the rate ktl1/142, where 142 is the number of codons encoding rpsH . The gene
product uS8 is produced, and the ribosome is left at the end of r psH.

Elongation3 Two intervening LSU proteins are skipped over and rpsE is translated to produce uS5.
The distance between the end of rpsH and the end of rpsE is 476 codons, so the reaction
rate is ktl1/476.

Elongation4 There are no remaining SSU proteins are coded for on this messenger, however the
time to for the ribosome to process to the end of the mRNA must be accounted for. The
reaction rate to the translation termination complex is ktl1/703, where 703 is the length of
the final four genes: rmpD, rplO, secY , and rpmJ .

Termination Finally, the ribosome has reached the end of the transcript. The translating com-
plex dissociates into 30S, 50S, and mRNA species in a single first-order reaction at a rate
independent of the identity of the mRNA.
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B.5 Supplementary figures
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Figure B.1 Separation of junctions in the 3′ domain of T. thermophilus. The figure is analogous to Figure 3.5.
Starting conformation taken from the PDB: 1HR0. The simulation protocol is identical to the
one used for the E. coli simulation.
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Figure B.2 Simulated P/C qMS fractions from model fit to single-exponential functions from the low
temperature experiment. The black dotted curve is the experimental function the model was
fit to, the red curves are the results from the model before optimization, the blue curves are
the optimized result, and the green curves are the reduced model. The reduced model fits the
control experiment data as well as the full model, however it cannot reproduce some of the
prebinding experiments since either the prebinding intermediate no longer exists in the model
or a linking intermediate was removed.
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Figure B.2 (cont.) Fit of kinetic model to P/C qMS
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Figure B.2 (cont.) Fit of kinetic model to P/C qMS
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Figure B.3 Secondary structure diagram of E. coli with central domain r-protein binding sites (in the folded
30S subunit) labeled. R-protein binding sites determined using a 5Å from the crystal structure
PDB: 2I2P 122. Red letters and gray shapes denote sequence and structural rRNA signatures
respectively 96. Map is based on 16S rRNA map from Cannone et al. 214 .
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Figure B.3 (cont.) Secondary structure diagram of E. coli with 3′ domain r-protein binding sites (in the
folded 30S subunit) labeled.
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Figure B.5 Temporal clustering of 30S assembly intermediates. (a) Total concentration of each cluster as a
function of time (reproduced from Figure 3.9a). (b) Spatial distribution of the temporal classes
(reproduced from Figure 3.9b). (c) Assignment of intermediates to temporal classes.
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B.6 Supplementary tables

Table B.1 Fold increase in binding rates due to kinetic cooperativity

Cooperativity in prebinding experiments at 15◦C

Protein Min. rate (s−1) Control 1◦ 1◦ & 2◦ 5′ & cent. 5′, cent., & uS7 uS7 uS7 & uS13 uS7 & uS9 uS7 & uS19

uS4 3.833×10−2 ∼ 2.0 ∼ ∼ ∼
uS17 2.417×10−2 2.7 3.2 ∼ 2.6 ∼
bS20 9.167×10−2 ∼ 2.2 ∼ ∼ ∼
bS16 2.333×10−2 ‡ ∼ ‡ ‡ ‡ ‡

uS5 3.333×10−4 ‡ ‡ ∼ ‡ ‡ ‡ ‡

5′
d

o
m

ai
n

uS12 8.667×10−4 ‡ ‡ ∼ ‡ ‡ ‡ ‡

uS8 4.0×10−4 ∼ 17.9 7.4 25.4 ∼
uS15 2.367×10−4 2.5 ∼ ∼ 2.5 ∼
bS6:bS18 5.75×10−2 ‡ ∼ ‡ ‡ ‡ ‡

ce
n

tr
al

uS11 5.333×10−3 ‡ ‡ ‡ ‡ ‡ ‡

uS7 3.5×10−4 ∼ 3.0

uS9 3.667×10−4 ‡ ∼ ‡ 5.5 21.4 3.7 222.7
uS13 1.617×10−4 ‡ 6.2 2.2(uS7) ∼ ∼ ∼ 319.6
uS19 3.267×10−4 ‡ 2.4 ‡ ∼ ∼ ∼ ∼
uS3 4.0×10−4 ‡ ‡ ‡ ‡ ‡ ‡ ‡ ‡ ‡
uS10 2.167×10−4 ‡ 3.5(uS9) 73.8 2.9(uS9) ‡ 4.8(uS9) ‡ ∼ 96.9(uS9)

3′
d

o
m

ai
n

uS14 8.0×10−4 ‡ ‡ ∼ ‡ ‡ ‡ ‡ ‡ ‡

Fold increase in binding rates due to kinetic cooperativity compared to the minimum observed binding
rate for that protein 107. A ∼ or ‡ denote that the ratio of that rate to the minimum rate is less than the 2×
threshold. In the case of ‡, this rate was measured for an intermediate not satisfying all thermodynamic
dependencies. If a significantly accelerated rate is observed involving a protein without all thermodynamic
dependencies satisfied in the initial intermediate configuration, the missing dependencies are given in
parenthesis.

Table B.2 Summary of MD simulations performed.

Bound r-proteins

Index States Central domain 3′ domain domain Number of atoms Dimensions Simulation time (ns)

1 {200} - - 1046000 182×202×290 140
2 {201} - uS7 1041000 181×202×289 140
3 {200: 8} uS8 - 1027000 179×201×289 140
4 {200: 15} uS15 - 1031000 179×201×290 140
5 {201: 8,19} uS8 uS7,uS19 1052000 180×205×290 140
6 {201: 8,9,19} uS8 uS7,uS9,uS19 1011000 176×200×290 140

All systems have the following 5′ domain r-proteins prebound: uS4, uS17, bS20, and bS16.
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Table B.3 Rate constants and diffusion parameters used in the in vivo model. Citations marked with a
dagger indicate that the parameter was either an assumption, a fitting parameter, or a modified
value from the literature.

Symbol Category Value Units Compartments Citation

ka_s3_def Assembly 0.875 µM−1s−1 cytoplasm, nucleoid †

ka_s4_def Assembly 1.693 µM−1s−1 cytoplasm, nucleoid †

ka_s5_def Assembly 0.054 µM−1s−1 cytoplasm, nucleoid †

ka_s6_def Assembly 31.436 µM−1s−1 cytoplasm, nucleoid †

ka_s7_def Assembly 0.041 µM−1s−1 cytoplasm, nucleoid †

ka_s8_def Assembly 0.418 µM−1s−1 cytoplasm, nucleoid †

ka_s9_def Assembly 0.802 µM−1s−1 cytoplasm, nucleoid †

ka_s10_def Assembly 0.474 µM−1s−1 cytoplasm, nucleoid †

ka_s11_def Assembly 0.060 µM−1s−1 cytoplasm, nucleoid †

ka_s12_def Assembly 0.025 µM−1s−1 cytoplasm, nucleoid †

ka_s13_def Assembly 0.531 µM−1s−1 cytoplasm, nucleoid †

ka_s14_def Assembly 1.749 µM−1s−1 cytoplasm, nucleoid †

ka_s15_def Assembly 0.992 µM−1s−1 cytoplasm, nucleoid †

ka_s16_def Assembly 14.290 µM−1s−1 cytoplasm, nucleoid †

ka_s17_def Assembly 0.484 µM−1s−1 cytoplasm, nucleoid †

ka_s19_def Assembly 0.240 µM−1s−1 cytoplasm, nucleoid †

ka_s20_def Assembly 0.301 µM−1s−1 cytoplasm, nucleoid †

klsu_birth Assembly 3.08×10−4 µM · s−1 cytoplasm, nucleoid †

kdil Dilution 9.627×10−5 s−1 cytoplasm, nucleoid †

kdeg_alpha Degradation 8.363×10−4 s−1 cytoplasm, nucleoid 140
kdeg_rplM Degradation 1.197×10−3 s−1 cytoplasm, nucleoid 140
kdeg_rpsF Degradation 8.955×10−4 s−1 cytoplasm, nucleoid 140
kdeg_rpsJ Degradation 1.029×10−3 s−1 cytoplasm, nucleoid 140
kdeg_rpsO Degradation 1.238×10−3 s−1 cytoplasm, nucleoid 140
kdeg_rpsP Degradation 9.785×10−4 s−1 cytoplasm, nucleoid 140
kdeg_rpsT Degradation 1.144×10−3 s−1 cytoplasm, nucleoid 140
kdeg_spc Degradation 9.206×10−4 s−1 cytoplasm, nucleoid 140
kdeg_str Degradation 8.062×10−4 s−1 cytoplasm, nucleoid 140

