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Observational Predictions

» Gas-phase CH;OH can be significantly enhanced
through the liberation off of grains

» The recent dynamic history of a source
(e.g. recently shocked) may have an impact
on the present shock-chemistry

> 18t shock =» Liberation of complex species
from ice

» 2"d shock = Destruction of complex

gas-phase species and core erosion
(Burkhardt et al. 2016)

» Post-shock gas-phase chemistry may provide an
astronomical “chemical clock,” due to high T & n

» HNCO enhancement in O,-rich post-shock gas
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Shock Model Goals

» To accurately test predictions, model will incorporate:

» NAUTILUS gas-grain chemical network code

» High temperature chemical network,
original version from Harada et al. 2010

» Physical conditions of shocks
» Time evolution of physical environment throughout shock

» Sputtering processes

» Dust heating in low-velocity shocks

» Once developed, can apply to various environments
where shocks may be prevalent/significant

Andrew Burkhardt

ISMS 2016




Why L1157?

» Prototypical “chemically
-active” shocked outflow

» Prior to shock, surrounding
material is believed to be
cold, quiescent, and have
pristine chemically-rich ice
NERIES

» Much simpler to model ELit:?ﬁﬁﬂciz:;'sF:?L::’;‘;“?Uiib;:f;.E?::::,"S“r
than other regions with a more complex
physical history (Sgr B2, Orion KL, etc.)
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NAUTILUS

> Fast 1D chemical network code solves sets of ODE’s to
compute abundances of species both in the gas-phase
and grain-surface as a function of time (Hersant et a. 2009)

» Adapted from the original gas-grain model Hasegawa &
Herbst (1993)

» Flexibility allows for incorperation of various changing
physical parameters across time

» Model Outline:

» Phase 1: Run standard dark cloud conditions to build up
chemical complexity on ice (10 K, 5x10%cm3)

» Phase 2: Introduce shock(s) and allow propagation for 104 yr

Andrew Burkhardt ISMS 2016




High Temperature Network

» To accurately describe the post-shock region, model
requires reaction rates be accurate to T ~1000 K

» Adopt high temperature
network originally
developed by Harada et al.
(2010), with contributions
by Furuya, Acharyya,
Hincelin, & others

» Contains ~8000 gas-phase
& 2000 grain reactions and
surface parameters for
~250 species
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Describing Shocks - Evolution

» Parametric Treatment by Jiménez-Serra et al. (2008)

» Parametric treatment allows for approximation of structure
over chemically-relevant timescales

> Input: vg, Ty, ng

» Density and A, scale appropriately
with standard jump conditions

» Approximate neutral temperature
as Planck-like function
(vs - UO)

= (s = 00) =
cosh [(z — 20)/zn.i]
0.002 0.004 0.008
by z (pe)

[aT (Z ZO) ] Fig. 3. C-shock physical structure obtained with Egs. (1), (3), and (4)
for vs = 40 kms™', ny = 10° cm™, and T, = 10 K. Velocities are in the
eXp [(Z - ZO ) / ZT] - 1 frame co-moving with the preshock gas. The magnetic precursor length

is of Az~0.0005-0.001 pc = 1.5-3.0 x 10"* cm.
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Describing Shocks - Sputterinc

» Sputtering necessary to describe non-thermal desorption
processes crucial for shock-chemistry

» Again, following formalism of Jiménez-Serra et al. (2008)

» Sputtering rate a function of the collisional rate of a given
gas-phase particle to strike a target and the sputtering yield
of target by projectile with velocities large enough to cause
desorption

» Given surface parameters for each grain species, can
calculate sputtering rate due to all major gas-phase
particles, which have been determined by NAUTILUS
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Dust Heating

» Dust temperature evolution is crucial for understanding
the post-shock environment to understand rate of
reproduction of ice mantles

» Dust temperature throughout the shock: (aota et al. 2015)

» Heating = collisional heating from gas particles

V.~40 km s’
> Cooling = thermal radiation :
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Moving Forward

» Once complete, will be able to:
» Reproduce enhanced abundances observed in L1157
> Test time evolution of shock-enhanced species like HNCO

» Study effects of multiple shocks on molecular enhancements

» Once able to reproduce L1157 observations, should be
able to apply model to study more complex regions

» Shocks may prove to be transient phenomena that are
crucial for accounting for unexplained overabundances
observed compared to theoretical predictions
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