Contract Report 614

Quality Assessment of Six Illinois Lakes, 1995

by

Shun Dar Lin and Raman K. Raman Office of Water Quality Management

Prepared for the Illinois Environmental Protection Agency

March 1997

> Illinois State Water Survey Chemistry Division Champaign, Illinois

A Division of the Illinois Department of Natural Resources

Quality Assessment of Six Illinois Lakes, 1995

by Shun Dar Lin and Raman K. Raman

Prepared for the Lake and Watershed Unit Illinois Environmental Protection Agency P.O. Box 19276 Springfield, IL 62794-9276

March 1997

Illinois Department of Natural Resources Illinois State Water Survey Division Office of Water Quality Management P.O. Box 697 Peoria, Illinois 61652

ISSN 0733-3927

This report was printed on recycled and recyclable papers.

CONTENTS

	Page
Introduction Illinois Lake Quality Assessment Program	1 1
Acknowledgments	2
Scope of Work	2
Materials and Methods	2
Results and Discussion	5
Lake and Watershed Information	5
Shoreline and Lake Area Survey	12
In-Lake Water Quality	15
Temperature and Dissolved Oxygen	29
Secchi disk Transparency	29
Total and Volatile Suspended Solids	36
Turbidity	37
Conductivity	37
pH	37
Alkalinity	38
Nitrogen	38
Ammonia Nitrogen	38
Nitrate/Nitrite Nitrogen	38
Total Kjeldahl Nitrogen	39
Phosphorus	39
Total Phosphorus	39
Dissolved Phosphorus	39
Chlorophyll	40
Macrophytes	40
Trophic State	41
Lake Use Support	46
Definition	46
Lake Use Support Analysis	50
Lake Sediment Characteristics	50
Metals and Inorganics	50
Organic Compounds	56
Summary	56
References	58
Illustration A. Lake Assessment Information for Six Illinois Lakes	59
Appendix	
A. Water Quality Characteristics of Georgetown Reservoir, 1995	72
B. Water Quality Characteristics of Homer Lake, 1995	74
C. Water Quality Characteristics of Long Lake, 1995	76
D. Water Quality Characteristics of Matanzas Lake, 1995	78
E. Water Quality Characteristics of Snakeden Hollow Lake, 1995	80
F. Water Quality Characteristics of Walnut Point Lake, 1995	82

Quality Assessment of Six Illinois Lakes, 1995

by Shun Dar Lin and Raman K. Raman

INTRODUCTION

Illinois Lake Quality Assessment Program

For more than two decades, Federal Clean Lakes Programs (CLPs) have provided guidelines for lake management and watershed protection. The programs have been a resounding success through the cooperative participation of federal and state environmental protection agencies, local organizations, and lake owners.

The state of Illinois has more than 3,000 lakes and reservoirs with surface areas of six acres or more. The origins of these water impoundments vary. Some were formed by glaciers, but most were developed by damming streams. Over 100 of them serve as raw water-supply sources, and a few are used for industrial cooling. They are all invariably used for recreational activities such as fishing, boating, swimming, picnicking, etc.

In Illinois, more than 600 lakes and reservoirs have been evaluated by the Illinois Environmental Protection Agency (Illinois EPA) with funding provided through the Clean Lakes Program under the Federal Clean Water Act. Prior to receiving this grant the Illinois EPA had applied for and received U.S. Environmental Protection Agency (USEPA) Region V Lake Water Quality Assessment (LWQA) grants until 1994. The lakes selected for evaluation were visited once for in-situ monitoring and water and sediment samples collection at the deepest site during summer.

With this project (grant) the scope of the current investigations has changed in that fewer lakes (six instead of approximately 20) are sampled five times during summer instead of once as in the past years.

To fulfill Illinois EPA's goal, the Office of Water Quality Management of the Illinois State Water Survey (ISWS) was contracted to collect data on six selected lakes in the state of Illinois. The ISWS staff visited these lakes and collected water and sediment samples, as well as lake assessment information from various sources.

This report presents all the data obtained for the six lakes assessed in 1995.

Acknowledgments

Partial funding for this survey was provided by the Planning Section of the Illinois EPA's Water Pollution Control Division. Gregg Good, Jeff Mitzelfelt, and Steve Kolsto, Illinois EPA, assisted immeasurably in carrying out this task to its successful completion. Their help is gratefully acknowledged.

Brett Robert, Conservation Agronomist, United States Department of Agriculture -Soil Conservation Service (USDA-SCS), Champaign, Illinois, was instrumental in coordinating and obtaining information pertaining to watershed land-use management practices from several regional offices. The authors immensely appreciate USDA-SCS help.

Special thanks go to the individuals associated with the six lakes surveyed. They were very courteous, provided boats and personnel, shared their information and knowledge about the lakes and their watersheds, which made data collection easier. Without their fullest cooperation, this task could not have been accomplished in a timely and orderly fashion. The authors owe a debt of gratitude to each of them. George Potter and John Carl, private citizens, provided their boats and participated in the field work for Matanzas Lake. Dave Hullinger, ISWS, participated in the field work. Linda Dexter typed the manuscript and the final report, and Eva Kingston edited the manuscript.

SCOPE OF WORK

The ISWS assisted the Illinois EPA in collecting basic lake assessment data, as well as water and sediment samples for 18 sites at six Illinois lakes (three sites for each lake). Figure 1 provides the names and locations of these lakes whose surface areas vary from 50 acres (Long Lake) to 361 acres (Matanzas Lake). Lake types included strip mine, backwater, and dammed stream.

Basic lake assessment data gathered for each lake included: lake location; morphology; hydrology; ownership/access; lake, watershed, and shoreline usages and impairments; water quality problems; source, cause, and magnitude of pollution; lake and watershed management previously undertaken and currently being practiced; and a lake map.

MATERIALS AND METHODS

Lake water and sediment samples were collected at three sites for six Illinois lakes by the ISWS and delivered to Illinois EPA laboratories for analysis. Typically, the deepest location is called station 1. Station 2 is generally designated near the center of the lake; and station 3 is generally located in the upper shallow portion of the lake. Each lake was surveyed five times (April, June, July, August, and October 1995). The physical, chemical, and biological samples were collected. Grab samples were taken at 0.3 meters or m (1 foot) below the surface and 0.6 m (2 feet) above the lake bottom for station 1 if the total depth was greater than 10 feet and only near surface samples for the other two lake sites. Samples were transported in ice and refrigerated until analysis. Sediment samples were taken with an epoxy-coated 15-cm \times 15-cm (6-inch \times 6-inch) ponar dredge at the deep station only.

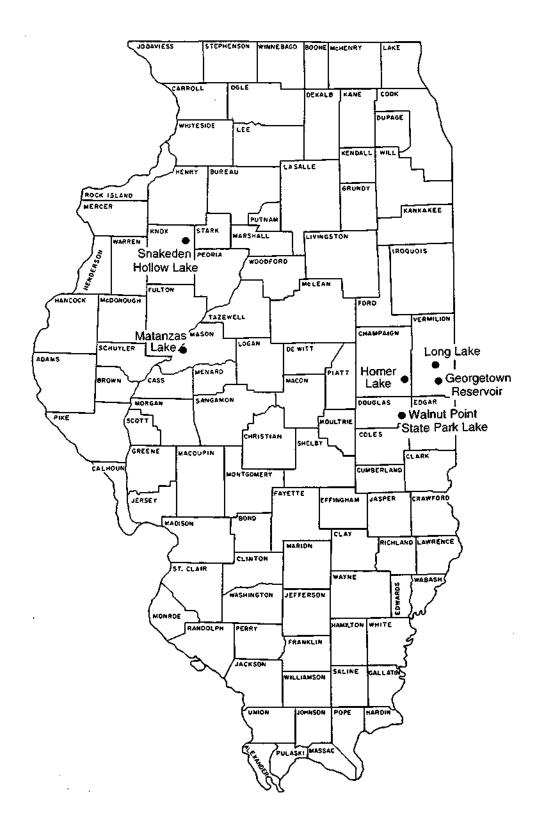


Figure 1. Locations of six lakes monitored

All sampling and sites visits were made from March 23, 1995, through October 3, 1995. Samples were collected according to the Illinois EPA field methods guide quality assurance/quality control procedures (Illinois EPA, 1987).

These samples were delivered to Illinois EPA laboratories for analysis of total suspended solids (TSS); volatile suspended solids (VSS); turbidity; total phosphorus (TP); nitrite/nitrate-nitrogen (NO₂/NO₃-N); ammonia nitrogen (NH₃-N); total kjeldahl nitrogen (TKN); chemical oxygen demand (COD); chlorophyll *a*, *b*, *c*; and pheophytine *a*. All analyses were performed using approved methods.

In-situ measurements of water temperature and dissolved oxygen (DO) were made using a 50-foot DO/temperature cable and probe (Yellow Springs Instrument Company model 59), which was calibrated with a saturated water chamber. DO/temperature profiles were measured in the water column at each site at 1- or 2-foot intervals from the surface of the lake.

Lake water transparency was determined with an 8-inch-diameter Secchi disk with black and white quadrant markings attached to a calibrated line. The Secchi disk was lowered until it disappeared from view, and the depth of immersion of the disk was noted. The disk was lowered further, then raised slowly until it reappeared. Again the depth of immersion was recorded. The average of these two measurements was used as the Secchi disk reading. Phenolphthalein alkalinity, total alkalinity, and pH were measured in the field after sample collection.

A weighted bottle sampler and clean half-gallon bottle were used to collect a depthintegrated (surface to twice the Secchi depth) quart sample for chlorophyll at the site. This sample was placed in a foil-wrapped, polyethylene quart bottle for chlorophyll analysis. An adequate volume of the sample was immediately filtered (with a Fisher glass fiber filter G4) with a hand vacuum pump, while in the shade. The algae-laden filter was promptly folded into quadrants, blotted with a paper towel, wrapped in aluminum foil, and placed in a small plastic bag, which was then labeled and stored in a freezer prior to shipment for lab analysis. The volume of filtrate required to saturate each filter with suspended material was recorded to facilitate calculation of chlorophyll concentrations in micrograms per liter (μ g/L).

Replicate sediment samples were collected at the deepest station of the lake using a Petite ponar dredge. A portion of each sample was placed in a specially prepared glass bottle for organic analyses and in a plastic bottle for metal and nutrient analyses according to Illinois EPA field methods (Illinois EPA, 1987). All sediment samples were collected on the same dates as the lake water samples and were transported to Illinois EPA laboratories for analysis using approved methods. Sediment samples were analyzed for phosphorus, kjeldahl-nitrogen, total and volatile solids, total organic carbon (TOC), 13 metals, and organic chemicals.

Basic lake assessment information mentioned above was gathered by the ISWS and transferred onto lake assessment forms developed by the Illinois EPA. The completed forms were submitted to the Illinois EPA, and data were incorporated into the Waterbody System and the Comprehensive Lake Data Management System.

RESULTS AND DISCUSSION

Lake and Watershed Information

Lake assessment summaries and watershed information for the six lakes studied are individually shown in illustration A. Two pages of data are presented for each of the six lakes. For each lake, tables indicating the lake's general features, morphology, uses and impairments, water quality problems, causes of quality problems, and lake protection and management are provided. This section describes the information included in each lake summary.

In each summary, general information includes data on the lake's morphology (form), such as surface area, maximum and average depth, lake type, watershed (drainage basin) size, and other features. These features are important in determining how a lake will respond to nutrient or other pollutant loadings. For instance, deep lakes with comparatively small watersheds respond much more slowly to nutrient loadings than do shallow lakes with large watersheds.

Usages and impairments information includes whether public access is available, the annual number of visitors to the lake, types of recreational facilities and usages available and used, and shoreline and watershed land usage. Designated uses and impairments are also described, and warrant further discussion here.

Water quality problems and their causes are presented in each lake summary. The type and extent of problems are noted (e.g., sediment deposition, algal blooms, excessive weeds, etc.), fishing conditions, and major types of fish. The apparent causes and sources of pollution contributing to the problems are identified (e.g., agriculture, construction, nutrients, suspended solids, etc.). These causes and sources of pollution are identified based on knowledge of watershed land uses and activities, discussions with each lake's management personnel, and field observations made during the monitoring visit. By no means are these potential causes and sources meant to be conclusive or quantified; rather, they are meant to bring about an awareness of the particular activities in the lake and its watershed that could impair that lake.

Information concerning lake protection and management is provided for each lake, including the type and extent of best management practice (BMP) implementation in the watershed to protect the lake, and the specific reason for the treatment. Much of this information was gathered from local county Soil and Water Conservation Districts and USDA-SCS personnel.

Shoreline and Lake Area Survey

Shoreline erosion and surrounding lake uses at the six lakes were surveyed. Figures 2-7 show the results of the survey and the sampling stations.

Along both sides of shorelines of Georgetown Reservoir, almost all (98 percent) of the area is wooded. There is one boat ramp next to the water treatment plant near the dam (figure 2).

Homer Lake has nine parking areas around the lake in the Salt Fork River Forest Preserve area. There are also two privies, six trails, four boat ramps, one boat dock, one playground, one shelter house, one observation platform, and a visitor center (figure 3).

