Metadata, citation and similar papers at core.ac.uk

The Millimeter-Wave Spectroscopy of Hydantoin, A Potential Precursor of Glycine

Hiroyuki Ozeki, Rio Miyahara, Hiroto Ihara, Satoshi Todaka, <u>Kaori Kobayashi</u>, and Masatoshi Ohishi (Toho Univ., Toyama Univ., NAOJ)

Road to Glycine

Hydantoin (Imidazolidine-2,4-dione)

- White powder (m.p. 220 °C)
- Synthesized from glycolic acid and Urea
- Synthesized from Carbonyl compounds via Bucherer-Bergs Reaction
- Provides glycine by hydrolysis
- 5-substituted derivatives will lead to various kinds of amino acids

KCN

 $(NH_4)_2CO_3$

R

 \mathbb{R}^2

5-substiuted Hydantoin

CN

Aim of the study

 To provide spectroscopic data for astronomical search

Previous spectroscopic studies on Hydantoin

- X-ray crystallography
 - Y. Fang-Lei et al. (2005)
- IR spectroscopy (solid) and ab initio
 - O. Gluce et al. (2012)
- Matrix isoleation IR spectroscopy and ab initio
 G. O. Ildiz et al. (2013)
- Theoretical calculation
 - S. Belaidi et al. (2015)
- No gas phase data

Molecular structure & Dipole moment of Hydantoin

Millimeter-wave spectroscopy of Hydantoin

- Conventional frequency modulated spectrometer with 100 cm length free space cell @ Toho university
- Experimental Condition
 - Sample : Commercially available sample (20 g)
 - Heated to 420 K
 - → Hydantoin does not decompose at this temperature
- Spectral measurement
 - Frequency region : 80 150 GHz
 - Search for b-type transitions

Predicted b-type spectrum

• Series with 3400 MHz separation @ \sim 140 GHz

Predicted b-type spectrum

Spectral line survey @ 142 GHz

Spectral line survey @ 142 GHz

Spectral assignments

• b-type R-branch transition

Spectral Intensity @ 420 K N = 35 - 34, Ka = 0-1,1-0 (121 GHz)

Intensity: Ground state > Excited state 1 > Excited state 2

Estimated vibrational energy

Present Study

	Relative Intensity	Estimated energy (cm ⁻¹)
Excited state 1	0.61	145
Excited state 2	0.55	175

Comparison with calculations

Mode #	IR (Exp.)	DFT(B3LYP) 6-311G++(d,p)	DFT(B3LYP) 6-311G++(d,p)
	Ildiz et al.(2012)	Belaidi et al (2015)	lldiz et al.(2013)
27		128.5824	29
26		144.7564	133
25		385.3754	356
24	428	389.9752	385

Excited state 1 → Mode 27 Excited state 2 → Mode 26

Hydantoin @ 100 K

• Ground state

Conclusions

- Pure rotational spectra of Hydantoin in the ground and 2 vibrationally excited states have been successfully assigned.
- Frequency catalogues are now ready for astronomical observation of Hydantoin below 300 GHz.

Acknowledgements

This work has been supported by JSPS Kakenhi (Grants-in-Aid for Scientific Research) #15H03646

Thank you for your attention.