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ABSTRACT
In this paper, we use passivity theory as an approach for
dealing with dynamical systems, and demonstrate how to
apply it to software systems in a general way. We first cover
key results from passivity theory. Then, using an example,
simulated system, we demonstrate how to design a controller
which guarantees asymptotic BIBO stability for a system us-
ing a passivity based control, or PBC, approach. Finally, we
examine more complex spftware systems from other publi-
cations, Proteus and Pyro, and demonstrate how to apply
passivity theory to these kinds of systems.

Categories and Subject Descriptors
C.3 [Special-Purpose and Application-Based Systems]:
Process control systems; I.2.8 [Problem Solving, Control
Methods, and Search]: Control theory

General Terms
Software, Control, Passivity

1. INTRODUCTION
Though control theory, and specifically, passivity theory, has
been around in the control community for many decades, it
is taking software engineers a lot longer to pick up on these
principles in their work. Usually when an average software
engineer comes across a problem like load balancing, at best,
they will recognize it as a control problem, and design a con-
trol loop, and implement a linear type controller to solve this
problem. At worst, they will come up with something much
worse. And this is not even necessarily the best solution!

Software in general is very non-linear. Because of this, lin-
earization and control via PID or a similar method does not
always work well. In this paper, we introduce a framework
for thinking about software in terms of passivity. Passive
systems are, in general, systems which do not produce their
own energy. Software components are not like physical sys-
tems in that they do not necessarily have an obvious notion

of energy, but nevertheless, they can be analyzed as passive
just the same. Once a system has conditions under which it
is passive, then this can aid greatly in control design.

First, we review the necessary building blocks and results
from passivity theory in Section 2. Then, we present an ex-
ample system, with analysis and results in Section 3. Finally,
we examine some real, published software systems (Proteus
and Pyro) and examine how passivity theory can be used to
analyze their control in Section 4.

2. PASSIVITY THEORY
Control of systems is an increasingly important area of re-
search. Traditional control methods rely on linearization of
a system around a control point. However, many real life
systems are not actually linear. The next class of control-
lable systems which are possible to reason about (and as
such, are the basis of modern control theory) are so-called
passive systems.

The term passive arises from the context of electrical circuit
analysis. Informally, passive systems are those for which a
notion of virtual “stored energy” can be defined, such that
the change in stored energy is never greater than the energy
supplied to the system externally. In this section, we review
the definition and conditions for systems to be considered
passive, and importantly, the implications this has for the
stability of such systems. Specifically, passivity of systems
has implications for the passivity and stability of their inter-
connections, which makes it easier to construct useful, stable
software systems.

The following section reviews basic passivity theory useful
for reasoning about software systems. Readers interested in
further details, including proofs and a more rigorous treat-
ment of this section, are encouraged to see [2, 13, 8].

Note that in many cases in this section, we present multiple
input, multiple output formulations of these definitions and
properties. Thus, inputs, outputs and states will be consid-
ered to be vectors. However, we assume that the number of
inputs and outputs to the system are equal in number. It
is easy to translate these properties to single input, single
output properties that we will use more in later sections.

2.1 Passivity of Systems
A general system component will have a few different com-
ponents: an input u(t), an internal state x(t), and an out-
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put y(t) (where u, x, and y may, in general, be vectors).
The component model describes how the internal state and
output of the component evolve over time, and how these
components interact. For a general, non-linear system:

ẋ(t) = f (x(t), u(t))

y(t) = h(x(t), u(t)) (1)

where f and h are, in general, non-linear functions. We will
use this general system throughout this section.

Passivity theory defines a supply rate, w(t), as a general
function of the input and output of the system:

w(t) = w (u(t), y(t)) (2)

This supply rate represents the “virtual energy” supplied to
the system. Systems then in turn store this energy. The
storage function is denoted as S(x), and is on all of the
system state x(t).

A system is considered to be dissipative if there exists a
non-negative and real S(x) such that

S(x1)− S(x0) ≤
∫ t1

t0

w(t)d(t) (3)

for all 0 ≤ t0 ≤ t1, where xn is the state of the system at tn
with a given starting state x0 and an input u. If the storage
function is differentiable, which it almost always shall be
since we must come up with it, then the equation can be
written in a derivative form:

dS (x(t))

dt
≤ w(t) (4)

This is a precise, mathematical way of saying that the rate
of change of the stored virtual energy is no greater than the
amount of energy supplied to the system.

Finally, a dissipative system is considered to be passive if
a positive-semidefinite storage function S(x) can be found
which satisfies Equation (4) when the supply rate w(t) is the
product of the input and output of the system:

w(t) = uT (t)y(t) (5)

This leads to the passivity condition which must be satisfied
for a system to be passive:

dS (x(t))

dt
≤ uT (t)y(t) (6)

Or, in shorthand,

Ṡ ≤ w
Thus, the challenge becomes coming up with differentiable
storage functions which follow this rule for systems in ques-
tion. This process is similar to coming up with Lyapunov
functions. Once a system has been shown to be passive, it
becomes easier to reason about.

2.2 Stability of Passive Systems
A critically important part of any control problem is de-
termining the stability of the system. This is where the
usefulness of passive systems becomes obvious.

