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Figure 1. ALMA spectrum (black) of IRC+10216 in three selected frequency ranges of the 20 GHz bandwidth covered by our data. For each selected frequency the
ALMA spectrum is compared to the data obtained with the 30-m IRAM telescope (red) at the same frequency (Cernicharo et al. 2011). Intensity scale is in units of
Jy Beam−1. Spectral resolution is ∼1 MHz for both datasets. The bottom panel of each selected frequency shows a close-up view of the ALMA data. Interestingly,
a forest of narrow and unidentified lines are evidenced thanks to the extreme sensitivity, and much higher angular resolution, of ALMA. Note the good calibration
agreement for lines spatially unresolved by both instruments. Labels in red correspond to lines detected with the 30-m telescope and filtered by the interferometer.

RT calculations are the (000), (010), (020), (030), (100), (001),
(011), (021). In each vibrational state we consider the rotational
levels up to J = 55 and include the ℓ-type doubling in the states
with a bending mode. The number of energy levels considered
is thus ∼950, which translates to a total of ∼8700 radiative
transitions.

The collisional rate coefficients for the rotational transitions
of HNC were derived from the calculations of Dumouchel et al.
(2010). Those for the ro-vibrational and ℓ-type transitions are
not listed in the literature. They were estimated by scaling
down the rotational rate coefficients by a factor of 100, a value
similar to that found for SiO at TK = 1500 K (Bieniek &
Green 1983). Several runs were performed to check the effect

of this assumption on the results. We found that, for the range of
considered densities, the pumping of the molecular levels was
not very sensitive to the assumed factor. Moreover, we tested that
the pumping by IR photons is not important for these densities
and for the considered vibrational levels.

We adopt a distance to IRC+10216 of 130 pc (Groenewegen
et al. 2012) and a radius for the star of 4×1013 cm (Menten et al.
2012). The structure of the CSE, i.e., its gas/dust temperatures,
dust opacity, and radial velocity profiles are taken from Fonfrı́a
et al. (2008), Agúndez et al. (2012) and Daniel et al. (2012)
(see also Keady et al. 1988; Ridgway & Keady 1988; Keady
& Ridgway 1993; Agúndez & Cernicharo 2006; Agúndez
et al. 2010; Cernicharo et al. 2010; De Beck et al. 2012).
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Because of its structural specificity, rotational spectroscopy has great potential as an analytical
tool for characterizing the chemical composition of complex gas mixtures. However, disentangling
the individual molecular constituents of a rotational spectrum, especially if many of the lines are
entirely new or unknown, remains challenging. In this paper, we describe an empirical approach that
combines the complementary strengths of two techniques, broadband chirped-pulse Fourier transform
microwave spectroscopy and narrowband cavity Fourier transform microwave spectroscopy, to char-
acterize and assign lines. This procedure, called microwave spectral taxonomy, involves acquiring a
broadband rotational spectrum of a rich mixture, categorizing individual lines based on their relative
intensities under series of assays, and finally, linking rotational transitions of individual chemical
compounds within each category using double resonance techniques. The power of this procedure is
demonstrated for two test cases: a stable molecule with a rich spectrum, 3,4-difluorobenzaldehyde,
and products formed in an electrical discharge through a dilute mixture of C2H2 and CS2, in which
spectral taxonomy has enabled the identification of propynethial, HC(S)CCH. C 2016 AIP Publishing
LLC. [http://dx.doi.org/10.1063/1.4944072]

I. INTRODUCTION

Microwave spectroscopy is an invaluable tool in
the identification and structural characterization of polar
molecules, allowing discrimination of isomers, conformers,
isotopologues, and even enantiomers.1–3 Owing to its very high
intrinsic resolution, exceeding sub-ppm levels in supersonic
jet sources, rotational spectra are rarely overlapped and
spectral congestion or confusion from multiple species is
infrequent. Over the past 30 years or more, cavity Fourier
transform microwave (FTMW) spectroscopy has developed
into one of the most powerful tools to detect and structurally
characterize a wide range of weakly bonded complexes,
refractory compounds, and reactive molecules, such as
radicals, carbenes, and molecular ions.4–9

When a non-specific production method, such as an
electrical discharge, is employed to generate unstable species,
tens or even hundreds of di↵erent molecules can be produced
simultaneously, including some that are well described by the
“unknown unknowns” analogy:10 molecules that have never
been observed before at any wavelength, nor been the subject
of any prior experimental or theoretical study. Detection
of entirely unanticipated or unknown compounds with
FTMW spectroscopy is di�cult because the relatively narrow
instantaneous bandwidth of these instruments (⇠1 MHz) lends
itself instead to dedicated laboratory searches for molecules

a)mccarthy@cfa.harvard.edu

for which theoretical predictions of geometrical structure, and
consequently rotational spectra, have already been performed.
As a consequence, large numbers of the spectral lines
encountered during searches—even intense ones—are often
discarded in the assignment process, in an attempt to identify
only those lines that are consistent with the new species sought.
Because a single rotational line is rarely distinctive in width
or line shape, which might provide insight into the possible
molecular carrier, follow-up analysis of these discarded
lines is nearly impossible with cavity FTMW spectroscopy
alone.