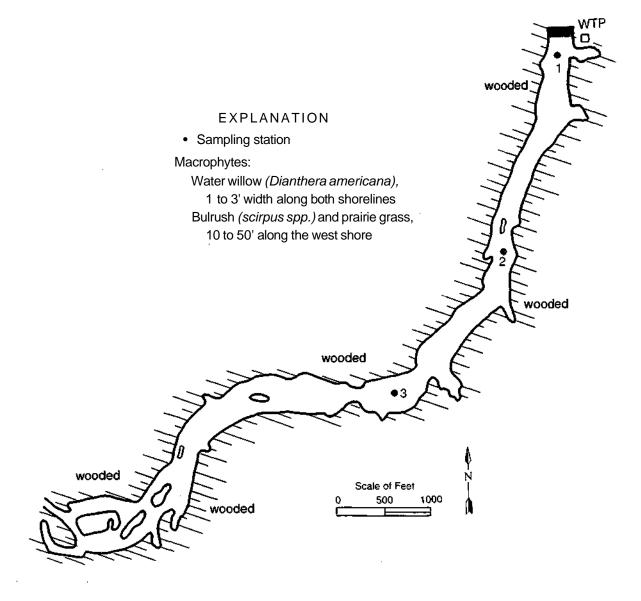


Figure 2. Sampling stations, macrophytes, and shoreline usage of Georgetown Reservoir

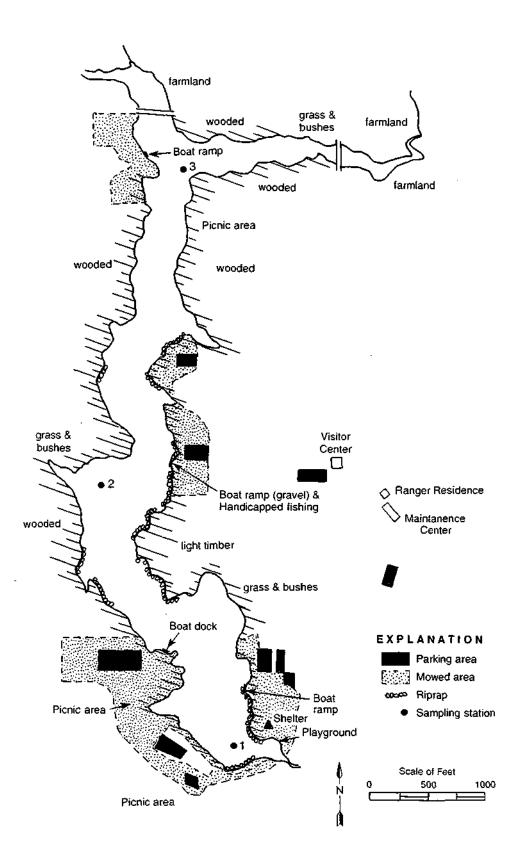


Figure 3. Shoreline and surrounding lake uses of Homer Lake

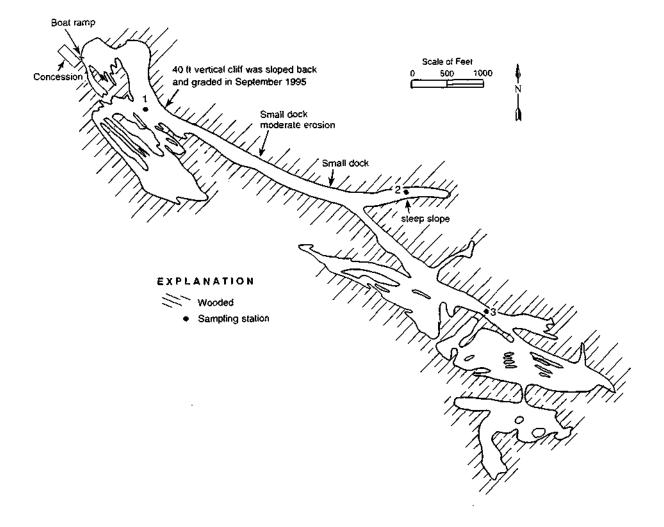


Figure 4. Shoreline erosion and surrounding lake uses of Long Lake

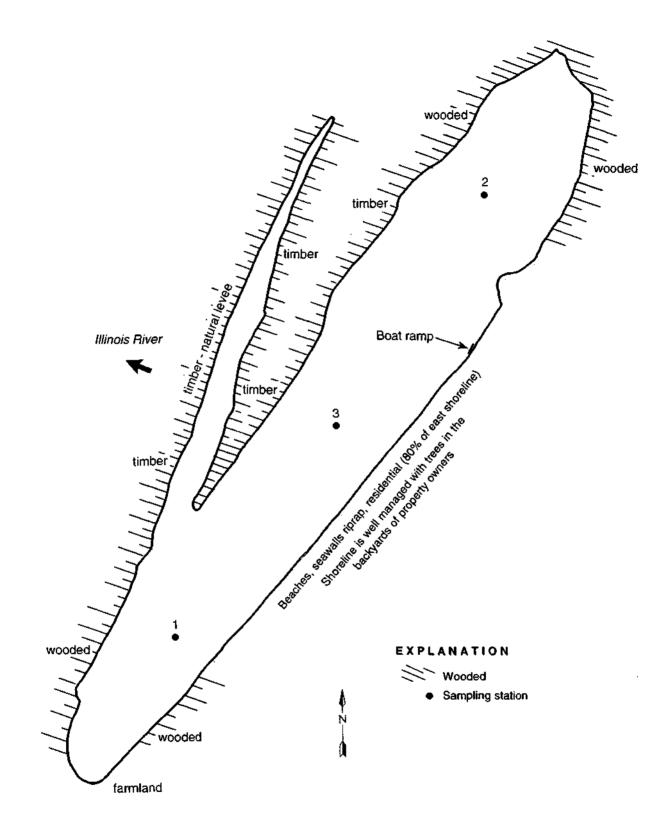


Figure 5. Shoreline and surrounding lake uses of Matanzas Lake

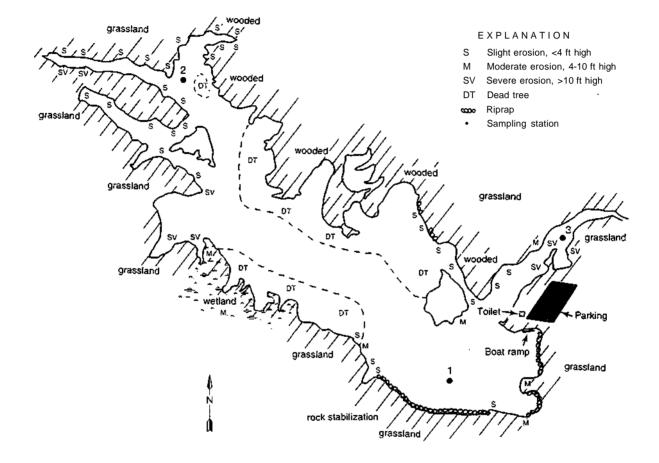


Figure 6. Shoreline erosion and surrounding lake uses of Snakeden Hollow Lake

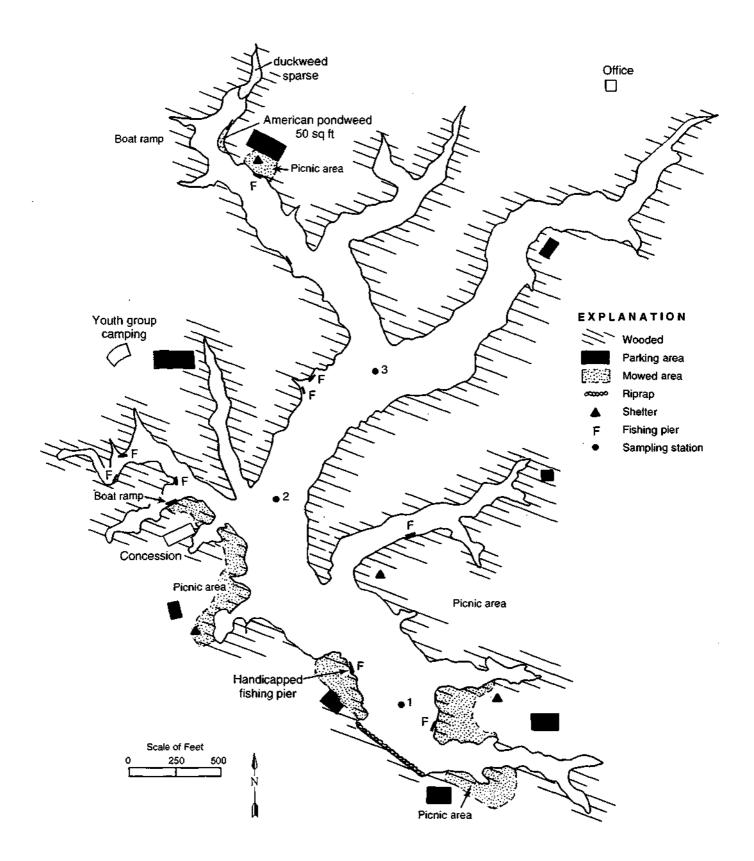


Figure 7. Shoreline and surrounding lake uses of Walnut Point Lake

Long Lake is one of the 22 lakes in Kickapoo State Park. There are two parking lots, one concession store, and one boat ramp at the northwest end of the lake (figure 4). Boat and canoe rental is available. Almost all of the lake shoreline (95 percent) has dense timber growth. The southeast end of the lake is wetland area. In addition, two wetland areas are located on the west side of the center and northwest of the lake. Moderate erosion occurs in some locations along the east bank. A 40-foot cliff near station 1 was sloped back and graded in September 1995 for safety purposes during the study period. The soil was pushed down to the lake during the grading operation .

Matanzas Lake is a backwater lake connected to the Illinois River. Its water level is mainly affected by the Illinois River and not by a small tributary (White Oak Creek). The west and north sides of the lake are wooded. Approximately 60 percent of the east side shoreline is residential with sandy beach. Farming is practiced in the southeast corner of the lake (figure 5).

Snakeden Hollow Lake is a relatively young and deep lake. Grassland and timber wooded areas surround the lake. Many dead tree stumps can be seen in the lake. One boat ramp, a parking lot, and a privy are located at the southeast end of the lake. Erosion problems occur at the west and east sides of the lake shorelines. Riprap had been installed at many locations (figure 6).

As shown in figure 7, Walnut Point Lake, a many-fingered lake, is stream fed and was formed by an earthen dam located on the south side of the lake. Most of the lake shoreline is wooded. Tables and outdoor stoves are in two wooded picnic areas bordering the lake. Firewood is not provided. Eight parking areas are near the picnic areas and boat launches. There are two boat ramps; two trails; two Class B camping areas with tables, stoves, electricity and sanitary dumping station; one Class D walk-in tent camping area; and a youth group camping area. Handicapped fishing piers are available. There is no shoreline erosion problem.

In-Lake Water Quality

The analytical results of water samples collected from the six lakes as well as the mean values are presented in appendices A-F. Water quality data provided include Secchi disk transparency, conductivity, nutrient, suspended solids, alkalinity, pH, COD, turbidity, and chlorophyll parameters. Site depths and sampling dates are also recorded. Table 1 presents the mean concentrations of the water quality parameters for near surface samples of station 1 and the mean of all the three stations of each lake studied.

Statistical analyses were performed with Duncan's multiple range analyses (Federer, 1955) to compare the mean concentrations of each water quality parameter among sampling stations in the lake. There were no differences in mean concentrations for three surface stations for each parameter in Georgetown Reservoir and Matanzas Lake. As shown in table 2, for Homer Lake, the mean pH values at stations 1S (surface) and 2 were significantly greater than at stations 3 and 1B (bottom).

For Long Lake, Snakeden Hollow Lake, and Walnut Point Lake, the mean pH values at stations 1S, 2, and 3 were significantly higher than at station 1B (table 2, note b). There were no statistical differences among these stations otherwise. On the other hand, the mean values for conductivity, total alkalinity, VSS, ammonia-N, TKN, and total and dissolved phosphorus of stations 1S, 2, and 3 were significantly less than that of station 1B for each of these three lakes (table 2, note c). For other parameters measured but not mentioned here, there was no significant difference in mean values of all four stations in

Table 1. Mean Surface Water Quality for Six Lakes Studied

	Georgetown t Homer			Lo	Lone Matanzas		anzas	Snakeden- Hollow		Walnut Point		
Parameters	Georg	<i>elown i</i> 1-3	пол 1	ner 1-3	Loi	ne 1-3	ман 1	anzas 1-3	<u>по</u> 1	1-3	<u> </u>	<u>1-3</u>
Furumeters	1	1-3	1	1-5	1	1-3	1	1-5	1	1-3	1	1-5
Water depth, ft.	7.8	7.4	15.8	10.7	34.8	23.4	9.3	7.5	56.8	30.7	27.5	21.6
Secchi	16.0	16.3	35.4	30.7	113.8	98.8	15.4	14.1	214	149	54.4	49.9
transparency, in.												
Conductivity,	562	567	478	497	1689	1736	479	485	1329	1323	338	347
umho/cm												
рН	8.5	8.5	8.6	8.5	8.3	8.3	8.6	8.5	8.4	8.3	9.0	9.0
Alkalinity, mg/L as												
CaCO ₃												
Phenolphthalein	5.2	5.6	10.0	5.7	4.2	3.9	5.0	4.9	1.4	1.1	14.2	16.3
Total	225	225	180	187	196	196	161	162	133	119	133	133
Suspended solids,												
mg/L												
Total	38.4	41.9	8.2	14.5	3.6	4.1	47.8	46.3	2.6	2.7	14.0	16.2
Volatile	8.4	11.5	3.6	4.4	1.2	1.1	11.6	10.9	1.0	1.2	7.6	9.7
Turbidity, NTU	4.5	4.7	4.3	5.2	4.0	3.8	6.0	6.0	3.8	4.2	6.1	6.3
Nitrogen, mg/L												
Ammonia	.092	.063	.050	.077	.078	.047	.040	.043	.092	.057	.076	.083
Nitrite/nitrate	5.21	5.25	3.71	3.72	.01	-	2.54	2.58	0.10	0.09	0.34	0.37
Total kjeldahl	0.90	1.14	0.68	0.73	0.32	0.42	1.14	1.02	0.43	0.38	1.32	1.35
Phosphorus, mg/L												
Total	.0964	.0872	.0376	.0485	.0066	.0081	.2100	.1991	.0048	.0079	.0764	.0796
Dissolved	.0266	.0221	.0076	.0097	.0016	.0020	.0894	.1046	.0016	.0019	.0200	.0235
Pigments, µg/L												
Chlorophyll a^*	35.07	39.82	31.21	29.20	3.45	4.88	72.58	66.65	3.42	6.14	114.85	102.37
Chlorophyll a^{**}	39.30	45.32	31.99	30.90	3.86	5.49	69.79	68.79	3.74	6.43	107.55	96.98
Chlorophyll b	12.07	15.03	5.71	6.34	1.83	2.69	23.44	19.08	1.14	2.20	5.81	5.48
Chlorophyll c	16.18	16.59	8.11	8.81	2.60	2.81	28.26	21.28	1.79	2.36	5.24	5.01
Pheophytin a	6.59	8.47	1.97	3.04	0.79	1.18	17.46	10.48	1.33	1.01	0.33	0.62
Sample depth, ft.	2.7	2.8	6.0	5.1	19.0	15.4	2.6	2.4	34.4	21.8	8.5	7.0

Notes:

*Corrected value.

**Uncorrected value.

TFor each lake the first list of parameters is for station 1 and the second list is the average for stations 1-3.

Parameters	Homer Lake	Long Lake	Snakeden Hollow Lake	Walnut Point Lake
Conductivity pH	a	b	c b	b
Total alkalinity		с	с	с
Total suspended solids		с		
Volatile suspended solids			с	
Ammonia-N		с	с	с
Total kjeldahl-N		с		c
Total phosphorus		c	с	с
Dissolved phosphorus		С	С	С

Table 2. Results of Statistical Analyses for Mean Values at Four Stations for Four Lakes

Notes: stations 1S, 2 and 3 represent surface waters, and station 1B represents the lake bottom. Values at stations 1S and 2 are significantly greater than at stations 3 and 1B.

Values at stations 1S, 2, and 3 are significantly greater than at station 1B, and no differences among stations 1, 2, and 3.

Values at stations 1S, 2, and 3 are significantly less than at station 1B, and no differences among stations 1, 2, and 3.

each of these lakes. The average values of water quality characteristics for the three surface stations will be used for discussion later.

Temperature and Dissolved Oxygen

Lakes in the temperate zone generally undergo seasonal variations in temperature throughout the water column. These variations, with their accompanying phenomena, are perhaps the most influential controlling factors within the lakes.

The temperature of a deep lake in the temperate zone is about 4°C during early spring. As air temperatures rise, the upper layers of water warm up and are mixed with the lower layers by wind action. Spring turnover is complete mixing of a lake in the spring when the water temperature is uniform from top to bottom. By late spring, differences in thermal resistance cause the mixing to cease, and the lake approaches the thermal stratification of the summer season. Almost as important as water temperature. These two interrelated forces are capable of creating strata of water of vastly different characteristics within the lake.

During thermal stratification, the upper layer (epilimnion) is isolated from the lower layer of water (hypolimnion) by a temperature gradient (thermocline). Temperatures in the epilimnion and hypolimnion are essentially uniform. The thermocline will typically have a sharp temperature drop per unit depth from the upper to the lower margin. When thermal stratification is established, the lake enters the summer stagnation period, so named because the hypolimnion becomes stagnated.

