

LAM's LAMs

Two equivalent methyl internal rotations in 2,5-

dimethylthiophene investigated by microwave spectroscopy

LAM Nguyen

Laboratoire Interuniversitaire des Systèmes Atmosphériques (LISA) Université Paris-Est Créteil

VINH Van, WOLFGANG Stahl

Institute of Physical Chemistry, RWTH Aachen University, Germany

Motivation

- Many monomethyl derivatives of unsaturated heterocyclic five-membered rings studied by microwave spectroscopy
- Barriers to internal rotation of the methyl group are unpredictable.
- Only one rule has been found out:
 Sulfur substitution decreases the barrier height.
- No dimethyl substituted version

2

2,5-Dimethylthiophene

COMMUNICATION V nh Van *et al.* Two equivalent methyl internal rotations in 2,5 d methylth ophene invest gated by microwave spectroscopy

- Heterocyclic five-membered ring
- Unsaturate
- Dimethyl substituted
- C_{2v} symmetry

Conformational analysis

- Two conjugated double bonds force the thiophene frame to planarity → only one conformer is possible.
- 1 imaginary vibrational mode (bending vibration of the ring) (well-known spurious result for MP2/6-311++G(d,p) calculations)
- Various methods/basis sets

Predicted V_3 potentials

- Predicted barrier height: $\phi_1 = \angle (S_{15}, C_{12}, C_{10}, H_4)$, 1° step width
- Various methods/basis sets
- Negligible contributions of higher order terms

 Geometry optimizations to a first order transition state of one methyl group using the Berny algorithm

Potential energy surfaces

- ϕ_1 and ϕ_2 : rotations of the two methyl groups
- MP2 and B3LYP/6-311++G(d,p) levels of theory
- No significant coupling between the two tops

Group theory

Symmetry labels

- Molecular symmetry group : G₃₆
- Different symmetry labels available (from different product decompositions of G₃₆) :
 - → direct product $C_{3\nu}^- \times C_{3\nu}^+$ (Dreizler)
 - → degeneracy letter A, E, G and a running index using permutation-inversion group (Bunker and Jensen)
- Our work: semi-direct product $(C_3^I \times C_3^I) \rtimes C_{2\nu}$ (introduced bw Ezra and Altmann) using two intrinsic C_3 groups of the internal rotors, which is an invariant subgroup of G_{36} , decomposes into four orbits under $C_{2\nu}$

Group theory

Symmetry labels

- One representative of each orbit forms the first part of the symmetry label, e.g. (01).
- $\sigma = 0, 1, 2 : A, E_a, E_b$ of the group C_3
- Each orbit ↔ little co-set (subgroups of C_{2v}) → second part of the symmetry labels

Orbit (σ_1, σ_2)	Little co-set
(00) (11), (22) (12), (21) (01), (10), (02), (20)	$\begin{array}{c} C_{2\mathrm{v}} \\ C_{2} \\ C_{\mathrm{s}} \\ C_{1} \end{array}$

$\mathbf{G_{36}}^{a}$			E	a ⁻¹	ab	ab^{-1}	Р	bР	Q	aQ	R	
Equiv. 1	ot. ^b		R^0	R^0	R^0	R^0	R_b^{π}	R_b^{π}	R_a^{π}	R_a^{π}	R_c^{π}	
S1 ^c	$S2^d$	$S3^e$	f_1	4	2	2	3	6	3	6	9	wt
$(00) \cdot A_1$	A ₁	A ₁ A ₁	1	1	1	1	1	1	1	1	1	36
$(00) \cdot B_1$	A_2	A_2A_1	1	1	1	1	-1	-1	1	1	-1	28
$(00) \cdot A_2$	A_3	A_1A_2	1	1	1	1	1	1	-1	-1	-1	36
$(00) \cdot B_2$	A_4	A_2A_2	1	1	1	1	-1	-1	-1	-1	1	28
(12)·A'	E_1	$E A_1$	2	-1	2	-1	0	0	2	-1	0	16
(12)·A″	E_2	$E A_2$	2	-1	2	-1	0	0	-2	1	0	16
(11)·A	E ₃	A ₁ E	2	-1	-1	2	2	-1	0	0	0	20
(11)·B	E ₄	A_2E	2	-1	-1	2	-2	1	0	0	0	12
(01)·A	G	ĒĒ	4	1	-2	-2	0	0	0	0	0	64

