
Optimal Translation of
LTL to Limit Deterministic Automata

Dileep Kini? and Mahesh Viswanathan?

University of Illinois at Urbana-Champaign,
Department of Computer Science

Abstract. A crucial step in model checking Markov Decision Processes
(MDP) is to translate the LTL specification into automata. Efforts have
been made in improving deterministic automata construction for LTL
but such translations are double exponential in the worst case. For model
checking MDPs though limit deterministic automata suffice. Recently it
was shown how to translate the fragment LTL\GU to exponential sized
limit deterministic automata which speeds up the model checking prob-
lem by an exponential factor for that fragment. In this paper we show
how to construct limit deterministic automata for full LTL. This trans-
lation is not only efficient for LTL\GU but for a larger fragment LTLD

which is provably more expressive. We show experimental results demon-
strating that our construction yields smaller automata when compared
to state of the art techniques that translate LTL to deterministic and
limit deterministic automata.

1 Introduction

Markov Decision Processes (MDPs) [20, 24, 4] are the canonical model used to
define the semantics of systems like concurrently running probabilistic programs
that exhibit both stochastic and nondeterministic behavior. MDPs are inter-
preted with respect to a scheduler that resolves the nondeterminism. Such a
scheduler chooses a probabilistic transition from a state based on the past se-
quence of states visited during the computation. When undesirable system be-
haviors are described by a formula ϕ in linear temporal logic (LTL), qualitative
verification involves checking if there is some (adversarial) scheduler with re-
spect to which the measure of paths satisfying ϕ is non-zero. Model checking
algorithms [4] in this context proceed by translating the LTL requirement ϕ into
an automaton A, taking the synchronous cross-product of the MDP model M
and the automaton A to construct a new MDP M ′, and finally, analyzing the
MDP M ′ to check the desired property. The complexity of this procedure is
polynomial in the size of the final MDP M ′, and hence critically depends on the
size of automaton A that results from translating the LTL specification.

MDP model checking algorithms based on the above idea require the trans-
lated automaton to be of a special form as general non-deterministic automata

? Authors were supported by NSF grants CNS 1314485 and CCF 1422798.

CORE Metadata, citation and similar papers at core.ac.uk

Provided by Illinois Digital Environment for Access to Learning and Scholarship Repository

https://core.ac.uk/display/158317272?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

are not sufficient. The Büchi automaton has to be either deterministic or de-
terministic in the limit — a Büchi automaton is deterministic in the limit if
every state reachable from an accepting state has deterministic transitions1.
Limit-determinism is also sometimes referred to as semi-determinism. Deter-
ministic or limit deterministic automata for LTL formulae can be constructed
by first translating the formula into a nondeterministic Büchi automaton, and
then either determinizing or “limit-determinizing” the machine. This results in
an automaton that is doubly exponential in the size of the LTL formula, which
gives a 2EXPTIME algorithm for model checking MDPs.

Direct translations of LTL (and fragments of LTL) to deterministic Rabin
automata have been proposed [11, 18, 17, 14, 3, 5]. However, any such translation,
in the worst case, results in automata that are doubly exponential in size [2];
this holds for any fragment of LTL that contains the operators ∨, ∧, and F.
Recently [9] a fragment of LTL called LTL\GU [15] was translated into limit
deterministic Büchi automata. LTL\GU is a fragment of LTL where formulae are
built from propositions and their negations using conjunction, disjunction, and
the temporal operators X (next), F (eventually/finally), G (always/globally),
and U (until), with the restriction that no U operator appears within the scope
of a G operator. The most important feature of this translation from LTL\GU
to limit deterministic automata is the fact that the resulting automaton is only
exponential in the size of the formula. Thus, this automata construction can
be used to obtain an EXPTIME algorithm for model checking MDP against
LTL\GU formulas, as opposed to 2EXPTIME.

Recently, a translation from full LTL logic to limit deterministic automata
has been proposed [21]. This translation is very similar to the translation to
deterministic automata proposed in [5], with the use of nondeterminism being
limited to simplifying the acceptance condition. Therefore, like the deterministic
translations of LTL, it can be shown to construct doubly exponential sized au-
tomata even for very simple LTL fragments like those that contain ∨, ∧, and F.
Thus, it does not achieve the optimal bounds for LTL\GU shown in [9]. However,
one advantage of the construction in [21] is that it can be used in quantitative
verification as well as qualitative verification of MDPs and has been implemented
in [22]. Quantitative verification of MDPs can also be performed using nonde-
terministic automata that have the good-for-games (GFG) property [8, 12], but
translating a general NBA into a GFG automaton is known to result in an
exponential blow-up. An alternate approach to quantitative verification using
subset/breakpoint construction on a NBA is proposed in [7] but it also suffers
from an exponential blow up.

In this paper we continue the line of work started in [9, 21], and present a new
translation of the full LTL logic to limit deterministic Büchi automata. The new

1 Limit deterministic automata are not the same as unambiguous automata. Unam-
biguous automata have at most one accepting run for any input. It is well known
that every LTL formula can be translated into an unambiguous automaton of expo-
nential size [23]. This has been shown to be not true for limit deterministic automata
in [21].

translation can be shown to be a generalization of the construction in [9] in that
it constructs exponential sized automata for LTL\GU . In fact, we show that this
new translation yields exponential sized automata for a richer fragment of LTL
that we call LTLD (see Section 5 for a comparison between the expressive powers
of LTLD and LTL\GU). This improves the complexity of qualitative MDP model
checking against LTLD to EXPTIME from 2EXPTIME.

Our automaton construction uses two main ideas. The first is an idea dis-
covered in [9]. To achieve limit determinism, for certain subformulae ψ of ϕ, the
automaton of ϕ tracks how often Fψ and Gψ formulae are true; this is in ad-
dition to tracking the truth (implicitly) of all subformulae ψ, as all translations
from LTL to automata do. Second, for untils within the scope of G, we do a
form of subset construction that ensures that the state explores all the possible
ways in which such formulae can be satisfied in the future, and for untils outside
the scope of G we use non-determinism to check its truth.

We have implemented our translation from LTL to limit deterministic au-
tomata in a tool called Büchifier. We show experimental results demonstrating
that in most cases our construction yields smaller automata when compared to
state of the art techniques that translate LTL to deterministic and limit deter-
ministic automata.

2 Preliminaries

First we introduce the notation we use throughout the paper. We use P to denote
the set of propositions. We use w to denote infinite words over a finite alphabet.
We use wi to denote the ith (index starting at 0) symbol in the sequence w,
and use w[i] to denote the suffix wiwi+1 . . . of w starting at i. We use w[i, j] to
denote the substring wi . . . wj−1. We use [n] to denote all non-negative integers
less than n that is {0, 1, . . . , n−1}. We begin by recalling the syntax of LTL:

Definition 1 (LTL Syntax). Formulae in LTL are given by the following syn-
tax:

ϕ ::= p | ¬p | ϕ ∧ ϕ | ϕ ∨ ϕ | Xϕ | Fϕ | Gϕ | ϕU ϕ p ∈ P

Next, we look at the semantics of the various operators:

Definition 2 (Semantics). LTL formulae over a set P are interpreted over
words w in (2P)ω. The semantics of the logic is given by the following rules

w � p (¬p) ⇐⇒ p ∈ w0 (p /∈ w0) w � Xϕ ⇐⇒ w[1] � ϕ

w � ϕ ∨ ψ ⇐⇒ w � ϕ or w � ψ w � Fϕ ⇐⇒ ∃ i : w[i] � ϕ

w � ϕ ∧ ψ ⇐⇒ w � ϕ and w � ψ w � Gϕ ⇐⇒ ∀ i : w[i] � ϕ

w � ϕU ψ ⇐⇒ ∃ i : w[i] � ψ, and

∀ j < i : w[j] � ϕ

The semantics of ϕ, denoted by JϕK, is defined as the set {w ∈ (2P)ω | w � ϕ}.

(Note that the release operator R, the dual of U, can be expressed using U and
G, i.e ψ1 R ψ2 ≡ (ψ2 U (ψ1 ∧ ψ2)) ∨Gψ2. Hence we omit it from any of the
logics we consider.)

In this paper the terminology subformula of ϕ is used to denote a node within
the parse tree of ϕ. When we refer to the subformula as an LTL formula we will
be referring to the formula at that node. Two subformulae that have the same
formulae at their nodes need not be the same owing to the possibility of them be-
ing in different contexts. This distinction will be important as we treat formulae
differently depending on their contexts. For the purposes of describing different
subfragments we qualify subformulae as being either internal or external.

Definition 3. A subformula ψ of ϕ is said to be internal if ψ is in the scope of
some G-subformula of ϕ, otherwise it is said to be external.

Many syntactic restrictions of LTL have been considered for the sake of
obtaining smaller automata translations. LTL(F ,G) (read “LTL F G”) and
LTL\GU (read “LTL set minus G U”) are two such fragments which we re-
call in the next two definitions.

Definition 4 (LTL(F,G) Syntax). The fragment LTL(F ,G) over propositions
P is described by the following syntax

ϕ ::= p | ¬p | ϕ ∧ ϕ | ϕ ∨ ϕ | Xϕ | Fϕ | Gϕ p ∈ P
Definition 5 (LTL\GU Syntax). The fragment LTL\GU is given by the syn-
tax

ψ ::= ϕ | ψ ∧ ψ | ψ ∨ ψ | Xψ | ψ U ψ ϕ ∈ LTL(F ,G)

LTL(F ,G) allows for G and F as the only temporal operators. The fragment
LTL\GU additionally allows for external U but not internal ones. Also, we
choose to represent an external F using U. In other words every F will be
internal. Next, we introduce the fragment LTLD (read “LTL D”)

Definition 6 (LTLD Syntax). The formulae in the fragment LTLD are given
by the syntax for ϑ:

ψ ::= ϕ | ψ ∨ ϕ | ϕ ∨ ψ | ψ ∧ ψ | ψ U ϕ | Gψ | Xψ ϕ ∈ LTL(F ,G)

ϑ ::= ψ | ϑ ∨ ϑ | ϑ ∧ ϑ | ϑU ϑ | Xϑ

Unlike LTL\GU , LTLD allows for internal U but it is restricted. The following
restrictions apply on LTLD:

1. The second argument of every internal U formula is in LTL(F ,G)
2. At least one argument of every internal ∨ is in LTL(F ,G)

Note that LTLD is strictly larger than LTL\GU in the syntactic sense, as every
LTL\GU formula is also an LTLD formula. We shall show in Section 5 that it is
strictly richer in the semantic sense as well.

