
SOFTWARE Open Access

TagDigger: user-friendly extraction of read
counts from GBS and RAD-seq data
Lindsay V. Clark* and Erik J. Sacks

Abstract

Background: In genotyping-by-sequencing (GBS) and restriction site-associated DNA sequencing (RAD-seq), read
depth is important for assessing the quality of genotype calls and estimating allele dosage in polyploids. However,
existing pipelines for GBS and RAD-seq do not provide read counts in formats that are both accurate and easy to
access. Additionally, although existing pipelines allow previously-mined SNPs to be genotyped on new samples,
they do not allow the user to manually specify a subset of loci to examine. Pipelines that do not use a reference
genome assign arbitrary names to SNPs, making meta-analysis across projects difficult.

Results: We created the software TagDigger, which includes three programs for analyzing GBS and RAD-seq data.
The first script, tagdigger_interactive.py, rapidly extracts read counts and genotypes from FASTQ files using user-
supplied sets of barcodes and tags. Input and output is in CSV format so that it can be opened by spreadsheet
software. Tag sequences can also be imported from the Stacks, TASSEL-GBSv2, TASSEL-UNEAK, or pyRAD pipelines,
and a separate file can be imported listing the names of markers to retain. A second script, tag_manager.py,
consolidates marker names and sequences across multiple projects. A third script, barcode_splitter.py, assists with
preparing FASTQ data for deposit in a public archive by splitting FASTQ files by barcode and generating MD5
checksums for the resulting files.

Conclusions: TagDigger is open-source and freely available software written in Python 3. It uses a scalable, rapid
search algorithm that can process over 100 million FASTQ reads per hour. TagDigger will run on a laptop with any
operating system, does not consume hard drive space with intermediate files, and does not require programming
skill to use.

Keywords: Genotyping-by-sequencing, Meta-analysis, Read depth, Restriction site-associated DNA sequencing,
Single nucleotide polymorphism (SNP), Tag counts

Background
Genotyping-by-sequencing (GBS), and closely-related
techniques such as restriction-site associated DNA se-
quencing (RAD-seq) and double-digest restriction-site as-
sociated DNA sequencing (ddRAD), have revolutionized
the use of molecular markers in model and non-model or-
ganisms by providing inexpensive methods to simultan-
eously mine and genotype thousands of single nucleotide
polymorphism (SNP) markers without the need for a ref-
erence genome [1–4]. However, data quality remains a
major issue with all of these techniques [4, 5]. Because the
DNA that is sequenced is a random sample of all sites ad-
jacent to a particular restriction enzyme cut site, for any

given individual many loci will be missing simply due to
under-sampling [1, 6]. Moreover, in an individual that is
heterozygous at a given locus, it is possible that only one
of two alleles will be sequenced, making the individual er-
roneously appear homozygous [6, 7]. A crucial piece of in-
formation for evaluating GBS data quality is therefore the
number of sequencing reads per allele in each individual.
For example, an individual with 20 reads for one allele and
zero reads for the other is likely to be a true homozygote,
whereas an individual with only one read for one allele
and zero reads for the other might be an under-sampled
heterozygote. Where genotype accuracy is important, it is
practical to simply remove all homozygous genotype calls
below a certain read depth [8]. Methods also exist that
take read depth into account when estimating allele fre-
quencies and probabilities that genotype calls are correct

* Correspondence: lvclark@illinois.edu
Department of Crop Sciences, University of Illinois at Urbana-Champaign,
1201 W. Gregory Drive, Urbana, IL 61802, USA

© 2016 The Author(s). Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0
International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and
reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to
the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver
(http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.