Theorem 1. If for a system, one can construct a storage
function S(x) which is both positive definite and fulfills the

passivity condition in Equation (6), then the point x = 0
with u = 0 is Lyapunov stable.

Furthermore, if S(x) is radially unbounded, that is, if ‖x‖ →
∞ implies that S(x)→∞, then the equilibrium point x = 0
is globally stable.

Thus, often by proving that a system is passive, it is easily
proved that the system is stable as well.

2.3 Passivity Indices
In practice, not all systems will be passive. It is useful to be
able to characterize the degree to which a system is passive
or non-passive. This section reviews passivity indices, which
describe degree of passivity in a system [27].

Considering the same system in Equation (1):

• The system’s input feedforward passivity index (IFP)
is ν if it is dissipative (Equation (4)) with respect to
the supply rate

w(u(t), y(t)) = uT (t)y(t)− νuT (t)u(t) (7)

for some ν ∈ R, denoted as IFP (ν).

• The system’s output feedback passivity index (OFP) is
ρ if it is dissipative with respect to the supply rate

w(u(t), y(t)) = uT (t)y(t)− ρyT (t)y(t) (8)

for some ρ ∈ R, denoted as OFP (ρ).

These ν and ρ are known as the passivity indices of the
system. If ν or ρ ≥ 0, then the system is said to have
excess passivity, and is said to be strictly input passive or
strictly output passive, respectively. If these indices are neg-
ative, then the system lacks passivity. Passivity indices are
so named because they provide information on how a sys-
tem may be made passive by simple connections to other
systems, as will be discussed in Section 2.4.

From the given definition, it is obvious that, for instance,
if a system is OFP (2), then it is also OFP (1). Generally,
the passivity index given is the bound for satisfying Equa-
tions (7) and (8). If a system is OFP (2), but is not OFP (x)
where x > 2, then the system is generally said to beOFP (2),
and not OFP (y) where y < 2.

2.4 Passivity of Interconnections of Systems
With all these definitions, we now have the mechanisms to
examine the way that connecting general systems as building
blocks affects the passivity of an overall system.

2.4.1 Parallel and Feedback Connections
An extremely useful and powerful consequence of the passiv-
ity of systems is that the parallel and feedback connections
of passive systems are also passive. These interconnections
are demonstrated in Figures 1 and 2. As feedback control is
extremely powerful, knowing that feedback connections are
passive is useful in control design.

This statement is a form of the Passivity Theorem, proofs
and more formal statements of which can be found in [2]
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Figure 1: A parallel interconnection of passive sys-
tems is passive.
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Figure 2: A feedback interconnection of passive sys-
tems is passive.

2.4.2 Passivation of Non-Passive Systems
Using the inherent passivity of the connections in Section 2.4.1,
we can make systems which are not passive act passively
when in a parallel or feedback connection with a system
which has an excess of passivity, as in Section 2.3.

Input Feedforward Passivation: Consider a general sys-
tem H (as defined in Equation (1)). If this system is passive
with respect to the storage function

w(u, y) = uT y + νuTu (9)

where ν > 0, then H is considered to have a lack of in-
put feedforward passivity. Though H is not passive, when
connected in a feedforward configuration with a gain νI (as

shown in Figure 3), then the whole system H̃ is passive.

Output Feedback Passivation: Similarly, if a system H
(Equation (1)) is dissipative with respect to the storage func-
tion

w(u, y) = uT y + ρyT y (10)

where ρ > 0, then H is considered to have a lack of output
feedback passivity. H can be passified in a feedback configu-
ration with a gain ρI (as shown in Figure 4), and the whole

system H̃ is passive.

It is obvious that both Equations (9) and (10) come from
Equations (7) and (8). Namely, the passivity indices of sys-
tems indicate exactly how much passivity they lack or have
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Figure 3: Input feedforward passivation.
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Figure 4: Output feedback passivation.

in excess, and this property defines how another system may
be connected to it to compensate.

2.4.3 Series Connections and the Secant Criterion
Though equally common, series connections of passive sys-
tems are not by definition passive. However, we can get
a useful bound on the lack of passivity of such a system
using the secant criterion [27, 23, 1]. Then, as shown in
Section 2.4.2, we can passify these systems using a simple
control rule.

Imagine a system of cascaded systems in a negative feed-
back loop with a control gain K, as shown in Figure 5. We
call the number of systems cascaded in this loop n, and for
now, consider n to be greater than 2. For now, we will also
consider K = 1.

If every system in the whole cascaded system is input strictly
passive, with IFP (νi) for some νi ∈ R+, then each system
has a storage function with respect to which it is dissipative,
of the form:

Ṡi ≤ uTi yi − νiuTi ui
Then the cascaded system has a storage function which can
be considered to be some weighted sum of the storage func-
tions Vi:

V =
n∑
i=0

Vidi, di > 0 (11)

Then, the secant criterion states that feedforward cascaded
system (without the feedback portion) is, at worst, OFP (−ρ)
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Figure 5: Cascaded systems with output feedback.

where

ρ >
cos
(

π
n+1

)n+1∏n
i=0 νi

(12)

Thus, if put in feedback with a gain ρ, then the overall
system will be passive. Similar results and proofs for feed-
forward passivation and for the case where n = 2 can be
found in [27].

