## OBSERVATION OF ORTHO-PARA DEPENDENCE OF PRESSURE BROADENING COEFFICIENT IN ACETYLENE $\nu_{1}+\nu_{3}$ VIBRATION BAND USING DUAL-COMB SPECTROSCOPY

KANA IWAKUNI, Department of Physics, Faculty of Science and Technology, Keio University, Yokohama, Japan; SHO OKUBO, HAJIME INABA, ATSUSHI ONAE, FENG-LEI HONG, National Metrology Institute of Japan (NMIJ), Ntional Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Japan; HIROYUKI SASADA, Department of Physics, Faculty of Science and Technology, Keio University, Yokohama, Japan; KOICHI MT YAMADA, National Metrology Institute of Japan (NMIJ), Ntional Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Japan.

We observe that the pressure-broadening coefficients depend on the ortho-para levels. The spectrum is taken with a dual-comb spectrometer which has the resolution of 48 MHz and the frequency accuracy of 8 digit when the signal-to-noise ratio is more than $20^{a}$.

In this study, about $4.4-\mathrm{Tz}$ wide spectra of the $P(31)$ to $R(31)$ transitions in the $\nu_{1}+\nu_{3}$ vibration band of ${ }^{12} \mathrm{C}_{2} \mathrm{H}_{2}$ are observed at the pressure of $25,60,396,1047,1962$ and 2654 Pa . Each rotation-vibration absorption line is fitted to Voight function and we determined pressure-broadening coefficients for each rotation-vibration transition. The Figure shows pressure broadening coefficient as a function of $m$. Here $m$ is $J "+1$ for $R$ and $-J "$ for $P$-branch. The graph shows obvious dependence on ortho and para. We fit it to Pade function considering the population ratio of three-to-one for the ortho and para levels. This would lead to detailed understanding of the pressure boarding mechanism.


[^0]
[^0]:    ${ }^{a}$ S. Okubo et al., Applied Physics Express 8, 082402 (2015)