Next we define depth and height. A subformula ψ of ϕ is said to be at depth
k if the number of X operators in ϕ within which ψ appears is exactly k. The
height of a formula is the maximum depth of any of its subformulae.

Definition 7 (Büchi Automata). A nondeterministic Büchi automaton (NBA)
over input alphabet Σ is a tuple (Q, δ, I, F) where Q is a finite set of states;
δ ⊆ Q×Σ×Q is a set of transitions; I ⊆ Q is a set of initial states and F ⊆ Q
is a set of final states.

A run of a word w ∈ Σω over a NBA is an infinite sequence of states
q0q1q2 . . . such that q0 ∈ I and ∀ i ≥ 0 (qi, wi, qi+1) ∈ δ. A run is accepting
if qi ∈ F for infinitely many i.

The language accepted by an NBA A, denoted by L(A) is the set of all words
w ∈ Σω which have an accepting run on A.

Definition 8 (Limit Determinism). A NBA (Q, δ, I, F) over input alphabet
Σ is said to be limit deterministic if for every state q reachable from a final
state, it is the case that |δ(q, σ)| ≤ 1 for every σ ∈ Σ.

3 Construction

In this section we show our construction of limit deterministic automata for full
LTL. First, let us look at an example that shows that the standard construction
(Fischer-Ladner and its variants) is not limit deterministic. The standard con-
struction involves guessing the set of subformulae that are true at each step and
ensuring the guess is correct. For ϕ = G(a ∨ Fb) this gives us the automaton
(after pruning unreachable states and merging bisimilar ones. Here all 3 states
are initial) in Figure 1a which is not limit deterministic as the final state q1 has
non-deterministic choices enabled.

q0 : {ϕ,Fb} q1 : {ϕ,Fb, b}

q2 : {ϕ}

¬b b

¬b

b

b

a

(a) Standard Construction

q0 : 〈 ϕ | Fb | - 〉, 0

q1 : 〈 ϕ,Fb | - | - 〉, 0

q2 : 〈 ϕ | - | Fb 〉, 0

q3 : 〈 ϕ | - | Fb 〉, 1

true

b

a

trueb

¬b

(b) Tripartition Construction

Fig. 1: Automata for G(a ∨ Fb)

Our construction builds upon the idea introduced in [9] of keeping track of
how often F,G-subformulae are true. Therefore, we will incrementally describe
the features of our automaton: first by revisiting the technique required for
LTL(F ,G) without Xs, later by introducing the new ideas required to handle
the untils and nexts.

Given an LTL(F ,G) formula, for each of its G-subformula we are going to
predict whether it is: always true (α), true at some point but not always (β),
never true (γ). Note that for any formula if we predict α/γ then the prediction
should remain the same going forward. For a G-subformula, Gψ, if we predict
β it means we are asserting FGψ ∧ ¬Gψ and therefore the prediction should

remain β until a certain point and then change to α. This prediction entails
two kinds of non-deterministic choices: (i) the initial choice of assigning one of
α, β, γ (ii) if assigned β initially then the choice of the time point at which to
change it to α. The first choice needs to be made once at the beginning and
the second choice has to be made eventually in a finite time. They together only
constitute finitely many choices which is the source of the limit determinism. We
similarly define predictions for F-subformulae as: never true (α), true at some
point but not always (β), always true (γ). We flip the meaning of α and γ to
ensure β becomes α eventually as for G-subformulae. An FG-prediction for a
formula ϕ ∈ LTL(F ,G), denoted by π, is a tri-partition 〈α(π), β(π), γ(π)〉 of its
F,G-subformulae. We drop π when it is clear from the context. The prediction
for a subformula ψ made by π is said to be α/β/γ depending upon the partition
of π in which ψ is present. The space of all FG-predictions for ϕ is denoted by
Π(ϕ).

Example 1. Consider the formula ϕ = G(a ∨ Fb), and an FG-prediction π =
〈α, β, γ〉 for ϕ where α = {ϕ}, β = {Fb} and γ = ∅. For the formula ϕ the
prediction made is α. Since it is a G-formula this prediction says that ϕ is
always true or simply ϕ is true. For the subformula Fb the prediction made is β.
This prediction says that Fb is true at some point but not always which implies
Fb is true but not GFb.

The automaton for LTL(F ,G) essentially makes a non-deterministic choice
for π initially and at each step makes a choice of whether to move some formula(e)
from β to α. The correctness of predictions made by π is monitored inductively.
Suppose our prediction for a formula Gψ is α at some instant: this implies we
need to check that ψ is true at every time point there onwards (or equivalently
check that ψ is true whenever α is predicted for Gψ since the prediction α never
changes). If we are able to monitor the truth of ψ at every instant then it is
clear how this can be used to monitor the prediction α for Gψ. The crucial
observation here is that the correct prediction for G/F formula gives us their
truth: a G/F formula is true/false (respectively) at a time point if and only if
its correct prediction is α at that time. Now the prediction α for Gψ can be
checked by using the truths (derived from the predictions) of the subformulae of
ψ (inductive step). If ψ is propositional then its truth is readily available from
the input symbol being seen (base case of the induction). This inductive idea
shall be used for all predictions. Note that since our formulae are in negation
normal form we only need to verify a prediction is correct if it asserts the truth
rather than falsehood of a subformula. Therefore the predictions β, γ for Gψ
need not be checked. In case of Fψ the prediction α need not be checked (as it
entails falsehood of Fψ) but β, γ do need to be checked. If our prediction for Fψ
is β then we are asserting ψ is true until a certain point in the future at which
the prediction becomes α. Therefore we only need to check that ψ is true when
the prediction for Fψ changes to α. Once again we can inductively obtain the
truth of ψ at that instant from the predictions for the subformulae of ψ and from
the next input. For checking a prediction γ about Fψ we need to check ψ is true

infinitely often. For this purpose we use the Büchi acceptance where the final
states are those where ψ is evaluated to be true, again inductively. When we are
monitoring multiple Fψ for γ we will need a counter to cycle through all the Fψ
in γ. Let m be the number of Fψ in γ. Observe that the set of formulae predicted
to be γ never changes once fixed at the beginning and hence m is well defined.
When the counter has value n, it is incremented cyclically to n + 1(mod m)
whenever the ψ corresponding to the nth Fψ ∈ γ evaluates to true. The initial
states are those in which the top formula evaluates to true given the predictions
in that state. The final states are those where no formula is assigned β and the
counter is 0. Summarizing, a state in our automata has two components: (a) an
FG-prediction π = 〈α, β, γ〉 (a tri-partition of the F,G-subformulae) and (b) a
cyclic integer counter n. The transitions are determined by how the predictions
and counters are allowed to change as described. We illustrate the construction
using once again the formula ϕ = G(a∨Fb) for which the automaton is presented
in Figure 1b and its details are completely described in Appendix A.

3.1 Handling Untils and Nexts

Next we observe that the above technique does not lend itself to the U/X oper-
ators. The crucial property used above about F,G-formulae is that they cannot
be simultaneously infinitely often true and infinitely often false unlike U/X
formulae. So if we tried the above technique for U/X we would not get limit
determinism since the truth of the U/X formulae would have to be guessed
infinitely often.

The key idea we use in handling U/Xs is to propagate their obligation along
the states. Let us say the automaton needs to check if a formula ϕ holds for an
input w, and it begins by making an FG-prediction π about w. The obligation
when no input has been seen is ϕ. When the first symbol w0 is seen it needs
to update the obligation to reflect what “remains to be checked” for the rest
of the input w[1], in order for w � ϕ to hold, assuming π is correct for w. The
automaton can keep updating the obligation as it sees each input symbol. The
claim will be that the obligation is never falsified iff w � ϕ, given that π is
correct. This brings up some questions:

1. How are we exploiting opportunities for non-determinism?
2. How is the obligation computed at each step?
3. How is π checked to be correct in the presence of U/Xs?

Exploiting non-determinism. Being able to exploit non-determinism helps
in reducing the size of the automaton we construct. So the question is: how are
we exploiting any opportunities for non-determinism (albeit for finite time)? The
answer is to update the obligation non-deterministically. Checking the formula
ψ1Uψ2 presents us with two alternatives: either ψ2 is true now or ψ1∧X(ψ1Uψ2)
is true now. Similarly ψ1∨ψ2 brings up two alternatives. We can pick between the
obligations of these two choices non-deterministically. But we should somehow
ensure that we are only allowed to use this non-determinism finitely often. This is

q0 : {ϕ} q1 : {Gb, b}a
a

b

Fig. 2: Standard NBA construction for ϕ = aU(Gb).

where we treat internal and external (Definition 3) U/∨ subformulae differently.
The observation is that external U/∨ need to be checked for only a finite amount
of time. Hence the disjunctive choice presented by them can be dispatched non-
deterministically each time without worrying about violating limit determinism.
To illustrate this point we show the standard NBA for the formula ϕ = aU(Gb)
in Figure 2 which turns out to be limit deterministic owing to the fact that the U
is external. In Figure 1a we saw that the standard construction for ϕ = G(a∨Fb)
resulted in a NBA that was not limit-deterministic, and one of the reasons is
that the F, which is a special form of U, is internal. An internal U/∨ may need
to be checked infinitely many times and hence the choice should not be resolved
non-deterministically, but carried forward as a disjunction of the obligations of
the choices. Passing the choice forward without resolving it comes at a cost of a
bigger state space, this is akin to the subset construction where all the choices
are being kept track of.