2.5 Controllability of Passive Systems
Once the passivity of a system is established, then it be-
comes easier to figure out how to control it. It was estab-
lished in Section 2.4.1 that the interconnections of passive
systems are passive. This, along with passivity indices of
these systems, can be used to passify and stabilize both pas-
sive and non-passive systems. Because we are talking about
non-linear systems which cannot be perfectly modeled, we
will chiefly focus on feedback control over feedforward con-
trol, as feedback control can account for dynamics in the
system.

2.5.1 Proportional Controllers
Passive systems can be easily stabilized with proportional
controllers. Imagine that system H (as defined in Equa-
tion (1)) is passive with storage function S(x). Then, an
output feedback proportional controller using the law u =
−ky asymptotically stabilizes the equilibrium of the system
(x = 0) for any positive k.

Proof. Because H is passive, it has a storage function
S(x) which satisfies

Ṡ(x) ≤ uT y

If the control law u = −ky is used, then Ṡ ≤ −kyT y < 0 for
all y 6= 0. The bounded solution of Equation (1) is within
the region of y = 0, so x→ 0. Thus, the feedback system is
passive.

It is also the case that all PID controllers are passive when
used in a feedback system, different proofs of which can be
found in [2, 13]. Thus, PID controllers can be used to control
any passive system, in a passive, stable way.

Importantly, proportional (and PID controllers) can be used
to make non- passive systems behave in a passive way as
well. The output feedback passivity index of the system can
be used to determine the amount of proportional control

that is required. For instance, if a system is OFP (−2),
meaning that is lacks passivity, it can be rendered passive
using a gain of 2 in an output feedback loop. Thus, using
the passivity index of a system can aid greatly in control
design.

2.5.2 Stabilization of Series Interconnections Using
Proportional Controllers

By using a proportional controller of a certain gain, it is obvi-
ous by combining the information in Sections 2.4.3 and 2.5.1
that a series system which lacks passivity can be made pas-
sive using a proportional output feedback controller. How-
ever, systems do not necessarily need to be made completely
passive to be made stable; instead, information about the
lack of passivity can give a bound on the amount of state
feedback which is required to simply stabilize the system,
which is often the control goal.

Consider the system in Figure 5. We have already estab-
lished a bound on the output feedback passivity index of
such a system in Equation (12). If every block is IFP (νi)
where νi > 0, then to simply stabilize the feedforward sys-
tem (again, as opposed to making the entire feedback system
stable), then the following criterion must be met, derived
from the results of the secant criterion.

1

Kp

∏n
i=0 νi

<
1

cos
(
π
n

)n (13)

Here, Kp is the gain of the feedback loop. This criterion
gives, in general, a lower bound on the gain of the controller
than is required for the full system to be fully passive. Proofs
for this criterion, as well as versions for using input feedfor-
ward passivity indices, can be found in [27].

2.6 Passivity of Discrete Time Systems
So far, in Section 2, we have dealt with the passivity of
systems which are continuous time. Computing and soft-
ware systems are, by definition, discrete time. Fortunately,
many of the powerful results have corresponding discrete
time forms which allow for similar analysis to be made [13,
3]. Two things are worth noting. First, that as the sam-
pling period of a discrete time becomes smaller and smaller,
approaching continuous time, discrete time becomes a bet-
ter and better approximation for a continuous time version
of the system. Beyond that, [19] introduces the concept of
average passivity, the idea that a discrete time system may
be passive on average when sampling system variables, and
averaging them on a certain period. This approach lends it-
self tidily to software systems, where discrete sampling and
averaging is easy.

2.7 Passivity of Delay Systems
In general, delay systems are more difficult to be proved
passive, though these conditions exist, especially in linear
systems [17, 20]. However, these conditions are beyond the
scope of this paper because, in general, discrete-time sys-
tems which also have delay cannot be made passive [16, 13].
Because software systems are often non-linear and by defini-
tion discrete-time, when delay exists in a software system, it
becomes impossible to use passivity theory to reason about
the system.



3. AN EXAMPLE SYSTEM
With all of the results from Section 2, we can now use them
to reason about a simple software system. This section
demonstrates the way that passivity theory can be applied
in control design. In the following, we describe a system
with multiple components all of which, under certain con-
ditions, can be rendered passive. Then, under these passive
conditions, a control design can be achieved which guaran-
tees asymptotic BIBO stability. Finally, we test our control
design in a simulator to verify the results from passivity the-
ory.

Our steps are as follows:

1. Determine all system blocks. What are their inputs
and outputs?

2. For each system block, determine if the system is pas-
sive, and what the passivity indices are. This is done
by first determining the passivity of the system by
constructing a storage function which satisfies Equa-
tion (6). Then, we determine the input passivity index
of the system, which satisfies Equation (7).

3. Determine the arrangement of the system blocks, and
what the overall passivity of the system is, using the
relationships outlined in Section 2.4.

