CARMA Observations of L1157: Chemical Complexity in the Shocked Outflow

Andrew Burkhardt¹, Niklaus Dollhopf¹, Joanna Corby¹, P Brandon Carroll², Chris Shingledecker¹, Ryan Loomis³, S Tom Booth¹, Geoffrey Blake², Eric Herbst¹, Anthony Remijan⁴, Brett McGuire⁴ June 22, 2016

arXiv:1605.09707

Shock Chemistry

- Shocks are ubiquitous throughout the ISM
- Theoretical work predicts many complex molecules form more efficiently in ice on dust (Garrod & Herbst, 2006)

- C-Shocks can liberate species from grain without destroying them, allowing for gas-phase probes of condensed-phase chemistry (Requena-Torres et al. 2006)
- Transient phenomena such as shocks may be necessary to explain enhances abundances of complex species compared to theoretical predictions

L1157

- Class 0 protostar with prototypical "chemically -active" outflow
- Bow shocks cause non-thermal desorption of mantles (Fontani et al. 2014)
- L1157-B1 & B2: recent shock events

Flattened Envelope around L1157 Protostar NASA / JPL-Caltech / L. Looney (University of Illinois)

Spitzer Space Telescope • IRAC ssc2007-19a

- B1: warmer and younger shock T_{kin}~ 80-100 K, t_{shock} ~ 2000 yr
- B2: cooler and older shocker T_{kin}~ 20-60 K, t_{shock} ~ 4000 yr

(Gueth, Guilloteau & Bachiller 1996; Tafalla & Bachiller 1995; Lefloch et al. 2012)

L1157

- Class 0 protostar with prototypical "chemically -active" outflow
- Bow shocks cause non-thermal desorption of mantles (Fontani et al. 2014)
- L1157-B1 & B2: recent shock events
 - B1: warmer and younger shock T_{kin}~ 80-100 K, t_{shock} ~ 2000 yr
 - B2: cooler and older shocker T_{kin}~ 20-60 K, t_{shock} ~ 4000 yr

Observations

- Supplementary CARMA data toward L1157B from search for NH2OH from McGuire et al. 2015
- Observations of CH₃OH, HCN, HCO⁺, & HNCO emission toward (also partially CH₃CN)

TARGETED CARMA TRANSITIONS										
Molecule	Transition	$^{ u}$ (GHz)	E_u (K)	$\begin{array}{c} \text{Beam} \\ (\text{arcsec}^2) \end{array}$	$\begin{array}{c} \text{RMS } (\sigma) \\ (\text{mJy beam}^{-1}) \end{array}$					
CH_3OH (methanol)	$\begin{array}{c} 2_{-1,2} - 1_{-1,1} \\ 2_{0,2} - 1_{0,1} + + \\ 2_{0,2} - 1_{0,1} \\ 2_{1,1} - 1_{1,0} \end{array}$	$\begin{array}{c} 96.73936(5)\\ 96.74138(5)\\ 96.74455(5)\\ 96.75551(5) \end{array}$	12.9 6.9 20.1 28.0	6	8.5					
HCN (hydrogen cyanide)	J = 1 - 0, F = 1 - 1 J = 1 - 0, F = 2 - 1 J = 1 - 0, F = 0 - 1	$\begin{array}{c} 88.63042(2)\\ 88.63185(3)\\ 88.63394(3)\end{array}$	$4.25 \\ 4.25 \\ 4.25$	$3''_{45} \times 3''_{27}$	4.8					
HCO ⁺ (formylium)	J = 1 - 0	89.18853(4)	4.28	3‼39 × 3‼23	5.1					
HNCO (isocyanic acid)	$J = 4_{0,4} - 3_{0,3}$	87.92524(8)	10.6	3'50 × 3'28	7.0					

J2000 Right Ascension

Nearly 90 hr in C, D, & E configurations

Spectral resolution:
 243 kHz (~0.7 km s-1)

Transitions and parameters accessible at www.splatalogue.net (Remijan et al. 2007)