With cooler air temperatures during the fall season, the temperature of the epilimnion decreases and density of the water increases. This decrease in temperature continues until the epilimnion is the same temperature as the upper margin of the thermocline. Successive cooling through the thermocline to the hypolimnion results in a uniform temperature throughout the water column. The lake then enters the fall circulation period (fall turnover) and is again subjected to a complete mixing by the wind.

Declining air temperatures and the formation of ice cover during the winter produce a slightly inverse thermal stratification. The water column is essentially uniform in temperature at about 3 to 4°C, but slightly colder temperatures of 0 to 2°C prevail just below the ice. With the advent of spring and gradually rising air temperatures, the ice begins to disappear, and the temperature of the surface water rises. The lake again becomes uniform in temperature, and spring circulation occurs (spring turnover).

The most important phase of the thermal regime from the standpoint of eutrophication is the summer stagnation period. The hypolimnion, by virtue of its stagnation, traps sediment materials such as decaying plant and animal matter, thus decreasing the availability of nutrients during the critical growing season. In a eutrophic lake, the hypolimnion becomes anaerobic or devoid of oxygen because of the increased content of highly oxidizable material and because of its isolation from the atmosphere. In the absence of oxygen, the conditions for chemical reduction become favorable, and more nutrients are released from the bottom sediments to the overlying waters.

However, during the fall circulation period, the lake water becomes mixed, and the nutrient-rich hypolimnetic waters are redistributed. The nutrients that remained trapped during the stagnation period become available during the following growing season. Therefore, a continuous supply of plant nutrients from the drainage basin is not mandatory

for sustained plant production. After an initial stimulus, the recycling of nutrients within a lake might be sufficient to sustain highly productive conditions for several years.

Impoundment of running water alters its physical, chemical, and biological characteristics. The literature is replete with detailed reports on the effects of impoundments on various water quality parameters. The physical changes in the configuration of the water mass following impoundment reduce reaeration rates to a small fraction of those of free-flowing streams. Where the depth of impoundment is considerable, thermal stratification acts as an effective barrier for the wind-induced mixing of the hypolimnetic zone. Oxygen transfer to the deep waters is essentially confined to the molecular diffusion transport mechanism.

During the period of summer stagnation and increasing water temperatures, the bacterial decomposition of the bottom organic sediments exerts a high rate of oxygen demand on the overlying waters. When this rate of oxygen demand exceeds oxygen replenishment by molecular diffusion, anaerobic conditions begin to prevail in the zones adjacent to the lake bottom. Hypolimnetic zones of man-made impoundments have been found to be anaerobic within a year of their formation.

Tables 3-8 provide the temperature and dissolved oxygen (DO) data collected during this investigation for Georgetown Reservoir, Homer Lake, Long Lake, Matanzas Lake, Snakeden Hollow Lake, and Walnut Point Lake, respectively. Figure 8 is the temperature and DO profiles for the deep stations (station 1) at these lakes.

The surface and near surface values observed in the lakes met the Illinois Pollution Control Board's general use standards with respect to minimum level: not less than 5.0 milligrams per liter (mg/L) at any time. Georgetown Reservoir, an in-channel impoundment and the only water supply reservoir included in this survey, met the criteria at all depths except for one observation very near the mud-water interface on June 16, 1995. Being an in-channel impoundment and shallow, the reservoir remained isothermal throughout. Matanzas Lake, a backwater lake off of the Illinois River had similar characteristics, being shallow and isothermal. However, the lake exhibited greater oxygen depletion during July and August at depths below 4 feet from the surface.

With a maximum depth of 16 feet, Homer Lake is deeper than the aforementioned two lakes and exhibited severe oxygen depletion at depths below 8 feet from the surface during June, July, and August. Generally, there were temperature gradients at depths below 8 feet without the typical hypolimnetic zones. The three deep lakes included in the investigation, Long Lake, Snakeden Hollow Lake, and Walnut Point Lake, typically exhibited the three characteristics of summer stratification. Walnut Point Lake experienced the most severe depletion of DO with practically no oxygen below 5 feet from the surface, and anoxic conditions prevailed in Long Lake at depths below 20 feet and in Snakeden Hollow Lake below 30 feet. The latter two lakes also showed anoxic conditions in the near bottom waters during October lake monitoring.

Percent DO saturation values are determined for the observed DO and temperature and are given in appendix G. Saturation DO values were computed using the formula (Committee on Sanitary Engineering Research, 1960):

 $DO = 14.652 - 0.410022T + 0.0079910T^{2} - 0.000077774T^{3}$

where

DO = the saturation dissolved oxygen, mg/L

Depth,	4/26	5/95	6/1	6/95	7/2	20/95	8/29	9/95		/95
feet	Temp	DO	Temp	DO	Temp	DO	Temp	DO	Temp	DO
Station 1						~ -				
0	12.8	7.1	22.3	7.8	24.6	8.7	29.3	14.5	17.4	7.5
1	12.8	7.0	22.2	7.7	24.6	8.7	29.0	13.1	17.4	7.5
2	12.8	7.0	22.1	7.8	27.2	8.5	28.7	11.3	17.4	7.4
3	12.8	6.9	21.9	7.8	27.2	8.4	28.3	10.1	17.4	7.5
4	12.8	6.9	21.7	7.8	27.2	8.3	28.1	9.4	17.4	7.6
5	12.8	6.9	20.7	7.5	27.1	8.3	27.9	8.9	17.4	7.5
6	12.8	6.9	20.1	7.3	27.1	8.1				
7	12.8	6.9	18.7	5.3	27.1	8.0				
8			17.4	4.8						
Station 2	12.0	7.0	21.2	7.0	07.1	0.0	20.7	164	10.1	7 6
0	13.0	7.3	21.2	7.8	27.1	8.8	30.7	16.4	18.1	7.5
1	13.0	7.3	21.1	7.8	27.1	8.8	29.4	16.8	18.2	6.9
2	13.0	7.3	20.7	7.8	27.1	8.8	28.7	12.6	18.1	6.6
3	13.0	7.3	20.3	7.7	27.1	8.7	27.9	10.7	18.0	6.9
4	13.0	7.3	19.9	7.7	27.1	8.7	27.7	9.9	17.9	7.1
5	13.0	7.3	19.8	7.6	27.1	8.5	27.6	8.2	17.9	7.2
6	13.0	7.3	19.7	7.5	27.0	7.7	27.5	7.2	17.9	7.3
7	13.0	7.3	17.7	6.3	26.9	7.3	27.4	5.3	17.9	7.2
8	13.0	7.3	17.1	5.6	26.8	6.1	27.2	3.2	17.9	7.0
9	12.9	7.2	16.5	4.4	26.6	5.5			17.9	6.7
Station 3										
0	12.3	7.6	20.5	7.8	26.2	10.1	31.6	17.9	17.8	8.0
1	12.3	7.6	20.5	7.7	26.2	10.1	31.4	19.2	17.9	8.2
2	12.3	7.0	20.3	7.7	26.2 26.2	10.3	28.4	11.8	17.9	8.1
2 3	12.3	7.7	20.3 20.2	7.7	20.2 26.2	10.4	28.4	10.7	17.8	7.9
3 4	12.3	7.7	20.2 19.8	7.7	20.2 26.1	10.4 9.8	28.2 27.7	8.1	17.7	7.9
5	12.7	7.7	19.7	7.6	26.0	9.3	27.4	6.5	17.6	7.6
6	12.7	7.7	19.1	5.5			27.4	5.4		

Table 3. Dissolved Oxygen and Temperature Observations in Georgetown Reservoir

Notes:

Depth,	4/24	1/95	6/.	14/95	7/1	18/95	8/30	/95	10/6	/95
feet	Temp	DO	Temp	DO	Temp	DO	Temp	DO	Temp	DO
Station 1										
Station 1 0	12.7	8.4	23.1	10.7	27.7	9.7	28.4	10.2	18.2	7.7
0	12.7	8.4 8.5	23.1	10.7	27.7	9.7	28.4 28.4	10.2	18.2	7.7
2	12.7	8.5 8.5	23.0 22.8	10.9	27.8	10.1	28.4 28.4	10.1	18.2	7.7
3	12.7	8.5 8.5	22.6	10.9	27.8	10.2	28.4 28.4	10.1	18.2	7.7
4	12.7	8.5 8.5	22.6	11.1	27.8	10.3	28.4 28.3	8.3	18.3	7.7
5	12.6	8.5 8.5	22.5	11.1	27.3	9.7	28.3	8.3 7.3	18.3	7.7
6	12.6	8.5	22.5	11.2	27.7	10.8	27.7	5.1	18.3	7.9
7	12.6	8.5 8.5	22.5	112	27.7	9.3	27.6	3.6	18.3	7.6
8	12.6	8.5 8.5	19.0	12.3	27.7	9.5 9.5	27.0	2.9	18.2	7.0 7.4
9	12.6	8.5	16.0	9.1	27.4	7.5	26.3	2.0	18.2	7.1
10	12.0	7.7	14.3	5.8	27.4	3.7	25.5	0.2	18.1	6.8
10	11.5	6.8	13.3	1.9	24.0	2.3	23.3	0.2	18.1	6.5
11	10.9	7.6	13.0	1.0	21.9	1.0	21.8	0.2	18.0	6.2
12	10.9	8.2	12.6	0.8	18.5	0.2	20.5	0.2	17.9	5.0
13	10.0	8.3	12.4	0.5	16.4	0.2	19.2	0.2	17.8	3.9
15	10.7	8.4	12.0	0.4	15.1	0.2	17.7	0.1	17.3	2.3
16	10.6	8.4	11.9	0.4	14.3	0.2	16.7	0.1	17.5	2.3
10	1010	011	110		1 1.5	0.2	10.7	0.1		
Station 2										
0	13.0	8.8	23.0	10.7	27.8	9.3	28.5	9.2	18.4	6.4
1	12.8	9.1	22.8	10.8	27.8	9.3	28.6	10.2	18.4	6.4
	12.8	9.0	22.8	10.8	27.8	9.4	28.5	9.0	18.4	6.5
2 3	12.7	9.1	22.7	10.8	27.8	9.5	28.5	9.8	18.4	6.5
4	12.4	9.1	21.9	10.7	27.7	9.2	28.4	8.8	18.4	6.3
5	12.2	9.1	21.4	10.7	27.6	9.0	28.3	6.8	18.4	6.3
6	12.0	8.9	20.9	10.8	27.6	8.9	28.0	4.7	18.4	6.3
7	11.9	8.3	20.1	10.3	27.6	8.8	27.8	2.4	18.4	6.3
8	11.6	8.3	18.9	9.9	27.6	8.7	27.5	1.9	18.4	6.1
9	11.4	8.3	16.7	6.4	26.8	3.6	26.6	0.8	18.4	4.7
10	11.3	8.3	15.4	3.0	25.5	0.8	25.3	0.8	18.4	4.4
11	10.6	9.4	14.5	0.6	23.1	0.4			18.4	2.6
12	10.2	9.7	14.0	0.6						
Station 3	10.4	10.2	22.2	11.6	27.0	5.0	20 5	2.0	174	4.0
0	12.4	10.2	23.2	11.6	27.0	5.2	28.5	3.9	17.4	4.9
1	12.5	10.3	23.0	11.9	26.9 26.7	5.2	28.5	4.4	17.5	5.1
2	12.4	10.3	21.5	12.8	26.7 26.5	5.3	28.5	4.0	17.5	5.1
3	11.3	9.2 8 2	20.8	10.7	26.5 26.3	5.3	28.0	2.1	17.5	5.1
4	10.8	8.3 7 8	19.9 10.4	8.3 7.6	26.3	4.7	27.8	0.8	17.4	4.7
5	10.6	7.8 7 8	19.4	7.6	25.8	4.8	27.7	0.6	17.3	4.0
6	10.5	7.8								

Table 4. Dissolved Oxygen and Temperature Observations in Homer Lake

Notes:

Depth,	4/26	/95	6/1.	5/95	7/1	8/95	8/29)/95	10/5	/95
feet	Temp	DO	Temp	DO	Temp	DO	Temp	DO	Temp	DO
Station 1	10.4	0.2	22 0	0.0	•	-	2 0.0		10.1	7.0
0	13.4	8.3	23.8	8.2	28.9	7.8	28.8	6.6	19.1	7.9
2	13.4	8.0	23.7	8.7	28.9	7.8	28.8	6.5	19.1	7.9
4	13.3	7.9	23.7	9.1	28.8	7.9	28.8	6.5	19.2	8.2
6	13.3	7.5	23.5	9.0	28.9	7.9	28.9	6.5	19.2	8.3
8	13.3	7.5	23.4	9.0	28.5	7.5	28.9	6.4	19.2	8.3
10	13.3	7.4	22.4	9.1	26.9	8.2	28.8	5.5	19.2	8.4
12	13.3	7.4	20.4	9.3	25.1	8.3	28.2	4.5	19.1	8.4
14	13.3	7.3	18.3	9.2	23.5	8.2	27.1	3.4	19.0	7.9
16	11.5	7.3	16.1	8.4	21.4	8.7	25.0	1.9	18.9	7.3
18	10.4	7.2	14.1	6.3	19.2	8.1	22.2	1.0	18.7	5.8
20	8.9	6.0	12.8	5.4	16.8	6.7	19.6	0.5	18.6	4.7
22	8.0	5.7	11.2	4.6	14.4	4.6	16.6	0.2	18.3	3.3
24	7.4	4.8	10.4	3.2	12.1	2.0	14.5	0.2	18.2	2.6
26	7.2	4.3	9.6	2.2	10.4	0.5	12.7	0.2	18.1	2.0
28	6.8	3.3	9.0	1.4	9.7	0.4	11.4	0.2	17.9	1.4
30	6.6	1.7	8.4	0.7	9.0	0.4	10.4	0.2	17.8	0.9
32			7.9	0.4	8.6	0.3	9.6	0.2		
34			7.7	0.3	8.2	0.3	9.3	0.2		
36			7.7	0.3	7.8	0.3	8.7	0.2		
38					7.7	0.3	8.4	0.2		
Station 2										
0	13.7	7.3	23.9	8.0	29.3	7.7	29.1	5.8	18.8	7.4
2	13.7	7.3	23.9	8.0	29.3	7.8	29.1	5.8	18.8	7.7
4	13.7	7.3	23.7	8.0	29.3	7.8	29.1	5.7	18.8	7.7
6	13.4	7.3	23.6	8.0	29.3	7.7	29.0	5.7	18.8	7.8
8	13.1	7.4	23.4	8.1	29.1	7.3	29.0	5.5	18.8	7.8
10	12.9	7.3	22.4	7.9	27.2	7.3	28.8	4.2	18.8	7.9
12	12.7	7.2	20.2	7.0	25.4	7.0	28.1	1.5	18.8	7.9
14	12.4	7.0	18.1	5.0	23.4	6.3	27.3	0.2	18.8	7.9
16	11.5	6.3	16.0	3.0	21.6	4.8	25.3	0.2	18.8	7.8
18	10.0	5.6	14.0	1.6	19.0	0.9	22.6	0.2	18.8	7.8
20	8.9	4.5	13.1	0.3	16.3	0.3	19.3	0.2	18.7	4.9
22	8.1	2.5			14.1	0.3	16.4	0.2	18.3	2.9
24	7.7	0.9					15.0	0.2	17.7	0.9

