ROTATIONAL SPECTRA OF T-SHAPED CYANOACETYLENE – CARBON DIOXIDE COMPLEX, HCCCN — CO₂

LU KANG, Department of Chemistry and Biochemistry, Kennesaw State University, Kennesaw, GA, USA; <u>IAN DORELL</u>, PHILIP DAVIS, Department of Physics, Kennesaw State University, Kennesaw, GA, USA; ONUR ONCER, STEPHEN G. KUKOLICH, Department of Chemistry and Biochemistry, University of Arizona, Tucson, AZ, USA; STEWART E. NOVICK, Department of Chemistry, Wesleyan University, Middletown, CT, USA.

The rotational spectra of T-shaped cyanoacetylene carbon dioxide complex, HCCCN — CO₂, were measured using two Balle-Flygare type Fourier transform microwave (FTMW) spectrometers between 1.4 GHz and 22 GHz. The low J transitions were recorded using the low frequency FTMW spectrometer at the University of Arizona with a state-of-the-art resolution of "full width at half maximum" (FWHM) 1 kHz. The spectra above 4 GHz were recorded at Wesleyan University. Spectral hyperfine structures due to the ¹⁴N nuclear quadrupole coupling interactions can be fully resolved in low frequency bands. Since all K_a = 1 branches were not observed, this implies that HCCCN — CO₂ possesses a rigorous T-shaped structure. Assuming that A₀ is the same as that of HCN — CO₂, 11824 MHz, the spectroscopic constants of HCCCN — CO₂ are: B₀ = 794.59686(63) MHz, C₀ = 715.74488(60) MHz, Δ_J = 0.50067(18) kHz, Δ_{JK} = 120.892(12) kHz, δ_J = 0.04253(31) kHz, δ_K = 65.32(12) kHz, H_J = -0.00117(33) Hz, H_{JK} = 0.034876(21) kHz, H_{KJ} = -0.68254(73) kHz, χ_{aa} ⁽¹⁴N) = -4.12873(78) MHz, χ_{bb} ⁽¹⁴N) = 2.110(25) MHz, and χ_{cc} ⁽¹⁴N) = 2.019(25) MHz.