^{*a*} $a = (1 \ 2 \ 3), b = (4 \ 5 \ 6), P = (1 \ 4)(2 \ 5)(3 \ 6)(7 \ 8)(9 \ 10)(11 \ 12)(13 \ 14), Q = (1 \ 4)(2 \ 6)(3 \ 5)(7 \ 8)(9 \ 10)(11 \ 12)(13 \ 14)^*, R = (2 \ 3)(5 \ 6)^*, \text{ for atom numbers see Fig. 2. }^{$ *b* $} Equivalent rotations of the four-group. ^{$ *c* $} Symmetry labels based on the semi-direct product <math>(C_3^{I} \times C_3^{I}) > C_{2v}$, see ref. 16. ^{*d*} Symmetry labels according to ref. 15. ^{*e*} Symmetry labels based on the direct product $C_{3v}^{-} \times C_{3v}^{+}$, see ref. 14. ^{*f*} Row between S3 and wt: number of elements in the respective class. ^{*g*} Spin statistical weight. Direct product $C_{3v}^- \times C_{3v}^+$ (Dreizler)

\mathbf{G}_{36}^{a}			E	a ⁻¹	ab	ab^{-1}	Р	bР	Q	aQ	R	
Equiv. 1	ot. ^b		R^0	R^0	R^0	R^0	R_b^{π}	R_b^{π}	R_a^{π}	R_a^{π}	R_c^{π}	
S1 ^c	$S2^d$	S3 ^e	f_1	4	2	2	3	6	3	6	9	wt ^g
$(00) \cdot A_1$	A ₁	A ₁ A ₁	1	1	1	1	1	1	1	1	1	36
$(00) \cdot B_1$	A_2	A_2A_1	1	1	1	1	-1	-1	1	1	-1	28
$(00) \cdot A_2$	A_3	A_1A_2	1	1	1	1	1	1	-1	-1	-1	36
$(00) \cdot B_2$	A_4	A_2A_2	1	1	1	1	-1	-1	-1	-1	1	28
(12)·A'	E_1	EA ₁	2	-1	2	-1	0	0	2	-1	0	16
(12)·A″	E_2	$E A_2$	2	-1	2	-1	0	0	-2	1	0	16
(11)·A	E_3	A ₁ E	2	-1	-1	2	2	-1	0	0	0	20
(11)·B	E_4	A_2E	2	-1	-1	2	-2	1	0	0	0	12
(01)·A	G	EE	4	1	-2	-2	0	0	0	0	0	64

^{*a*} $a = (1 \ 2 \ 3), b = (4 \ 5 \ 6), P = (1 \ 4)(2 \ 5)(3 \ 6)(7 \ 8)(9 \ 10)(11 \ 12)(13 \ 14), Q = (1 \ 4)(2 \ 6)(3 \ 5)(7 \ 8)(9 \ 10)(11 \ 12)(13 \ 14)^*, R = (2 \ 3)(5 \ 6)^*, \text{ for atom numbers see Fig. 2. }^{$ *b* $} Equivalent rotations of the four-group. <math>^{c}$ Symmetry labels based on the semi-direct product $(C_3^{I} \times C_3^{I}) > C_{2v}$, see ref. 16. d Symmetry labels according to ref. 15. e Symmetry labels based on the direct product $C_{3v}^{-} \times C_{3v}^{+}$, see ref. 14. f Row between S3 and wt: number of elements in the respective class. g Spin statistical weight.

