Modeling the After-Effects of Shocks Toward L1157

Andrew Burkhardt¹, Chris Shingledecker¹ Brett McGuire², Niklaus Dollhopf¹, Eric Herbst¹ June 22, 2016 ISMS

> 1 U Virginia 2 NRAO

2 NRAO

BUNUMUL CONSIGNESTAS SUFER

arXiv:1605.09707

Observational Predictions

- Gas-phase CH₃OH can be significantly enhanced through the liberation off of grains
- The recent dynamic history of a source (e.g. recently shocked) may have an impact on the present shock-chemistry
 - Ist shock Liberation of complex species from ice
 - 2nd shock → Destruction of complex gas-phase species and core erosion

(Burkhardt et al. 2016)

Post-shock gas-phase chemistry may provide an astronomical "chemical clock," due to high T & n

 \succ HNCO enhancement in O₂-rich post-shock gas

Andrew Burkhardt

Shock Model Goals

> To accurately test predictions, model will incorporate:

- NAUTILUS gas-grain chemical network code
- High temperature chemical network, original version from Harada et al. 2010
- Physical conditions of shocks
 - > Time evolution of physical environment throughout shock
 - Sputtering processes
- Dust heating in low-velocity shocks
- Once developed, can apply to various environments where shocks may be prevalent/significant

Why L1157?

- Prototypical "chemically -active" shocked outflow
- Prior to shock, surrounding material is believed to be cold, quiescent, and have pristine chemically-rich ice mantles
- Much simpler to model than other regions with a more complex physical history (Sgr B2, Orion KL, etc.)

Flattened Envelope around L1157 Protostar NASA / JPL-Caltech / L. Looney (University of Illinois)

Spitzer Space Telescope • IRAC ssc2007-19a

NAUTILUS

- Fast 1D chemical network code solves sets of ODE's to compute abundances of species both in the gas-phase and grain-surface as a function of time (Hersant et al. 2009)
- Adapted from the original gas-grain model Hasegawa & Herbst (1993)
- Flexibility allows for incorporation of various changing physical parameters across time

0

- ➤ Model Outline:
 - Phase 1: Run standard dark cloud conditions to build up chemical complexity on ice (10 K, 5x10⁴ cm⁻³)
 - Phase 2: Introduce shock(s) and allow propagation for 10⁴ yr

0

0

High Temperature Network

- To accurately describe the post-shock region, model requires reaction rates be accurate to T ~1000 K
- Adopt high temperature network originally developed by Harada et al. (2010), with contributions by Furuya, Acharyya, Hincelin, & others
- Contains ~8000 gas-phase & 2000 grain reactions and surface parameters for ~250 species

Describing Shocks - Evolution

Parametric Treatment by Jiménez-Serra et al. (2008)

- Parametric treatment allows for approximation of structure over chemically-relevant timescales
- \succ Input: v_s, T₀, n₀
- Density and A_v scale appropriately with standard jump conditions
- Approximate neutral temperature as Planck-like function

$$v_{\rm n,i} = (v_{\rm s} - v_0) - \frac{(v_{\rm s} - v_0)}{\cosh\left[(z - z_0)/z_{\rm n,i}\right]}$$

$$T_{\rm n} = T_0 + \frac{[a_T (z - z_0)]^{b_{\rm T}}}{\exp[(z - z_0)/z_{\rm T}] - 1}$$

Fig. 3. C-shock physical structure obtained with Eqs. (1), (3), and (4) for $v_s = 40 \text{ km s}^{-1}$, $n_0 = 10^5 \text{ cm}^{-3}$, and $T_0 = 10 \text{ K}$. Velocities are in the frame co-moving with the preshock gas. The magnetic precursor length is of $\Delta z \sim 0.0005-0.001 \text{ pc} = 1.5-3.0 \times 10^{15} \text{ cm}$.

Andrew Burkhardt

 $n_{\rm n}$

 $n_0 v_s$

 $v_{\rm s} - v_{\rm n}$

Describing Shocks - Sputtering

- Sputtering necessary to describe non-thermal desorption processes crucial for shock-chemistry
- Again, following formalism of Jiménez-Serra et al. (2008)
 - Sputtering rate a function of the collisional rate of a given gas-phase particle to strike a target and the sputtering yield of target by projectile with velocities large enough to cause desorption
 - Given surface parameters for each grain species, can calculate sputtering rate due to all major gas-phase particles, which have been determined by NAUTILUS

Andrew Burkhardt

Dust Heating

Dust temperature evolution is crucial for understanding the post-shock environment to understand rate of reproduction of ice mantles

> Dust temperature throughout the shock: (Aota et al. 2015)

 \succ Heating = collisional heating from gas particles

Andrew Burkhardt

ISMS 2016

Example Simulations

Andrew Burkhardt

ISMS 2016

Moving Forward

> Once complete, will be able to:

- Reproduce enhanced abundances observed in L1157
- Test time evolution of shock-enhanced species like HNCO
- Study effects of multiple shocks on molecular enhancements
- Once able to reproduce L1157 observations, should be able to apply model to study more complex regions
- Shocks may prove to be transient phenomena that are crucial for accounting for unexplained overabundances observed compared to theoretical predictions

Thanks

- Advisors: Tony Remijan (NRAO), Eric Herbst (UVa)
- Chris Shingledecker (CNS) for assistance with Fortran
- Nanase Harada for discussion on sputtering & dust temp
- Herbst Group: Romane Legal, CNS, Dominique Maffucci, Sean Shulte, Ilsa Cooke
- Remijanistan: Brett McGuire, Brandon Carroll, Joanna Corby, CNS, Ryan Loomis, Klaus Dollhopf, Tom Booth
- NASA Exobiology and Evolutionary Biology program through a subcontract from Rensselaer Polytechnic Institute for funding

Virginia Space Grant Consortium for funding

Andrew Burkhardt

Half a Decade of ALMA: Cosmic Dawns Transformed

20-23 September 2016, Indian Wells, CA (near Palm Springs) To register and submit an abstract (now open!) visit: http://

go.nrao.edu/ALMA5years

Invited Talks & Speakers

Galaxy Formation and Evolution I: Cosmic Evolution (Caitlin Casey) Galaxy Formation and Evolution II: Gas & Star Formation Properties (Linda Tacconi) Galactic Centers: Star Formation, AGN, Black Holes & ULIRGs (Masatoshi Imanishi) Nearby Galaxies I: Normal Galaxies (Karin Sandstrom) Nearby Galaxies II: Starburst & Super Star Clusters (Kazushi Sakamoto) Massive Star Formation (Jill Rathborne) Low Mass Star Formation (Adele Plunkett) Chemical Evolution During Star and Planet Formation (leong-Eun Lee) Protostellar Disks & Planet Formation (Laura Perez) Debris Disks (Brenda Matthews) Stars and Stellar Evolution (Leen Decin) Solar System (Arielle Moullet) Synergy between ALMA and JWST (Klaus Pontoppidan) ALMA after 5 Years (Pierre Cox) Future ALMA (John Carpenter, Al Wootten, Neal Evans) Conference Summary (Anneila Sargent)

