

Theoretical Study on SERS of Wagging Vibrations of Benzyl Radical Adsorbed on Silver Electrodes

De-Yin Wu, Yan-Li Chen, Zhong-Qun Tian

College of Chemistry and Chemical Engineering

& State Key Laboratory of Physical Chemistry for Solid Surfaces

2016.6.23

Studies on solution/metal electrodes

EC-SERS (Metal NPs + Molecule + Light)

Potential-Intensity Profiles dependent on Laser Lines

DY Wu, JF Li, B Ren, ZQ Tian, Chem. Soc. Rev. 2008, 37, 1025

Electrochemical Surface-Enhanced Raman Spectroscopy of Pyridine

Pyridine N-Metal Interaction:

Pt > Au, Cu > Ag

At the open circuit potential

At the peak potential of the ring breathing mode

DY Wu, JF Li, B Ren, ZQ Tian, Chem. Soc. Rev. 2008, 37, 1025

Electrochemical CV and SERS of Benzyl Chloride on Silver Electrodes

J. Am. Chem. Soc. 2010, 132, 9534-9536.

Computational details

Cluster Model: Molecule- M_n ; M_n – Molecule – M_n (M = TM) DFT: B3LYP, PW91PW91, ... Basis set: LANL2DZ (Ag)/ 6-311+G(d,p)(C,N,H,S) Optimized structure Bonding analysis

Scaled Quantum Mechanics force field method (SQMF)]

Calculations of Raman Intensity:

$$I_i^R = \frac{h}{8\pi^2 c \tilde{v}_i} \cdot \frac{\left(\tilde{v}_0 - \tilde{v}_i\right)^4}{45 \left[1 - \exp\left(-hc \tilde{v}_i / k_B T\right)\right]} \left(45 \overline{\alpha}_i'^2 + 7 \gamma_i'^2\right)$$