ks6s18_assoc Dimerization 1.000 µM−1s−1 cytoplasm, nucleoid 141
ks6s18_dissoc Dimerization 8.7×10−3 s−1 cytoplasm, nucleoid 126

kts_alpha Transcription 8.33×10−3 s−1 nucleoid †

kts_rplM Transcription 5.292×10−3 s−1 nucleoid †

kts_rpsF Transcription 6.468×10−3 s−1 nucleoid †

kts_rpsJ Transcription 0.011 s−1 nucleoid †

kts_rpsO Transcription 8.036×10−3 s−1 nucleoid †

kts_rpsP Transcription 6.86×10−3 s−1 nucleoid †

kts_rpsT Transcription 4.9×10−3 s−1 nucleoid †

kts_spc Transcription 0.012 s−1 nucleoid †

kts_str Transcription 0.010 s−1 nucleoid †

kts_rrnA Transcription 0.062 s−1 nucleoid †

kts_rrnB Transcription 0.062 s−1 nucleoid †

kts_rrnC Transcription 0.062 s−1 nucleoid †

kts_rrnD Transcription 0.062 s−1 nucleoid †

kts_rrnE Transcription 0.062 s−1 nucleoid †

kts_rrnG Transcription 0.062 s−1 nucleoid †
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Table B.3 (continued)

Symbol Category Value Units Compartments Citation

kts_rrnH Transcription 0.062 s−1 nucleoid †

kmrna_assoc Translation 100.000 µM−1s−1 cytoplasm, nucleoid 134
ksu_assoc Translation 3.000 µM−1s−1 cytoplasm, nucleoid 135
ksu_dissoc Translation 0.015 s−1 cytoplasm, nucleoid 133
ktl_alpha0 Translation 0.134 s−1 cytoplasm, nucleoid 99,118
ktl_alpha1 Translation 0.118 s−1 cytoplasm, nucleoid 99,118
ktl_alpha2 Translation 0.073 s−1 cytoplasm, nucleoid 99,118
ktl_alpha3 Translation 0.033 s−1 cytoplasm, nucleoid 99,118
ktl_rplM0 Translation 0.057 s−1 cytoplasm, nucleoid 99,118
ktl_rpsF0 Translation 0.121 s−1 cytoplasm, nucleoid 99,118
ktl_rpsF1 Translation 0.086 s−1 cytoplasm, nucleoid 99,118
ktl_rpsF2 Translation 0.098 s−1 cytoplasm, nucleoid 99,118
ktl_rpsJ0 Translation 0.154 s−1 cytoplasm, nucleoid 99,118
ktl_rpsJ1 Translation 0.018 s−1 cytoplasm, nucleoid 99,118
ktl_rpsJ2 Translation 0.045 s−1 cytoplasm, nucleoid 99,118
ktl_rpsJ3 Translation 0.055 s−1 cytoplasm, nucleoid 99,118
ktl_rpsO0 Translation 0.178 s−1 cytoplasm, nucleoid 99,118
ktl_rpsO1 Translation 0.020 s−1 cytoplasm, nucleoid 99,118
ktl_rpsP0 Translation 0.193 s−1 cytoplasm, nucleoid 99,118
ktl_rpsP1 Translation 0.027 s−1 cytoplasm, nucleoid 99,118
ktl_rpsT0 Translation 0.182 s−1 cytoplasm, nucleoid 99,118
ktl_spc0 Translation 0.031 s−1 cytoplasm, nucleoid 99,118
ktl_spc1 Translation 0.113 s−1 cytoplasm, nucleoid 99,118
ktl_spc2 Translation 0.034 s−1 cytoplasm, nucleoid 99,118
ktl_spc3 Translation 0.023 s−1 cytoplasm, nucleoid 99,118
ktl_str0 Translation 0.128 s−1 cytoplasm, nucleoid 99,118
ktl_str1 Translation 0.075 s−1 cytoplasm, nucleoid 99,118
ktl_str2 Translation 0.014 s−1 cytoplasm, nucleoid 99,118

D30Scyt Diffusion 0.400 µm2 s−1 cytoplasm 113, †

D30Snuc Diffusion 0.040 µm2 s−1 nucleoid 113, †

D50Scyt Diffusion 0.400 µm2 s−1 cytoplasm 113, †

D50Snuc Diffusion 0.040 µm2 s−1 nucleoid 113, †

DuS3 Diffusion 2.605 µm2 s−1 cytoplasm, nucleoid 136,†

DuS4 Diffusion 2.853 µm2 s−1 cytoplasm, nucleoid 136,†

DuS5 Diffusion 3.668 µm2 s−1 cytoplasm, nucleoid 136,†

DbS6 Diffusion 4.161 µm2 s−1 cytoplasm, nucleoid 136,†

DuS7 Diffusion 3.282 µm2 s−1 cytoplasm, nucleoid 136,†

DuS8 Diffusion 4.422 µm2 s−1 cytoplasm, nucleoid 136,†

DuS9 Diffusion 4.239 µm2 s−1 cytoplasm, nucleoid 136,†

DuS10 Diffusion 5.159 µm2 s−1 cytoplasm, nucleoid 136,†

DuS11 Diffusion 4.497 µm2 s−1 cytoplasm, nucleoid 136,†

DuS12 Diffusion 4.527 µm2 s−1 cytoplasm, nucleoid 136,†

DuS13 Diffusion 4.720 µm2 s−1 cytoplasm, nucleoid 136,†

DuS14 Diffusion 5.215 µm2 s−1 cytoplasm, nucleoid 136,†

DuS15 Diffusion 5.753 µm2 s−1 cytoplasm, nucleoid 136,†

DbS16 Diffusion 6.291 µm2 s−1 cytoplasm, nucleoid 136,†

DuS17 Diffusion 6.022 µm2 s−1 cytoplasm, nucleoid 136,†

DbS18 Diffusion 6.405 µm2 s−1 cytoplasm, nucleoid 136,†

DuS19 Diffusion 5.681 µm2 s−1 cytoplasm, nucleoid 136,†
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Table B.3 (continued)