Clark and Sacks Source Code for Biology and Medicine (2016) 11:11
DOI 10.1186/s13029-016-0057-7

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Illinois Digital Environment for Access to Learning and Scholarship Repository

https://core.ac.uk/display/158317859?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://crossmark.crossref.org/dialog/?doi=10.1186/s13029-016-0057-7&domain=pdf
mailto:lvclark@illinois.edu
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/

[9] and for estimating relatedness coefficients [10]. On
the other hand, tags with unusually high read depth
may represent repetitive sequence and should therefore
be excluded from analysis [11]. Knowledge of the num-
ber of reads per allele is also important for assigning al-
lelic configurations and estimating allele frequencies in
polyploids [12, 13].
Given the importance of read depth in evaluating

genotype quality and performing downstream analysis of
GBS data, one would expect read counts to be accurately
exported from all SNP calling pipelines in an easily-
accessible format, but this is not the case. TASSEL’s
UNEAK pipeline [6] (for species without a reference
genome) exports a text file containing read counts for all
SNP calls as part of the final output, but does not report
read counts higher than 127. This maximum number of
reported read counts is not an issue for filtering out ge-
notypes with low read counts, but does interfere with
analysis of polyploid species or bulked samples, for
which accurate calculation of read count ratios is
needed. TASSEL’s GBS version 2 pipeline [14] (for spe-
cies with a reference genome) exports accurate read
counts in VCF format only, requiring moderate pro-
gramming skill to extract those values for analysis.
Stacks [15] exports read counts, although it has the dis-
advantage of only running on Unix-like operating sys-
tems. pyRAD [16] exports genotypes but not read
counts. RADtools [17] exports read counts in a custom
format, but is no longer being updated since Stacks was
determined to have superior genotyping and perform-
ance [5]. RADtools also does not allow barcode lengths
other than 5 nucleotides, and does not allow multiple
barcodes per individual.
For tasks such as genomic selection or the assign-

ment of new individuals to known populations, it is
also desirable to call alleles from a user-specified set of
SNPs, rather than re-running the entire SNP-mining
pipeline. With both TASSEL and Stacks one can run
data from new samples against a previously-generated
library of SNPs. However, neither program allows the
user to specify subset of SNPs to examine. pyRAD and
RADtools will only genotype SNPs de-novo; they do
not have options to add new samples to an existing
genotype set.
For cross-study comparisons, it is also useful to have a

universal set of marker names across multiple projects.
Reference-genome-based pipelines such as TASSEL-GBS
facilitate such comparisons by naming SNPs according
to alignment position, but reference-free pipelines assign
arbitrary numbers to loci since no other information is
available for naming. For pipelines such as TASSEL-
UNEAK and Stacks, utilities are needed to compare tag
sequences across projects and generate universal sets of
marker names.

We present new software, TagDigger, which can man-
age sets of DNA sequence tags and rapidly search for
those tags in FASTQ files. TagDigger is open-source,
written in Python 3, and will run on any operating sys-
tem. It is designed to require minimal RAM and pro-
cessing power so that it can be run on a laptop
computer. It can read FASTQ files in either uncom-
pressed or GZIP format, and does not waste hard drive
space by uncompressing zipped files or generating other
working files before producing the final output. All input
and output files are in comma-separated value (CSV)
formats so that they can be created and opened with
common software such as R or Microsoft Excel. Tag se-
quences can additionally be read in the formats output
by TASSEL, Stacks, and pyRAD. Lastly, TagDigger is de-
signed to be accessible to users lacking programming ex-
perience and avoids the use of incomprehensible error
messages.

Implementation
Currently, three Python programs are included with
TagDigger: tagdigger_interactive.py, which counts the oc-
currences of tags in FASTQ files and outputs a table of
tag counts indexed by tag and barcode, as well as
(optionally) a table of numeric diploid genotypes for
biallelic markers; tag_manager.py, which consolidates
marker names, tag sequences, alignment and other in-
formation across multiple projects; and barcode_-
splitter.py, which splits a FASTQ file, by barcode, into
multiple FASTQ files with barcode, adapter, and poten-
tially chimeric sequence removed, and optionally gener-
ates MD5 checksums for all output files to facilitate
archiving data with NCBI (National Center for Biotech-
nology Information), EBI (European Bioinformatics
Institute) or DDBJ (DNA Data Bank of Japan). All func-
tions used by these three programs are contained in the
file tagdigger_fun.py so that they can be used by Python
programmers for tasks such as batch processing. Restric-
tion enzyme cut sites and adapter sequences are also in-
cluded at the top of the tagdigger_fun.py file so that new
enzymes and adapters can be easily added.

