Laboratory Measurements and Astronomical Search of the HSO Radical

Valerio Lattanzi

CAS@MPE Garching (Germany)

June 21, 2016

ISMS 2016 (Urbana)

Cristina Puzzarini & Gabriele Cazzoli

(Dip. Chimica "Giacomo Ciamician" Università di Bologna)

Jürgen Gauss & Till Kirsch

(Institut für Physikalische Chemie, Universität Mainz)

José Cernicharo & Belén Tercero

(Grupo de Astrofísica Molecular, ICMM-CSIC)

- ► Many sulfur (single S) species detected in the interstellar gas
- ► From diatomic up to CH₃CH₂SH
- Wide variety of astronomical environments, including extragalactic

- ► Many sulfur (single S) species detected in the interstellar gas
- ▶ From diatomic up to CH₃CH₂SH
- Wide variety of astronomical environments, including extragalactic
- Sulfur chemistry in space still puzzling
 - no depletion in diffuse medium
 - much lower abundance in dense, cold clouds
- Sulfur on grains? when? how? which form?
 - no H₂S in grains
 - ► OCS and SO₂(?)

- ► Many sulfur (single S) species detected in the interstellar gas
- ▶ From diatomic up to CH₃CH₂SH
- Wide variety of astronomical environments, including extragalactic
- Sulfur chemistry in space still puzzling
 - no depletion in diffuse medium
 - much lower abundance in dense, cold clouds
- Sulfur on grains? when? how? which form?
 - no H₂S in grains
 - ▶ OCS and SO₂(?)

Location and chemical form of missing sulfur

- ► Large abundance of triatomic S, O, and H species
- Especially in high-mass star-forming regions
- ► Key intermediates in the atmospheric oxidation of H₂S to H₂SO₄
- Prominent role in catalytic cycles of stratospheric ozone depletion
- ► First experimental evidence of HSO by Schurath et al. (1977)
 - low-resolution chemiluminescence visible spectra
- ► High-resolution spectroscopy by Endo et al. (1981)
 - HSO and DSO
 - hydrogen hyperfine coupling constant

HSO – Experiment

- ► A" electronic ground state (Endo et al. 1981)
- $\mu_a = 2.20 \text{ D}$ (Webster et al. 1982)

- ▶ Measured in the 194 GHz 1.2 THz range
- ► Free-space cell, 3m long, single-pass arrangement
- Cryogenic InSb and Schottky diode detectors
- Room temperature measurements

- ► Sulfur is very sticky! Similar results with two settings:
 - 1. DC discharge (\sim 10–40 mA) of H_2S and O_2 (1:2) total pressure < 20 mTorr
 - 2. DC discharge (\sim 35–50 mA) of \sim 40 mTorr of H_2O cleaner experiment

HSO – Experiment

HSO – Experiment

Confirmation by means of magnetic field

$$H = H_{rot} + H_{S-N} + H_{hfs}$$

- All computations made with CFOUR
- A_e, B_e , and C_e at the CBS+CV+fT+fQ level
- ► Vibrational corrections at the CCSD(T)/cc-pCVQZ level
- Quartic and sextic at the CCSD(T)/cc-pCVQZ level
- Electronic and nuclear Spin-Rotation at the CCSD(T)/cc-pCV5Z level
- Isotropic and anisotropic hyperfine coupling constants at the aug-cc-pCV5Z level

Results - Rotational Constants

Parameter	This wo	Previous	
	Experiment	Theory	
A ₀ (MHz)	299483.90(12)	300316.2	299484.68(14)
B_0 (MHz)	20502.7847(10)	20527.6	20502.7823(83)
C_0 (MHz)	19135.6989(10)	19160.0	19135.7168(83)
<i>D_N</i> (kHz)	29.4675(13)	28.61	29.64(11)
<i>D_{NK}</i> (kHz)	904.18(11)	882.33	903.41(40)
D_{K} (MHz)	26.24(11)	25.99	[27.2]
d_1 (kHz)	-2.02504(43)	-1.86	-1.926(65)
d_2 (kHz)	-0.35187(30)	-0.29	-0.527(52)
<i>H_N</i> (mHz)	-28.42(75)	-29.07	
<i>Н_{NK}</i> (Hz)	2.779(88)	2.28	
<i>H_{KN}</i> (Hz)	144.7(43)	126.26	
H_{K} (kHz)	[6.43] 6.43		
$h_1 imes 10^2 \text{ (mHz)}$	[-8.32]	-8.32	
<i>h</i> ₂ (mHz)	[3.69]	3.69	
<i>h</i> ₃ (mHz)	1.10(22)	0.725	
L _{JK} (mHz)	-11.4(32)		

ISMS 2016 (Urbana)