4. Design a controller to compensate for any lack of pas-
sivity that the system has.

3.1 System Description and Design
The system we consider and show to be effectively control-
lable in a passive way is a variation of load balancing. Con-
sider a server farm with N servers, servicing Q different
streams of requests. For simplicity’s sake, we assume that
each of the N servers has the same rate of processing re-
quests, µ. For each of the Q streams qi, there is a different
rate of arrival λi. Finally, each qi has a certain number of
servers allocated to it, ni, where

Q−1∑
i=0

ni = N

The proprietors of the server farm can then promise total
delay ratios to their customers. Imagine a scenario with
two kinds of customers: high and low priority customers.
Though they cannot guarantee absolutely short delays for
their higher priority customers without knowing how many
requests they will get in advance (and perhaps having an
infinite number of servers), they can promise the total delay
experienced by their high priority requests will constitute
only a small fraction of the total delay experienced by re-
quests in the system. This idea can be extended to multiple
levels of QoS, or quality-of-service. Then, the trick to main-
taining this performance is to modify the number of servers
per QoS, ni, such that these delay ratios are met as closely
as possible.

As a proxy for delay, we instead use the length of the backlog
of each server in a given QoS. This is far easier to measure in
a real system than the actual delay, and more instantly gives

a picture of the relative amount of work remaining for each
QoS level than measuring previous request delays. Impor-
tantly, the delay experienced by requests can only be mea-
sured after the delay has happened. Delay measurements
themselves are inherently delayed! However, measuring the
length of queues can be done without any delay, simply by
observing the system.

In this paper, we use the variable Qid to denote the ratio of
queued requests at QoS level i which is desired, and Qia to
denote the actual measured ratio. Then, the error e being
minimized is e = Qid −Qia .

3.1.1 Loop Components
This system as described has several components. Each in
turn must be shown to be passive for the system as a whole
to be passive, and thus to be able to use non-linear control
methods to achieve better performance.

There are four loop components to consider:

1. The component based on the ni set by the controller.
Per QoS, the rate of arrival of requests is λi, and can-
not be known in advance. However, the effective rate
of arrival per server is λi

ni
, and is thus tunable by the

controller. This mathematical operation must be rep-
resented in the loop as a component.

2. The server itself. Each server has a queue attached to
it for requests to sit prior to the server being able to
serve them.

3. The performance measurement component of the sys-
tem. Actual delay measurements are problematic in
a system like this, because the delay measurements
themselves will be delayed by the amount of delay ex-
perienced by a request. Introducing delay into a con-
trol loop not only harms control performance of the
loop, but in addition, causes the system to not be pas-
sive. Instead of actual delay, we instead use the num-
ber of queued requests per QoS as a proxy. This com-
ponent thus computes the actual queue length shares
of the system, with each server reporting its queue
length. This is used to calculate the control error,
which is in turn used by the controller-actuator, clos-
ing the loop.

4. The controller component, which determines the change
in the number of servers per QoS ni. This component
is essentially the brains of the load balancing portion
of the system. Request of QoS qi come to it, and then
they are sent to the appropriate bank of servers.

This system is shown in Figure 6. Specifically, a single con-
trol loop for a single QoS level is shown in Figure 7, and a
transformed version in Figure 8. This transformation will
be discussed in Section 3.1.5.

Because we will use output feedback control, and the main
system blocks for each control loop are in a series connec-
tion, part of determining the passivity of this system will
be determining the input passivity indices for each of these



subsystems to obtain a bound on the passivity of the feed-
forward system. The next sections show each of these com-
ponents to be passive, and find these passivity indices. We
must set up the system as described in Section 2, and show
that the passivity condition in Equation (6) holds, then de-
termine the input passivity indices using the work function
in Equation (7).
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Figure 6: The example system discussed in Sec-
tion 3.
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Figure 7: A control loop for a single QoS level for
the system in Section 3.
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Figure 8: A control loop for a single QoS level for
the system in Section 3, with the controller placed in
the feedback path instead of the feedforward path.

3.1.2 Passivity of Queues
Here, we formulate queues, which are connected to each of
the N servers in the system, to be passive. This formulation
of queues relates the request rate and the service rate with
the number of requests currently in the queue, or the queue
backlog.

Let the request rate be the input: u(t) = r(t), in units of
requests per unit time. In our particular system, this is
a local request rate for the QoS divided by the number of
servers assigned to that QoS. Let the state be the number
of requests currently in the queue q(t), and let q(t) also be
the output y(t), the variable to be controlled. Finally, we
also have the service rate rs(t) = µ, also in requests per unit
time processed. So the system is formulated as follows:

u(t) = r(t)

x(t) = q(t)

y(t) = q(t)

ẋ(t) = q̇(t) = r(t)− rs(t)

Note that though, in general, input, output, and state can
be vectors, in this component, they are scalars.

Proof. To show that this system is passive, we construct
storage function S(x) such that it fulfills Equation (6). The
work function, or supply rate, is

w(t) = u(t)y(t) = r(t)q(t)
requests2

time

The only state in this system is q(t), so S must be of the
form S(q(t)). Try

S(x) =
1

2
κqq(t)

2 requests2

time

Here, κq is an adjustable constant with units 1
time

. This
storage function is positive definite; the storage function is
equal to zero if and only if the length of the queue is zero.