Input
For tagdigger_interactive.py, a user-generated key file
lists all barcodes to search for in each FASTQ file. Three
headers are needed for this CSV file: “File” (indicating
the name of the FASTQ file), “Barcode” (indicating the
barcode sequence), and “Sample”. Other columns are ig-
nored. If FASTQ file names end with “.gz”, they are as-
sumed to be compressed with GZIP, and otherwise they
are assumed to be uncompressed. Barcodes that the user
does not wish to investigate can be omitted to speed
processing time. If the same sample name appears mul-
tiple times, tag counts are summed across all instances

Clark and Sacks Source Code for Biology and Medicine (2016) 11:11 Page 2 of 6

of that sample. If barcodes have been removed from the
FASTQ file, the user can simply list one sample per file
and leave the Barcode column blank. A very similar file
is needed for barcode_splitter.py, but with the headers
“Input File”, “Barcode”, and “Output File”.
Tag sequences can be imported to tagdigger_interacti-

ve.py and tag_manager.py in any of seven different
formats. Four of these are the direct output of other
SNP-calling software: FASTA files from TASSEL-
UNEAK, the SAM file used for generating markers in
TASSEL-GBS, tab-delimited text output of the cstacks
program in Stacks, and the.alleles file output from
pyRAD. Three CSV formats are also readable: two tags
per row, with column headers “Marker name”, “Tag se-
quence 0”, and “Tag sequence 1”; one tag per row
(allowing for non-biallelic markers), with column
headers “Marker name”, “Allele name”, and “Tag se-
quence”; and two merged tags per row, with column
headers “Marker name” and “Tag sequence”. For the lat-
ter format, the variable portion of the tag is put between
square brackets with a forward slash separating the two
alleles, e.g., ACAGACTT[A/T]GTACCCA. This merged
format is also used as the output of tag_manager.py,
since it conserves hard drive space and RAM and makes
it easy for the human eye to see the polymorphism. For
any of the seven tag formats, the user can supply, as a
separate file, a list of names of markers to include in the
output. Supplying such a list conserves processing time

and output file size by ignoring tags in which the user is
not interested.

Search algorithm
Before processing a FASTQ file, tagdigger_interactive.py
recursively builds indexing trees of expected barcode
and tag sequences (Fig. 1). These indexing trees enable
very rapid matching of sequencing reads to the appropri-
ate barcode and tag. They also enable the software to
quickly discard reads that do not match any expected
barcode or tag. To save processing time, tagdigger_inter-
active.py ignores sequencing quality scores, with the as-
sumption that a read with an error is unlikely to match
a known tag. TASSEL also ignores quality scores, instead
distinguishing alleles from errors based on how fre-
quently they appear in the dataset [6, 14]. Because most
SNP mining software does not use the entire sequencing
read (for example, by default TASSEL uses only the first
64 nucleotides after the barcode, and in other software
the reads may be truncated to only retain the highest-
quality portion) the TagDigger search algorithm checks
to see if the read begins with a barcode and tag, and ig-
nores any nucleotides in the read after the end of the
tag. For any given FASTQ read, the algorithm begins at
the first nucleotide of the read and moves along the read
one nucleotide at a time, navigating through the index-
ing tree of barcodes. If the read begins with an expected
barcode, and also has the expected restriction cut site

