ISWS/RI-113/90 REPORT OF INVESTIGATION 113 STATE OF ILLINOIS DEPARTMENT OF ENERGY AND NATURAL RESOURCES

ILLINOIS STATE WATER SURVEY CHAMPAIGN 1990

REPORT OF INVESTIGATION 113

Two-Year Study of Alum Sludge Application to Corn and Soybean Farmland

by SHUN DAR LIN and C. DAVID GREEN

Title: Two-Year Study of Alum Sludge Application to Com and Soybean Farmland.

Abstract: A two-year field study was conducted to assess the impact of applying air-dried alum sludge to farmland used for growing com and soybeans. Alum sludge was applied at four rates (0,2.5, 10, and 20 tons/acre) with three replicate test plots for each rate. Sludge was applied once, in the first year of the study (1986). Determinations were made of the effects of alum sludge application on soil properties, com and soybean yields, and plant parameters. Determinations also were made of the uptake and accumulation of heavy metals and nutrient levels in whole plants, leaf tissues, and grains. The 29 soil properties measured showed no significant effects of the alum sludge applications in either com or soybean plots. Differences in com yields were observed only in 1986; however, these were not due to alum sludge applications. For both years, other com plant parameters and soybean yield and plant parameters were not affected by alum sludge applications. The levels of plant nutrients and heavy metals in grains, whole plants, and leaves were also not significantly changed by the alum sludge applications. Application of air-dried alum sludge to farmland appears to have no beneficial or adverse effects on soil and crops, and led to no apparent environmental degradation. Therefore it may be a feasible alternative for sludge disposal.

Reference: Lin, Shun Dar, and C. David Green. Two-Year Study of Alum Sludge Application to Com and Soybean Farmland. Illinois State Water Survey, Champaign, Report of Investigation 113, 1990.

Indexing Terms: Alum sludge, chemical analysis, com (field), crop response, plant growth, plant tissues, residues, sludge disposal, soil amendments, soil properties, soybeans.

STATE OF ILLINOIS HON. JAMES R. THOMPSON, Governor

DEPARTMENT OF ENERGY AND NATURAL RESOURCES Karen A. Witter, M.S., Director

BOARD OF NATURAL RESOURCES AND CONSERVATION

Karen A. Witter, M.S., Chair

Robert H. Benton, B.S.C.E., Engineering

Donna M. Jurdy, Ph.D., Geology

H.S. Gutowsky, Ph.D., Chemistry

Roy L. Taylor, Ph.D., Plant Biology

Robert L Metcalf, Ph.D., Biology

Judith S. Liebman, Ph.D. University of Illinois

John H. Yopp, Ph.D. Southern Illinois University

STATE WATER SURVEY DIVISION RICHARD G. SEMONIN, Chief

2204 GRIFFITH DRIVE CHAMPAIGN, ILLINOIS 61820-7495

1990

Primed by authority of the State of Illinois (12-90-100)

Funds derived from grants and contracts administered by the University of Illinois were used to produce this report.

CONTENTS

PAGE

Abstract	1
Introduction	1
Objectives	2
Acknowledgments	2
Materials and Methods	3
Alum Sludge	3
Test Plots	3
Field Operation	3
Sample Collections	4
Soil Samples	4
Leat Tissues.	4
Harvest (Grains).	4
Whole Plant Tissues.	
Field Measurements	
Yield	
Plant Population	6
Soybean Height	/
Laboratory Analyses	/
Depute and Discussion	/
Results and Discussion.	9
Effects on Soil Droportios	9
Total Solida	9
Total Solids	9
Moisture Content	
Rulk Density	12
puik Delisity	12
p11	12
Ammonia Nitrogen	11
Nitrate-Nitrogen	14
Kieldahl- and Total Nitrogen	14
Cation Exchange Canacity	17
BravP-1	17
Total Phosphorus	17
Potassium	19
Total Aluminum	19
Boron	20
Cadmium	20
Calcium, Chromium, and Copper.	.20
Total Iron	.20
Lead	.20
Magnesium	.24
Manganese	.24
Nickel	.24
Zinc	.24
Particle Size Distribution	24
General Observations	.28
Corn Yields and Plant Parameters	.28
Soybean Yields and Plant Parameters	. 29
Corn Grain Analysis	.29
Soybean Grain Analysis	. 30
Corn Plant Tissue	30
Soybean Plant Tissue	.33
Corn and Soybean Leaf Tissue	33
Summary	.35
Conclusions.	.36
Recommendations	.36
Keterences	.57
Appendices	.38

Two-Year Study of Alum Sludge Application to Corn and Soybean Farmland

by Shun Dar Lin and C. David Green

ABSTRACT

A two-year field study was conducted to assess the impact of applying airdried alum sludge to farmland used for growing corn and soybeans. The study was carried out at the Northwestern Agricultural Research and Demonstration Center of the University of Illinois. Alum sludge was applied at four rates (0,2.5, 10, and 20 tons/acre) with three replicate test plots for each rate. Sludge was applied once, in the first year of the study (1986).

Determinations were made of the effects of alum sludge application on soil properties, corn and soybean yields, and plant parameters. Determinations also were made of the uptake and accumulation of heavy metals and nutrient levels in whole plants, leaf tissues, and grains. The collected data were analyzed by the least-significant-differences method.

The 29 soil properties measured showed no significant effects of the alum sludge applications in either corn or soybean plots. Differences in corn yields were observed only in 1986; however, these were not due to alum sludge applications. For both years, other corn plant parameters and soybean yield and plant parameters were not affected by alum sludge applications. The levels of plant nutrients and heavy metals in grains, whole plants, and leaves were also not significantly changed by the alum sludge applications.

Application of air-dried alum sludge to farmland appeared to have no beneficial or adverse effects on soil and crops, and led to no apparent environmental degradation. Therefore it may be a feasible alternative for sludge disposal.

INTRODUCTION

The treatment processes at water treatment plants may include aeration, coagulation, sedimentation, softening, iron and manganese removal, and disinfection (with or without other treatments). With the exception of disinfection (chlorination is commonly used), each water treatment process generates residues, either solids, liquids, semi-solids, or brines. The waste residues consist mainly of impurities in the raw water and small quantities of residues produced by the chemical treatments.

The type, quantity, and properties of the residues generated by water treatment plants vary depending on many factors. The major types of waste streams from water treatment plants are alum sludge retained in flocculators and sedimentation basins, washwaters generated from filter backwash operations (alum sludge and/or lime sludge), lime sludge precipitates from the lime softening process, brines from the ion-exchange (zeolite) softening process, iron removal sludge from iron filter backwash wastewater, and sand and iron sludge removed from the slow sand filters.

Alum is the most widely used primary coagulant in Illinois and in the nation. Activated silica, clay, and a variety of polymers are used as coagulant aids. Alum coagulation process residues may contain aluminum hydroxide, sand, clay, colloidal material, inorganic and organic matter, and microorganisms. Residues of alum coagulation and sedimentation have feathering and gelatinous characteristics with a moisture content of approximately 98.5 to 99.0 percent. They vary in color from light yellow-brown to solid black (if powdered activated carbon is added). Alum sludge settles readily but does not dewater easily.

In the past, water plant residues have been discharged to the nearest drainage courses or receiving waters. Federal and state regulations classify water treatment plant wastes (residues or sludge) with other industrial wastes and prohibit their direct discharge, except in certain cases. All sludge generators in Illinois are responsible for the proper disposal of sludge and must provide details of their plans for the ultimate disposal of sludge to the Illinois Environmental Protection Agency (IEPA) as a part of any permit application for any facility that will generate sludge.

As defined by the IEPA (1982), sludge is considered to be the process sidestream residue, which consists of a solid material removed from the mainstream process. Sludge includes any solids, semisolid, or liquid waste generated from a municipal, commercial, or industrial wastewater treatment plant, water supply treatment plant, or air pollution control facility or any other such waste facility with similar characteristics and effects.

In Illinois, the rules and regulations on ultimate sludge disposal are published in Title 35, Subtitle C, Chapter II, Part 391, "Design Criteria for Sludge Application on Land" (IEPA, 1984). A shorter version of the guidelines on sludge regulation is published in "Illinois EPA Sludge Regulation Guidance Document" (IEPA, 1982). These documents give direction to sludge generators, handlers, users, consultants, and the general public.

Present sludge disposal practices of water treatment plants in Illinois include lagooning, landfilling, agricultural use, and burying of sludge on plant property. Sludge may also be incinerated or may be used in silviculture or horticulture, as a construction filling material, or for landscaping. Many water plants will soon run out of lagooning space. Ultimately, the dried sludge has to be disposed of somewhere. This is the problem encountered in the water industry.

Although alum sludge from water treatment plants is not considered a hazardous waste, the IEPA states that alum sludge has a tendency to cause soil to harden and that it does not provide any beneficial value. For this reason, the sludge must not be applied to agricultural land (IEPA, 1982). However, complete and pertinent data on the land application of alum sludge is lacking. For example, the use of alum sludge on agricultural land may have nutritional benefits. On the other hand, possible disadvantages are that phytotoxicity of metals in sludge might reduce crop yields; uptake and accumulation of heavy metals in plant tissue and crops might make crops unsafe for animal or human consumption; alum sludge might be toxic to soil microorganisms that degrade organic compounds in the sludge; and constituents in the sludge might pollute ground water, thereby posing a public health threat.

Objectives

The purpose of this study was to assess the benefits and risks of alum sludge application to farmland used for growing corn and soybeans. The study was intended to address some of the concerns regarding alum sludge application to farmland stated above. The effects of the alum sludge in the second year after application were also examined.

The specific objectives were to monitor 29 characteristics of the soils in the test plots, the uptake and accumulation of heavy metals by plants, other nutrients in plant tissues, crop yields, and other plant parameters.

Acknowledgments

The first-year study was fully sponsored by a grant from the Illinois Department of Energy and Natural Resources (ENR). The cooperation of the ENR project manager, Tom Heavisides, and of Michael Mainz of the University of Illinois is gratefully acknowledged. Mr. Mainz also assessed crop yields and plant parameters, oversaw field operations and field measurements, and prepared the samples of ground grains, leaves, and whole plants.

This study was conducted under the general administrative direction of Richard Semonin, Chief of the Illinois State Water Survey, and Raman Raman, Director of the Office of Water Quality Management. The authors are grateful to other members of the Water Survey who participated. Dave Hullinger, Dana Shackleford, and Bill Cook performed chemical analyses. The late Harvey Adkins assisted in alum sludge hauling. Linda Johnson typed the original manuscript, and Gail Taylor edited the report.

Alum Sludge

Alum sludge was hand-shoveled from a sludge lagoon at the Peoria water treatment facility (Illinois-American Water Company) and dried on the driveway of the lagoons on March 27, 1986. The sludge was turned over several times to aid in its drying.

On April 7, 1986, a truckload (about 20 tons) of dry alum sludge was transported to the test site. The dry sludge was stored inside a shelter near the test site until application. It proved impossible to break apart the lumps of sludge by hand during application, and many of these small clods were still visible at harvest.

Test Plots

The field study was conducted at the Northwestern Agricultural Research and Demonstration Center of the University of Illinois, Monmouth, Illinois. The soils at this site are Tama silt loam, Muscatine silt loam, and Sable silty clay loam, which are typical of much of the agricultural land in Illinois.

Each test plot was 15×30 feet (4.6 x 9.2 meters) with a 4.6-meter border area around all the plots. For each crop grown, three replicate plots were used for a control and for each of three sludge application rates.

During the first year of the study, treatments were applied in a randomized block design for corn and in a completely randomized design for soybeans. In the second year, the crops were reversed between the two groups of test plots. The dried alum sludge was applied only once (during 1986), and its impact was investigated during the growing seasons of 1986 and 1987.

Field Operation

The fieldwork schedules for the first and second years are summarized in tables 1 and 2, respectively. The tables list the dates of tillage, fertilizer and herbicide applications, weed control, sludge application, planting, and collection of soil samples. The major fieldwork was carried out from April through October in both 1986 and 1987.

Prior to sludge application, 150 pounds per acre (lb/a) of phosphorus as P_2O_5 was applied to the soybean plots, including the border areas. Anhydrous

ammonia was applied at a rate of 180 lb/a of nitrogen to the corn plots and border areas.

Alum sludge applications were made prior to planting in 1986 only. No sludge was applied in 1987. The four sludge application rates were zero (control), 2.5, 10.0, and 20.0 tons/acre (t/a), which are equivalent to 0, 0.56, 2.24, and 4.48 kilograms of dry sludge per square meter of land, respectively. Sludge was spread by hand on April 22, 1986, and was then incorporated with a disk to a depth of 4 inches (10 centimeters). Each area was disked and harrowed again prior to planting.

Sieben-brand 35XS corn was planted at 26,600 seeds per acre on April 24, 1986. Counter 15G insecticide was applied with the planter to control rootworms. Sieben-brand 235 soybeans were planted in 30-inch rows on May 23, 1986, at a rate of approximately 165,000 seeds/acre. Ridomil (6.67 lb/a) and Amiben 10G (10 lb/a) were added with the planter to control insects and weeds, respectively.

A preemergence application of Bicep (3 qt/a) and Bladex 80W (0.6 lb/a) gave excellent weed control in the corn plots. Amiben DS (2.6 lb/a) and Dual (3 pt/a) controlled most of the weeds in the soybean plots. Field bindweed was controlled in the soybean plots with a spot application of Roundup. The corn was cultivated once in June 1986.

For the 1987 fieldwork, anhydrous ammonia was applied to the corn test plots on April 9 at the rate of 180 lb/a of nitrogen, as shown in table 2. The corn test plots were disked and harrowed on April 25, and the soybean plots on May 11. Sieben 43XS hybrid corn (27,700 seeds/a) was planted on April 27, and FS brand 265 soybeans (150,000 seeds/a) were planted on May 11.

On April 28, 1987, composite soil samples were pulled from each test plot. Preemergence herbicides (Dual, Bladex, and Atrazine) were applied to the corn plots on May 5, and Lasso MT and Amiben DS were applied to the soybean plots on May 18. The corn test plots were cultivated on June 8.

Postemergence herbicides (Fusilade 2000, Basagran, Reflex, and crop oil concentrate) were applied to the soybean plots on June 5 and June 19. On June 24, weeds in the soybean plots were hoed by hand.

In 1987, leaf tissue samples were taken on July 10 for corn and on July 21 for soybeans. Harvesting and collection of plant tissue and grain samples were carried out on October 5 for soybeans and on October 7 for corn. Additionally, three composite soil samples were pulled from each plot during the study.

Table 1. Field Record for 1986

Corn test plots	
4/3/86	Applied anhydrous ammonia at 180 lb/a of nitrogen
4/22/86	Applied sludge, disked (8-ft disk) to incorporate
	sludge to 4 inches in depth
4/24/86	Pulled soil samples, planted Sieben 35XS, Counter 15G,
	8.7 lb/a (26,600 k/a), disked with harrow
4/29/86	Preemergent Bicep applied at 3 qt/a (Dual 1.875 lb/a,
	Atrazine 1.5 lb/a), and Bladex 80W at 0.6 lb/a
	(0.5 lb/a active ingredient) was applied
5/3-4/86	Plant emergence
6/3/86	Cultivation
6/13/86	Pulled soil samples
7/21/86	Leaf samples taken
8/13/86	Pulled soil samples
10/21/86	Pulled soil samples, harvested
Soybean test plots	
11/7/85	Soil sampled (Research Center)
11/8/85	Applied 150 lb/a of P_2O_5
11/21/85	Chisel-plowed
4/2/86	Disked
4/22/86	Applied sludge, disked with 8-ft disk to incorporate sludge to 5 inches in depth
5/6/86	Disked with harrow
5/21/86	Disked with harrow twice, pulled soil samples
5/23/86	Planted with Sieben 235 (165,000 seeds/a), applied Ridomil 6.67 lb/a and Amiben (granule) 10 lb/a in a 10-inch band
5/29/86	Applied Amiben DS 2.6 lb/a and Dual 3 pt/a
7/18/86	Pulled soil samples
7/21/86	Leaf samples taken
8/29/86	Pulled soil samples
10/21/86	Pulled soil samples, harvested

Sample Collections

Soil Samples

Soil samples were pulled with a Hoffer soil sampling tube to a depth of 6 inches (15 cm). The sampler is 3/4 inch (1.9 cm) in diameter and 36 inches (91 cm) in length. Eight soil samples were pulled and composited for each test plot. The soil samples were refrigerated until they were analyzed. During each year of the study, soil samples were collected in April for each test plot and then every other month during the growing season (tables 1 and 2).

Leaf Tissues

When pollination started, one corn leaf opposite and below the ear was cut off for tissue analyses. Ten corn leaves were cut per test plot. For soybeans, the uppermost fully expanded trifoliate was cut from the stem. Fifteen soybean leaves were collected per test plot. The leaf samples, as well as the whole plant tissues and grains, were ground at the Orr Research Center of the University of Illinois.

Harvest (Grains)

The corn ears in the two center corn rows were harvested by hand (the remaining rows were later machine-harvested). The total weight of the harvested corn ears was determined with a tripod scale and then averaged for each treatment. Several ears from each row were shelled (figure 1) to determine the shelling percentage (weight of grain/weight of corn ear), grain moisture, and test weight.

Table 2. Field Record for 1987

Corn test plots	
4/9/87	Applied anhydrous ammonia at 180 lb/a of nitrogen
4/25/87	Disked and harrowed
4/27/87	Planted Sieben 43XS hybrid corn at 27,700 seeds/acre
4/28/87	Pulled soil samples
5/5/87	Preemergence herbicide application:
	Dual (3.0 pts/a), Bladex (0.8 qt/a),
	Atrazine (0.8 qt/a)
6/8/87	Cultivated
7/10/87	Leaf tissue samples taken
7/17/87	Pulled soil samples
9/4/87	Pulled soil samples
10/7/87	Machine-harvested corn plots (collected residue and
	grain samples)
10/15/87	Pulled soil samples
Soybean test plots	
4/28/87	Pulled soil samples
5/11/87	Disked and harrowed
5/11/87	Planted FS brand 265 soybeans (150,000 seeds/a)
	in 30 inch rows
5/18/87	Preemergence herbicide application:
	Lasso MT (3.0 qt/a) and Amiben DS (2.6 lbs/a)
6/5/87	Postemergence herbicide application:
	Fusilade 2000 (0.75 pt/a), Crop oil concentrate
	$(1.0 \mathrm{qt/a})$
6/19/87	Postemergence herbicide application:
	Basagran (1 qt/a), Reflex (0.8 pt/a), Crop oil
	concentrate (1 qt/a)
6/24/87	Hoed (hand-weeded) the weeds
6/26/87	Pulled soil samples
7/21/87	Leaf tissue samples taken
8/21/87	Pulled soil samples
10/5/87	Machine-harvested soybean plots (residue and grain samples taken)
10/15/87	Pulled soil samples
10/10/07	i uneu son sumpres

The two center soybean rows were harvested with a Hagie plot combine (see figure 2). The grain was then air-dried in a grain bin and ground with a Bur mill.

Whole Plant Tissues

Five corn plants were cut randomly at the time of harvest for analyses of plant tissues. In conformance with general practice, this did not include roots or corn ears. Soybean plant tissues were collected with a paper grocery shopping bag from the residue left at the rear-end of the plot combine during harvesting. The plant tissues were ground by a Willey mill.

Field Measurements

Field measurements were made on grain weight, corn and soybean plant populations, and soybean height.

Yield

The total weight of six to eight corn ears before shelling and the total weight of the cobs were measured. The difference between these two measurements represents the weight of the kernels. The percentage of kernel weight compared to the total weight was then determined.

Figure 1. Shelling corn

Figure 2. Harvesting soybeans

The total weight of corn ears harvested from the two center rows was also measured. Multiplying the percentage of kernels and total harvested weight gave the grain weight for the two rows harvested in each test plot. Given the dimensions of the area and assuming 60 pounds per bushel, the corn yield can be calculated from the kernel weight and the size of the area. The corn yield is expressed in bushels per acre (bu/a) at 15.5 percent moisture.

Similarly, soybean yields were determined after measurements were made of the total weight of soybeans harvested and the growing area. Soybean yield is expressed in bushels per acre at 13 percent moisture content.

Plant Population

For both corn and soybeans, the number of plants in two 5-foot-long sections were counted. On the basis of the area covered by these two 5-foot-long sections, the plant population was converted to number of plants per acre.

Soybean Height

The soybean height was measured in inches from the surface of the ground to the top of the main stem after the leaves fell. The heights of ten soybean plants per test plot were determined, and the average value is reported.

Laboratory Analyses

In the laboratory, the following physical and chemical determinations were made on the soil samples: total solids, organic matter, moisture content, bulk density, pH, soil acidity, ammonia-nitrogen (NH₃-N), nitrate-nitrogen (N0₃-N), Kjeldahl-nitrogen, total nitrogen, cation exchange capacity (CEC), Bray P-1, total phosphorus, potassium, aluminum, boron, cadmium, calcium, chromium, copper, iron, lead, magnesium, manganese, nickel, zinc, and particle size distribution (percent sand, silt, and clay). For dry alum sludge, calcium carbonate equivalent (CCE) and citric acid soluble phosphorus were determined in addition to the above parameters, and soil acidity was not determined. The methods and procedures involved in these determinations are indicated in table 3.

Analyses of 11 metals were carried out on both corn and soybean grains, leaves, and whole plants. The metals were aluminum, cadmium, calcium, chromium, copper, iron, lead, magnesium, nickel, potassium, and zinc. The metal concentrations in soil samples as well as in leaves, grains, and plants were analyzed by atomic absorption (AA) spectrophotometry. However, the extraction procedures were different.

For the metal analyses of soil samples, 0.5 g of dried soil was placed in 75 mL of deionized water. One mL of metals grade HC1 and 1 mL of metals grade HNO₃ were added. The soil sample was heated to about 70°C until the volume was reduced to 25 mL. The volume was brought up to 50 mL by rinsing the sides of the beaker. Then 1 mL of HNO₃ was added and heated to 70°C until the volume was reduced to 25 mL. The solution was filtered through a 0.45 urn membrane, diluted to 50.0 mL, and analyzed by AA spectrophotometry.

For the metal analysis of the leaves, grains, and plant samples, 5.0 g of tissue sample were placed in 50 mL of 50 percent HNO₃ solution. The sample was allowed to sit for two hours and then was heated to 70°C until the NO₂ fumes were gone. Five mL of concentrated HNO₃ was added, and the solution was heated again at 70°C until the NO₂ fumes were gone. The beaker was cooled and 5.0 mL of concentrated HC1 was added. The beaker was again heated to 70"C until the volume was reduced to 30 mL.

The solution was then filtered with a 0.45 μ m membrane and made up to a volume of 50 mL. The extractant solution was analyzed by AA spectro-photometry.

Statistical Analyses

There are three general approaches to mean separation (determination of which treatment means are significantly different): the use of least significant differences (LSD), the use of Duncan's multiple-range tests, and the use of planned F tests (Little and Hills, 1978).

The LSD method is simplest and is the method most widely used by agronomists. For this study, the LSD method was used for mean separation. The LSD is used only to compare adjacent means in an array unless the F test shows a significant difference. LSD is calculated as follows:

LSD = t
$$\sqrt{\frac{S_1^2 + S_2^2}{r_1 + r_2}}$$
 (1)

where

t = a tabulated value determined by the degrees of freedom of the variance and the level of significance desired

 S_1^2 , S_2^2 = the estimated variance of plots receiving treatments 1 and 2

 r_1 , r_2 = the number of experimental units receiving treatments 1 and 2, respectively

Assuming $S_1^2 = S_2^2 = S^2$ and $r_1 = r_2$, where $S^2 =$ the mean square for error, then

$$LSD = t \sqrt{\frac{2 S^2}{r}}$$
(2)

All the data (soils, grains, and tissues) obtained except for the pH and cadmium data were subjected to statistical analyses. In 1986 treatments were applied in a randomized block design for corn and in a completely randomized design for soybeans, and twoway and one-way analyses of variance were used for the corn and soybean data, respectively. In 1987 the treatments and statistical analyses were reversed for the two crops. Only when the F test is significant is LSD calculated by equation 2, with a confidence level of 90 percent.

