SYNCHROTRON SPECTROSCOPY AND TORSIONAL STRUCTURE OF THE CSH-BENDING AND $\rm CH_{3^-}$ ROCKING BANDS OF METHYL MERCAPTAN

<u>RONALD M. LEES</u>, LI-HONG XU, Department of Physics, University of New Brunswick, Saint John, NB, Canada; BRANT E. BILLINGHURST, EFD, Canadian Light Source Inc., Saskatoon, Saskatchewan, Canada.

The Fourier transform spectra of the CSH-bending and CH₃-rocking infrared bands of CH₃SH have been investigated at 0.001 cm⁻¹ resolution employing synchrotron radiation at the Canadian Light Source in Saskatoon. The relative band strengths and structures are remarkably different from those for the analogous CH₃OH relative, with the CSH bend being very weak and both the in-plane and out-of-plane CH₃ rocks being strong with comparable intensities. The CSH bend, centered at 801.5 cm⁻¹, has parallel *a*-type character with no detectable *b*-type component. The out-of-plane CH₃ rock at 957.0 cm⁻¹ is a purely *c*-type perpendicular band, whereas the in-plane rock around 1074 cm⁻¹ is of mixed *a/b* character. The *K*-reduced $v_t = 0$ sub-state origins for the CSH bend follow the normal oscillatory torsional pattern as a function of *K* with an amplitude of 0.362 cm⁻¹, as compared to 0.653 cm⁻¹ for the ground state and 0.801 cm⁻¹ for the C-S stretching mode. The torsional energy curves for the out-of-plane rock are also well-behaved but are inverted, with an amplitude of 1.33 cm⁻¹. In contrast, the sub-state origins for the in-plane rock do not display a clear oscillatory structure but are scattered over a range of about 2 cm⁻¹, with indications of some significant perturbations. The assignments for the three bands all extend up to about K = 10 and are well-determined from GSCD relations, particularly for the *a/b* in-plane rock for which $\Delta K = 0, +1$ and -1 transitions are all observed.