

F. Kwabia Tchana¹ , **M. Ndao¹** , **L. Manceron²** , **A. Perrin¹** , **J. M. Flaud¹** , **W.J. Lafferty³**

¹ Laboratoire Interuniversitaire des Systèmes Atmosphériques, UMR CNRS 7583, Université Paris Diderot, France ²Ligne AILES, Synchrotron SOLEIL and MONARIS, CNRS UMR 8233, Université Pierre et Marie Curie, France 3Sensor Science Division, National Institute of Standards and Technology, USA

Modes of vibration of phosgene ${}^{35}Cl_2CO$

Phosgene has **6 IR** modes, **2** in the mid-infrared (v_1 and v_5) and **4 low energy modes:** \mathbf{v}_3 **,** \mathbf{v}_6 **,** \mathbf{v}_2 **and** \mathbf{v}_4

Lots of strong hot bands in the 11.8 µm spectral region where the phosgene is detected and modelled

These hot bands complicate the analysis of spectra !!

Detection of atmospheric Cl₂CO: **Use of the atmospheric window around 11 µm**

- **Phosgene is relatively more abundant in the stratosphere**, where it has a lifetime of several years, **but is also present in the troposphere** in spite of a shorter lifetime (seventy days)
- Strong infrared absorption of phosgene (v_5) occur in the same spectral region (**850 cm-1/11.8 µm**) as **\$**Freon-11 (CCl3F), **which leads to an overestimation of the concentration of Freon-11**, **if one does not take into account the absorption of phosgene as can be seen on the residual of this figure**

\$ Toon et *al*., *Geophys. Res. Lett*., **28** (2001) 2835

Detection of atmospheric Cl₂CO: Use of the **atmospheric window around 11 µm**

- **Phosgene is relatively more abundant in the stratosphere**, where it has a lifetime of several years, **but is also present in the troposphere** in spite of a shorter lifetime (seventy days)
- Strong infrared absorption of phosgene (v_5) occur in the same spectral region (**850 cm-1/11.8 µm**) as **\$**Freon-11 (CCl3F), **which leads to an overestimation of the concentration of Freon-11**, **if one does not take into account the absorption of phosgene as can be seen on the residual of this figure**

Spectral fit to a MkIV limb transmittance spectrum at 15.36 km tangent altitude **performed without absorption of the** v_5 **band of atmospheric CI₂CO**

\$ Toon et *al*., *Geophys. Res. Lett*., **28** (2001) 2835

Modelling of atmospheric $Cl₂CO$: **Performed with a linelist simulating the absorption of the ν5 band of atmospheric Cl2CO**

Precise modelling of phosgene absorptions in this infrared atmosoheric windows requires the study of the v_5 band **but**
also the low vibrational also the low vibrational energy such as: ν3 (285 cm-1) and ν6 (440 cm-1) bands.

Toon et *al*., *Geophys. Res. Lett*., **28** (2001) 2835

Modelling of atmospheric $Cl₂CO$: **Performed with a linelist simulating the absorption of the ν5 band of atmospheric Cl2CO**

Precise modelling of phosgene absorptions in this infrared atmosoheric windows requires the study of the $v₅$ band **but also the low vibrational energy such as: ν3 (285 cm-1) and ν6 (440 cm-1) bands**.

The omission of these hot bands leads to a systematic error of more than 20% in the retrieved profiles.

Toon et *al*., *Geophys. Res. Lett*., **28** (2001) 2835

Indeed these far infrared fundamentals are responsible for **hot bands** $(v_5 + v_3 - v_3)$ and **ν5+ν⁶ -ν6 ,…)**, not analysed but of great importance for the correct retrieval of Freon-11.