Table 3. Analytical Procedures

Parameter	Method
Total solids	% residue after evaporation at 110°C for 24 hrs
Moisture content	100% minus % of total solids
Organic matter	% loss after $550^{\circ} \pm 50^{\circ}$ C for 1 hr
Bulk density	Methods of Soil Analysis (Black, 1973).
	core method, p. 375
pН	Measured on a slurry (10 g soil saturated with
1	double distilled water) after stirring 4
	times during a 30-min period
Soil acidity	Methods of Soil Analysis (Page, 1982), potassium
,	chloride method, p. 163
Calcium carbonate	Methods of Soil Analysis (Page, 1982), Part 2, pressure-
equivalent, CCE	calcimeter method, p. 188
Cation exchange	Modified by using a centrifuge instead of
capacity, CEC	fiitration (Wang, 1975)
Ammonia-nitrogen,	Methods of Soil Analysis (Page, 1982), distilled
NH,-N	with HBO,, pp. 653-654, and analyzed by the
	indophenol blue method, p. 674
Nitrate-nitrogen,	Dried soil is extracted with 0.02 N CuSO ₄ solution
NO,-N	containing Ag ₂ SO ₄ (Jackson, 1958). The
	extract is analyzed by the chromotropic acid
	method of Standard Methods, 16th ed., 1985, 418 D
Total Kjeldahl-	Methods of Soil Analysis (Page, 1982), digested
nitrogen	by the regular Kjeldahl method, p. 610, and
	analyzed by the indophenol blue method, p. 674
Total nitrogen	Sum of NO ₂ -N and total Kjeldahl-N; assuming
	NO_2 -N is minimal
Citric acid soluble	Methods of Analysis of the Association of Official
phosphorus	Analytical Chemists (Horwitz, 1980), p. 13
Bray P-1	Methods of Soil Analysis (Page, 1982), phosphorus
	soluble in dilute acid-fluoride, p. 416
Total phosphorus	Weighed dried soil is digested with sulfuric/nitric
	acid mixture and then analyzed according to
	Standard Methods (1985), digested by
	$H_2SO_4 + HNO_3$, Sec 424 C - II, and analyzed by
	ascorbic acid method, Sec. 424 F
Boron, B	Methods of Soil Analysis (Page, 1982), extracted
	by hot water, p. 443, and analyzed by the
	azomethine-H method, p. 435
Heavy metals	Extracted with HC1 and HNO ₃ and then analyzed by
	atomic absorption
Particle size	Sieve-pipet method, by Guy (1969); particles
	greater than 0.062 mm in size are sand,
	0.062 - 0.004 mm are silt, less than 0.004 mm
	are clay

Background Information

The characteristics of alum sludge and composited soil samples collected in both corn and soybean plots prior to sludge application are shown in table 4. Characteristics of sewage sludge from the Greater Peoria Sanitary District are also included for reference. Generally, most of the soil properties for both test plots are comparable except for higher nitrogen and total phosphorus concentrations in the corn plots and higher manganese in the soybean plots.

A comparison of the characteristics of alum sludge and soil samples, as indicated in table 4, shows that there were higher pH levels and higher concentrations of organic matter, percent moisture, CEC, all forms of nitrogen, total phosphorus, potassium, boron, aluminum, iron, calcium, magnesium, manganese, and other heavy metals in the sludge. Only Bray P-1 available phosphorus and percent total solids were found to be greater in soils than in alum sludge. In other words, the fertility values of alum sludge, based on the major nutrients and micronutrients, are higher than those of the soils at Monmouth except with regard to Bray P-1 plant-available soil phosphorus.

The CCE test is often used to evaluate the effect of the impurities of agricultural lime. This test involves titrating a sample with an acid until a neutral pH is obtained. An equivalent amount of pure calcium carbonate is then titrated with the acid. Any reduction in acid required for neutralization of the sample is assumed to be a result of the impurities.

The alum sludge from the Peoria waterworks, which was applied to the test plots, had a CCE value of 12.5 percent (table 4). CCE levels for lime-softening sludge from the Champaign-Urbana water treatment plant were between 92 and 95 percent (Russell, 1980). CCE values for agricultural limestone in eastcentral Illinois typically range from 87 to 91 percent. These values are well above 80 percent, which is generally considered a minimum acceptable value.

The 1986 and 1987 daily precipitation data listed in Appendices A1 and A2 were provided by the Northwestern Agricultural Research and Demonstration Center of the University of Illinois. No soil moisture shortage occurred during the crop growing period.

Monthly 1986 and 1987 weather data are shown in Appendix B for the ranges in air temperature, relative humidity, soil temperature, and precipitation. These data were also obtained from the Research and Demonstration Center.

Effects on Soil Properties

Results of physical and chemical analyses of soils in the test plots are listed in Appendices C1 through C29. The effects of alum sludge application on the parameters measured in soils, based on the averages of three replicates, are shown in tables 5 through 33.

Total Solids

The percentage of total solids (TS) in soils was tested four times per year for each corn and soybean plot. The average TS ranged from 76.0 to 83.5 percent for the corn plots and from 78.2 to 83.8 percent for the soybean plots (table 5).

Table 5 shows no significant differences among the four alum sludge treatment rates, except for the soybean plots on September 4, 1987. On this date, the percentages of TS in the 2.5 and 10 t/a soybean plots were significantly greater than that in the 20 t/ a soybean plots. (The difference between the two means was larger than 1.4). However, there were no statistical differences between each of the sludgetreated plots and the control plots.

Organic Matter

As shown in table 6, alum sludge application did not affect the percent of organic matter in the corn plots during the two-year study or in the soybean plots in 1987. However, on May 21, 1986, the percent organic matter in the soybean control plots was significantly higher than that in the 10 and 20 t/a test plots. Also on July 18, 1986, significant differences in organic matter were observed between the 2.5 and 10 t/a plots and between the 2.5 and 20 t/a plots, although no significant difference was observed between the control and any sludge-treated plots. There was no significant effect observed for August 29 or October 21, 1986, or for any 1987 samples as a result of sludge applications. One can conclude that the 1986 alum sludge application had no impact on the organic matter content of soybean plots.

Moisture Content

As indicated in table 7, on September 4, 1987, the percent of moisture content in soils in the 20 t/a soybean plots was significantly higher than that in either the 2.5 t/a or 10 t/a plots. However, the soil

Parameters	Alum sludge	Corn plots	Soybean plots	GPSD* sewage sludge
Total solids, %	70.3	79.5	80.1	63.6
Organic matter, %	14.4	5.3	7.0	10.5 $(VS)^{\dagger}$
Moisture content, %	29.7	20.5	19.9	
Bulk density, g/cc [‡]	1.97	2.01	2.06	
pH	8.08	5.37	5.39	7.8
Soil acidity, meq/100 g		0.22	0.11	
Calcium carbonate equivalent (CCE), %	12.5	0	0	
Cation exchange capacity (CEC), meq/100 g	17.8	13.9	14.0	
Ammonia-nitrogen (NH ₃ -N), mg/kg	297	229	157	500
Nitrate-nitrogen (NO ₃ -N), mg/kg	15.1	8.9	4.5	200
Total Kjeldahl-nitrogen, mg/kg	4423	2262	1642	6800
Total nitrogen, mg/kg	4735	2500	1804	7000
Citric acid soluble phosphorus, mg/kg	3543.8			
Bray P-1, mg/kg	3.6	21	20	
Total phosphorus, mg/kg	3544	698	584	27,900 (P ₂ O ₅)
Potassium (K), %	0.104	0.058	0.070	0.37 (K ₂ O)
Aluminum (A1), total, %	2.78	0.99	1.12	2.35
Boron, mg/kg	0.7	0.5	0.3	
Cadmium (Cd), mg/kg	1.9	<1.0	<1.0	11
Calcium (Ca), %	4.936	0.313	0.283	
Chromium (Cr), mg/kg	53	15	17	220
Copper (Cu), mg/kg	35	10	13	469
Iron (Fe), total, %	2.08	1.55	1.18	0.24
Lead (Pb), mg/kg	62	16	11	129
Magnesium (Mg), %	0.759	0.170	0.245	
Manganese (Mn), mg/kg	830	520	680	518
Nickel (Ni), mg/kg	60	26	35	62
Zinc (Zn), mg/kg	160	38	43	310
Particle size distribution, %				
Sand		60.4	2.3	1.3
Silt		23.0	76.9	68.1
Clay		16.6	20.8	30.6

Table 4. Characteristics of Alum Sludge and Test Plot SoilsPrior to Sludge Application, April 22, 1986

*GPSD = Greater Peoria Sanitary District (data from Garcia et al., 1981)

^{\dagger} VS = volatile solids, %

* Samples were inadvertently compacted

Table 5. Effect of Alum Sludge Application
on Total Solids (%) in Soils

Corn plots									
Rate. 1986						1987			
t/a	4/24	6/13	8/13	10/21	4/28	6/26	8/21	10/15	
0	81.0	79.9	77.9	77.0	79.7	82.5	79.9	81.3	
2.5	80.5	79.9	77.9	76.9	79.6	83.1	80.4	81.6	
10	80.6	80.4	77.9	77.0	80.7	83.0	81.5	82.9	
20	79.7	79.3	77.0	76.0	80.9	83.5	81.4	82.8	
LSD 10%	NS	NS	NS	NS	NS	NS	NS	NS	
Soybean p	lots								
Rate,		19	986			19	987		
t/a	5/21	7/18	8/29	10/21	4/28	7/17	9/4	10/15	
0	79.4	81.5	80.0	79.5	78.9	83.8	80.3	80.7	
2.5	79.9	81.0	79.9	79.1	78.7	83.5	81.2	80.7	
10	80.1	81.8	81.7	80.7	78.6	83.3	81.4	81.1	
20	80.1	82.2	81.2	80.8	78.2	82.5	79.3	79.9	
LSD 10%	NS	NS	NS	NS	NS	NS	1.4	NS	

Table 6. Effect of Alum Sludge Applicationon Organic Matter (%) in Soils

Corn plots									
Rate, 1986					1987				
t/a	4/24	6/13	8/13	10/21	4/28	6/26	8/21	10/15	
0	6.4	6.2	6.3	6.7	4.8	5.1	5.1	5.3	
2.5	6.8	6.6	6.9	6.8	5.3	5.8	5.5	5.9	
10	6.6	6.5	6.8	6.6	3.8	4.3	5.0	4.2	
20	6.9	8.0	7.1	7.1	4.0	4.1	3.9	4.2	
LSD 10%	NS	NS	NS	NS	NS	NS	NS	NS	
Soybean p	lots								
Rate,		19	986			19	987		
t/a	5/21	7/18	8/29	10/21	4/28	7/17	9/4	10/15	
0	5.8	5.2	5.2	5.4	6.4	6.9	6.5	6.4	
2.5	5.3	6.3	5.8	5.8	6.8	7.1	6.7	6.8	
10	3.7	4.2	4.2	4.3	6.6	6.9	6.7	6.4	
20	4.0	3.7	4.2	4.4	7.0	7.2	7.3	6.9	
LSD 10%	1.0	1.6	NS	NS	NS	NS	NS	NS	

Table 7. Effect of Alum Sludge Application on Moisture Content (%) in Soils

Rate,		19	986			1	987	
t/a	4/24	6/13	8/13	10/21	4/28	6/26	8/21	10/15
0	19.0	20.1	22.1	23.0	20.3	17.4	20.1	18.7
2.5	19.5	20.1	22.1	23.1	20.4	16.9	19.6	18.4
10	19.4	19.6	22.1	23.0	19.3	17.0	18.5	17.1
20	20.3	20.7	23.0	24.0	19.1	16.5	18.6	17.2
LSD10%	NS	NS	NS	NS	NS	NS	NS	NS
Soybean p	lots							
Rate,		19	86			1	987	
t/a	5/21	7/18	8/29	10/21	4/28	7/17	9/4	10/15
0	20.6	18.5	20.0	20.5	21.1	16.2	19.7	19.3
2.5	20.1	19.0	20.1	20.9	21.3	16.5	18.8	19.2
10	19.9	18.2	18.3	19.3	21.4	16.7	18.6	18.9
20	19.9	17.8	18.8	19.2	21.8	17.5	20.7	20.1
LSD10%	NS	NS	NS	NS	NS	NS	1.4	NS

Note: LSD = *least significant difference; NS* = *no significant difference*

moisture content in the control plots was not significantly different from that in any of the sludge application plots.

For the other samples, table 7 suggests that alum sludge application has no effect on the percent moisture in soils for growing either corn or soybeans. Nevertheless, Bugbee and Frink (1985) reported that the media aeration and moisture-holding capacity of potting soil were significantly improved by the addition of alum sludge.

Bulk Density

Corn plots

Some statistical differences were observed in bulk densities (table 8). In the corn plots, on October 21, 1986, bulk density in the 10 t/a plots was significantly greater than that in the control plots; also, on August 21, 1987, bulk density in the 2.5 t/a plots was significantly less than that in the control, 10 t/a, and 20 t/a plots.

For the soybean plots, on July 18, 1986, bulk density in the 10 t/a plots was significantly higher than that in the soybean control plots; also bulk density in both the 10 t/a and 20 t/a plots was significantly greater than that in the 2.5 t/a plots. On July 17, 1987, in the soybean plots, bulk density in the

12

control and 20 t/a plots was significantly greater than that in the 2.5 t/a plots.

The above results indicate that the differences in bulk densities were inconsistent and occurred once each year for each crop. It cannot be concluded that alum application has any impact on soil bulk density. Similarly, Bugbee and Frink (1985) reported that bulk density was not different among different alum sludge applications to potting soil.

pН

Since the average value of the pH is meaningless, the pH values obtained were not statistically evaluated. The median pH values are presented in table 9. Inspection of Appendix C5 shows that overall pH ranged from 4.86 to 7.63. In general, soil pH values increased with higher sludge application rates because of the higher alum sludge pH. This is a beneficial effect of sludge application.

Acidity

Table 10 indicates that there was no impact on soil acidity in the two years after 1986 alum sludge application.

Table 8. Effect of Alum Sludge Application
on Bulk Density (g/cc) in Soils

Rate,		19	86			19	987	
t/a	4/24*	6/13	8/13	10/21	4/28	6/26	8/21	10/15
0	2.06	1.52	1.34	1.22	1.40	1.52	1.43	1.48
2.5	2.03	1.64	1.23	1.25	1.41	1.22	1.21	1.34
10	2.06	1.67	1.30	1.32	1.51	1.47	1.46	1.40
20	2.05	1.69	1.26	1.16	1.50	1.50	1.56	1.44
LSD 10%	NS	NS	NS	0.08	NS	NS	0.16	NS
Soybean p	lots							
Rate,		19	86			19	987	
t∕a	5/21*	7/18	8/29	10/21	4/28	7/17	9/4	10/15
0	1.81	1.50	1.43	1.37	1.48	1.31	1.25	1.26
2.5	1.89	1.38	1.42	1.41	1.42	1.20	1.34	1.31
10	1.92	1.75	1.49	1.48	1.41	1.30	1.33	1.34
20	1.95	1.69	1.44	1.44	1.31	1.39	1.29	1.25
LSD 10%	NS	0.24	NS	NS	NS	1.1	NS	NS

*Samples collected on 4/24/86 and 5/21/86 were inadvertently compacted.

Note: LSD = least significant difference; NS = no significant difference

Corn plots

Table 9. Effect of Alum Sludge Applicationon pH (median) in Soils

7							
	19	86			19	987	
4/24	6/13	8/13	10/21	4/28	6/26	8/21	10/15
5.07	5.21	5.17	5.20	5.63	5.03	5.31	5.30
5.31	5.26	5.11	5.22	5.61	5.17	6.42	5.41
5.37	5.03	5.63	5.37	6.51	5.77	6.18	6.34
5.52	5.23	5.54	5.73	6.75	6.15	6.52	6.61
olots							
	19	86			19	987	
5/21	7/18	8/29	10/21	4/28	7/17	9/4	10/15
5.30	5.35	5.26	5.52	5.05	5.09	5.20	5.00
5.64	5.67	5.75	5.85	5.17	5.06	5.38	4.99
5.82	5.81	6.25	6.15	5.41	5.40	5.55	5.33
6.10	5.99	6.63	6.36	6.00	5.82	6.03	5.58
	4/24 5.07 5.31 5.37 5.52 blots 5/21 5.30 5.64 5.82 6.10	5 = 19 $4/24 = 6/13$ $5.07 = 5.21$ $5.31 = 5.26$ $5.37 = 5.03$ $5.52 = 5.23$ $5.52 = 5.23$ $5.64 = 5.67$ $5.82 = 5.81$ $6.10 = 5.99$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	S = 1986 $4/24 = 6/13 = 8/13 = 10/21$ $5.07 = 5.21 = 5.17 = 5.20$ $5.31 = 5.26 = 5.11 = 5.22$ $5.37 = 5.03 = 5.63 = 5.37$ $5.52 = 5.23 = 5.54 = 5.73$ $Solots = 1986$ $5/21 = 7/18 = 8/29 = 10/21$ $5.30 = 5.35 = 5.26 = 5.52$ $5.64 = 5.67 = 5.75 = 5.85$ $5.82 = 5.81 = 6.25 = 6.15$ $6.10 = 5.99 = 6.63 = 6.36$	$S = \frac{1986}{4/24} = \frac{6/13}{6/13} = \frac{8/13}{10/21} = \frac{4/28}{5.07} = \frac{5.21}{5.17} = \frac{5.20}{5.20} = \frac{5.63}{5.31} = \frac{5.26}{5.22} = \frac{5.11}{5.22} = \frac{5.61}{5.37} = \frac{5.63}{5.52} = \frac{5.23}{5.54} = \frac{5.73}{5.73} = \frac{6.51}{6.75} = \frac{5/21}{7/18} = \frac{7/18}{8/29} = \frac{10/21}{10/21} = \frac{4/28}{5.30} = \frac{5.26}{5.52} = \frac{5.52}{5.05} = \frac{5.64}{5.67} = \frac{5.75}{5.85} = \frac{5.17}{5.82} = \frac{5.81}{5.81} = \frac{6.25}{6.15} = \frac{6.41}{6.10} = \frac{5.99}{5.99} = \frac{6.63}{6.63} = \frac{6.36}{6.36} = \frac{6.00}{5.00}$	S = 1986 = 198	S = 1986 = 1987 $4/24 = 6/13 = 8/13 = 10/21 = 4/28 = 6/26 = 8/21$ $5.07 = 5.21 = 5.17 = 5.20 = 5.63 = 5.03 = 5.31$ $5.31 = 5.26 = 5.11 = 5.22 = 5.61 = 5.17 = 6.42$ $5.37 = 5.03 = 5.63 = 5.37 = 6.51 = 5.77 = 6.18$ $5.52 = 5.23 = 5.54 = 5.73 = 6.75 = 6.15 = 6.52$ where $1986 = 1987$ $5/21 = 7/18 = 8/29 = 10/21 = 4/28 = 7/17 = 9/4$ $5.30 = 5.35 = 5.26 = 5.52 = 5.05 = 5.09 = 5.20$ $5.64 = 5.67 = 5.75 = 5.85 = 5.17 = 5.06 = 5.38$ $5.82 = 5.81 = 6.25 = 6.15 = 5.41 = 5.40 = 5.55$ $6.10 = 5.99 = 6.63 = 6.36 = 6.00 = 5.82 = 6.03$

Note: The pH values obtained were not statistically evaluated.

Rate,		19	86			19	987	
t/a	4/24	6/13	8/13	10/21	4/28	6/26	8/21	10/15
0	0.26	0.33	0.35	0.39	1.27	1.57	2.00	1.57
2.5	0.27	0.28	0.27	0.33	0.40	0.80	1.00	1.10
10	0.25	0.26	0.28	0.21	0.23	0.77	0.63	0.63
20	0.19	0.30	0.18	0.16	0.27	0.23	0.40	0.63
LSD 10%	NS	NS	NS	NS	NS	NS	NS	NS
Soybean pl	ots							
Rate,		19	86			19	87	
t/a	5/21	7/18	8/29	10/21	4/28	7/17	9/4	10/15
0	0.33	0.29	0.36	0.36	0.22	0.26	0.16	0.24
2.5	0.13	0.17	0.15	0.10	0.14	0.10	0.19	0.12
10	0.17	0.14	0.14	0.11	0.10	0.12	0.07	0.20
20	0.17	0.13	0.14	0.10	0.67	0.09	0.09	0.06
LSD 10%	NS	NS	NS	NS	NS	NS	NS	NS

Table 10. Effect of Alum Sludge Application
on Acidity (meq/100 g) in Soils

Note: LSD = *least significant difference; NS* = *no significant difference*

Ammonia-Nitrogen

Corn plots

Inspection of table 11 shows that in the soybean plots, on August 29, 1986, ammonia-nitrogen concentrations in the 2.5 t/a plots were significantly greater than those in either the 10 or 20 t/a plots. On April 28, 1987, ammonia-nitrogen concentrations in the three sludge-treated plots were found to be higher than that in the soybean control plots. In fact, the alum sludge application had a positive effect in increasing ammonia-nitrogen content.

No effect was observed for sludge application in the corn plots for the two years. In general, one can conclude that alum sludge application did not affect ammonia-nitrogen in soil.

Nitrate-Nitrogen

Table 12 shows that on August 13, 1986, the nitrate-nitrogen in both the 10 and 20 t/a corn plots was significantly less than that in the control plots. In contrast, on October 21, 1986, the nitrate-nitrogen in the 10 t/a corn plots was significantly higher than that in the control plots. On October 15, 1987, the nitrate-nitrogen in the 2.5 t/a corn plots was greater than that in the 0, 10, and 20 t/a plots. The observed differences in nitrate-nitrogen were not consistent.

In the soybean plots, sludge application had no effect except on two occasions (table 12). On July 17, 1987, nitrate-nitrogen in both the 10 and 20 t/a plots was significantly greater than that in the control plots. On September 4, 1987, nitrate-nitrogen in the 0, 10, and 20 t/a plots was greater than that in the 2.5 t/a plots. Overall, one can still conclude that nitrate-nitrogen was not changed by alum sludge application for either crop.

Kjeldahl- and Total Nitrogen

It can be seen from tables 13 and 14 that on August 21, 1987, Kjeldahl-nitrogen and total nitrogen were significantly higher in the 2.5 t/a plots than in the 10 and 20 t/a plots, with no difference between treatment and control plots.

With the exception of August 21, 1987, no difference in Kjeldahl-nitrogen or total nitrogen was found during the two-year study. It is concluded that alum sludge application has no effect on Kjeldahl-nitrogen or total nitrogen in soil.

Table 11. Effect of Alum Sludge Application
on Ammonia-Nitrogen (mg/kg) in Soils

Corn plots								
Rate,		19	86		198	37		
tla	4/24	6/13	8/13	10/21	4/28	6/26	8/21	10/15
0	188	164	172	152	178	155	130	126
2.5	261	160	190	162	163	202	160	156
10	274	171	190	160	124	112	96	91
20	201	183	197	184	107	115	100	86
LSD 10%	NS	NS	NS	NS	NS	NS	NS	NS
Soybean pl	lots							
Rate,		19	86			198	37	
t/a	5/21	7/18	8/29	10/21	4/28	7/17	9/4	10/15
0	107	113	105	115	138	278	194	201
2.5	122	168	122	141	158	254	215	212
10	65	91	72	81	167	266	228	197
20	72	68	72	72	164	273	221	224
LSD 10%	NS	NS	37	NS	16	NS	NS	NS

Table 12. Effect of Alum Sludge Application
on Nitrate-Nitrogen (mg/kg) in Soils

Corn plots									
Rate,	Rate, 1986					1987			
t∕a	4/24	6/13	8/13	10/21	4/28	6/26	8/21	10/15	
0	23.6	19.5	16.8	4.9	9.3	13.7	9.5	3.2	
2.5	38.0	16.9	10.7	5.1	10.6	31.2	11.7	6.4	
10	43.2	20.8	8.3	6.5	13.2	18.8	9.2	3.2	
20	30.7	20.2	8.6	4.7	13.7	17.6	9.1	3.9	
LSD 10%	NS	NS	8.2	1.2	NS	NS	NS	2.1	
Soybean pl	lots								
Rate,		19	986			19	87		
t/a	5/21	7/18	8/29	10/21	4/28	7/17	9/4	10/15	
0	3.0	3.0	2.3	3.2	6.3	5.7	6.8	6.5	
2.5	2.4	3.5	3.0	3.7	5.4	6.4	5.0	5.6	
10	2.0	2.0	2.7	3.7	5.6	7.3	7.3	5.9	
20	1.9	2.6	2.7	3.5	5.7	6.9	6.7	5.6	
LSD 10%	NS	NS	NS	NS	NS	0.9	1.1	NS	

Table 13. Effect of Alum Sludge Applicationon Total Kjeldahl-Nitrogen (mg/kg) in Soils

Corn plots								
Rate,		19	86			19	987	
t/a	4/24	6/13	8/13	10/21	4/28	6/26	8/21	10/15
0	2240	2230	2260	2140	1590	1630	1270	1220
2.5	2440	2150	2340	2170	1350	1920	1550	1400
10	2370	2230	2210	2200	1010	1200	800	900
20	2340	2400	2370	2330	1070	1350	770	890
LSD10%	NS	NS	NS	NS	NS	NS	540	NS
Soybean pl	ots							
Rate,		19	86			19	987	
t/a	5/21	7/18	8/29	10/21	4/28	7/17	9/4	10/15
0	1240	1530	1220	1460	2060	2400	1970	1960
2.5	1490	1930	1550	1640	2270	2440	2080	2040
10	1030	960	900	970	2030	2340	2140	1920
20	1050	1090	1000	1060	2200	2570	2200	2050
LSD10%	NS	NS	NS	NS	NS	NS	NS	NS

Table 14. Effect of Alum Sludge Applicationon Total Nitrogen (mg/kg) in Soils

Corn plots								
Rate,		19	86			19	987	
t/a	4/24	6/13	8/13	10/21	4/28	6/26	8/21	10/15
0	2260	2250	2280	2140	1600	1640	1280	1220
2.5	2480	2170	2350	2180	1360	1950	1560	1410
10	2410	2250	2220	2200	1030	1230	810	910
20	2370	2420	2380	2330	1080	1370	770	890
LSD 10%	NS	NS	NS	NS	NS	NS	1110	NS
Soybean pl	ots							
Rate,		19	86			19	987	
t/a	5/21	7/18	8/29	10/21	4/28	7/17	9/4	10/15
0	1240	1540	1230	1460	2070	2410	1980	2010
2.5	1490	1940	1550	1340	2270	2450	2090	2050
10	1030	970	900	980	2030	2380	2150	1930
20	1050	1090	1010	1060	2210	2580	2210	2060
LSD 10%	NS	NS	NS	NS	NS	NS	NS	NS

Cation Exchange Capacity

On August 13, 1986, average CEC in the 10 t/a plots was significantly less than that in the control, 2.5, and 20 t/a plots (table 15). Aside from this, table 15 shows that there was no difference in CEC between the treatment and the control plots. CEC was not affected by sludge application.