Symbol Category Value Units Compartments Citation

DbS20 Diffusion 6.041 µm2 s−1 cytoplasm, nucleoid 136,†

DbS6:bS18 Diffusion 2.779 µm2 s−1 cytoplasm, nucleoid 136,†

Dimt00cyt Diffusion 0.150 µm2 s−1 cytoplasm 113,138,†

Dimt00nuc Diffusion 0.015 µm2 s−1 nucleoid 113,138,†

Dimt01cyt Diffusion 0.165 µm2 s−1 cytoplasm 113,138,†

Dimt01nuc Diffusion 0.016 µm2 s−1 nucleoid 113,138,†

Dimt02cyt Diffusion 0.179 µm2 s−1 cytoplasm 113,138,†

Dimt02nuc Diffusion 0.018 µm2 s−1 nucleoid 113,138,†

Dimt03cyt Diffusion 0.194 µm2 s−1 cytoplasm 113,138,†

Dimt03nuc Diffusion 0.019 µm2 s−1 nucleoid 113,138,†

Dimt04cyt Diffusion 0.209 µm2 s−1 cytoplasm 113,138,†

Dimt04nuc Diffusion 0.021 µm2 s−1 nucleoid 113,138,†

Dimt05cyt Diffusion 0.223 µm2 s−1 cytoplasm 113,138,†

Dimt05nuc Diffusion 0.022 µm2 s−1 nucleoid 113,138,†

Dimt06cyt Diffusion 0.238 µm2 s−1 cytoplasm 113,138,†

Dimt06nuc Diffusion 0.024 µm2 s−1 nucleoid 113,138,†

Dimt07cyt Diffusion 0.253 µm2 s−1 cytoplasm 113,138,†

Dimt07nuc Diffusion 0.025 µm2 s−1 nucleoid 113,138,†

Dimt08cyt Diffusion 0.268 µm2 s−1 cytoplasm 113,138,†

Dimt08nuc Diffusion 0.027 µm2 s−1 nucleoid 113,138,†

Dimt09cyt Diffusion 0.282 µm2 s−1 cytoplasm 113,138,†

Dimt09nuc Diffusion 0.028 µm2 s−1 nucleoid 113,138,†

Dimt10cyt Diffusion 0.297 µm2 s−1 cytoplasm 113,138,†

Dimt10nuc Diffusion 0.030 µm2 s−1 nucleoid 113,138,†

Dimt11cyt Diffusion 0.312 µm2 s−1 cytoplasm †

Dimt11nuc Diffusion 0.031 µm2 s−1 nucleoid 113,138,†

Dimt12cyt Diffusion 0.326 µm2 s−1 cytoplasm 113,138,†

Dimt12nuc Diffusion 0.033 µm2 s−1 nucleoid 113,138,†

Dimt13cyt Diffusion 0.341 µm2 s−1 cytoplasm 113,138,†

Dimt13nuc Diffusion 0.034 µm2 s−1 nucleoid 113,138,†

Dimt14cyt Diffusion 0.356 µm2 s−1 cytoplasm 113,138,†

Dimt14nuc Diffusion 0.036 µm2 s−1 nucleoid 113,138,†

Dimt15cyt Diffusion 0.371 µm2 s−1 cytoplasm 113,138,†

Dimt15nuc Diffusion 0.037 µm2 s−1 nucleoid 113,138,†

Dimt16cyt Diffusion 0.385 µm2 s−1 cytoplasm 113,138,†

Dimt16nuc Diffusion 0.039 µm2 s−1 nucleoid 113,138,†

DmRNA Diffusion 0.300 µm2 s−1 cytoplasm, nucleoid 137
Doperon Diffusion 0.0 µm2 s−1 nucleoid †

DribosomeCyt Diffusion 0.055 µm2 s−1 cytoplasm 113

DribosomeNuc Diffusion 5.5×10−3 µm2 s−1 nucleoid 113,†

ΓuS3 Compartment Transition 2.605 µm2 s−1 cytoplasm, nucleoid 136,†

ΓuS4 Compartment Transition 2.853 µm2 s−1 cytoplasm, nucleoid 136,†

ΓuS5 Compartment Transition 3.668 µm2 s−1 cytoplasm, nucleoid 136,†

ΓbS6 Compartment Transition 4.161 µm2 s−1 cytoplasm, nucleoid 136,†

ΓbS6:bS18 Compartment Transition 2.779 µm2 s−1 cytoplasm, nucleoid 136,†

ΓuS7 Compartment Transition 3.282 µm2 s−1 cytoplasm, nucleoid 136,†

ΓuS8 Compartment Transition 4.422 µm2 s−1 cytoplasm, nucleoid 136,†

ΓuS9 Compartment Transition 4.239 µm2 s−1 cytoplasm, nucleoid 136,†

ΓuS10 Compartment Transition 5.159 µm2 s−1 cytoplasm, nucleoid 136,†
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Table B.3 (continued)

Symbol Category Value Units Compartments Citation

ΓuS11 Compartment Transition 4.497 µm2 s−1 cytoplasm, nucleoid 136,†

ΓuS12 Compartment Transition 4.527 µm2 s−1 cytoplasm, nucleoid 136,†

ΓuS13 Compartment Transition 4.720 µm2 s−1 cytoplasm, nucleoid 136,†

ΓuS14 Compartment Transition 5.215 µm2 s−1 cytoplasm, nucleoid 136,†

ΓuS15 Compartment Transition 5.753 µm2 s−1 cytoplasm, nucleoid 136,†

ΓbS16 Compartment Transition 6.291 µm2 s−1 cytoplasm, nucleoid 136,†

ΓuS17 Compartment Transition 6.022 µm2 s−1 cytoplasm, nucleoid 136,†

ΓbS18 Compartment Transition 6.405 µm2 s−1 cytoplasm, nucleoid 136,†

ΓuS19 Compartment Transition 5.681 µm2 s−1 cytoplasm, nucleoid 136,†

ΓbS20 Compartment Transition 6.041 µm2 s−1 cytoplasm, nucleoid 136,†

Γimt00 Compartment Transition 0.047 µm2 s−1 cytoplasm, nucleoid 113,138,†

Γimt01 Compartment Transition 0.052 µm2 s−1 cytoplasm, nucleoid 113,138,†

Γimt02 Compartment Transition 0.057 µm2 s−1 cytoplasm, nucleoid 113,138,†

Γimt03 Compartment Transition 0.061 µm2 s−1 cytoplasm, nucleoid 113,138,†

Γimt04 Compartment Transition 0.066 µm2 s−1 cytoplasm, nucleoid 113,138,†

Γimt05 Compartment Transition 0.071 µm2 s−1 cytoplasm, nucleoid 113,138,†

Γimt06 Compartment Transition 0.075 µm2 s−1 cytoplasm, nucleoid 113,138,†

Γimt07 Compartment Transition 0.080 µm2 s−1 cytoplasm, nucleoid 113,138,†

Γimt08 Compartment Transition 0.085 µm2 s−1 cytoplasm, nucleoid 113,138,†

Γimt09 Compartment Transition 0.089 µm2 s−1 cytoplasm, nucleoid 113,138,†

Γimt10 Compartment Transition 0.099 µm2 s−1 cytoplasm, nucleoid 113,138,†

Γimt11 Compartment Transition 0.103 µm2 s−1 cytoplasm, nucleoid 113,138,†

Γimt12 Compartment Transition 0.108 µm2 s−1 cytoplasm, nucleoid 113,138,†

Γimt13 Compartment Transition 0.113 µm2 s−1 cytoplasm, nucleoid 113,138,†

Γimt14 Compartment Transition 0.117 µm2 s−1 cytoplasm, nucleoid 113,138,†

Γimt15 Compartment Transition 0.122 µm2 s−1 cytoplasm, nucleoid 113,138,†

Γsubunit Compartment Transition 0.126 µm2 s−1 cytoplasm, nucleoid 113,†

Γrib→nuc Compartment Transition 4.348×10−3 µm2 s−1 cytoplasm 113,†

Γrib→cyt Compartment Transition 0.017×10−3 µm2 s−1 nucleoid 113,†

ΓmRNA Compartment Transition 0.300 µm2 s−1 cytoplasm, nucleoid 137

Table B.4 Initial and final counts for all species in in vivo model.

Initial count Final count

Species Type cytoplasm nucleoid cytoplasm nucleoid

uS3 Protein 1454 439 2606 828
uS4 Protein 1460 442 3185 949
uS5 Protein 1405 426 2927 895
bS6 Protein 105 32 151 40
uS7 Protein 1400 424 2408 743
uS8 Protein 1431 432 2942 924
uS9 Protein 1196 363 2694 868
uS10 Protein 1497 454 2708 810
uS11 Protein 1428 433 3110 990
uS12 Protein 1402 426 2427 738
uS13 Protein 1446 438 3184 941
uS14 Protein 1417 429 2987 869
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Table B.4 (continued)

Initial count Final count

Species Type cytoplasm nucleoid cytoplasm nucleoid

uS15 Protein 1296 393 2694 803
bS16 Protein 1394 421 2530 765
uS17 Protein 1445 438 2599 808
bS18 Protein 103 31 136 50
uS19 Protein 1477 448 2656 817
bS20 Protein 1437 434 3371 961
bS6:bS18 Protein Dimer 1694 514 3739 1058

dalpha Operon 0 1 0 1
drplM Operon 0 1 0 1
drpsF Operon 0 1 0 1
drpsJ Operon 0 1 0 1
drpsO Operon 0 1 0 1
drpsP Operon 0 1 0 1
drpsT Operon 0 1 0 1
drrnA Operon 0 1 0 1
drrnB Operon 0 1 0 1
drrnC Operon 0 1 0 1
drrnD Operon 0 1 0 1
drrnE Operon 0 1 0 1
drrnG Operon 0 1 0 1
drrnH Operon 0 1 0 1
dspc Operon 0 1 0 1
dstr Operon 0 1 0 1

malpha mRNA 0 0 0 0
mrplM mRNA 0 0 0 0
mrpsF mRNA 0 0 0 0
mrpsJ mRNA 0 0 0 0
mrpsO mRNA 0 0 0 0
mrpsP mRNA 0 0 0 0
mrpsT mRNA 0 0 0 0
mspc mRNA 0 0 0 0
mstr mRNA 0 0 0 0

