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Figure 1 Principle of photoelectron spectroscopy in the gas phase. (a) Ultraviolet photoelectron spectroscopy (UPS): short-wavelength
radiation ionizes the gas-phase species and leads to the emission of photoelectrons with a distribution of kinetic energies determined
by the energy differences between the quantum states |α+〉 of the ionized species and those (|α〉) of the parent neutral species. A
photoelectron spectrum is obtained by monitoring the kinetic energy distribution of the photoelectrons, e.g., by measuring the electron
time-of-flight (TOF) spectrum, at a fixed wave number of the ionizing radiation. (b) Threshold photoelectron spectroscopy (TPES): a
threshold photoelectron spectrum is obtained by monitoring the yield of electrons emitted at threshold with nearly zero kinetic energy
as a function of the wave number of the ionizing radiation.

A measurement of the velocity distribution of the photo-
electrons can be used in combination with equations (2)
and (3) to determine the ionization energies EI(α

+, α). A
measurement of the recoil velocity of the ions would in
principle also be possible, but would be very much more
difficult, require very cold samples, and lead to much less
precise values of the ionization energies.

The first systematic exploitation of the photoelectric
effect in the gas phase originated from studies of the pho-
toionization spectra of gas-phase samples by Watanabe
and Marmo (Watanabe 1954, 1957, Watanabe and Marmo
1956). A photoionization spectrum is recorded by monitor-
ing, as a function of the frequency of the ionizing radiation,
the total current of ions of a given mass, rather than the
electron current. The spectra contain information not on
the kinetic energies of the photoelectrons but on the chem-
ical identity of the species under investigation via its mass,
which makes photoionization mass spectrometry a power-
ful tool for analytical chemistry. In general, photoionization
spectra provide reliable information only on the position
of the lowest ionization threshold, which corresponds to
the frequency at which the ion current rises from zero to
a finite value (see also Section 2 below). The method can
also be used to study the fragmentation of the ion if the fre-
quency of the ionizing radiation lies above its dissociation
energy.

The breakthrough in the utilization of the photoelectric
effect to study the electronic structure of molecules in
the gas phase was made possible by the development of

a very intense He I light source. While Vilesov et al.
(1961) were the first to report a photoelectron spectrum
of polyatomic molecules (benzene and aromatic amines),
it is the systematic exploitation of the intense and narrow-
bandwidth He I source by Turner and his coworkers (Turner
and Al Jobory 1962, Al-Joboury and Turner 1963, 1967)
which established ultraviolet photoelectron spectroscopy
(UPS) as a powerful method to study the electronic structure
of atoms and molecules in the gas phase. Simultaneously,
Siegbahn and his coworkers exploited X-ray sources for
the same purpose, and also to study inner-shell ionization
processes, and called their method ESCA for “electron
spectroscopy for chemical analysis” (Siegbahn et al. 1969).
Commercial instruments soon became available, and UPS
and ESCA were established as important spectroscopic and
analytical methods in chemistry.

In a period of less than 10 years after the first stud-
ies, UPS and ESCA reached technical maturity: the elec-
tron collection efficiency was significantly increased, and
the energy resolution was improved, by the development
of better electron energy analyzers and of better elec-
tron detectors, the use of retarding potentials in various
geometries, the exploitation of electric and magnetic fields,
and the minimization of the undesirable effects produced
by the buildup of electric potentials in the spectrome-
ters. By 1970, the best spectrometers could achieve a
resolution of ≈40 cm−1, sufficient to resolve the vibra-
tional structure in the photoelectron spectra of many poly-
atomic molecules. Figure 2 illustrates, with the example
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Figure 42 Illustration of the Franck–Condon principle for (a) an electronic transition between two electronic states having almost
identical Born–Oppenheimer potential energy functions and (b) an electronic transition between two electronic states with R′′

e << R′
e.

The shaded areas represent the regions where the vibrational wave function of the initial state has a significant amplitude. The spectra
displayed below the potential energy diagrams represent schematically the expected appearance of electronic spectra recorded from the
v = 0 level of the lower electronic state.