None

None

None

Tags:
0: AGAA
1: GCTG
2: GGTG
3: TTGTA
4: GAGAC
5: CCATC
6: TTCT

A

C

G

T

Reads:
CTGGATAGGGATAT: None
GGTGACAGGATTAC: 2

A

C

G

T

None

None

None

None

None

None

None

None

None

A
C
G
T

A

C

G

T

A

C

G

T

A

C

G

T

A
C
G
T

A
C
G
T
A
C
G
T
A
C
G
T
A
C
G
T

None
None
None

None
None

None

None
None

None
None
None

None
None

None

None

A
C
G
T

0
None
None
None
NoneA

C
G
T

None
None

None
A
C
G
T

None
None

A
C
G
T

None
None
1
None

A
C
G
T

None
None
2
None

A
C
G
T

None
None
None
6
NoneA

C
G
T

None
None

A
C
G
T

3
None
None
None

A
C
G
T

None
4
None
None

A
C
G
T

None
5
None
None

Fig. 1 Graphical representation of a sequence indexing tree generated by TagDigger. Use of the tree to match sequencing reads to known tags
is illustrated. The red read does not match any known tags, and it takes two steps (looking at the first two nucleotides of the read) to make this
determination. The blue read matches one of the expected tags, and it takes four steps to make the match. In comparison, if every read were
compared to every tag, seven steps (one for each possible tag) would be required for every read. The maximum number of steps required to
match a read will always be the length of the longest tag, which is advantageous when there are thousands of possible tags that are each 40–80
nucleotides long

Clark and Sacks Source Code for Biology and Medicine (2016) 11:11 Page 3 of 6

after the barcode, the algorithm begins navigating the
indexing tree of tags, beginning with the first nucleotide
in the read after the restriction site (or at the beginning
of the restriction site in the case of enzymes such as
ApeKI with variable cut sites). If the read contains an ex-
pected tag, the software increments the read count for
that barcode*tag combination.
The barcode_splitter.py program uses the above

algorithm to assign reads to barcodes. The same search
algorithm is used for identifying adapter sequence (to be
trimmed out of the read), but the search is performed
from the end of the read rather than the beginning.
Additionally, the barcode splitter uses more conven-
tional text searching to detect full restriction cut sites
present anywhere in the read. Since a full cut site may
indicate a chimera of two genomic DNA fragments, se-
quence after a full cut site is trimmed from the read.
Because the tag_manager.py program only assigns

markers the same name if tag sequences are an exact
match (as opposed to one tag sequence being a trun-
cated version of another), it does not use the same
search algorithm as the other two programs. Instead, a
binary search using the bisect module in Python is used
for matching tags across two sets of markers.

Output
The tagdigger_interactive.py program generates a CSV
file of read counts, with samples in rows and tags in col-
umns. The first row contains tag names, and the first
column contains sample names. Tag names consist of
the marker name and allele name(s) separated by an
underscore. For biallelic markers, the final allele name is
‘0’ or ‘1’, with the tag that comes first alphabetically be-
ing allele ‘0’ (except in formats where the user specifies
which tag is ‘0’ and which is ‘1’). The nucleotides at vari-
able sites are also included as an allele name. Because
TASSEL-GBS may mine multiple SNPs from the same
locus where a tag aligns to the genome, TagDigger does
not use the original SNP names when naming tags
imported from the TASSEL-GBS pipeline, but can out-
put a table indicating how the TASSEL-GBS SNP names
correspond to the marker names generated by
TagDigger.
When all markers are biallelic, tagdigger_interactive.py

can also export a numeric genotype table, with samples
in rows and markers in columns. Homozygous geno-
types are coded as ‘0’ or ‘2’, heterozygous genotypes are
coded as ‘1’, and cells with missing data are left blank.
Homozygotes for allele ‘0’ are coded as ‘0’ and homozy-
gotes for allele ‘1’ are coded as ‘2’.
The barcode_splitter.py program generates uncom-

pressed FASTQ files. Barcodes, adapter sequence, and
potentially chimeric sequence are removed as described
in the previous section. The original comment line is