Non-resonance, pre-resonance, and resonance cases

Metallic Cluster Modeling: Size effect

SERS Intensity: Raman scattering processes

Schrödinger Equation: H = T + V, V = V(R) Vibrational peaks

 $\gamma'^{2} = \frac{1}{2} \left\{ \left[\left(\frac{\partial \alpha_{xx}}{\partial Q} \right)_{0} - \left(\frac{\partial \alpha_{yy}}{\partial Q} \right) \right]_{0}^{2} + \left[\left(\frac{\partial \alpha_{yy}}{\partial Q} \right)_{0} - \left(\frac{\partial \alpha_{zz}}{\partial Q} \right) \right]_{0}^{2} + \left[\left(\frac{\partial \alpha_{xx}}{\partial Q} \right)_{0} - \left(\frac{\partial \alpha_{zz}}{\partial Q} \right) \right]_{0}^{2} + \left[\left(\frac{\partial \alpha_{xx}}{\partial Q} \right)_{0} - \left(\frac{\partial \alpha_{zz}}{\partial Q} \right) \right]_{0}^{2} + \left[\left(\frac{\partial \alpha_{xx}}{\partial Q} \right)_{0} - \left(\frac{\partial \alpha_{zz}}{\partial Q} \right) \right]_{0}^{2} + \left[\left(\frac{\partial \alpha_{xx}}{\partial Q} \right)_{0} - \left(\frac{\partial \alpha_{zz}}{\partial Q} \right) \right]_{0}^{2} + \left[\left(\frac{\partial \alpha_{xx}}{\partial Q} \right)_{0} - \left(\frac{\partial \alpha_{zz}}{\partial Q} \right) \right]_{0}^{2} + \left[\left(\frac{\partial \alpha_{xx}}{\partial Q} \right)_{0} - \left(\frac{\partial \alpha_{zz}}{\partial Q} \right) \right]_{0}^{2} + \left[\left(\frac{\partial \alpha_{xx}}{\partial Q} \right)_{0} - \left(\frac{\partial \alpha_{zz}}{\partial Q} \right) \right]_{0}^{2} + \left[\left(\frac{\partial \alpha_{xx}}{\partial Q} \right)_{0} - \left(\frac{\partial \alpha_{zz}}{\partial Q} \right) \right]_{0}^{2} + \left[\left(\frac{\partial \alpha_{xx}}{\partial Q} \right)_{0} - \left(\frac{\partial \alpha_{zz}}{\partial Q} \right) \right]_{0}^{2} + \left[\left(\frac{\partial \alpha_{xx}}{\partial Q} \right)_{0} - \left(\frac{\partial \alpha_{zz}}{\partial Q} \right) \right]_{0}^{2} + \left[\left(\frac{\partial \alpha_{xx}}{\partial Q} \right)_{0} - \left(\frac{\partial \alpha_{xx}}{\partial Q} \right) \right]_{0}^{2} + \left[\left(\frac{\partial \alpha_{xx}}{\partial Q} \right)_{0} - \left(\frac{\partial \alpha_{xx}}{\partial Q} \right) \right]_{0}^{2} + \left[\left(\frac{\partial \alpha_{xx}}{\partial Q} \right)_{0} - \left(\frac{\partial \alpha_{xx}}{\partial Q} \right) \right]_{0}^{2} + \left[\left(\frac{\partial \alpha_{xx}}{\partial Q} \right)_{0} - \left(\frac{\partial \alpha_{xx}}{\partial Q} \right) \right]_{0}^{2} + \left[\left(\frac{\partial \alpha_{xx}}{\partial Q} \right)_{0} - \left(\frac{\partial \alpha_{xx}}{\partial Q} \right) \right]_{0}^{2} + \left[\left(\frac{\partial \alpha_{xx}}{\partial Q} \right)_{0} - \left(\frac{\partial \alpha_{xx}}{\partial Q} \right) \right]_{0}^{2} + \left[\left(\frac{\partial \alpha_{xx}}{\partial Q} \right)_{0} - \left(\frac{\partial \alpha_{xx}}{\partial Q} \right) \right]_{0}^{2} + \left[\left(\frac{\partial \alpha_{xx}}{\partial Q} \right)_{0} - \left(\frac{\partial \alpha_{xx}}{\partial Q} \right) \right]_{0}^{2} + \left[\left(\frac{\partial \alpha_{xx}}{\partial Q} \right)_{0} - \left(\frac{\partial \alpha_{xx}}{\partial Q} \right) \right]_{0}^{2} + \left[\left(\frac{\partial \alpha_{xx}}{\partial Q} \right)_{0} - \left(\frac{\partial \alpha_{xx}}{\partial Q} \right) \right]_{0}^{2} + \left[\left(\frac{\partial \alpha_{xx}}{\partial Q} \right)_{0} - \left(\frac{\partial \alpha_{xx}}{\partial Q} \right) \right]_{0}^{2} + \left[\left(\frac{\partial \alpha_{xx}}{\partial Q} \right)_{0} - \left(\frac{\partial \alpha_{xx}}{\partial Q} \right) \right]_{0}^{2} + \left[\left(\frac{\partial \alpha_{xx}}{\partial Q} \right)_{0} - \left(\frac{\partial \alpha_{xx}}{\partial Q} \right) \right]_{0}^{2} + \left[\left(\frac{\partial \alpha_{xx}}{\partial Q} \right)_{0} - \left(\frac{\partial \alpha_{xx}}{\partial Q} \right) \right]_{0}^{2} + \left[\left(\frac{\partial \alpha_{xx}}{\partial Q} \right)_{0} - \left(\frac{\partial \alpha_{xx}}{\partial Q} \right) \right]_{0}^{2} + \left[\left(\frac{\partial \alpha_{xx}}{\partial Q} \right)_{0} - \left(\frac{\partial \alpha_{xx}}{\partial Q} \right) \right]_{0}^{2} + \left[\left(\frac{\partial \alpha_{xx}}{\partial Q} \right)_{0} - \left(\frac{\partial \alpha_{xx}}{\partial Q} \right) \right]_{0}^{2} + \left[\left(\frac{\partial \alpha_{xx}}{\partial Q} \right)_{0} - \left(\frac{\partial \alpha_{xx}}{\partial Q}$

SERS Intensity: Resonance Raman Scattering

Kramers-Heisenberg-Dirac Dispersion Equation

$$\alpha_{\rho,\sigma} = \sum_{K \neq I,F} \left[\frac{\langle I | \mu_{\sigma} | K \rangle \langle K | \mu_{\rho} | F \rangle}{E_{K} - E_{I} - \hbar \omega_{0} + i\Gamma_{K}} + \frac{\langle I | \mu_{\rho} | K \rangle \langle K | \mu_{\sigma} | F \rangle}{E_{K} - E_{F} + \hbar \omega_{0} + i\Gamma_{K}} \right]$$

$$E \int_{a_{1,a0_{i}}}^{\infty} \left(V_{app} \right) = s_{i} \left(\frac{2\beta_{i}'}{\beta_{i} + \beta_{i}'} \right)^{2} |M_{am}(2)M_{ma}(1)|^{2}$$

$$\times \left| \int_{0}^{\infty} dt \frac{(e^{-\lambda_{i}'} - 1)}{1 + e^{-\lambda_{i}'} (\beta_{i} - \beta_{i}') / (\beta_{i} + \beta_{i}')} \right| \times \exp \left[-\Gamma_{m,n}t + it \left(\omega_{1} + a \left(\omega_{m,n}(0) + \frac{e}{h} V_{app} \right) + \frac{1}{2} \sum_{i} \omega_{i} \right) \right] \prod_{i} G_{i}(t) \right|$$

$$F_{CE} = \frac{\sum_{n=1}^{2} \sum_{\rho,\sigma} |\alpha_{\rho\sigma,n}|^{2}}{b^{2} (\nu + 1) \left(\frac{\partial \alpha}{\partial Q} \right)^{2}} \sim 10 - 10^{3} \quad b^{2} = \frac{h}{8\pi^{2} \omega}$$