Bray P-1

In the corn plots, on both June 13 and October 21, 1986, Bray P-1 in both the 10 and 20 t/a plots was significantly higher than that in the control and 2.5 t/a plots (table 16). There is a beneficial effect of increased plant-available Bray P-1 with alum sludge application as a result of the high total phosphorus in the sludge (table 4).

Similarly, on September 4, 1987, in both the 10 and 20 t/a soybean plots, Bray P-1 was statistically higher than that in the control or 2.5 t/a plots (table 16). Thus a few incidents of increased Bray P-1 in soil after high alum sludge applications were documented; however, 13 of 16 comparisons showed no significant differences in Bray P-1 resulting from sludge application. Thus it can be concluded that sludge application has no effect on Bray P-1.

In contrast, in their potting soil amendment study, Bugbee and Frink (1985) claimed that "phosphorus deficiencies caused by the addition of dried alum sludge cannot likely be overcome by doubling the initial phosphorus fertilization." Grabarek and Krug (1987) reported that alum sludge bound phosphorus, making it unavailable or slowly available to maple and hemlock plants.

Total Phosphorus

As shown in table 17, for the June 13, 1986, soil tests, the average total phosphorus in the 20 t/a corn plots was significantly greater than that in the control, 2.5, and 10 t/a plots. On October 21, 1986, total phosphorus in the 20 t/a soybean plots was significantly less than that in the control and 2.5 t/a plots. On September 4, 1987, total phosphorus in the 20 t/a soybean plots was significantly greater than that in the control, 2.5 t/a, or 10 t/a soybean plots. The differences were inconsistent. It can be concluded that total phosphorus levels were not affected by the sludge amendments.

Corn pions	i							
Rate,		19	986			19	987	
t/a	4/24	6/13	8/13	10/21	4/28	6/26	8/21	10/15
0	14.4	20.2	18.7	18.4	18.3	17.6	22.8	23.9
2.5	14.4	20.1	20.4	17.7	18.3	18.2	20.3	27.2
10	13.3	19.8	16.6	17.1	17.0	19.8	22.6	23.4
20	13.3	21.6	19.7	19.1	17.5	20.6	23.8	29.8
LSD 10%	NS	NS	2.1	NS	NS	NS	NS	NS
Soybean p	lots							
Rate,		19	986			19	987	
t/a	5/21	7/18	8/29	10/21	4/28	7/17	9/4	10/15
0	15.2	18.9	18.6	17.3	17.2	23.1	25.0	23.1
2.5	15.5	20.0	18.5	17.7	18.7	21.7	19.2	22.7
10	14.1	17.7	17.8	16.0	18.6	20.1	21.6	21.3
20	15.1	18.2	17.6	17.0	19.9	24.1	21.1	28.2
LSD 10%	NS	NS	NS	NS	NS	NS	NS	NS

 Table 15. Effect of Alum Sludge Application

 on Cation Exchange Capacity (meq/100 g) in Soils

Table 16. Effect of Alum Sludge Application
on Bray P-1 (mg/kg) in Soils

Corn plots									
Rate,		19	986		1987				
t/a	4/24	6/13	8/13	10/21	4/28	6/26	8/21	10/15	
0	10	13	13	13	11	13	12	12	
2.5	12	11	14	14	12	18	12	15	
10	15	17	17	16	10	15	12	12	
20	13	19	18	20	13	17	14	16	
LSD10%	NS	4	NS	3	NS	NS	NS	NS	
Soybean p	lots								
Rate,		19	986			198	87		
t/a	5/21	7/18	8/29	10/21	4/28	7/17	9/4	10/15	
0	16	26	23	19	9.4	10.5	11.2	11.0	
2.5	18	34	20	25	8.9	14.0	10.3	12.7	
10	18	25	22	22	11.7	13.3	15.3	15.7	
20	33	18	25	27	13.4	17.3	18.7	16.3	
LSD 10%	NS	NS	NS	NS	NS	NS	3.6	NS	

Table 17. Effect of Alum Sludge Application
on Total Phosphorus (mg/kg) in Soils

Corn plots								
Rate,		19	86			19	87	
t/a	4/24	6/13	8/13	10/21	4/28	6/26	8/21	10/15
0	566	661	635	641	514	537	690	555
2.5	497	593	593	524	591	590	671	597
10	495	616	563	569	500	550	595	521
20	643	805	703	706	508	506	588	506
LSD 10%	NS	103	NS	NS	NS	NS	NS	NS
Soybean p	lots							
Rate,		19	86			19	87	
t/a	5/21	7/18	8/29	10/21	4/28	7/17	9/4	10/15
0	547	608	507	523	635	660	609	733
2.5	656	640	593	599	532	551	589	654
10	544	578	527	452	569	661	631	695
20	508	506	472	416	648	691	749	705
LSD 10%	NS	NS	NS	105	NS	NS	98	NS

One of the major concerns in the agricultural use of water plant sludge is that coagulation sludges contain high concentrations of aluminum and iron hydroxides, which strongly fix phosphorus and may result in phosphorus deficiencies in crops. The equilibrium phosphorus concentration (EPC) is defined as the amount of phosphorus immediately available to the plant roots. An EPC of 50 micrograms of phosphorus per liter (ug P/L) is typically considered favorable for plant growth.

Elliott et al. (1989) found that with 5 percent sludge addition to a silt loam and sand, the EPC reduced to less than 10 ug P/L from 150-250 ug P/L. A sludge addition of 1 to 2 percent caused the EPC levels to fall below 50 ug P/L. They recommended that 10 to 20 dry t/a be an upper limit on soil loading for crop production.

Potassium

On August 21, 1987, the potassium in the 2.5 and 20 t/a corn plots was significantly higher than that in the control and 10 t/a plots (table 18). Also on May 21, 1986, potassium in the 2.5 t/a soybean plots was significantly greater than that in the plots that had

the other three application rates. With these two exceptions, the average potassium levels in soils were not affected by sludge application for either crop.

Total Aluminum

A difference in total aluminum concentrations was observed in the corn plots on three sampling dates (table 19). On April 24, 1986, the average soil aluminum in the 2.5 t/a corn plots was significantly higher than that in the control plots. For the August 13, 1986, samples, aluminum in the 2.5 t/a corn plots was statistically less than that in the control and 20 t/a plots. On October 21, 1986, each of the three types of sludge-amended corn plots had higher aluminum concentrations than the control corn plots. There were no differences in aluminum levels in the corn plots on June 13, 1986, or in the 1987 samples. Thus the differences in aluminum levels in the corn plots were inconsistent.

In the soybean plots, differences in aluminum were not significant for any of the eight sampling dates (table 19). It may be concluded that alum sludge application had no effect on soil aluminum concentrations.

			on P	otassium (mg	g/kg) in Solis			
Corn plots								
Rate,		19	86			190	87	
t/a	4/24	6/13	8/13	10/21	4/28	6/26	8/21	10/15
0	760	730	530	650	1000	1070	690	750
2.5	800	770	520	640	590	1000	760	800
10	780	800	520	650	860	840	690	800
20	820	690	560	650	1000	1160	740	750
LSD 10%	NS	NS	NS	NS	NS	NS	30	NS
Soybean p	lots							
Rate,		19	86			198	87	
t/a	5/21	7/18	8/29	10/21	4/28	7/17	9/4	10/15
0	730	750	720	740	800	810	670	650
2.5	980	690	620	830	730	870	690	650
10	760	700	680	610	680	940	670	650
20	820	700	630	730	730	890	710	650
LSD 10%	110	NS	NS	NS	NS	NS	NS	NS

Table 18. Effect of Alum Sludge Application
on Potassium (mg/kg) in Soils

Note: LSD = *least significant difference; NS* = *no significant difference*

Rate,		19	986			19	987	
t/a	4/24	6/13	8/13	10/21	4/28	6/26	8/21	10/15
0	0.93	1.02	1.06	0.97	1.00	1.51	1.13	1.15
2.5	1.04	1.06	0.97	1.05	1.04	1.43	1.12	1.21
10	1.00	1.01	1.01	1.04	0.88	1.26	1.09	1.15
20	0.97	1.08	1.08	1.05	0.95	1.60	1.13	1.16
LSD 10%	0.07	N S	0.06	0.04	NS	NS	NS	NS
Soybean pl	ots							
Rate,		19	86			19	987	
t/a	5/21	7/18	8/29	10/21	4/28	7/17	9/4	10/15
0	0.98	1.03	1.10	1.11	0.89	1.02	1.02	0.96
2.5	1.00	1.05	1.07	1.09	0.90	1.12	1.05	1.00
10	0.88	1.03	1.04	1.02	0.92	1.19	1.07	1.09
20	1.02	1.01	1.01	1.09	0.88	1.20	1.13	1.03
LSD 10%	NS	NS	NS	NS	NS	NS	NS	NS

Table 19. Effect of Alum Sludge Application
on Total Aluminum (%) in Soils

Note: LSD = *least significant difference; NS* = *no significant difference*

Boron

Corn plots

Boron levels in the 10 t/a soybean plots were significantly greater than those in the control plots for the September 4, 1987, tests (table 20). On October 15, 1987, average boron levels were significantly higher in all plots to which sludge had been added than in the control plots. There was no difference for the other six sampling dates for soybean plots, and no difference for any of the sampling dates for corn plot samples.

Cadmium

Statistical analyses were not performed for cadmium in all soil samples (averages were not determined) because the cadmium levels in many samples were below detectable levels. The average cadmium concentrations for some sampling dates are listed in table 21.

Calcium, Chromium, and Copper

As shown in tables 22 through 24, calcium, chromium, and copper concentrations in soils were not affected by alum sludge applications to either corn or soybean plots. Chromium analyses inadvertently were not performed for any 1987 soil samples.

Total Iron

It can be seen from table 25 that on August 13, 1986, total iron levels in all sludge-amended corn plots were significantly lower than in the control corn plots. However, there was no significant difference in iron levels between the control and treated plots for the other seven corn sampling dates or for any of the soybean tests.

Lead

As table 26 indicates, lead concentrations in corn plots and in soybean plots (except on July 18, 1986) showed no significant difference with sludge applications. On July 18, 1986, lead levels in the 2.5 t/a soybean plots were significantly greater than those in the control plots, and lead levels in the 20 t/a soybean plots were significantly lower than those in the control, 2.5 t/a, and 10 t/a plots.

Table 20.	Effect of Alum	Sludge Application
	on Boron (mg/k	g) in Soils

Corn plots								
Rate,		19	986			19	987	
tla	4/24	6/13	8/13	10/21	4/28	6/26	8/21	10/15
0	0.32	0.41	0.35	0.44	0.43	0.20	0.24	0.31
2.5	0.27	0.48	0.39	0.36	0.46	0.20	0.25	0.33
10	0.29	0.49	0.41	0.36	0.35	0.20	0.22	0.34
20	0.29	0.42	0.42	0.37	0.31	0.27	0.22	0.29
LSD 10%	NS	NS	NS	NS	NS	NS	NS	NS
Soybean pl	lots							
Rate,		1	986			19	987	
tla	5/21	7/18	8/29	10/21	4/28	7/17	9/4	10/15
0	0.43	0.37	0.33	0.30	0.87	0.30	0.36	0.32
2.5	0.30	0.37	0.30	0.23	0.86	0.32	0.45	0.38
10	0.33	0.27	0.33	0.17	0.65	0.29	0.53	0.42
20	0.30	0.23	0.23	0.10	0.54	0.29	0.45	0.39
LSD 10%	NS	NS	NS	NS	NS	NS	0.10	0.05

Table 21. Effect of Alum Sludge Application
on Cadmium (mg/kg) in Soils

Corn plot	ts							
Rate,		1	986			1	987	
t/a	4/24	6/13	8/13	10/21	4/28	6/26	8/21	10/15
0	0.68	-	-	0.87	0.37	-	0.48	0.42
2.5	-	-	1.30	0.88	0.49	0.40	0.60	0.56
10	-	-	-	-	0.82	0.55	0.84	0.59
20	-	-	-	1.07	0.66	0.56	0.77	0.79
LSD 10%					0.26		NS	NS
Soybean	plots							
Rate,		1	986			1	987	
t/a	5/21	7/18	8/29	10/21	4/28	7/17	9/4	10/15
0	-	0.96	1.48	0.08	0.89	0.33	0.36	0.56
2.5	0.55	-	1.52	-	0.73	0.57	0.72	0.69
10	0.46	-	1.10	-	0.95	0.27	0.54	0.73
20	_	-	1.23	-	0.80	0.13	0.42	0.66
LSD 10%	i				NS	0.19	NS	NS

Rate.		i	1986			1	987	
t/a	4/24	6/13	8/13	10/21	4/28	6/26	8/21	10/15
0	0.362	0.476	0.288	0.315	0.267	0.294	0.260	0.264
2.5	0.287	0.306	1.044	0.272	0.502	0.386	0.321	0.338
10	0.270	0.270	0.292	0.265	0.954	1.136	0.772	0.875
20	0.377	0.340	0.334	0.352	0.512	0.413	0.417	0.397
LSD 10%	5 NS	NS	NS	NS	NS	NS	NS	NS
Soybean _I	plots							
Rate,		1	986			1	987	
t/a	5/21	7/18	8/29	10/21	4/28	7/17	9/4	10/15
0	0.227	0.223	0.274	0.259	0.465	0.458	0.355	0.339
2.5	0.475	0.310	0.381	0.422	0.419	0.375	0.242	0.281
10	1.170	0.764	0.248	0.895	0.406	0.382	0.292	0.331
20	0.360	0.432	0.368	0.384	0.472	0.505	0.383	0.360
LSD 10%	NS							

Table 22. Effect of Alum Sludge Application
on Calcium (%) in Soils

Table 23. Effect of Alum Sludge Application
on Chromium (mg/kg) in Soils

Corn plots								
Rate,		19	986			1	987	
t/a	4/24	6/13	8/13	10/21	4/28	6/26	8/21	10/15
0	15	17	17	15		Did	not analyze	e
2.5	17	17	17	16				
10	17	16	15	16				
20	16	17	16	14				
LSD 10%	NS	NS	NS	NS				
Soybean p	lots							
Rate.		19	986			1	987	
t/a	5/21	7/18	8/29	10/21	4/28	7/17	9/4	10/15
0	17	17	18	17		Did	not analyze	e
2.5	18	17	17	15				
10	18	19	18	16				
20	17	18	18	17				
LSD 10%	NS	NS	NS	NS				

Note: LSD = *least significant difference; NS* = *no significant difference*

Corn plots

Table 24. Effect of Alum Sludge Application
on Copper (mg/kg) in Soils

Corn plots								
Rate,		19	986		1987			
t/a	4/24	6/13	8/13	10/21	4/28	6/26	8/21	10/15
0	12	13	23	12	15	23	18	17
2.5	14	12	16	13	14	19	17	16
10	13	11	14	12	15	22	19	18
20	11	12	15	11	15	24	19	19
LSD 10%	NS	NS	NS	NS	NS	NS	NS	NS
Soybean p	lots							
Rate,		19	986			19	987	
t/a	5/21	7/18	8/29	10/21	4/28	7/17	9/4	10/15
0	14	16	15	14	13	19	15	14
2.5	14	14	14	13	13	19	16	15
10	14	17	14	14	13	23	15	15
20	16	15	14	14	12	21	15	15
LSD 10%	NS	NS	NS	NS	NS	NS	NS	NS

Table 25. Effect of Alum Sludge Application
on Total Iron (%) in Soils

Corn plots								
Rate,		19	986			19	987	
t/a	4/24	6/13	8/13	10/21	4/28	6/26	8/21	10/15
0	1.08	1.23	1.73	1.18	1.82	1.97	1.76	1.89
2.5	1.18	1.18	1.50	1.29	1.69	1.79	1.62	1.80
10	1.10	1.17	1.46	1.28	1.65	1.73	1.76	1.89
20	1.03	1.17	1.47	1.09	1.75	2.19	1.85	1.58
LSD 10%	NS	NS	0.13	NS	NS	NS	NS	NS
Soybean p	lots							
Rate,		19	986			19	987	
t/a	5/21	7/18	8/29	10/21	4/28	7/17	9/4	10/15
0	1.36	1.45	1.79	1.65	1.57	1.71	1.53	1.50
2.5	1.40	1.30	1.64	1.42	1.55	1.61	1.57	1.33
10	1.36	1.58	1.70	1.66	1.58	1.78	1.39	1.51
20	1.44	1.58	1.54	1.80	1.46	1.71	1.44	1.36
LSD 10%	NS	NS	NS	NS	NS	NS	NS	NS

Rate,		19	986			19	987	
t/a	4/24	6/13	8/13	10/21	4/28	6/26	8/21	10/15
0	17	14	12	20	17	22	15	18
2.5	17	18	13	19	15	19	17	17
10	19	16	15	17	18	19	16	19
20	17	17	16	19	16	19	17	18
LSD 10%	NS	NS	NS	NS	NS	NS	NS	NS
Soybean p	olots							
Rate,		19	986			19	987	
tla	5/21	7/18	8/29	10/21	4/28	7/17	9/4	10/15
0	16	16	20	16	16	19	18	16
2.5	17	19	17	17	17	17	17	19
10	17	18	19	16	17	18	17	15
20	15	13	19	15	15	19	18	16
LSD 10%	NS	2	NS	NS	NS	NS	NS	NS

Table 26. Effect of Alum Sludge Application
on Lead (mg/kg) in Soils

Note: LSD = *least significant difference; NS* = *no significant difference*

Magnesium

Corn plots

Table 27 shows that sludge amendment had no effect on magnesium levels in the test plots except on July 17, 1987. On this date, all sludge-amended soybean plots showed significant decreases in magnesium content.

Manganese

As indicated in table 28, the manganese levels in both corn and soybean test soils generally showed no change with the application of sludge except on August 13, 1986. On that date, the average manganese concentration in the 20 t/a corn plots was significantly lower than that in the control plots.

Nickel

It can be seen from table 29 that the average nickel concentrations were not statistically different in any of the test plots for either corn or soybeans. Thus one may conclude that alum sludge application had no effect on nickel levels in the test plot soils.

Zinc

As shown in table 30, on August 13, 1986, the average zinc concentration in the corn control plots was significantly higher than that in any of the sludge-amended plots. However, in the corn plots on June 26, 1987, and in the soybean plots on July 17, 1987, zinc in the 20 t/a soils was significantly greater than that in the control, 2.5 t/a, and 10 t/a soils. On the other 13 occasions, alum sludge amendments had no effect on zinc concentrations in the test plot soils.

Particle Size Distribution

Effects of alum sludge application on particle size distribution are summarized in tables 31 through 33. It can be seen from table 31 that in the 1986 study, sludge application had no effect on the percent of sand in soils for either crop. However, on June 26, 1987, the percent of sand (12.6 percent) in the corn control plots was significantly higher than the percent in the sludge-amended plots. This was due possibly to the nonhomogeneity of the soil in the

Rate,		19	86			19	87	
t/a	4/24	6/13	8/13	10/21	4/28	6/26	8/21	10/15
0	2220	2980	1880	1940	2730	2730	2090	1870
2.5	1560	1750	9140	1660	3550	2670	1940	1900
10	1740	1650	1630	1650	5640	5510	4880	6730
20	1820	1820	1740	1730	3800	3460	2410	2480
LSD 10%	NS	NS	NS	NS	NS	NS	NS	NS
Soybean p	lots							
Rate,		19	86			19	87	
t/a	5/21	7/18	8/29	10/21	4/28	7/17	9/4	10/15
0	2230	2170	2240	2320	2520	2130	1660	1820
2.5	3320	2320	2840	2670	2060	1810	1120	1450
10	10280	6370	2190	5810	2100	1900	1230	1470
20	3050	3830	2920	2890	2000	1880	1340	1470
LSD 10%	NS	NS	NS	NS	NS	154	NS	NS

Table 27. Effect of Alum Sludge Application
on Magnesium (mg/kg) in Soils

Corn plots

Table 28. Effect of Alum Sludge Application
on Manganese (mg/kg) in Soils

Corn plots								
Rate,		19	86			19	87	
t/a	4/24	6/13	8/13	10/21	4/28	6/26	8/21	10/15
0	600	600	690	550	610	730	830	900
2.5	590	570	580	580	600	660	830	860
10	570	530	570	600	600	700	880	840
20	480	540	490	530	610	760	880	870
LSD10%	NS	NS	121	NS	NS	NS	NS	NS
Soybean p	lots							
Rate,		19	86			19	87	
t/a	5/21	7/18	8/29	10/21	4/28	7/17	9/4	10/15
0	600	610	640	640	530	770	810	850
2.5	650	630	620	610	810	620	790	700
10	580	620	600	600	570	600	780	720
20	640	610	620	640	560	600	760	660
LSD10%	NS	NS	NS	NS	NS	NS	NS	NS

Table	29.	Effect of	f Alum	Sludg	e Applicati	on
	0	on Nicke	l (mg/k	g) in S	oils	

Rate,		19	986				1987	
t/a	4/24	6/13	8/13	10/21	4/28	6/26	8/21	10/15
0	22	24	29	27	22	17	12	15
2.5	24	21	26	27	17	15	11	12
10	22	21	24	26	15	17	13	14
20	22	23	25	25	17	19	14	13
LSD 10%	NS	NS	NS	NS	NS	NS	NS	NS
Soybean p	lots							
Rate,		19	986				1987	
t/a	5/21	7/18	8/29	10/21	4/28	7/17	9/4	10/15
0	30	29	33	33	8	13	10	11
2.5	30	26	30	30	11	13	10	11
10	31	32	32	31	10	13	9	12
20	33	30	31	31	7	13	9	11
LSD10%	NS	NS	NS	NS	NS	NS	NS	NS

Table 30. Effect of Alum Sludge Application
on Zinc (mg/kg) in Soils

Corn plots									
Rate,		19	986			1987			
t/a	4/24	6/13	8/13	10/21	4/28	6/26	8/21	10/15	
0	38	39	43	40	42	57	39	46	
2.5	37	36	39	40	41	57	42	46	
10	40	37	39	40	43	55	43	48	
20	37	38	39	39	42	80	45	49	
LSD10%	NS	NS	2	NS	NS	17	NS	NS	
Soybean p	lots								
Rate,		19	986			19	987		
t/a	5/21	7/18	8/29	10/21	4/28	7/17	9/4	10/15	
0	39	41	40	43	42	51	43	44	
2.5	42	37	37	39	40	52	43	43	
10	39	43	41	42	42	56	45	48	
20	45	40	39	43	40	62	46	45	
LSD10%	NS	NS	NS	NS	NS	6	NS	NS	

Note: LSD = least significant difference; NS = no significant difference

Corn plots

Table 31. Effect of Alum Sludge Applicationon Particle Size Distribution (% Sand) in Soils

Corn plots								
Rate,		19	986		1987			
t/a	4/24	6/13	8/13	10/21	4/28	6/26	8/21	10/15
0	3.7	2.7	1.3	2.0	1.4	12.6	6.4	3.9
2.5	4.2	2.4	1.7	2.5	1.5	4.7	7.0	3.7
10	2.3	2.5	1.9	2.5	2.2	5.8	6.2	2.9
20	3.9	3.5	2.1	2.8	3.5	4.0	5.1	3.0
LSD 10%	NS	NS	NS	NS	NS	4.3	NS	NS
Soybean p	lots							
Rate,		19	986			19	987	
t/a	5/21	7/18	8/29	10/21	4/28	7/17	9/4	10/15
0	1.6	2.2	1.1	0.8	2.0	9.2	5.0	5.3
2.5	1.9	2.1	1.8	1.4	2.6	5.3	6.2	6.0
10	1.6	1.6	2.0	1.5	2.5	6.2	5.8	4.9
20	1.5	1.5	1.6	1.9	2.0	4.8	5.1	5.5
LSD 10%	NS	NS	NS	NS	0.45	NS	NS	NS

Table 32. Effect of Alum Sludge Applicationon Particle Size Distribution (% Silt) in Soils

Corn plots								
Rate,		19	986			19	987	
t/a	4/24	6/13	8/13	10/21	4/28	6/26	8/21	10/15
0	67.7	70.7	68.0	66.1	69.8	62.6	70.5	67.8
2.5	68.6	68.2	67.4	62.7	72.1	73.0	69.6	69.9
10	69.8	70.5	68.0	65.6	79.6	67.7	69.1	68.6
20	69.3	70.3	67.0	64.7	71.3	69.5	65.8	67.8
LSD 10%	NS	NS	NS	NS	NS	NS	NS	NS
Soybean p	lots							
Rate,		19	986			19	987	
t/a	5/21	7/18	8/29	10/21	4/28	7/17	9/4	10/15
0	64.8	68.3	65.5	65.2	69.1	76.2	73.8	70.1
2.5	66.9	70.2	68.2	66.5	68.7	78.0	65.4	69.5
10	67.5	70.1	66.6	72.8	68.8	76.7	72.2	71.8
20	67.3	66.3	67.6	64.6	72.5	78.5	71.0	69.2
LSD 10%	NS	NS	NS	NS	NS	NS	NS	NS

Table 33. Effect **of Alum** Sludge **Application** on Particle Size Distribution (% Clay) in Soils

Corn plots								
Rate,		19	986		1987			
t/a	4/24	6/13	8/13	10/21	4/28	6/26	8/21	10/15
0	28.6	26.5	30.8	31.9	28.8	24.7	23.1	28.3
2.5	27.2	29.3	30.9	34.8	26.4	22.2	23.3	26.3
10	27.9	27.0	30.1	31.9	18.2	26.4	24.7	28.4
20	26.8	26.2	31.0	32.5	25.2	26.6	29.1	29.2
LSD 10%	NS	NS	NS	1.8	NS	NS	NS	NS
Soybean p	lots							
Rate,		19	986			19	987	
t/a	5/21	7/18	8/29	10/21	4/28	7/17	9/4	10/15
0	33.6	29.6	33.4	33.9	28.9	14.6	21.3	24.6
2.5	31.2	27.7	30.4	32.1	28.7	16.6	28.4	24.5
10	30.9	28.3	31.4	25.7	28.7	17.2	22.0	23.2
20	31.2	32.2	30.8	33.5	25.4	16.7	23.8	25.3
LSD 10%	NS	NS	NS	NS	NS	NS	3.0	NS

Note: LSD = least significant difference; NS = no significant difference

test plots or possibly to analytical errors. On April 28, 1987, the percentage of sand in both the soybean control plots and the 20 t/a plots was lower than that in the 2.5 t/a and 10 t/a plots.

