

¹⁴N quadrupole coupling in the microwave spectra of N-vinylformamide

LAM Nguyen

Laboratoire Interuniversitaire des Systèmes Atmosphériques (LISA) Université Paris-Est Créteil, France

RAPHAELA Kannengießer, WOLFGANG Stahl Institute of Physical Chemistry, RWTH Aachen University, Germany

WILLIAM C. Bailey

(Retired) Chemistry-Physics Department, Kean University, NJ, USA ¹

Motivation

- Amides: general interest in chemistry and molecular biology; complex electronic configurations
- Formamides: contain the planar sub-unit H(C=O)N

¹⁴N nuclear quadrupole coupling effect

- Origin: interaction of the electric quadrupole moment of the nucleus with the electricfield gradient (EFG)
- Only electrons associated with the nucleus have major contributions to the EFG
- eus R'
- Only valence p electrons need be considered, thereby establishing a link between chemical bonding and nuclear quadrupole coupling (Townes and Dailey)
- → Information on the EFG and the nature of the chemical bond

N-Vinylformamide

 Møllendal and Samdal: room temperature spectra from 18 to 75 GHz, resolution about 0.5 MHz, estimated accuracy 0.10 MHz for isolated lines (*J. Phys. Chem. A* 116 (2012) 12073)

- Spectra attributed to two conformers were assigned.
- Quadrupole splittings of the ¹⁴N nucleus not resolvable
- \rightarrow Remeasurements of the the spectra at higher resolution to gain information on the nuclear quadrupole coupling

Conformational preferences

- Møllendal and Samdal: B3LYP and CCSD(T)/6-311++G(d,p): cis conformer is more stable than the trans by 0.3 and 2.8 kJ/mol, respectively.
- Our work: MP2/6-311++G(d,p): trans conformer is more stable by 1.8 kJ/mol

Single-point EFG calculations at the B3PW91/6-311+G(df,pd)//MP2/6-311++G(d,p) level and a calibration factor of eQh⁻¹ of 4.5586(40) MHz a.u.⁻¹ (W. C. Bailey, *Chem. Phys.* 252 (2000) 57.)

→ Predicted NQCCs in almost exact agreement with experimental values for nitrogencontaining molecules

- → Significantly simplify the spectrum assignment
- <u>http://nqcc.wcbailey.net/Publ_N.html</u>
- Problem: NOT for N-vinylformamide and some other unsaturated amides! The B3PW91/6-311+G(d,p)//MP2/6-311++G(d,p) level worked better.

6

New calibration for unsarturated amides

•
$$\chi_{ij} (MHz) = \left(\frac{eQ}{h}\right) \times q_{ij} (a.u.)$$

 χ_{ij} : component of the NQCC

tensor

- q_{ij} : component of the EFG tensor
- e : fundamental electric charge
- Q: electric quadrupole moment of the nucleus
- h : Planck's constant

Nitrogen: B3PW91/6-311+G(d,p)

- Calibration for the calculation of NQCCs by taking eQ/h as a best-fit parameter determined by linear regression analysis of calculated q_{ii} on the experimental structures of a number of molecules versus the corresponding experimental χ_{ii}
- Standard deviation of the residuals is 0.086 MHz
 (3.8 % of average |χ_{ij}|)

A.59912 MH212. Experimental nqcc (MHz) -2 -6 -1.5 -1 -0.5 0.5 0 Calculated efg (au)

Nitrogen: B3PW91/6-311+G(d,p)

Unsaturated amides/nitrogen-containing molecules: use B3PW91/6-311+G(d,p)//MP2/6-311++G(d,p) and calibration factor 4.599 MHz/a.u.

Saturated amides/nitrogen-containing molecules: use B3PW91/6-311+G(df,pd)//MP2/6-311++G(d,p) and calibration factor 4.5586 MHz/a.u.

Microwave spectrum

- Molecular beam FT microwave spectroscopy
- 2 26.5 GHz Cavity (Aachen) and 26.5 – 40 GHz Cavity (Paris)
- No broadband scans necessary; high resolution measurements
- Hyperfine splittings completely resolved and assigned

Microwave spectrum

- Only few transitions with low *J* and *K* measurable for *cis*
- All transitions belonging to *cis* have lower intensity in comparison to those of *trans*.
- \rightarrow trans is the more stable conformer under our molecular beam conditions (in agreement with MP2/6-311++G(d,p) calculations)

Molecular parameters

		trans		cis	
	Unit	$\operatorname{Expt.}^{a}$	$\operatorname{Calc.}^{b}$	$Expt.^{a}$	$\operatorname{Calc.}^{b}$
A	MHz	19723.24435(44)	19820.5	36996.2(22)	37208.0
B	MHz	2976.65870(56)	2943.6	2419.11090(19)	2400.1
C	MHz	2587.48251(52)	2562.9	2272.12989(18)	2254.6
Δ_J	kHz	0.6861(19)	0.681	0.20045(71)	0.190
Δ_{JK}	kHz	-8.905(11)	-9.05	-4.219(22)	-3.82
\varDelta_K	kHz	103.32(11)	104.		274.
δ_J	kHz	0.13929(79)	0.139	0.01564(92)	0.0162
δ_K	kHz	2.53(26)	2.63		1.10
χ_{aa}	MHz	1.70574(90)	1.714	1.8520(14)	1.847
χ_{bb} - χ_{cc}	MHz	5.5774(20)	5.624	5.4272(37)	5.365
$\chi_{bb}{}^c$	MHz	1.9358(11)	1.955	1.7876(20)	1.759
$\chi_{cc}{}^c$	MHz	-3.6416(11)	-3.669	-3.6396(20)	-3.606
σ^d	kHz	2.3		2.5	
$\mathrm{N}^e/\mathrm{N}_q{}^f$		43 / 176		31 / 117	

Inertial defect: trans –0.0000873, cis –0.0001461 uÅ² \rightarrow denitely planar

12

χ_{zz} in the formamides

н

8

6

13