16S rRNA 0 0 0 0
{000: 15,20} 30S Assembly Intermediate 0 0 0 0
{000: 15} 30S Assembly Intermediate 0 0 0 0
{000: 15,17} 30S Assembly Intermediate 0 0 0 0
{000: 17,20} 30S Assembly Intermediate 0 0 0 0
{000: 17} 30S Assembly Intermediate 0 0 0 0
{000: 20} 30S Assembly Intermediate 0 0 0 0
{000: 4} 30S Assembly Intermediate 0 0 0 0
{000: 4,17} 30S Assembly Intermediate 0 0 0 0
{000: 4,8} 30S Assembly Intermediate 0 0 0 0
{000: 4,8,20} 30S Assembly Intermediate 0 0 0 0
{000: 4,8,17} 30S Assembly Intermediate 0 0 0 0
{000: 4,20} 30S Assembly Intermediate 0 0 0 0
{000: 4,16,20} 30S Assembly Intermediate 0 0 0 0
{000: 4,8,16,20} 30S Assembly Intermediate 0 0 0 0
{000: 4,15} 30S Assembly Intermediate 0 0 0 0
{000: 4,15,17} 30S Assembly Intermediate 0 0 0 0
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Table B.4 (continued)

Initial count Final count

Species Type cytoplasm nucleoid cytoplasm nucleoid

{000: 4,6,15} 30S Assembly Intermediate 0 0 0 0
{000: 4,6,15,20} 30S Assembly Intermediate 0 0 0 0
{000: 4,6,15,17} 30S Assembly Intermediate 0 0 0 0
{000: 4,6,15,16,20} 30S Assembly Intermediate 0 0 0 0
{000: 4,15,16,20} 30S Assembly Intermediate 0 0 0 0
{000: 6,15} 30S Assembly Intermediate 0 0 0 0
{000: 6,15,20} 30S Assembly Intermediate 0 0 0 0
{000: 6,15,17} 30S Assembly Intermediate 0 0 0 0
{000: 6,15,17,20} 30S Assembly Intermediate 0 0 0 0
{000: 8} 30S Assembly Intermediate 0 0 0 0
{000: 8,17} 30S Assembly Intermediate 0 0 0 0
{010} 30S Assembly Intermediate 0 0 0 0
{010: 4} 30S Assembly Intermediate 0 0 0 0
{010: 4,17} 30S Assembly Intermediate 0 0 0 0
{010: 4,16,20} 30S Assembly Intermediate 0 0 0 0
{020} 30S Assembly Intermediate 0 0 0 0
{020: 17} 30S Assembly Intermediate 0 0 0 0
{020: 4} 30S Assembly Intermediate 0 0 0 0
{020: 4,20} 30S Assembly Intermediate 0 0 0 0
{020: 4,17} 30S Assembly Intermediate 0 0 0 0
{020: 4,16,20} 30S Assembly Intermediate 0 0 0 0
{021: 4,17} 30S Assembly Intermediate 0 0 0 0
{021: 4,9,17} 30S Assembly Intermediate 0 0 0 0
{021: 4,9,13,17} 30S Assembly Intermediate 0 0 0 0
{021: 4,9,10,13,17} 30S Assembly Intermediate 0 0 0 0
{022: 4,10,14,17} 30S Assembly Intermediate 0 0 0 1
{022: 4,10,17} 30S Assembly Intermediate 0 0 0 0
{030: 4,17} 30S Assembly Intermediate 0 0 0 0
{030: 4,16,20} 30S Assembly Intermediate 0 0 0 0
{100} 30S Assembly Intermediate 0 0 0 0
{100: 6,15} 30S Assembly Intermediate 0 0 0 0
{100: 8} 30S Assembly Intermediate 0 0 0 0
{120} 30S Assembly Intermediate 0 0 0 0
{122: 10,14} 30S Assembly Intermediate 0 0 0 0
{130} 30S Assembly Intermediate 0 0 0 0
{200} 30S Assembly Intermediate 0 0 0 0
{200: 15} 30S Assembly Intermediate 0 0 0 0
{200: 6,15} 30S Assembly Intermediate 0 0 0 0
{200: 6,11,15} 30S Assembly Intermediate 0 0 0 0
{200: 8} 30S Assembly Intermediate 0 0 0 0
{201: 6,15} 30S Assembly Intermediate 0 0 0 0
{201: 6,9,15} 30S Assembly Intermediate 0 0 0 0
{210} 30S Assembly Intermediate 0 0 0 0
{220} 30S Assembly Intermediate 0 0 0 0
{220: 12} 30S Assembly Intermediate 0 0 0 0
{220: 5} 30S Assembly Intermediate 0 0 0 0
{221} 30S Assembly Intermediate 0 0 0 0
{221: 12} 30S Assembly Intermediate 0 0 0 0
{221: 13} 30S Assembly Intermediate 0 0 0 0
{221: 3,5,9,10,13} 30S Assembly Intermediate 0 0 0 0
{221: 5} 30S Assembly Intermediate 0 0 0 0
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Table B.4 (continued)

Initial count Final count

Species Type cytoplasm nucleoid cytoplasm nucleoid

{221: 5,9} 30S Assembly Intermediate 0 0 0 0
{221: 5,13} 30S Assembly Intermediate 0 0 0 0
{221: 5,9,13} 30S Assembly Intermediate 0 0 0 0
{221: 5,9,10,13} 30S Assembly Intermediate 0 0 0 0
{221: 9} 30S Assembly Intermediate 0 0 0 0
{221: 9,10} 30S Assembly Intermediate 0 0 0 0
{221: 9,12} 30S Assembly Intermediate 0 0 0 0
{221: 9,13} 30S Assembly Intermediate 0 0 0 0
{221: 9,10,13} 30S Assembly Intermediate 0 0 0 0
{221: 9,12,13} 30S Assembly Intermediate 0 0 0 0
{221: 9,10,12,13} 30S Assembly Intermediate 0 0 0 0
{222} 30S Assembly Intermediate 0 0 0 0
{222: 10,14} 30S Assembly Intermediate 0 0 0 1
{222: 10} 30S Assembly Intermediate 0 0 0 0
{222: 10,12,14} 30S Assembly Intermediate 0 0 0 0
{222: 3,5,10} 30S Assembly Intermediate 0 0 0 0
{222: 5,10,14} 30S Assembly Intermediate 0 0 0 0
{223: 5} 30S Assembly Intermediate 0 0 0 0
{230} 30S Assembly Intermediate 0 0 0 0
{230: 12} 30S Assembly Intermediate 0 0 0 0
{230: 5} 30S Assembly Intermediate 0 0 0 0
{231} 30S Assembly Intermediate 0 0 0 0
{231: 12} 30S Assembly Intermediate 0 0 0 0
{231: 13} 30S Assembly Intermediate 0 0 0 0
{231: 3,5,9,10,13} 30S Assembly Intermediate 0 0 0 0
{231: 5} 30S Assembly Intermediate 0 0 0 0
{231: 5,9} 30S Assembly Intermediate 0 0 0 0
{231: 5,13} 30S Assembly Intermediate 0 0 0 0
{231: 5,9,10} 30S Assembly Intermediate 0 0 0 0
{231: 5,9,13} 30S Assembly Intermediate 0 0 0 0
{231: 5,9,10,13} 30S Assembly Intermediate 0 0 0 0
{231: 9} 30S Assembly Intermediate 0 0 0 0
{231: 9,10} 30S Assembly Intermediate 0 0 0 0
{231: 9,12} 30S Assembly Intermediate 0 0 0 0
{231: 9,13} 30S Assembly Intermediate 0 0 0 0
{231: 9,10,13} 30S Assembly Intermediate 0 0 0 0
{231: 9,12,13} 30S Assembly Intermediate 0 0 0 0
{231: 9,10,12,13} 30S Assembly Intermediate 0 0 0 0
{232} 30S Assembly Intermediate 0 0 0 0
{232: 10} 30S Assembly Intermediate 0 0 0 0
{232: 10,12} 30S Assembly Intermediate 0 0 0 0
{232: 10,14} 30S Assembly Intermediate 0 0 0 0
{232: 10,12,14} 30S Assembly Intermediate 0 0 0 0
{232: 14} 30S Assembly Intermediate 0 0 0 0
{232: 3,5,10} 30S Assembly Intermediate 0 0 0 0
{232: 5} 30S Assembly Intermediate 0 0 0 0
{232: 5,10} 30S Assembly Intermediate 0 0 0 0
{232: 5,14} 30S Assembly Intermediate 0 0 0 0
{232: 5,10,14} 30S Assembly Intermediate 0 0 0 0
{233: 5} 30S Assembly Intermediate 0 0 0 0
{320} 30S Assembly Intermediate 0 0 0 0
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Table B.4 (continued)