As indicated in table 32, the percent of silt in the soil in corn and soybean plots was not affected by the addition of alum sludge. Inspection of table 33 shows that on October 21, 1986, for corn plots and on September 4, 1987, for soybean plots, the percent of clay in the 2.5 t/a plots was significantly higher than that in the control, 10 t/a, or 20 t/a plots. However, no effect on percent clay was observed as a result of alum sludge application on the 14 other occasions (table 33). One may conclude that alum sludge applications on corn and soybean plots had no effect on soil particle distributions.

General Observations

In the case of both corn and soybeans, soil test levels were usually not affected by the alum sludge applications. There were several differences between the treated and the control plots between sampling dates, which were due to the inherent differences in the soil characteristics of the test plots. It is impossible to have perfect uniformity among areas when working with soils. In a few very rare instances, the soil test results were changed drastically when a lump of sludge ended up in the sample. These instances were most noticeable for the calcium and magnesium levels (tables 22 and 27), although almost no statistical differences were found.

Corn Yields and Plant Parameters

The data on corn yields and measured corn plant parameters are listed in Appendix D. The results of the statistical analyses of these data are summarized in table 34. It can be seen from this table that for the 1986 study, corn yields were found to be significantly lower in the 2.5 and 10 t/a plots than in the 0 and 20 t/a plots. The corn plant populations in the 2.5 and 10 t/a plots were less than those in the 0 and 20 t/a plots, but only the population in the 10 t/a plots was significantly lower than that in the 0 and 20 t/a plots.

The reason for the plant population difference was unclear; it was possibly related to the inherent soil characteristics. The plant populations in the plots with the highest sludge application rate were not affected by the sludge. Small differences in plant

Year of study	1	Application rate, t/a	Corn yield, bu/a	Grain <i>moisture,</i> %	Test weight, lb/bu	Population, plants /a
1986		0	221.01	15.9	54.1	25070
		2.5	210.11	16.7	54.5	24390
		10	203.65	16.7	55.0	23430
		20	222.07	16.4	55.8	25070
	LSD 10%		7.21	NS	1.0	1490
1987		0	163.14	18.4		19280
		2.5	204.97	17.8		22528
		10	137.32	17.4		14953
		20	179.08	17.8		17806
	LSD 10%		NS	0.58		NS

Table 34. Effect of Alum Sludge Application
on Corn Yields and Plant Parameters

Note: LSD = *least significant difference; NS* = *no significant difference*

populations can cause significant yield differences in plots. The variability in plant populations and yield was probably caused by poor seedbed preparation and dry soil conditions, not by residual alum sludge.

In 1987, corn yields and corn plant populations were not found to be significantly different among all the test plots (table 34). Alum sludge applied in 1986 had no effect on corn yields or plant populations the following year.

A field study by Naylor et al. (1987) also showed that yields of corn grown on sludge-treated soil were not affected by application rates up to 20 t/a. Garcia et al. (1981) grew corn on strip-mined soil amended with anaerobically digested liquid sewage sludge at a rate of 25 t/a. They observed that growing corn of good quality on strip-mined soil is almost impossible. In contrast, other corn grown in soil to which sewage sludge had been added was well developed, and the corn yield was four times as great as that of corn from untreated fields.

For the 1986 study, table 34 suggests that corn test weights in plots with 2.5 and 10 t/a application rates were not significantly different from those in control plots (0 t/a), but test weights for the 20 t/a plots were significantly higher than for the control plots. The corn test weights were not measured in 1987.

Table 34 also indicates that corn grain moisture was not significantly affected by alum sludge application in 1986. However, in the 1987 study, the corn grain moisture in the control plots was found to be significantly higher than that in all sludge-treated plots.

Soybean Yields and Plant Parameters

The raw data on soybean yields and soybean plant parameters are given in Appendix D. The statistical analyses are summarized in table 35. As shown in table 35, for both the 1986 and 1987 studies, soybean yields, soybean grain moisture, soybean plant height, and soybean plant populations were not significantly affected by alum sludge application. Some numerical differences were observed between the treatments, but they are not believed to have been caused by the sludge applications because similar variations were observed for the control plots.

Corn Grain Analysis

In 1987, the grain samples of corn and soybeans were lost. The 1986 data from 16 grain analyses for corn and soybeans are listed in Appendix E. The

Year of study	Applicatio rate, t/a	on Corn yield, bu/a	Grain moisture, %	Plant height, inches	Population, plants/a
1986	0	40.27	13.1	36.0	136490
	2.5	43.06	13.3	37.1	133000
	10	40.69	13.2	36.3	128940
	20	40.10	13.4	35.3	122550
	LSD 10%	NS	NS	NS	NS
1987	0	42.54	8.03	36.01	122500
	2.5	39.71	8.00	35.03	120200
	10	37.11	8.07	34.10	118800
	20	41.64	8.33	36.33	117600
	LSD 10%	NS	NS	NS	NS

Table 35. Effect of Alum Sludge Applicationson Soybean Yields and Plant Parameters

Note: LSD = *least significant difference; NS* = *no significant difference*

statistical analyses for grain are summarized in table 36. Inspection of table 36 shows that corn grain moisture in the 2.5 and 20 t/a plots was significantly higher than that in the 0 and 10 t/a plots. There were no significant differences in percent moisture between 0 and 10 t/a. Aluminum and cadmium levels in corn grain were not evaluated because some measurements were below the detectable limits.

The other 13 chemical parameters measured for corn grain showed no effects resulting from the alum sludge application (table 36). However, Garcia et al. (1981) reported a significant protein enhancement of 2.5 percent in the grain of corn grown in soil to which sewage sludge had been added.

Soybean Grain Analysis

Table 36 indicates that 15 chemical parameters of soybean grain examined in 1986 were unresponsive to the alum sludge applications. Aluminum was not statistically evaluated. The data show that there were no heavy metals accumulations in the corn or soybeans from the sludge application (table 36). In fact, nickel levels in soybean grain from the treated plots were lower than the levels in grain from the control plots.

One of the major issues concerning application of water treatment plant sludge is that metals poten-

tially can cause water pollution and contamination of food crops. The results of this study suggest that the uptake of metals in corn and soybean grains did not show an increase, and that there are no adverse effects of the sludge application.

Corn Plant Tissue

Fourteen chemical analyses were performed on the whole plant samples (root not included) for each crop. The results are listed in Appendices F and G. The statistical analyses of these data are summarized in table 37.

As shown in table 37, none of the 14 parameters examined in 1986 in corn whole plant tissue were affected by the addition of alum sludge. Almost every heavy metal level was generally reduced instead of increased.

Nitrogen and phosphorus content in corn whole plant tissue was not determined during the 1987 study. The other 12 chemical parameters measured, with the exception of cadmium, showed no effect from alum sludge application. In fact, cadmium concentrations in the control corn plots were higher than those in the sludge-amended plots in 1987. However, cadmium concentrations in the control plots were only significantly greater than those in the 2.5 and 10 t/a plots.

Table 36.	Effect of Sludge Applications on Chemical and Physical Characteristics							
of Corn and Soybean Grains - 1986 Study								

Sludge rate, t/a	Ν	Р	<i>K</i> %	Ca	Mg	Mn	Zn	Fe	Си	Al	Cd	Cr	Pb	Ni	Crude protein, %	Mois- ture, %
l/u			/0							mg	z/ Kg				%	70
Corn grain																
0	1.46	0.12	0.23	0.010	0.071	6.7	21	13	1.0	<10	0.10	0.27	0.33	0.17	9.12	10.95
2.5	1.45	0.11	0.23	0.011	0.074	7.3	22	13	1.3	<10	0.13	0.27	0.27	0.27	9.07	12.22
10	1.48	0.12	0.20	0.007	0.071	7.3	17	13	1.0	<10	>.1	0.20	0.33	0.13	9.23	11.05
20	1.43	0.11	0.22	0.009	0.073	7.7	15	14	1.3	<10	>.1	1.17	0.43	0.27	8.93	12.07
LSD 10%	NS	NS	NS	NS	NS	NS	NS	NS	NS			NS	NS	NS	NS	0.79
Soybean grain																
0	6.31	0.64	1.42	0.206	0.173	22	64	60	13	<10	0.23	0.27	1.4	8.3	39.28	8.62
2.5	6.29	0.65	1.43	0.202	0.181	22	64	62	12	<10	0.20	0.30	1.5	5.5	39.31	8.51
10	6.07	0.64	1.43	0.198	0.179	23	56	56	13	<10	0.23	0.30	1.4	6.1	37.94	7.88
20	6.20	0.63	1.41	0.201	0.183	23	51	57	12	<10	0.20	0.27	1.4	5.6	38.75	8.25
LSD 10%	NS	NS	NS	NS	NS	NS	NS	NS	NS		NS	NS	NS	NS	NS	NS

Sludge														
rate,	N	Р	K	Ca	Mg	Mn	Zn	Fe	Cu	Al	Cd	Cr	Pb	Ni
t/a			%							mg/k	хg			
Corn -1986														
0	0.79	0.07	0.683	0.372	0.224	82	73	673	5.0	164	0.23	1.1	7.4	1.2
2.5	0.75	0.06	0.657	0.376	0.226	79	59	590	4.7	189	0.23	1.0	3.9	1.1
10	0.76	0.06	0.537	0.385	0.226	78	49	550	5.0	158	0.23	0.9	3.8	1.0
20	0.73	0.06	0.530	0.359	0.214	62	54	587	5.3	138	0.27	0.9	3.6	1.0
LSD 10%	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
Corn -1987														
0			0.43	0.374	0.285	35	7.9	267	4.2	177	0.10	0.49	1.3	1.3
2.5			0.33	0.381	0.287	25	7.8	244	3.8	171	0.05	0.43	1.4	1.2
10			0.40	0.428	0.331	31	8.0	298	4.5	237	0.05	0.60	1.5	1.6
20			0.36	0.393	0.318	29	6.3	351	4.5	241	0.07	0.51	1.7	1.5
LSD 10 %			NS	NS	NS	NS	NS	NS	NS	NS	0.03	NS	NS	NS
Soybeans - 1986														
0	1.25	0.13	0.35	0.951	0.315	50	27	443	7.3	184	0.40	0.77	2.1	1.8
2.5	1.26	0.11	0.36	0.942	0.301	41	23	397	6.0	179	0.37	0.77	2.1	1.9
10	1.24	0.13	0.38	0.903	0.302	47	18	430	6.7	242	0.33	0.83	2.0	2.2
20	1.25	0.12	0.37	0.825	0.268	38	35	423	6.7	189	0.33	0.93	2.0	1.5
LSD 10%	NS	NS	NS	0.050	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
Soybeans - 1987														
0			0.75	0.984	0.538	16	8.8	67	7.3	32	0.40	0.14	2.1	2.0
2.5			0.71	1.048	0.563	16	9.3	79	8.0	45	0.40	0.14	2.0	1.9
10			0.75	1.062	0.567	16	10.2	101	8.0	56	0.35	0.15	2.3	1.9
20			0.77	1.095	0.518	14	8.1	88	6.8	48	0.39	0.25	2.0	1.8
LSD 10 %			NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS

Table 37. Effect of Sludge Applications on Chemical Characteristics of Whole Plants

Note: LSD = *least significant difference; NS* = *no significant difference*

32
A field study by Kelling et al. (1977) showed that sewage sludge application to soil generally increased concentrations of Cu, Zn, Cd, and Ni in the vegetative corn tissue, but, except for Zn, incremental additions of sewage sludge had relatively little effect on the metal content of the corn grain. Garcia et al. (1979) found that concentrations of seven heavy metals (Zn, Mn, Ca, Pb, Cr, Cd, and Hg) increased in corn grain, cobs, and husks in that order.

Soybean Plant Tissue

As with the corn plant tissue analyses, the soybean tissue analyses for the two-year study generally showed no effects from the addition of alum sludge except for one difference in calcium concentrations in 1986 (table 37). Average calcium concentrations in soybean plant tissues at the 20 t/a rate were significantly lower than those for the 0, 2.5, and 10 t/a plots. Inspection of table 37 shows that heavy metals did not accumulate in the soybean plant tissues after the addition of alum sludge.

Corn and Soybean Leaf Tissue

The results from chemical analyses of corn and soybean leaf tissue are given in Appendices H and I. The statistical analyses are summarized in table 38. Nitrogen and phosphorus concentrations were determined only for 1986 corn leaf tissues. As shown in table 38, 13 parameters determined for corn leaf tissues showed no differences with or without alum sludge addition. However, for the 1986 study, average cadmium in the corn leaves in the 20 t/a plots was significantly higher than in the 0, 2.5, and 10 t/a plots. No statistical difference in cadmium content in corn leaves was observed during the 1987 study. Only eleven chemical analyses were performed for soybean leaf tissues in 1986, and 12 analyses were carried out in 1987. Chromium was the only parameter that showed an effect from the alum sludge applications (table 38). In 1986, the average chromium concentration in the soybean leaves from the 20 t/a plots was significantly less than in those from the 0, 2.5, and 10 t/a plots.

In contrast, in the 1987 study, the chromium concentration in the soybean leaves from the 20 t/a plots was significantly greater than that in leaves from the other plots. Iron levels in soybean leaves in sludgeamended plots generally increased from the levels in the control plots, although the differences were not statistically significant (table 38).

The suggested critical nutrient levels for Illinois are presented in table 39 (University of Illinois, 1987). Lower concentrations may indicate a nutrient deficiency. A comparison of tables 38 and 39 shows that nitrogen and potassium levels in the corn plots were lower than the recommended critical nutrient levels. However, this was probably not caused by alum sludge application. There were no nutrient deficiencies observed in the soybean leaf tissues. Calcium, magnesium, manganese, zinc, iron, and copper in leaves were found to be higher than the recommended levels.

A comparison of heavy metals in corn grain, whole plants, and leaves (tables 36 through 38) shows that the highest metal levels occurred in the corn plant and leaves and the lowest in the grain. Similarly, Garcia et al. (1981) studied translocation of heavy metals (Zn, Mn, Cu, Pb, Cr, Cd, and Hg) in corn plants grown on strip-mined soil amended with anaero-bically digested sewage sludge. Their analysis of differential metal accumulation rates in seven tissues showed that the highest metal levels generally were observed in the corn leaves and roots and the lowest in the grain and cob.

Sludge														
rate,	N	Р	K	Ca	Mg	Mn	Zn	Fe	Си	Al	Cd	Cr	Pb	Ni
t/a			%							mg /kg				
Corn -1986														
0	2.75	0.35	1.70	0.630	0.328	117	43	223	11	31	0.33	0.53	1.6	1.1
2.5	2.50	0.33	1.63	0.623	0.296	116	61	207	11	32	0.33	0.53	1.8	1.1
10	2.66	0.35	1.79	0.682	0.309	127	42	263	12	35	0.30	0.50	2.0	1.0
20	2.67	0.33	1.76	0.624	0.309	102	36	223	11	29	0.40	0.53	2.0	1.1
LSD 10%	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	0.05	NS	NS	NS
Corn -1987														
0			1.10	0.762	0.445	73	23	107	10	21	0.14	0.23	1.7	1.6
2.5			1.23	0.763	0.397	53	23	98	8	21	0.12	0.19	1.5	1.6
10			1.02	0.875	0.510	64	20	100	11	23	0.16	0.21	2.0	1.8
20			1.03	0.894	0.489	64	18	106	11	22	0.20	0.16	2.0	1.7
LSD 10 %			NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
Soybeans - 1986														
0			2.31	0.905	0.370		68	190	10	23	0.47	0.77	2.3	9.6
2.5			2.39	0.917	0.331		28	273	10	17	0.43	0.77	2.5	6.6
10			2.31	0.879	0.332		36	223	11	20	0.47	0.77	2.3	8.8
20			2.17	0.789	0.315		29	250	10	18	0.40	0.57	2.8	7.4
LSD 10%			NS	NS	NS		NS	NS	NS	NS	NS	0.14	NS	NS
Soybeans - 1987														
0			1.60	1.410	0.441	44	40	85	11	13	0.28	0.39	2.5	4.6
2.5			1.56	1.459	0.470	50	40	93	11	17	0.29	0.37	2.8	6.7
10			1.56	1.638	0.475	42	40	83	11	16	0.30	0.36	2.7	6.9
20			1.63	1.385	0.414	42	36	100	11	17	0.27	0.54	2.9	6.8
LSD 10 %			NS	NS	NS	NS	NS	NS	NS	NS	NS	0.07	NS	NS

Table 38. Effect of Sludge Applications on Chemical Characteristics of Leaves

Note: LSD = *least significant difference; NS* = *no significant difference*

34

Table 39. Suggested Critical Plant Nutrient Levels

	Ν	Р	K	Ca	Mg	S	Mn	Zn	Fe	Си	В
Corn*	2.9	0.25	1.90	0.40	0.15	0.15	15	15	25	5	10
Soybeans [†]		0.25	2.00	0.40	0.25	0.15	20	15	30	5	25

* Leaf opposite and below the ear at tasseling

[†] Fully developed leaf and petiole at early podding

SUMMARY

A two-year study was conducted to assess the risks and benefits of applying air-dried alum sludge from Peoria's water treatment plant to farmland used for growing corn and soybeans. Determinations were made of the effects of sludge application on soil nutrients and physical characteristics, corn and soybean yields and plant parameters, and the uptake and accumulation of heavy metals and other nutrients in plant tissues and grains.

Alum sludge was applied by hand at rates of 0, 2.5, 10, and 20 tons per acre (t/a) to 15-foot by 30-foot test plots prior to the planting in 1986. No alum sludge was applied to the plots in 1987. Each treatment (application rate) was replicated three times. In 1986, treatments were applied in a completely randomized design for soybeans and in a randomized block design for corn. In 1987, corn and soybeans were reversed between the two groups of plots.

The major plant nutrients and micronutrients in alum sludge from Peoria's water treatment plant were generally greater than those in the test plot soil and lower than those in sewage sludge from Peoria. The effects of alum sludge application on soil properties were evaluated. Soil properties examined were TS, organic matter, percent moisture, bulk density, pH, acidity, CEC, major forms of nitrogen, Bray P-1, total phosphorus, K, A1, B, Cd, Ca, Cr, Cu, Fe, Pb, Mg, Mn, Ni, Zn, and particle size distribution.

The soil test data showed that soils in both corn and soybean plots were generally not significantly affected by the alum sludge applications. Occasional differences occurred among sludge-treated and untreated soils. However, they were never consistent for a series of eight collections for each treatment.

For the 1986 study, corn yields in the plots treated with alum sludge at the rates of 2.5 and 10 t/a were significantly lower than those in the plots treated with 0 and 20 t/a. Corn yields appeared to be related to plant populations. However, the corn yields and the plant populations in the highest-rate (20 t/a) plots were not affected by the alum sludge addition.

In 1987, corn yields in the 2.5 t/a plots were significantly less than in the 10 t/a plots; overall, corn yields in the sludge-treated plots were not statistically different from those in the non-treated plots. The corn yields and plant populations were apparently not affected by the sludge applications made in 1986. For both years, other corn parameters, soybean yields, and soybean plant parameters were not impacted by alum sludge applications.

Alum sludge does not contain enough nutrient value to provide a fertilizer effect. Nutrients and heavy metals (N, P, K, Ca, Mg, Mn, Zn, Fe, Cu, Al, Cd, Cr, Pb, Ni, crude protein, and moisture content) in grains, whole plants, and leaves were generally not significantly changed by the sludge applications. None of the nutrient levels were increased significantly by the nutrients in the sludge. The heavy metals levels were higher in the whole plants **and** leaves and lower in the grains.

CONCLUSIONS

In this study the application of air-dried alum sludge on corn and soybean fields did not have any beneficial or adverse effects on corn or soybeans and did not alter the soil characteristics. It appears that there are no detrimental effects from the application of water treatment plant alum sludge at rates of up to 20 t/a to agricultural tracts in Illinois used for raising corn and soybeans.

The variability in corn yields might have been caused by poor seedbed preparation and dry soil conditions. Alum sludge has no fertilizer value and does not increase heavy metal accumulation in crops or heavy metal uptake in plant tissues.

On the basis of the two-year study, the following suggestions and recommendations are offered: Land application of alum sludge appears to be a viable method with no apparent environmental degradation. Applying raw liquid alum sludge seems impractical for most water treatment plants. Dewatering of alum sludge (through methods such as lagooning) is needed to reduce the cost of transportation. However, lagoons require land. Pulverization of sludge before application would be desirable.

The only no-cost disposal method is to discharge alum sludge directly into receiving waters. In Illinois, direct discharge requires a permit. Currently, treatment of alum sludge is required prior to final disposal.

The results of this study indicate that air-dried alum sludge can be applied to farmland without detrimental effects. Therefore suitable land disposal may be a feasible alternative. Alum sludge contains few nutrients and most likely will not cause contamination of surface and ground waters.

RECOMMENDATIONS

• Long-term laboratory and greenhouse studies on alum sludge application on soil are needed before additional field studies are carried out.

• Greenhouse studies are needed to determine the best method and time of alum sludge application, to study the use of more than one water treatment plant as a source of alum sludge, and to study the land application of alum sludge for growing vegetables, wheat, rye, oats, and other crops.

• Additional information is needed on the maximum alum sludge application rate feasible for many plants and root crops. In this study, the highest rate (20 t/a) generally showed no effect on corn and soybeans.

• Air-dried alum sludge needs to be ground to powder form to eliminate clumps when the sludge is applied to the soil. It can also be applied in a suspended liquid form.

• The benefits and risks of the use of combined alum sludge and wastewater sludge should be evaluated.

• The possibility of using an irrigation system to apply alum sludge should be investigated.

• The rate at which the heavy metals move through the ground should be determined.

• Scientific data are needed on land application of lime sludge, which has been practiced on Illinois farms for many years.

REFERENCES

- Black, C.A. (ed.) 1973. *Methods of Soil Analysis*. 1st ed. American Society of Agronomy and Soil Science Society of America, Madison, WI, 1,572 p.
- Bugbee, G.J., and C.R. Frink. 1985. Alum Sludge as a Soil Amendment: Effects on Soil Properties and Plant Growth. Bulletin 829, Connecticut Agricultural Experiment Station, New Haven, 7 p. (Nov.).
- Elliott, HA, B.A. Dempsey, and J. DeWolfe. 1989. Soil *Metal Loading and Phosphorus Fertility Effects from Land Application of Water Treatment Sludges.* Proceedings, AWWA/WPCF Joint Residuals Management Conference, San Diego, CA, Aug. 13-16, p. 5C/3.
- Garcia, W.J., et al. 1979. Translocation and Accumulation of Seven Heavy Metals in Tissues of Corn Plants Grown on Sludge-Treated Strip-Mined Soil. Journal of Agricultural and Food Chemistry, 27(5):1088-1094.
- Garcia, W.J., et al. 1981. *Metal Accumulation and Crop Yield for a Variety of Edible Crops Grown in Diverse Soil Media Amended with Sewage Sludge*. Environmental Science and Technology, 15(7):793-804.
- Grabarek, R.J., and E.C. Krug. 1987. *Silvicultural Application of Alum Sludge*. Journal of the American Water Works Association, 79(6):89-98.
- Guy, H.P. 1969. Laboratory Theory and Methods for Sediment Analysis (Book 5, Chapter C1). In Techniques of Water-Resources Investigations of the United States Geological Survey, U.S. Government Printing Office, Washington, DC.
- Horwitz, W. (ed.) 1980. *Methods of Analysis of the Association of Official Analytical Chemists*. 13th ed. Association of Official Analytical Chemists Corp., Arlington, VA.