Table 5. Dissolved Oxygen and Temperature Observations in Long Lake

Depth,	4/26	/95	6/1.	5/95	7/1	8/95	8/29	/95	10/5	/95
feet	Temp	DO	Temp	DO	Temp	DO	Temp	DO	Temp	DO
Station 3										
0	13.7	7.2	24.2	9.0	29.5	8.0	29.1	6.2	18.7	7.5
2	13.7	7.2	23.1	9.0	29.4	8.1	29.1	6.2	18.7	7.8
4	13.5	7.2	23.6	9.2	29.4	8.2	29.1	6.3	18.7	7.9
6	13.0	7.1	23.5	8.9	29.4	8.3	29.0	6.0	18.7	7.9
8	12.6	6.9	23.3	8.7	29.0	7.7	29.0	5.6	18.7	7.9
10	12.5	6.8	22.1	7.3	27.9	4.4	28.8	2.5	18.7	7.9
12	12.3	6.0	19.8	2.6	26.2	0.2	28.2	0.2	18.7	7.9
14							27.1	0.2	18.7	7.5

Table 5. Concluded

Notes:

Depth,	4/26	5/95	6/1.	5/95	7/1	8/95	8/29	9/95	10/5	5/95
feet	Temp	DO								
Station 1										
0	12.g	10.7	22.1	8.6	29.6	7.1	32.2	12.5	20.6	11.2
1	12.g	10.7	22.0	8.7	29.5	6.g	32.0	12.6	20.6	11.3
2	12.g	10.7	21.9	8.7	29.4	6.4	31.2	11.4	20.6	11.2
3	12.7	10.7	21.7	8.6	29.2	4.9	30.4	9.2	20.6	11.1
4	12.7	10.7	21.5	8.3	28.g	4.2	30.1	6.4	20.6	11.1
5	12.7	10.7	21.5	8.3	2g.6	3.6	29.5	5.0	20.5	10.6
6	12.6	10.7	21.5	8.3	28.3	3.1	29.2	4.g	20.0	8.6
7	12.6	10.5	21.5	8.3			29.2	4.7	19.6	8.1
8	12.6	10.5	21.5	8.2						
9	12.6	10.5	21.4	8.2						
10	12.5	10.4	21.4	8.2						
11	12.0	9.7	21.2	7.6						
12	11.6	9.1	21.1	7.6						
13			21.0	7.5						
14			21.0	7.4						
15			21.0	7.4						
Station 2										
0	12.9	10.7	22.g	9.6	29.6	7.1	32.2	12.5	20.6	11.2
1	12.9	10.7	22.g	9.6	29.5	6.g	32.0	12.6	20.6	11.3
2	12.9	10.7	22.g	9.6	29.4	6.4	31.2	11.4	20.6	11.2
3	12.9	10.7	21.7	8.4	29.2	4.9	30.4	9.2	20.6	11.1
4	12.9	10.7	21.4	8.2	28.8	4.2	30.1	6.4	20.6	11.1
5	12.9	10.7	21.3	8.2	28.6	3.6	29.5	5.0	20.5	10.6
6	12.9	10.6	21.3	8.1	28.3	3.1	29.2	4.g	20.0	8.6
7	12.9	10.6	21.2	8.1			29.2	4.7	19.6	8.1
8	12.9	10.6	21.2	8.1						
9	12.g	10.0	21.2	8.1						
10	.0		21.2	8.1						
11			2.12	8.0						
12			21.1	8.0						

Table 6. Dissolved Oxygen and Temperature Observations in Long Lake

Depth,	4/26	5/95	6/1.	5/95	7/1	8/95	8/29	/95	10/5	/95
feet	Temp	DO								
Station 3										
0	12.7	10.0	22.0	8.1	29.9	6.1	32.0	13.5	21.1	12.0
1	12.7	10.0	22.0	8.0	29.9	6.2	32.0	13.5	21.2	11.9
2	12.7	10.0	21.7	7.8	29.8	5.8	31.8	13.5	20.2	10.8
3	12.7	10.0	21.3	7.4	27.7	3.5	31.6	12.8	19.5	9.6
4	12.7	10.0	21.3	7.5	27.5	3.2	30.8	10.2	19.0	8.1
5	12.6	10.0	21.2	7.4						
6	11.8	9.3	21.2	7.3						
7	11.7	9.3	21.2	7.3						
8	11.8	9.2	21.1	7.2						
9	11.8	9.1	21.1	7.1						
10			21.1	7.1						
11			21.1	7.0						
12			21.0	7.0						

Table 6. Concluded

Notes:

Depth,	4/24	4/95	6/1	2/95	7/1	2/95	8/21	/95	10/3	/95
feet	Temp	DO	Temp	DO	Temp	DO	Temp	DO	Temp	DO
Station 1										
0	9.7	11.1	20.6	10.0	27.0	8.9	29.0	7.7	18.3	9.2
0 2	9.7 9.7	11.1	20.0 20.6	10.0	27.0 26.9	8.9 9.1	29.0 28.9	7.7	18.3	9.2 9.5
4	9.7 9.7	11.1	20.0 20.6	10.0	20.9 26.0	9.1 9.8	28.9 29.0	7.7	18.3	9.3 9.7
4 6	9.6	11.0	20.0 20.6	10.0	20.0 25.6	9.7	29.0 29.0	7.7	18.3	9.7 9.7
8	9.5	11.0	20.6	10.1	25.0 25.2	9.6	29.0 29.0	7.7	18.3	9.7
10	9.4	11.1	20.0	10.1	24.7	9.5	29.0	7.7	18.3	9.7
10	9.4	11.0	20.5	10.1	24.7	9.1	28.9	7.7	18.3	9.6
12	9.4	11.0	20.5	10.1	23.7	8.6	28.9	7.7	18.2	9.6
16	9.4	11.0	17.9	10.1	22.7	7.7	27.4	7.1	18.1	9.5
18	9.3	11.0	17.2	10.5	21.0	6.9	24.6	5.2	18.0	9.5
20	9.2	11.0	16.6	9.2	18.2	5.9	22.1	5.2	18.0	9.2
22	9.2	10.9	15.1	9.2	16.5	6.1	19.8	5.4	17.8	9.3
24	9.1	10.9	14.2	9.2	15.3	6.1	17.7	5.4	17.7	8.6
26	9.1	10.9	13.0	9.7	13.9	6.8	15.8	5.6	17.3	7.8
28	9.1	10.9	12.4	9.8	13.1	7.5	14.7	5.7	16.7	5.9
30	9.0	10.9	11.4	10.0	12.2	7.8	13.6	5.9	16.0	4.3
32	9.0	10.9	11.0	10.0	11.6	8.0	12.7	6.1	14.7	1.7
34	8.9	10.8	10.6	10.1	11.1	7.4	11.9	5.4	13.0	1.1
36	8.8	10.7	10.3	9.9	10.6	7.3	11.1	3.9	12.0	0.9
38	8.8	10.7	10.0	9.5	10.1	7.0	10.4	2.9	11.1	0.9
40	8.6	10.7	9.6	7.8	9.8	6.1	10.0	2.1	10.5	0.9
42	8.4	10.7	9.1	8.1	9.4	5.9	9.2	2.0	9.7	1.0
44	7.8	10.6	8.7	8.2	8.9	5.6	9.0	1.6	9.1	1.0
46	7.8	10.6	8.1	7.6	8.2	5.1	8.4	0.8	8.7	1.0
48	7.1	10.5	7.6	7.3	7.9	4.3	7.9	0.4	8.2	1.0
Station 2										
0	9.4	11.2	20.4	10.7	27.7	9.6	28.6	7.3	18.5	9.2
2	9.4	11.3	20.4	10.7	27.7	9.6	28.7	7.2	18.5	9.4
4	9.4	11.3	20.4	10.7	27.6	9.6	28.7	7.3	18.4	9.5
6	9.4	11.3	20.4	10.7	27.5	9.8	28.7	7.2	18.3	9.7
8	9.3	11.2	20.3	8.8	27.5	9.8	28.6	6.9	18.2	9.7
10	8.9	11.2	19.8	10.2	27.5	6.5	28.5	6.5	18.2	8.4
12			18.3	10.8			28.4	4.3		

Table 7. Dissolved Oxygen and Temperature Observations in Snakeden Hollow Lake

Depth,	4/24	4/95	6/1	2/95	7/1	2/95	8/21	/95	10/3	/95
feet	Temp	DO	Temp	DO	Temp	DO	Temp	DO	Temp	DO
Station 3										
0	9.6	12.1	20.6	11.3	28.4	9.5	28.9	7.4	18.5	9.5
2	9.6	12.2	20.6	11.3	27.1	9.1	28.9	7.4	18.5	9.7
4	9.4	12.2	20.4	11.3	27.1	7.8	28.8	7.4	18.5	10.0
6	9.4	12.0	20.1	10.5	26.0	9.4	28.8	7.3	18.3	9.9
8	9.2	11.8	19.8	9.5	24.5	10.4	28.6	6.9	18.1	10.2
10	9.1	11.8	19.0	9.2	22.7	5.8	28.3	5.3	17.6	11.5
12	8.9	11.7	16.3	10.4	20.3	2.1	26.1	3.9	16.9	9.8
14	8.4	11.3	14.4	10.9	16.7	0.4	22.9	2.4	16.1	7.8
16			12.8	10.2	14.6	0.3	18.9	2.0	16.0	6.1
18			11.8	9.5	13.1	0.3	15.8	0.7	15.5	2.7
20			11.2	8.7	12.1	0.3	13.7	0.3	15.2	1.0
22			10.7	6.4	11.6	0.3	12.3	0.3	14.6	0.7
24			10.5	3.8	10.9	0.3	11.1	0.3	13.4	0.7

Table 7. Concluded

Notes:

Depth,	4/25	/95	6/1	5/95	7/.	19/95	8/28	8/95	10/4	!/95
feet	Temp	DO	Temp	DO	Temp	DO	Temp	DO	Temp	DO
G((* 1										
Station 1	14.0	7.0	24.0	05	20.4	125	20.2	10.2	10.0	14.0
0	14.8	7.9	24.9	8.5	30.4	13.5	29.3	12.3	19.0	14.0
2	14.8	7.9	23.6	8.8	28.5	14.9	27.8	12.3	18.7	14.7
4	14.1	7.7	22.1	5.3	27.7	12.9	26.9	3.5	18.2	13.1
6	13.7	7.6	22.3	2.9	26.8	1.0	25.9	0.4	18.1	11.9
8	13.2	5.8	20.1	1.0	23.9	1.0	23.1	0.3	18.1	11.9
10	12.1	2.7	18.3	0.3	20.7	0.4	20.8	0.3	17.7	0.5
12	11.4	1.2	16.7	0.2	17.7	0.4	18.2	0.3	16.7	0.3
14	10.3	0.9	14.2	0.1	14.6	0.4	14.9	0.3	15.7	0.3
16	8.0	0.6	13.0	0.1	12.9	0.4	13.3	0.3	14.6	0.3
18	7.5	0.6	11.8	0.1	11.6	0.5	12.3	0.3	13.4	0.3
20	7.2	0.5	10.5	0.1	10.6	0.5	11.0	0.3	11.6	0.3
22	6.8	0.3	9.1	0.1	9.7	0.5	10.3	0.3	10.7	0.3
24	6.6	0.2	8.3	0.1	9.0	0.4	9.5	0.3	10.2	0.3
26	6.2	0.1	7.9	0.1	8.3	0.4	8.9	0.3	9.6	0.3
28	6.1	0.1	7.6	0.1	8.0	0.4	8.6	0.3	8.9	0.3
30	6.0	0.1								
32	6.0	0.1								
Station 2										
0	14.6	8.3	24.9	8.4	31.1	13.4	28.5	14.2	18.6	12.6
2	14.4	8.3	24.5	8.5	28.7	15.9	27.7	13.5	18.6	12.9
4	13.5	8.0	22.3	6.4	27.7	13.9	27.0	5.8	18.2	13.0
6	13.4	7.9	21.5	4.8	26.6	1.1	25.6	0.4	18.1	12.0
8	13.2	7.2	20.3	1.4	23.1	0.9	23.4	0.3	17.9	9.3
10	12.6	6.8	18.4	0.5	20.1	0.5	20.1	0.3	17.9	9.3
12	11.6	5.5	16.2	0.2	17.2	0.5	17.7	0.2	17.4	0.5
14	10.4	1.7	14.3	0.2	14.5	0.5	15.6	0.2	15.8	0.4
16	9.3	0.6	12.5	0.1	13.4	0.5	13.7	0.2	14.6	0.4
18	8.2	0.5	10.8	0.1	12.1	0.5	12.1	0.2	13.0	0.4
20	7.6	0.4	9.9	0.1	10.5	0.5	10.8	0.2	11.8	0.4
20	7.0	0.3	9.3	0.1	10.5	0.5	9.9	0.2	10.8	0.4
24	6.8	0.3		0.1	10.1	0.0		0.2	10.0	0.4
<i>4</i> -T	0.0	0.2								

Table 8. Dissolved Oxygen and Temperature Observations in Walnut Point Lake

Depth,	4/25	5/95	6/1.	5/95	7/1	19/95	8/28	8/95	10/4	/95
feet	Temp	DO	Temp	DO	Temp	DO	Temp	DO	Temp	DO
Station 3										
0	15.5	8.3	25.5	8.5	30.8	14.0	29.1	13.9	18.5	12.2
2	14.7	8.3	25.2	6.5	29.2	16.6	27.5	13.7	18.3	12.2
4	14.1	8.3	23.8	6.5	27.7	14.3	27.1	9.1	18.3	12.2
6	13.7	8.2	21.6	5.1	26.7	3.4	25.9	0.4	18.0	11.6
8	13.1	7.6	20.2	1.7	23.2	0.5	24.0	0.3	18.3	11.3
10	12.8	7.5	18.2	0.3	19.2	0.5	20.2	0.3	17.8	2.9
12	12.1	7.3	16.4	0.2	16.8	0.4	17.6	0.3	16.6	0.4
14	11.4	5.0	14.4	0.2	14.7	0.4	15.3	0.3	15.8	0.4
16	10.0	1.5	12.6	0.1	13.6	0.4	14.4	0.3	14.7	0.4
18			11.9	0.1						

Table 8. Concluded

Notes:

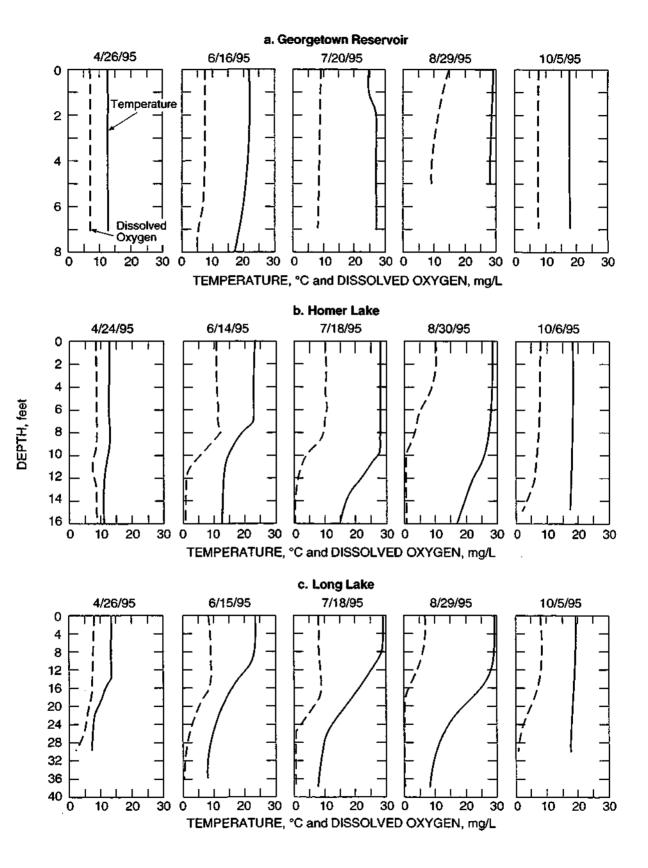


Figure 8. Dissolved oxygen and temperature profiles at station 1 of each lake

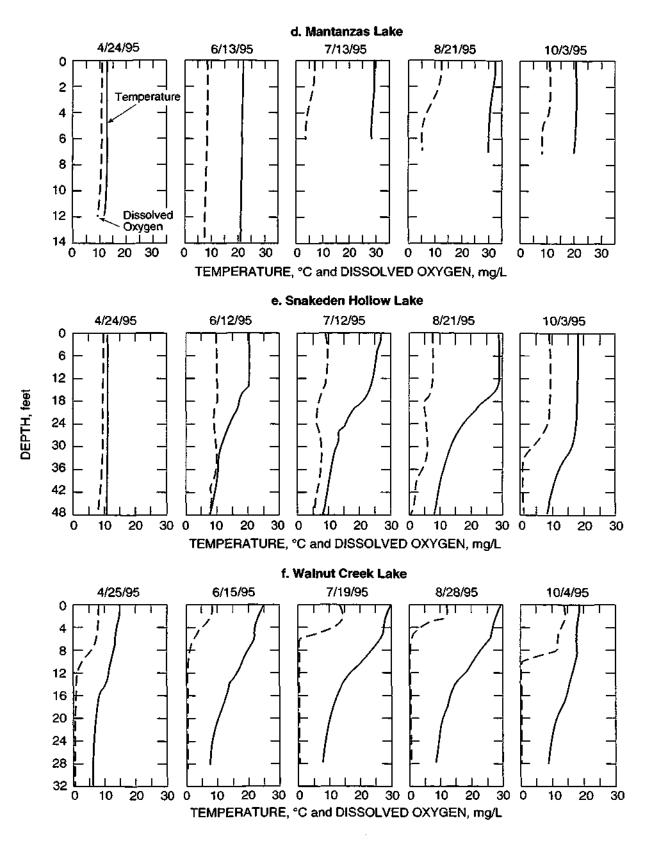


Figure 8. Concluded

T = water temperature, °C

Tables 9-14 provide the computed percent DO saturation values for Georgetown Reservoir, Homer Lake, Long Lake, Matanzas Lake, Snakeden Hollow Lake, and Walnut Point Lake, respectively. Georgetown Reservoir exhibited supersaturated conditions during August observations. Homer Lake exhibited 33 percent supersaturation from June -August. Long Lake had a very minor degree of supersaturation in June and July and none in August. Matanzas Lake showed a very high degree of supersaturation in August and a moderate degree of supersaturation in October. Snakeden Hollow Lake experienced a low degree of supersaturation during June to August and marginal supersaturation during October. Walnut Point Lake exhibited a high degree of supersaturation in the top 4-6 feet of the epilimnetic zone demarcated sharply by nearly anoxic waters below this zone during the summer months. The extremes of oxygen conditions were most pronounced in this lake among all the lakes monitored in this study.

Secchi Disk Transparency

Water transparency is measured with a Secchi disk on a calibrated rope, which suggests the depth of light penetration into a body of water. From the water surface to approximately two to three times the Secchi disk depth is the region of a lake where enough sunlight penetrates to allow photosynthetic production of oxygen by algae and other aquatic plants.

Secchi disk transparency for the six lakes studied ranged from 7 inches at station 2 in Matanzas Lake on October 3, 1995 (appendix D) to 285 inches at station 1S (surface) in Snakeden Hollow Lake on the same date (appendix E). In a previous survey of 25 Illinois lakes, Lin and Raman (1993) found the highest Secchi disk transparency as 186 inches in Strode Lake in Fulton County. For a survey of southern Illinois lakes, Burns (1991) reported the highest Secchi disk transparency (240 inches) in Crystal Lake in Perry County.

Since Georgetown Reservoir is a small in-channel dammed impoundment; as expected, it has generally low Secchi transparency. The two shallow lakes studied, namely, Matanzas Lake and Georgetown Reservoir, had low Secchi disk readings < 24 inches (table 1), which indicates the level generally associated with lake impairment (Illinois EPA, 1978). Homer Lake has a mean Secchi transparency of 31 inches. Three lakes (Long, Snakeden Hollow, and Walnut Point) had Secchi transparency > 48 inches (table 1). The minimum recommended Secchi transparency set by the Illinois Department of Public Health for bathing beaches is 48 inches. Nevertheless, a lake that does not meet the transparency criteria does not necessarily constitute a public health hazard.

Total and Volatile Suspended Solids

Total suspended solids (TSS) represent material residue left on a filter < 2.0 micrometers (µm) nominal pore size, i.e., the amount of all inorganic and organic materials suspended in the water column. Typical inorganic components originate from the weathering and erosion of rocks and soils in a lake's watershed and resuspension of lake sediments. Organic components are derived from a variety of biological origins, but in a lacustrine environment they are mainly composed of algae and resuspended plant and animal material from the lake bottom. Volatile suspended solids (VSS) indicate the fraction of the total suspended solids that is organic in nature, the portion of TSS lost to ignition at $500 \pm 50^{\circ}$ C.

The amount of suspended solids found in impounded waters is small compared to the amount found in streams, because solids tend to settle to the bottom in lakes.

Table 9. Percent Saturation of Dissolved Oxygen in Georgetown Reservoir, 1995

Depth,					
feet	4/26	6/16	7/20	8/29	10/5
Station 1					
0	67	91	106	192	79
1	66	89	106	173	79
2	66	90	108	148	78
3	65	90	107	132	79
4	65	89	106	122	80
5	65	84	106	103	79
6	65	81	103		
7	65	57	102		
8		50			
Station 2					
0	70	89	112	223	80
1	70	88	112	223	74
2	70	88	112	165	70
3	70	86	111	138	70
4	70	85	111	127	75
5	70	84	108	105	76
6	70	83	98	92	77
7	70	67	93	68	76
8	70	58	77	41	74
9	68	45	69		74
Station 3					
0	71	87	126	248	85
1	71	86	129	265	87
2	72	86	130	153	86
3	72	86	130	139	83
4	72	85	122	104	82
5	73	84	116	83	80
6	73	60		69	

Depth,					
feet	4/24	6/14	7/18	8/30	10/6
Station 1					
0	79	126	125	133	82
1	80	128	130	132	82
2	80	128	132	132	82
3	80	130	133	132	82
4	80	130	133	108	82
5	80	131	125	95	82
6	80	131	139	65	85
7	80	129	120	46	81
8	80	134	122	36	79
9	80	93	96	25	76
10	72	57	47	2	72
11	63	18	28	2	69
12	69 74	10	12	2	66 53
13 14	74 75	8 5	2 2	2 1	53 <u>41</u>
14	75 76	5 4	2	1	41 24
1.5	70	т	2	1	27
Station 2					
0	84	126	120	120	69
1	86	127	120	134	69
2	85	127	121	118	70
3	86	126	123	128	68
4	85	123	118	115	68
5	85	122	116	89	68
6	83	122	114	61	68
7	77	114	113	31	68
8	77	107	112	24	65
9	76	66	46	10	50
10	76	30	10	10	47
11 12	85 86	6 6	5		28
12	86	0	6		
Station 3					
0	96	137	66	51	51
1	97	140	66	58	54
2	97	146	67	52	54
3	84	121	67	27	54
4	75	92	59	10	49
5	70	83	60	8	42
6	70				

Table 10. Percent Saturation of Dissolved Oxygen in Homer Lake, 1995

Danth					
Depth, feet	4/26	6/15	7/18	8/29	10/5
jeer	1/20	0/15	//10	0/2/	10/5
Station 1					
0	80	98	103	87	86
2	77	104	103	85	86
4	76	109	104	85	89
6	72	107	104	86	91
8	72	107	98	84	91
10	71	106	104	72	92
12	71	104	102	58	91
14	70	98	97	43	86
16	67	86	99	23	79
18	65	62	88	12	63
20	52	51	69	5	51 25
22	48	42	45	2	35
24	40	29 10	19	2	28 21
26	36	19 12	4 4	2 2	21 15
28 30	27 14	12 6	4 3	2	10
30 32	14	3	3	2	10
32 34		3	3	2	
3 4 36		3	3	2	
38		5	3	2	
50			5	-	
Station 2					
0	133	96	102	77	80
2	133	96	103	77	83
4	133	95	103	75	83
6	129	95	102	75	84
8	125	96	96	73	89
10	123	92	93	55	85
12	120	78	86	19	85
14	116	53	75	3	85
16	106	31	10	2	84
18	89	16	3	2	84
20	77	3	3	2	52
22	69			2	31
24	65			2	10
Chabian 2					
Station 3 O	70	108	107	82	81
2	70 70	106	107	82	84
2 4	69	110	108	83	85
- 6	67	106	110	79	85
8	65	103	102	74	85
10	6 <u>4</u>	84	57	33	85
12	56	29	3	3	85
14			-	3	81
			~~	-	

Table 11. Percent Saturation of Dissolved Oxygen in Long Lake, 1995

Depth,					
feet	4/24	6/13	7/13	8/21	10/3
Station 1					
0	101	99	95	175	126
1	101	100	91	176	120
2	101	100	85	157	126
3	101	99	65	125	125
4	101	95	55	86	125
5	101	95	47	67	119
6	101	95	40	64	95
7	99	95		62	89
8	99	94			
9	99	93			
10	98	93			
11	90	86			
12	84	86			
13		85			
14		84			
15		84			
Station 2					
0	102	113	95	175	126
1	102	113	91	176	127
2	102	113	85	157	126
3	102	96	65	125	125
4	102	93	55	86	125
5	102	93	47	67	119
6	101	92	40	64	95
7	101	92		62	89
8	101	92			
9	95	92			
10		92			
11		91			
12		91			
Station 3					
0	95	93	82	189	136
1	95	92	83	189	135
2	95	89	78	188	120
3	95	84	45	177	105
4	95	85	41	139	88
5	94	84			
6	86	83			
7	86	83			
8	85	82			
9	84	80			
10		80 70			
11		79 70			
12		79	33		

Table 12. Percent Saturation of Dissolved Oxygen in Matanzas Lake, 1995

Depth,						Depth,					
feet	4/24	6/12	7/12	8/21	10/3	feet	4/24	6/12	7/12	8/21	10/3
6 + + + + - = 1						Station 2					
Station 1	00	110	110	110	00		00	110	104	00	00
0	98	112	113	<u>11</u> 7	98 100	0	98 00	<u>118</u>	124	96	99 101
2	98	112	115	120	102	2	99	120	124 102	94 06	101
4	98	112	122	130	104	4	99	120	123	96	102
6	97	113	120	128	104	6	99	120	126	94	104
8	97	113	118	127	104	8	98	98	126	90	104
10	97	113	116	125	104	10	97	113	83	85	90
12	96	113	110	120	103	<u>12</u>		116			
14	96	113	103	113	103						
16	96	<u>111</u>	90	99	101	Depth,					
18	96	109	78	84	101	feet	4/24	6/12	7/12	8/21	10/3
20	96	9 5	63	68	98						
22	95	92	63	67	98	Station 3					
24	9 5	90	61	64	91	0	106	127	124	97	102
26	9 5	92	66	69	82	2	107	127	<u>11</u> 6	97	104
28	95	92	72	74	61	4	107	126	99	97	107
30	94	92	73	75	44	6	105	117	117	96	106
32	94	91	74	76	17	8	103	105	125	90	109
34	93	91	67	69	10	10	102	100	68	69	121
36	92	88	66	67	8	12	101	107	23	49	102
38	92	84	62	63	8	14	96	107	4	28	80
40	92	69	54	54	8	16		97	3	22	62
42	91	70	52	51	9	18		88	3	7	27
44	89	70	48	48	9	20		79	3	3	10
<u>4</u> 6	89	64	43	43	9	22		58	3	3	7
48	87	61		36	8	24		34	3	3	, 7
TO	07	OT	50	50	0	47		54	5	5	'

 Table 13. Percent Saturation of Dissolved Oxygen in Snakeden Hollow Lake, 1995

Depth,					
feet	4/25	6/15	7/19	8/28	10/4
Station 1					
0	78	104	183	163	152
2	78	105	195	159	159
4	75	61	166	44	140
6	74	34	13	5	127
8	55	11	12	4	127
10	25	3	4	3	5
12	11	2	4	3 3	3
14 16	8	1	4 4	3	3 3
16 18	5 5	1 1	- 1 5	3	3
20	5 4	1	5	3	3
20	± 2	1	4	3	3
24	2	1	3	3	3
26	1	1	3	3	3
28	1	1	3	3	3
30	1	-	•	0	5
32	1				
Station 2					
0	82	103	184	186	136
2	82	104	209	174	139
4	77	74	179	74	139
6	76	55	14	5	128
8	69	16	11	4	139
10	64	5	6	3	99
12	51	2	5	2	5
14	15	2	5	2	4
16	5	1	5	2	4
18	4	1	5	2	4
20	3	1	4	2	4
22	2	1	4	2	4
24	1				
Station 3					
0	84	105	191	184	131
2	82	80	220	176	131
4	81	78	184	116	129
6	79	58	43	5	123
8	73	19	6	4	121
10	71	3	5	3	31
12	68	2	4	3 3	4
14	46	2	1	3	4
16	13	1	4	3	4
18		1			
			05		

Table 14. Percent Saturation of Dissolved Oxygen in Walnut Point Lake, 1995

However, in shallow lakes this aspect is greatly modified by wind and wave actions and by the type and intensity of use to which these lakes are subjected.

Generally, the higher the TSS concentration, the lower the Secchi disk reading. A high TSS concentration results in decreased water transparency, which can reduce photosynthetic activities, and subsequently decrease the amount of oxygen produced by algae, possibly creating anoxic conditions. Anaerobic water may limit fish habitats and potentially cause taste and odor problems by releasing noxious substances such as hydrogen sulfide, ammonia, iron, and manganese from lake bottom sediments.

During this study, TSS in the surface water samples of the lakes studied ranged from 1 mg/L at station 2 in Walnut Point Lake on April 25, 1995 (appendix F) to 96 mg/L at station 2 in Georgetown Reservoir on October 5, 1995 (appendix A). Very low TSS concentration (2 mg/L) was also observed at all three surface stations in Snakeden Hollow Lake on many sampling dates (appendix E) and at stations 2 and 3 in Long Lake (appendix C). The mean surface water TSS concentrations were between 2.6 mg/L for Snakeden Hollow Lake and 46.3 mg/L for Matanzas Lake (table 1).