Now we begin to formalize the ideas. To exploit the non-determinism allowed
by the external U/∨ we introduce the concept of ex-choice. We use Λϕ to denote
the set of all external U/∨ subformulae. Any subset of it λ ⊆ Λϕ is called an
ex-choice. An ex-choice dictates how each external U/∨ should be satisfied if
it needs to be satisfied. The interpretation associated with λ is the following:
if ψ1Uψ2 ∈ λ then ψ2 has to hold or if ψ1Uψ2 ∈ Λϕ−λ then ψ1 ∧X(ψ1Uψ2)
has to hold. Similarly if ψ1∨ψ2 ∈ λ then ψ1 has to hold and if ψ1∨ψ2 ∈ Λϕ − λ
then ψ2 has to hold. The automaton we are going to construct is going to non-
deterministically pick an ex-choice at each step and use it resolve the choices on
external U/∨. After a finite time the ex-choice will not matter as the obligations
will not consist of any external U/∨ that need to be checked (which will be
enforced as a part of the acceptance condition), and hence limit determinism is
ensured. The ex-choice picked along a transition is going to determine the obliga-
tion computed. Which leads us to the question of how the obligation is computed.

Computing Obligation. We define the derivative of a formula µ w.r.t an input
symbol σ, FG-prediction π and ex-choice λ. The derivative should capture the
obligation/requirement on any word ρ such that those obligations are able to
imply that σρ satisfies µ. This enables us to keep passing on the obligation
forward as we see each symbol of the input by taking the derivative of the
obligation so far. First, we need to ensure that the ex-choice λ picked when we
are taking the transition dictates how a formula in Λϕ should be satisfied if it
needs to be. With that in mind we define f(λ) as follows:

f(λ) = (∧(φUψ∈λ)φU ψ ⇒ ψ) ∧ (∧(φUψ∈(Λϕ−λ))φU ψ ⇒ (φ ∧X(φU ψ)))

∧ (∧(φ∨ψ∈λ)φ ∨ ψ ⇒ φ) ∧ (∧(φ∨ψ∈Λϕ−λ)φ ∨ ψ ⇒ ψ)

Since predictions made by π already tell us the truth of some of the subformu-
lae, they need to be taken into account. Towards that we define the substitution
of a formula φ w.r.t π, denoted by [φ]π as the formula obtained from φ by sub-
stituting occurrences Gψ with tt if Gψ ∈ α and ff otherwise, and similarly for
Fψ with ff if Fψ ∈ α and tt otherwise. The substitutions are done only for the
maximal formulae in π that appear in φ, i.e., if ψ1, ψ2 are formulae in π such
that ψ1 is a subformula of ψ2 then the substitution is not performed for ψ1. Now
we are ready to give a declarative definition of the derivative:

Definition 9. Given an LTL formula µ over P , and a triple ε = (σ, π, λ) where
σ ∈ 2P , π ∈ Π(ϕ) and λ ⊆ Λϕ: an LTL formula ψ is said to be a derivative of
µ w.r.t to ε if

∀ ρ ∈
(
2P
)ω

ρ � ψ =⇒ σρ � [µ ∧ f(λ)]π

The weakest derivative of µ w.r.t ε, denoted by ∇(µ, ε), is a derivative
such that ψ =⇒ ∇(µ, ε) for any other derivative ψ.

Since we will only be interested in the weakest derivative (as opposed to any
other derivative) we shall refer to it as the derivative. The above definition is
only declarative in the sense that it does not give us an explicit way to compute
the derivative. We present this definition here for the sake of simplicity and ease
of understanding for the reader. In the Appendix we provide a syntactic defini-
tion (Definition 15) and all the necessary machinery that allows us to compute
such a formula. The syntactic definition also restricts the representation of the
obligations to B+(ϕ) which is the set of all positive Boolean combinations of
subformulae of ϕ.

The automaton now will have an extra component µ corresponding to the
obligation along with (π, n) from before. In the initial state µ will be the given
formula ϕ that needs to be checked. At each step, the automaton sees an input
symbol σ and makes a non-deterministic ex-choice λ ⊆ Λϕ. The obligation at the
next state will then become ∇(µ, ε) where ε = (σ, π, λ). The process continues
as long as the obligation is never falsified. In order to ensure that every external
until is dispatched in finite time, we impose that the obligation µ in the final
states is ex-free, i.e. free of any formulae in Λϕ. When the obligation is ex-free
the ex-choice does not play a role in determining its derivative and we shall drop
λ whenever that is the case, and this eliminates any non-determinism once a
final state is visited. In order to ensure that an internal until, say φU ψ is not
delayed forever, we involve Fψ in the FG-prediction and enhance the definition
of substitution to say that φ U ψ is replaced with ff if Fψ ∈ α. This way the
derivative will impose that Fψ is true whenever φ U ψ is claimed to be true.
With this in mind we define the closure of ϕ, denoted by C(ϕ), to be set of all
F,G-subformulae of ϕ, along with all Fψ for every internal φUψ subformula of
ϕ. We re-define an FG-prediction π to be any tri-partition of C(ϕ). Note that
for every Fψ or Gψ in C(ϕ), ψ is internal.

Example 2. Let ϕ = G(Fa ∨ (bU c)). Here C(ϕ) = {ϕ,Fa,Fc}

Example 3. Let ϕ = aU(b∧Gc) be an internal subformula of some given formula.
∇(ϕ, ε) can take different values depending upon ε = (σ, π). Here ex-choice λ
does not play a role because the only U is internal. Note that ϕ′ = F(b ∧Gc)
is in the closure. If ϕ′ ∈ α, then ∇(ϕ, ε) = ff because [ϕ]π would be ff owing
to ϕ being substituted with ff . Let ϕ′ /∈ α. Now if Gc ∈ α then substituting
tt in place of Gc gives us aUb whose satisfaction depends upon the truth of a
and b as given by σ. So if σ(b) = tt then the U is immediately satisfied and
so ∇(ϕ, ε) = tt. If σ(b) = ff then the U is delayed and hence ∇(ϕ, ε) is either
aUb or ff depending on σ(a) = tt/ff respectively. If Gc /∈ α then truth of b
does not matter (as replacing Gc with ff makes b∧Gc = ff) and once again the
derivative is ϕ/ff depending upon σ(a).

Checking FG-predictions in the presence of untils and nexts. The main
idea in being able to check an FG-prediction π was that a correct prediction
about an F,G-subformula also tells us its truth. When we have U/Xs in the
mix, we no longer have a prediction available for them, and hence no immediate
way to check if some subformula is true. For example when Gψ ∈ α we needed to
check ψ is true and we did so inductively using the predictions for subformulae
in ψ. Now, since ψ can have U/X within them it is not clear how we are going to
check truth of ψ. In this case we pass ψ to the obligation µ. Similarly when the
prediction of Fψ is changed from β to α we need to check ψ is true so once again
we pass ψ to the obligation. So given consecutive FG-predictions π, π′ define Ψ
as the set

Ψ = {ψ | Fψ ∈ β(π) ∩ α(π′) or Gψ ∈ α(π)} (1)

and update the obligation along a transition (µ, π, n)
σ−→ (µ′, π′, n′) as: µ′ =

∇(µ ∧ (∧ψ∈Ψψ), ε) where ε = (σ, π, λ). Now consider the case when the counter
is n > 0 and need to verify that the nth Fψ formula in γ is true. In this case we
cannot pass on ψ to the obligation because Fψ may be true because ψ is true at
a later point and not now. Since we cannot predict when ψ is going to be true we
carry the disjunction of all the derivatives of ψ since the counter was incremented
to n. We keep doing it until this “carry” becomes true indicating that ψ became
true at some point since we started checking for it. We also increment the counter
at that point. This “carry” becomes yet another component ν in the automaton’s
state. We use F(S) to denote all Fψ in set S. Now we are ready to put the pieces
together to formally describe the entire construction.

Definition 10 (Construction). Given a formula ϕ ∈ LTL over propositions
P , let D(ϕ) be the NBA (Q, δ, I, F) over the alphabet 2P defined as follows:

� Q is the set B+(ϕ)× B+(ϕ)×Π(ϕ)× [n] where n = |F(C(ϕ))|+ 1

� δ is the set of all transitions (µ, ν, π,m)
σ−→ (µ′, ν′, π′,m′) such that

(a) α(π) ⊆ α(π′) and γ(π) = γ(π′)

(b) µ′ = ∇(µ ∧ θ, ε) for some λ ⊆ Λϕ
where θ = (∧ψ∈Ψψ), Ψ as defined in (1) and ε = (σ, π, λ)

(c) m′ =

{
(m+ 1) (mod |F(γ)|+ 1) ν = tt

m otherwise

(d) ν′ =

{
ψm′ ν = tt

∇(ν, ε) ∨ ψm otherwise

where {Fψ1, . . ,Fψk} is an enumeration of F(γ), ψ0 = tt and ε = (σ, π)

� I is all states of the form (ϕ, tt, π, 0)

� F is all states of the form (µ, tt, π, 0) where β(π) = ∅, µ 6= ff , µ is ex-free

We state the correctness result here and include the proofs in Appendix C.

Theorem 1. For ϕ ∈ LTL, D(ϕ) is a limit deterministic automaton such that
L(D(ϕ)) = JϕK and D(ϕ) is of size at most double exponential in ϕ.

The number of different formulae in B+(ϕ), is at most double exponential
in the size of ϕ, since each can be represented as a collection of subsets of
subformulae of ϕ. Π(ϕ) is simply tripartition of C(ϕ) which is bounded above
by 3|ϕ|. And the counter can take |F(C(ϕ))|+ 1 different values which is ≤ |ϕ|.
The entire state space B+(ϕ)× B+(ϕ)×Π(ϕ)× [n] is upper bounded by the
product of these which is clearly doubly exponential.

q0 : (ϕ, tt, π, 0)

q1 : (tt, b, π, 1)

q2 : (aUb, b, π, 1)

q3 : (tt, tt, π, 0)

b

a.b

a.b

b

b

b

a.b

a.b

Fig. 3: Our construction for ϕ = G(aUb).