- Illinois Environmental Protection Agency (IEPA). 1982. Illinois EPA Sludge Regulation Guidance Document. IEPA/ENV/82-014, Springfield, IL, 28 p.
- Illinois Environmental Protection Agency (IEPA). 1984. Design Criteria for Sludge Application on Land. Title 35, Subtitle C, Chapter II, Part 391, IEPA, Springfield, IL, 32 p.
- Jackson, M.L. 1958. Soil Chemical Analysis. Prentice-Hall, Englewood Cliffs, NJ, 498 p.
- Kelling, K.A., et al. 1977. A Field Study of Agricultural Use of Sewage Sludge: III. Effect on Uptake and Extractability of Sludge-Borne Metals. Journal of Environmental Quality, 6(4):352-358.
- Little, T.M., and F.J. Hills. 1978. Agricultural Experimentation. John Wiley & Sons, New York, 35 p.
- Naylor, L.M., et al. 1987. Uptake of Cadmium and Zinc by Corn on Sludge-Treatment Soils. Biocycle, 28(4):37-41.
- Page, AX. (ed.) 1982. *Methods of Soil Analysis*. 2d ed. American Society of Agronomy and Soil Science Society of America, Madison, WI.
- Russell, G.A. 1980. Agricultural Application of Lime Softening Residue. Presented at the Illinois AWWA Section Meeting (March).
- Standard Methods for the Examination of Water and Wastewater. 1985. 16th ed. American Public Health Association, American Water Works Association, and Water Pollution Control Federation, New York, NY.
- University of Illinois. 1987. *Illinois Agronomy Handbook, 1987-1988.* College of Agriculture, Cooperative Extension Service, Circular 1266, p. 38.
- Wang, W.C. 1975. Determination of Cation-Exchange Capacity of Suspended Sediment. Water Resources Bulletin, 11(5):1052-1057.

<u>Date</u>	<u>Jan</u>	<u>Feb</u>	<u>Mar</u>	<u>Apr</u>	<u>May</u>	<u>June</u>	<u>July</u>	Aug	<u>Sept</u>	<u>Oct</u>	Nov	<u>Dec</u>
1 2 3 4	.09	tr tr .60	.02	.01 .17 .01	.52	.03	.01 .70		.15	.31 .04 2.18 .25	.17 .01	.54 .13
5 6 7 8 9 10	tr	.23 .05 .32	.13 tr .08	.05	.10 .27 .02	.34 .20 .25 .10	.02 .06 1.52 .19	tr .66 .04 .87	.12	.01 tr .01	.01	.57 .29 .11 tr
11 12 13 14 15		tr .06	.23 .02 .08 tr tr	.08 .38 tr	.02 tr .09 .05	.04 .35	.10 1.41 .01 .30	tr .31 .01	.70 .23 tr .01	.94 tr .17	.05 tr tr	
16 17 18 19 20		.42 tr tr	.12 .25	tr tr	.11 1.62 1.04	tr		.01 .38	.02 .28 .65 .73		tr tr .41	tr
21 22 23 24 25	tr	tr .04 .30		tr		.05 .21 .02	.27		.03 1.22 .65 1.84	.01 tr .49	tr .10	
26 27 28 29 30 31	tr tr tr	tr .19 tr	.07	.04 .13 tr .19	.55 .27 tr .01 .02	.16 .01 1.13	.27 1.49	1.05	.08 .24 2.16	1.10 .10	.03 tr	.01
Total Cum. total	.09 .09	2.21 2.30	1.03 3.33	1.06 4.39	4.69 9.08	2.89 11.97	6.35 18.32	3.33 21.65	9.11 30.76	5.61 36.37	.78 37.15	1.65 38.80

<u>Date</u>	<u>Jan</u>	<u>Feb</u>	<u>Mar</u>	<u>Apr</u>	May	June	<u>July</u>	Aug	<u>Sept</u>	<u>Oct</u>	Nov	Dec
1 2 3	tr .09		.66 tr	.01	.05	.40 .05 tr	.06	.57			.94 .18 .01	.01 tr
4 5					tr		.05	.90				
6 7 8 9		.04					tr	.15	.36 .08	tr tr	tr .10	.31 .09 .06
10	.30									tr		
11 12 13			tr	tr tr .29		.20	.01 .03	.46	.04 .06	.01		.04
14 15			.16	.75			.02 .67	1.01 1.11	.23	tr		.99
16 17 18	08		.22	tr	tr			1.01	.23 1.09	.07	.18 .56	.03
19 20	.15		.36		.23	.79			tr	.01 .21	tr	.12
21 22	tr			.18	.05	.39		.09	.12	tr		
23 24			.01	.21				tr		$\gamma\gamma$.08	
25			.06	ti	.03	.20	tr	.41		.22	.36	.05
26 27	.03	.02	tr tr	.03	.22	.06		1.27 .04		tr	tr tr	00
28 29	tr	tr	.87		tr	tr		.02	1.33	tr	.55 .36	.80 .05
30 31	tr tr		tr		tr .78	.01	.03				.07	
Total Cum	.65	.06	3.00	1.50	1.36	2.10	.87	7.26	3.57	.52	3.40	3.78
total	.65	.71	3.71	5.21	6.57	8.67	9.54	16.80	20.37	20.89	24.29	28.07

Appendix A-2. Daily Precipitation Records at Monmouth, Illinois - 1987

	Air <u>temperature</u> Degrees, F.		Rela <u>humic</u>	tive lity	Avera	age soil (Degr	temperat rees. F.	ture	Precip	<u>oitation</u>
	Degr	ees, F.	(%)	(%)	S	od	Bar	e soil	(Inc	ches)
<u>Month</u> 1986	<u>(max.)</u>	<u>(min.)</u>	<u>(max.)</u>	<u>(min.)</u>	<u>(max.)</u>	<u>(min.)</u>	(max.)	<u>(min.)</u>	<u>Month</u>	<u>Total</u>
Jan. Feb. Mar. Apr. May June July Aug. Sep. Oct. Nov. Dec.	34 31 50 67 73 82 85 79 78 63 43 37	16 15 31 41 52 61 69 57 58 44 26 24	91 94 93 95 99 100 100 100 100 98 97	57 68 52 39 50 53 61 52 55 60 59 64	28 30 36 54 65 77 82 75 70 59 42 34	26 29 33 48 58 68 74 68 65 55 39 33	29 31 41 63 72 86 90 81 74 61 41 32	24 30 35 49 59 90 75 66 63 51 36 31	$\begin{array}{c} 0.09\\ 2.21\\ 1.03\\ 1.06\\ 4.69\\ 2.89\\ 6.35\\ 3.33\\ 9.11\\ 5.61\\ 0.78\\ 1.65\end{array}$	$\begin{array}{c} 0.09\\ 2.30\\ 3.33\\ 4.39\\ 9.08\\ 11.97\\ 18.32\\ 21.65\\ 30.76\\ 36.37\\ 37.15\\ 38.80 \end{array}$
1987										
Jan. Feb. Mar. Apr. May June July Aug. Sep. Oct. Nov. Dec.	31 44 52 65 80 85 89 84 77 59 52 36	17 26 32 40 54 62 66 63 53 34 35 24	96 97 93 88 89 99 100 100 100 97 98 94	65 50 48 38 38 47 51 55 48 49 69 70	33 34 43 53 68 80 85 80 69 53 46 35	32 39 47 60 70 75 72 63 47 42 34	31 35 46 60 79 87 93 84 75 57 47 35	31 32 38 47 63 71 77 71 61 44 40 33	$\begin{array}{c} 0.65\\ 0.06\\ 3.00\\ 1.50\\ 1.36\\ 2.10\\ 0.87\\ 7.26\\ 3.57\\ 0.52\\ 3.40\\ 3.78\end{array}$	$\begin{array}{c} 0.65\\ 0.71\\ 3.71\\ 5.21\\ 6.57\\ 8.67\\ 9.54\\ 16.80\\ 20.37\\ 20.89\\ 24.29\\ 28.07 \end{array}$

Appendix B. Summary of Weather Data at Monmouth, Illinois

	Appli- cation Rate	C	Corn Plot	S		Appli- cation Rate	So	ybean Pl	ots
Date	t/a	Rep 1	Rep 2	Rep 3	Date	t/a	Rep 1	Rep 2	Rep 3
1986 4/24	0 2.5 10 20	80.5 81.1 79.9 78.0	83.5 79.7 81.3 80.6	79.0 80.7 80.6 80.4	1986 5/21	0 2.5 10 20	78.2 78.5 80.0 79.8	80.9 79.0 79.6 80.4	79.1 82.2 80.7 80.0
6/13	0 2.5 10 20	80.5 79.5 79.7 78.3	80.4 79.8 81.4 81.0	78.8 80.4 80.2 78.6	7/18	0 2.5 10 20	79.1 79.6 81.6 81.8	82.6 81.2 82.1 82.8	82.9 82.1 81.7 81.9
8/13	0 2.5 10 20	78.0 78.3 78.7 75.6	78.8 77.9 78.3 78.4	76.9 77.6 76.8 76.9	8/29	0 2.5 10 20	79.2 79.4 81.3 80.7	81.3 79.4 80.4 81.5	79.4 80.8 83.4 81.5
10/21	0 2.5 10 20	76.8 76.6 76.8 74.4	77.9 77.0 76.8 77.0	76.4 77.1 77.4 76.7	10/21	0 2.5 10 20	78.0 78.2 80.6 80.3	81.4 79.2 80.2 81.3	79.0 79.9 81.2 80.8
1987 4/28	0 2.5 10 20	78.2 78.1 80.0 80.1	81.9 79.8 80.1 81.1	79.1 80.8 81.9 81.4	1987 4/28	0 2.5 10 20	78.7 78.8 78.4 77.0	79.6 78.2 78.7 79.2	78.3 79.2 78.7 78.3
6/26	0 2.5 10 20	82.7 83.8 82.5 82.4	82.7 82.4 81.8 83.0	82.2 83.1 84.7 85.1	7/17	0 2.5 10 20	84.0 84.4 82.8 82.2	85.4 83.1 83.9 83.5	82.0 83.0 83.1 81.9
8/21	0 2.5 10 20	78.2 79.2 81.0 80.6	81.7 79.6 80.2 81.3	79.9 82.4 83.4 82.4	9/04	0 2.5 10 20	80.3 80.9 80.8 77.5	81.6 81.4 82.1 80.1	79.1 81.2 81.3 80.3
10/15	0 2.5 10 20	79.3 79.5 82.8 82.1	83.4 81.6 81.4 83.0	81.1 83.8 84.4 83.2	10/15	0 2.5 10 20	81.3 80.7 80.5 79.7	81.3 81.0 81.8 80.7	79.5 80.6 81.1 79.4

Appendix C1. Percent Total Solids in Soils

Note: The crops were rotated between the two groups of test plots for the second year.

	Appli- cation	(Corn Plot	ts		Appli- cation	So	ybean Pl	ots
Date	t/a	Rep 1	Rep 2	Rep 3	Date	t/a	Rep 1	Rep 2	Rep 3
1986 4/24	0 2.5 10 20	6.9 7.0 6.6 7.8	5.6 6.7 6.6 6.4	6.7 6.6 6.5 6.4	1986 5/21	0 2.5 10 20	6.5 5.9 4.1 4.1	5.9 5.8 3.8 3.5	5.0 4.2 3.2 4.3
6/13	0 2.5 10 20	6.4 6.1 6.5 10.8	5.6 6.8 6.3 6.7	6.6 7.0 6.6 6.6	7/18	0 2.5 10 20	7.1 7.1 3.8 4.0	3.4 6.2 4.9 3.7	5.2 5.5 4.0 3.4
8/13	0 2.5 10 20	6.6 6.7 6.5 7.9	5.4 6.5 6.9 6.5	6.8 7.5 7.1 6.8	8/29	0 2.5 10 20	6.8 6.7 4.3 4.4	3.6 5.8 4.7 3.9	5.3 4.8 3.6 4.2
10/2	10 2.5 10 20	7.1 6.8 6.9 8.4	5.8 6.7 6.5 6.4	7.1 6.9 6.5 6.6	10/21	0 2.5 10 20	6.8 6.6 4.2 4.4	3.7 5.9 4.9 4.2	5.7 5.0 3.8 4.5
1987 4/28	0 2.5 10 20	5.9 6.0 3.5 4.0	3.3 5.5 4.5 4.0	5.2 4.5 3.5 4.1	1987 4/28	0 2.5 10 20	7.0 7.0 7.0 8.0	5.6 6.5 6.5 6.6	6.6 7.1 6.4 6.3
6/26	0 2.5 10 20	6.3 6.3 4.1 4.1	3.5 5.4 4.6 4.0	5.5 5.8 4.2 4.4	7/17	0 2.5 10 20	7.2 7.1 7.3 8.4	6.1 6.9 6.7 6.9	7.3 7.3 6.8 6.3
8/21	0 2.5 10 20	6.5 6.2 3.9 3.8	3.4 5.6 7.6 3.8	5.4 4.9 3.5 4.0	9/04	0 2.5 10 20	6.8 6.8 7.1 8.3	5.6 6.5 6.6 7.0	7.0 6.8 6.5 6.7
10/15	0 2.5 10 20	6.8 6.7 4.3 4.3	3.7 5.8 4.7 4.1	5.4 5.1 3.5 4.4	10/15	0 2.5 10 20	6.8 7.3 6.7 8.0	5.7 6.5 6.4 6.4	6.6 6.7 6.2 6.3

Appendix C2. Percent Organic Matter in Soils

Appli- cation Rate, Date t/a Rep l			Corn Plot	ts		Appli- cation	oli- on Soybean Plots		
Date	t/a	Rep 1	Rep 2	Rep 3	Date	t/a	Rep 1	Rep 2	Rep 3
1986 4/24	0 2.5 10 20	19.5 18.9 20.1 22.0	16.5 20.3 18.7 19.4	21.0 19.3 19.4 19.6	1986 5/21	0 2.5 10 20	21.8 21.5 20.0 20.2	19.1 21.0 20.4 19.6	20.9 17.8 19.3 20.0
6/13	0 2.5 10 20	19.5 20.5 20.3 21.7	19.6 20.2 18.6 19.0	21.2 19.6 19.8 21.4	7/18	0 2.5 10 20	20.9 20.4 18.4 18.2	17.4 18.8 17.9 17.2	17.1 17.9 18.3 18.1
8/13	0 2.5 10 20	22.0 21.7 21.3 24.4	21.2 22.1 21.7 21.6	23.1 22.4 23.2 23.1	8/29	0 2.5 10 20	20.8 20.6 18.7 19.3	18.7 20.6 19.6 18.5	20.6 19.2 16.6 18.5
10/21	0 2.5 10 20	23.2 23.4 23.2 25.6	22.1 23.0 23.2 23.0	23.6 22.9 22.6 23.3	10/2	10 2.5 10 20	22.0 21.8 19.4 19.7	18.6 20.8 19.8 18.7	21.0 20.1 18.8 19.2
1987 4/28	0 2.5 10 20	21.8 21.9 20.0 19.9	18.1 20.2 19.9 18.9	20.9 19.2 18.1 18.6	1987 4/28	0 2.5 10 20	21.3 21.2 21.6 23.0	20.4 21.8 21.3 20.8	21.7 20.8 21.3 21.7
6/26	0 2.5 10 20	17.3 16.2 17.5 17.5	17.3 17.6 18.2 17.0	17.8 16.9 15.3 14.9	7/17	0 2.5 10 20	16.0 15.6 17.2 17.8	14.6 16.9 16.1 16.5	18.0 17.0 16.9 18.1
8/21	0 2.5 10 20	21.8 20.8 19.0 19.4	18.3 20.4 19.8 18.7	20.1 17.6 16.6 17.6	9/04	0 2.5 10 20	19.7 19.1 19.2 22.5	18.4 18.6 17.9 19.9	20.9 18.8 18.7 19.7
10/15	0 2.5 10 20	20.7 20.5 17.2 17.9	16.6 18.4 18.6 17.0	18.9 16.2 15.6 16.8	10/15	0 2.5 10 20	18.7 19.3 19.5 20.3	18.7 19.0 18.2 19.3	20.5 19.4 18.9 20.6

Appendix C3. Percent Moisture in Soils

	Appli- cation	(Corn Plot	ts		Appli- cation	So	ybean Pl	ots
Date	t/a	Rep 1	Rep 2	Rep 3	Date	t/a	Rep 1	Rep 2	Rep 3
1986 4/24	0 2.5 10 20	2.08 2.01 2.10 2.00	2.07 1.99 2.03 2.12	2.04 2.09 2.04 2.04	1986 5/21	0 2.5 10 20	1.46 1.76 2.17 2.14	2.10 2.03 1.78 2.03	1.87 1.88 1.81 1.68
6/13	0 2.5 10 20	1.56 1.59 1.42 1.63	1.35 1.68 1.64 1.72	1.66 1.65 1.96 1.72	7/18	0 2.5 10 20	1.37 1.55 1.67 1.90	1.69 1.28 1.76 1.46	1.43 1.31 1.81 1.70
8/13	0 2.5 10 20	1.34 1.21 1.30 1.28	1.32 1.04 1.22 1.09	1.37 1.45 1.38 1.42	8/29	0 2.5 10 20	1.51 1.47 1.49 1.45	1.42 1.52 1.48 1.42	1.36 1.26 1.49 1.44
10/21	0 2.5 10 20	1.12 1.14 1.24 1.15	1.24 1.34 1.39 1.19	1.30 1.28 1.33 1.15	10/21	0 2.5 10 20	1.32 1.54 1.56 1.44	1.50 1.31 1.42 1.47	1.28 1.39 1.47 1.41
1987 4/28	0 2.5 10 20	1.36 1.38 1.45 1.66	1.59 1.38 1.54 1.43	1.26 1.47 1.53 1.40	1987 4/28	0 2.5 10 20	1.44 1.40 1.34 1.25	1.64 1.42 1.46 1.28	1.37 1.43 1.43 1.40
6/26	0 2.5 10 20	1.44 1.17 1.70 1.58	1.69 1.46 1.27 1.58	1.43 1.04 1.45 1.34	7/17	0 2.5 10 20	1.42 1.20 1.39 1.43	1.29 1.14 1.20 1.39	1.21 1.27 1.30 1.34
8/21	0 2.5 10 20	1.28 1.25 1.53 1.64	1.55 1.32 1.38 1.51	1.46 1.06 1.49 1.53	9/04	0 2.5 10 20	1.20 1.21 1.41 1.26	1.29 1.45 1.24 1.23	1.26 1.35 1.35 1.37
10/15	0 2.5 10 20	1.40 1.43 1.55 1.55	1.73 1.17 1.45 1.55	1.32 1.41 1.19 1.23	10/15	0 2.5 10 20	1.13 1.12 1.42 1.25	1.36 1.39 1.24 1.15	1.29 1.41 1.35 1.36

Appendix C4. Specific Gravity (g/cm³) in Soils

				Append	ix C5. pH in	Soils			
	Appli- cation	C	Corn Plot	ts		Appli- cation	So	ybean Pl	ots
Date	t/a	Rep 1	Rep 2	Rep 3	Date	t/a	Rep 1	Rep 2	Rep 3
1986 4/24	0 2.5 10 20	5.05 5.31 5.37 5.26	5.07 5.13 5.36 5.52	7.23 5.91 5.72 6.56	1986 5/21	0 2.5 10 20	5.30 5.64 5.82 5.87	5.92 5.43 5.47 6.10	4.86 7.20 7.50 7.05
6/13	0 2.5 10 20	5.21 5.26 5.03 5.62	4.93 4.98 4.92 5.23	7.12 5.75 6.09 6.15	7/18	0 2.5 10 20	5.35 5.67 5.81 5.89	5.88 5.40 5.72 5.99	5.32 6.74 7.54 7.16
8/13	0 2.5 10 20	5.17 5.03 5.63 5.54	4.92 5.11 5.18 5.35	6.42 5.72 5.93 6.39	8/29	0 2.5 10 20	5.26 5.75 6.25 6.63	5.96 5.53 5.76 6.50	5.26 7.50 7.75 7.48
10/21	0 2.5 10 20	5.20 5.22 5.37 5.73	5.01 5.13 5.30 5.67	6.75 5.78 6.14 6.74	10/21	0 2.5 10 20	5.52 5.85 6.15 6.12	5.94 5.62 5.77 6.36	5.28 7.36 7.60 7.39
1987 4/28	0 2.5 10 20	5.63 5.51 6.51 6.18	6.16 5.61 5.83 7.40	5.30 7.25 7.45 6.75	1987 4/28	0 2.5 10 20	5.05 5.12 5.22 5.68	5.02 5.17 5.41 6.00	6.52 5.81 6.02 6.41
6/26	0 2.5 10 20	5.03 5.02 5.77 5.95	5.74 5.17 5.27 6.15	4.96 6.55 7.30 6.60	7/17	0 2.5 10 20	5.09 5.06 5.40 5.53	4.97 5.06 5.06 5.82	6.87 5.73 6.13 6.59
8/21	0 2.5 10 20	5.31 5.68 6.03 6.52	6.17 6.42 6.18 6.91	5.08 7.40 7.63 7.54	9/04	0 2.5 10 20	5.20 5.15 5.55 5.15	5.03 5.38 5.33 6.03	7.23 5.84 6.32 6.55
10/15	0 2.5 10 20	5.30 5.41 6.34 6.45	6.18 5.14 5.64 6.61	5.15 7.18 7.60 7.30	10/15	0 2.5 10 20	5.00 4.95 5.33 5.15	4.91 4.99 5.12 5.58	7.08 6.02 6.70 6.55

Appli- cation Corn Plots Rate, Date t/a Rep 1 Rep 2 Rep 3					Appli- cation Rate	So	ybean Pl	lots	
Date	t/a	Rep 1	Rep 2	Rep 3	Date	t/a	Rep 1	Rep 2	Rep 3
1986 4/24	0 2.5 10 20	0.32 0.34 0.25 0.20	0.42 0.35 0.33 0.26	0.03 0.13 0.18 0.12	1986 5/21	0 2.5 10 20	0.18 0.13 0.16 0.22	0.12 0.19 0.32 0.23	0.64 0.07 0.03 0.06
6/13	0 2.5 10 20	0.24 0.28 0.23 0.35	$\begin{array}{c} 0.71 \\ 0.42 \\ 0.46 \\ 0.40 \end{array}$	0.04 0.13 0.09 0.16	7/18	0 2.5 10 20	0.22 0.16 0.19 0.14	$\begin{array}{c} 0.18 \\ 0.22 \\ 0.18 \\ 0.17 \end{array}$	$\begin{array}{c} 0.47 \\ 0.13 \\ 0.05 \\ 0.09 \end{array}$
8/13	0 2.5 10 20	0.27 0.36 0.31 0.12	0.74 0.35 0.41 0.28	$0.05 \\ 0.10 \\ 0.11 \\ 0.15$	8/29	0 2.5 10 20	0.28 0.10 0.16 0.26	0.15 0.25 0.19 0.07	0.64 0.09 0.08 0.08
10/21	0 2.5 10 20	0.33 0.40 0.24 0.16	0.76 0.48 0.35 0.25	$\begin{array}{c} 0.07 \\ 0.10 \\ 0.05 \\ 0.08 \end{array}$	10/21	0 2.5 10 20	0.23 0.09 0.07 0.14	$\begin{array}{c} 0.11 \\ 0.16 \\ 0.23 \\ 0.11 \end{array}$	$0.74 \\ 0.06 \\ 0.04 \\ 0.04$
1987 4/28	0 2.5 10 20	$0.07 \\ 0.02 \\ 0.02 \\ 0.02 \\ 0.02$	$0.02 \\ 0.06 \\ 0.03 \\ 0.02$	0.29 0.04 0.02 0.04	1987 4/28	0 2.5 10 20	$0.25 \\ 0.22 \\ 0.14 \\ 0.10$	$0.38 \\ 0.17 \\ 0.11 \\ 0.06$	$0.04 \\ 0.04 \\ 0.04 \\ 0.04$
6/26	0 2.5 10 20	0.16 0.13 0.04 0.01	$0.04 \\ 0.10 \\ 0.14 \\ 0.05$	0.27 0.01 0.05 0.01	7/17	0 2.5 10 20	0.42 0.01 0.06 0.09	0.31 0.23 0.27 0.11	0.06 0.06 0.04 0.07
8/21	0 2.5 10 20	0.08 0.01 0.09 0.01	0.12 0.22 0.05 0.06	0.40 0.07 0.05 0.05	9/04	0 2.5 10 20	0.13 0.30 0.02 0.10	0.33 0.18 0.13 0.13	$0.02 \\ 0.10 \\ 0.06 \\ 0.05$
10/15	0 2.5 10 20	0.17 0.13 0.05 0.08	$0.03 \\ 0.16 \\ 0.10 \\ 0.07$	0.27 0.04 0.04 0.04	10/15	0 2.5 10 20	0.26 0.02 0.34 0.05	0.39 0.27 0.18 0.07	$0.07 \\ 0.07 \\ 0.09 \\ 0.05$