3.3.3 Vibronic Structure and the Franck–Condon
Principle

Equation (172) implies that the intensity Iα′,v′,α′′,v′′ of a
transition between two vibronic states should be approx-
imately proportional to the square of the overlap integral
〈"′

vib|"′′
vib〉 of the vibrational wave functions:

Iα′,v′,α′′,v′′ ∝ |〈"′
vib|"′′

vib〉|2 = |〈v′|v′′〉|2 (204)

The square of the integral 〈"′
vib|"′′

vib〉, which is called
the Franck–Condon factor (see Section 3.1), thus indicates
how the intensity of an electronically allowed transition
between the electronic states α′′ and α′ is partitioned among
the various vibrational bands.

Figure 42 shows two schematic illustrations of the
Franck–Condon principle applied to the absorption spec-
trum of diatomic molecules in their ground state. In

Figure 42(a), the Born–Oppenheimer potential energy func-
tions of the two electronic states are almost identical. In this
case, vibrational wave functions of the same vibrational
quantum number (v′ = v′′) are also almost identical in the
two electronic states. The orthogonality of the vibrational
wave functions implies the selection rule ∆v = 0 and the
electronic spectrum consists of a single dominant vibra-
tional band corresponding to the v′ = 0 ← v′′ = 0 band
(labeled 0-0 in the spectrum drawn at the bottom of the
figure).

In Figure 42(b), the potential energy functions of the two
states differ from each other. The equilibrium internuclear
separation R′

e of the upper potential function is larger
than that of the lower state. Consequently, transitions
originating from the v′′ = 0 level of the lower electronic
state can access several vibrational levels of the upper
state. The Franck–Condon factors are, therefore, nonzero
in the energetic region where the repulsive part of the
upper potential energy function lies vertically above the
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molecules. In this model, rovibronic photoionization
selection rules are derived in two steps. (1) Well-
known optical selection rules for bound-to-bound elec-
tronic transitions are used to determine allowed rovi-
bronic transitions from a given neutral state to low n
Rydberg states (characterized by Hund’s angular
momentum coupling cases (a) or (b)). (2) Correlation
diagrams between low n and high n Rydberg states (cor-
responding to the frame transformation to Hund’s
angular momentum coupling case (d) of multichannel
quantum defect theory [60]) are then used to establish
which rovibronic ion core states can be accessed in an
optical transition from a given rovibronic neutral state.

Although the model is in principle ideally suited to
derive photoionization selection rules applicable to
PFI-ZEKE photoelectron spectra (PFI-ZEKE photo-
electron spectroscopy relies on the ®eld ionization of
high n Rydberg states) and undoubtedly represented
an important advance, several drawbacks have pre-
vented its wide application. (1) The model is compli-
cated to use in practical situations (see for instance
[43, 50]). (2) Because of the occurrence of avoided cross-
ings in the correlation diagrams, the successful deriva-
tion of selection rules relies, to some extent at least, on
the energetic ordering of low n, low l Rydberg states, i.e.
on the quantum defects dl. Apart from a few exceptional
cases such as NO [61] and H2 [62] this ordering is in
general not known for all relevant l states. (3) Since its
application relies on the existence of Rydberg states, the
compound-state model cannot be applied to the analysis
of rotationally resolved photodetachment spectra (nega-
tively charged particles do not possess Rydberg states).
(4) In the few cases where the compound-state model
has been used [43, 50], it has failed to give a fully satis-
factory set of selection rules, as pointed out in two
recent articles [46, 51].

The method introduced here to derive rovibronic
selection rules in polyatomic molecules does not suÄer
from these drawbacks. It is simple to use; it does not
require any knowledge of, or even the existence of, Ryd-
berg states and is thus also applicable to photodetach-
ment studies. Moreover, we have not found a single
exception to the selection rules presented in this article
in the body of experimental data currently known to us
[12±51]. In the few cases where inconsistencies between
our predictions and reported transitions could be iden-
ti®ed it became clear that these inconsistencies had their
origin in misassignments of the spectral features or in
typing errors.

2. Rovibronic photoionization selection rules

In the long range part of the electron±core potential
the photoelectron can be regarded to a good approxima-
tion as independent of the motion of the ion core. In this

region, the molecular wavefunction can be expressed as
a product of the ion core and the photoelectron wave-
functions. The photoionization process is described by
equation (1):

kW ( ion)W (electron) |l |W (neutral)l (1)

where l represents the electric dipole moment operator,
W (neutral) the neutral wavefunction, and W ( ion) and
W (electron) the wavefunctions of the ionic core and of
the photoelectron, respectively. The angular momentum
state of the ejected photoelectron is conveniently
described as a partial wave expansion in the orbital
angular momentum quantum number l [55]:

W (electron) = Nå
¥

l= ml

cl Ylml
(µ,u )R≤l(r) (2)

where N represents a normalization constant, cl a
weighting coeÅcient for the l partial wave, Ylml

(µ,u)
the spherical harmonics with orbital angular momentum
quantum number l and space-®xed projection ml, and
R≤l(r) the radial part of the wavefunction.