TSS concentrations in the near-bottom waters ranged from 3 mg/L at station 1B in Walnut Point Lake on April 25, 1995 (appendix F) to 244 mg/L at station 1B in Long Lake on October 5, 1995 (appendix C).

VSS concentrations in surface waters for the six lakes studied ranged from 1 mg/L (Homer, Long, Snakeden Hollow, and Walnut Point Lakes) to 36 mg/L at station 2 in Georgetown Reservoir on October 5, 1996 (appendices A, B, E, F). VSS levels for near-bottom samples were between 2 mg/L in Long Lake on June 15, 1995 and in Walnut Point Lake on April 25, 1996, and 66 mg/L also in Long Lake on October 5, 1995 (appendices C, F). These high TSS and VSS concentrations could be the result of the sloughing off of the unstable high bank into the lake near the sampling station.

Turbidity

Turbidity is an expression of the property of water that causes light to be scattered and absorbed by a turbidimeter, and is reported as nephelometric turbidity units (NTU). Turbidity in water is caused by dissolved substances and suspended matter, such as clay, silt, finely divided inorganic and organic matter, soluble colored organic compounds, and plankton and other microorganisms. Generally, turbidity in lakes is influenced by sediment runoff carried into a lake from its watershed, algae in the water column, or resuspension of lake bottom sediments.

Turbidity of 18 site samples from the six lakes assessed ranged from 1.2 NTU for surface water (at station 3 in Snakeden Hollow Lake on October 3, 1995, see appendix E) and 2.2 NTU for bottom water (at station 1B in Walnut Point Lake on June 15, 1995, see appendix F) to 19 NTU for surface water (at station 2 in Walnut Point Lake on August 28, 1995, see appendix F) and 15 NTU for bottom water (at station 1B in Walnut Point Lake on August 28, 1995, see appendix F). Illinois Lake Assessment Criteria (Illinois EPA, 1978) for a moderate amount of sediment set a turbidity value between 7 and 14 NTU. Turbidity > 15 NTU is indicative of substantial suspended sediment. On the basis of mean surface turbidity levels listed in table 1, all six lakes are considered to have minimal amounts of suspended sediments.

Conductivity

Specific conductance provides a measure of a water's capacity to convey electric current and is used as an estimate of the dissolved mineral quality of water. This property is related to the total concentration of ionized substances in water and the temperature at which the measurement is made. Specific conductance is affected by factors such as the nature of dissolved substances, the relative concentrations, and the ionic strength of the water sample. The geochemistry of the drainage basin is the major factor determining the chemical constituents in the waters. Practical applications of conductivity measurements include determination of the purity of distilled or deionized water, quick determination of the variations in dissolved mineral concentrations in water samples, and estimation of dissolved ionic matter in water samples.

The mean conductivity values of surface water samples were between 347 umho/cm (Walnut Point Lake) and 1736 umho/cm (Long Lake) at 25°C. Very high conductivity values of 1888 umho/cm (at station 3 on April 26, 1995) and 1991 umho/cm (at station 1B on August 29, 1995), respectively were observed for the surface and bottom waters in Long Lake (appendix C). High conductivities (1251-1512 umho/cm) were also found in Snakeden Hollow Lake (appendix G). Long Lake is a final-cut impoundment, and Snakeden Hollow Lake is in the heavily mined area. Conductivity levels in the other four lakes were lower in the range of approximately 300-700 umho/cm (appendices A, B, D, and E).

pH

The pH value is a measure of the acidity of water: values < 7.0 indicate acidic water, and values > 7.0 indicate basic (or alkaline) water. A pH of 7.0 is exactly "neutral". Although rainwater in Illinois is acidic (pH about 4.4), most of the lakes can offset this acidic input by an abundance of natural buffering compounds in the lake water and the watershed. One species of carbonate, carbonic acid, usually controls pH to the greatest extent and is consumed by algae and other plants for growth. A rise in pH can occur due to photosynthetic uptake of carbonic acid and cause water to become more basic. Values > 8.0 in Illinois lakes are usually indicative of photosynthetic demand of carbon dioxide. Most Illinois lakes have a pH between 6.5 and 9.0. The IPCB (1990) standard of pH for general-use water quality is also in a range between 6.5 and 9.0, except for natural causes.

The pH levels at the six lake surface waters ranged from 8.0 to 9.7 (appendices A-F). In fact, all lakes with the exception of Walnut Point Lake had pH < 9.0. In Walnut Point Lake, eight of 15 surface water samples had pH > 9.0 (appendix F). Photosynthetic activities occurred in all six lakes.

The pH values for lake bottom waters were found to be lower than those for lake surface waters. They were between 6.9 and 8.1 (appendices A-F) and met the Illinois EPA's general-use pH standards. Only one sample collected from station 1B in Walnut Point Lake on October 4, 1995 had pH < 7.0 (appendix F).

Alkalinity

Alkalinity is a measure of water's acid-neutralizing capacity. It is expressed in terms of an equivalent amount of calcium carbonate ($CaCO_3$). Alkalinity is mainly the result of carbonates, bicarbonates, and hydroxide ions in water. Total alkalinity is the sum of acid required to bring water to a pH of 4.5. Phenolphthalein alkalinity is the amount of acid needed to bring the water to a pH of 8.3.

Lakes with low alkalinity are to have the potential to be susceptible to acid rain damage. However, Illinois lakes usually have high alkalinity and thus are well buffered from the impacts of acid rain.

Phenolphthalein Alkalinity. Surface waters at 18 sites had phenolphthalein alkalinity of 0-29 mg/L as $CaCO_3$. The highest value occurred in August in Walnut Point Lake (appendix G). Approximately 40 percent of surface waters had no phenolphthalein alkalinity. Bottom water samples did not have phenolphthalein alkalinity.

Total Alkalinity. Total alkalinity as $CaCO_3$ of 18 sites surface waters were between 96 mg/L (station 3 in Snakeden Hollow Lake on October 3, 1995) and 258 mg/L (station 3 in Homer Lake on April 25, 1995). These values are typical of Illinois lakes. With a few exceptions, lake bottom waters generally have higher total alkalinity than the lake surface waters. Of the four sites sampled, total alkalinity as $CaCO_3$ for bottom waters ranged from 145 mg/L in Snakeden Hollow Lake on June 12, 1995 (appendix E) to 307 mg/L in Walnut Point Lake on October 4, 1995 (appendix G). The greatest difference between bottom and surface total alkalinity occurred in Walnut Point Lake.

Nitrogen

Nitrogen is generally found in surface waters in the form of ammonia (NH_3), nitrite (NO_2), nitrate (NO_3), and organic nitrogen. Organic nitrogen is determined by subtracting NH_3 nitrogen from the total kjeldahl nitrogen (TKN) measurements. Organic nitrogen content can indicate the relative abundance of organic matter (algae and other vegetative matter) in water, but has not been shown to be directly used as a growth nutrient by planktonic algae. Nitrogen is an essential nutrient for plant and animal growth, but it can cause algal blooms in surface waters and create public health problems at high concentrations. The Illinois Pollution Control Board (1990) has set standards for nitrate not to exceed 10 mg/L nitrate nitrogen or 1 mg/L nitrite nitrogen for public water-supply and food processing waters.

Nitrate is readily used by algae as a nutrient at approximately the same extent as ammonia. If the sum of NO_2 and NO_3 nitrogen concentrations exceeds 0.30 mg/L, it may stimulate algal growth. NH_3 is a natural end product of decomposed organic material. It can exist in water in two forms as ionized (NH_4^+ ; ammonium) and un-ionized (NH_3 ammonia). High levels of ammonia can be toxic to aquatic organisms, but the level of toxicity depends on water temperature and pH. The IPCB (1990) stipulates an ammonia nitrogen limitation of 15 mg/L.

Ammonia Nitrogen. Inspection of appendices indicates that the surface water ammonia nitrogen levels ranged from concentrations that were less than detectable (0.01 mg/L) for at least one sample, at 17 sites except for station 3 in Homer Lake to 0.34 mg/L at station 1S in Long Lake on October 5, 1995. NH₃ concentrations for all surface waters increased during October 1995 at all 18 sites.

Ammonia concentrations in the bottom waters can be more important in that the NH_3 will rapidly be oxidized to nitrite/nitrate after lake turnover occurs. The observed bottom water NH_3 levels were higher and ranged from 0.05 mg/L at station 1B in Homer Lake on April 25, 1995 to 17.0 mg/L in Walnut Point Lake on July 19 and October 4, 1995. These two near bottom water samples exceeded the IPCB's ammonia nitrogen limitation (15 m/L).

Nitrite/Nitrate Nitrogen. The sum of nitrite and nitrate $(NO_2 + NO_3)$ nitrogen for five lakes (except for Georgetown Reservoir) was under the detection limit (0.01 mg/L) for

both surface and bottom water samples (not all stations). The high concentration of 11.2 mg/L was found in Georgetown Reservoir on June 16, 1995. For Georgetown Reservoir, samples collected in April and June 1995, the NO₂/NO₃ levels exceeded IPCB standards of 10 mg/L (appendix A).

Total Kjeldahl Nitrogen. Total kjeldahl nitrogen represents the sum of ammonianitrogen and organic nitrogen present in a water. For the lake surface waters, TKN ranged from 0.1 kmg/L (at station 3 in Georgetown Reservoir on July 20, 1995 and at station 3 in Snakeden Hollow Lake on October 3, 1995) to 5.6 mg/L at station 2 in Georgetown Reservoir on October 5, 1995. The surface TKN levels in Long Lake and Snakeden Hollow Lake were generally lower (appendices B and E) while TKN for bottom waters ranged from 0.46 mg/L in Snakeden Hollow Lake on June 12, 1995 to 13.8 mg/L in Walnut Point Lake on October 4,1995.

Phosphorus

Total Phosphorus. Total phosphorus (TP) represents all forms of phosphorus in water. Dissolved phosphorus is the soluble portion of TP. Phosphorus, an essential plant nutrient, occurs in natural water and wastewaters almost solely as phosphates. In relatively uncontaminated lakes, the TP of lake surface waters is generally in the range of 0.01 and 0.03 mg/L (Hutchinson, 1967; APHA, AWWA, and WEF, 1992). Phosphorus is frequently the limiting nutrient in a lake ecosystem. Excessive concentrations of TP, like nitrate, can cause noxious growths of algae and other aquatic plants, and TP levels of 0.03 mg/L have been shown to create nuisance algae/plant growth. The IPCB (1990) stipulates that "Phosphorus as P shall not exceed 0.05 mg/L in any reservoir or lake, or in any system at the point where it enters any reservoir or lake."

Total phosphorus values of the 18 sites collected from six lakes' surface waters ranged from under the detection limit of 0.001 mg/L (station 1 in Snakeden Hollow Lake on April 24, 1995 and station 1 in Long Lake on June 15, 1995) to 0.278 mg/L (stations 2 and 3 in Matanzas Lake on August 21, 1995). Lakes influenced by rivers, such as Matanzas Lake and Georgetown Reservoir have shown high TP levels (mean TP of 0.199 and 0.087 mg/L, respectively). Table 1 also indicates that impoundments in mined areas, Long and Snakeden Hollow Lakes, had lower TP values (both 0.008 mg/L).

Lake bottom waters had higher TP levels. They ranged from 0.014 mg/L in Long Lake on June 15, 1995 to 2.88 mg/L in Walnut Point Lake on July 19, 1995. The mean TP concentrations at station 1B in Homer, Long, Snakeden Hollow, and Walnut Point Lakes were 0.129, 0.039, 0.171, and 1.592 mg/L, respectively.

Dissolved Phosphorus. Dissolved phosphorus (DP) values of the 90 surface water samples (18 locations) taken from six lakes studied ranged from under the detection limit of 0.001 mg/L on June 15 and July 18, 1995 in Long Lake (appendix C) and June 12, July 12, and August 21, 1995 in Snakeden Hollow Lake (appendix E) to 0.211 mg/L (station 2 in Matanzas Lake on October 3, 1995). Matanzas Lake had the highest DP levels. The mean DP in surface waters for Georgetown, Homer, Long, Matanzas, Snakeden Hollow, and Walnut Point Lakes (table 1) were 0.022, 0.010, 0.002, 0.105, 0.002, and 0.024 mg/L, respectively.

Examination of data in the appendices indicates that the DP concentrations for the bottom waters were between 0.002 mg/L (Homer Lake on April 25, 1995 and Long Lake on June 15, 1995) to 2.45 mg/L (Walnut Point Lake on July 19, 1995). The mean DP levels of bottom waters for Homer, Long, Snakeden Hollow, and Walnut Point Lakes were 0.071, 0.004, 0.129, and 1.414 mg/L, respectively.

Chlorophyll

Chlorophyll is a primary photosynthetic pigment in all oxygen evolving photosynthetic organisms. Extraction and quantification of chlorophyll a can be used to estimate biomass or standing crop of planktonic algae present in a body of water. Other algae pigments, particularly chlorophyll b and c can give information on the type of algae present. Blue-green algae (Cyanophyta) contain only chlorophyll a, while both the green algae (Chlorophyta) and the euglenoids (Euglenophyta) contain chlorophyll a and c. Chlorophyll a and c are also present in the diatoms, yellow-green, and yellow-brown (Chrysophyta), as well as dinoflagellates (Pyrrhophyta). These accessory pigments can be used to identify the types of algae present in a lake. Pheophytin a results from the breakdown of chlorophyll a. A large amount of pheophytin a indicates a stressed algal population or a recent algal die-off. As direct microscopic examination of water samples was used to identify and enumerate the type and concentrations of algae present in the water samples, the indirect method of making such assessments was not employed in this investigation.

The appendices A-F also present observed concentrations of chlorophyll *a* and other pigments. The corrected chlorophyll *a* levels were between 1.59 µg/L at station 2 in Snakeden Hollow Lake on April 24, 1995 and 301.92 µg/L at station 1 in Walnut Point Lake on June 15, 1995. As shown in table 1, the mean chlorophyll *a* concentrations for Georgetown, Homer, Long, Matanzas, Snakeden Hollow, and Walnut Point Lakes were 39.82, 29.20, 4.88, 66.65, 6.14, and 102.37 µg/L, respectively. The mean chlorophyll *b* levels were 15.03, 6.34, 2.69, 19.08, 2.20, and 5.48 µg/L, respectively. The mean chlorophyll *c* concentrations were 16.59, 8.81, 2.81, 21.28, 2.36, and 5.01 µg/L, respectively. Pheophytin *a* in the six lakes were 8.47, 3.04, 1.18, 10.48, 1.01, and 0.62 µg/L, respectively.

Macrophytes

Macrophytes are commonly called aquatic vegetation (or weeds). The macrophyton consists principally of aquatic vascular flowering plants, but it also includes the aquatic mosses, liverworts, ferns, and larger macroalgae (APHA *et al.*, 1992). Macrophytes may include submerged, emerged, and floating plants, and filamentous algae. In most lakes and ponds aquatic vegetation is found that may beneficially and/or adversely impact the natural ecosystem. Reasonable amounts of aquatic vegetation improve water clarity by preventing shoreline erosion, stabilizing sediment, storing nutrients, and providing habitat and hiding places for many small fish (young of the year, bluegill, sunfish, etc.). They also provide food, shade, and oxygen for aquatic organisms; block water movement (wind wave); and utilize nutrients in the water, reducing the excessive growth of phytoplankton.