Previous study

• **Microwave spectra: determination of phosgene structure and ground state parameters**

Wilse and Robinson, *J. Chem. Phys*. **21** (1953) 1741 Mirri et *al*., *Spectro. Chem. Acta A* **27** (1971) 937 Carpenter and Rimmer, *J. Chem. Soc. Faraday Trans.* 2 **74** (1978) 466 Nakata et *al*., *J. Mol. Spectrosc*. **83** (1980) 105 Nakata et *al*., *J. Mol. Spectrosc*. **83** (1980) 118

• Tunable diode laser spectrum: very partial study of the strong v_1 **and ν5 bands**

Yamamoto et *al*., *J. Mol. Spectrosc.* **106** (1984) 376

• **High resolution Fourier transform spectra: detailed and extensive analysis of the strong** v_1 **and** v_5 **bands** Kwabia Tchana et *al*., *Molecular Physics* **113** (2015) 3241

Present study

- **We recorded the high resolution (0.00102 cm-1) FT far-infrared spectra of phosgene: ³⁵Cl2CO (57%)**, **³⁵Cl³⁷ClCO (37%) and ³⁷Cl2CO (6%)**
- **First line position analysis of the ν3 (285 cm-1) and ν6 (440 cm-1) bands of the most abundant isotopomers ³⁵Cl2CO and ³⁵Cl³⁷ClCO**

Experimental setup: **Synchrotron source coupled to the high resolution Fourier transform spectrometer and** long-path cryogenic cell

Experimental setup: Synchrotron source coupled to the high resolution Fourier transform spectrometer and **long-path cryogenic cell**

Four compartment chamber

- Sample gas
- Convecteur-cooling gas (He)
- Liquid Nitrogen reservoir
- Insulating vacuum

For this experiment, the spectrum was recorded at a regulated temperature of 197 K, an optical path of 93.14 m and phosgene pressure of 1.06 hPa

⁷¹st International Symposium on Molecular Spectroscopy - Champaign-Urbana, Illinois - June 20-24, 2016

Watson-type Hamiltonian used to calculate the upper states ro-vibrational 3¹ and 6¹ of phosgene

The upper state rotational constants were obtained using a **Watson A-type Hamiltonian written in the I**^{\mathbf{r} representation ($\mathbf{x} = \mathbf{b}$, $\mathbf{y} = \mathbf{c}$ and $\mathbf{z} = \mathbf{a}$)}

$$
H_{w} = E_{v} + [A^{v} - \frac{1}{2}(B^{v} + C^{v})]J_{z}^{2} + \frac{1}{2}(B^{v} + C^{v})J^{2} + \frac{1}{2}(B^{v} - C^{v})J_{xy}^{2}
$$

\n
$$
- \Delta_{K}^{v}J_{z}^{4} - \Delta_{JK}^{v}J_{z}^{2}J^{2} - \Delta_{J}^{v}(J^{2})^{2} - \delta_{K}^{v}\{J_{z}^{2}, J_{xy}^{2}\} - 2\delta_{J}^{v}J_{xy}^{2}J^{2}
$$

\n
$$
+ H_{K}^{v}J_{z}^{6} + H_{K}^{v}J_{z}^{4}J^{2} + H_{IK}^{v}J_{z}^{2}(J^{2})^{2} + H_{J}^{v}(J^{2})^{3}
$$

\n
$$
+ h_{K}^{v}\{J_{z}^{4}, J_{xy}^{2}\} + h_{K}^{v}\{J_{z}^{2}, J_{xy}^{2}\}J^{2} + 2h_{J}^{v}J_{xy}^{2}(J^{2})^{2} + ...
$$

Energy level is defined by the quantum numbers J, K_a and K_c

$$
0 \leq K_a \leq J, 0 \leq K_c \leq J, K_a + K_c = J \text{ or } J + 1
$$

Results of the fit for the v_3 bands of ${}^{35}Cl_2CO$ and $35C$ $37C$ C

Range of quantum numbers observed for experimental energy levels, number of lines and RMS of the vibrational state $v_3 = 1$

For the two isotopomers we have reproduced more than 9000 transitions (J_{max} = 78, K_{annax} = 41), with an RMS better than 0.0004 cm⁻¹

Results of the fit for the v_6 bands of ${}^{35}Cl_2CO$ and $35C$ $37C$ C

Range of quantum numbers observed for experimental energy levels, number of lines and RMS of the vibrational state $v_6 = 1$

For the two isotopomers we have reproduced more than 9000 transitions (J_{max} = 77, K_{annax} = 34), with an RMS better than 0.00045 cm⁻¹

Comparaison of spectra: observed and simulated spectra, v_3 band of Cl_2CO

Portion of the R-branches of the v_3 bands of $35Cl₂CO$ and $35Cl₃7ClCO$

Portion of the R-branches of the v_6 bands of $35Cl₂CO$ and $35Cl₃7ClCO$

The good agreement between observation and simulation demonstrates the quality of the analysis and the fitting