We illustrate our construction using ϕ = G(aUb) which is a formula outside
LTL\GU . The automaton for ϕ is shown in Figure 3. First note that the C(ϕ) =
{ϕ,Fb}. Next, observe that the only interesting FG-prediction is π in which
α = {ϕ}, β = ∅ and γ = {Fb}. This is because any initial state will have µ = ϕ
which forces ϕ ∈ α, and since predictions in α don’t change, every reachable
state will have ϕ ∈ α as well. As for Fb note that the corresponding internal
until aUb will become ff if Fb is in α and thus making the derivative ff (aUb
is added to the obligation at each step since ϕ ∈ α and rule (b)). Therefore Fb
cannot be in α, and it cannot be in β because then it would be eventually in α.
So Fb has to be in γ. Now that π is fixed, and given input σ, the obligation µ
changes according to rule (b) as µ′ = ∇(µ ∧ (aUb), (σ, π)). Similarly the carry
ν changes to b if ν = tt (as in q3 to q1/q2) and becomes ν′ = ∇(ν, (σ, π)) ∨ b

otherwise in accordance with rule (d). The initial state is q0 with µ = ϕ, ν = tt
and counter = 0. The counter is incremented whenever ν becomes tt. It is easy
to see that the automaton indeed accepts G(aU b) and is limit deterministic.

4 Efficiency

In this section we state the results regarding the efficiency of our construction
for LTLD. We prove that there are only exponentially many reachable states
in D(ϕ). A state q = (µ, ν, π, n) of D(ϕ) is called reachable if there exists a
valid finite run of the automaton that ends in q. A µ is said to be reachable if
(µ, ν, π, n) is reachable for some choice of ν, π and n. Similarly for ν. We show
that the space of reachable µ and ν is only exponentially large in the size of ϕ.
Our approach will be to show that every reachable µ (or ν) can be expressed in a
certain way, and we will count the number of different such expressions to obtain
an upper bound. The expression for µ and ν relies on them being represented in
DNF form and uses the syntactic definition of the derivative (Definition 15) given
in the Appendix. Therefore we state only the main result and its consequence
on the model checking complexity here and present the proofs in Appendix D.

Theorem 2. For ϕ ∈ LTLD the number of reachable states in the D(ϕ) is at
most exponential in |ϕ|.

Theorem 3. The model checking problem for MDPs against specification in
LTLD is EXPTIME-complete

Proof. The upper bound follows from our construction being of exponential size
and the fact that the model checking of MDPs can be done by performing a
linear time analysis of the synchronous product of the MDP and the automaton
[4]. The EXPTIME hardness lower bound is from the fact that the problem is
EXPTIME hard for the subfragment LTL\GU as proved in [9].

5 Expressive power of LTLD

In this section we show that LTLD is semantically more expressive than LTL\GU .
We demonstrate that the formula ϕ0 = G(p ∨ (q U r)) which is expressible in
LTLD, cannot be expressed by any formula in LTL\GU .

Let us fix integers `, k ∈ N. We will use LTL`(F,G) to denote the subfragment
of LTL(F ,G) where formulae have maximum height `. Since X distributes over all
other operators we assume that all the Xs are pushed inside. We use LTL`,k\GU
to denote the fragment where formulae are built out of U, ∧, ∨ and LTL`(F,G)
formulae such that the number of Us used is at most k.

Next, consider the following strings over 2P where P = {p, q, r}:

u = {p}{p, q}`{p} v = {q}{p, q}`{r} w = {q}{p, q}`{p}
sk = (uv)k+1u σ = (uv)ω ηk = skwvσ

The observation we make is that σ satisfies ϕ0 but ηk does not. We state the
main theorem and the corollary here and leave the details in Appendix E.

Theorem 4. ∀ϕ ∈ LTL`,k\GU σ � ϕ =⇒ ηk � ϕ

Corollary 1. ϕ0 is not expressible in LTL`,k\GU . Also since ` and k are arbi-
trary, ϕ0 is not expressible in LTL\GU .

6 Experimental Results

We present our tool Büchifier (available at [1]) that implements the techniques
described in this paper. Büchifier is the first tool to generate LDBA with
provable exponential upper bounds for a large class of LTL formulae. The states
(µ, ν, π, n) in our automaton described in Definition 10 (16 in Appendix), involve
µ, ν ∈ B+(ϕ) which are essentially sets of sets of subformulae. We view each
subformula as a different proposition. We then interpret the formulae in B+(ϕ)
as a Boolean function on these propositions. In Büchifier we represent these
Boolean functions symbolically using Binary Decision Diagrams (BDD). Our
overall construction follows a standard approach where we begin with an initial
set of states and keep adding successors to discover the entire reachable set of
states. We report the number of states, number of transitions and the number
of final states for the limit deterministic automata we construct.

MDP model checkers like PRISM [16], for a long time have used the trans-
lation from LTL to deterministic Rabin automata and only recently [21] have
started using limit deterministic Büchi automata. As a consequence we com-
pare the performance of our method against Rabinizer 3 [13] (the best known
tool for translating LTL to deterministic automata) and ltl2ldba [21] (the
only other known tool for translating LTL to LDBA). Rabinizer 3 constructs
deterministic Rabin automata with generalized Rabin pairs (DGRA). The ex-
perimental results in [5, 13] report the size of DGRA using the number of states
and number of acceptance pairs of the automata; the size of each Rabin pair is,
unfortunately, not reported. Since the size of Rabin pairs influences the efficiency
of MDP model checking, we report it here to make a meaningful comparison. We
take the size of a Rabin pair to be simply the number of transitions in it. The
tool ltl2ldba generates transition-based generalized Büchi automata (TGBA).
The experimental results in [21] report the size of the TGBA using number of
states and number of acceptance sets, and once again the size of each of these
sets is not reported. Since their sizes also effect the model checking procedure
we report them here. We take the size of an acceptance set to be simply the
number of transitions in it. In Table 1 we report a head to head to comparison
of Büchifier, Rabinizer 3 and ltl2ldba on various LTL formulae.

1. The first 5 formulae are those considered in [5]; they are from the GR(1) frag-
ment [19] of LTL. These formulae capture Boolean combination of fairness
conditions for which generalized Rabin acceptance is particularly well suited.
Rabinizer 3 does well on these examples, but Büchifier is not far behind
its competitors. The formulae are instantiations of the following templates:
g0(j) = ∧ji=1(GFai ⇒ GFbi), g1(j) = ∧ji=1(GFai ⇒ GFai+1).

Büchifier Rabinizer 3 ltl2ldba

St Tr AC St Tr AC St Tr AC

g0(1) 4 7 2 1 1 3 3 6 2 (1)
g0(2) 12 23 5 1 1 8 5 14 12 (2)
g0(3) 32 63 8 1 1 20 9 36 54 (3)
g1(2) 12 21 5 1 1 8 5 13 11 (2)
g1(3) 31 54 13 1 1 18 9 30 44 (3)

ϕ1 5 7 3 5 13 40 7 23 12 (4)
ϕ2 26 83 8 12 48 233 36 101 75 (2)
ϕ3 13 25 3 16 128 64 21 140 129 (2)
ϕ4 17 47 7 2 4 35 9 29 31 (2)
ϕ5 36 111 11 12 48 330 41 133 94 (2)

f0(1) 4 7 2 2 4 2 2 4 2 (1)
f0(2) 14 29 5 16 74 26 4 16 16 (2)
f0(3) 44 105 13 – – – 8 64 96 (3)
f0(4) 130 369 33 – – – 16 256 512 (4)

f1(1) 14 29 5 6 24 10 8 32 12 (1)
f1(2) 130 369 33 – – – 64 1024 768 (2)
f1(3) 1050 4801 193 – – – 512 32768 36K (3)

f2(1) 1 1 1 2 3 2 1 1 2 (2)
f2(2) 5 7 3 5 13 45 6 21 9 (3)
f2(3) 19 37 7 19 109 847 19 218 28 (4)
f2(4) 65 175 15 167 2529 – 93 6301 75 (5)

f3(1) 2 4 1 3 7 4 1 2 3 (2)
f3(2) 10 20 4 17 91 53 14 62 28 (1)
f3(3) 36 78 12 – – – 212 2359 953 (1)
f3(4) 114 288 32 – – – 17352 598330 167K(1)

h(2, 1) 26 54 9 15 49 49 14 44 1(1)
h(2, 2) 60 138 21 65 469 469 64 434 1(1)
h(2, 3) 182 468 57 315 5119 5119 314 4892 1(1)
h(4, 1) 80 146 36 76 250 250 75 229 1(1)
h(4, 2) 230 464 96 990 8068 8068 989 7465 1(1)
h(4, 3) 908 1994 348 – – – – – –

ψ1 35 62 9 3 6 12 3 6 8 (3)
ψ2 7 15 3 8 39 53 2 5 18 (3)
ψ3 29 62 8 29 116 74 62 293 27(2)
ψ4 26 92 6 4 11 7 3 8 3(1)
ψ5 9 58 1 5 17 9 3 9 3(1)

Table 1: A Comparison between the sizes of automata produced by Büchifier,
Rabinizer 3 and ltl2ldba on various formulae. Column St denotes the number
of states, column Tr denotes the number of transitions and column AC denotes
the size of the acceptance condition. Entries marked as “–” indicate that the
tool failed to construct the automaton and/or the acceptance condition due to
the memory limit (1GB) being exceeded.

2. The next 5 formulae are also from [5] to show how Rabinizer 3 can ef-
fectively handle Xs. Büchifier has a comparable number of states and
much smaller acceptance condition when compared to Rabinizer 3 and
ltl2ldba in all these cases. ϕ1 = G(q ∨ XGp) ∧ G(r ∨ XG¬p), ϕ2 =
(GF(a ∧ X2b) ∨ FGb) ∧ FG(c ∨ (Xa ∧ X2b)), ϕ3 = GF(X3a ∧ X4b) ∧
GF(b ∨ Xc) ∧GF(c ∧ X2a), ϕ4 = (GFa ∨ FGb) ∧ (GFc ∨ FG(d ∨ Xe)),
ϕ5 = (GF(a ∧X2c) ∨ FGb) ∧ (GFc ∨ FG(d ∨ (Xa ∧X2b))).