McGuire et al. 2015

Maps

E/W Chemical Differentiation

First maps of HNCO for this source

Enhancement of HNCO in B2

Spectra

Andrew Burkhardt

RADEX

Molecular Abundances and Enhancements										
	CH ₃ OH			HCN		HNCO				
	N	$\frac{N}{N_{\rm H2}}$	N	$\frac{N}{N_{\rm CH_3OH}}$	$\frac{N}{N_{H_2}}$	N	$\frac{N}{N_{\rm CH_3OH}}$	$\frac{N}{N_{H_2}}$		
	$(10^{15}{\rm cm}^{-2})$	(10^{-6})	$(10^{13}{\rm cm}^{-2})$	(10^{-2})	(10^{-8})	$(10^{13}{\rm cm}^{-2})$	(10^{-2})	(10^{-8})		
B0d	1.5	1.5	2.6	1.7	2.6	2.5	1.6	2.5		
B1a	1.9	1.9	10.	5.3	10.	3.2	1.7	3.2		
B1b	2.1	2.1	5.3	2.5	5.3	3.8	1.8	3.8		
B2a	2.7	2.7	9.9	3.7	9.9	8.0	3.0	8.0		
B2b	1.6	1.6	6.6	4.2	6.6	5.5	3.5	5.5		
B2d	2.1	2.0	8.0	3.9	7.9	7.5	3.6	7.5		

- Derived column densities & abundances for CH₃OH, HCN, HNCO using non-LTE radiative transfer code, RADEX (Van der Tak et al. 2007)
 - Used physical constraints from CSO observation of CH₃OH in McGuire et al. 2015
- \succ Compared enhancement relative to CH₃OH and H₂
- > HCN, strong enhancement in East C2 and B2b

HNCO displays strongest enhancements in galaxy in B2

E/W Differentiation in C2

Previously reported in literature with for most species (Benedettini et al. 2007)

> W wall = liberation of grain species

> E wall = Destruction of complex species, Core sputtering (SiO)

Andrew Burkhardt

E/W Differentiation in C2

Proposed scenario for C2:

- Western wall is shocking cold, pristine material
 - \succ CH₃OH, HNCO liberated off grains
- Eastern wall is interacting with pre-shocked material within C1
 - HCN, HCO⁺ produced from destruction of complex species in gas-phase
 - > SiO enhanced as bare grains shocked

E/W Differentiation in C2

Proposed scenario for C2:

- Western wall is shocking cold, pristine material
 - \succ CH₃OH, HNCO liberated off grains
- Eastern wall is interacting with pre-shocked material within C1
 - HCN, HCO⁺ produced from destruction of complex species in gas-phase
 - > SiO enhanced as bare grains shocked

Andrew Burkhardt

B2 Enhancement

- Enhancements observed for HCN, CH₃OH, and HNCO toward B2
 - Largest HNCO enhancement in galaxy (Rodriguez-Fernández et al. 2010; Mendoza et al. 2014)
- > B2 = older, potential chemical clock?
 - post-shock, gas-phase reactions may become significant
 - Additional chemistry from enhancement of O₂ from ice (Bergin et al. 1998; Gusdorf et al. 2008)
- HNCO, proposed dominant pathways: a) initial grain erosion, then
 - b) gas phase rx CN + $O_2 \rightarrow OCN$
 - then OCN + H \rightarrow HNCO (Rodríguez-Fernández et al. 2010)

Conclusions

- Report high-resolution CARMA maps of CH₃OH, HCN, HCO⁺, HNCO toward L1157
- CH₃OH abundance consistent across regions, produced by liberation off of grains due to shocks
- HCN/HCO⁺ & CH₃OH/HNCO velocity profiles indicative of originating from the same physical regions
- E/W differentiation in C2 perhaps because difference in shock-chemistry when the impacted medium is pristine or previously-shocked, shown by molecular enhancement & velocity profiles

Thanks

- Advisors: Tony Remijan (NRAO), Eric Herbst (Uva)
- Remijanistan: Brett McGuire, Brandon Carroll, Joanna Corby, Chris Shingledecker, Ryan Loomis, Klaus Dollhopf, Tom Booth
- NASA Exobiology and Evolutionary Biology program through a subcontract from Rensselaer Polytechnic Institute for funding
- Virginia Space Grant Consortium for funding