So, checking Equation (6):

w(t) = q(t)r(t) ≥ dS(x)

dt

≥ d

dt

(
1

2
κqq(t)

2

)
≥ κqq(t)q̇(t)

q(t)r(t) ≥ κqq(t) (r(t)− rs(t))
r(t) ≥ κq (r(t)− rs(t))

So, so long as r(t) ≤ r(t) − rs(t), namely, that the service
rate of the queue is positive (which we can assume with
confidence), and that κq is set appropriately, the passivity
equation holds. Furthermore because the storage function is
positive definite, the system is stable around the equilibrium
point q(t) = 0.

Each server in this system can be considered to be a queue
with an average service rate. The controller does not have to
do any special work to ensure that this subsystem is passive.

Next, we determine the input passivity index of the queue.
Use the work function from Equation (7):

w = uT y − νuTu
= rq − νr2



The storage function we use can be the same from the proof
above:

S(x) =
1

2
q(t)2

dS(x)

dt
= q(t)q̇(t)

Then, plug into Equation (6):

w ≥ Ṡ
rq − νr2 ≥ qq̇
rq − νr2 ≥ q (r − rs)
qr − νr2 ≥ qr − qrs

νr2 ≤ qrs

ν ≤ qrs
r2

Thus, this formulation of queues is IFP ( qrs
r2

). This quantity
is always positive by definition, and is greater than 0 for all
q > 0, r > 0. This makes intuitive sense as well; if there
are no requests arriving at the queue, then ν =∞, meaning
that the system is infinitely passive.

3.1.3 Passivity of Arrival Rate Division
In this section, we cover the passivity of the arrival rate di-
vision that occurs when the number of servers allocated to
a single QoS changes. Each QoS level has an arrival rate
λi(t). Each QoS level has ni(t) allocated to it. Therefore,
each individual server in this QoS level experiences an indi-

vidual arrival rate of λi(t)
ni(t)

. The system can be formulated

as follows, using the shorthand λi(t) = λ and ni(t) = n:

u(t) =
[
n λ

]T
x(t) =

λ

n

requests

servers · time

y(t) =
λ

n

ẋ(t) =
λ̇

n
− λ ṅ

n2

requests

servers · time2

Proof. To show that this system is passive, we again
construct storage function S(x) such that it fulfills Equa-
tion (6). The supply rate is

w(t) = uT (t)y(t)

=
[
λ n

] λ
n

=
λ2

n
+ λ

=
λ

n
λ+

λ

n
n

= x(t)(λ+ n)

Let the storage function and its derivative be

S(x) =
1

2
x2 =

1

2

λ2

n2

Ṡ(x) = ẋx

This storage function is positive definite, since it cannot be
zero unless all the state variables are zero, and because the
state variables are squared.

So, to verify Equation (6):

Ṡ(x) ≤ w
ẋx ≤ x(λ+ n)

ẋ ≤ λ+ n

λ̇

n
− λ ṅ

n2
≤ λ+ n

λ

n

(
λ̇

λ
− ṅ

n

)
≤ λ+ n

λ̇

λ
− ṅ

n
≤ n+

n2

λ

λ̇

λ
≤ ṅ

n
+ n+

n2

λ

In this expression, λ and λ̇ are measured system constants.
In a real system, n is the number of servers being assigned
to the QoS level, and ṅ is the change from the last time
the controller was run to this time. So, we can replace the
continuous time derivative with a discrete approximation
using the finite difference method:

ṅ =
n− nold

∆t

Therefore, this expression is a function of measured con-
stants and n, which can be adjusted by the controller in
such a way that this system is passive.

This equation for n is of the form:

0 =
1

n
+ 1 + n+ n2

These equations have three solutions for n, but only one of
them is positive and real, which n, as a physical number of
servers, must be. Numerically, the solution to the passivity
condition above gives a lower bound to the number of servers
assigned to a single QoS level. In practice, this lower bound
turns out to be low enough that it is easy to meet; in fact, in
all of the reasonable cases simulated, this lower bound was
1 server.

Next, we determine the input passivity index of this system,
using the work function from Equation (7):

w = uT y − νuTu

=
[
λ n

] λ
n
− ν

[
λ n

] [ λ
n

]
=
λ

n
(λ+ n)− ν

(
λ2 + n2)

We use the same storage function from the passivity proof:

Ṡ(x) = ẋx

=

(
λ̇

n
− λ ṅ

n2

)
λ

n



Finally, plug into Equation (6):

Ṡ ≤ w

λ

n

(
λ̇

n
− λ ṅ

n2

)
≤ λ

n
(λ+ n)− ν

(
λ2 + n2)

λ

n

(
λ̇

n
− λ ṅ

n2
− λ− n

)
≤ −ν

(
λ2 + n2)

ν ≤ −
λ
n

(
λ̇
n
− λ ṅ

n2 − λ− n
)

λ2 + n2

This expression, though inelegant, gives us a calculable bound
on ν for the arrival rate division system. All of these vari-
ables are measured system parameters, including the deriva-
tives, which can be accounted for using finite differences, as
above. Thus, depending on n, the system can be more or
less passive.