However, excessive growth of aquatic vegetation generally interferes with recreational activities (fishing, boating, swimming, etc.); adversely affects aquatic life (overpopulation of small fish, benthic invertebrates); causes fish kill; emits taste and odor in water due to decomposition of dense weed beds; blocks water movement and retards heat transfer, creating vertical temperature gradients; and destroys aesthetic value to the extent of decreasing the economic values of properties surrounding a lake. Under these circumstances, aquatic plants are often referred to as weeds.

The macrophyte survey was conducted in June 1995 for all the lakes. A survey of the macrophyte beds was carried out using a boat and a lake map. The macrophyte beds were probed thoroughly with a garden rake to determine the presence/absence of aquatic vegetation. This survey enabled the delineation of areal extent of macrophytes in the lake

only. The quantitative assessment of macrophytes in the lakes was not made. However, the relative densities (dense, sparse, etc.) were noted.

Figures 2 and 9-12 plot the areal extent of macrophyte beds as determined during the survey and/or laboratory identifications of dominant species observed. No macrophyte was found in Matanzas Lake. In Georgetown Reservoir, water willow (*Dianthera americand*) grew along both sides of shorelines within 1-3 feet from the bank. Bulrush (*Scirpus* spp.) and prairie grass were observed along the west shore 10-50 feet from the bank (figure 2) in Georgetown Reservoir.

There were seven species of macrophytes found in Homer Lake. Curlyleaf pondweed (*Potamogeton crispus*), coontail (*Ceratophyllum demersum*), duckweed (*Lemna* spp.), Eurasian water milfoil (*Myriophyllum spicatum*), horned pondweed (*Zannechellia palustris*), bulrush, and cattail (*Typha* spp.) covered a 10-50 foot width of the littoral zone almost all around the lake (figure 9). In addition, there is a dense growth of curlyleaf pondweed and coontail in the northeast arm of the lake.

Figure 10 shows the six macrophyte species observed in Long Lake: water willow, coontail, Eurasian water milfoil, broadleaf water milfoil *{Myriophyllum heterophyllum*}, horned pondweed, and curlyleaf pondweed.

As shown in figure 11, eight macrophyte species, i.e. curlyleaf pondweed, coontail, chara, American pondweed (*Potamogeton nodosus*), sago pondweed (*Potamogeton pectinatus*), bulrush, American elodea (*Elodea canadensis*), and a filamentous algae were observed in Snakeden Hollow Lake. Approximately 80 percent of the shorelines were covered by macrophytes. In contrast, only a very small portion (less than 1 percent) of shoreline in the northwest part of Walnut Point Lake was covered by aquatic vegetation (figure 12). American pondweed was the dominant vegetation. Duckweed was also in the northwestern tip of the lake.

Trophic State

Eutrophication is a normal process that affects every body of water from its time of formation. As a lake ages, the degree of enrichment from nutrient materials increases. In general, the lake traps a portion of the nutrients originating in the surrounding drainage basin. In addition, precipitation, dry fallout, and ground-water inflow are the other contributing sources.

A wide variety of indices of lake trophic conditions have been proposed in the literature. Indices have been based on Secchi disk transparency; nutrient concentrations; hypolimnetic oxygen depletion; and biological parameters, including chlorophyll *a*, species abundance, and diversity. The USEPA suggests in its *Clean Lake Program Guidance Manual* (1980) the use of four parameters as trophic indicators: Secchi disk transparency, concentrations of chlorophyll a, phosphorus, and carbon in water.

In addition, the lake trophic state index (TSI) developed by Carlson (1977) on the basis of Secchi disk transparency (SD), chlorophyll *a* (CHL), and surface water total phosphorus (TP) can be used to calculate a lake's trophic state. The TSI number can be calculated from SD in meters (m), CHL in micrograms per liter (μ g/L), and TP in ug/L as follows:

on the basis of SD,	$TSI = 60 - 14.4 \ln (SD)$	(1)
on the basis of CHL,	$TSI = 9.81 \ln (CHL) + 30.6$	(2)
on the basis of TP,	TSI= 14.42 ln (TP) + 4.15	(3)

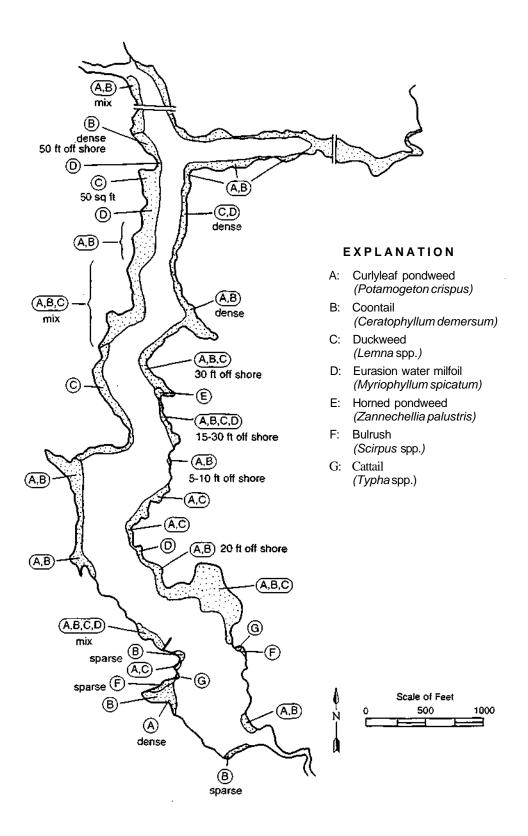


Figure 9. Macrophytes in Homer Lake, June 14, 1995

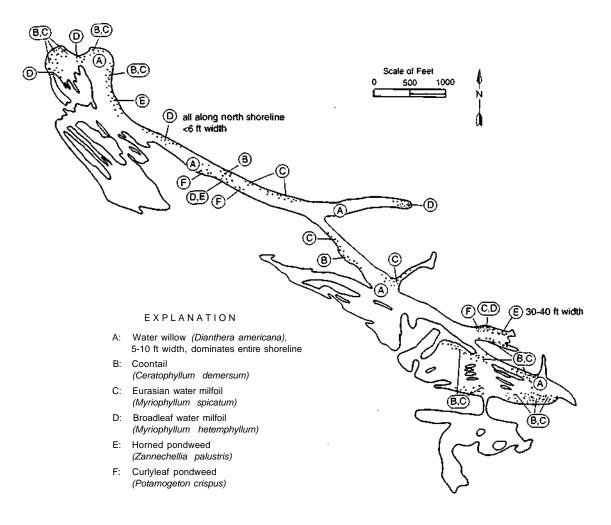


Figure 10. Macrophytes in Long Lake, June 15, 1995

EXPLANATION

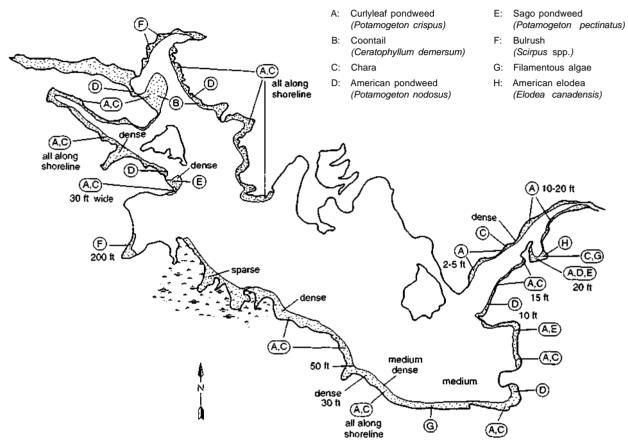


Figure 11. Macrophytes in Snakeden Hollow Lake, June 12,1995

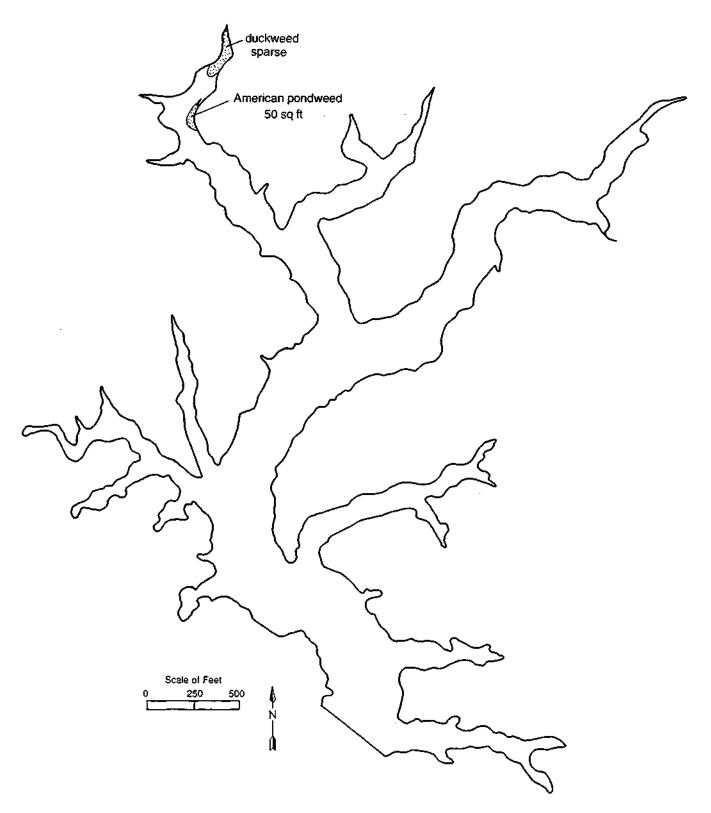


Figure 12. Macrophytes in Walnut Point Lake, June 15,1995

The index is based on the amount of algal biomass in surface water, using a scale of zero to 100. Each increment often in the TSI represents a theoretical doubling of biomass in the lake. The advantages and disadvantages of the use of TSI were discussed by Hudson *et al.* (1990). The accuracy of Carlson's index is often diminished by water coloration or suspended solids other than algae. Applying TSI classification to lakes dominated by rooted aquatic plants may indicate less eutrophication than what actually exists.

A TSI is derived from the average of three calculated results using formulas (1)-(3) for every monitored lake at each site. It is used to define the trophic state of a lake as indicated in table 15, which is modified from Carlson (1977). Table 16 lists the values of TSI and trophic state for six lakes (18 sites). The TSI for three stations in each lake are generally similar, as can be seen in table 16, based on either CHL or TP. In Long Lake and Snakeden Hollow Lake, the TP-TSI was generally lower than SD- and CHL-TSI. Average of SD-, TP-, and CHL-TSI for each station of a lake are again similar. The overall average TSI for each lake is also presented in Table 16 in bold. Using this overall TSI average, trophic condition of a lake was determined on the basis of criteria listed in table 15. Trophic conditions for the six lakes studied encompassed all four categories. Snakeden Hollow is classified as oligotrophic. Long Lake is in mesotrophic condition. Three lakes (Georgetown Reservoir, Homer Lake, and Walnut Point Lake) can be considered eutrophic. Matanzas Lake is hypereutrophic.

Lake Use Support

Definition

The degree of use support identified for each designated use indicates the ability of the lake: 1) to support a variety of high-quality recreational activities, such as boating, sport fishing, swimming, and aesthetic enjoyment; 2) to support healthy aquatic life and sport fish populations; and 3) to provide adequate, long-term quality and quantity of water for public or industrial water supply (if applicable). Determination of a lake's use support is based upon the state's water quality standards as described in Subtitle C of Title 35 of the State of Illinois Administrative Code. Each of four established use designation categories (including General Use, Public and Food Processing Water Supply, Lake Michigan, and Secondary Contact and Indigenous Aquatic Life) has a specific set of water quality standards.

The lake uses assessed in this report fall under General Use standards, primarily the 0.05 mg/L TP standard. The TP standard has been established for the protection of aquatic life, primary-contact (e.g., swimming) and secondary-contact (e.g., boating) recreation, agriculture, and industrial uses. In addition, lake-use support is based in part on the amount of sediment, macrophytes, and algae in the lake and how these might impair designated lake uses. The following is a summary of the various classifications of use impairment:

Full = full support of designated uses, with minimal impairment

Full/threatened = full support of designated uses, indications of declining water quality or evidence of existing use impairment problems

Partial/minor = partial support of designated uses, with slight impairment

Partial/moderate = partial support of designated uses, with moderate impairment

	Secch transpo	i disc trency	Chlorophyll a		
Trophic state	(inches)	(meter)	(μg/L)	lake surface (µg/L)	TSI
Oligotrophy	>157	>4.0	<2.6	<12	<40
Mesotrophic	79-157	2.0-4.0	2.6-7.2	12-24	40-50
Eutrophic	20-79	0.5-2.0	7.2-55.5	24-96	50-70
Hypereutrophic	<20	< 0.5	>55.5	>96	>70

Table 15. Quantitative Definitions of Lake Trophic States

	Georgetown Reservoir			Homer Lake		
	Station 1	Station 2	Station 3	Station 1	Station 2	Station 3
Secchi transparency	73.3	73.4	72.9	62.7	63.0	68.6
Total phosphorus	67.3	65.1	65.5	55.6	57.0	61.3
Chlorophyll	60.5	62.2	64.1	62.8	62.5	69.1
Station average	67.1	66.9	67.5	60.4	60.8	61.1
Lake average		67.1			60.8	
Trophic condition		Eutrophic			Eutrophic	

Table 16. Mean Trophic State Index Values

		Long Lake		Matanzas Lake			
	Station 1	Station 2	Station 3	Station 1	Station 2	Station 3	
Secchi transparency	45.1	46.1	50.4	75.0	76.6	77.0	
Total phosphorus	27.7	31.9	36.9	81.1	74.4	80.8	
Chlorophyll	42.7	45.6	47.0	71.9	70.3	70.1	
Station average	38.5	41.2	44.8	76.0	74.4	76.0	
Lake average		41.5			75.5		
Trophic condition		Mesotrophic			Hypereutro	ophic	

	Sne	akeden Hollow	Lake	Walnut Point Lake			
	Station 1	Station 2	Station 3	Station 1	Station 2	Station 3	
Secchi transparency	36.1	45.0	45.4	64.3	64.4	64.1	
Total phosphorus	23.5	29.1	35.7	66.5	67.0	67.3	
Chlorophyll	40.5	41.5	49.8	71.4	70.2	68.7	
Station average Lake average	33.5	38.5 38.6	43.7	67.4	67.2 67.1	66.7	
Trophic condition		Oligotrophic			Eutrophic		

Nonsupport = no support of designated uses, with severe impairment

Full-use supporting lakes may still exhibit some impairment, or have slight to moderate amounts of sediment, macrophytes, or algae in a portion of the lake (e.g., headwaters or shoreline); however, most of the lake acreage shows minimal impairment of the aquatic community and uses. *It is important to emphasize that if a lake is rated as not fully supporting designated uses, it does not necessarily mean that the lake cannot be used for those purposes or that a health hazard exists.* Rather, it indicates impairment in the ability of significant portions of the lake waters to support either a variety of quality recreational experiences or a balanced sport fishery. Since most lakes are multiple-use water bodies, a lake can fully support one designated use (e.g., aquatic life) but exhibit impairment of another (e.g., swimming).