Results - Spin rotation and Hyperfine interactions

Parameter	This	This work		
	Experiment	Theory		
ϵ_{aa} (MHz)	-10366.15(10)	-10979.0(-10940.5)	-10366.17(16)	
ϵ_{bb} (MHz)	-426.633(17)	-439.4(-438.9)	-426.683(31)	
ϵ_{cc} (MHz)	0.191(21)	2.82(3.29)	0.210(48)	
$\widetilde{\epsilon}_{ab}$ (MHz)	377.971(16)	377.971(16) 404.8(403.3)		
$\epsilon_{aa}^{NK} e$ (MHz)				
$\epsilon_{aa}^{K} e (MHz)$	2.979(10)	2.979(10)		
$\epsilon_{bb}^{NK} e$ (MHz)	-0.001676(32)			
$\epsilon_{bb}^{\tilde{K}} e$ (MHz)	0.0638(36)			
$\epsilon_{cc}^{NK} e$ (kHz)	-0.114(30)			
а _F (Н) (MHz)	-35.72(50)	-35.72(50) -35.94(-34.58)		
T _{aa} (H) (MHz)	-11.932(86)	-12.38(-13.25)	-11.883(71)	
$T_{bb}(H)$ (MHz)	10.45(14)	10.71(11.25)	10.41(11)	
$T_{ab}(H)$ (MHz)	[-7.53] ^f	[-7.8] ^f		
$C_{aa}(H)$ (kHz)		-20.18(-21.56)		
$C_{bb}(H)$ (kHz)		2.51(2.51)		
$C_{cc}(H)$ (kHz)		-1.52(-1.59)	(

Valerio Lattanzi

ISMS 2016 (Urbana)

Astronomical observations

Source	Coordinates [J2000.0]	HPBW ["]	Frequencies [GHz]
Orion KL (IRAM 30m)	$\alpha = 5^{h}35^{m}14.5^{s}$ $\delta = -05^{\circ}22'30.''0$	30-8	80-307
Orion KL (ALMA SV) Hot core	$\alpha = 05^{h}35^{m}14.5^{s}5$ $\delta = -05^{\circ}22'32''5$	$\sim 1.9 \times 1.4$	213.7-246.7
Orion KL (ALMA SV) Compact ridge	$\alpha = 05^{h}35^{m}14.1$ $\delta = -05^{\circ}22'36.''9$	~1.9×1.4 213.7-246.7	
Orion KL (ALMA SV) MM4	$\alpha = 05^{h}35^{m}14^{s}2$ $\delta = -05^{\circ}22'31''1$	$ \begin{array}{c} \alpha = 05^{\rm h} 35^{\rm m} 14^{\rm s} 2 \\ \delta = -05^{\circ} 22' 31'' 1 \end{array} \sim 1.9 \times 1.4 \\ \end{array} $	
Sgr B2(N)	(IRAM 30m) $\alpha = 17^{h}47^{m}20^{s}.0$ $\delta = -28^{\circ}22'19''.0$	30-21	80-115.5
Cold gas	$\begin{array}{c} (\text{GBT 100m}) \\ \alpha = 17^{\text{h}}47^{\text{m}}19^{\text{s}}.8 \\ \delta = -28^{\circ}22'17''0 \end{array}$	80-15	7-50
Sgr B2(N) (IRAM 30m) Hot gas	$\alpha = 17^{h}47^{m}20.0^{s}$ $\delta = -28^{\circ}22'19.''0$	30-21	80-115.5
B1-b (IRAM 30m)	$\alpha = 03^{h}33^{m}20^{s}0$ $\delta = 31^{\circ}07'34''0$	30-21	80-115.5

ISMS 2016 (Urbana)

June 21, 2016

Astronomical observations

Source	$v_{\rm LSR}$	$\Delta v_{\rm FWHM}$	$d_{ m sou}$	$T_{\rm rot}$	N(HSO)
	$(\mathrm{km}\mathrm{s}^{-1})$	$(\mathrm{kms^{-1}})$	('')	(K)	$ imes 10^{14} \ ({ m cm}^{-2})$
Orion KL	8	3	5	150	<(2.0+0.6)
(IRAM 30m)			•	100	_(10±0.0)
Orion KL					
(ALMA SV)	8	3	3	150	\leq (4 \pm 1)
Hot core					
Orion KL					
(ALMA SV)	7.5	2	3	100	\leq (1.0 \pm 0.3)
Compact ridge					
Orion KL	3	3	З	150	<(1.0+0.3)
(ALMA SV)	5	0	2	150	$\leq (1.0\pm0.3)$
MM4	5	0	3	150	\leq (1.0 \pm 0.3)
Sgr B2(N)	64	9	60	14	\leq (1.0 \pm 0.3)
Cold gas	75	12	60	14	\leq (1.0 \pm 0.3)
Sgr B2(N)	64	8	3	150	≤(700±200)
(IRAM 30m)	73	8	3	150	\leq (100 \pm 30)
Hot gas	52	14	3	150	\leq (100 \pm 30)
B1-b	6.7	0.7	60	12	<(0.010+0.003)
(IRAM 30m)	0.7	0.7	00	12	_(0.010⊥0.003)

HSO – Astronomical Spectra

ISMS 2016 (Urbana)

Valerio Lattanzi

June 21, 2016

Conclusions

- New THz measurements for HSO radical
- Excellent test for quantum chemical calculations
- Deep search in astronomical sources
- ► No radioastronomical detection (so far)
 - HSO has not been included in chemical models
 - $CH_3S + O$ might produce HSO
 - $\blacktriangleright\,\,\Rightarrow\,\,\text{yield}$ of HSO might be too low for detection
- S-chemistry in space is very active and intriguing
- Extending astrochemical models to new S-species
- Laboratory work on new sulfur molecules (ions? radicals?)