

HIGH-RESOLUTION STIMULATED RAMAN SPECTROSCOPY AND ANALYSIS OF ν_2 AND ν_3 BANDS OF of $^{13}\text{C}_2\text{H}_4$ USING THE D_{2h} TOP DATA SYSTEM

ABDULSAMEE ALKADROU, Université de Reims/CNRS, Groupe de Spectroscopie Moléculaire et Atmosphérique, Reims, France; MAUD ROTGER, Laboratoire GSMA, CNRS / Université de Reims Champagne-Ardenne, REIMS, France; DIONISIO BERMEJO, Inst. Estructura de la Materia, IEM-CSIC, Madrid, Spain; JOSE LUIS DOMENECH, Molecular Physics, Instituto de Estructura de la Materia (IEM-CSIC), Madrid, Spain; VINCENT BOUDON, Laboratoire ICB, CNRS/Université de Bourgogne, DIJON, France.

High resolution stimulated Raman spectra of $^{13}\text{C}_2\text{H}_4$ in the regions of the ν_2 and ν_3 Raman active modes have been recorded at at two temperatures (145 and 296 K) based on the quasi continuous-wave (cw) stimulated Raman spectrometer at Instituto de Estructura de la Materia (CSIC) in Madrid. A tensorial formalism adapted to X_2Y_4 planar asymmetric tops with D_{2h} symmetry has been developed in Dijon^a and a program suite called $D_{2h}TDS$ (now part of the XTDS/SPVIEW spectroscopic software^b was proposed to calculate their high-resolution spectra. The effective Hamiltonian operator, involving a polyad structure, and transition moment (dipole moment and polarizability) operators can be systematically expanded to carry out global analyses of many rovibrational bands. A total of 103 and 51 lines corresponding to ν_2 and ν_3 Raman active modes have been assigned and fitted in frequency with a global root mean square deviation of 0.54×10^{-3} cm⁻¹ and 0.36×10^{-3} cm⁻¹, respectively. The figures below shows the stimulated Raman spectrum of the ν_2 and ν_3 bands of $^{13}\text{C}_2\text{H}_4$, compared to the simulation at 296 K.

^aRaballand W, Rotger M, Boudon V, Loëte M. J Mol Spectrosc 2003;217:239–48.

^bWenger Ch, Boudon V, Rotger M, Champion JP, Sanzharov M. J Mol Spectrosc 2008;251:102–13.