Initial count Final count

Species Type cytoplasm nucleoid cytoplasm nucleoid

{321} 30S Assembly Intermediate 0 0 0 0
{321: 3,9,10,13} 30S Assembly Intermediate 0 0 0 0
{321: 9} 30S Assembly Intermediate 0 0 0 0
{321: 9,13} 30S Assembly Intermediate 0 0 0 0
{321: 9,10,13} 30S Assembly Intermediate 0 0 0 0
{322: 3,10} 30S Assembly Intermediate 0 0 0 0
{323} 30S Assembly Intermediate 0 0 0 0
{330} 30S Assembly Intermediate 0 0 0 0
{331} 30S Assembly Intermediate 0 0 0 0
{331: 13,19} 30S Assembly Intermediate 0 0 0 0
{331: 13} 30S Assembly Intermediate 0 0 0 0
{331: 19} 30S Assembly Intermediate 0 0 0 0
{331: 3,9,10} 30S Assembly Intermediate 0 0 0 0
{331: 3,9,10,13} 30S Assembly Intermediate 0 0 0 0
{331: 9,19} 30S Assembly Intermediate 0 0 0 0
{331: 9,14,19} 30S Assembly Intermediate 0 0 0 0
{331: 9} 30S Assembly Intermediate 0 0 0 0
{331: 9,10} 30S Assembly Intermediate 0 0 0 0
{331: 9,13} 30S Assembly Intermediate 0 0 1 0
{331: 9,10,13} 30S Assembly Intermediate 0 0 0 0
{332} 30S Assembly Intermediate 0 0 0 0
{332: 10} 30S Assembly Intermediate 0 0 0 0
{332: 10,14} 30S Assembly Intermediate 0 0 0 0
{332: 14} 30S Assembly Intermediate 0 0 0 0
{332: 3,10} 30S Assembly Intermediate 0 0 0 0
30S Small Subunit 1904 577 3952 1198
50S Large Subunit 1840 557 4964 1515

30S:malpha Initiation Complex 0 0 0 0

Rib
alpha
0 Ribosome 3 0 8 0

Rib
alpha
1 Ribosome 4 0 6 2

Rib
alpha
2 Ribosome 6 0 10 1

Rib
alpha
3 Ribosome 14 0 35 1

Rib
alpha
term Ribosome 31 0 57 3

30S:mrplM Initiation Complex 0 0 0 0

Rib
rplM
0 Ribosome 8 0 18 1

Rib
rplM
1 Ribosome 32 0 56 6

30S:mrpsF Initiation Complex 0 0 0 0

Rib
rpsF
0 Ribosome 4 0 13 0

Rib
rpsF
1 Ribosome 6 0 7 1

Rib
rpsF
2 Ribosome 5 0 10 0

Rib
rpsF
term Ribosome 35 0 69 8

30S:mrpsJ Initiation Complex 0 0 0 0

Rib
rpsJ
0 Ribosome 3 0 3 1

Rib
rpsJ
1 Ribosome 27 0 41 5

Rib
rpsJ
2 Ribosome 10 0 19 0

Rib
rpsJ
3 Ribosome 8 0 21 1

Rib
rpsJ
4 Ribosome 31 0 57 3
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Table B.4 (continued)

Initial count Final count

Species Type cytoplasm nucleoid cytoplasm nucleoid

30S:mrpsO Initiation Complex 0 0 0 0

Rib
rpsO
0 Ribosome 3 0 5 0

Rib
rpsO
1 Ribosome 23 0 40 2

Rib
rpsO
term Ribosome 31 0 60 3

30S:mrpsP Initiation Complex 0 0 0 0

Rib
rpsP
0 Ribosome 2 0 2 0

Rib
rpsP
1 Ribosome 17 0 30 2

Rib
rpsP
term Ribosome 31 0 51 4

30S:mrpsT Initiation Complex 0 0 0 0

Rib
rpsT
0 Ribosome 2 0 5 0

Rib
rpsT
1 Ribosome 31 0 60 5

30S:mspc Initiation Complex 0 0 0 0
Rib

spc
0 Ribosome 15 0 38 2

Rib
spc
1 Ribosome 4 0 8 2

Rib
spc
2 Ribosome 14 0 25 3

Rib
spc
3 Ribosome 20 0 37 2

Rib
spc
term Ribosome 31 0 60 7

30S:mstr Initiation Complex 0 0 0 0
Ribstr

0 Ribosome 3 0 8 0
Ribstr

1 Ribosome 6 0 14 0
Ribstr

2 Ribosome 31 0 49 3
Ribstr

term Ribosome 29 0 59 4
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Appendix C

Supporting information for Chapter 4 *

C.1 Semi-analytical Modeling

C.1.1 Ribosomal protein operon messenger RNA (mRNA) statistics

We consider the mRNA statistics for the r-protein operons. From Eq. 4.27a, we can write out the
chemical master equation (CME) for our system as:

d

dt
P (m,n|t ) = kt (t )

[
P (m −1,n|t )−P (m,n|t )

]
+kb

[
(m +1)P (m +1,n −1|t )−mP (m,n|t )

]
+ku

[
(n +1)P (m −1,n +1|t )−nP (m,n|t )

]
+kd

[
(m +1)P (m +1,n|t )−mP (m,n|t )

]
,

(C.1)

where kt (t ) represents the effective transcription rate as a function of time, with kt (t < tr ) = kt and
kt (t > tr ) = 2kt (where tr is the gene replication time, itself a function of the timing of chromosome
replication and the gene’s position on the chromosome). We note that we have implicitly assumed
that transcription from both gene copies after duplication is independent and occurs at the same
rate, which may not in general be true215, but simplifies the model considerably. From this we
can derive the system of ODEs to describe the time evolution of the mean counts of m and n,

*Appendix C contains material reproduced with permission from Earnest TM, Cole JA, Peterson JR, Hallock MJ,
Kuhlman TE, and Luthey-Schulten Z (2016). Ribosome biogenesis in replicating cells: integration of experiment and
theory. Biopolymers, 105(10), pp. 735–751. doi:10.1002/bip.22892.
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their mean squared counts, and the mean product of m and n:

d

d t
〈m〉(t ) = kt (t )−kd 〈m〉(t )−kb〈m〉(t )+ku〈n〉(t )

d

d t
〈n〉(t ) = kb〈m〉(t )−ku〈n〉(t )

d

d t
〈m2〉(t ) = 2kt (t )〈m〉(t )+kt (t )−2kb〈m2〉(t )+kb〈m〉(t )

+2ku〈mn〉(t )+ku〈n〉(t )−2kd 〈m2〉(t )+kd 〈m〉(t )

d

d t
〈n2〉(t ) = 2kb〈mn〉(t )+kb〈m〉(t )−2ku〈n2〉(t )+ku〈n〉(t )

d

d t
〈mn〉(t ) = kt (t )〈n〉(t )−kb〈mn〉(t )+kb〈m2〉(t )−kb〈m〉(t )

+ku〈n2〉(t )−ku〈mn〉(t )−ku〈n〉(t )−kd 〈mn〉(t ).

(C.2)

We expect that at cell division all components are distributed to the daughter cells according
to an unbiased binomial distribution. This can be used to derive constraints for our system of
ODEs, namely:

〈m〉(0) = 1

2
〈m〉(tD )

〈n〉(0) = 1

2
〈n〉(tD )

〈m2〉(0) = 1

4

[
〈m〉(tD )+〈m2〉(tD )

]
〈n2〉(0) = 1

4

[
〈n〉(tD )+〈n2〉(tD )

]
〈mn〉(0) = 1

4
〈mn〉(tD ).

