MOLECULES IN LABORATORY AND IN INTERSTELLAR SPACE? ^a

VENKATESAN S. THIMMAKONDU, Department of Chemistry, Birla Institute of Technology and Science, Pilani, K K Birla Goa Campus, Goa, Goa, India.

In this talk, the quantum chemistry of astronomically relevant molecules will be outlined with an emphasis on the structures and energetics of C_7H_2 isomers, which are yet to be identified in space. Although more than 100's of isomers are possible for C_7H_2 , to date only 6 isomers had been identified in the laboratory.^{*b*,*c*,*d*} The equilibrium geometries of heptatriynylidene (1), cyclohepta-1,2,3,4-tetraen-6-yne (2), and heptahexaenylidene (3), which we had investigated theoretically will be discussed briefly.^{*e*} While 1 and 3 are observed in the laboratory, 2 is a hypothetical molecule. The theoretical data may be useful for the laboratory detection of 2 and astronomical detection of 2 and 3.

^aTHIS WORK IS SUPPORTED BY A RESEARCH GRANT (YSS/2015/00099) FROM SERB, DST, GOVERNMENT OF INDIA.

^bApponi, A. P.; McCarthy, M. C.; Gottlieb, C. A.; Thaddeus, P. Laboratory Detection of Four New Cumulene Carbenes: H₂C₇, H₂C₈, H₂C₉, and D₂C₁₀, *Astrophys. J.* 2000, 530, 357-361.

^cBall, C. D; McCarthy, M. C.; Thaddeus, P. Cavity Ringdown Spectroscopy of the Linear Carbon Chains HC₇H, HC₉H, HC₁₁H, and HC₁₃H. *J. Chem. Phys.* 2000, 112, 10149-10155.

^dDua, S.; Blanksby, S. J.; Bowie, J. H. Formation of Neutral C₇H₂ Isomers from Four Isomeric C₇H₂ Radical Anion Precursors in the Gas Phase. J. Phys. Chem. A, 2000, 104, 77-85.

^eThimmakondu, V. S. The equilibrium geometries of heptatriynylidene, cyclohepta-1,2,3,4-tetraen-6-yne, and heptahexaenylidene, *Comput. Theoret. Chem.* 2016, 1079, 1-10.