Conclusions and Outlook

- First high-resolution infrared absorption spectra of $Cl₂CO$ isotopomers: 35 Cl₂CO and 35 Cl 37 ClCO between 250 to 480 cm⁻¹.
- First determination of the upper-state rotationnal and distortion constants for v_3 and v_6 bands.
- We also recorded the v_2 (567 cm⁻¹) and v_4 (580 cm⁻¹) bands of ³⁵Cl₂CO and ³⁵Cl³⁷ClCO. The analysis of these two bands is in progress.
- **Outlook:** Study the hots bands, measuring the intensities and the widths of the mid-infrared band of $Cl₂CO$ as a function of temperature. This is important for solving the 40 % discrepancies between the existing room temperature measurements, and to clarify the contribution of hot bands.
- **Objective:** Provide full prediction including intensities and linewidths for remote sensing in the 11.8 μ m spectral region.

⁷¹st International Symposium on Molecular Spectroscopy - Champaign-Urbana, Illinois - June 20-24, 2016

END

Thanks you for your attention!!

Specifications of the LISA-SOLEIL long-path cryogenic cell

- Temperature adjustable in the **80 to 400 K** range, within \pm 2 K
- Cryogenic gauge **0.2 to 40 mb**, measured with \pm 1 %

Four compartment chamber

Sample gas (4)

• Convecteur-cooling gas, He (3)

• Liquid Nitrogen reservoir (2)

• Insulating vacuum (1)

We chose a concept with a completely static configuration (no forced circulation pump, no closed cycle cooler) including a large cryostat around the cell body and additional gas convection cooling. The cooling power originates from the heat of vaporization of liquid nitrogen, giving off approximately 69 W of cooling power per liter of liquid nitrogen evaporated per hour, even at the lowest temperature, and thus keeping chamber 2 at a constant 77 K temperature. The heat is transmitted through radiative cooling to the inner envelopes or, more efficiently, through convection by filling the chamber 3 with helium gas. The helium pressure can be varied to adapt the cooling power to the desired end temperature.

Atmospheric Cl₂CO

Atmospheric $COCl₂$ is formed from the breakdown of chlorinated hydrocarbons such as CCl_4 , CH_3CCl_3 , CHCl_3 , C_2Cl_4 , and C_2HCl_3 [e.g. Helas and Wilson, 1992; Kindler et al., 1995]. It is believed not to have any significant source from chlorofluorocarbons, which break down to COF_2 or COCIF due to the greater strength of the C-F bond as compared with the C-CI bond [Sen et al., 1996]. COCl₂ has both a tropospheric source (OH-initiated oxidation of these parent compounds) and a stratospheric source (mainly UV photolysis of $CCl₄$).

Toon et *al*., *Geophys. Res. Lett*., **28** (2001) 2835

Phosgene production: Triphosgene was heated to generate phosgene

 $C_3Cl_6O_3(s)$ $\frac{\Delta_{sub}H}{\longrightarrow}$ 3 x (Cl₂CO)(g)

Phosgene production begins at a temperature of 80◦C, below which the gas is not produced. The reaction proceeds cleanly up to 110◦C at a steady rate

 \triangleright The gas is trapped in the liquid nitrogen

 \triangleright Pumping of the not condensable impurities (CO, CO₂,...)

Homogeneity of the temperature along the entire optical path length

FIG. 5. Temperature $(^{\circ}C)$ profile vs. position along the cell body for the SOLEIL-LISA Cryocell at nine different cooling temperatures near 293, 274, 242, 224, 209, 170, 127, 106, and 84 K (average temperatures). The temperature sensor indexes are in parenthesis. Sensor 5 is slightly outside the optical path. The numbers on the right indicate average temperatures and 1σ deviations.

Along the cell body five pairs of flexible heaters (500 W, Kapton encapsulated NiCr) were glued with Stycast 2850FT and connected to five separate temperature controllers. This allows a fine adjustment of the temperature and compensations of the small differences between center and extremities of the cell body. The regulation is based on five Pt100 class A temperature sensors, with stated accuracy of \pm 0.1 $^{\circ}$ C