(C.3)

This system can be solved numerically, but parameters must be chosen carefully. Specifically we
are concerned with the ribosome binding and unbinding rates. The binding rate, kb , is clearly
a function of the concentration of free ribosomes as well as other mRNA in the cell; as a first
approximation, we might expect:

kb ≈ kb,0[rfree] = kb,0[r −Cr −n], (C.4)

where kb,0 represents the binding rate of a single messenger to a single ribosome, r represents the
ribosome copy number in the cell, Cr represents the number of competing mRNA that are bound
to ribosomes, n is the number of ribosome-bound versions of the messenger we are interested in,
and square brackets e.g. [x] ≈ x ·2−t/tD /2ln(2) denotes a per-cell concentration. We might assume
that the competing mRNA are in equilibrium with respect the ribosomes, meaning:

ku[Cr ] = kb,0[C −Cr ][r −Cr −n] (C.5)

where C represents the total number of competing mRNA. Solving this for Cr and inserting the
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result into Eq. C.4 then yields:

kb ≈ kb,0

(
[r ]−[n]−1

2

(
−

√
(

ku

kb,0
− [n]+ [r ]+ [C ])2 +4([n][C ]− [r ][C ])+ ku

kb,0
−[n]+[r ]+[C ]

))
. (C.6)

Inserting Eq. C.6, a value for ku chosen such that the ribosome-bound messengers have an
appropriate mean lifetime, the mean value of [r ] = 3000 33, and C = c(m +n) (where c denotes the
number of competing genes, assuming that the competing mRNA production roughly keeps pace
with that of the messenger we are interested in) into Eq. C.2 and solving the system numerically
(using the NDSolve function in Mathematica) yields traces for the mRNA statistics over the cell
cycle. We can then perform the appropriate time-averaging over the cell cycle (see Peterson et al. 1

for details) in order to calculate the mean and variance of our mRNA:

E[m] =
∫ tD

0

2ln(2)

tD
2−t/tD 〈m〉(t )dt

E[n] =
∫ tD

0

2ln(2)

tD
2−t/tD 〈n〉(t )dt

Var[m] =
∫ tD

0

2ln(2)

tD
2−t/tD 〈m2〉(t )dt −E[m]2

Var[n] =
∫ tD

0

2ln(2)

tD
2−t/tD 〈n2〉(t )dt −E[n]2

Cov[m,n] =
∫ tD

0

2ln(2)

tD
2−t/tD 〈mn〉(t )dt −E[m]E[n].

(C.7)

From these we can compute the statistics of our total mRNA count:

E[m +n] = E[m]+E[n]

Var[m +n] = Var[m]+Var[n]+2Cov[m,n].
(C.8)

C.1.2 Estimating Rate Parameters for an “Average mRNA”

Because the nine r-protein operons have varying rates of production, translation, and degradation,
we attempted, for the sake of simplicity, to investigate the behavior of an “average mRNA”. We
first computed the harmonic mean of the operons’ transcription and degradation rates (yielding
0.0042 s−1 and 9.84×10−4 s−1, respectively). Then, in order to estimate the ribosome unbinding
rate for each operon we computed the mean lifetime of each mRNA-ribosome complex. Each
operon has a different number of genes to be translated, each of which in turn has a different
translation rate, meaning that each operon will be bound to a ribosome for a different amount of
time. We can compute the mean mRNA-ribosome complex lifetime for each operon, and from
that determine each operon’s effective unbinding rate:

ku,i =
( 1

k−1
su, dissoc +

∑
j k−1

t1,i , j

)−1
(C.9)
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where ku,i represents the unbinding rate for the i th operon’s messengers, ksu, dissoc represents the
rate at which a translated ribosome dissociates from the messenger, and kt l ,i , j represents the
translation rate of the j th gene in operon i . The results of these computations are summarized in
Table 4.5.

C.1.3 mRNA statistics in the Limit when kd → 0

Peterson et al. 1 derived expressions for mRNA statistics that accounted for gene duplication due
to chromosome replication; specifically, Equation S36 is given as:

E[r ] = kt

kd
2 f

[
1+βe−kd tD (1− f ) −21− f

1+ kd tD
ln(2)

+γ2− f e−kd tD f −1

1+ kd tD
ln(2)

]
Var[r ] = E[r ]−E[r ]2

+ ln(2)
( kt

kd

)2[
2β2 1−2 f −1e−2kd tD (1− f )

ln(2)+2kd tD
−4β

1−2 f −1e−kd tD (1− f )

ln(2)+kd tD
+ 2

ln(2)
(1−2 f −1)

+γ2 2 f −e−2kd tD f

ln(2)+2kd tD
−4γ

2 f −e−kd tD f

ln(2)+kd tD
− 4

ln(2)
(1−2 f )

]
,

(C.10)

where

β= e−kd tD f

2−e−kd tD

γ=
(

1+ e−kd tD

2−e−kd tD

)
.

(C.11)

In these equations, kt and kd are the RNA transcription and degradation rates, respectively, tD

is the cell doubling time, and f represents the fraction of the cell cycle after gene replication
( f = 1− tr /tD ). For the purposes of the present work, we note that the nucleation and assembly of
the ribosome occurs significantly faster than measured rates of mRNA degradation; as a result,
we expect little ribosomal RNA (rRNA) to be lost, and essentially all of it to be found in the form
of ribosomes in the cell. Similarly, because the mRNA-ribosome dissociation constant is small
(∼10−10 M), when the pool of ribosomes is large compared to the pool of available messengers,
essentially all mRNA will remain bound to ribosomes and few will be degraded. We therefore
consider the limit of the expressions in Eq. C.10 as kd approaches zero:

lim
kd→0

E[r ] = kt tD 2 f

ln(2)

lim
kd→0

Var[r ] = kt tD

ln2(2)

[
2 f

(
ln(2)+2kt tD (3+ ln(4))

)
−4 f kt tD

−kt tD

(
4+2(1+ f )2 ln2(2)+ (1+ f ) ln(16)

)]
.

(C.12)
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C.2 Estimating Cell Cycle Parameters from Copy Number Distributions

We consider the well known age distribution of exponentially growing cells 178:

φ(a) = 2νme−νm a
∫ ∞

a
f (τ)dτ, (C.13)

where φ(a) is the probability that a cell is of age a, νm is the growth rate of the population, and
f (τ) is the probability of a cell dividing at age τ. As per Powell 178 , νm can be determined from the
constraint

2
∫ ∞

0
e−νmτ f (τ)dτ= 1. (C.14)

Taylor expanding the LHS of Eq. C.14 about the mean division time:

1 = 2
∫ ∞

0
e−νmτ f (τ)dτ

= 2〈e−νmτ〉

≈ 2
[

e−νm〈τ〉+ 1

2

d2

dτ2 e−νmτ|〈τ〉σ2
τ

]
= 2

[
e−νm tD + 1

2
ν2

me−νm tDσ2
τ

]
= (2+ν2

mσ
2
τ)e−νm tD

(C.15)

where we assume that the mean age at division is tD , and the division ages have some variance σ2
τ.

This can then be easily solved numerically for νm .
We now consider the probability that a cell has a single copy of a given gene. If tr is the age at

which the gene is replicated, we can write:

Psingle copy =
∫ tr

0
φ(a)da. (C.16)

For simplicity, we can assume the division times are normally distributed,

f (τ) = N (τ; tD ,στ). (C.17)

and so,

Psingle copy(tr ) =
∫ tr

0
2νme−νm a

∫ ∞

a
f (τ)dτda

=
∫ tr

0
2νme−νm a 1

2
erfc

( a − tDp
2στ

)
da.