permutationinversion group (Bunker and Jensen), A, E, G and a running index

$\mathbf{G_{36}}^{a}$			E	a ⁻¹	ab	ab^{-1}	Р	bP	Q	aQ	R	
Equiv.	rot. ^b		R^0	R^0	R^0	R^0	R_b^{π}	R_b^{π}	R_a^{π}	R_a^{π}	R_c^{π}	
$S1^c$	$S2^d$	$S3^e$	f_1	4	2	2	3	6	3	6	9	wt
$(00) \cdot A_1$	A ₁	A_1A_1	1	1	1	1	1	1	1	1	1	36
$(00) \cdot B_1$	A_2	A_2A_1	1	1	1	1	-1	-1	1	1	-1	28
$(00) \cdot A_2$	A_3	A_1A_2	1	1	1	1	1	1	-1	-1	-1	36
$(00) \cdot B_2$	A_4	A_2A_2	1	1	1	1	-1	-1	-1	-1	1	28
(12)·A'	E_1	$E A_1$	2	-1	2	-1	0	0	2	-1	0	16
(12)·A"	E_2	$E A_2$	2	-1	2	-1	0	0	-2	1	0	16
(11)·A	E ₃	A ₁ E	2	-1	-1	2	2	-1	0	0	0	20
(11)·B	E ₄	A_2E	2	-1	-1	2	-2	1	0	0	0	12
(01)·A	G	EE	4	1	-2	-2	0	0	0	0	0	64

^{*a*} $a = (1 \ 2 \ 3), b = (4 \ 5 \ 6), P = (1 \ 4)(2 \ 5)(3 \ 6)(7 \ 8)(9 \ 10)(11 \ 12)(13 \ 14), Q = (1 \ 4)(2 \ 6)(3 \ 5)(7 \ 8)(9 \ 10)(11 \ 12)(13 \ 14)^*, R = (2 \ 3)(5 \ 6)^*, \text{ for atom numbers see Fig. 2. ^{$ *b*} Equivalent rotations of the four-group. ^{*c* $} Symmetry labels based on the semi-direct product <math>(C_3^{I} \times C_3^{I}) > C_{2v}$, see ref. 16. ^{*d*} Symmetry labels according to ref. 15. ^{*e*} Symmetry labels based on the direct product $C_{3v}^{-} \times C_{3v}^{+}$, see ref. 14. ^{*f*} Row between S3 and wt: number of elements in the respective class. ^{*g*} Spin statistical weight. Semi-direct product $(C_3^I \times C_3^I) \rtimes$ $C_{2\nu}$ (Similar to Erham)

$\mathbf{G}_{36}{}^{a}$			E	a ⁻¹	ab	ab^{-1}	Р	bP	Q	aQ	R	
Equiv. 1	rot. ^b		R^0	R^0	R^0	R^0	R_b^{π}	R_b^{π}	R_a^{π}	R_a^{π}	R_c^{π}	_
S1 ^c	$S2^d$	$S3^e$	f_1	4	2	2	3	6	3	6	9	w
$(00) \cdot A_1$	A ₁	A_1A_1	1	1	1	1	1	1	1	1	1	3
$(00) \cdot B_1$	A_2	A_2A_1	1	1	1	1	-1	-1	1	1	-1	2
$(00) \cdot A_2$	A_3	A_1A_2	1	1	1	1	1	1	-1	-1	-1	3
$(00) \cdot B_2$	A_4	A_2A_2	1	1	1	1	-1	-1	-1	-1	1	2
(12)·A'	E_1	EA ₁	2	-1	2	-1	0	0	2	-1	0	1
(12)·A″	E_2	$E A_2$	2	-1	2	-1	0	0	-2	1	0	1
(11)∙A	E ₃	A ₁ E	2	-1	-1	2	2	-1	0	0	0	20
(11)́∙B	E ₄	A_2E	2	-1	-1	2	-2	1	0	0	0	12
(01)·A	G	ĒĒ	4	1	-2	-2	0	0	0	0	0	64