3. The next 15 formulae (4 groups) express a variety of natural properties, such
as G(req ⇒ Fack) which says that every request that is received is eventu-
ally acknowledged. As shown in the table in many of the cases Rabinizer 3

runs out of memory (1GB) and fails to produce an automaton, and ltl2ldba

fails to scale in comparison with Büchifier. The formulae in the table
are instantiations of the following templates: f0(j) = G(∧ji=1(ai ⇒ Fbi)),

f1(j) = G(∧ji=1(ai ⇒ (Fbi ∧ Fci))), f2(j) = G(∨ji=1(ai ∧ Gbi)), f3(j) =

G(∨ji=1(ai ∧ Fbi)).
4. The next 6 formulae expressible in LTL\GU , contain multiple Xs and exter-

nal Us. Büchifier constructs smaller automata and is able to scale better
than ltl2ldba in these cases as well. The formulae are instantiations of:
h(m,n) = (Xmp) U (q ∨ (∧ni=1(ai U Xmbi))).

5. The last few examples are from outside of LTL\GU . The first three are in
LTLD while the rest are outside LTLD. We found that Büchifier did better
only in a few cases (like ψ3), this is due to the multiplicative effect that
the internal untils have on the size of the automaton. So there is scope for
improvement and we believe there are several optimizations that can be done
to reduce the size in such cases and leave it for future work. ψ1 = FG((a ∧
X2b∧GFb)U(G(X2¬c∨X2(a∧b)))), ψ2 = G(F¬a∧F(b∧Xc)∧GF(aUd)),
ψ3 = G((X3a)U(b∨Gc)), ψ4 = G((aUb)∨(cUd)), ψ5 = G(aU(bU(cUd))).

7 Conclusion

In this paper we presented a translation of formulas in LTL to limit deterministic
automata, generalizing the construction from [9]. While the automata resulting
from the translation can, in general, be doubly exponential in the size of the
original formula, we observe that for formulas in the subfragment LTLD, the
automaton is guaranteed to be only exponential in size. The logic LTLD is a more
expressive fragment than LTL\GU , and thus our results enlarge the fragment
of LTL for which small limit deterministic automata can be constructed. One
consequence of our results here is a new EXPTIME algorithm for model checking
MDPs against LTLD formulas, improving the previously known upper bound of
2EXPTIME.

Our results in this paper, however, have not fully settled the question of
when exponential sized limit deterministic automata can be constructed. We do
not believe LTLD to be the largest class. For example, our construction yields
small automata for ϕ = G(∨i(pi U qi)), where pi, qi are propositions. ϕ is not
expressible in LTLD. Of course we cannot have an exponential sized construction
for full LTL as demonstrated by the double exponential lower bound in [21].

References

1. Büchifier. kini2.web.engr.illinois.edu/buchifier/.
2. Rajeev Alur and Salvatore La Torre. Deterministic generators and games for LTL

fragments. ACM Trans. Comput. Logic, 5(1):1–25, January 2004.
3. T. Babiak, F. Blahoudek, M. Kret́ınský, and J. Strejeck. Effective translation of

LTL to deterministic Rabin automata: Beyond the (F,G)-fragment. In ATVA,
pages 24–39, 2013.

4. Costas Courcoubetis and Mihalis Yannakakis. The complexity of probabilistic
verification. J. ACM, 42(4):857–907, 1995.

5. Javier Esparza and Jan Kret́ınský. From LTL to deterministic automata: A Safra-
less compositional approach. In CAV, pages 192–208, 2014.

6. Marc Geilen. On the construction of monitors for temporal logic properties. Electr.
Notes Theor. Comput. Sci., 55(2):181–199, 2001.

7. Ernst Moritz Hahn, Guangyuan Li, Sven Schewe, Andrea Turrini, and Lijun Zhang.
Lazy probabilistic model checking without determinisation. In CONCUR 2015,,
pages 354–367.

8. Thomas A. Henzinger and Nir Piterman. Solving games without determinization.
In Proceedings of the 20th International Conference on Computer Science Logic,
CSL’06, pages 395–410.

9. D. Kini and M. Viswanathan. Limit deterministic and probabilistic automata for
LTL\GU . In Proceedings of TACAS, pages 628–642, 2015.

10. Dileep Kini and Mahesh Viswanathan. Probabilistic Büchi automata for LTL\GU .
Technical Report http://hdl.handle.net/2142/72686, University of Illinois at
Urbana-Champaign, 2015.

11. J. Klein and C. Baier. Experiments with deterministic ω-automata for formulas of
linear temporal logic. Theoretical Computer Science, 363(2):182–195, 2006.

12. Joachim Klein, David Müller, Christel Baier, and Sascha Klüppelholz. Are Good-
for-Games Automata Good for Probabilistic Model Checking?, pages 453–465.
Cham, 2014.

13. Zuzana Komárková and Jan Kret́ınský. Rabinizer 3: Safraless translation of LTL
to small deterministic automata. In ATVA, pages 235–241, 2014.

14. J. Kret́ınský and J. Esparza. Deterministic automata for the (F,G)-fragment of
LTL. In CAV, pages 7–22, 2012.

15. J. Kret́ınský and R. Ledesma-Garza. Rabinizer 2: Small deterministic automata
for LTL\ GU. In ATVA, pages 446–450, 2013.

16. M. Kwiatkowska, G. Norman, and D. Parker. PRISM 4.0: Verification of proba-
bilistic real-time systems. In CAV, pages 585–591, 2011.

17. A. Morgenstern and K. Schneider. From LTL to symbolically represented deter-
ministic automata. In VMCAI, pages 279–293, 2008.

18. N. Piterman, A. Pnueli, and Y. Sa’ar. Synthesis of reactive(1) designs. In VMCAI,
pages 279–293, 2006.

19. Nir Piterman, Amir Pnueli, and Yaniv Sa’ar. Synthesis of reactive(1) designs. In
Verification, Model Checking, and Abstract Interpretation, 7th International Con-
ference, VMCAI 2006, pages 364–380, 2006.

20. M.L. Puterman. Markov Decision Processes. Wiley, 1994.
21. Salomon Sickert, Javier Esparza, Stefan Jaax, and Jan Křet́ınskỳ. Limit-

deterministic Büchi automata for linear temporal logic. CAV, 2016.
22. Salomon Sickert and Jan Kret́ınský. MoChiBA: Probabilistic LTL model checking

using limit-deterministic büchi automata. In Proceedings of ATVA, pages 130–137,
2016.

23. M. Vardi, P. Wolper, and A. P. Sistla. Reasoning about infinite computation paths.
In FOCS, 1983.

24. M.Y. Vardi. Automatic verification of probabilistic concurrent finite-state pro-
grams. In Proceedings of FOCS, pages 327–338, 1985.

A Example

Note that every state has the formula ϕ present in α becuase any inital state
has to evaluate ϕ to true and since it is a G formula it has to be in α and
once assigned to be α it cannot be changed. Hence all states are initial. Next
observe that we have two components owing to the two different γ: ∅ (in q0, q1)
or {Fb} (in q2, q3). In the states q0, q1, the subformula Fb is in β, α respectively.
We do not need a counter for this component as γ is empty and hence shown to
be always 0. There is a transtion from q0 to q0 where the FG-prediction hasn’t
changed, but we need to verify that ψ = (a∨Fb) is true (for ϕ ∈ α) at the initial
q0 which is done by observing that Fb is predicted to be β implying the truth
of ψ. The state q0 is non-final as β is non-empty. There is a transition from q0
to q1 which changes the prediction for Fb and this forces only those transitions
to be enabled where b is true (if b were replaced by a more complicated formula
its truth would be enforced using a combination of the input being seen and the
predictions made for the smaller temporal subformulae). q1 has a transition to
q1 only enabled when a is true because at this point Fb is predicted to be in α
and hence assumed to be false. In q2 and q3 the predictions don’t change only
the counter does. In both states since Fb ∈ γ, we get a ∨ Fb to be evaluated
to be true irrespective of the input being seen therefore ϕ ∈ α is automatically
checked. The only remaining thing is Fb ∈ γ which is done using a counter.
When the counter is 0 it is forced to be incremented and when the counter is
non-zero (in this case 1) it is incremented when b is evaluated to be true, once
again if b were replaced by a more complicated formula its truth would have
been derived using the next input and the prediction at that state. It is easy to
see that this automaton is indeed limit deterministic and correctly accepts L(ϕ).

B Derivative and Construction

In this section we will look at the operational definition of the derivative and
how it is used to define the automata construction.

We describe some terminology related to normal form representation for tem-
poral formulae. A term t is a conjunction of formulae ϕ0, . . , ϕk denoted as a set
t = {ϕ0, . . , ϕk}. A term over ϕ is a term in which all formulae are subformulae
of ϕ or their dependents (formulae Fψ for internal φ U ψ and and X(φ U ψ)
for all φ U ψ). The set of all terms over ϕ is denoted by T (ϕ). A form is a
disjunction of a finitely many terms t1, . . , tn represented as 〈t1, . . , tn〉. A form
is said to be over ϕ if every term in it is over ϕ. Set of all such forms is denoted
by F(ϕ). A single term t can also be interpreted as the form 〈t〉 depending on
the context it is used. We use 〈ψ〉 to denote the form with a single term {ψ}.
False is denoted by the empty form 〈〉 and true is represented as 〈∅〉. If there
are two terms ti, tj in a form such that ti ⊆ tj then we can drop tj because tj
implies ti. For a set of terms T , let min(T) be the form consisting of the minimal
(according to the subset relation) terms in T . Let ν1 ∪ ν2 be the set of terms
contained in either ν1 or ν2. The join of two forms ν1, ν2 denoted by ν1 t ν2 is

the form min(ν1 ∪ ν2). The meet of two forms ν1, ν2 denoted by ν1 u ν2 is the
form min({t1 ∪ t2 | t1 ∈ ν1, t2 ∈ ν2}).

We say a term t is ex-free if t ∩ Λϕ is empty, and form f is ex-free if each
term in it is ex-free. Next, we introduce the concept of consistency.

