

ROOM TEMPERATURE LINE LISTS FOR CO₂ ISOTOPOLOGUES WITH AB INITIO COMPUTED INTENSITIES

Emil Żak^a, Jonathan Tennyson^a, Oleg L. Polyansky^a, Lorenzo Lodi^a Nikolay F. Zobov^b, Sergey A. Tashkun^c, Valery I. Perevalov^c

^aDepartment of Physics and Astronomy, University College London, London, UK ^bInstitute of Applied Physics, RAS, Nizhny Novgorod, Russia ^cV.E. Zuev Institute of Atmospheric Optics, SB RAS, Tomsk, Russia

21 June 2016

Why CO₂?

Why CO₂?

OCO-2 Space Mission

- sources, sinks and migrations of atmospheric CO₂
- influence of CO₂ on climate change

TCCON, NDACC

- validation of results from space missions
- fossil fuel emission, etc.

Why CO₂?

Databases: HITRAN, CDSD

- Experiments leave spectral gaps
- Accurate line intensities challenging

(especially for less abundant isotopologues)

Multiple data sources may cause inconsistencies

Why ab initio ?

Databases: HITRAN, CDSD

- Experiments leave spectral gaps
- Accurate line intensities challenging (especially for less abundant isotopologues)
- Multiple data sources may cause inconsistencies

UCL

What is needed?

Dream line list:

- line positions accurate to 10⁻⁴ 10⁻⁵ cm⁻¹
- \blacksquare covering all important bands (0 cm⁻¹ –14 000 cm⁻¹) of CO₂
- line intensities accurate to 0.3 0.5% (1ppm) requirement for remote sensing

UCL

What is needed?

Dream line list:

- line positions accurate to 10⁻⁴ 10⁻⁵ cm⁻¹
- covering all important bands (0 cm⁻¹ –14 000 cm⁻¹) of CO₂
- line intensities accurate to 0.3 0.5% (1ppm) requirement for remote sensing

State of the art:

■ line positions: $10^{-2} - 10^{-9} \text{cm}^{-1}$

(measurements & Effective Hamiltonian calculations (CDSD-296))

- several small spectral gaps missing in HITRAN2012 and CDSD-296
- Experimental line intensities: ¹²C¹⁶O₂: 1% (Devi *et. al*); other isotopologues: >2%
- ab initio computed intensities give the highest accuracy!

Recent progress

- CDSD-296 database (S. Tashkun and V. Perevalov)¹
- NASA Ames line list (X. Huang *et. al*). Variational: Fitted PES (0.016 cm⁻¹ accuracy, 0-13 000 cm⁻¹), *ab initio* DMS²
- Measurements in the 1.6 μm and 2.06 μm regions: Devi et. al³, Jacquemart et. al⁴, Karlovets et. al⁵

¹S. A. Tashkun *et. al* JQSRT 152 (2015) 45–73.

²X. Huang et. al J. Chem. Phys. 136 (2012) 124311

³V. M. Devi et. al JQSRT 177 (2016) 117–144.

⁴D. Jacquemart *et. al* JQSRT 160 (2015) 1–9.

⁵E. V. Karlovets et. al JQSRT 136 (2014) 89–107.

- spectral coverage
- accurate line positions
- accurate line intensities
- reliability analysis

Present study

UCL-IAO line lists

- 13 isotopologues of carbon dioxide (¹²C¹⁶O₂, ¹³C¹⁶O₂:, ¹⁴C¹⁶O₂:,¹²C¹⁷O₂:,¹²C¹⁸O₂, ¹³C¹⁷O₂,¹³C¹⁸O₂,¹⁶O¹²C¹⁸O, ¹⁶O¹³C¹⁷O, ¹⁶O¹³C¹⁸O, ¹⁶O¹²C¹⁷O, ¹⁷O¹²C¹⁸O, ¹⁷O¹³C¹⁸O)
- Spectral region: 0-8000 cm⁻¹
- 3 ab initio Dipole Moment Surface (DMS)
- Iine positions: Variational calculations & Effective Hamiltonian model (CDSD-296)

Theoretical scheme

Four independent Line Lists for each isotopologue

Line sensitivity analysis - detecting resonances⁶

- 1 PES1: Ames-1 (semi-empirical) & DMS1: Ames (ab initio)
- 2 PES1: Ames-1 (semi-empirical) & DMS2: UCL (Ab initio)
- 3 PES2: UCL (ab initio fitted to Ames) & DMS1: Ames (ab initio)
- 4 PES2: UCL (ab initio fitted to Ames) & DMS2: UCL (ab initio)

⁶Zak et. al JQSRT 177, 31–42 (2016)

Scatter factor maps

Figure: Scatter factor map for the 828 isotopologue ⁷. Colour coding denotes respective classification of lines: blue stands for stable lines, orange for intermediate lines and red for unstable lines. Arrows indicate selected bands for which a *J*-localized peak in the scatter factor is observed. Zoomed inset in right bottom corner shows the peak region of the scatter factor for the 12212 – 02201 band. Both P and R branches are affected by the interaction around J = 30.