^{*a*} $a = (1 \ 2 \ 3), b = (4 \ 5 \ 6), P = (1 \ 4)(2 \ 5)(3 \ 6)(7 \ 8)(9 \ 10)(11 \ 12)(13 \ 14), Q = (1 \ 4)(2 \ 6)(3 \ 5)(7 \ 8)(9 \ 10)(11 \ 12)(13 \ 14)^*, R = (2 \ 3)(5 \ 6)^*, \text{ for atom numbers see Fig. 2. }^{$ *b* $} Equivalent rotations of the four-group. ^{$ *c* $} Symmetry labels based on the semi-direct product <math>(C_3^{I} \times C_3^{I}) \rtimes C_{2v}$, see ref. 16. ^{*d*} Symmetry labels according to ref. 15. ^{*e*} Symmetry labels based on the direct product $C_{3v}^{-} \times C_{3v}^{+}$, see ref. 14. ^{*f*} Row between S3 and wt: number of elements in the respective class. ^{*g*} Spin statistical weight. Spin statistical weight calculated from 256 nuclear spin functions arising from 8 protons

Group theory

Selection rules

- Dipole moment vector $\Gamma_{\mu} = (00) \cdot A_2$
- Selection rules: $\Gamma_i \times \Gamma_j \times \Gamma_j \supset (00)$. A_1
- If K_a and K_c are known, the torsional state can be labeled conveniently by the first part (σ_1, σ_2) of the full symmetry label.

$ee \leftrightarrow oo transitions$	wt	eo \leftrightarrow oe transitions	wt
$\begin{array}{rcl} (00) \cdot A_1 &\leftrightarrow (00) \cdot A_2 \\ (12) \cdot A' &\leftrightarrow (12) \cdot A'' \\ (11) \cdot A &\leftrightarrow (11) \cdot A \\ (01) \cdot A &\leftrightarrow (01) \cdot A \end{array}$	36 16 20 64	$ \begin{array}{l} (00) \cdot \mathbf{B}_1 \leftrightarrow (00) \cdot \mathbf{B}_2 \\ (12) \cdot \mathbf{A}' \leftrightarrow (12) \cdot \mathbf{A}'' \\ (11) \cdot \mathbf{B} \leftrightarrow (11) \cdot \mathbf{B} \\ (01) \cdot \mathbf{A} \leftrightarrow (01) \cdot \mathbf{A} \end{array} $	28 16 12 64

Microwave spectrum

- Molecular beam FT microwave spectroscopy
- 2 26.5 GHz Cavity (Aachen) and 26.5 40 GHz Cavity (Paris)

High resolution

- Line widths in the range 10 25 kHz → measurement accuracy better than 2 kHz
- Doppler effect; carrier gas: helium

Broadband scan

- Series of automatically recorded spectra in the high resolution mode
- 250 kHz step width, 50 decays per step
- Frequency range : 8.5 12.0 GHz

Microwave spectrum

- A typical high resolution spectrum
- Only *b*-type transitions
- $J \le 7$ and $K_a \le 5$

 $3_{21} \leftarrow 3_{12}$

Molecular parameters

Par. ^a	Unit	Fit I	Fit II	Calc. ^b
A	GHz	4.97224360(42)	4.96500697(89)	4.9414
В	GHz	1.74696506(27)	1.74694756(13)	1.7426
С	GHz	1.31337981(20)	1.313336623(81)	1.3094
Δ_{I}	kHz	0.0684(28)	0.0672(11)	0.0630
Δ_{IK}	kHz	0.2071(93)	0.1579(37)	0.171
$\Delta_{\mathbf{K}}$	kHz	3.2158(98)	0.9161(43)	0.803
δ_{I}	kHz	0.0196(14)	0.01839(51)	0.0171
$\delta_{\mathbf{K}}$	kHz	0.136(23)	0.1031(89)	0.0390
V_3	cm^{-1}		247.95594(30)	241.2
I_{α}	$uÅ^2$		3.16442(39)	
$\angle(i,a)$	0		$14.5931(78)^{c}$	14.90
$\angle(i,b)$	0		75.4069(78)	75.10
$\angle(i,c)$	0		90.00(fixed)	89.96
F_{12}	GHz		-7.320(12)	
$D_{\rm pi2I}$	kHz		-2.78(25)	
$D_{\rm pi2K}$	kHz		-98.9(42)	
$D_{\rm pi2-}$	kHz		1.97(19)	
σ^{a}	kHz	2.6	1.9	
N^e		41	157	XIAM