(C.18)

Promoting tr to a random variable distributed according to some probability function P (tr ;〈tr 〉,σtr )
where 〈tr 〉 and σtr are the mean and standard deviation of the replication time, respectively, we
can write

〈Psingle copy〉 =
∫ ∞

0
dtr Psingle copy(tr )P (tr ;〈tr 〉,σtr ). (C.19)
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Now simply Taylor expanding about 〈tr 〉 yields

〈Psingle copy〉(〈tr 〉,σtr ) ≈
∫ 〈tr 〉

0
2νme−νm a 1

2
erfc

( a − tDp
2στ

)
da

+
σ2

tr

2

[
−2ν2

me−νm〈tr 〉 1

2
erfc

( 〈tr 〉− tDp
2στ

)
−2νme−νm〈tr 〉 f (〈tr 〉)

]
,

(C.20)

subject to Eq. C.14. Now, for each gene locus, we can estimate the fraction of cells we expect to see
with a single gene copy. Inserting forms for the mean replication time, 〈tr,i 〉 =µtrep +χi Trep, for a
gene given its location, χi on the chromosome, as well as the standard deviation in the replication
timing, σtr =σtrep into Eq. C.20, we can construct a measure for for goodness of fit:

Θ= ∑
i∈genes

( 〈Psingle copy〉(〈tr,i 〉,σtr )− ni
mi√

〈Psingle copy〉(〈tr,i 〉,σtr )
(
1−〈Psingle copy〉(〈tr,i 〉,σtr )

)
/mi

)2
m (C.21)

and vary µtrep, Trep, and σtrep in order to minimize it. Importantly, here ni denotes the number of
cells (with gene i labeled) observed with a single copy, mi denotes the total number of cells (with

gene i labeled) observed, and the term
√

〈Psingle copy〉(〈tr,i 〉,σtr )
(
1−〈Psingle copy〉(〈tr,i 〉,σtr )

)
/mi

denotes an estimate for the error in the experimentally observed fraction of cells with one gene
copy. This estimate is based in the assumption that a cell has probability 〈Psingle copy〉(〈tr,i 〉,σtr ) of
being in a one-copy state, and that each measured cell represents an independent Bernoulli trial.
This error estimate was introduced in order to give greater weight during fitting to the genes for
which we have greater numbers of experimental images.

We assumed a value for στ of 12 minutes, and, because Θ was found to change little with
variations in σtr , we initially required 20.2 <σtr < 24.0 (such that its value stays within the error
bounds found by the more complete fitting method presented in the main manuscript, see
Table 4.1). Θwas then minimized using the Minimize routine in Mathematica. This resulted in
estimates for µtrep and Trep of 34.4 and 45.9 minutes, respectively. We note this value for Trep is
well within the standard error reported in Table 4.1 but the value for µtrep differs from the results
of the main text by approximately 2.6 standard deviations. Comparison of the fit and experimental
single-gene fractions shows similar qualitative agreement as was obtained using the method
presented in the main text (see Figure C.6). For the sake of comparison, releasing the bounds on
σtr had only a minor effect onΘ, µtrep, and Trep (their values changed by about 0.05%, 3%, and
0.2%, respectively), but the fit value of σtr fell to an unreasonably low value of approximately 0.25
seconds.

C.3 Fitting mRNA Distributions

The exact analytical theory set out in Peterson et al. 1 describes the noise of idealized constitutively
expressed genes which undergo duplication during the cell cycle1. As no experimental data is
available to compare to the distributions of messengers computed in the ribosome biogenesis
model (RBM) at the time of writing, the results were compared to this theory. Due to the fact that
the ribosomal protein operon messengers are the only transcripts competing for the ribosomes,
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they are bound up and effectively prevented from degradation. In the future, all cellular transcripts
will be considered, thus the RBM will need to be reparameterized. By fitting the theory of Peterson
et al. 1 to the RBM simulations, we can estimate what the new parameters would need to be to
give the same results as the RBM.

Distributions computed using Eq. S22 of Peterson et al. 1 were computed with varying kt

and kd and compared to the RBM simulated distributions. The mean squared deviation was
computed between these simulations. The kt and kd associated with the distribution that has
the minimum deviation from the simulated distribution represent the “effective” transcription
and degradation rates that will be applicable in future simulations that include realistic counts of
competing mRNAs. The fitted rates and fits can be seen in Table 4.5 and Figure 4.6. Fitted kt and
kd are essentially scaled versions of the rates used in the RBM (as demonstrated in Figure C.9). Fit
kd are about four times smaller than experimental values, while kt are about four times as large.

C.4 Varying Numbers of Non-ribosomal Genes in the SAM

We used the SAM to study the simultaneous effect of varying gene loci (which effects the timing
of gene replication) and c on the mRNA copy number statistics for an “average gene” (see Sec-
tion C.1.2). Interestingly, we found that with increasing numbers of actively expressed genes (while
holding kt and kd constant), gene expression became significantly less noisy (see Figure C.10b).
This was found to be due largely to the fact that the messenger-ribosome dissociation constant
was very small (ku/kmrna_assoc ≈ 10−10 M). By comparison, the concentration of a single mRNA in
a bacterial cell of volume ∼1 fl is approximately 1.7×10−9 M. This means that every messenger
produced should have a high probability of being bound to a ribosome, provided a ribosome is
available for binding. When small numbers of non-ribosomal genes are expressed (the small-c
regime), the total number of messengers does not exceed the total number of ribosomes, and so
every messenger is likely to be quickly bound and thereafter protected from degradation. The
statistics of a given gene’s mRNA in this regime are then essentially the same as those of a model
in which already bound messengers are produced (at some transcription rate kt ) and only lost
through cell division (with roughly half going to each daughter). The model of Peterson et al. 1

in the limit where kd → 0 (see Figure C.10b, left-most dots, and see Eq. C.12) gives exactly these
statistics. At values of c between 30 and 50, the total mRNA content of the cell approaches and then
surpasses the total number of ribosomes. From there on, with increasing values of c , the probabil-
ity of a given messenger binding a ribosome becomes increasingly small. For any specific gene of
interest, this results in an increase in the fraction of unbound mRNAs (relative to ribosome-bound
mRNAs), and in turn an increase in the messenger’s effective degradation rate, a decrease in its
mean copy number, and a decrease in its Fano factor. In the limit where c →∞, the probability
that any specific messenger is ever bound by a ribosome approaches zero; the total messenger
count is then dominated by the unbound messengers and the statistics converge again to those
of a model in which ribosome interactions are entirely neglected, e.g. that of Peterson et al. 1

(see Figure C.10b right-most dots). These findings are in good agreement with additional explicit
stochastic simulations (see Figure C.10b, diamonds, and see Section 4.4.3). We note that the SAM
described here remains somewhat incomplete. It neglects, for example, the potential for transient
non-specific mRNA-ribosome interactions216 which have been shown to significantly impact
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ribosome diffusivity. Such interactions have been estimated to last on the order of a few seconds
and may play a role in ribosomal LSU–SSU subunit search and association 216. Assuming that the
transiently bound mRNA are, like the specifically bound mRNA, protected from degradation, then
this type of interactions should have the net effect of lowering the free messenger counts, and in
turn, lowering the effective degradation rate. When c in the SAM is small (e.g. c = 8), the effective
degradation rate is already approximately zero, and so non-specific ribosome binding can not
significantly affect the mRNA statistics. When c is in the biologically realistic regime (c ≈ 1000),
an upper-bound for the possible changes in the mRNA statistics can be roughly estimated by
considering the effect of increasing the ribosome concentration in the SAM. For example, if we
assume that only one messenger can transiently bind a ribosome at a given time, and that the
transient mRNA-ribosome association rate is fast (e.g. occurring at a diffusion-limited rate on
the order of 109 M−1 s−1), then we can expect that the available non-specific binding sites should
essentially always be occupied, and the mRNA statistics can be approximated simply by doubling
the ribosome concentration in the SAM. For a gene situated on the chromosome halfway between
the origin and terminus, this has the effect of increasing mean messenger count from 8.6 to 11.3
per cell, and only modestly changes the Fano factor from 1.6 to 1.7.

C.5 Algorithms used in the RBM

Algorithm C.1 details the process of pruning the intermediate species graph. This method is used
by Earnest et al. 94 to reduce the approximately 1600 potential intermediates down to a number of
species that can be simulated with reaction–diffusion master equation (RDME).

The RDME trajectory generation process is detailed in Algorithm C.2. The cell growth process
is implemented using pyLM’s “hybrid solver” interface 38 which allows for user-defined processes
to occur during regular intervals when simulation data is saved. This is when cell geometry is
updated to account for growth, and to add new DNA operons to the simulation to reflect the
replication process.

