Probing the $CH_3SH + N_2O_3$ reaction by automated microwave double resonance spectroscopy

M. J. Nava,¹ M. A. Martin-Drumel,² S. Thorwirth,³ & M. C. McCarthy²

¹ Massachusetts Institute of Technology, Cambridge, MA, USA ²Harvard-Smithsonian Center for Astrophysics and Harvard University, Cambridge, MA, USA ³ Universität zu Köln, Köln Germany Two key questions from HSNO study

• Can the reaction $H_2S + N_2O_3 \rightarrow HSNO + HONO$ be generalized?

$$RSH + N_2O_3 \rightarrow RSNO + HONO$$
(1)

- What is the subsequent RSNO reactivity with RSH?
 - $RSNO + RSH \rightarrow RSSR + HNO$ (2)
 - $\rightarrow \mathsf{RSSH} + \mathsf{RNO}$ (3)

This work: a study of the next thiol, $R=CH_3$

- Can the reaction $H_2S + N_2O_3 \rightarrow HSNO + HONO$ be generalized?
 - $CH_3SH + N_2O_3 \rightarrow CH_3SNO + HONO$ (1)
- What is the subsequent RSNO reactivity with RSH?
 - $CH_3SNO + CH_3SH \rightarrow CH_3SSCH_3 + HNO$ (2)
 - $\rightarrow CH_3SSH + CH_3NO$ (3)

This work: a study of the next thiol, $R=CH_3$

- Can the reaction $H_2S + N_2O_3 \rightarrow HSNO + HONO$ be generalized?
 - $CH_3SH + N_2O_3 \rightarrow CH_3SNO + HONO$ (1)
- What is the subsequent RSNO reactivity with RSH?
 - $\begin{array}{ll} \mathsf{CH}_3\mathsf{SNO} + \mathsf{CH}_3\mathsf{SH} \to \mathsf{CH}_3\mathsf{SSCH}_3 + \mathsf{HNO} & (2) \\ \to \mathsf{CH}_3\mathsf{SSH} + \mathsf{CH}_3\mathsf{NO} & (3) \end{array}$

AMDOR spectroscopy + kinetic measurements

AMDOR spectroscopy of the $CH_3SH + NO$ mixture

Step 1: Record CP spectrum

- $CH_3SH + NO$ mixture
- 1000 shots (~ 3 min)
- Standard nozzle configuration

Known transitions: CH₃SH, CH₃SSCH₃

 \sim 100 new lines

Step 2: Extensive DR tests

9 10 8 7 12 6 13 18 14 17 15 GHz 16

 \sim 8 h 38 DR matches

4 series, 2 distinct networks not possible to use existing python scripts because CH₃SNO too light

CH₃SNO: 3 conformers predicted to be low-lying and stable

from Ruano, Chem. Phys. Lett. (2012)

In combination with theory, two conformers of CH_3SNO identified

		Calc. ^a	Exp.	δ^{B}
syn I	A_0	11 387.393		
	B_0	5129.127		
	<i>C</i> ₀	3613.459		
syn II	A_0	11 291.812	11 438.301	1.013
	B_0	5382.575	5437.622	1.010
	<i>C</i> ₀	3726.861	3683.954	0.988
anti ^c	A_0	19 177.202	19133.110	0.998
	B_0	3783.713	3776.960	0.998
	C_0	3219.940	3214.384	0.998

^a CCSD(T)/pwCVQZ ^b Scaling factor ^c Assigned on a deep integration spectrum

Some of the stronger lines remain unassigned

Additional DR measurements are needed to link remaining lines

CH₃SNO: No definitive evidence for the *syn* I conformer

from Ruano, Chem. Phys. Lett. (2012)

Extensive isotopic spectroscopy for syn II

Time evolution of reactants and products: Answers and new questions

An incomplete explanation of kinetic results

- $CH_3SH + N_2O_3 \rightarrow CH_3SNO + HONO$ (1)
- $\begin{array}{ll} \mathsf{CH}_3\mathsf{SNO} + \mathsf{CH}_3\mathsf{SH} \to & \mathsf{CH}_3\mathsf{SSCH}_3 + \mathsf{HNO} & (2) \\ & \to & \mathsf{CH}_3\mathsf{SSH} + \mathsf{CH}_3\mathsf{NO} & (3) \end{array}$
- rate of Eq. (1) slow
- rate of Eq. (2) faster than (1)
- Eq. (3), no evidence on timescale of experiment

Open questions

Identity of remaining u-lines?

 exhibit identical behavior as two CH₃SNO isomers

Is CH₃SSCH₃ a product or an intermediate of reaction?!

- observed before CH₃SNO
- signal decreases when CH₃SNO increases

CH₃SSCH₃ reactivity with CH₃SH

Summary & Conclusions

- AMDOR spectroscopy has enabled rapid identification of two CH₃SNO isomers
- Automatic assignment of spectral features can likely be made more efficient using targeted DR tests and more robust algorithms

New insight into CH₃SNO formation and reactivity:

- Like HSNO, CH₃SNO is readily formed, but appears more stable; other thiols might be studied by similar means
- Evidence for HNO remains elusive

Acknowledgements

Prof. K. N. Crabtree (UC Davis) Prof. C. C. Cummings (MIT) Prof. J. F. Stanton (Texas \rightarrow Florida) Dr. T. L. Nguyen (Texas \rightarrow Florida)

NSF: CHE-1362118 DFG: TH 1301/3-2; SFB 956