Although the (very weak) coupling of the spin of the
photoelectron with other types of angular momenta in
the molecular system is not considered explicitly, its
eÄects are taken into account by the total angular
momentum selection rule D J = J+ - J = l + 3

2 , l + 1
2 ,

. . . , l - 1
2 , l - 3

2. Whenever spin±orbit coupling in the
ion core plays a role, the formalism developed below
(equations (7±11)) can also be applied provided that
the suitable spin double groups are used. Photoejection
is assumed to leave the nuclear spin wavefunction unaf-
fected, which enables one to consider the rovibronic
wavefunctions only. Equation (1) can then be expressed
as:

kW rve( ion)W (electron) |π|W rve(neutral)l (3)

where W rve(neutral) and W rve( ion) represent the rovi-
bronic wavefunctions of the neutral and the ionic
state, respectively, and W (electron) the wavefunction of
the photoelectron. The irreducible representations
Grve neutral( ) ,Grve ion( ) and G electron( ) are used to char-
acterize the rovibronic symmetry of the neutral state, the
ionic state and the ejected photoelectron.

The neutral state, the ionic state and the photoelec-
tron wavefunctions are classi®ed in the molecular sym-
metry group [5, 9], which is a subgroup of the complete
nuclear permutation inversion group. The choice of the
appropriate molecular symmetry group is made by con-
sidering which operations are feasible. Although no
strict mathematical conditions exist to assist in this
choice [8], the feasibility of an operation depends on
the spectral resolution and the time scale of a given
experiment and on the barrier height separating the
equivalent molecular structures connected by the opera-
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High-resolution photoelectron spectroscopy study of the water isotopologues radical cation

isotopologue KaKc �rve Spin-statistical weight �+
rve

H2O ee A1 1 B1

H2O eo B1 3 A1

H2O oe B2 3 A2

H2O oo A2 1 B2

D2O ee A1 3 B1

D2O eo B1 1 A1

D2O oe B2 1 A2

D2O oo A2 3 B2

HDO ee A’ 1 A”

HDO eo A” 1 A’

HDO oe A’ 1 A”

HDO oo A” 1 A’

TABLE I. Rovibronic symmetries of the N 00
K00

a K
00
c
and N

+
K+

a K+
c
rotational levels of the water isotopo-

logues and its cations in the C2v(M) and Cs(M) point group. The nuclear-spin-statistical weights

of the neutral rovibronic levels associated to each rotational level is also indicated.

and

�rve(ion)⌦ �rve(neutral) � �(s) for l odd (2)

where l is the angular momentum quantum number of the outgoing electron in the partial

wave expansion description . In the C2v(M) symmetry if �(s)=A1 and �⇤=A2, one can then

deduced the following selection rules:

A1  ! A2, B1  ! B2 for l even (3)

A1  ! A1, A2  ! A2, B1  ! B1, B2  ! B2 for l odd (4)

In the Cs(M) symmetry if �(s)=A’ and �⇤=A”, one gets similarly:

A

0  ! A” for l even (5)

and

A

0  ! A

0
, A” ! A” for l odd (6)

5

�e�,l ⌦ �+
rve ⌦ � ”

rve � � ⇤
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1 Results

C2v(M): E (12) E* (12)*
C2v: E C2b �

ab

�
bc

Equiv.rot.: R0 R⇡

b

R⇡

c

R⇡

a

A1: 1 1 1 1
A2: 1 1 -1 -1
B1: 1 -1 -1 1
B2: 1 -1 1 -1

Table 1: Assignment and measured line positions non corrected by the electric
field shift of 1.35 cm�1 for the origin band. The ionization potential of the
calculated position is not corrected by the electric field shift on this table.
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Table 2: Assignment and measured line positions non corrected by the electric
field shift of 1.35 cm�1 for the origin band. The ionization potential of the
calculated position is not corrected by the electric field shift on this table.

