FAR-INFRARED SPECTROSCOPY OF SYN-VINYL ALCOHOL

<u>PAUL RASTON</u>, Department of Chemistry and Biochemistry, James Madison University, Harrisonburg, Virginia, USA; HAYLEY BUNN, School of Chemistry and Physics, The University of Adelaide, Adelaide, South Australia, Australia.

Vinyl alcohol has been extensively studied in both the microwave^{*a,b*} and mid-IR^{*c,d*} spectral regions, where 9 out of 15 vibrational modes have been identified. Here we present the first far-IR spectrum of vinyl alcohol, collected below 700 cm⁻¹at the Australian Synchrotron. The high resolution (0.001 cm⁻¹) spectrum reveals the ν_{11} and ν_{15} fundamentals of syn-vinyl alcohol at 489 cm⁻¹ and 407 cm⁻¹, in addition to two hot bands of the ν_{15} mode at 369 cm⁻¹ and 323 cm⁻¹. High *J* transitions in the R-branch of the ν_{15} band were found to be perturbed by an *a*-axis Coriolis interaction with the nearby ν_{11} state. The ν_{15} torsional mode of *syn*-vinyl alcohol was fit using a Watson's A-reduced Hamiltonian to yield rotational, centrifugal distortion, and Coriolis coupling parameters.

^aS. Saito, Chem. Phys. Lett. 42, 3 (1976)

^bM. Rodler et al., J. Am. Chem. Soc. 106, 4029 (1948)

^cY. Koga et al., J. Mol. Spec. 145, 315 (1991)

^dD-L. Joo et al., J. Mol. Spec. 197, 68 (1999)