Definition 11 (Consistency). A term e is said to be locally consistent if:

– φ ∨ ψ ∈ e then φ ∈ e or ψ ∈ e.
– φ ∧ ψ ∈ e then φ ∈ e and ψ ∈ e
– (φU ψ ∈ e and φU ψ /∈ Λϕ) then Fψ ∈ e
– φU ψ ∈ e then either (φ ∈ e and X(φU ψ) ∈ e) or ψ ∈ e
– ff /∈ e

A term e is said to be consistent with input symbol σ ∈ 2P if:

– if p ∈ e then p ∈ σ
– if ¬p ∈ e then p /∈ σ

A term e ∈ T (ϕ) is said to be consistent with an FG-prediction π ∈ Π(ϕ) if:

– Fψ ∈ e then Fψ /∈ α(π)
– Gψ ∈ e then Gψ ∈ α(π)

A term e ∈ T (ϕ) is said to be consistent with ex-choice λ ⊆ Λϕ if:

– ∀ φU ψ ∈ e ∩ Λϕ: ψ ∈ e iff φU ψ ∈ λ
– ∀ φ ∨ ψ ∈ e ∩ Λϕ: φ ∈ e iff φ ∨ ψ ∈ λ

The notion of local consistency is an extension of the concept of “local in-
formativeness” introduced in [6]. A term is locally consistent if every compound
formula of the form (∧/∨/U) present in the term is appropriately supported by
the presence of its immediate subformulae/dependents. A term that is locally
consistent gives a proof for the satisfaction of each compound formula present
in it. The proof is local in the sense that it gives a way to satisfy the current
and not any future obligations that need to be met. Consider φU ψ, for which
to be satisfied one needs:

– ψ to hold at some point (which is expressed by the presence of dependent
Fψ), and

– either ψ holds now (presence of ψ) or φ holds now and φ U ψ holds at the
next step (presence of φ, X(φU ψ))

For ∧/∨ we need both/one of the arguments present for the term to be
locally consistent. Note that local consistency does not handle literals because
the current input σ is supposed to tell us their truth; and those requirements
are encoded in σ consistency constraints. Similarly π tells us the truth of F,G-
formulae which are encoded in π consistency constraints. An ex-choice λ ∈ Λϕ
also dictates additional constraints. The ex-choice λ dictates how each external
U/∨ subformula is satisfied if it needs to be. If φ U ψ ∈ λ then it must be
immediately satisfied by the presence of ψ. A φ ∨ ψ ∈ λ must be satisfied by
the presence of φ. λ provides us with a resolution of choices created by external
U/∨.

For notational simplicity, we are going to combine the three forms of con-
straints (input symbol, FG-prediction, ex-choice) into an extended symbol:

Definition 12 (Extended symbol). An extended symbol for an LTL formula
ϕ over propositions P is a triple (σ, π, λ) ∈ 2P × Π(ϕ) × Λϕ. We will use Eϕ
denote the space 2P ×Π(ϕ)× Λϕ. We say a term t is consistent with ε ∈ Eϕ if
t is consistent with each component of ε.

(We will also sometimes refer to the pair (σ, π) as an extended symbol, this
is useful when the ex-choice becomes irrelevant)

For a sequence of symbols ρ (finite or infinite) over 2P , an extension is an
equally long sequence w = {(ρi, πi, λi)} over Eϕ.

Next, we define the expansion of a term w.r.t an extended input. The ex-
pansion is a form consisting of terms that describe different ways to satisfy the
given term.

Definition 13 (Expansion). For t ∈ T (ϕ) and ε ∈ Eϕ, the expansion X (t, ε)
is the form min(T) where T is the set of all terms e such that t ⊆ e, e is locally
consistent, and consistent with ε. Given form ν we define the expansion X (ν, ε)
as
⊔
t∈ν X (t, ε)

The successor of a term t is the term consisting of all the temporal obligations
that are pending in t:

Definition 14 (Successor). The successor of a term t denoted by S(t) is de-
fined as the term {ψ | X(ψ) ∈ t}. For a form f , S(f) is defined as the form
min({S(t) | t ∈ f}).

Next, we define the derivative. Here we directly define what corresponds to
the weakest derivative as in Definition 9 and simply refer to it as the derivative.
Given a form f , a finite sequence of input symbols ρ and an extension w of ρ:
the derivate denoted by ∇(f, w) corresponds to the obligation such that if any
infinite continuation ρ′ satisfies it then it guarantess f to be true at ρρ′ given
that w is the prefix of a sound extension for ρρ′. Informally, an extension is
sound if the guesses made by the FG-predictions and ex-choices along the word
are correct. The derivative can be seen as a generalization and a declarative
version of the various unfolding operations [14, 5].

Definition 15 (Derivative). For a form f ∈ F , and extended symbol ε ∈ Eϕ
define the derivate ∇(f, ε), as the form S(X (f, ε)). We extend the definition to
finite words over Eϕ as: ∇(f, ε) = f and ∇(f, εw) = ∇(∇(f, ε), w). For a given

extension w we shall use ∇ji (f) as a shorthand for ∇(f, w[i, j])

Observe that the derivative of a form only consits of U subformulae and
arguments of X subformulae of the given form due to the application of S.

Now we are ready to describe the automata construction using this definition.
A single state in our construction is a 4-tuple (µ, ν, π,m) where µ and ν are
forms over ϕ, π is a FG-prediction and m is a counter. Note that forms are
just a different way of representing formulae and will be more convenient when
proving correctness and efficiency of the construction. The only operations a
form needs to emulate are the ∧/∨ which are done by u/t. The construction
is exactly as in Definition 10 with forms replacing formulae and the analogous
boolean operations for forms.

Definition 16 (Construction). Given a formula ϕ ∈ LTL over propositions
P , let D(ϕ) be the NBA (Q, δ, I, F) over the alphabet 2P defined as follows:

� Q is the set F(ϕ)×F(ϕ)×Π(ϕ)× [n] where n = |F(C(ϕ))|+ 1

� δ is the set of all transitions of the form (µ, ν, π,m)
σ−→ (µ′, ν′, π′,m′)

such that
(a) α(π) ⊆ α(π′) and γ(π) = γ(π′)

(b) µ′ = ∇(µ u 〈t〉, ε) for some λ ⊆ Λϕ
where t = {ψ | Fψ ∈ β(π) ∩ α(π′) or Gψ ∈ α(π)} and ε = (σ, π, λ)

(c) m′ =

{
(m+ 1) (mod |F(γ)|+ 1) ν = 〈∅〉
m otherwise

(d) ν′ =

{
〈ψm′〉 ν = 〈∅〉
∇(ν, (σ, π)) t 〈ψm〉 otherwise

where {Fψ0, . . ,Fψk} is an enumeration of F(γ), ψ0 = tt

� I is all states of the form (〈ϕ〉, 〈∅〉, π, 0)

� F is all states of the form (µ, 〈∅〉, π, 0) where β(π) = ∅, µ 6= 〈〉, µ is ex-free

C Proof of Correctness

In order to prove correctness (Theorem 1) we define an annotation for an ac-
cepting run. The annotation is a sequence of pairs (u, v) where u and v represent
expansions of terms in µ and ν respectively that are true:

Definition 17 (Annotation). Given an accepting run of the automaton D(ϕ)
over word ρ

(µ0, ν0, π0,m0)
ρ0−→ · · · (µi, νi, πi,mi)

ρi−→ · · · (?)

an annotation is a (finite/infinite) sequence of pairs (ui, vi) ∈ T × (T ∪ {null})
where:

∀i ≥ 0 : λi ⊆Λϕ such that µi+1 = ∇(µi u Ψi, (ρi, πi, λi)) (2)

∀i ≥ 0 : ui ∈ X
(
t u Ψi, ρi, πi, λi)

)
where t = (S(ui−1) if i > 0 else{ϕ})

where Ψi = {ψ | Fψ ∈ β(πi) ∩ α(πi+1) or Gψ ∈ α(πi)} (3)

∀i ≥ 0 : ∅ ∈ νi ⇐⇒ vi = ∅ (4)

∀i > 0 : vi−1 = ∅/null =⇒ vi = null or vi ∈ X
(
〈ψmi〉, (ρi, πi)

)
(5)

∀i > 0 : vi−1 6= ∅/null =⇒ vi ∈ X (S(vi−1), (ρi, πi)) (6)

Lemma 1. For a given accepting run of D(ϕ) (?)

∀n ≥ 0; ∀s ∈ µn; ∀x ∈ X (s u Ψn, (ρn, πn, λn)); ∀y ∈ X (νn, (ρn, πn))

there exists an annotation of length n+1 ending in (x, y)

Proof. First note that the requirements for sequence of ui and those for vi in
an annotation are independent. We show the existence of a sequence {ui}0≤i≤n
ending in x and sequence {vi}0≤i≤n ending in y each satisfying their respective
conditions. Combining the sequences will then gives us the required annotation.
First note that λi in condition 2 is given by the transtions taken in the accepting
run. We perform indunction on n to construct the sequences.

Base Case: when n = 0 we have µn = 〈ϕ〉 (initial state condition), so s can
only be {ϕ} and hence x ∈ X ({ϕ} u Ψ0, (ρ0, π0, λn)) which satisfies condition 3.
For n = 0 we have νn = 〈∅〉, so y = ∅ which would satisfy condition 4. Condi-
tions 5 and 6 do not apply for the base case (see quantification on the conditions).

Inductive Case: We assume the statement is true for n upto i and prove it for
n = i+ 1.

