INCORPORATION OF A ROVIBRATIONAL ANALYSIS OF OC-H₂O INTO 6-D MORPHED POTENTIALS OF THE COMPLEX

Luis A. Rivera-Rivera, Sean D. Springer, Blake A. McElmurry, Robert R. Lucchese, and John W. Bevan Department of Chemistry, Texas A & M University, College Station, TX, USA Igor I. Leonov

Microwave Spectroscopy, Institute of Applied Physics, Nizhny Novgorod, Russia Laurent H. Coudert

LISA, CNRS, Universités Paris Est Créteil et Paris Diderot, Créteil, France

Motivation

- Non-covalent interactions of water with different molecules are poorly understood at the molecular level.
- Water and carbon monoxide are common and important molecules found in:
 - The earth's atmosphere
 - The products of combustion reactions
 - The interstellar medium
 - Comets

Motivation

- Detailed knowledge of OC-H₂O pairwise interaction can be of considerable significance in:
 - Modeling a wide range of phenomena
 - A pathway to understanding the properties of water complexes in more complex environments
- Compound Model Morphing which integrates spectroscopic and computational investigations have provided powerful methods for direct characterizations of non-covalent interactions.

QCL cw supersonic jet spectrum of Σ - Σ transition in OC-H₂O

 $\Sigma \leftarrow \Sigma \text{ OC-H}_2\text{O}$ 1.0 R(2)R(4) R(5) R(6) R(8) R(9) R(10) R(3) R(7) 0.8 0.6 Signal (a.u.) 0.4 -0.2 0.0 -0.2 -0.4 -0.6 1599.0 1599.2 1599.4 1599.6 1599.8 1600.0 1600.2 1600.4 1600.6 1600.8 cm^{-1}

The effective resolution of the spectrum is 80 MHz (0.003 cm⁻¹).

The H_2O bending spectrum in the complex has been recorded using a cw supersonic jet quantum cascade laser spectrometer at 6.2 µm.

Rovibrational Constants for the Water Bending Vibration in OC-H₂O

	Excited	Ground
H2	-0.19694(33)	-0.2782393(26)
TH2	-	0.0275077(14)
Н2К	-0.01344(40)	-
$H2J \times 10^3$	-0.0571(49)	-0.0755(53)
H2KJ×10 ³	-0.0363(34)	-0.03574(14)
H2JJ×10 ⁶	-0.03(14)	-0.0268(43)
F2×10 ³	0.0478(19)	0.0564(26)
$F2J \times 10^{6}$	-	0.0271(32)
ν	1598.6810(3)	-
А	20.46392(50)	19.277226(13)
В	0.092383(19)	0.09209971(15)
С	0.091557(19)	0.09135137(40)
$c_{kj} \times 10^3$	1.013(11)	0.75664(21)
c _{jj} ×10 ⁶	-0.712(15)	-0.68032(47)
d1×10 ⁶	0.071(99)	0.0281(11)
c _{kjj} ×10 ⁶	-0.193(52)	-0.13169(43)
h1×10 ⁹	-0.19(27)	-0.0177(55)

6-D Ab Initio Calculations

- CCSD(T)/aug-cc-pVTZ (BSSE corrected)
- CCSD(T)/aug-cc-pVTZ (Not BSSE corrected)
- MP2/aug-cc-pVTZ (BSSE corrected)
- MP2/aug-cc-pVQZ (BSSE corrected)

6-D Ab Initio Calculations

- 6-D potentials of 336,000 ($R, \theta_{\text{HOH}}, \theta_1, \theta_2, \phi, \chi$) points
 - $-r_{\rm OH} = 0.9753$ Å; $r_{\rm CO} = 1.1283$ Å
 - Frozen CO
 - H₂O bending vibration
- 6-D potentials of 560,000 $(R, r_{CO}, \theta_1, \theta_2, \phi, \chi)$ points
 - $-r_{\rm OH} = 0.9753$ Å; $\theta_{\rm HOH} = 104.0$ deg
 - Frozen H₂O
 - CO stretching vibration

Interpolation of the Ab Initio PES

- $R, r_{\rm CO}$, and $\theta_{\rm HOH}$ coordinates
 - Reproducing Kernel Hilbert Space (RKHS)
 - Ho and Rabitz, J. Chem. Phys. 104 (1996) 2584.