The use of new broadband excitation and detection
methods based on fast passage or “chirped pulse” (CP)
techniques now allows spectra with many GHz (typically
10 or more) of instantaneous bandwidth to be recorded
in a fraction of a second,11 at the expense of a modest
reduction in sensitivity (for a given number of gas pulses)
and spectral resolution (both by roughly a factor of 50)
compared to cavity-based spectroscopy. With these new
methods, unbiased spectroscopic surveys of complex mixtures
are feasible because a large fraction of molecules will give
rise to multiple rotational transitions within the frequency
range of the spectrum. Even if upwards of 100 compounds
are simultaneously produced, and each has 20–30 rotational
lines that fall within the measurement range, the filling factor,
or equivalently the number of “bright” resolution elements
in a broadband spectrum is only a few percent of the total
(a few 1000 out of ⇠2 ⇥ 105). The practical di�culty of

0021-9606/2016/144(12)/124201/12/$30.00 144, 124201-1 © 2016 AIP Publishing LLC
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Because of its structural specificity, rotational spectroscopy has great potential as an analytical
tool for characterizing the chemical composition of complex gas mixtures. However, disentangling
the individual molecular constituents of a rotational spectrum, especially if many of the lines are
entirely new or unknown, remains challenging. In this paper, we describe an empirical approach that
combines the complementary strengths of two techniques, broadband chirped-pulse Fourier transform
microwave spectroscopy and narrowband cavity Fourier transform microwave spectroscopy, to char-
acterize and assign lines. This procedure, called microwave spectral taxonomy, involves acquiring a
broadband rotational spectrum of a rich mixture, categorizing individual lines based on their relative
intensities under series of assays, and finally, linking rotational transitions of individual chemical
compounds within each category using double resonance techniques. The power of this procedure is
demonstrated for two test cases: a stable molecule with a rich spectrum, 3,4-difluorobenzaldehyde,
and products formed in an electrical discharge through a dilute mixture of C2H2 and CS2, in which
spectral taxonomy has enabled the identification of propynethial, HC(S)CCH. C 2016 AIP Publishing
LLC. [http://dx.doi.org/10.1063/1.4944072]

I. INTRODUCTION

Microwave spectroscopy is an invaluable tool in
the identification and structural characterization of polar
molecules, allowing discrimination of isomers, conformers,
isotopologues, and even enantiomers.1–3 Owing to its very high
intrinsic resolution, exceeding sub-ppm levels in supersonic
jet sources, rotational spectra are rarely overlapped and
spectral congestion or confusion from multiple species is
infrequent. Over the past 30 years or more, cavity Fourier
transform microwave (FTMW) spectroscopy has developed
into one of the most powerful tools to detect and structurally
characterize a wide range of weakly bonded complexes,
refractory compounds, and reactive molecules, such as
radicals, carbenes, and molecular ions.4–9

When a non-specific production method, such as an
electrical discharge, is employed to generate unstable species,
tens or even hundreds of di↵erent molecules can be produced
simultaneously, including some that are well described by the
“unknown unknowns” analogy:10 molecules that have never
been observed before at any wavelength, nor been the subject
of any prior experimental or theoretical study. Detection
of entirely unanticipated or unknown compounds with
FTMW spectroscopy is di�cult because the relatively narrow
instantaneous bandwidth of these instruments (⇠1 MHz) lends
itself instead to dedicated laboratory searches for molecules

a)mccarthy@cfa.harvard.edu

for which theoretical predictions of geometrical structure, and
consequently rotational spectra, have already been performed.
As a consequence, large numbers of the spectral lines
encountered during searches—even intense ones—are often
discarded in the assignment process, in an attempt to identify
only those lines that are consistent with the new species sought.
Because a single rotational line is rarely distinctive in width
or line shape, which might provide insight into the possible
molecular carrier, follow-up analysis of these discarded
lines is nearly impossible with cavity FTMW spectroscopy
alone.