retained for each read, with the barcode added to the
end of the comment in keeping with Illumina FASTQ
format. Optionally, barcode_splitter.py can also generate
a CSV file listing the MD5 checksum of each new
FASTQ file that has been created.
The tag_manager.py program outputs a CSV file with

the headers “Marker name” and “Tag sequence”. Tag se-
quences are in the merged format, e.g., CCGATTAG[C/
T]AGGGGTT, and can be read back into the TagDigger
program. Marker names consist of a prefix supplied by
the user followed by a number, e.g., MyLabsTags000102.
Optionally, additional columns can contain the original
marker names or other data provided by the user in
CSV format. A FASTA file of sequences for each marker,
with IUPAC nucleotide codes for variable sites, can also
be exported. If this FASTA file is used for alignment to a
reference genome, tag_manager.py can import the
resulting SAM file and add columns to the marker list
containing chromosome, position, and alignment
quality.

Results and discussion
Performance
The tag_manager.py program was used to generate a
consolidated list of tag pairs produced by the UNEAK
pipeline across four projects in Miscanthus sinensis and
M. sacchariflorus [8, 18–20]. A total of 57,780 tag pairs
were identified, 14,063 of which were shared between at
least two projects. When the entire set was imported by
tagdigger_interactive.py, 5596 out of 57,780 tag pairs
were discarded for having an allele in common with an-
other tag pair. The remaining 104,368 tags (52,184 pairs)
were then used for evaluating the performance of the
search algorithm. Performance was tested on a 2.7 GHz
processor using Fedora Linux. For consistency with
benchmarking tests performed on other software (see
below), 96 Gb of RAM was available to the search algo-
rithm, although it used less than 1 Gb. One thousand
randomly sampled sets each of 100, 1000, and 10,000
tags were generated. An indexing tree was built from
each set of tags. The time needed to generate indexing
trees increased linearly with the number of tags (Table 1).
Each tag indexing tree was then used for identifying tags
in a FASTQ file, with 96 barcodes, generated in a previ-
ous study on M. sinensis and M. sacchariflorus [18]. For
each indexing tree, the time it took to process 10,000
FASTQ reads was recorded. Processing time for the
search algorithm increased logarithmically with the
number of tags in the indexing tree (Table 1).
Performance results indicate that the tag searching al-

gorithm is highly scalable, not unlike a binary search al-
gorithm. For large sets of tags, more processing time (a
few seconds) is required to build an indexing tree, but
that amount of time remains insignificant compared to

Clark and Sacks Source Code for Biology and Medicine (2016) 11:11 Page 4 of 6

the amount of time needed to process an entire FASTQ
file (one to two hours for ~200 million reads, the typical
output from Illumina HiSeq technology; Table 1). Using
our search algorithm, the time to process a FASTQ file
is not drastically different whether 100 tags or 10,000
tags are being examined.
Using the same FASTQ file, we benchmarked several

popular non-reference de-novo pipelines for processing
GBS and RAD-seq data in order to compare them to
TagDigger (Table 2). For benchmarking, each pipeline
was allowed to use up to 24 2.7 GHz processor cores in
parallel, and had access to 96 Gb of RAM. Total pro-
cessing times were summed across all processor cores in
order to compare software, particularly since TagDigger
does not use parallel processing. Pipelines tested in-
cluded UNEAK in TASSEL 3.0, Stacks 1.4 (including
process_radtags and denovo_map.pl), and pyRAD 3.0.
Each program was set to recognize PstI and MspI as the
restriction sites (for Stacks, only PstI needed to be speci-
fied). The minimum number of identical reads needed
to create a stack was set to 5 in Stacks in order to match
the default in UNEAK. Other parameters were left at de-
faults. Benchmarking was performed on the same Fedora
Linux system on which TagDigger performance was
tested.
TASSEL-UNEAK was the only pipeline that was faster