Appendix C6. Acidity (meq/100 g) in Soils

	Appli- cation	(Corn Plo	ts		Appli- cation	So	ybean Pl	ots
Date	t/a	Rep 1	Rep 2	Rep 3	Date	t/a	Rep 1	Rep 2	Rep 3
1986 4/24	0 2.5 10 20	13.8 14.3 14.9 14.1	12.8 13.2 11.9 11.3	16.7 15.7 13.1 14.4	1986 5/21	0 2.5 10 20	16.6 16.7 15.1 16.4	14.7 15.0 15.0 14.5	14.4 14.7 12.2 14.3
6/13	0 2.5 10 20	19.5 18.4 19.9 23.9	19.0 20.0 19.2 18.8	22.2 21.8 20.2 22.2	7/18	0 2.5 10 20	20.1 21.7 17.4 19.3	18.1 18.9 19.1 18.1	18.6 19.4 16.7 17.2
8/13	0 2.5 10 20	18.2 18.9 14.7 20.8	17.2 20.6 17.0 17.8	20.8 21.6 18.2 20.6	8/29	0 2.5 10 20	19.8 19.9 18.9 18.8	17.7 17.8 19.5 17.4	18.4 17.7 15.0 16.6
10/21	0 2.5 10 20	16.4 16.9 16.7 20.7	17.0 15.8 15.7 16.8	21.7 20.3 18.8 19.7	10/21	0 2.5 10 20	18.2 18.3 17.2 18.3	16.3 17.2 16.6 16.6	17.4 17.6 14.3 16.4
1987 4/28	0 2.5 10 20	19.1 19.2 18.1 19.4	16.8 18.7 18.2 16.3	19.0 17.1 14.6 16.9	1987 4/28	0 2.5 10 20	17.0 18.0 18.0 21.3	17.3 17.6 18.2 18.6	17.4 20.6 19.7 19.8
6/26	0 2.5 10 20	18.0 21.6 22.6 16.9	15.0 17.4 20.7 24.5	19.7 15.7 16.2 20.4	7/17	0 2.5 10 20	20.9 17.2 20.5 25.5	20.5 23.1 21.0 21.4	28.0 24.7 18.9 25.5
8/21	0 2.5 10 20	23.8 22.5 17.9 23.3	15.6 16.4 25.7 24.9	29.0 22.0 24.3 23.3	9/04	0 2.5 10 20	29.9 16.4 20.5 21.8	24.0 20.7 16.2 18.5	21.1 20.5 28.1 23.1
10/15	0 2.5 10 20	24.3 26.8 30.1 38.7	27.2 27.5 27.2 24.8	20.2 27.3 13.1 25.9	10/15	$0 \\ 2.5 \\ 10 \\ 20$	18.1 19.2 15.2 27.3	28.1 14.9 16.5 21.1	23.1 34.0 32.2 36.3

Appendix C7. Cation Exchange Capacity (meq/100 g) in Soils

	Appli- cation	(Corn Plo	ts		Appli- cation	Soybean Plots			
Date	t/a	Rep 1	Rep 2	Rep 3	Date	t/a	Rep 1	Rep 2	Rep 3	
1986 4/24	0 2.5 10 20	237 259 171 190	193 185 244 273	133 340 406 141	1986 5/2	10 2.5 10 20	154 135 68 56	47 137 83 91	119 93 43 69	
6/13	0 2.5 10 20	172 153 170 217	161 168 182 171	158 159 162 160	7/18	0 2.5 10 20	197 198 75 69	51 176 119 64	91 129 80 72	
8/13	0 2.5 10 20	188 205 204 227	149 186 181 178	180 178 184 185	8/29	0 2.5 10 20	138 149 58 61	70 123 77 60	108 95 82 94	
10/21	0 2.5 10 20	185 180 160 222	130 150 154 163	142 157 165 168	10/21	0 2.5 10 20	166 167 55 63	67 150 107 71	112 106 82 82	
1987 4/28	0 2.5 10 20	377 160 198 79	49 162 84 158	110 167 89 84	1987 4/28	0 2.5 10 20	151 169 174 188	120 148 158 160	143 158 169 144	
6/26	0 2.5 10 20	222 259 86 102	94 162 150 100	149 186 99 144	7/17	0 2.5 10 20	279 262 322 328	228 255 241 254	266 246 237 238	
8/21	0 2.5 10 20	177 179 103 97	67 166 99 85	147 135 86 118	9/04	0 2.5 10 20	191 225 234 256	179 217 211 209	213 202 238 197	
10/15	0 2.5 10 20	180 188 91 86	64 155 111 72	135 126 72 100	10/15	0 2.5 10 20	227 221 223 274	188 221 194 210	187 193 174 189	

Appendix C8. Ammonia Nitrogen (mg/kg) in Soils

	Appli- cation Rate	Appli- cation Corn Plots Rate,				Appli- cation Rate	Soybean Plots			
Date	t/a	Rep 1	Rep 2	Rep 3	Da	te t/a	Rep 1	Rep 2	Rep 3	
1986 4/24	0 2.5 10 20	40.1 36.7 20.1 23.9	20.6 23.0 32.1 36.2	10.0 54.2 77.4 31.9	198 5/2	36 1 0 2.5 10 20	4.1 2.3 1.4 1.6	1.4 1.8 1.6 1.2	3.4 3.0 3.0 3.0	
6/13	0 2.5 10 20	8.4 11.9 32.8 24.3	6.8 26.5 19.9 23.4	3.4 12.3 9.6 12.8	7/1	8 0 2.5 10 20	4.6 4.3 1.4 1.9	1.7 3.2 2.3 2.0	2.7 3.0 2.4 3.9	
8/13	0 2.5 10 20	8.1 12.6 8.9 9.2	16.7 12.1 7.9 8.9	25.5 7.5 8.2 7.8	8/2	9 0 2.5 10 20	3.0 3.1 2.3 2.0	1.6 2.6 2.0 2.0	2.4 3.2 3.8 4.0	
10/21	0 2.5 10 20	5.2 5.1 5.6 4.4	4.8 5.5 5.9 4.8	4.8 4.7 8.0 4.8	10/	21 0 2.5 10 20	4.0 3.6 2.8 2.9	2.4 3.6 3.2 3.4	3.1 4.0 5.2 4.2	
1987 4/28	0 2.5 10 20	14.3 8.8 11.5 11.4	5.8 5.3 7.3 17.5	7.7 17.7 20.9 12.2	198 4/2	87 8 0 2.5 10 20	8.0 6.1 6.1 5.1	5.2 4.7 6.2 6.2	5.6 5.4 4.6 5.7	
6/26	0 2.5 10 20	17.3 31.7 10.0 9.8	10.0 21.2 17.0 6.2	13.9 40.9 29.6 36.8	7/1	7 0 2.5 10. 20	7.2 8.1 9.0 8.0	5.3 6.0 7.2 5.9	4.7 5.2 5.7 6.8	
8/21	0 2.5 10 20	15.0 11.0 4.5 5.2	4.6 8.9 14.3 6.3	9.0 15.1 8.7 15.8	9/0	4 0 2.5 10 20	6.5 4.9 7.0 7.8	7.1 5.4 8.2 7.0	6.8 4.7 6.6 5.2	
10/15	0 2.5 10 20	$4.0 \\ 4.6 \\ 1.8 \\ 4.8$	1.7 8.2 3.7 4.2	4.0 6.5 4.2 2.8	10/	(15 0 2.5 10 20	4.4 6.2 5.9 6.6	7.9 6.9 4.7 3.7	7.2 3.7 7.2 6.5	

Appendix C9. Nitrate Nitrogen (mg/kg) in Soils

	Appli- cation Rate	(Corn Plo	ts		Appli- cation Soybean Rate.			1 Plots	
Date	t/a	Rep 1	Rep 2	Rep 3	Date	t/a	Rep 1	Rep 2	Rep 3	
1986 4/24	0 2.5 10 20	2580 2680 2450 2910	1870 2280 2320 2090	2280 2360 2330 2020	1986 5/21	$ \begin{array}{c} 0 \\ 2.5 \\ 10 \\ 20 \end{array} $	1580 1710 939 1210	792 1550 1160 920	1340 1200 981 1020	
6/13	0 2.5 10 20	2370 2170 2300 2700	1940 2190 2310 2230	2390 2100 2060 2260	7/18	0 2.5 10 20	2780 2360 939 1110	586 1900 886 1090	1240 1540 1060 1070	
8/13	0 2.5 10 20	2460 2460 2240 2640	1970 2280 2040 2140	2350 2270 2340 2330	8/29	0 2.5 10 20	1620 1640 583 941	518 1540 963 856	1530 1460 1150 1220	
10/21	0 2.5 10 20	2260 2200 2370 2620	1820 2020 2100 2110	2330 2290 2120 2240	10/21	0 2.5 20 20	2040 1080 961 1030	849 1650 1190 883	1470 1290 770 1250	
1987 4/28	0 2.5 10 20	1910 1810 1010 822	1580 790 1010 1080	1280 1450 1020 1310	1987 4/28	0 2.5 10 20	2170 2740 2150 2320	1890 1890 1910 2150	2120 2170 2020 2130	
6/26	0 2.5 10 20	2220 2250 1110 1360	800 1760 1190 1160	1860 1750 1310 1520	7/17	0 2.5 10 20	2600 2580 2720 2920	2030 2330 2230 2320	2580 2400 2060 2470	
8/21	0 2.5 10 20	1920 1820 794 680	669 1520 845 597	1220 1320 757 1020	9/04	0 2.5 10 20	2180 2080 2250 2440	1580 2150 2100 2060	2160 2010 2060 2100	
10/15	0 2.5 10 20	1650 1590 813 820	709 1290 1020 800	1300 1310 876 1050	10/15	0 2.5 10 20	2100 2100 2040 2370	1720 2050 1870 1890	2070 1960 1850 1890	

Appendix C10. Total Kjeldahl Nitrogen (mg/kg) in Soils

	Appli- cation Rate	Corn Plots				Appli- cation Rate,	Soybean Plots			
Date	t/a	Rep 1	Rep 2	Rep 3	Date	t/a	Rep 1	Rep 2	Rep 3	
1986 4/24	0 2.5 10 20	2590 2720 2470 2940	1890 2300 2350 2110	2290 2420 2410 2050	1986 5/21	0 2.5 10 20	1590 1710 940 1210	794 1560 1160 920	1340 1200 984 1020	
6/13	0 2.5 10 20	2380 2180 2340 2730	1950 2220 2330 2250	2430 2110 2070 2270	7/18	0 2.5 10 20	2780 2370 940 1110	588 1900 888 1090	1240 1540 1070 1070	
8/13	0 2.5 10 20	2470 2480 2250 2650	1990 2290 2050 2150	2380 2280 2350 2340	8/29	0 2.5 10 20	1630 1650 585 943	520 1540 965 858	1530 1470 1160 1220	
10/21	0 2.5 10 20	2270 2210 2370 2630	1820 2030 2110 2110	2340 2300 2130 2250	10/21	0 2.5 10 20	2050 1080 964 1030	851 1650 1190 887	1480 1300 773 1260	
1987 4/28	0 2.5 10 20	1930 1820 1020 833	1590 790 1020 1100	1290 1470 1040 1320	1987 4/28	0 2.5 10 20	2190 2750 2160 2330	1890 1900 1920 2160	2130 2180 2020 2140	
6/26	0 2.5 10 20	2240 2280 1120 1370	810 1780 1210 1170	1880 1790 1350 1560	7/17	0 2.5 10 20	2610 2590 2730 2930	2040 2340 2340 2330	2590 2410 2070 2480	
8/21	0 2.5 10 20	1940 1830 799 685	674 1530 860 603	1230 1330 766 1030	9/04	0 2.5 10 20	2190 2090 2260 2450	1590 2160 2110 2070	2170 2020 2070 2110	
10/15	0 2.5 10 20	1650 1600 815 825	711 1300 1030 804	1300 1320 880 1050	10/15	0 2.5 10 20	2110 2110 2050 2380	1730 2060 1880 1900	2180 1970 1860 1900	

Appendix C11. Total Nitrogen (mg/kg) in Soils

	Appli- cation	(Corn Plot	S		Appli- cation	So	oybean Plots		
Date	t/a	Rep II	L Rep 2	Rep 3	Date	t/a	Rep 1	Rep 2	Rep 3	
1986 4/24	0 2.5 10 20	12 18 16 13	12 7.1 20 16	4.8 9.4 10 11	1986 5/21	0 2.5 10 20	17 14 19 25	14 18 18 19	18 23 17 54	
6/13	0 2.5 10 20	15 9.7 13 20	20 17 27 24	4.2 5.9 11 13	7/18	0 2.5 10 20	42 28 20 16	18 40 25 18	17 34 29 20	
8/13	0 2.5 10 20	18 16 21 21	16 17 16 19	4.5 9.8 15 15	8/29	0 2.5 10 20	24 17 24 33	23 15 18 16	21 28 23 26	
10/21	0 2.5 10 20	17 16 17 24	17 17 21 25	4.6 8.2 11 11	10/21	0 2.5 10 20	22 23 19 23	17 21 28 22	18 31 20 37	
1987 4/28	0 2.5 10 20	15 12 8.9 12	11 12 13 18	7.7 13 9.2 10	1987 4/28	0 2.5 10 20	13 9.2 8.4 12	11 9.2 17 20	4.1 8.2 9.7 8.3	
6/26	0 2.5 10 20	16 16 20 20	12 12 13 12	11 25 11 20	7/17	0 2.5 10 20	17 18 15 17	8.3 13 11 26	6.2 11 14 9.0	
8/21	0 2.5 10 20	12 13 13 12	8.3 12 11 10	16 10 12 20	9/04	0 2.5 10 20	14 11 13 18	14 12 21 24	5.7 8.0 12 14	
10/15	0 2.5 10 20	14 14 18 18	12 13 9.8 14	11 19 6.7 16	10/15	0 2.5 10 20	14 16 11 19	13 11 19 18	6.0 11 17 12	

Appendix C12. Bray P-1 (mg/kg) in Soils

	Appli- cation Rate	- Corn Plots				Appli- cation Rate	Soybean Plots			
Date	t/a	Rep 1	Rep 2	Rep 3	Date	t/a	Rep 1	Rep 2	Rep 3	
1986 4/24	0 2.5 10 20	500 508 537 618	402 379 477 616	796 603 472 696	1986 5/21	0 2.5 10 20	746 597 545 491	392 730 464 428	503 642 623 606	
6/13	0 2.5 10 20	645 573 577 895	569 581 626 708	770 625 646 813	7/18	0 2.5 10 20	700 676 516 492	508 636 505 475	617 607 712 550	
8/13	0 2.5 10 20	602 562 527 815	515 574 579 640	789 642 584 653	8/29	0 2.5 10 20	636 573 477 432	567 570 450 452	506 636 653 533	
10/21	0 2.5 10 20	618 410 587 781	533 539 530 640	771 622 589 696	10/21	0 2.5 10 20	624 597 530 394	506 591 486 429	439 610 341 426	
1987 4/28	0 2.5 10 20	554 585 448 454	539 554 447 565	448 633 606 504	1987 4/28	0 2.5 10 20	561 570 546 713	652 533 675 614	693 492 486 618	
6/26	0 2.5 10 20	570 601 504 486	526 582 491 487	516 586 656 544	7/17	0 2.5 10 20	529 643 592 662	601 537 618 643	849 472 623 768	
8/21	0 2.5 10 20	688 632 536 537	793 662 574 601	586 720 676 627	9/04	$ \begin{array}{c} 0 \\ 2.5 \\ 10 \\ 20 \end{array} $	550 544 602 826	601 555 657 706	677 669 635 716	
10/15	0 2.5 10 20	595 620 521 540	584 558 452 464	486 613 589 515	10/15	0 2.5 10 20	725 676 696 702	599 581 692 643	876 706 697 771	

Appendix C13. Total Phosphorus (mg/kg) in Soils

	Appli- cation Rate.	ation Corn Plots Rate,				Appli- cation Rate.	Soybean Plots			
Date	t/a	Rep 1	Rep 2	Rep 3	Date	t/a	Rep 1	Rep 2	Rep 3	
1986 4/24	0 2.5 10 20	860 790 790 800	780 800 880 960	650 800 660 690	1986 5/21	0 2.5 10 20	700 860 740 820	790 1080 830 770	710 1010 720 860	
6/13	0 2.5 10 20	610 720 830 670	820 830 850 720	750 760 710 670	7/18	0 2.5 10 20	1060 610 630 760	600 840 880 790	530 610 580 540	
8/13	0 2.5 10 20	700 630 540 620	420 520 460 480	480 420 560 570	8/29	0 2.5 10 20	760 560 780 630	680 670 670 640	730 640 590 610	
10/21	0 2.5 10 20	650 620 630 730	630 670 670 600	660 620 650 630	10/21	0 2.5 10 20	860 800 670 900	790 820 580 720	560 880 580 570	
1987 4/28	0 2.5 10 20	1010 1000 196 1592	400 377 993 604	1586 399 1381 798	1987 4/28	0 2.5 10 20	821 800 807 997	767 798 823 397	804 599 403 782	
6/26	0 2.5 10 20	950 985 910 1445	1040 1080 740 850	1220 930 880 1170	7/17	0 2.5 10 20	920 830 850 860	740 830 1000 800	780 940 970 1000	
8/21	0 2.5 10 20	696 755 725 731	700 757 704 737	673 760 653 738	9/04	$\begin{array}{c} 0 \\ 2.5 \\ 10 \\ 20 \end{array}$	731 742 648 712	513 681 713 696	765 643 655 722	
10/15	0 2.5 10 20	759 746 859 734	926 763 841 717	559 892 711 784	10/15	$0 \\ 2.5 \\ 10 \\ 20$	717 724 592 766	621 635 729 570	613 578 618 625	

Appendix C14. Potassium (mg/kg) in Soils

	Appli- cation	Corn Plots				Appli- cation Rate,	Soybean Plots		
Date	t/a	Rep 1	Rep 2	Rep 3	Date	t/a	Rep 1	Rep 2	Rep 3
1986					1986				
4/24	0	9300	9400	9300	5/21	0	9300	9300	10700
	2.5	10600	10200	10400		2.5	10200	9900	9800
	10	10500	9900	9700		10	9100	10000	7400
	20	9600	10500	9100		20	10600	9500	10400
6/13	0	10000	10100	10600	7/18	0	10300	10100	10500
	2.5	10500	10200	11100		2.5	10200	10200	11200
	10	8500	10300	11400		10	10400	10800	9600
	20	11400	10300	10600		20	10/00	10200	9500
8/13	0	11000	10000	10900	8/29	0	11300	10200	11500
	2.5	9200	9800	10200		2.5	11000	10700	10400
	10	10100	10000	10100		10	10800	10100	9500
	20	10700	10900	10900		20	10400	10100	9800
10/21	0	9600	9800	9800	10/21	0	11300	10500	11400
	2.5	10300	10600	10500		2.5	11500	10400	10700
	10	10300	10400	10400		10	9800	11800	9100
	20	10900	10500	10100		20	11300	11500	10000
1987		10 - 00		10.100	1987	_			
4/28	0	10700	8800	10400	4/28	0	9300	8500	8900
	2.5	11100	10000	10100		2.5	9900	8400	8/00
	10	10100	9500	6800		10	9400	9400	8800
	20	9600	10000	8200		20	9300	8200	8800
6/26	0	14400	12700	18200	7/17	0	10800	9500	10400
	2.5	14500	15900	12400		2.5	9600	11000	13100
	10	13200	12300	12300		10	10300	11000	14400
	20	20700	12100	15200		20	10300	11800	13900
8/21	0	10500	11200	12200	9/04	0	9900	9900	10900
	2.5	11100	11700	10800		2.5	11500	10800	9300
	10	11800	11200	9800		10	10800	10300	11000
	20	11700	11600	10500		20	11100	11700	11200
10/15	0	11400	10200	12800	10/15	0	10200	9600	9100
	2.5	11700	12400	12100		2.5	10200	9200	10500
	10	12400	12300	9800		10	9800	11000	12000
	20	11300	11600	11900		20	11400	10300	9300

Appendix C15. Total Aluminum (mg/kg) in Soils

Appendix C16. Boron (mg/kg) in Soils

	Appli- cation	Corn Plots				Appli- cation	Soybean Plots			
Date	t/a	Rep 1	Rep 2	Rep 3	Date	t/a	Rep 1	Rep 2	Rep 3	
1986 4/24	0 2.5 10 20	0.48 0.36 0.38 0.36	0.28 0.27 0.25 0.17	0.19 0.19 0.25 0.35	1986 5/21	0 2.5 10. 20	0.46 0.42 0.28 0.22	0.28 0.23 0.21 0.22	0.54 0.28 0.50 0.47	
6/13	0 2.5 10 20	0.49 0.46 0.59 0.39	0.35 0.38 0.44 0.43	0.38 0.60 0.45 0.44	7/18	0 2.5 10 20	0.70 0.46 0.27 0.28	0.21 0.29 0.21 0.19	0.21 0.31 0.28 0.19	
8/13	0 2.5 10 20	0.45 0.29 0.55 0.43	0.27 0.53 0.35 0.50	0.34 0.36 0.32 0.34	8/29	0 2.5 10 20	0.64 0.42 0.19 0.21	0.14 0.28 0.36 0.18	0.34 0.18 0.36 0.26	
10/21	$\begin{array}{c} 0 \\ 2.5 \\ 10 \\ 20 \end{array}$	0.59 0.48 0.48 0.41	0.33 0.53 0.37 0.39	0.41 0.36 0.24 0.32	10/21	0 2.5 10 20	0.38 0.36 0.20 0.12	0.15 0.20 0.09 0.05	$\begin{array}{c} 0.27 \\ 0.08 \\ 0.19 \\ 0.10 \end{array}$	
1987 4/28	0 2.5 10 20	0.62 0.60 0.51 0.31	0.37 0.53 0.33 0.37	0.31 0.25 0.20 0.24	1987 4/28	0 2.5 10 20	1.47 1.45 0.82 0.73	0.65 0.63 0.58 0.41	0.51 0.49 0.54 0.49	
6/26	0 2.5 10 20	0.20 0.20 0.20 0.30	0.30 0.30 0.20 0.30	0.10 0.10 0.20 0.20	7/17	0 2.5 10 20	0.10 0.30 0.20 0.30	0.33 0.33 0.36 0.34	0.48 0.32 0.32 0.24	
8/21	0 2.5 10 20	0.31 0.29 0.25 0.29	0.24 0.26 0.29 0.17	0.16 0.20 0.13 0.21	9/04	0 2.5 10 20	0.32 0.41 0.38 0.34	0.38 0.52 0.61 0.58	0.39 0.41 0.61 0.42	
10/15	0 2.5 10 20	0.47 0.43 0.41 0.34	0.27 0.40 0.34 0.31	0.21 0.17 0.27 0.23	10/15	0 2.5 10 20	0.41 0.44 0.48 0.43	0.27 0.35 0.42 0.41	0.29 0.35 0.35 0.34	

Appli- cation (Corn Plots Rate,						Appli- cation Soybean Plots Rate.			lots
Date	t/a	Rep 1	Rep 2	Rep 3	Date	t/a	Rep 1	Rep 2	Rep 3
1986 4/24	0 2.5 10 20	0.78 <0.10 1.33 0.80	0.99 0.29 0.20 <0.10	0.28 0.39 <0.10 <0.10	1986 5/21	0 2.5 10 20	0.76 0.28 0.19	$0.87 \\ 0.99 \\ 0.40 \\ 1.00$	<0.10 0.39 0.79 0.68
6/13	0 2.5 10 20	<0.10 0.10 0.17 0.89	<0.10 <0.10 <0.10 <0.10	<0.10 <0.10 <0.10 <0.10	7/18	0 2.5 10 20	0.29 <0.10 <0.10 <0.10	1.00 <0.10 0.66 1.42	1.59 1.36 1.88 0.56
8/13	0 2.5 10 20	<0.10 0.29 <0.10 <0.10	0.10 1.85 1.71 0.99	1.29 1.75 1.82 0.88	8/29	0 2.5 10 20	1.35 0.77 0.93 1.59	1.58 1.47 0.78 1.32	1.50 2.32 1.58 0.78
10/21	0 2.5 10 20	1.25 1.36 0.90 0.80	0.49 0.49 <0.10 1.41	$\begin{array}{c} 0.87 \\ 0.78 \\ 1.70 \\ 0.99 \end{array}$	10/2	$ \begin{array}{ccc} 1 & 0 \\ & 2.5 \\ & 10 \\ & 20 \end{array} $	0.87 <0.10 <0.10 0.68	0.76 <0.10 <0.10 0.29	0.77 0.60 0.10 <0.10
1987 4/28	0 2.5 10 20	$0.40 \\ 0.50 \\ 1.08 \\ 0.70$	0.50 0.57 0.50 0.60	0.20 0.40 0.89 0.70	1987 4/28	0 2.5 10 20	0.82 1.00 0.91 0.90	1.05 0.40 1.34 0.50	$\begin{array}{c} 0.80 \\ 0.80 \\ 0.60 \\ 1.00 \end{array}$
6/28	0 2.5 10 20	<0.10 0.20 0.15 0.70	0.50 0.50 0.60 0.70	0.20 0.50 0.90 0.30	7/17	0 2.5 10 20	$0.30 \\ 0.50 \\ 0.40 \\ 0.10$	$0.40 \\ 0.70 \\ 0.10 \\ 0.10$	0.30 0.50 0.30 0.20
8/21	0 2.5 10 20	0.39 0.60 0.49 0.69	0.60 0.50 0.77 0.53	0.46 0.69 1.27 1.09	9/04	0 2.5 10 20	0.29 0.59 0.30 0.58	0.39 0.49 0.43 0.20	0.39 1.09 0.90 0.50
10/15	0 2.5 10 20	0.56 0.69 0.39 0.60	0.39 0.40 0.79 0.89	0.30 0.59 0.59 0.89	10/1	5 0 2.5 10 20	$\begin{array}{c} 0.40 \\ 0.69 \\ 0.60 \\ 0.90 \end{array}$	0.59 0.50 0.99 0.30	0.70 0.89 0.60 0.79