Molecular parameters

Par. ^a	Unit	Fit I	Fit II	Calc. ^b
A	GHz	4.97224360(42)	4.96500697(89)	4.9414
В	GHz	1.74696506(27)	1.74694756(13)	1.7426
C	GHz	1.31337981(20)	1.313336623(81)	1.3094
$\Delta_{\rm I}$	kHz	0.0684(28)	0.0672(11)	0.0630
Δ_{IK}	kHz	0.2071(93)	0.1579(37)	0.171
$\Delta_{\mathbf{K}}$	kHz	3.2158(98)	0.9161(43)	0.803
δ_{I}	kHz	0.0196(14)	0.01839(51)	0.0171
$\delta_{\mathbf{K}}$	kHz	0.136(23)	0.1031(89)	0.0390
V_3	cm^{-1}		247.95594(30)	241.2
I_{α}	uÅ ²		3.16442(39)	
$\angle(i,a)$	0		$14.5931(78)^{c}$	14.90
$\angle(i,b)$	0		75.4069(78)	75.10
$\angle(i,c)$	0		90.00(fixed)	89.96
F_{12}	GHz		-7.320(12)	
$D_{\rm pi2I}$	kHz		-2.78(25)	
$D_{\rm pi2K}$	kHz		-98.9(42)	
$D_{\rm pi2-}$	kHz		1.97(19)	
σ^{a}	kHz	2.6	1.9	
N^e		41	157	XIAM

Molecular parameters

Par. ^a	Unit	Fit I	Fit II	Calc. ^b
A	GHz	4.97224360(42)	4.96500697(89)	4.9414
В	GHz	1.74696506(27)	1.74694756(13)	1.7426
C	GHz	1.31337981(20)	1.313336623(81)	1.3094
$\Delta_{\rm I}$	kHz	0.0684(28)	0.0672(11)	0.0630
Δ_{JK}	kHz	0.2071(93)	0.1579(37)	0.171
$\Delta_{\mathbf{K}}$	kHz	3.2158(98)	0.9161(43)	0.803
δ_{I}	kHz	0.0196(14)	0.01839(51)	0.0171
$\delta_{\mathbf{K}}$	kHz	0.136(23)	0.1031(89)	0.0390
V_3	cm^{-1}		247.95594(30)	241.2
I_{α}	$uÅ^2$		3.16442(39)	
$\angle(i,a)$	0		$14.5931(78)^{c}$	14.90
$\angle(i,b)$	0		75.4069(78)	75.10
$\angle(i,c)$	0		90.00(fixed)	89.96
F_{12}	GHz		-7.320(12)	
$D_{\rm pi2I}$	kHz		-2.78(25)	
$D_{\rm pi2K}$	kHz		-98.9(42)	
$\hat{D_{\text{pi2}-}}$	kHz		1.97(19)	
σ^{a}	kHz	2.6	1.9	
N^e		41	157	XIAM

2,5-Dimethylthiophene vs. 2,5-Dimethylfurane

247.95594(30) cm⁻¹

440.7543(19) cm⁻¹

- XIAM works well in both cases, but we only have $J \le 7$ and $K_a \le 5$
- Erham or PAM-C2v-2tops are much more suited for higher
 J and K_a transitions as well as torsional excited states.