⁷Zak et. al JQSRT (submitted)

Example of a band perturbed by Coriolis interaction

Figure: Multidimensional graph ⁸ characterising the 12212 – 02201 band of ¹²C¹⁸O₂. The base plane depicts *m* dependence of line intensities with bar height and color code measuring the value of the scatter factor. The far right plane represents *m* dependence of energy levels of the perturbed state (12212) and perturber (23301), which nearly cross around $m = \pm 36$. Left plane gives intensity ratios of lines taken from the UCL-IAO line list and the CDSD-296 database.

⁸Zak et. al JQSRT (submitted)

- spectral coverage
- accurate line positions
- accurate line intensities
- reliability analysis

Spectral coverage vs. HITRAN2012

General overview of UCL line list and HITRAN2012 line list for ¹²C¹⁶O₂.

Spectral coverage vs. HITRAN2012

General overview of UCL line list and HITRAN2012 line list for ¹²C¹⁶O₂.

• spectral coverage

- accurate line positions
- accurate line intensities
- reliability analysis

■ ab initio PES: 1-2 cm⁻¹ accuracy

- ab initio PES: 1-2 cm⁻¹ accuracy
- Ames-1 PES (semi-empirical): 0.02 cm⁻¹ accuracy

- ab initio PES: 1-2 cm⁻¹ accuracy
- Ames-1 PES (semi-empirical): 0.02 cm⁻¹ accuracy
- effective Hamiltonian: 0.002 cm⁻¹ accuracy

- Ab initio PES: 1-2 cm⁻¹ accuracy
- Ames-1 PES (semi-empirical): 0.02 cm⁻¹ accuracy
- Effective Hamiltonian⁹: 0.002 cm⁻¹ accuracy

⁹S. A. Tashkun, V. I. Perevalov, R. R. Gamache, J. Lamouroux, CDSD-296, high resolution carbon dioxide spectroscopic databank: Version for atmospheric applications, JQSRT 152 (2015) 45–73.

- Ab initio PES (semi-empirical) : 1-2 cm⁻¹ accuracy
- Ames-1 PES: 0.02 cm⁻¹ accuracy full spectral coverage for all isotopologues
- Effective Hamiltonian: 0.002 cm⁻¹ accuracy lack of data for less abundant isotopologues

- spectral coverage
- accurate line positions
- accurate line intensities
- reliability analysis

Line intensities: comparison to recent measurements (¹²C¹⁶O₂)

Figure: Comparison of experimental line intensities from ref. for the 30013 – 00001 band with present (UCL) ¹⁰, HITRAN2012, CDSD, LPPM¹¹ and GSMA values.

¹⁰Polyansky *et. al* PRL, 114, 243001 (2015).

¹¹Boudjaadar et. al J. Mol. Spectrosc. 236, 158 (2006).

Line intensities: comparison to recent measurements (¹²C¹⁶O₂)

Comparison of experimental line intensities from Devi *et. al* ¹⁰ for the 30013 – 00001 band with present (UCL) ¹¹ and HITRAN2012 values.

¹⁰Devi *et. al* JQSRT 177, 117–144 (2016) ¹¹Zak *et. al* JQSRT 177, 31–42 (2016)

- spectral coverage
- accurate line positions
- accurate line intensities V
- reliability analysis

1 Comprehensive line lists for 13 isotopologues of carbon dioxide

- 1 Comprehensive line lists for 13 isotopologues of carbon dioxide
- Line positions from both variational and the Effective Hamiltonian calculations (0.002 cm⁻¹ or better)

- 1 Comprehensive line lists for 13 isotopologues of carbon dioxide
- Line positions from both variational and the Effective Hamiltonian calculations (0.002 cm⁻¹ or better)
- 3 Line intensities at **sub-percent accuracy** for several strong bands (ALL isotopologues)

- 1 Comprehensive line lists for 13 isotopologues of carbon dioxide
- Line positions from both variational and the Effective Hamiltonian calculations (0.002 cm⁻¹ or better)
- 3 Line intensities at **sub-percent accuracy** for several strong bands (ALL isotopologues)
- Uncertainty of line intensities evaluated on a purely theoretical basis -NEW!

- 1 Comprehensive line lists for 13 isotopologues of carbon dioxide
- Line positions from both variational and the Effective Hamiltonian calculations (0.002 cm⁻¹ or better)
- 3 Line intensities at **sub-percent accuracy** for several strong bands (ALL isotopologues)
- Uncertainty of line intensities evaluated on a purely theoretical basis -NEW!
- 5 Ready for inclusion in databases

Acknowledgements

"The authors acknowledge the use of the UCL Legion High Performance Computing Facility (Legion@UCL), and associated support services, in the completion of this work."