Appendix C17. Cadmium (mg/kg) in Soils

	Appli- cation Rate	Corn Plots				Appli- cation Rate,	Soybean Plots			
Date 1986	t/a	Rep 1	Rep 2	Rep 3	Date 1986	t/a	Rep 1	Rep 2	Rep 3	
4/24	0 2.5 10 20	2490 2680 2860 3310	2490 2600 2450 4520	5890 3340 2800 3490	5/21	0 2.5 10 20	2530 2730 2320 2590	2360 2950 2050 2130	1910 8560 29150 6080	
6/13	0 2.5 10 20	2480 2800 2550 4320	2290 2460 2460 2520	9500 3910 3090 3370	7/18	0 2.5 10 20	2550 2620 1940 2110	2000 2260 1850 2000	2150 4430 19130 8860	
8/13	0 2.5 10 20	2590 25290 3090 3510	2220 2400 2340 2440	3840 3620 3320 4060	8/29	0 2.5 10 20	2870 2130 2850 2900	2640 2490 2260 2790	2710 6810 2340 5340	
10/21	0 2.5 10 20	2410 2550 2550 4290	2240 2310 2310 2510	4790 3310 3090 3760	10/21	0 2.5 10 20	2590 3000 2270 2730	2820 2570 2690 2960	2370 7080 21900 5830	
1987 4/28	0 2.5 10 20	3430 3400 2750 3180	2200 1890 2580 2820	2380 9780 23300 9370	1987 4/21	0 2.5 10 20	3490 3600 3430 4790	3640 3790 4110 4170	6830 5190 4630 5210	
6/26	0 2.5 10 20	2990 3480 2980 4570	2900 3040 2410 3230	2930 5070 28700 4590	7/17	0 2.5 10 20	3870 3300 4030 5080	3120 3590 3240 4380	6750 4370 4180 5690	
8/21	0 2.5 10 20	3080 2400 1320 2000	2360 2090 1850 3050	2360 5150 20000 7470	9/04	0 2.5 10 20	1900 1670 2770 3730	1720 2170 2530 3260	7040 3430 3470 4510	
10/15	0 2.5 10 20	2720 2950 2850 3060	2800 2590 2490 3030	2390 4590 20900 5830	10/15	0 2.5 10 20	2370 2650 2530 3550	2230 2070 2320 2890	5560 3700 5080 4360	

Appendix C18. Calcium (mg/kg) in Soils

	Appli- cation	C	Corn Plot	ts		Appli- cation Rate,	Soybean Plots		
Date	t/a	Rep 1	Rep 2	Rep 3	Date	t/a	Rep 1	Rep 2	Rep 3
1986					1986				
4/24	0 2.5 10 20	12 15 17 17	17 17 16 17	16 19 18 15	5/21	0 2.5 10 20	16 18 19 21	17 18 18 15	17 18 16 16
6/13	0 2.5 10 20	16 18 14 18	17 17 15 16	17 16 18 18	7/18	0 2.5 10 20	15 14 20 19	18 16 19 19	18 20 18 16
8/13	0 2.5 10 20	18 16 16 15	17 16 13 16	17 18 15 18	8/29	0 2.5 10 20	16 17 20 19	20 17 19 17	17 16 15 18
10/21	0 2.5 10 20	13 16 15 15	16 17 16 14	15 14 16 14	10/21	0 2.5 10 20	18 16 15 18	18 14 17 18	15 16 15 15

Appendix C19. Chromium (mg/kg) in Soils

Appendix C20. Copper (mg/kg) in Soils

	Appli- cation	Corn Plots				Appli- cation Rate	Soybean Plots		
Date	t/a	Rep 1	Rep 2	Rep 3	Date	t/a	Rep 1	Rep 2	Rep 3
1986 4/24	0 2.5 10 20	12 13 17 11	12 13 9 10	11 16 13 11	1986 5/21	0 2.5 10 20	11 14 16 18	17 16 15 16	13 13 11 14
6/13	0 2.5 10 20	11 12 8 12	15 13 12 11	14 12 13 13	7/18	0 2.5 10 20	13 13 16 15	16 12 16 16	18 17 18 15
8/13	0 2.5 10 20	15 17 16 15	38 16 13 13	15 15 14 16	8/29	0 2.5 10 20	16 17 16 14	16 13 15 16	12 12 10 11
10/2	0 2.5 10 20	11 12 12 12	13 14 12 11	13 12 12 10	10/21	0 2.5 10 20	14 13 16 15	16 13 15 16	13 14 12 12
1987 4/28	0 2.5 10 20	14 15 17 17	17 14 15 16	15 13 12 12	1987 4/28	0 2.5 10 20	11 13 14 12	14 15 11 10	13 12 13 15
6/26	0 2.5 10 20	21 17 25 30	26 23 22 22	21 18 19 22	7/17	0 2.5 10 20	20 19 19 21	18 19 29 19	18 19 22 23
8/21	0 2.5 10 20	15 16 21 20	21 19 19 19	17 17 16 18	9/04	0 2.5 10 20	14 18 15 15	16 16 14 15	15 13 15 16
10/15	0 2.5 10 20	15 16 20 20	19 16 20 19	17 16 15 17	10/15	0 2.5 10 20	12 15 16 15	15 15 13 13	15 15 16 16

	Appli- cation Rate	Cora Plots				Appli- cation Rate,	Soybean Plots		
Date	t/a	Rep 1	Rep 2	Rep 3	Date	t/a	Rep 1	Rep 2	Rep 3
1986					1986				
4/24	0	8900	12100	11500	5/21	0	11600	15500	13800
	2.5	12000	11700	11700		2.5	15400	14100	12400
	10	11500	10600	12/00		10	15/00	14500	10500
	20	9200	11400	10300		20	17000	13900	12300
6/13	0	10300	14100	12500	7/18	0	11400	15400	16600
	2.5	10900	12100	12300		2.5	12200	9600	17100
	10	9900	11900	13300		10	15500	15/00	15000
	20	11/00	11900	11300		20	16200	16200	13000
8/13	0	16800	18700	16500	8/29	0	16100	20500	17200
	2.5	12000	14/00	14800		2.5	18000	15800	12200
	10	1/200	16000	13800		10	19700	18/00	12700
	20	14200	10000	13000		20	17000	10000	11500
10/21	0	10200	13000	12200	10/21	0	13300	17700	18400
	2.5	12800	13800	12000		2.5	14100	11500	17100
	10	13100	11900	13400		10	13900	20500	15500
	20	10100	11500	11100		20	18100	19800	16300
1027					1097				
1707	0	17200	18600	18800	1/28	0	14600	16000	15500
4/20	2.5	17800	16000	17000	4/20	2.5	16000	17000	13600
	10	18900	16700	14000		10	16100	15600	15700
	20	18500	19700	14400		20	14600	13300	16000
6/26	0	17800	20000	21400	7/17	0	18300	17300	15800
	2.5	16200	21100	16500		2.5	15500	16200	16500
	10	19100	16600	16100		10	16000	16100	21200
	20	30000	17000	18800		20	14400	17300	19600
8/21	0	15400	19700	17800	9/04	0	14200	14900	16900
	2.5	17900	14100	16600		2.5	16500	17700	13000
	10	19100	19100	14700		10	11000	15100	15500
	20	20400	19000	16200		20	12200	14900	16100
10/15	0	15800	22200	18800	10/15	0	13100	15400	16500
	2.5	17400	19000	17500		2.5	10800	16600	12500
	10	21200	21300	14200		10	15300	15200	14900
	20	18/00	13000	15/00		20	13200	13900	13800

Appendix C21. Iron (Total) (mg/kg) in Soils

Appendix C22. Lead (mg/kg) in Soils

	Appli- cation	Corn Plots				Appli- cation	Soybean Plots			
Date	t/a	Rep 1	Rep 2	Rep 3	Date	t/a	Rep 1	Rep 2	Rep 3	
1986 4/24	0 2.5 10 20	16 17 20 17	18 18 19 14	18 18 19 20	1986 5/21	0 2.5 10 20	19 21 16 14	16 17 17 14	13 14 17 16	
6/13	0 2.5 10 20	14 21 15 20	15 17 16 14	14 15 16 18	7/18	0 2.5 10 20	17 18 18 13	17 19 17 12	15 20 20 13	
8/13	0 2.5 10 20	14 12 15 14	10 8 15 16	13 18 15 19	8/29	0 2.5 10 20	18 13 16 18	21 18 22 20	22 20 19 18	
10/21	0 2.5 10 20	21 21 21 23	22 21 15 15	17 15 14 18	10/21	0 2.5 10 20	16 19 17 16	17 17 13 13	15 15 19 15	
1987 4/28	0 2.5 10 20	20 15 18 13	13 17 15 20	18 14 22 14	1987 4/28	0 2.5 10 20	15 16 18 12	18 17 19 16	15 17 15 17	
6/26	0 2.5 10 20	20 18 18 25	26 21 16 14	21 17 23 19	7/17	0 2.5 10 20	21 16 16 17	19 17 19 20	17 17 20 21	
8/21	0 2.5 10 20	14 15 16 16	16 19 16 18	16 17 17 17	9/04	0 2.5 10 20	18 16 15 17	19 21 19 17	16 15 16 20	
10/15	0 2.5 10 20	18 18 18 19	16 15 19 17	19 18 19 18	10/15	$\begin{array}{c} 0 \\ 2.5 \\ 10 \\ 20 \end{array}$	11 22 15 17	21 16 15 17	16 19 15 15	

	Appli- cation	Corn Plots				Appli- cation	Soybean Plots		
Date	t/a	Rep 1	Rep 2	Rep3	Date	t/a	Rep 1	Rep2	Rep 3
1986 4/24	0 2.5 10 20	1520 1820 1750 1590	2000 1670 1710 1930	3140 1750 1750 1950	1986 5/21	0 2.5 10 20	1820 2320 2690 3030	2680 2210 2440 2520	2200 5440 25710 3610
6/13	0 2.5 10 20	1560 1730 1450 1840	2110 1760 1740 1680	5260 1770 1770 1940	7/18	0 2.5 10 20	1770 1750 2590 2840	2600 2080 2610 2760	2150 3120 13900 5900
8/13	0 2.5 10 20	$1630 \\ 24240 \\ 1620 \\ 1600$	1920 1620 1680 1650	2100 1570 1600 1970	8/29	0 2.5 10 20	2050 2130 2710 2650	2690 2080 2400 2370	1970 4300 1450 3750
10/21	0 2.5 10 20	1450 1670 1610 1760	1990 1680 1620 1620	2380 1640 1720 1810	10/2	$ \begin{array}{ccc} 1 & 0 \\ 2.5 \\ 10 \\ 20 \end{array} $	1910 2090 2270 2820	2820 1930 2390 2520	2230 3990 12760 3340
1987 4/28	0 2.5 10 20	2420 2600 3140 2990	3000 2450 2780 3020	2780 5590 11000 5390	1987 4/28	0 2.5 10 20	2050 2200 2020 2000	2300 1990 2260 1790	3210 2000 2010 2210
6/26	0 2.5 10 20	2310 2030 2800 4110	2870 2650 2400 2730	3020 3330 11330 3540	7/17	0 2.5 10 20	1920 1610 1660 1570	1840 1720 1670 1730	2640 2110 2370 2340
8/21	0 2.5 10 20	2060 1580 2090 1910	2430 1970 1810 2240	1770 2260 10750 3090	9/04	0 2.5 10 20	970 1100 1180 1180	1610 1090 1240 1350	2390 1180 1280 1490
10/15	0 2.5 10 20	1430 1480 2220 2160	2280 1620 2090 2050	1890 2600 15870 3230	10/15	5 0 2.5 10 20	1230 1390 1290 1400	1650 1390 1440 1450	2570 1580 1670 1560

Appendix C23. Magnesium (mg/kg) in Soils

	Appli- cation Rate,	Corn Plots				Appli- cation Rate,	Soybean Plots			
Date	t/a	Rep 1	Rep 2	Rep 3	Date	t/a	Rep 1	Rep 2	Rep 3	
1986 4/24	0 2.5 10 20	500 530 510 340	720 820 560 570	590 410 640 520	1986 5/21	0 2.5 10 20	600 700 680 710	600 660 580 590	590 600 470 610	
6/13	0 2.5 10 20	480 490 400 410	790 720 570 610	520 490 610 600	7/18	0 2.5 10 20	600 670 670 660	620 570 630 580	600 660 560 590	
8/13	0 2.5 10 20	560 590 520 370	830 610 570 630	670 540 630 470	8/29	0 2.5 10 20	630 610 670 640	650 590 620 620	650 650 520 590	
10/21	0 2.5 10 20	510 440 570 410	670 870 610 580	480 440 620 600	10/21	0 2.5 10 20	650 620 610 720	650 600 640 610	620 620 550 580	
1987 4/28	0 2.5 10 20	590 640 700 640	620 610 610 630	610 560 500 550	1987 4/28	0 2.5 10 20	480 480 500 360	710 1550 580 640	410 390 620 680	
6/26	0 2.5 10 20	690 640 770 970	770 670 690 680	740 670 650 630	7/17	0 2.5 10 20	590 490 440 390	1160 920 530 690	550 460 840 720	
8/21	0 2.5 10 20	780 900 960 970	840 820 880 880	870 760 790 800	9/04	0 2.5 10 20	880 660 640 540	930 1050 810 910	620 650 880 820	
10/15	0 2.5 10 20	810 890 990 960	920 850 790 730	960 850 730 920	10/15	0 2.5 10 20	610 720 620 560	1060 900 680 680	890 480 860 730	

Appendix C24. Manganese (mg/kg) in Soils

	Appli- cation	Corn Plots				Appli- cation Rate	Soybean Plots		
Date	t/a	Rep 1	Rep2	Rep 3	Date	t/a	Rep 1	Rep 2	Rep 3
1986 4/24	0 2.5 10 20	18 25 22 19	23 22 18 23	26 24 27 23	1986 5/21	0 2.5 10 20	26 30 33 37	32 32 33 32	32 27 27 31
6/13	0 2.5 10 20	19 21 17 19	27 24 19 21	26 18 27 29	7/18	0 2.5 10 20	27 24 34 34	31 23 34 30	29 30 28 26
8/13	0 2.5 10 20	27 31 24 24	29 25 25 26	30 22 24 25	8/29	0 2.5 10 20	28 29 36 33	38 31 36 31	32 31 24 29
10/21	0 2.5 10 20	24 24 31 26	28 29 21 24	30 27 26 26	10/21	0 2.5 10 20	30 29 31 34	37 30 32 33	32 30 31 25
1987 4/28	0 2.5 10 20	19 17 15 15	23 11 14 22	23 24 15 14	1987 4/28	0 2.5 10 20	4 12 10 1	8 15 7 8	11 7 14 11
6/26	0 2.5 10 20	14 12 18 27	19 17 17 16	17 15 15 15	7/17	0 2.5 10 20	13 12 11 10	15 15 12 13	11 12 16 17
8/21	0 2.5 10 20	10 10 14 14	14 10 12 14	12 13 13 14	9/04	0 2.5 10 20	9 11 9 9	11 12 9 8	11 8 10 10
10/15	0 2.5 10 20	11 11 15 14	19 13 16 14	16 13 13 13	10/15	0 2.5 10 20	7 12 14 12	13 12 10 9	13 10 12 11

Appendix C25. Nickel (mg/kg) in Soils

Appendix C26. Zinc (mg/kg) in Soils

	Appli- cation Rate	Corn Plots				Appli- cation	Soybean Plots			
Date	t/a	Rep 1	Rep 2	Rep 3	Date	t/a	Rep 1	Rep 2	Rep 3	
1986 4/24	0 2.5 10 20	40 41 42 34	40 38 40 42	33 33 38 34	1986 5/21	0 2.5 10 20	35 41 43 47	43 42 39 42	38 43 36 45	
6/13	0 2.5 10 20	36 39 31 38	46 37 42 39	36 33 38 37	7/18	0 2.5 10 20	44 38 45 44	44 36 44 41	34 37 39 34	
8/13	0 2.5 10 20	43 39 40 37	44 39 38 41	41 39 39 38	8/29	0 2.5 10 20	38 37 46 42	44 38 40 41	39 37 36 34	
10/21	0 2.5 10 20	41 42 40 39	42 43 41 40	37 36 39 39	10/21	0 2.5 10 20	42 40 45 46	45 37 44 45	41 40 36 37	
1987 4/28	0 2.5 10 20	41 42 48 46	44 40 44 44	41 40 36 35	1987 4/28	0 2.5 10 20	43 45 42 37	44 43 44 39	38 33 39 43	
6/26	0 2.5 10 20	54 63 58 82	61 58 52 58	56 51 56 99	7/17	0 2.5 10 20	56 54 52 67	50 53 59 60	46 49 57 60	
8/21	0 2.5 10 20	36 40 47 48	44 45 42 44	37 42 42 43	9/04	0 2.5 10 20	43 48 46 39	47 47 47 52	40 33 42 46	
10/15	0 2.5 10 20	44 43 52 51	49 53 51 49	46 43 40 47	10/15	0 2.5 10 20	48 44 44 43	45 43 53 46	39 41 48 45	

	Appli- cation	Corn Plots				Appli- cation	Soybean Plots			
Date	t/a	Rep 1	Rep 2	Rep 3	Date	t/a	Rep 1	Rep 2	Rep 3	
1986 4/24	0 2.5 10 20	5.4 7.5 3.1 5.3	2.8 3.1 1.9 4.0	2.8 1.9 1.8 2.4	1986 5/21	0 2.5 10 20	3.1 3.3 2.2 2.0	0.4 1.0 0.6 1.1	13 14 19 13	
6/13	0 2.5 10 20	2.8 2.6 2.1 5.2	2.5 2.7 2.5 2.5	2.9 2.0 2.9 2.7	7/18	0 2.5 10 20	2.9 2.4 0.9 1.6	1.6 2.3 1.6 1.6	2.0 15 2.3 1.4	
8/13	0 2.5 10 20	0.2 1.2 1.3 1.9	0.6 1.3 1.7 1.4	3.0 2.5 2.8 2.9	8/29	0 2.5 10 20	1.2 2.9 2.9 2.2	1.2 1.1 1.3 0.9	1.0 1.5 1.7 1.8	
10/21	0 2.5 10 20	2.7 1.9 2.2 2.1	1.4 3.0 4.1 4.8	1.8 2.7 1.3 1.5	10/21	0 2.5 10 20	1.4 1.8 1.4 3.1	0.2 1.1 1.0 0.5	0.9 1.2 2.2 2.0	
1987 4/28	0 2.5 10 20	1.6 1.4 0.8 1.3	1.0 1.7 3.5 1.6	1.7 1.5 2.3 7.7	1987 4/28	0 2.5 10 20	0.8 1.2 1.6 1.2	4.1 4.7 4.1 3.6	1.2 1.9 1.8 1.2	
6/26	0 2.5 10 20	17.2 7.0 3.7 2.4	11.6 3.1 9.1 4.1	9.1 4.1 4.8 5.4	7/17	0 2.5 10 20	18.1 4.9 5.8 4.5	3.8 4.2 4.5 3.2	5.7 6.8 8.2 6.6	
8/21	0 2.5 10 20	3.4 4.3 7.3 8.8	3.5 9.2 8.5 2.9	12.3 7.5 3.0 3.6	9/04	0 2.5 10 20	3.3 3.2 3.0 3.8	5.3 1.5 7.0 4.5	6.3 13.9 7.4 7.1	
10/15	0 2.5 10 20	2.4 6.1 3.0 3.3	2.1 2.1 2.9 1.2	7.2 3.0 2.9 4.5	10/15	0 2.5 10 20	2.6 8.0 5.5 7.7	9.3 7.0 5.8 6.2	4.0 3.0 3.5 2.7	

Appendix C27. Percent Sand in Soil

Appendix C28. Percent Silt in Soils

	Appli- cation	Corn Plots				Appli- cation	Soybean Plots		
Date	t/a	Rep 1	Rep 2	Rep 3	Date	t/a	Rep 1	Rep 2	Rep 3
1986 4/24	0 2.5 10 20	65.4 69.2 68.6 68.2	64.9 63.7 71.9 65.9	72.9 72.9 68.9 73.9	1986 5/21	0 2.5 10 20	65.8 63.3 60.9 65.6	64.1 65.1 66.5 65.8	64.6 72.2 75.2 70.6
6/13	0 2.5 10 20	70.1 64.7 71.5 67.3	69.7 70.1 71.4 72.6	72.4 69.9 68.7 71.0	7/18	0 2.5 10 20	73.7 69.4 68.6 62.9	64.4 69.4 66.5 65.5	66.7 71.8 75.3 70.4
8/13	0 2.5 10 20	70.6 67.8 71.7 63.5	66.4 68.3 67.2 71.7	66.9 66.2 65.1 65.7	8/29	0 2.5 10 20	65.5 66.1 59.9 63.6	65.3 66.6 65.6 69.2	65.6 71.9 74.3 69.9
10/21	0 2.5 10 20	63.0 62.7 64.0 64.3	66.4 62.8 65.5 63.3	69.0 62.6 67.2 66.6	10/21	0 2.5 10 20	66.8 63.7 64.5 56.6	64.3 65.8 65.0 68.5	64.6 70.0 88.9 68.7
1987 4/28	0 2.5 10 20	66.8 66.4 66.7 64.0	70.5 73.5 91.1 74.8	72.1 76.3 81.0 75.0	1987 4/28	0 2.5 10 20	63.7 65.1 66.6 68.0	67.7 71.0 69.7 74.0	75.8 69.9 70.1 75.7
6/26	0 2.5 10 20	60.9 74.8 65.2 66.5	66.9 72.0 60.8 75.1	60.1 72.4 77.2 66.8	7/17	0 2.5 10 20	61.8 73.1 73.3 74.4	86.0 87.0 83.4 86.5	80.8 74.1 73.3 74.7
8/21	0 2.5 10 20	76.9 73.7 65.6 58.6	68.6 63.4 62.1 64.5	65.9 71.8 79.5 74.3	9/04	0 2.5 10 20	70.8 64.3 70.5 68.5	74.8 72.4 69.5 73.9	75.7 59.6 76.7 70.8
10/15	0 2.5 10 20	69.0 68.8 64.8 62.9	67.7 67.7 65.3 68.4	66.7 73.3 75.9 72.1	10/15	0 2.5 10 20	71.5 66.8 71.2 66.4	62.8 67.5 72.5 68.4	76.0 74.1 71.8 72.8
Appendix C29. Percent Clay in Soils

	Appli- cation	C	Corn Plot	ts		Appli- cation	So	ybean Pl	ots
Date	t/a	Rep 1	Rep 2	Rep 3	Date	e t/a	Rep 1	Rep 2	Rep 3
1986 4/24	0 2.5 10 20	29.2 23.3 28.3 26.5	32.3 33.2 26.2 30.1	24.3 25.2 29.3 23.7	1986 5/21	0 2.5 10 20	31.1 33.4 36.9 32.4	35.5 33.9 32.9 33.1	34.1 26.4 22.9 28.1
6/13	0 2.5 10 20	27.1 32.7 26.4 27.5	27.8 27.2 26.1 24.9	24.7 28.1 28.4 26.3	7/18	0 2.5 10 20	23.4 28.2 30.5 35.5	34.0 28.3 31.9 32.9	31.3 26.7 22.4 28.2
8/13	0 2.5 10 20	29.2 31.0 27.0 34.6	33.0 30.4 31.1 26.9	30.1 31.3 32.1 31.4	8/29	0 2.5 10 20	33.3 31.0 37.2 34.2	33.5 32.3 33.1 29.9	33.4 26.6 24.0 28.3
10/21	0 2.5 10 20	34.3 35.4 33.8 33.6	32.2 34.2 30.4 31.9	29.2 34.7 31.5 31.9	10/2	$\begin{array}{ccc} 1 & 0 \\ & 2.5 \\ & 10 \\ & 20 \end{array}$	31.8 34.5 34.1 40.3	35.5 33.1 34.0 31.0	34.5 28.8 8.9 29.3
1987 4/28	0 2.5 10 20	31.6 32.2 32.5 34.7	28.5 24.8 5.4 23.6	26.2 22.2 16.7 17.3	1987 4/28	0 2.5 10 20	35.5 33.7 31.8 30.8	28.2 24.3 26.2 22.4	23.0 28.2 28.1 23.1
6/26	0 2.5 10 20	21.9 18.2 31.1 31.1	21.5 24.9 30.1 20.8	30.8 23.5 18.0 27.8	7/17	0 2.5 10 20	20.2 22.0 20.9 21.1	10.2 8.8 12.1 10.3	13.5 19.1 18.5 18.7
8/21	0 2.5 10 20	19.7 22.0 27.1 32.6	27.9 27.4 29.4 32.6	21.8 20.7 17.5 22.1	9/04	0 2.5 10 20	25.9 32.5 26.5 27.7	19.9 26.1 23.5 21.6	18.0 26.5 15.9 22.1
10/15	0 2.5 10 20	28.6 25.1 32.2 33.8	30.2 30.2 31.8 30.4	26.1 23.7 21.2 23.4	10/1	5 0 2.5 10 20	25.9 25.2 23.3 25.9	27.9 25.5 21.7 25.4	20.0 22.9 24.7 24.5