3.1.4 Passivity of Performance Measurement
In [15, 14], the authors present a method for controlling
relative delay ratios in web servers. Because of the non-
deterministic nature of arriving requests, the delay promises
made can only be relative, but this is a reasonable proxy for
actual delay in normal operating conditions. We take this
abstraction a step further by using the number of queued
requests in each QoS level as a proxy for the total queuing
delay, which we assume dominates the total delay a request
experiences in this system. The advantage to this is that the
length of the queues in the system can be measured directly
at an instant in time, whereas delay can only be measured
after the delay has occurred. This tightens the control loop
and makes the passivity of the system easier to reason about,
as discussed.

Let the input to this block be the number of requests queued
in each QoS level. This can be obtained by summing the
length of the queues at each individual server. Let qi repre-
sent this sum for a QoS level i at which this particular block
is operating, and qi can also be taken to be the state of the
block. Then, the output of the block is the share of the total
number of queued requests that QoS level i bears. In more
formal language,

u(t) =
[
q0 q1 · · · qi · · · qn

]T
x(t) = qi

y(t) =
qi∑n
k=0 qk

Note that all qi’s are a function of time, so qi is a shorthand
for qi(t).

Proof. To show that this system is passive, we again
construct a storage function S(x) such that it fulfills Equa-

tion (6). The supply rate is

w(t) = uT (t)y(t)

=
[
q0 q1 · · · qi · · · qn

] qi∑n
k=0 qk

=
qiq0∑n
k=0 qk

+ · · · q2i∑n
k=0 qk

+ · · · qnqi∑n
k=0 qk

= qi

(
q0 + · · ·+ qi + · · ·+ qn∑n

k=0 qk

)
= qi

∑n
k=0 qk∑n
k=0 qk

= qi

Take κ to be a constant in units of requests per time, and
set it equal to the maximum number of requests that this
QoS level will experience at any given time. This constant
can be arbitrarily high, but is not infinite, as we can reason-
ably assume that an unbounded number of requests will not
arrive at our system in a bounded amount of time. Then, a
possible storage function S(x) is

S(x) =
1

2κ
q2i time · requests

Moreover, if κ is positive, then this function is positive def-
inite.

Then, to verify Equation (6):

w(t) = qi ≥
dS(x)

dt

≥ d

dx

(
1

2κ
q2i

)
≥ 1

κ
q̇iqi requests

Because q̇i is at most κ, this expression is at most qi, so the
passivity condition holds.

Next, we find the input passivity index of the performance
measurement system, as done in the previous sections. First,
calculate the work function in Equation (7):

w = uT y − νuTu

= qi − ν
n∑
k=0

q2k

Use the same storage function, with the same derivative, as
above:

Ṡ =
1

κ
q̇iqi

Then, plug into Equation (6):

Ṡ ≤ w

1

κ
q̇iqi ≤ qi − ν

n∑
k=0

q2k

ν ≤
qi − 1

κ
q̇iqi∑n

k=0 q
2
k

ν ≤ qi∑n
k=0 q

2
k

(
1− 1

κ
q̇i

)



If we make κ arbitrarily high, then we can eliminate the
second term and get a bound on the passivity index of this
system.

ν ≤ qi∑n
k=0 q

2
k

We are permitted to do this because no matter how large κ
is, the storage function is still positive definite. This con-
venience of having a manipulable storage function, which is
not necessarily related to a true physical quantity, is com-
mon in software systems. Though ν might be small, it is
always greater than zero, meaning that this system has a
small excess of passivity. Furthermore, it is calculable based
on system parameters.

3.1.5 Passivity of the Controller
The most important component of the loop, and the one over
which we have the most control in its design, is the controller
of the system. In this design, every QoS level has its own
controller in the loop, and these controllers coordinate to
determine the number of servers which should be changed
to handle requests at each QoS level.

As discussed in Section 2.5.1, all proportional controllers
and PID controllers are passive when used in a feedback
loop. This system can easily be transformed from the sys-
tem where the controller is in the feedforward path (as in
Figure 7) to where the controller is in the feedback loop
(as in Figure 8), provided the controller is LTI. [18] Thus,
though a proportional controller might not be passive from
its input to output on its own, using a proportional con-
troller in the feedback loop will preserve the passivity of the
system as a whole.

3.1.6 Putting It All Together
The three components of the system are passive, but their
series connection may or may not be passive. We use the
secant criterion from Section 2.4.3 to determine the upper
bound on the passivity of the feedforward system. The ex-
pressions for the input passivity indices of each system are:

νArrival Rate Division = νa = −
λ
n

(
λ̇
n
− λ ṅ

n2 − λ− n
)

λ2 + n2

νServer Queue = νq =
qrs
r2

νPerformance Measurement = νp =
qi∑n
k=0 q

2
k

There are three components, so n = 3 in the secant criterion
expression in Equation (12). Then, the output feedback
passivity index of the whole feedforward system is bounded
by

ρFeedforward System = ρs > −
cos
(
π
4

)4
νaνqνp

= − 1

4νaνqνp
(14)

provided that νa,q,p > 0. Note that this bound shows that,
at worst, the system is not passive! To guarantee passivity of
the overall system, we can make up for the lack of passivity
in the feedforward system by increasing the controller gain
in the feedback system, as discussed in Section 2.4.2.