Pour l’tat A
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= K+
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c

A’: 1 1
A”: 1 -1

Table 2: Assignment and measured line positions non corrected by the electric
field shift of 1.35 cm�1 for the origin band. The ionization potential of the
calculated position is not corrected by the electric field shift on this table.
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parity H2O (GS) H2O+(Ã+ 2Ã1)
ee A1 A1

eo B1 B1

oe B2 B2

oo A2 A2

Table 3: Assignment and measured line positions non corrected by the electric
field shift of 1.35 cm�1 for the origin band. The ionization potential of the
calculated position is not corrected by the electric field shift on this table.
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K
a

K
c

parity H2O (GS) H2O+(GS)
ee A1 B1

eo B1 A1

oe B2 A2

oo A2 B2

Table 4: Assignment and measured line positions non corrected by the electric
field shift of 1.35 cm�1 for the origin band. The ionization potential of the
calculated position is not corrected by the electric field shift on this table.

(0,0,0) (0,1,0)
HDO E

I

/hc 101840.1(10) 104225.5(20)
HDO+ E

vib

/hc 2385.4(10)

Table 5: Assignment and measured line positions non corrected by the electric
field shift of 1.35 cm�1 for the origin band. The ionization potential of the
calculated position is not corrected by the electric field shift on this table.

(0,0,0) (0,1,0)

HDO
E

I

/hc 101840.1(10) 104225.5(20)
E

vib

/hc 2385.4(10)

Table 6: Assignment and measured line positions non corrected by the electric
field shift of 1.35 cm�1 for the origin band. The ionization potential of the
calculated position is not corrected by the electric field shift on this table.

(0,0,0) (0,2,0) (1,0,0)
D2O E

I

/hc 101915.2(10) 103981.6(20) 104262.1
D2O+ E

vib

/hc 2066.4(10) 2347.9(10)

Table 7: Assignment and measured line positions non corrected by the electric
field shift of 1.35 cm�1 for the origin band. The ionization potential of the
calculated position is not corrected by the electric field shift on this table.
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In agreement with the rotational assignment of  H. Lew, Can. J. Phys. 54, 2028 (1976).  
	
  M. Brommer, B. Weis, B. Follmeg, P. Rosmus, S. Carter, N. C. Handy, H. J. Werner, and P. J. 
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In our supersonic 
expansion (10K) and 
without nuclear spin 
relaxation: 
One needs to 
consider only the  
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Conclusions: 
 
 
•  First jet-cooled rotationally resolved photoelectron 

spectrum of  the                               transition. 
 
•  Confirmation of  the rotational assignment of  the 

Π(080) band. 
 
•  Tentative assignment of  the Σ(030).  
 
•  These measurements could support a future potential 

energy surface refinement. 
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chemical reaction1: 
A process that results in the interconversion of  chemical species. 
Chemical reactions may be elementary reactions or stepwise reactions  

chemical species1: 
An ensemble of  chemically identical molecular entities that can explore the 
same set of  molecular energy levels on the time scale of  the experiment. 

Chemical reaction following selection rules 

molecules. In this model, rovibronic photoionization
selection rules are derived in two steps. (1) Well-
known optical selection rules for bound-to-bound elec-
tronic transitions are used to determine allowed rovi-
bronic transitions from a given neutral state to low n
Rydberg states (characterized by Hund’s angular
momentum coupling cases (a) or (b)). (2) Correlation
diagrams between low n and high n Rydberg states (cor-
responding to the frame transformation to Hund’s
angular momentum coupling case (d) of multichannel
quantum defect theory [60]) are then used to establish
which rovibronic ion core states can be accessed in an
optical transition from a given rovibronic neutral state.

Although the model is in principle ideally suited to
derive photoionization selection rules applicable to
PFI-ZEKE photoelectron spectra (PFI-ZEKE photo-
electron spectroscopy relies on the ®eld ionization of
high n Rydberg states) and undoubtedly represented
an important advance, several drawbacks have pre-
vented its wide application. (1) The model is compli-
cated to use in practical situations (see for instance
[43, 50]). (2) Because of the occurrence of avoided cross-
ings in the correlation diagrams, the successful deriva-
tion of selection rules relies, to some extent at least, on
the energetic ordering of low n, low l Rydberg states, i.e.
on the quantum defects dl. Apart from a few exceptional
cases such as NO [61] and H2 [62] this ordering is in
general not known for all relevant l states. (3) Since its
application relies on the existence of Rydberg states, the
compound-state model cannot be applied to the analysis
of rotationally resolved photodetachment spectra (nega-
tively charged particles do not possess Rydberg states).
(4) In the few cases where the compound-state model
has been used [43, 50], it has failed to give a fully satis-
factory set of selection rules, as pointed out in two
recent articles [46, 51].