than TagDigger, needing twenty minutes to process the

file (Table 2), compared to the one to two hours needed
by TagDigger (Table 1). However, UNEAK required
more RAM and hard drive space than TagDigger. Stacks
was the next fastest with seven hours of processing time,
and pyRAD was by far the slowest with 387 h of pro-
cessing time (Table 2), making it impractical for users
without access to a computer cluster for parallel pro-
cessing. UNEAK, Stacks, and pyRAD ranked in the same
order in terms of processing time, RAM, and hard drive
space needed (Table 2). The main advantage of pyRAD,
and the likely reason why it requires long processing
times, is its ability to detect insertions and deletions
[16]. Given that TagDigger can import the output of
pyRAD and genotype the same insertions and deletions
on new samples much more quickly and with much less
available RAM and hard drive space, we expect TagDig-
ger to be especially useful to pyRAD users. We did not
benchmark RADtools on our FASTQ file, given that the
file included barcodes of multiple lengths, which is not
supported by RADtools.
Since Stacks and pyRAD de-multiplex FASTQ files

similarly to barcode_splitter.py (producing one FASTQ
file per sample, with barcode sequence removed), we
also compared processing time across these three
programs (Table 3). Stacks and TagDigger had similar
processing times, which were approximately half the
processing time of pyRAD. Of these three, TagDigger is
the only software that can run on Microsoft Windows.

User interface
All three of the TagDigger programs can be launched
from the operating system’s shell or command prompt.
For example, one would use cd to navigate into the dir-
ectory containing the TagDigger programs, then type
“python tagdigger_interactive.py” without any additional
arguments. The program then prompts the user to sup-
ply information such as restriction enzyme, directory for
reading and writing files, and names of input and output
files. If the user makes a mistake, for example misspell-
ing the name of a restriction enzyme or input file, the
software simply prompts them again for that piece of in-
formation. Information is printed to the console such as
the number of barcodes and tags read from input files.
As each FASTQ file is processed, TagDigger also prints

Table 2 Performance of de-novo GBS and RAD-seq pipelines
when analyzing a single FASTQ file

Software Size of
intermediate
files generated
(Gb)

RAM utilized
by pipeline (Gb)

Total time, across all
processor cores, to
process 203,000,000
FASTQ reads and
output genotypes
(min)

UNEAK pipeline
in TASSEL 3.0

0.5 1.9 22

Stacks 1.4 8.2 4.2 424

pyRAD 3.0 40.9 18.5 23,215

The FASTQ file analyzed is the same as that used to produce Table 1. pyRAD
differs from UNEAK and Stacks in that it searches for insertions and deletions,
whereas the other two only search for substitutions, which is likely to account
to for the substantially longer processing time

Table 1 Performance of the TagDigger search algorithm on a
FASTQ file from RAD-seq with 96 barcodes

Number
of tags

Time to build
indexing tree (s)

Time to process
10,000 FASTQ
reads (s)

Estimated time to
process 200,000,000
FASTQ reads (min)

100 0.03 ± 0.01 0.218 ± 0.016 73

1000 0.84 ± 0.09 0.238 ± 0.005 79

10,000 7.79 ± 1.18 0.291 ± 0.007 97

For each number of tags, 1000 replications were performed with TagDigger,
each with a different randomly-sampled subset of tags, and each with a
different set of 10,000 reads from the FASTQ file. Means and standard
deviations are provided

Table 3 Performance of software for de-multiplexing a single
FASTQ file

Software Time (min)

Barcode_splitter.py in TagDigger 169

Stacks 1.4 156

pyRAD 3.0 358

The FASTQ file analyzed is the same as that used to produce Tables 1 and 2

Clark and Sacks Source Code for Biology and Medicine (2016) 11:11 Page 5 of 6

its progress to the console so that the user can estimate
how much time remains.