• Angular coordinates $(\theta_1, \theta_2, \phi, \chi)$ – IMLS

$$V\left(R_{i}, r_{\text{CO},j}, \theta_{\text{HOH},k}, \theta_{1}, \theta_{2}, \phi, \chi\right) = \sum_{L_{1}K_{1}L_{2}L} V_{L_{1}K_{1}L_{2}L, i, j, k}\left(\theta_{1}, \theta_{2}, \phi, \chi\right) A_{L_{1}K_{1}L_{2}L}\left(\theta_{1}, \theta_{2}, \phi, \chi\right)$$

Morphing the PES

• Hamiltonian

$$H = T_1 + T_2 + \frac{1}{2\mu_{1,2}R^2} \left[-\hbar^2 \frac{\partial}{\partial R} R^2 \frac{\partial}{\partial R} + J^2 + j_{1,2}^2 - 2\mathbf{j}_{1,2} \cdot \mathbf{J} \right] + V^{\nu_x} \left(R, \theta_1, \theta_2, \phi, \chi \right)$$

• CMM-RC

$$V_{\text{CMM-RC}}(R) = C_{1} \left[V_{\text{MP2}}(R') \right]_{\text{QZ}}^{\text{CP}} + C_{2} \left\{ \left[V_{\text{CCSD}(T)}(R') \right]_{\text{TZ}}^{\text{CP}} - \left[V_{\text{CCSD}(T)}(R') \right]_{\text{TZ}}^{\text{NO CP}} \right\} + C_{3} \left\{ \left[V_{\text{CCSD}(T)}(R') \right]_{\text{TZ}}^{\text{CP}} - \left[V_{\text{MP2}}(R') \right]_{\text{TZ}}^{\text{CP}} \right\} R' = C_{4} \left(R - R_{\text{f}} \right) + \left(1.0 + C_{5} \right) R_{\text{f}}$$

Initial Values: $C_1 = 1.0$, $C_2 = 0.0$, $C_3 = 1.0$, $C_4 = 1.0$, and $C_5 = 0.0$

OC-H₂O Morphed Potentials

Observable	6-D H ₂ O	6-D CO	Exp
A_0 /cm ⁻¹	19.83	19.82	19.833730(3)
A_0 /cm ⁻¹	18.72	18.73	18.720718(4)
$B_0/10^{-2} \text{ cm}^{-1}$	9.171	9.171	9.170111(7)
$B_0/10^{-2} \text{ cm}^{-1}$	9.175	9.175	9.174707(3)
v_{3} /cm ⁻¹		2153.61	2153.5953(1)
v_{3} /cm ⁻¹		2153.65	2153.6478(1)
v_{5} /cm ⁻¹	1597.69		1598.6810(3)

OC-D₂O Morphed Potentials

Observable	6-D D ₂ O	6-D CO	Exp
A_0/cm^{-1}	11.71	11.73	11.78376(2)
A_0 /cm ⁻¹	11.65	11.67	11.716189(7)
$B_0/10^{-2} \text{ cm}^{-1}$	8.736	8.734	8.73678(1)
$B_0/10^{-2} \text{ cm}^{-1}$	8.735	8.733	8.73583(1)
v_{3} /cm ⁻¹		2154.53	2154.5375(1)
v_{3} /cm ⁻¹		2154.53	2154.5409(1)
v_{5} /cm ⁻¹	1180.11		1180.6198(2)

Tunneling Splitting in OC-H₂O

- K = 0 state
 - 0.83 cm⁻¹ (Morphed Potentials)
 - 0.557 cm⁻¹ (Bumgarner *et al.* CPL 176 (1991) 123)
- K = 1 state
 - 0.27 cm⁻¹ (Morphed Potentials)
 - 0.304 cm⁻¹ (Oudejans and Miller, CPL 306 (1999) 214)

The Badger-Bauer Rule Revisited

 D_0 for H₂O-CO is predicted to be 355(13) cm⁻¹.

5-D Frozen H_2O and CO $D_0 = 337(5) \text{ cm}^{-1}$

6-D H_2O $D_0 = 342(5) \text{ cm}^{-1}$

6-D CO $D_0 = 339(5) \text{ cm}^{-1}$

Rivera-Rivera et al. J. Phys. Chem. A 117 (2013) 8477.

Conclusions

- Rovibrational analysis of the water bending vibrational spectrum in OC-H₂O complex has been completed.
- Potential morphing can now be applied to any dimer complex comprised of a non-linear and a linear molecule.
- It is now feasible to extend the methodology for studying pairwise complexes of non-linear molecules.

Acknowledgments

• The Robert A. Welch Foundation

 The Laboratory for Molecular Simulation and the High Performance Research Computing at Texas A&M University