For example, if the following system parameters are mea-

sured in a single control cycle:

νa =
1

4
νq = νp = 1

then,

ρs = − 1

4 1
4

= −1

So, the gain of the controller must be at least 1 to make the
entire system passive.

An even laxer bound on the gain of the controller comes from
the expression in Equation (13), which stabilizes without
making the whole system passive. We can use the same
passivity indices to compute this:

1

Kpνaνqνp
<

1

cos
(
π
3

)3
8

νaνqνp
< Kp (15)

Therefore, without linearizing, or tuning, we have a calcu-
lable bound for the passivity of this system, which in turn
can inform our control of this system. In the next section,
we examine the behavior of such a system with a software
simulator, under a few different conditions.

3.2 The Simulator
The software simulator for this system was built using Python
3.5.1 [21], NumPy to handle array and numerical opera-
tions [25], and SimPy, an event-based simulation library [24].
SimPy provided event scheduling like running the controller
at fixed intervals, simulating event arrivals and services, etc.

3.2.1 Simulator Parameters
The simulator was built to be configurable. However, the
results presented here represent the following set simulator
parameters:

• N = 1000: The simulator was run with 1000 servers.

• T = 100: The controller period was 100 seconds. Dif-
ferent system parameters required for calculating pas-
sivity indices are measured over the control period and
averaged (as discussed in Section 2.6).

• Total Time = 5000: The simulator was run for 5000
seconds.

3.2.2 Arrival Profiles
For the purposes of simulation, simulated events arrive in
an exponential distribution with a certain mean λ, and then
take a certain time to process, which is also distributed expo-
nentially. For most experiments, the simulated server farm
was run at 80% to 90% of the theoretical capacity of the
farm. Requests took 10 seconds to process, and depending
on the service quality, and time in the simulation, arrived at
different rates. Four different arrival profiles with 2 QoS lev-
els, and one with 3 QoS levels, were tested. Example traces
measuring the arrival rates for these five different traffic ar-
rival profiles are in Figures 9 to 13.



Figure 9: The traffic arrival profile 0.

Figure 10: The traffic arrival profile 1.

3.2.3 Simulated Controllers
Three different proportional controllers were simulated:

1. A static proportional controller. This is labelled ‘p’ in
the results.

2. A dynamic proportional controller which passified the
entire system. It uses whatever proportional gain was
required to make the entire system passive using the
expression in Equation (14), as discussed in Section 3.1.6.

3. A dynamic proportional controller which only stabi-
lized the system. This controller used the gain de-
termined by using the stabilizing expression in Equa-
tion (15), as also discussed in Section 3.1.6.

3.3 Simulation Results
In general, the controllers informed by passivity performed
well, with a few caveats. Summaries of average errors are in
Figure 14. Sample queue shares by time charts for all three
controllers, for Arrival profile 0, are in Figures 15 to 17.

Figure 11: The traffic arrival profile 2.

Figure 12: The traffic arrival profile 3.

Both passivity theory based controllers performed far bet-
ter than a simple static proportional controller, especially at
a steady state. However, in achieving such low steady state
error, these controllers were extremely aggressive, and allo-
cated as many servers as possible to one QoS, or the other
(the simulator ensured each QoS had at least one server).
Due to this, the queue share measured was very desirable,
but the queues of a few servers grew very large. Without
job rebalancing modeled in the passivity of the system, the
controllers could not account for this properly.

4. EXAMINING REAL SYSTEMS
With an example system tried and tested, now we turn to
analysis of more complex, real software systems. The same
concepts can be applied as in Section 3, with varying de-
grees of success. In particular, we will look at two different
published software systems: Proteus and Pyro.

4.1 Proteus
Proteus [12] is a software system which builds on memcached
[5], modifying it to increase performance of a cache cluster



Figure 13: The traffic arrival profile 4.

Figure 14: Average errors for each tested controller,
by traffic arrival profile.

by improving the provisioning of cluster nodes, specifically
in order to save energy by turning underutilized cache nodes
off without impacting performance.

4.1.1 Proteus System Design
There are a few different system components in Proteus,
based on the goals of the system. Proteus aims to:

• Balance the load on each cache node, even when the
amount of work is changing, and the number of nodes
is similarly changing.

• Minimize the movement of data between cache nodes
during rebalancing.

• Eliminate delay spikes during rebalancing.

The end result is that Proteus is an actuator which, when
told, will create smooth transitions between different cache
provisioning systems. Thus, Proteus can be used to turn

Figure 15: Queue share over time for QoS 0, Arrival
Profile 0, for a simple proportional controller.

Figure 16: Queue share over time for QoS 0, Arrival
Profile 0, for a passive controller.

servers on and off when loads are high and low, in order to
save energy in a data center.

