GLOBAL ANALYSIS OF SEVERAL BANDS OF THE CF4 MOLECULE

MICKAËL CARLOS, OCÉANE GRUSON, <u>VINCENT BOUDON</u>, Laboratoire ICB, CNRS/Université de Bourgogne, DIJON, France; ROBERT GEORGES, IPR UMR6251, CNRS - Université Rennes 1, Rennes, France; OLIVIER PIRALI, AILES beamline, Synchrotron SOLEIL, Saint Aubin, France; PIERRE ASSELIN, MONARIS UMR8233, CNRS - UNiversité Paris 6 UPMC, Paris, France.

Carbon tetrafluoride is a powerful greenhouse gas, mainly of anthropogenic origin. Its absorption spectrum is, however, still badly modeled, especially for hot bands in the strongly absorbing ν_3 region. To overcome this problem, we have undertaken a systematic study of all the lower rovibrational transitions of this molecule. In particular, new far-infrared spectra recorded at the SOLEIL Synchrotron facility give access to bands implying the "forbidden" modes ν_1 and ν_2 which have only been investigated previously thanks to stimulated Raman spectroscopy^{*a*}, that is with a lower accuracy and much less data. Combined with the previous analyses performed in our group^{*b*}, we thus report here a new global fit of line positions of CF₄ by considering several transitions altogether: ν_2 , $2\nu_2 - \nu_2$, ν_4 , $2\nu_4$, ν_3 and $\nu_3 - 2\nu_2$. This gives a consistent set of molecular parameters that will be of great help for the analysis of hot bands like $\nu_3 + \nu_2 - \nu_2$. A second separate global fit including the ν_1 , $\nu_1 - \nu_4$ and $2\nu_1 - \nu_1$ bands will also be presented.

^aV. Boudon, D. Bermejo, R. Z. Martínez, J. Raman Spectrosc. 44, 731?738 (2013).

^bV. Boudon, J. Mitchell, A. Domanskaya, C. Maul, R; Georges, A. Benidar, W. G. Harter, Mol. Phys. 109, 17–18 (2011).