The method introduced here to derive rovibronic
selection rules in polyatomic molecules does not suÄer
from these drawbacks. It is simple to use; it does not
require any knowledge of, or even the existence of, Ryd-
berg states and is thus also applicable to photodetach-
ment studies. Moreover, we have not found a single
exception to the selection rules presented in this article
in the body of experimental data currently known to us
[12±51]. In the few cases where inconsistencies between
our predictions and reported transitions could be iden-
ti®ed it became clear that these inconsistencies had their
origin in misassignments of the spectral features or in
typing errors.

2. Rovibronic photoionization selection rules

In the long range part of the electron±core potential
the photoelectron can be regarded to a good approxima-
tion as independent of the motion of the ion core. In this

region, the molecular wavefunction can be expressed as
a product of the ion core and the photoelectron wave-
functions. The photoionization process is described by
equation (1):

kW ( ion)W (electron) |l |W (neutral)l (1)

where l represents the electric dipole moment operator,
W (neutral) the neutral wavefunction, and W ( ion) and
W (electron) the wavefunctions of the ionic core and of
the photoelectron, respectively. The angular momentum
state of the ejected photoelectron is conveniently
described as a partial wave expansion in the orbital
angular momentum quantum number l [55]:

W (electron) = Nå
¥

l= ml

cl Ylml
(µ,u )R≤l(r) (2)

where N represents a normalization constant, cl a
weighting coeÅcient for the l partial wave, Ylml

(µ,u)
the spherical harmonics with orbital angular momentum
quantum number l and space-®xed projection ml, and
R≤l(r) the radial part of the wavefunction.

Although the (very weak) coupling of the spin of the
photoelectron with other types of angular momenta in
the molecular system is not considered explicitly, its
eÄects are taken into account by the total angular
momentum selection rule D J = J+ - J = l + 3

2 , l + 1
2 ,

. . . , l - 1
2 , l - 3

2. Whenever spin±orbit coupling in the
ion core plays a role, the formalism developed below
(equations (7±11)) can also be applied provided that
the suitable spin double groups are used. Photoejection
is assumed to leave the nuclear spin wavefunction unaf-
fected, which enables one to consider the rovibronic
wavefunctions only. Equation (1) can then be expressed
as:

kW rve( ion)W (electron) |π|W rve(neutral)l (3)

where W rve(neutral) and W rve( ion) represent the rovi-
bronic wavefunctions of the neutral and the ionic
state, respectively, and W (electron) the wavefunction of
the photoelectron. The irreducible representations
Grve neutral( ) ,Grve ion( ) and G electron( ) are used to char-
acterize the rovibronic symmetry of the neutral state, the
ionic state and the ejected photoelectron.

The neutral state, the ionic state and the photoelec-
tron wavefunctions are classi®ed in the molecular sym-
metry group [5, 9], which is a subgroup of the complete
nuclear permutation inversion group. The choice of the
appropriate molecular symmetry group is made by con-
sidering which operations are feasible. Although no
strict mathematical conditions exist to assist in this
choice [8], the feasibility of an operation depends on
the spectral resolution and the time scale of a given
experiment and on the barrier height separating the
equivalent molecular structures connected by the opera-

794 R. Signorell and F. Merkt
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Experimental set-up 



h⌫ = EI(↵
+,↵) + E(↵+,↵)

kin

h⌫ = EI(↵
+,↵) + E(↵+,↵)

kin

h⌫ = EI(↵
+,↵) + E(↵+,↵)

kin

represents the energy difference between  
the ionized species in quantum state α+	
  and the neutral  
parent in quantum state	
  α.	
  

Kinetic energy released during the 
photoionization process. 

Photoelectron	
  spectroscopy	
  

H2O + h⌫ ! H2O
+ + 1e�

Woerner, H. J.; Merkt, F. Handbook of  High-resolution Spectroscopy  2011  

Photoionization process 

VUV 
photon 