The process for building the diving cell geometry is shown in Algorithm C.3. Algorithm C.4 is
the process of discerning which discrete lattice sites fall inside a spherocylinder described via two
points at the cylinder ends and a radius. Algorithm C.5 detects boundaries between different site
types and changes those sites to a third type. It is used to construct the membrane between the
cytoplasm and extracellular space.
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Data: graph G = (V ,E) with intermediate species as vertices and directed edges indicating
reactions, maximum species in final graph Nmax

Result: G ′ = (V ′,E ′) representing pruned network
V ′ ←−V ;
E ′ ←− E ;
repeat

Compute fluxes through G ′ ;
D ←− vertex in G ′ with lowest flux ;
while |D| > 0 do

for v ∈ D do
for e ∈ E ′ do // Remove edges to and from v

if v ∈ e then
E ′ ←− E ′−e ;

V ′ ←−V ′− v // Remove v;

D ←−;;
// Locate dead-end vertices
for v ∈V ′ do

if deg+(v) = 0 or deg−(v) = 0 then
D ←− D + v ;

until
∣∣V ′∣∣< Nmax;

Algorithm C.1 SSU assembly network pruning

Data: Initial particle lattice – x , stoichiometric matrix – S, propensity functions – ar (n),
time step – τ, cell doubling time – tdiv, lattice write interval – tw, cell geometry – G ,
and maximum evaluation time – tf.

Result: Final particle lattice – x , final site lattice – s

t ←− 0;
tlast ←− 0;
while t < tend do

for ξ ∈ {x, y, z} do
parfor ν ∈V do // Execute on GPU

diffusionKernel(ξ,ν);

parfor ν ∈V do // Execute on GPU
reactionKernel(ν);

t ←− t +τ;
if t − tlast > tw then

computeGeometry(t/tdiv,G );
tlast ←− t ;

Algorithm C.2 RDME simulation with replication and cell growth
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// Write the site type lattice for a growing cell of geometry G, at a
fraction χ through the growth cycle, into the lattice s.

(`, w,φnuc.w.,φnuc.l.,r 0) ←−G ;
r ←− w/2 // Sphere/cylinder radius;
h ←− (`−w)/2 // 1

2 middle cylinder height;
χ′ ←− max{1,χ};

∆`←− ` · (2χ
′ −1)+χ′ // +χ′ to ensure 1 site separation between cells

// Calculate the capsule foci for the mother and daughter cells
um ←− r 0 + (−h −∆`) ẑ ;
v m ←− r 0 + (+h −∆`) ẑ ;
ud ←− r 0 + (−h +∆`) ẑ ;
v d ←− r 0 + (+h +∆`) ẑ ;

for s ∈ s do // Mark every site as extracellular initially
s ←− EXTRACELLULAR;

buildCapsule(um, v m, s,r, CYTOPLASM);
buildCapsule(ud, v d, s,r, CYTOPLASM);
buildMembrane(s, MEMBRANE, CYTOPLASM, EXTRACELLULAR);

// Nucleoid width and length are scaled by φnuc.w. and φnuc.l.,
respectively.

rn ←− rφnuc.w. // Nucleoid sphere/cylinder radius;
rh ←− h − (1−φnuc.l.) ·`/2 // Nucleoid middle cylinder 1

2 height;

// Calculate the capsule foci for the mother and daughter nucleoid
regions

umn ←− r 0 + (−hn −∆`) ẑ ;
v mn ←− r 0 + (+hn −∆`) ẑ ;
udn ←− r 0 + (−hn +∆`) ẑ ;
v dn ←− r 0 + (+hn +∆`) ẑ ;

buildCapsule(umn, v mn, s,rn, NUCLEOID);
buildCapsule(udn, v dn, s,rn, NUCLEOID);

Function C.3 computeGeometry(χ,G , s)
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// Construct capsule by building two spheres of radius r, centered at
points u and v, and a cylinder of radius r from u to v

for s ∈ s do
w ←− getSiteCoord(s);
d wu ←− w −u;
d wv ←− w −v ;
if ‖d wu‖ < r or ‖d wv‖ < r or (‖d wu − (d wu · ẑ)ẑ‖ < r and 0 < d wu · ẑ < ‖v −u‖) then

setSiteType(s,T);

Function C.4 buildCapsule(u, v , s,r,T )

// Locate boundary sites of an inside type that are touching a site
marked as an outside type. Convert these boundary sites to inside
types.

for s ∈ s do
if getSiteType(s)= Tin then

if ∃s′ ∈ nearestNeighborSites(s) : getSiteType(s’)= Tout then
setSiteType(s,Tmem)

Function C.5 buildMembrane(s,Tmem,Tin,Tout)
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C.6 Supplementary figures

Figure C.1 Examples of rejected regions from fluorescence microscopy. (f, j, q) Cell partially out of focal
plane. (d, i, p) No fluorescence. (a, b, e, f, g, h, k, l, m) Poor dynamic range in fluorescence
channel. (c, d, e, m, n, o) Bad morphology of thresholded brightfield image. (n) Debris on
surface.
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Figure C.2 Fraction of cells observed with one or two operon copies and total count of cells with one or
two copies.
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Figure C.3 Distribution of cell widths. The cells were measured to have a mean of 0.715 µm and standard
deviation of 0.059 µm.
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Figure C.4 Comparison of experimental length distributions to fitting of growth/replication model. The
number of cells binned and fractional position of the gene along its replichore are specified in
each subplot as N and χ respectively. Blue denotes cells with two copies, green with one copy.
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Figure C.5 Comparison of inferred cell age distributions to fitting of growth/replication model. The
number of cells binned and fractional position of the gene along its replichore are specified in
each subplot as N and χ respectively. Blue denotes cells with two copies, green with one copy,
the orange and black curves are the predicted and observed average copy numbers respectively.
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Figure C.6 Fractions of cells with a single gene copy. Blue bars indicate the fraction of experimental cells
observed with a single copy, while red bars indicate the fraction predicted by minimizingΘ in
Eq. C.21 (while requiring 20.2 <σtr < 24.0).

Figure C.7 Cryo-electron tomogram of slow-growing E. coli 33 used to measure the nucleoid geometry for
the whole-cell simulations. Units are in nanometers.
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Figure C.8 Reduced assembly network for SSU assembly at 40 ◦C. There are 147 SSU intermediates used in
the biogenesis model, excluding the completed SSU and bare 16S. Each node is an assembly
intermediate, labeled according to which proteins are bound. A three digit number describes
the set of r-proteins bound to each domain (5′-, central-, and 3′- respectively), All remaining
r-proteins are listed after the three digit number. The edges connecting the intermediates
represent the r-protein binding reactions. The width represents the total amount of intermediate
converted by that reaction, and the color indicates the binding domain of that protein (5′-red,
central-yellow, and 5′-blue.) Predicted assembly intermediates from P/C qMS and cryo-EM 108

are represented using rectangles.
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Figure C.9 Comparison of fitted kd and kt estimated by minimizing the mean square deviation between
the distributions calculated in the RBM and those predicted by Peterson et al. 1 . The dotted
lines indicate y = x. The solid line indicates the linear trend between the fitted kt and the value
used in the RBM.
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Figure C.10 (a) Fano factor plotted versus mean messenger for r-protein operon messengers from the
biogenesis simulations. Statistics from ribosome biogenesis simulations (blue dots) are poorly
represented by the analytical theory of Peterson et al. 1 (plus symbols). This prompts a new the-
ory (SAM) that includes the effect of mRNA sequestration by unbound ribosomes (red squares)
which better captures the simulated data. Additionally, it is shown that in the limit where
the number of competing mRNAs is large, the SAM theory converges nearly to the theory of
Peterson et al. 1 (yellow triangles). (b) Fano factors for an average r-protein mRNA as a function
of gene loci and number of competing genes. Color indicates fraction along genome from oriC
to terC. Circles indicate predictions from theory 1 either without modification (right-most) or
in the limit where kd → 0 (left-most). Diamonds indicate the results of CME simulations of a
models that explicitly account for gene duplication, cell division, interactions with ribosomes,
and varying numbers of genes being expressed. Lines indicate the semi-analytical model
developed herein.
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