In order to provide these smooth transitions, Proteus em-
ploys a Bloom filter [4] to count memcached data keys, which
allows for Proteus to know what data is “hot”, and should
be moved to a different cache node if the cache node it is on
is to be turned off.

Proteus itself can be used with any provisioning system (as
noted in the Proteus paper [12]), which means that any sort
of control loop can be used, with Proteus as the cache cluster
actuator. In the experiments reported in the Proteus paper,
delay was the measured and controlled variable. When aver-
age delay reached a certain threshold over the desired delay
per request, more cache nodes were turned on.

4.1.2 Proteus Passivity Analysis



Figure 17: Queue share over time for QoS 0, Arrival
Profile 0, for a stabilizing controller.

For the purposes of passivity analysis of Proteus, the system
can be simplified greatly. Notably, the way that the control
loop is designed in the Proteus paper presents two major
problems for passivity analysis:

1. Delay measurements are inherently delayed. As dis-
cussed in Section 3.1.4, the reason queue length was
measured in the example system is that by the time
the delay experienced by a request is determined, that
request has left the system and the measurement may
no longer reflect what is happening in the system. As
such, delay measurements are not passive. The reason
proportional controllers work is that the direction of
change is always guaranteed to bring the system closer
to the set point. But when the measurement is de-
layed, then the direction of change is also delayed, and
the controller is no longer passive.

2. The Bloom filter, which smooths transitions, also in-
troduces delay. Even if the measurements of delay were
not a problem, the main contribution of the Proteus
paper, the smoothing of the provisioning, causes the
same kind of direction of change delay. Though in
practice it works well, in theory, the delay in the actu-
ation caused by the Bloom filter is not passive.

Thus, passivity analysis of Proteus is untenable, unless large
changes are made to the main thrust of the system.

4.2 Pyro
Pyro [11] is a geo-spatial data-store designed for optimizing
the speed and efficiency of geometrically and temporally col-
located queries, which are common to many kinds of data.
It was made by making modifications to Apache Hadoop
[26], HBase [6], and HDFS [22], all of which allow Pyro to
understand geometry associated with data.

4.2.1 Pyro System Design
Though there are many components to the design of Pyro,
the ones which are relevant to the design of a control loop

for it are those related to deciding when to split and join
geo-spatial regions in the data. For instance, if a race was
being run through a city, and the runners were at different
places in different times, then the hot spot of runner location
data would move through space over time, and ostensibly, be
handled by different HRegion servers. It would be inefficient
to evenly space the HRegion servers simply by geometry;
instead, Pyro can split and join regions based on the amount
of data stored there, and how many requests for said data
are present.

Thus, the control loops must tell each region of data whether
it should split, join or do neither. This can be done by simple
thresholding, or by measuring the share of work each region
is doing, similar to the example system in Section 3. Thus,
we can do passivity analysis of control loops which we can
set up in a way that the original Pyro paper suggests [11].

4.2.2 Pyro Passivity Analysis
A key difference between Pyro and Proteus is that as an
actuator, Pyro does not have intentional delay in its split (or
join) operations. Thus, the delay which ruined the passivity
analysis from Section 4.1 on Proteus will not plague Pyro in
the same way. In fact, Pyro is a perfect example of a system
which follows the same pattern as the example system in
Section 3, with a few key differences:

1. Instead of measuring queue length, it would be more
useful for Pyro to measure the share of requests be-
ing serviced in a given control period, and ensure that
that share is close to even. Imagine that there are N
regions. Each region receives requests at a rate of λi
in a control period. Then, a single region’s request
burden bi would be:

bi =
λi∑N−1
k=0 λk

Then, the error of the control loop for that region
would be:

e = bi −
1

N

This performance measurement block can be shown to
be passive in the exact same way as the performance
measurement block in Section 3.1.4.

2. The number of servers N is not necessarily fixed. It
is possible in a Pyro deployment scenario that extra
servers are provisioned only when necessary, to save
energy. Though this changes the number of control
loops and inputs to blocks after any given control de-
cision, this does not change the passivity analysis from
Section 3.

Therefore, a control loop controlling a Pyro system can be
informed by passivity theory, in a very similar way to the
results in Section 3.

5. RELATED WORK
The notion of passivity has been around in electrical and
mechanical systems since the 1970s [2], but only recently
has the notion of using passivity theory to analyze software-
related systems become a topic of research. Recently, in the



digital realm, passivity theory has been used to design con-
trollers for robots [7], examine the propagation of viruses
[9], and examine the passivity properties of neural networks
[10]. However, there is very little research being done on this
topic. Moreover, the vast majority of software developers do
not have basic control theory, let alone passivity theory, in
their toolboxes. We hope that this project will help soft-
ware developers understand how to use passivity theory in
their work to develop more robust and better performing
software.

6. CONCLUSIONS
We have presented a framework for analyzing software sys-
tems using passivity theory, which promises to be useful for
software control design in many scenarios. In the future,
software engineers should be able to use passivity theory
to design and analyze their projects, recognize places where
control theory can be used to improve performance, and use
the properties of passive systems to aid in control design.
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