

Electronic spectroscopy of trapped PAH photofragments

Christine Joblin, Anthony Bonnamy

Institut de Recherche en Astrophysique et Planétologie Université de Toulouse [UPS] – CNRS

ISMS 71st 20-24/06/2016 (University of Illinois at Urbana-Champaign)

nanocosmos

CONSEJO SUPERIOR DE INVESTIGACIONES CIENTÍFICAS

Same cold ICR cell to prepare the ions and detect them

FTICR-MS: non- destructive, very high mass resolution (>10⁴), sensitivity, selectivity

Photophysics of an isolated PAH

Electronic spectroscopy of a trapped PAH

A possible candidate for the main diffuse interstellar band ^{H₃C} one photoproduct of 1-Methylpyrene ?

Main DIB at 4430 Å

1- Methylene pyrene + UV (Ly α) \rightarrow photo product, possible carrier for indicated DIBs from matrix spectra.

Léger A., D'Hendecourt L., & Défourneau D. (1995), A&A 293, L53

1-Methylpyrene cation (m/z=216) fragmentation in PIRENEA

→ First investigation of the spectroscopy of m/z=215; possible presence of the 2 isomers → Need a 2 colour scheme

Kokkin et al. 2012, ISMS (67th meeting) Kokkin et al. 2013, DIB conference. IAU Symp 297, 286

New experiments: spectroscopy of m/z=215 in the UV

Spectroscopy of m/z=215 ($C_{17}H_{11}^+$) in the UV. Preliminary results

Spectroscopy of m/z=215 ($C_{17}H_{11}^+$) in the UV

Very first conclusions

A lot of variations in the dissociation spectra and branching ratio $(C_2H_2/(H,H_2))$

Variation of the photon excitation:

➢ OPO in the UV: complicated response curve + fluctuations from shot to shot –corrected at best using a variable filter (~0.4 mJ over the range [220-340 nm]) + average over 20 shots. Does not explain the variations of the BR.

 \geq OPO only at 10 Hz. Dissociation is due to heating following absorption several shots (Frag/e in 130 ms)

 \geq 2 colour scheme (OPO + 266 nm): no dissociation with OPO only – low dissociation with 266 nm; other= 2 colour events.

Relaxation: the delay was not found to be crucial in the range ~ 30 ns- 1µs as long as 266 nm is after the OPO

Very first conclusions

A lot of variations in the dissociation spectra and branching ratio $(C_2H_2/(H,H_2))$

Variation of the ion populations:

➢ Variations of the spectrum and BR provide evidence for a contribution of both Isomer 1 and Isomer 2

- Isomer 1 has low BR=C₂H₂/(H,H₂) (<1) and Isomer 2 has high BR (>4) ?
 (BR=0.9 for dissociation by multiple photon absorption in the same pulse @266nm)
- ▶ Isomer 1 absorbs more efficiently at 266 nm than Isomer 2
- ≻Isomer 2 absorbs more efficiently at [220-250 nm] than Isomer 1

 \succ Effect of the formation process? Tests by changing the formation procedure (softer irradiation) but difficult to conclude.

> Effect of the excitation scheme? One isomer responds better to the OPO [220-250 nm], the other to 266 nm \rightarrow challenges the 2 colour scheme.

The two isomers of 1-Methylpyrene cation photofragments

Preliminary conclusions and perspectives

A very complicated case but a strong motivation for theoreticians

 \succ Difficulty to quantify the contribution of both isomers. BR seems to be the best tracer.

 \succ Further support from theory (BR,...) to rationalise the results

Advantages and disadvantages of cold ICR cell

 \succ Easy production and selection *in situ* of the photofragments

 \succ Efficiency of the cooling of the ions? Cryogenic environment + lowpressure He gas.

> Investigate band profiles in the visible part (~440 nm) using the 2 colour scheme