Conclusions
With the increasing popularity of GBS among research
groups that lack previous bioinformatics experience, we
expect that TagDigger will help many users to more eas-
ily manage their data and evaluate genotype quality.
Universal marker names generated by TagDigger will
make meta-analysis of mapping and association studies
more straightforward. Easy accessibility of read count
data via TagDigger will facilitate the development of new
statistical methodologies that utilize read depth informa-
tion. Lastly, we hope that TagDigger will encourage the
archiving of raw GBS sequence reads in public databases
such as NCBI, EBI, and DDBJ by providing a platform-
independent tool for splitting FASTQ files by barcode
and calculating MD5 checksums. All source code for
TagDigger is available with this manuscript (Additional
file 1).

Availability and requirements
Project name: TagDigger
Project home page: https://github.com/lvclark/tagdigger
Archived version: DOI: 10.5281/zenodo.55760
Operating systems: Platform independent
Programming language: Python
Other requirements: Python 3.3 or higher
License: GNU GPL v. 3
Any restrictions to use by non-academics: none

Additional file

Additional file 1: Source code for TagDigger version 1.0. (GZ 29 kb)

Abbreviations
CSV, comma-separated value; DDBJ, DNA Data Bank of Japan; ddRAD, double
digest restriction-site associated DNA sequencing; EBI, European Bioinformatics
Institute; GBS, genotyping-by-sequencing; IUPAC, International Union of Pure
and Applied Chemistry; NCBI, National Center for Biotechnology Information;
RAD-seq, restriction site-associated DNA sequencing; SAM, sequence
alignment/map; SNP, single nucleotide polymorphism

Acknowledgments
We thank Gitanshu Munjal for bringing issues with other software to our
attention and Hongxu Dong for testing TagDigger.

Funding
Author LC was supported by the DOE Office of Science, Office of Biological
and Environmental Research (grant number DE-SC0012379).

Authors’ contributions
LC created the software and drafted the manuscript. ES requested universal
marker names, provided data for testing the software, and critically revised
the manuscript. Both authors read and approved the final manuscript.

Competing interests
The authors declare that they have no competing interests.

Consent for publication
Not applicable.

Ethics approval and consent to participate
Not applicable.

Received: 12 November 2015 Accepted: 6 July 2016

References
1. Poland JA, Rife TW. Genotyping-by-sequencing for plant breeding and

genetics. Plant Genome J. 2012;5:92–102.
2. Davey JW, Davey JL, Blaxter ML, Blaxter MW. RADSeq: next-generation

population genetics. Brief Funct Genomics. 2010;9:416–23.
3. Heffelfinger C, Fragoso CA, Moreno MA, Overton JD, Mottinger JP, Zhao H,

Tohme J, Dellaporta SL. Flexible and scalable genotyping-by-sequencing
strategies for population studies. BMC Genomics. 2014;15:979.

4. Narum SR, Buerkle CA, Davey JW, Miller MR, Hohenlohe PA. Genotyping-by-
sequencing in ecological and conservation genomics. Mol Ecol. 2013;22:2841–7.

5. Davey JW, Cezard T, Fuentes-Utrilla P, Eland C, Gharbi K, Blaxter ML. Special
features of RAD Sequencing data: implications for genotyping. Mol Ecol.
2013;22:3151–64.

6. Lu F, Lipka AE, Glaubitz J, Elshire R, Cherney JH, Casler MD, Buckler ES, Costich
DE. Switchgrass genomic diversity, ploidy, and evolution: novel insights from a
network-based SNP discovery protocol. PLoS Genet. 2013;9:e1003215.

7. Hohenlohe PA, Catchen J, Cresko WA. Population genomic analysis of
model and nonmodel organisms using sequenced RAD tags. In: Pompanon
F, Bonin A, Totowa NJ, editors. Data production and analysis in population
genomics. New York: Humana Press; 2012. p. 235–60.

8. Liu S, Clark LV, Swaminathan K, Gifford JM, Juvik JA, Sacks EJ. High density
genetic map of Miscanthus sinensis reveals inheritance of zebra stripe. GCB
Bioenergy. 2015;8:616–30.