D. Wu, et al., Spectrochim. Acta A, 2004, 60, 137; J. Chem, Phys. 2005, 122, 094719

Charge transfer mechanism of pyridine/Ag

photon and the CT state

D. Y. Wu*, et al., J. Phys. Chem. C, 2008, 112, 4195.

Wagging Vibrations of Amino Group in Adsorbed Aniline

Wagging Vibrations of Amino group in Adsorbed Aniline

J. Phys. Chem. C, 2011,115, 4174

Simulated Raman Spectra of PATP/Ag or Au

J. Phys. Chem. C, 2009, 113, 18212-182212

Wagging Vibrations of Aniline and its derivatives/Ag

p -Aminobenzoic acid at Ag electrode

Tian, et al, Acta Phys. Chem. Sinica, 1987, 3, 178. Li, et al, Environment Sci. & Tech., 2011, 45,4046 Kim, et al., J. Phys. Chem., 1990, 94,7576

Benzyl and Amino Groups Adsorbed on Silver Electrodes

Wagging Vibrations of Aniline and Benzyl/Ag

J. Phys. Chem. C, 2013,117,18891

Wagging Vibrations of Benzyl/Ag and Aniline/Ag Nanopart.

SERS spectra of Benzyl adsorbed on silver electrodes

J. Am. Chem. Soc. 2010, 132, 9534-9536.

Table 6. Six Derivatives of Polarizability Components α'_{xx} , α'_{yx} , α'_{yy} , α'_{zy} , α'_{zy} , and α'_{zz} , Isotropous Polarizability (Å²/amu^{1/2}), Anisotropic Polarizability, and Raman Scattering Factor (S^{R} , Å⁴/amu) of Wagging Mode for Aniline, Benzyl, and Their Metallic Complexes

species	$lpha'_{ m xx}$	$lpha_{ m yx}'$	α'_{yy}	α'_{zx}	α'_{zy}	α'_{zz}	\overline{lpha}'	γ'^2	$S^{\mathbb{R}}$
C ₆ NH ₂	0.75	0.00	-0.13	-0.10	0.00	0.04	0.22	0.68	6.88
C ₆ NH ₂ -Ag ₄	2.83	0.00	-0.94	0.02	0.00	0.18	0.69	11.26	100.39
C ₆ CH ₂ ·	0.00	0.00	0.00	0.57	0.00	0.00	0.00	0.97	6.76
C ₆ CH ₂ ·-Ag ₄	16.84	1.25	2.46	0.00	0.00	0.77	6.69	238.72	3686.34
C ₆ CH ₂ ⁻	0.00	0.00	0.00	-0.03	2.73	0.00	0.00	22.29	156.01
C ₆ CH ₂ ⁻ -Ag ₄	-17.66	1.06	0.60	-0.35	0.15	-1.00	-6.02	310.71	3806.80

Chemical enhancement factor from chemical bonding 10~500 fold

Summary

- (1) Chemical enhancement effect is significantly influenced by charge transfer and chemical binding interaction on metal electrode surfaces.
- (2) The p-π conjugation effect, hybridization effect, and the strength of the binding interaction influence on the surface Raman bands of wagging vibrations (Vibrational frequency and Raman intensity).
- (3) Quantum chemical calculation is helpful to understand the observed phenomena in surface Raman spectra in Electrochemical interfaces. EC-SERS + QC

Collaborators:

Prof. Zhong-Qun Tian (Xiamen University) EC-SERS Expt

Prof. Bin Ren (Xiamen University) EC-SERS Expt

Prof. Zhi-Lin Yang (Xiamen University) SERS-Surface Plasmon

Prof. S. H. Lin (IAMS, Taipei)

Molecular Spectroscopy

Students:

Song-Yuan Ding, Xiu-Min Liu, Yi-Fan Huang, Ran Pang, Liu-Bin Zhao, Rong Huang, Xi Jin, Wen-Li Luo, Sha Tao, Li-Juan Yu, Zi-Feng Liu

Fund: NSF of China, Basic Research Project of MOST

Thanks for your attention!

Charge transfer mechanism of pyridine/Ag

Energy matching between photon and charge transfer state

D.Y. Wu*, et al., *Spectrochim. Acta. A*, 2004, 60, 137.

D. Y. Wu*, et al., J. Phys. Chem. C, 2008, 112, 4195.

Charge Transfer Enhancement for Pyridine/Ag