Extending u: Let t be a term in µi such that the quantified s is contained
in ∇(t u Ψi, (ρi, πi, λi)) = S(X (t u Ψi, (ρi, πi, λi))). Such a term t should exist
by the fact that s ∈ µi+1 and how µi+1 is derived from µi in Rule (b). Now
let x′ be the term in X (t u Ψi, (ρi, πi, λi)) for which S(x′) = s. By the inductive
hypothesis we have {uj}0≤j≤i that ends in x′ which satisfies the condition 3. We
append x to this sequence to obtain the required sequence of length i+ 1

Extending v: Consider the case when νi = 〈∅〉, here we know νi+1 = 〈ψmi+1
〉

implying y ∈ X (〈ψmi+1
〉, (ρi+1, πi+1)). Condition 4 is satisfied for vn+1 = y

because y is non-empty, as ψni+1 is contained in y. For νi = 〈∅〉 we need to
check condition 5, which is satisfied because y ∈ X (〈ψmi+1〉, (ρi+1, πi+1)). Next,
consider the case when νi 6= 〈∅〉, here we know νi+1 = ∇(νi, (ρi, πi)) t 〈ψmi

〉.
Now suppose r be the term in νi+1 for which y ∈ X (r, (ρi+1, πi+1)). If r ∈
∇(νi, (ρi, πi))(= S(X (νi, (ρi, πi)))) let y′ ∈ X (νi, (ρi, πi)) for which r = S(y′).
By the induction hypothesis we have {vj}0≤j≤i that ends in y′. We append y
to this sequence to obtain the required sequence of length i+1. If r = {ψmi},
consider the last index k where nk 6= ni. (If such a k does not exist, then all mi

have to be zero in which case we have vi = ∅ for all i). Here νk has to be 〈∅〉
owing to the fact that counter changes only when ν becomes 〈∅〉. By induction

hypothesis there exists a sequence {vj}0≤j≤k ending in ∅. Appending null(k−i−1)y
to this gives us the required sequence.

Corollary 2. Every accepting run of D(ϕ) has an infinite annotation

Proof. Note that in an accepting run µi 6= ∅ for any i, which means there will
always exist s ∈ µi such that X (s ∪ Ψi, (ρi, πi, λi)) 6= ∅ (otherwise µi+1 = ∅). In
an accepting run we also know that νi = 〈∅〉 for infinitely many i. Hence using
Lemma (1) we have finite sized annotations of arbitrarily large lengths. Note
that every prefix of an annotation is also a valid annotation. We can arrange all
these annotations and their prefixes in an infinite rooted tree where the root is
the empty annotation, and there is an edge between two annotations if one of
them is a prefix of the other obtained by removing the last element. Every node
in this tree has finite degree because the space of each element in this sequence

is finite (T × (T ∪ {null})). Finally we use König’s lemma to obtain an infinite
path in this tree which gives us the required infinite annotation.

Let Set : T ∪ {null} → T be the function which maps every T to itself and
maps null to the empty term ∅.

Lemma 2. For an accepting run (?) with an infinite annotation {(ui, vi)}i≥0,
it is the case that ∀i ≥ 0 ∀ θ ∈ (ui ∪ Set(vi)) : ρ[i] � θ

Proof. We perform induction on the size of θ. We shall use the fact that Si =
ui ∪ Set(vi) is a term that is locally consistent and consistent with πi and wi.

For the base case when θ is a literal p/¬p it has to be the case that p/¬p is
respectively true for ρ[i] because it is contained in a term that is consistent with
wi.

If θ is of the form φ ∨/∧ ψ then using local consistency we get that either
(or both) of φ or ψ is present in Si, and hence true at ρ[i] due to the inductive
hypothesis which gives us the truth of θ at ρ[i].

If θ is φ U ψ: if θ /∈ Λϕ then local consistency tells us that Fψ ∈ Si and
using the induction hypothesis we get that Fψ is true at ρ[i]. Let j ≥ i the
smallest index such that ρ[j] � ψ. ∀k : i ≤ k < j we can inductively prove (this
is a separate induction on k) that φ,X(φ U ψ) ∈ Sk using the facts: that ψ is
absent from all such Sk (induction hypothesis), local consistency of Sk and that
X(φU ψ) transfers φU ψ to the next step (definition of annotation and S). If
θ ∈ Λϕ then there is a j ≥ i such that θ is absent in µj (because once a final
state is reached µ becomes ex-free), picking the smallest such j one obtains the
point at which ψ is true which can be proved by induction on j like we did in
previous case.

If θ is Fψ then using the fact that Si is πi consistent we can infer that
Fψ ∈ β(πi)∪γ(πi). If ψ ∈ β(πi) then ∃j ≥ i such that Fψ ∈ β(πj)∩α(πj+1) (due
to (a)). Now we know ψ ∈ Ψj and hence ψ ∈ Sj (from definition of annotation).
Using the induction hypothesis we get ρ[j] � ψ and hence ρ[i] � Fψ. If ψ ∈ γ(πi)
then we know that the counter will eventually (say at j ≥ i) become the index
mj corresponding to ψ in γ (γ doesn’t change along a run, see (a)). Let j be
the smallest such index. Consider the smallest k ≥ j for which vk 6= null. mk has
to be equal to mj because the counter cannot change while vi is empty. From
property (5) of annotations we get that vk ∈ X ({ψ}, πk, wk). This tells us that
ψ ∈ Sk and by the induction hypothesis we have ρ[k] � ψ thus proving ρ[i] � Fψ.

If θ is Gψ then using the fact that Si is consistent with πi we infer that
Gψ ∈ α(πi). Now using (a) we infer that Gψ ∈ α(πj) for all j ≥ i. Using
property (3) of annotations we get that ψ ∈ uj(⊆ Sj). Applying the induction
hypothesis we get that ρ[j] � ψ for all j ≥ i and hence ρ[i] � Gψ.

Corollary 3. If w has an accepting run in D(ϕ) then w � ϕ.

Proposition 1. If w � ϕ then w has an accepting run in D(ϕ)

Proof. Define the run (µi, νi, πi,mi) as follows. Let πi be such that

α(πi) = {Gψ ∈ C(ϕ) | ρ[i] � Gψ} ∪ {Fψ ∈ C(ϕ) | ρ[i] 2 Fψ}
γ(πi) = {Gψ ∈ C(ϕ) | ρ[i] 2 FGψ} ∪ {Fψ ∈ C(ϕ) | ρ[i] � GFψ}

Define λi as {ψ U φ, φ∨ψ ∈ Λϕ | ρ[i] � φ}. Fixing the sequences πi, λi resolves
all the non-determinism present along a run, we can then define µi, νi,mi as
described by the initial state and the transition relation. We will be then left to
check that the run is indeed an accepting one.

We first show that ∀i µi 6= 〈〉. We prove a stronger statement ∃ t∈µn, ∀ψ∈
t : ρ[n] � t by induction on n. Base case is trivial as µ0 = 〈ϕ〉 for the initial
state. Next consider the inductive case where n = i + 1. Let ti be term in µi
which is true according to the induction hypothesis. We can then recursively
construct the set e ⊇ (ti ∪ Ψi) such that all formulae we add to e are true by
looking at the truth of the immediate subformulae of the formulae present in e.
For example consider φU ψ ∈ e′ = (e ∩ Λϕ), if φU ψ ∈ λi then we add ψ to e
as we know that ρ[i] � ψ by definition of λi, otherwise we add φ,X(φU ψ) to e
to ensure local consistency. Note that the formulae we add will be true at ρ[i].
Whenever there is a choice as to how we can make a certain formula true then
we non-deterministically pick one. We do so for every formulae in e. The set e
constructed will be locally consistent, consistent with πi (by it’s definition and
the fact that all formulae in e are true at ρ[i]), consistent with wi (by the fact
all formulae in e hold at ρ[i]) and λi consistent (due to the way we construct e).
Consider all minimal such e (among all those that can be constructed this way)
and they would have to be present in X (t ∪ Ψi, (wi, πi, λi)). Then pick ti+1 as
S(e) which is a minimal among all such e (to ensure ti+1 ∈ µi+1), and observe
that every formulae in S(e) is true at ρ[i+1] by semantics of X and the fact that
all formulae in e hold at ρ[i].

Next we show that νi is 〈∅〉 for infinitely many i. In order to do so we define
the metric f which for a given word ρ and formula ψ gives us a number f(ρ, ψ)
which gives us an upper bound on the number of steps it takes ν to become 〈∅〉
along ρ if it were to start at 〈ψ〉.

Definition 18. For a formula ϕ and a word ρ define f(ρ, ϕ) ∈ N ∪ {∞} such
that: f(ρ, ϕ) =∞ if ρ 2 ϕ otherwise we recursively define it as follows

f(ρ, ϕ) = 1 if ϕ is p/¬p/Fψ/Gψ

f(ρ,Xφ) = 1 + f(ρ[1], φ)

f(ρ, φ ∧ ψ) = max(f(ρ, φ), f(ρ, ψ))

f(ρ, φ ∨ ψ) = min(f(ρ, φ), f(ρ, ψ))

f(ρ, φU ψ) = max
j<i

(j+f(ρ[j], φ), i+f(ρ[i], ψ)) i is min s.t ρ[i] � ψ

We also extend this definition for a term t: define f(ρ, t) as maxϕ∈t f(ρ, ϕ)

Next, using the above metric we show the following statement which claims
that if a term t is true at ρ[j] then taking the derivative of t for sufficiently many

times will yield the ∅ term.

∀j ∀t∀k (∀ψ ∈ t : ρ[j] � ψ)∧(k = j+f(ρ[j], t))⇒ ∅ ∈ ∇({t}, π[j, k], w[j, k]) (7)

We prove this using induction on k. Consider a term t that holds for ρ[i].
One can show that ∃t′ ∈ ∇(t, (ρi, πi)) such that t′ is true for ρ[i + 1] and
f(ρ[i+1], t′) < f(ρ[i], t). Using this along with the induction hypothesis will
prove the inductive case. For the base case when f(ρ[i], t) is 1 the formulae in t
can only be boolean combinations of p/¬p/Fψ/Gψ which do not produce any
obligations (X formulae) which implies that ∅ ∈ ∇(t, (ρi, πi)).

Now, for contradiction assume ν is 〈∅〉 finitely many times, and let i be the
index succeeding the last point where ν = 〈∅〉. Let ψ denote the formula ψmi

.
Since Fψ ∈ γ(πi) we know that ψ holds infinitely often by definition of γ(πi),
so consider a point j ≥ i such that ρ[j] � ψ. Using (7) we get that that within
f(ρ[j], ψ) steps ν would have to be 〈∅〉 which is a contradiction.

