

MICROWAVE SPECTROSCOPY AND STRUCTURE DETERMINATION OF H₂S – MI (M=Cu,Ag,Au)

CHRIS MEDCRAFT, School of Chemistry, Newcastle University, Newcastle-upon-Tyne, United Kingdom; ANTHONY LEGON, School of Chemistry, University of Bristol, Bristol, United Kingdom; NICK WALKER, School of Chemistry, Newcastle University, Newcastle-upon-Tyne, United Kingdom.

A series of hydrogen sulphide-metal iodide complexes (H_2S -MI, M=Cu, Ag and Au) have been measured via chirped pulse Fourier transform microwave spectroscopy between 7.5-18 GHz. The complexes were generated in a supersonic expansion via laser ablation of the metal and decomposition of CF_3I . Experimental structures were obtained by least squares fitting of structural parameters to the rotational constants of deuterium and metal (^{63}Cu / ^{65}Cu and ^{107}Ag / ^{109}Ag) isotopologues. Interestingly K_{-1} =1 transitions were observed in the spectra containing D_2S , these were not observed in previous studies of similar molecules (H_2S -MCl). This allowed for the determination of an extra rotational constant and, consequently, extra structural information could be obtained. The structures are compared to high level coupled cluster theory calculations.