_	CORN						SOYBEANS			
Sludge	Yield,	% grain mois-	Test weight,	Population,	Yield,	% grain mois-	Height,	Population,		
t/a	bu/a	ture	lb/bu	plants/a	bu/a	ture	inches	plants/a		
1986										
0	230.77 212.03 220.22	15.8 16.0 16.0	54.3 53.3 54.8	25,560 24,390 25,260	42.06 32.77 45.98	13.1 13.0 13.1	36.8 38.5 32.7	127,200 137,650 144,620		
2.5	215.84 201.94 212.55	16.3 16.4 17.4	54.4 54.6 54.6	23,520 24,100 25,560	50.16 32.62 46.41	13.3 13.5 13.1	36.4 38.5 36.3	130,680 137,650 130,680		
10	211.43 198.60 200.92	17.3 15.9 16.8	54.5 55.7 54.8	24,390 22,070 23,810	35.97 38.72 47.38	13.8 13.0 12.9	36.5 36.3 36.2	139,390 130,680 116,740		
20	225.88 223.76 216.55	15.6 16.2 17.4	55.9 56.3 55.3	25,260 25,560 24,390	43.04 39.66 37.62	13.7 13.3 13.3	35.5 37.1 33.3	128,940 115,000 123,710		
1987										
0	210.44 121.06 157.92	18.1 18.1 19.1		23,610 13,430 20,810	41.45 42.68 43.50	8.1 8.0 8.0	35.8 37.4 35.0	132,420 109,770 125,450		
2.5	210.96 204.05 199.91	17.7 18.0 17.6		24,200 21,540 21,840	41.66 41.64 35.83	8.0 8.0 8.0	35.2 37.6 32.3	121,100 108,900 130,680		
10	101.75 129.98 180.22	17.6 17.3 17.2		10,030 12,340 22,400	39.74 39.92 31.66	8.0 8.0 8.2	36.4 35.3 30.6	120,230 126,620 109,770		
20	136.71 183.15 217.39	17.9 18.2 17.4		11,660 20,660 21,100	38.74 45.96 40.21	8.7 8.2 8.1	36.3 34.8 37.9	103,670 124,580 124,580		

Appendix D. Yields and Plant Parameters

	S	Corn sludge apj	plots plied, t/a			Soybe sludge a	an plots pplied, t/a	l
Constituent	0	2.5	10	20	0	2.5	10	20
Aluminum	<10	<10	<10	<10	12	11	14	<10
Al,mg/kg	<10	<10	<10	<10	<10	14	<10	<10
	<10	<10	<10	<10	14	<10	<10	11
Cadmium	0.1	0.1	<.1	<.1	0.3	0.2	0.3	0.2
Cd, mg/kg	0.1	0.2	0.2	0.2	0.2	0.2	0.2	0.2
Coloium	0.1	0.1	0.1	0.1	0.2	0.2	0.2	0.2
	0.0070	0.0040	0.0040	0.0110	0.2080	0.1970	0.1970	0.2010
Ca, 70	0.0000	0.0130	0.0000	0.0000	0.2030	0.2000	0.1990	0.1000
Chromium	0.2	0.2	0.1	0.2	0.1	0.2	0.2	0.2
Cr, mg/kg	0.2	0.2	0.2	0.0	0.4	0.3	0.3	0.3
	0.4	0.4	0.3	0.3	0.3	0.4	0.4	0.3
Copper	1	2	1	1	13	12	12	12
Cu, mg/kg	1	1	1	2	12	12	13	12
т	1	1	1	1	13	12	13	13
Iron	10	15 14	14 14	15 14	64 50	58 62	57 56	51 54
re, mg/kg	12	14 11	14 12	14 13	50 66	03 65	50 54	54 67
Lead		04		04^{13}	15	15	18	15
Ph. mg/kg	0.4	0.4	0.1	0.4	1.5	1.7	1.0	1.5
10, 119 Kg	0.2	0.1	0.6	0.5	1.3	1.4	1.0	1.3
Magnesium	0.075	0.075	0.062	0.067	0.172	0.169	0.167	0.176
М́д, %	0.073	0.078	0.080	0.078	0.176	0.180	0.187	0.189
	0.066	0.069	0.071	0.073	0.170	0.194	0.184	0.184
Manganese	7	7	6	8	21	20	23	22
Mn, mg/kg	1	9	8	7	22	22	23	25
Niekol	0	0	8 0.1	8 0 1	23 8 1	24 7 2	24 8 0	22 7.0
Ni mg/kg	0.1	0.0 0.4	0.1	0.1	8.1 8.7	7.5	6.9 69	7.9 59
INI, IIIg/Kg	0.0	$0.4 \\ 0.4$	0.0	$0.3 \\ 0.4$	88	2.4	2.6	30
Nitrogen	1.58	1.49	1.38	1.38	6.27	6.50	6.10	6.17
N, %	1.47	1.49	1.59	1.41	6.13	6.17	6.10	6.20
,	1.34	1.37	1.49	1.49	6.48	6.21	6.01	6.22
Phosphorus	0.14	0.14	0.11	0.11	0.64	0.65	0.65	0.64
P, %	0.12	0.11	0.12	0.11	0.65	0.65	0.65	0.65
D ()	0.10	0.09	0.12	0.11	0.62	0.64	0.61	0.61
Potassium	0.23	0.24	0.18	0.21	1.41	1.39	1.33	1.42
К, %	0.24	0.22	0.24	0.24	1.45	1.38	1.50	1.40
Zinc	0.25	20	0.19	1.20	1.40	1.55 /10	1.4J 6/	1.41 51
Zn mo/ko	15	$\frac{20}{25}$	$\frac{13}{20}$	10	<u>4</u> 9	89	<u>4</u> 9	49
	44	$\frac{20}{20}$	15	20^{10}	54	55	54	52
Crude protein	9.86	9.30	8.63	8.64	39.20	40.60	38.14	38.59
%	9.16	9.33	9.94	8.84	38.14	38.54	38.12	38.77
	8.35	8.59	9.12	9.30	40.50	38.80	37.57	38.87
Moisture,	10.74	12.78	11.41	12.17	9.70	8.62	8.82	8.50
%	11.64	12.23	10.48	12.33	8.60	7.91	7.38	8.25
	10.47	11.64	11.25	11.81	1.55	9.00	1.44	8.00

Appendix E. Nutrients and Heavy Metals Concentrations in Grains

		[1986	<u>_</u>		'_		
Constituent	0	sludge a 2.5	appnea, v 10	a 20	0	sludge a 2.5	appned, t/ 10	a 20
Aluminum Al,mg/kg Cadmium Cd, mg/kg Calcium Ca, %	$\begin{array}{c} 350 \\ 71 \\ 70 \\ 0.3 \\ 0.2 \\ 0.2 \\ 0.443 \\ 0.311 \\ 0.362 \end{array}$	369 75 124 0.2 0.3 0.2 0.424 0.310 0.393	304 85 85 0.2 0.3 0.2 0.404 0.344 0.406	156 179 80 0.3 0.2 0.372 0.324 0.380	$\begin{array}{c} 233 \\ 64 \\ 235 \\ 0.09 \\ 0.11 \\ 0.09 \\ 0.404 \\ 0.307 \\ 0.412 \end{array}$	$\begin{array}{c} 225\\ 190\\ 97\\ 0.07\\ 0.06\\ 0.01\\ 0.512\\ 0.350\\ 0.280 \end{array}$	$155 \\185 \\371 \\0.04 \\0.06 \\0.05 \\0.346 \\0.366 \\0.571$	$156 \\ 416 \\ 150 \\ 0.08 \\ 0.08 \\ 0.06 \\ 0.390 \\ 0.424 \\ 0.364$
Chromium Cr, mg/kg Copper Cu, mg/kg Iron Fe, mg/kg	$2.2 \\ 0.6 \\ 0.5 \\ 5 \\ 5 \\ 5 \\ 1390 \\ 340 \\ 290$	$ \begin{array}{r} 1.6\\ 0.6\\ 0.7\\ 4\\ 5\\ 5\\ 890\\ 420\\ 460\\ \end{array} $	$ \begin{array}{r} 1.6\\ 0.6\\ 0.6\\ 4\\ 6\\ 5\\ 1070\\ 290\\ 290\\ 290 \end{array} $	$\begin{array}{c} 0.8 \\ 1.1 \\ 0.7 \\ 6 \\ 5 \\ 5 \\ 780 \\ 640 \\ 340 \end{array}$	$\begin{array}{c} 0.56 \\ 0.28 \\ 0.63 \\ 3.7 \\ 5.4 \\ 3.6 \\ 376 \\ 105 \\ 321 \end{array}$	$\begin{array}{c} 0.50 \\ 0.50 \\ 0.29 \\ 4.2 \\ 3.2 \\ 4.1 \\ 320 \\ 271 \\ 141 \end{array}$	$\begin{array}{c} 0.49 \\ 0.54 \\ 0.77 \\ 5.6 \\ 3.9 \\ 3.9 \\ 229 \\ 205 \\ 460 \end{array}$	$\begin{array}{c} 0.41 \\ 0.76 \\ 0.36 \\ 4.6 \\ 4.8 \\ 4.0 \\ 264 \\ 566 \\ 223 \end{array}$
Lead Pb, mg/kg Magnesium Mg, % Manganese Mn, mg/kg	$17.0 \\ 2.7 \\ 2.5 \\ 0.188 \\ 0.225 \\ 0.288 \\ 120 \\ 86 \\ 39$	$\begin{array}{c} 6.9\\ 2.5\\ 2.4\\ 0.210\\ 0.219\\ 0.248\\ 104\\ 71\\ 63\end{array}$	$\begin{array}{c} 6.4\\ 2.7\\ 2.3\\ 0.212\\ 0.206\\ 0.259\\ 92\\ 79\\ 62\end{array}$	$\begin{array}{r} 4.0 \\ 4.0 \\ 2.9 \\ 0.215 \\ 0.176 \\ 0.250 \\ 66 \\ 84 \\ 37 \end{array}$	$1.2 \\ 0.8 \\ 1.8 \\ 0.285 \\ 0.295 \\ 0.274 \\ 34 \\ 23 \\ 48$	$1.7 \\ 1.2 \\ 1.3 \\ 0.320 \\ 0.290 \\ 0.250 \\ 35 \\ 29 \\ 11$	$1.3 \\ 1.4 \\ 1.8 \\ 0.317 \\ 0.293 \\ 0.383 \\ 30 \\ 30 \\ 32$	$\begin{array}{c} 1.7\\ 2.0\\ 1.5\\ 0.345\\ 0.326\\ 0.284\\ 28\\ 40\\ 20\end{array}$
Nickel Ni, mg/kg Nitrogen N, % Phosphorus P, %	$\begin{array}{c} 2.2 \\ 0.9 \\ 0.6 \\ 0.87 \\ 0.73 \\ 0.78 \\ 0.07 \\ 0.07 \\ 0.06 \end{array}$	$\begin{array}{c} 1.6 \\ 0.8 \\ 1.0 \\ 0.77 \\ 0.75 \\ 0.73 \\ 0.06 \\ 0.06 \\ 0.05 \end{array}$	$1.5 \\ 0.8 \\ 0.72 \\ 0.74 \\ 0.82 \\ 0.05 \\ 0.07 \\ 0.05$	$\begin{array}{c} 1.2 \\ 1.0 \\ 0.8 \\ 0.74 \\ 0.74 \\ 0.70 \\ 0.08 \\ 0.06 \\ 0.05 \end{array}$	1.2 1.0 1.6	1.6 1.3 0.8	15 1.3 2.1	1.1 2.2 1.3
Potassium K, % Zinc Zn, mg/kg	$1.06 \\ 0.58 \\ 0.41 \\ 110 \\ 29 \\ 79$	$\begin{array}{c} 0.71 \\ 0.59 \\ 0.67 \\ 95 \\ 26 \\ 57 \end{array}$	$0.48 \\ 0.71 \\ 0.42 \\ 74 \\ 44 \\ 30$	$0.66 \\ 0.45 \\ 0.48 \\ 93 \\ 45 \\ 25$	$\begin{array}{c} 0.48 \\ 0.41 \\ 0.41 \\ 9.1 \\ 8.6 \\ 6.1 \end{array}$	0.37 0.32 0.31 9.5 6.6 7.3	0.38 0.53 0.28 9.6 7.0 7.5	$\begin{array}{c} 0.40 \\ 0.36 \\ 0.32 \\ 6.6 \\ 6.9 \\ 5.3 \end{array}$

Appendix G. Nutrients and Heavy Metals Concentration in Soybean Whole Plants

		[L986	I_		1987			
Constituent	0	sludge a 2.5	10 appnea, v	a 20	0	siudge a 2.5	appnea, <i>v</i> 10	a 20	
Aluminum Al,mg/kg Cadmium Cd, mg/kg Calcium Cr, %	$135 \\ 188 \\ 230 \\ 0.4 \\ 0.4 \\ 0.994 \\ 0.914 \\ 0.944$	172 228 137 0.4 0.4 0.3 0.929 0.979 0.919	364 226 137 0.4 0.3 0.3 0.867 0.912 0.930	195 235 138 0.4 0.3 0.3 0.805 0.817 0.854	$\begin{array}{c} 31 \\ 33 \\ 31 \\ 0.52 \\ 0.51 \\ 0.16 \\ 1.073 \\ 0.945 \\ 0.933 \end{array}$	25 70 39 0.48 0.33 0.39 1.060 1.071 1.012	26 31 112 0.30 0.51 0.25 1.053 1.023 1.109	30 38 77 0.26 0.72 0.18 0.981 1.206 1.099	
Chromium Cr, mg/kg Copper Cu, mg/kg Iron Fe, mg/kg	$0.7 \\ 0.7 \\ 0.9 \\ 7 \\ 8 \\ 7 \\ 400 \\ 490 \\ 440$	$\begin{array}{c} 0.8 \\ 0.8 \\ 0.7 \\ 6 \\ 7 \\ 5 \\ 420 \\ 410 \\ 360 \end{array}$	$ \begin{array}{r} 1.0 \\ 0.9 \\ 0.6 \\ 8 \\ 7 \\ 5 \\ 540 \\ 390 \\ 360 \\ \end{array} $	$\begin{array}{c} 0.8 \\ 0.8 \\ 0.6 \\ 7 \\ 7 \\ 6 \\ 390 \\ 490 \\ 390 \end{array}$	$\begin{array}{c} 0.19\\ 0.12\\ 0.12\\ 8.6\\ 6.3\\ 7.0\\ 72\\ 70\\ 60\\ \end{array}$	$\begin{array}{c} 0.18 \\ 0.14 \\ 0.10 \\ 8.9 \\ 6.6 \\ 8.5 \\ 39 \\ 112 \\ 87 \end{array}$	$\begin{array}{c} 0.14 \\ 0.13 \\ 0.19 \\ 8.7 \\ 8.0 \\ 7.3 \\ 59 \\ 64 \\ 181 \end{array}$	0.23 0.12 0.40 6.9 7.2 6.3 62 72 129	
Lead Pb, mg/kg Magnesium Mg, % Manganese Mn, mg/kg	$2.3 \\ 2.1 \\ 2.0 \\ 0.304 \\ 0.328 \\ 0.312 \\ 47 \\ 44 \\ 60$	$\begin{array}{c} 2.3 \\ 1.9 \\ 2.1 \\ 0.298 \\ 0.285 \\ 0.319 \\ 42 \\ 50 \\ 31 \end{array}$	$\begin{array}{c} 2.1 \\ 2.0 \\ 2.0 \\ 0.239 \\ 0.307 \\ 0.359 \\ 57 \\ 48 \\ 38 \end{array}$	$\begin{array}{c} 2.0 \\ 2.2 \\ 1.8 \\ 0.237 \\ 0.256 \\ 0.311 \\ 36 \\ 47 \\ 33 \end{array}$	$2.3 \\ 2.2 \\ 1.7 \\ 0.537 \\ 0.546 \\ 0.531 \\ 20 \\ 18 \\ 11$	$ \begin{array}{r} 1.9\\2.1\\2.0\\0.602\\0.550\\0.539\\16\\22\\10\end{array} $	$\begin{array}{c} 2.2 \\ 2.6 \\ 2.1 \\ 0.581 \\ 0.540 \\ 0.580 \\ 15 \\ 14 \\ 19 \end{array}$	$1.8 \\ 2.3 \\ 1.9 \\ 0.468 \\ 0.600 \\ 0.485 \\ 13 \\ 13 \\ 15$	
Nickel Ni, mg/kg Nitrogen N, % Phosphorus P, %	$15 \\ 1.7 \\ 2.3 \\ 1.11 \\ 1.43 \\ 1.22 \\ 0.09 \\ 0.17 \\ 0.12$	$\begin{array}{c} 1.7 \\ 1.9 \\ 2.1 \\ 1.12 \\ 1.64 \\ 1.01 \\ 0.10 \\ 0.14 \\ 0.09 \end{array}$	$\begin{array}{c} 2.6 \\ 2.2 \\ 1.7 \\ 1.56 \\ 1.27 \\ 0.90 \\ 0.18 \\ 0.13 \\ 0.08 \end{array}$	$1.4 \\ 1.8 \\ 1.3 \\ 1.38 \\ 1.40 \\ 0.98 \\ 0.13 \\ 0.14 \\ 0.10$	2.5 2.1 1.5	1.9 2.2 1.5	2.0 2.1 1.7	15 2.5 1.4	
Potassium K, % Zinc Zn, mg/kg	0.34 0.38 0.33 36 30 15	$\begin{array}{c} 0.36 \\ 0.30 \\ 0.42 \\ 27 \\ 31 \\ 11 \end{array}$	$0.30 \\ 0.40 \\ 0.43 \\ 23 \\ 15 \\ 16$	$0.35 \\ 0.34 \\ 0.41 \\ 54 \\ 30 \\ 20$	1.05 0.58 0.63 11.2 7.7 7.4	0.67 0.76 0.71 9.7 9.5 8.7	$\begin{array}{c} 0.75 \\ 0.87 \\ 0.64 \\ 11.1 \\ 10.2 \\ 9.4 \end{array}$	0.79 0.86 0.67 7.1 9.8 7.3	

Appendix H. Nutrients and Heavy Metals Concentration in Corn Leaves

]	L 986			1	1987				
~	sludge applied, t/a					sludge applied, t/a					
Constituent	0	2.5	10	20	0	2.5	10	20			
Aluminum	31	32	37	29	24	24	20	26			
Al,mg/kg	31	34	31	32	19	25	19	23			
	30	30	36	26	20	14	31	17			
Cadmium	0.3	0.3	0.3	0.4	0.10	0.10	0.17	0.19			
Cd, mg/kg	0.4	0.4	0.3	0.4	0.13	0.15	0.13	0.24			
0.1.1	0.3	0.3	0.3	0.4	0.20	0.12	0.17	0.18			
Calcium	0.5/9	0.653	0.679	0.645	0.694	0.751	0.773	0.869			
Ca, %	0.007	0.547	0.592	0.595	0.720	0.822	0.733 1 120	0.944			
	0.705	0.009	0.775	0.031	0.875	0.715	1.120	0.870			
Chromium	0.5	0.5	0.5	0.5	0.24	0.25	0.17	0.21			
Cr, mg/kg	0.5	0.5	0.4	0.4	0.24	0.15	0.21	0.13			
~	0.6	0.6	0.6	0.7	0.21	0.19	0.24	0.15			
Copper	11	12	12	11	9.3	8.8	12:3	11.5			
Cu, mg/kg	12	10	12	12	8.3	7.4	10.0	9.4			
т	11	11	12	11	12.1	8.6	9.5	10.7			
Iron	90	190	310	290	97	114	94	103			
Fe, mg/kg	290	240	240	190	115	97	89	107			
	290	190	240	190	111	82	110	108			
Lead	1.4	1.7	2.2	1.6	1.4	1.2	1.9	2.1			
Pb, mg/kg	1.3	1.6	1.6	1.8	1.9	1.6	1.8	1.9			
	2.0	2.0	2.1	2.6	1.7	1.8	2.4	2.2			
Magnesium	0.232	0.281	0.289	0.328	0.352	0.383	0.508	0.547			
Mg, %	0.320	0.258	0.251	0.273	0.355	0.424	0.384	0.386			
	0.431	0.349	0.387	0.326	0.628	0.384	0.639	0.533			
Manganese	137	128	149	115	72	49	61	59			
Mg, mg/kg	137	132	121	107	60	45	59	68			
	78	88	113	83	87	66	71	65			
Nickel	1.0	1.2	1.4	1.3	1.4	1.5	1.8	1.8			
Ni. mg/kg	1.3	1.1	0.9	1.0	1.8	1.5	1.5	1.8			
, 6 6	1.0	1.1	0.6	1.0	1.6	1.9	2.1	1.7			
Nitrogen	2.76	2.55	2.57	2.76							
N, %	2.84	2.13	2.86	2.72							
	2.65	2.81	2.56	2.54							
Phosphorus	0.37	0.35	0.33	0.34							
P, %	0.36	0.30	0.38	0.33							
	0.31	0.33	0.33	0.33							
Potassium	1 84	176	1 89	1.75	1 26	1 22	0.88	1.00			
K %	1.70	1.87	1.86	1.83	1.20	1.18	1.20	1.01			
, /0	1.55	1.25	1.63	1.71	0.78	1.28	0.99	1.08			
Zinc	30	40	44	29	19	28	22	23			
Zn, mg/kg	35	30	39	40	27	13	18	14			
, 00	64	113	44	40	23	27	19	18			

Appendix I. Nutrients and Heavy Metals Concentration in Soybean Leaves

]	L986					
Constituent	0	sludge a 2.5	applied, t/ 10	a 20	0	sludge a	ipplied, t/3 10	a 20
Aluminum Al,mg/kg Cadmium Cd,mg/kg Calcium Ca, %	$\begin{array}{c} 22\\ 16\\ 30\\ 0.5\\ 0.4\\ 0.5\\ 0.779\\ 1.003\\ 0.934 \end{array}$	$ \begin{array}{r} 17 \\ 14 \\ 19 \\ 0.5 \\ 0.4 \\ 0.4 \\ 0.840 \\ 0.922 \\ 0.988 \\ \end{array} $	$ \begin{array}{r} 19\\23\\18\\0.5\\0.5\\0.4\\0.886\\0.853\\0.899\end{array} $	$ \begin{array}{r} 16\\20\\18\\0.4\\0.4\\0.4\\0.789\\0.725\\0.853\end{array} $	$ \begin{array}{r} 13\\15\\11\\0.37\\0.35\\0.13\\1.529\\1.431\\1.271\end{array} $	$12 \\ 26 \\ 14 \\ 0.28 \\ 0.26 \\ 0.33 \\ 1.283 \\ 1.497 \\ 1.596$	$12 \\ 22 \\ 13 \\ 0.33 \\ 0.34 \\ 0.24 \\ 1.487 \\ 1.552 \\ 1.876$	24 14 12 0.25 0.35 0.20 1.360 1.505 1.291
Chromium Cr, mg/kg Copper Cu, mg/kg Iron Fe, mg/kg	$\begin{array}{c} 0.8 \\ 0.8 \\ 0.7 \\ 10 \\ 10 \\ 10 \\ 190 \\ 240 \\ 140 \end{array}$	$\begin{array}{c} 0.8 \\ 0.8 \\ 0.7 \\ 10 \\ 10 \\ 11 \\ 290 \\ 190 \\ 340 \end{array}$	$\begin{array}{c} 0.6 \\ 0.9 \\ 0.8 \\ 10 \\ 11 \\ 11 \\ 190 \\ 240 \\ 240 \end{array}$	$\begin{array}{c} 0.5 \\ 0.6 \\ 0.6 \\ 10 \\ 9 \\ 11 \\ 210 \\ 250 \\ 290 \end{array}$	$\begin{array}{c} 0.50 \\ 0.37 \\ 0.29 \\ 11 \\ 13 \\ 9 \\ 110 \\ 76 \\ 70 \end{array}$	$\begin{array}{c} 0.46 \\ 0.36 \\ 0.30 \\ 10 \\ 12 \\ 12 \\ 92 \\ 104 \\ 85 \end{array}$	$\begin{array}{c} 0.44 \\ 0.38 \\ 0.27 \\ 10 \\ 13 \\ 10 \\ 89 \\ 77 \\ 83 \end{array}$	$\begin{array}{c} 0.66 \\ 0.59 \\ 0.36 \\ 11 \\ 11 \\ 11 \\ 109 \\ 102 \\ 89 \end{array}$
Lead Pb, mg/kg Magnesium Mg, % Manganese Mn, mg/kg	$1.8 \\ 2.2 \\ 3.0 \\ 0.302 \\ 0.462 \\ 0.345$	2.0 2.4 3.2 0.317 0.338 0.339	2.2 2.6 3.1 0.341 0.324 0.331	$\begin{array}{c} 2.9\\ 2.3\\ 3.4\\ 0.330\\ 0.269\\ 0.346\end{array}$	$2.6 \\ 2.7 \\ 2.3 \\ 0.434 \\ 0.474 \\ 0.414 \\ 44 \\ 59 \\ 30$	$\begin{array}{c} 2.0\\ 3.3\\ 3.0\\ 0.411\\ 0.450\\ 0.550\\ 51\\ 62\\ 38\end{array}$	$2.3 \\ 2.8 \\ 2.9 \\ 0.424 \\ 0.438 \\ 0.562 \\ 41 \\ 43 \\ 43 \\ 43$	$3.7 \\ 2.5 \\ 2.5 \\ 0.405 \\ 0.447 \\ 0.389 \\ 39 \\ 43 \\ 44$
Nickel Ni, mg/kg Nitrogen N, %	8.9 9.4 10.5	8.6 8.0 3.2	10.9 10.7 4.7	9.7 7.8 4.6	8.4 2.6 2.9	7.7 7.1 5.2	8.0 8.8 4.0	7.6 8.0 4.8
Phosphorus P, %								
Potassium K, % Zinc Zn, mg/kg	2.31 2.30 2.32 35 35 134	2.46 2.29 2.41 30 29 25	$2.22 \\ 2.44 \\ 2.26 \\ 30 \\ 30 \\ 50$	2.19 2.00 2.31 33 25 30	1.93 1.70 1.19 41 41 39	1.63 1.72 1.34 39 42 38	1.65 1.73 1.31 39 43 38	1.58 1.70 1.63 40 29 40