Next, we note that β(πi) is empty for sufficiently large i, this is the same
observation as made in [10]. In order to prove µ eventually becomes ex-free we
can once again use a metric similar to f to argue that within finite steps every
external subformula disappears from µ.

Proposition 2. D(ϕ) is limit deterministic

Proof. First note that ν′ and n are deterministically updated, they only depend
on ν, π which is a part of the state and σ which is the current input symbol. The
only non-determinism in the automaton comes from the evolution of µ and π.
In a final state, the π cannot change any further due to monotonicity and β(π)
being empty. In a final state µ becomes ex-free and remains ex-free from then
on because the formula introduced in µ come from Ψ all of which are internal.
This implies that the ex-choice λ does not play a role in determining µ (as it is
ex-free) and hence µ is also updated deterministically from then on.

D Proof of Efficiency

In order to prove Theorem 2, we first observe identities about the derivative that
we shall use in proofs appearing later in this Section.

Lemma 3. For forms A and B and extended symbol ε: ∇(A t / u B, ε) =
∇(A, ε) t / u∇(B, ε)

Lemma 4. Given ϕ ∈ LTL\GU , a subformula ψ, and an extended input symbol
ε ∈ Eϕ, the derivative of ψ, ∇(ψ) (short for ∇(ψ, ε)) satisfies the following
identities depending on the structure of ψ:

∇(ψ1 U ψ2) =

∇(ψ2) t (∇(ψ1) u 〈ψ1 U ψ2〉) if ψ1 U ψ2 /∈ Λϕ
∇(ψ2) if ψ1 U ψ2 ∈ λ
∇(ψ1) u 〈ψ1 U ψ2〉 otherwise

∇(ψ1 ∨ ψ2) =

∇(ψ1) t∇(ψ2) if ψ1 ∨ ψ2 /∈ Λϕ
∇(ψ1) if ψ1 ∨ ψ2 ∈ λ
∇(ψ2) otherwise

∇(ψ1 ∧ ψ2) = ∇(ψ1) u∇(ψ2)

∇(Fψ) = 〈〉 if Fψ ∈ α(π) else 〈∅〉 ∇(p) = 〈∅〉 if p ∈ σ else 〈〉
∇(Gψ) = 〈∅〉 if Gψ ∈ α(π) else 〈〉 ∇(¬p) = 〈〉 if p ∈ σ else 〈∅〉

Next, we observe that the terms in the derivative of an LTL(F ,G) formula ϕ
w.r.t a word of length k consist only of subformulae at depth k in ϕ, and hence
derivatives of ϕ of order greater than h are either true or false where h is the
height of ϕ. The lemma can be proved by induction on k.

Lemma 5. For ϕ ∈ LTL(F ,G), w ∈ Ekϕ, t ∈ ∇(〈ϕ〉, w): every φ ∈ t is such that
φ is a formula at depth k within ϕ.
Corollary: If ϕ ∈ LTL(F ,G) is of height h ≥ 0, then ∇(〈ϕ〉, w) ∈ {〈〉, 〈∅〉} for all
|w| > h.

Now we see how to represent the space of reachable ν and µ. Let us fix a for-
mula ϕ and an infinite sequence of extended symbols w. Note that the ν compo-
nent of a run cycles through F(γ). When ν becomes 〈∅〉 it moves to the next Fψ
in F(γ). F(γ) is at most as large as the given formula, hence it suffices to show
a bound on reachable ν for a single Fψ. With this in mind we fix ψ and define νi
inductively as follows: ν0 = 〈ψ〉 and νi+1 = ∇(νi, wi)t〈ψ〉. For µ define µ0 = 〈ϕ〉
and µi+1 = ∇(µiuΨi, wi) where Ψi = {ψ | Fψ ∈ β(πi) ∩ α(πi+1) or Gψ ∈ α(πi)}.
The sequence µi describes the µ component of a run. Our aim is to find a rep-
resentation for νi, µi and show that the number of different possible representa-
tions is exponential. The following Proposition proved using Lemma 5 gives us
a representation.

Proposition 3. If ψ ∈ LTL(F ,G) and ϕ ∈ LTLD are of height k, and l =
max(i−k, 0)

νi =

i⊔
j=l

∇ij(〈ψ〉) or 〈∅〉 µi =

i−1l

j=l

∇ij(Ψj) u ∇i0(〈ϕ〉) or 〈〉

Proof. Consider νi, we can prove that it is tij=0∇ij(ψ) by inducting on i and using
Lemma 3. Then we observe that the first l−1 elements are either true (〈∅〉) or
false (〈〉) due to Lemma 5. The representation above follows immediately. For µi
the structure can be derived in a similar fashion the only difference is the extra
term ∇i0(ϕ) that arises due to the initial condition. ut

Note if νi is not 〈∅〉 then it is completely determined by the substring of
extended symbols w[l, i]. There are at most (2|P |.3|ϕ|.2|Λϕ|)k such substrings for
each length and there are k different lengths. Hence we get that νi can take on at
most exponentially different values. Observe that in µi the part

di−1
j=l ∇ij(Ψj) can

take exponentially many different values once again due to the fact that it only
depends on the w[l, i]. What remains to be seen that ∇i0(〈ϕ〉) takes on at most
exponentially different values. The next Lemma states that every derivative of
ϕ over w[0, i] can be expressed as the derivative of a single term t over w[l, i].

Lemma 6. For ϕ ∈ LTLD of height k and l = max(i−k, 0), it is the case that
∇i0(〈ϕ〉) = ∇il(t) for some t ∈ T (ϕ)

Proof. It is sufficient to prove that for any formula ϕ ∈ LTLD and any given
extension w, there exists t ∈ T (ϕ) such that ∇k+1

0 (ϕ) = ∇k+1
1 (t). We perform

structural induction on ϕ. If the formula ϕ is an internal subformula of the
form ψ U φ then depending on if ∇k0(φ) is true or false (Lemma 5) we get
that ∇k+1

0 (ϕ) is either true or ∇k+1
0 (ψ)u ∇k+1

1 (ϕ) (by Lemma 4) and then by
induction hypothesis we have our term. Simlar argument would work for an
internal ∨. For ∧ (internal or external) use induction hypothesis to obtain the
terms for the individual arguments and the required term would be their u. For
X(ψ), ∇k+1

0 (Xψ) = ∇k+1
1 (ψ). For literals and F,G-formulae, the term is either

true or false depending on σ0 and π0. For external U we refer to λ0 to choose
between immediate and delayed satsifaction of the U and on the basis of that
we can get the term by induction hypothesis on the appropriate arguments. A
similar argument would work for ∨.

The space of ∇(t, w[l, i]) at most exponential because there are only 2|ϕ|

many different terms t and exponentially many different sequences of the form
w[l, i] which gives us the required bound on ∇i0(〈ϕ〉).

E Proofs of Inexpressivity

In order to prove Theorem 4 we will need a proposition and a lemma. We will
use suf(w) to denote the set of all suffixes of the word w.

Proposition 4. For any ρ ∈ suf(ηk) one of the following holds

1. Either ρ ∈ suf(σ), or
2. ∃x ∈ suf(sk) such that ρ = xwvσ

For ρ ∈ suf(ηk)\suf(σ), i.e., ρ is of the form xwvσ where x ∈ suf(s), let
cutw(xwvσ) = xvσ ∈ suf(σ). What we are trying to say is that for all suffixes of
ηk that are not suffixes of σ, cutw removes the substring w. Next we show that
every suffix of ηk is logically equivalent (w.r.t LTL`(F,G)) to some suffix of σ.

Lemma 7. For every ψ ∈ LTL`(F,G), for any k and any ρ ∈ suf(ηk)\suf(σ):
ρ � ψ iff cutw(ρ) � ψ

Proof. ρ is of the form xwvσ. We perform induction on |x| to prove the required
statement.

Base Case: x = ε, i.e ρ = wvσ. We prove the base case by induction on ψ.
Observe that for every ψ of the form Xia where a ∈ {p, q, r} and 0 ≤ i ≤ `, we
have wvσ � ψ iff vσ � ψ. For the inductive step the only intersting cases are
when ψ is F or G formula. Consider ψ = Fψ1

vσ � Fψ1 =⇒ ∃y ∈ suf(vσ) s.t y � ψ1

=⇒ wvσ � Fψ1 becaue y ∈ suf(wvσ)

wvσ � Fψ1 =⇒ either (a) wvσ � ψ1 ⇒ vσ � ψ1 (ind hyp)⇒ vσ � Fψ1

or (b) ∃y ∈ suf(wvσ)\{wvσ} s.t y � ψ1

⇒ vσ � Fψ1 because y ∈ suf(vσ)

We continue the induction on ψ by considering the case when ψ = Gψ1

vσ � Gψ1 =⇒ ∀y ∈ suf(vσ), y � ψ1

=⇒ ∀y ∈ suf(wvσ)\{wvσ}, y � ψ1 and

wvσ � ψ1(since vσ � ψ1 and ind hyp)

=⇒ wvσ � Gψ1

wvσ � Gψ1 =⇒ ∀y ∈ suf(wvσ), y � ψ1

=⇒ ∀y ∈ suf(vσ), y � ψ1(suf(vσ) ⊆ suf(wvσ))

=⇒ vσ � Gψ1

Returning back to the induction on x consider ρ = xwvσ where x = ay with
a = {p}, {q}, {r} or {p, q}. The proof is again by structural induction on ψ and
similar to the base case hence we omit it.

In order to prove Theorem 4 we prove the following stronger statement: For
ϕ ∈ LTL`,k\GU , x ∈ suf(uv), j ≥ k: if xσ � ϕ then x(uv)juwvσ � ϕ. We perform
induction on k. The base case is when k = 0 i.e ϕ has no U, and it directly
follows from the previous Lemma. For the inductive case consider k = n + 1.
The interesting case is when ϕ is of the form ψ1Uψ2. The first position i along xσ
where ψ2 holds has to be < |uv|. Consider the suffix of x(uv)muwvσ at position
i , using induction hypothesis we can conclude that ψ2 holds at that position.
Similarly for every prefix of x(uv)muwvσ that begins before position i we can
conclude that it satisfies ψ1 using induction hypothesis.