The use of new broadband excitation and detection
methods based on fast passage or “chirped pulse” (CP)
techniques now allows spectra with many GHz (typically
10 or more) of instantaneous bandwidth to be recorded
in a fraction of a second,11 at the expense of a modest
reduction in sensitivity (for a given number of gas pulses)
and spectral resolution (both by roughly a factor of 50)
compared to cavity-based spectroscopy. With these new
methods, unbiased spectroscopic surveys of complex mixtures
are feasible because a large fraction of molecules will give
rise to multiple rotational transitions within the frequency
range of the spectrum. Even if upwards of 100 compounds
are simultaneously produced, and each has 20–30 rotational
lines that fall within the measurement range, the filling factor,
or equivalently the number of “bright” resolution elements
in a broadband spectrum is only a few percent of the total
(a few 1000 out of ⇠2 ⇥ 105). The practical di�culty of

0021-9606/2016/144(12)/124201/12/$30.00 144, 124201-1 © 2016 AIP Publishing LLC
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molecules, allowing discrimination of isomers, conformers,
isotopologues, and even enantiomers.1–3 Owing to its very high
intrinsic resolution, exceeding sub-ppm levels in supersonic
jet sources, rotational spectra are rarely overlapped and
spectral congestion or confusion from multiple species is
infrequent. Over the past 30 years or more, cavity Fourier
transform microwave (FTMW) spectroscopy has developed
into one of the most powerful tools to detect and structurally
characterize a wide range of weakly bonded complexes,
refractory compounds, and reactive molecules, such as
radicals, carbenes, and molecular ions.4–9

When a non-specific production method, such as an
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“unknown unknowns” analogy:10 molecules that have never
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consequently rotational spectra, have already been performed.
As a consequence, large numbers of the spectral lines
encountered during searches—even intense ones—are often
discarded in the assignment process, in an attempt to identify
only those lines that are consistent with the new species sought.
Because a single rotational line is rarely distinctive in width
or line shape, which might provide insight into the possible
molecular carrier, follow-up analysis of these discarded
lines is nearly impossible with cavity FTMW spectroscopy
alone.
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methods based on fast passage or “chirped pulse” (CP)
techniques now allows spectra with many GHz (typically
10 or more) of instantaneous bandwidth to be recorded
in a fraction of a second,11 at the expense of a modest
reduction in sensitivity (for a given number of gas pulses)
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Non-Detections

Quantitative Search 
PRIMOS, Belloche IRAM 30m, HEXOS

T	(K) CCS	v2 CCS	v1 C3S	v3 C3S	2v4 C3S	1v5

100 15.5 15.7 4.2 4.1 8.1

150 21.1 21.5 5.2 5.1 10.1

200 26.2 27.1 6.3 6.2 12.3

Upper Limits (1013 cm-2)

Qualitative Search
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Gong et al. (2015)
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Crockett et al. (2014)

CCS: 20 K, 8.3 x 1013 cm-2

C3S: Present, but strange





A L L  A B O U T  A N H A R M O N I C I T Y

100

80

60

40

20

0

R
el

at
iv

e 
Ab

so
rb

an
ce

 (a
.u

.)

7654321
Frequency (THz)

En
er

gy

CO(ν1) + CO(ν3)         2CO (ν2)



A L L  A B O U T  A N H A R M O N I C I T Y

100

80

60

40

20

0

R
el

at
iv

e 
Ab

so
rb

an
ce

 (a
.u

.)

7654321
Frequency (THz)

En
er

gy

Requires energy input into 
the system, due to 

anharmonicity

CO(ν1) + CO(ν3)         2CO (ν2)

Endothermic



A L L  A B O U T  A N H A R M O N I C I T Y

100

80

60

40

20

0

R
el

at
iv

e 
Ab

so
rb

an
ce

 (a
.u

.)

7654321
Frequency (THz)

En
er

gy

CO(ν1) + CO(ν3)         2CO (ν2)



A L L  A B O U T  A N H A R M O N I C I T Y

100

80

60

40

20

0

R
el

at
iv

e 
Ab

so
rb

an
ce

 (a
.u

.)

7654321
Frequency (THz)

En
er

gy

CO(ν1) + CO(ν3)         2CO (ν2)

Energy leaves the system, 
due to anharmonicity

Exothermic



A L L  A B O U T  A N H A R M O N I C I T Y

100

80

60

40

20

0

R
el

at
iv

e 
Ab

so
rb

an
ce

 (a
.u

.)

7654321
Frequency (THz)

En
er

gy

CO(ν1) + CO(ν3)         2CO (ν2)

Energy leaves the system, 
due to anharmonicity

Exothermic