9. Nielsen R, Korneliussen T, Albrechtsen A, Li Y, Wang J. SNP calling, genotype
calling, and sample allele frequency estimation from new-generation
sequencing data. PLoS One. 2012;7:e37558.

10. Dodds KG, McEwan JC, Brauning R, Anderson RM, van Stijn TC, Kristjánsson
T, Clarke SM. Construction of relatedness matrices using genotyping-by-
sequencing data. BMC Genomics. 2015;16:1047.

11. Morris GP, Grabowski PP, Borevitz JO. Genomic diversity in switchgrass
(Panicum virgatum): from the continental scale to a dune landscape. Mol
Ecol. 2011;20:4938–52.

12. Zohren J, Wang N, Kardailsky I, Borrell JS, Joecker A, Nichols RA, Buggs RJA.
Unidirectional diploid-tetraploid introgression among British birch trees with
shifting ranges shown by restriction site-associated markers. Mol Ecol.
2016;25:2413–26.

13. Blischak PD, Kubatko LS, Wolfe AD. Accounting for genotype uncertainty in
the estimation of allele frequencies in autopolyploids. Mol Ecol Resour.
2016;16:742–54.

14. Glaubitz JC, Casstevens TM, Lu F, Harriman J, Elshire RJ, Sun Q, Buckler ES.
TASSEL-GBS: a high capacity genotyping by sequencing analysis pipeline.
PLoS One. 2014;9:e90346.

15. Catchen JM, Amores A, Hohenlohe P, Cresko W, Postlethwait JH. Stacks: building
and genotyping loci de novo from short-read sequences. G3. 2011;1:171–82.

16. Eaton DAR. PyRAD: Assembly of de novo RADseq loci for phylogenetic
analyses. Bioinformatics. 2014;30:1844–9.

17. Baxter SW, Davey JW, Johnston JS, Shelton AM, Heckel DG, Jiggins CD, Blaxter
ML. Linkage mapping and comparative genomics using next-generation RAD
sequencing of a non-model organism. PLoS One. 2011;6:e19315.

18. Clark LV, Stewart JR, Nishiwaki A, Toma Y, Kjeldsen JB, Jørgensen U, Zhao H,
Peng J, Yoo JH, Heo K, Yu CY, Yamada T, Sacks EJ. Genetic structure of
Miscanthus sinensis and Miscanthus sacchariflorus in Japan indicates a
gradient of bidirectional but asymmetric introgression. J Exp Bot.
2015;66:4213–25.

19. Clark LV, Brummer JE, Głowacka K, Hall MC, Heo K, Peng J, Yamada T, Yoo JH, Yu
CY, Zhao H, Long SP, Sacks EJ. A footprint of past climate change on the diversity
and population structure of Miscanthus sinensis. Ann Bot. 2014;114:97–107.

20. Clark LV, Dzyubenko E, Dzyubenko N, Bagmet L, Sabitov A, Chebukin P,
Johnson DA, Kjeldsen JB, Petersen KK, Jørgensen U, Yoo JH, Heo K, Yu CY,
Zhao H, Jin X, Peng J, Yamada T, Sacks EJ. Ecological characteristics and in
situ genetic associations for yield-component traits of wild Miscanthus from
eastern Russia. Ann Bot. 2016. doi:10.1093/aob/mcw137.

Clark and Sacks Source Code for Biology and Medicine (2016) 11:11 Page 6 of 6

https://github.com/lvclark/tagdigger
http://dx.doi.org/10.5281/zenodo.55760
dx.doi.org/10.1186/s13029-016-0057-7
http://dx.doi.org/10.1093/aob/mcw137

	Abstract
	Background
	Results
	Conclusions

	Background
	Implementation
	Input
	Search algorithm
	Output

	Results and discussion
	Performance
	User interface

	Conclusions
	Availability and requirements
	Additional file
	show [Abb]
	Acknowledgments
	Funding
	Authors’ contributions
	Competing interests
	Consent for publication
	Ethics approval and consent to participate
	References