Partial-use supporting lakes have a designated use that is slightly to moderately impaired in a portion of the lake (e.g., swimming impaired by excessive aquatic macrophytes or algae, or boating impaired by sediment accumulation). So-called nonsupport lakes have a designated use that is severely impaired in a substantial portion of the lake (e.g., a large portion of the lake has so much sediment that boat ramps are virtually inaccessible, boating is nearly impossible, and fisheries are degraded). However, in other parts of the same nonsupport lake (e.g., near a dam), the identical use may be supported. Again, nonsupport does not necessarily mean that a lake cannot support any uses, that it is a public health hazard, or that its use is prohibited.

Lake-use support and level of attainment were determined for aquatic life, recreation, swimming, and overall lake use, using methodologies described in the Illinois EPA's *Illinois Water Quality Report 1992-1993* (Illinois EPA, 1994).

The primary criterion in the aquatic life use assessment is an Aquatic Life Use Impairment Index (ALI); while in the recreation use assessment the primary criterion is a Recreation Use Impairment Index (RUI). While both indices combine ratings for TSI (Carlson, 1977) and degree of use impairment from sediment and aquatic macrophytes, each index is specifically designed for the assessed use. ALI and RUI relate directly to the TP standard of 0.05 mg/L. If a lake water sample is found to have a TP concentration at or below the standard, the lake is given a "full support" designation. The aquatic life use rating reflects the degree of attainment of the "fishable goal" of the Clean Water Act; whereas the recreation use rating reflects the degree to which pleasure boating, canoeing, and aesthetic enjoyment may be obtained at an individual lake.

The assessment of swimming use for primary-contact recreation was based on available data using two criteria: 1) Secchi disk transparency depth data and 2) Carlson's TSI. The swimming use rating reflects the degree of attainment of the "swimmable goal" of the Clean Water Act. If a lake is rated "nonsupport" for swimming, it does not mean that the lake cannot be used or that health hazards exist. It indicates that swimming may be less desirable than at those lakes assessed as fully or partially supporting swimming.

Finally, in addition to assessing individual aquatic life, recreation, and swimming uses, the overall use support of the lake was assessed. The overall use support methodology aggregates the use support attained for each of the individual lake uses assessed. Values assigned to each use-support attainment category are summed and averaged, and then used to assign an overall lake-use attainment value for the lake.

Lake Use Support Analysis

An analysis of lake use support for the six lakes studied was carried out employing the methodology developed by the Illinois EPA (1994). The analysis was performed on the basis of aquatic life use, recreation use, swimming use, and overall use. Table 17 presents the basic information along with assessed lake-use support information. The usesupport analysis results for both Long Lake and Snakeden Hollow Lake are the same: full support for aquatic life, recreation, swimming, and overall uses. On the other hand, Matanzas Lake is nonsupport on the basis of all four uses.

For aquatic life use, Homer Lake is also classified as full support; while Georgetown Reservoir and Walnut Point Lake are partial/moderate and partial/minor support, respectively. For recreation use, Georgetown Reservoir and Homer Lake are determined to be partial-use support with moderate impairment; Walnut Point Lake is partial-use support with minor impairment. For swimming use, Georgetown Reservoir and Walnut Point Lake are considered as partial-use support with moderate impairment; Homer Lake is partial/minor support. Unfortunately, Matanzas Lake is designated for swimming with a nice beach, but the quality of water is not desirable for swimming on the basis of 1995 data. For overall use, Georgetown Reservoir is partial/moderate support; while Homer and Walnut Point Lakes are partial/minor support. The results of analyses suggest that the water quality of final cut lakes is very good and that of river impoundments is relatively poor.

Lake Sediment Characteristics

Lake sediment can act both as sinks and as potential pollutant sources (for pollutants such as phosphorus and metals) affecting water quality. Its metal and/or organic chemical toxicities can directly affect the presence of aquatic animals and plants on the lake bottom. Lake sediments, if and when dredged, should be carefully managed to prevent surface water and ground-water contamination. Sediment monitoring is becoming increasingly important as a tool for detecting pollution loading in lakes and streams.

Metals and Inorganics

While there are no regulatory agencies that promulgate lake sediment quality standards, sediment quality in Illinois has been generally assessed using the Classification of Illinois Lake Sediments report developed by Kelly and Hite (1981). Recently, Mitzelfelt of Illinois EPA (1995) developed the Lake Sediment Classification shown in table 18 based on 1987-1994 Illinois data. His percentiles correspond to the approximate equivalents of one and two standard deviations from the mean for a normal distribution population.

Table 19 presents metal and inorganic concentrations of surficial sediments collected from six lakes studied. Comparison of tables 18 and 19 reveals that phosphorus levels in lake sediments can be considered as normal. Total kjeldahl nitrogen in Georgetown Reservoir is in the low (below normal) category; while that in the other five lakes is in the normal ranges. For metals in sediments, such as arsenic, barium, chromium, copper, lead, manganese, nickel, and zinc are either below or in normal concentrations for this investigation. Cadmium, mercury, and silver were below detectable levels for most sediments. Potassium was not detected in Georgetown Reservoir and station 1 of Long Lake. Potassium levels in other lakes are generally in the normal range; while that at station 3 of Long Lake is at an elevated level. Iron concentrations at station 3 of Long Lake and at station 1 of Snakeden Hollow Lake were considered as elevated. This is most likely due to natural causes. The iron levels at all the sites in the other four lakes are in normal or low ranges (less than normal).

	Georgetown Reservoir		Homer Lake		
I. Aquatic life use	Value	ALIpoints	Value	ALIpoints	
1. Mean trophic state index	67.1	60	60.8	60	
2. Macrophyte impairment	7%	10	23%	0	
 Mean nonvolatile suspended soli Total points: Criteria points: 	ds 304. mg/L	15 85 =85	3.0 mg/L	0 60 <75	
Use Support:		Partial/Moderate		Full	
II. Recreation use	Value	RUI points	Value	RUIpoints	
1. Mean trophic state index	67.1	67	60.8	61	
2. Macrophyte impairment	7%	5	23%	10	
 Mean nonvolatile suspended soli Total points: Criteria points: 	ids 30.4 mg/L	15 87 75 <rui<90< td=""><td>10.1 mg/L</td><td>10 81 75<rui<90< td=""></rui<90<></td></rui<90<>	10.1 mg/L	10 81 75 <rui<90< td=""></rui<90<>	
Use Support:		Partial/Moderate		Partial/Moderate	
III. Swimming use	Value	Degree of use support	Value	Degree of use support	
1. Secchi depth < 24 inches	93%	Partial/Moderate	27%	Partial/Minor	
2. Fecal coliform > 200/100 mL	(not determined) -		-	
3. Mean trophic state index	67.1	Partial/Moderate	60.8	Partial/Minor	
Use Support:		Partial/Moderate		Partial/Minor	
IV. Overall use	2.0		3.3		
Use Support:		Partial/Moderate		Partial Minor	

Table 17. Assessment of Use Support for Six Lakes

Notes:

ALI = aquatic life use impairment index. RUI = recreation use impairment index.

Table 17. Continued

	Lon	g Lake	Matanzas Lake		
I. Aquatic life use	Value	ALIpoints	Value	ALIpoints	
1. Mean trophic state index	41.7	50	75.5	70	
2. Macrophyte impairment	20%	0	0%	15	
 Mean nonvolatile suspended solids Total points: Criteria points: 	3.0 mg/L	0 50 <75	35.4 mg/L	15 100 =95	
Use Support:		Full		Nonsupport	
II. Recreation use	Value	RUIpoints	Value	RUIpoints	
1. Mean trophic state index	41.7	42	75.5	76	
2. Macrophyte impairment	20%	10	0%	0	
3. Mean nonvolatile suspended solids Total points: Criteria points:	3.0 mg/L	5 49 RUI<60	35.4 mg/L	15 72 90 <rui< td=""></rui<>	
Use Support:		Full		Nonsupport	
III. Swimming use	Value	Degree of use support	Value	Degree of use support	
1. Secchi depth < 24 inches	0%	Full	60%	Partial/Moderate	
2. Fecal coliform > 200/100 mL		-		-	
3. Mean trophic state index	41.7	Full	75.5	Nonsupport	
Use Support:		Full		Nonsupport	
IV. Overall use	5.0		1.0		
Use Support:		Full		Nonsupport	

Notes:

ALI = aquatic life use impairment index. RUI = recreation use impairment index.

Table 17. Concluded

	Snakeden Hollow Lake			Walnut Point Lake		
I. Aquatic life use	Value	ALI	points	Value	ALI points	
1. Mean trophic state index	38.6		40	67.1	60	
2. Macrophyte impairment	16%		10	1%	15	
3. Mean nonvolatile suspended solids Total points: Criteria points:	1.5 mg/L		0 50 <75	6.5 mg/L	0 75 =75	
Use Support:			Full		Partial/Minor	
II. Recreation use	Value	RU	I points	Value	RUIpoints	
1. Mean trophic state index	38.6		39	67.1	67	
2. Macrophyte impairment	16%		10	1%	0	
 Mean nonvolatile suspended solids Total points: Criteria points: 	1.5 mg/L		0 49 RUI<60	6.5 mg/L	5 72 60 <rui<75< td=""></rui<75<>	
Use Support:			Full		Partial/Minor	
III. Swimming use	Value		Degree of se support	Value	Degree of use support	
1. Secchi depth < 24 inches	0%		Full	60%	Partial/Moderate	
2. Fecal conform $> 200/100$ mL					-	
3. Mean trophic state index	38.6		Full	67.1	Partial/Moderate	
Use Support:			Full		Partial/Moderate	
IV. Overall use	5.0			2.7		
Use Support:			Full		Partial/Minor	

Notes:

ALI = aquatic life use impairment index. RUI = recreation use impairment index.

	Detection Limit*	Low	Normal	Elevated	Highly Elevated
Phosphorus	0.1	<394	394-<1115	1115-<2179	2179
kjeldahl-N	1.0	<1300	1300-<5357	5357-<11700	11700
Cadmium	0.1	n/a**	<5	5-<14	14
Copper	1.0	<16.7	16.7-<100	100-<590	590
Lead	0.1	<14	14-<59	59-<339	339
Mercury	0.1	n/a	< 0.15	0.15-<0.701	0.701
Arsenic	0.5	<4.1	4.1-<14	14-<95.5	95.5
Chromium	10	<13	13-<27	27-<49	49
Iron	10	<16000	16000-<37000	37000-<56000	56000
Manganese	10	<500	500-<1700	1700-<5500	5500
Zinc	10	<59	59-<145	145-<1100	1100
Nickel	1.0	<14.3	14.3-<31	31-43	43
Silver	0.1	n/a	< 0.1	0.1-<1	1
Potassium	1.0	<410	410-<2100	2100-<2797	2797
Barium	1.0	<94	94-<271	271-<397	397
PCBs	10	n/a	<10	10-<89	89
Aldrin	1	n/a	<1	1-<1.2	12
Dieldrin	1	n/a	<3.4	3.4-<15	15
DDT	10	n/a	<10	10-180	180
Chlordane	5	n/a	<5	5-12	12
Endrin	1	n/a	<1	n/a	1
Methoxychlor	5	n/a	<5	n/a	5
alph-BHC	1	n/a	<1	n/a	1
gamma-BHC	1	n/a	<1	n/a	1
HCB	1	n/a	<1	n/a	1
Heptachlor	1	n/a	<1	n/a	1
Heptachlor epoxide	1	n/a	<1	1-<1.6	1.6

Table 18. Classification of Lake Sediments (revised 1996)

Notes:

* Amounts of metals and inorganics expressed as mg/kg, organics as μ g/kg.

** Data not available.

Source: Jeff Mitzelfelt, IEPA, 1995.

		0	vn Reservoir v 20)		er Lake y 19)	0	g Lake lv 18)		as Lake lv 13)		Hollow Lake v 12)		t Point Lake ılv 19)
	Parameters *	Station I	Station 3	1	3	1	3	1	3	1	2	1	3
	Phosphorus	495	488	640	669	464	492	1032	918	747	420	917	726
	kjeldahl nitrogen	70	420	1544	1812	1905	3664	3117	7803	1864	1784	2365	1489
	Solids, % wet	53.8	51.5	31.1	34.6	43.0	39.2	32.2	45.5	33.4	31.8	26.5	38.2
	Volatile solids, %	5.5	6.0	11.1	8.2	6.4	9.1	9.7	7.2	10.3	7.9	12.2	8.6
	TOC, %	4.52	4.22	9.93	4.43	10.19	12.06	5.9	6.09	6.55	7.84	12.04	4.91
	Arsenic	4.3	4.0	5.6	4.0	3.0	7.8	8.4	6.7	5.9	4.7	9.2	8.6
	Barium	74	72	174	128	31	101	145	102	108	101	266	211
	Cadmium	1K**	1K	1K	1K	1K	1K	2	1K	1K	1K	1K	1K
	Chromium	9	10	17	14	8	26	26	19	19	15	20	18
	Copper	13	12	24	20	8	23	28	20	24	15	25	22
55	Iron	12000	12000	19000	16000	11000	38000	31000	19000	38000	17000	38000	30000
	Lead	13	12	16	14	10K	19	23	20	27	27	21	16
	Manganese	493	437	655	479	268	467	1000	661	819	776	1000	595
	Mercury	0.1K	0.1K	0.1K	0.1K	0.1K	0.1K	0.1K	0.1K	0.1K	0.1K	0.1K	0.1K
	Nickel	12	12	20	17	12	27	28	20	39	29	22	18
	Potassium	1000K	1000K	1700	1300	1000K	2800	1900	1400	2000	1700	2000	1800
	Silver	1K	1K	1K	1K	1K	1K	1K	1K	1K	4	1K	1K
	Zinc	55	52	79	65	33	99	133	93	71	30	84	70
	Water depth, ft	7	5	16	5	38	12	6	4	55	10	27	16

Table 19. Characteristics of Sediments in Six Illinois Lakes, 1995

Notes:

Values in bold exceed the normal limit.

*Units measured in mg/kg, unless specified.

**K indicates that values were below the detection level.

Organic Compounds

Chlorinated hydrocarbon compounds consist of a group of pesticides that are no longer in use but persist in the environment. These compounds, such as polychlorinated biphenyls (PCBs), chlordane, dieldrin, and DDT, present a somewhat unique problem in aquatic systems due to their potential for bioaccumulation in fish in the food web. Organochlorine compounds are relatively insoluble in water but highly soluble in lipids where they are retained and accumulated. Minute and often undetectable concentrations of these compounds in water and sediment may ultimately pose a threat to aquatic life and then possibly to human health.

Table 20 presents the observed concentrations of tested organochlorine compounds. An examination of table 20 indicates that with a few exceptions, most parameters assessed were below detectable levels. A comparison of tables 19 and 20 reveals that the total PCB concentrations in Matanzas Lake may be considered as elevated. Dieldrin was detected in four lakes (Georgetown, Homer, Matanzas, and Walnut Point), however, the concentrations are in the normal ranges. At station 1 of both Matanzas and Walnut Point Lakes, P,P'-DDE was detected. Alpha-BHC was found at the deepest station (station 1) of Snakeden Hollow Lake and Walnut Point Lake at highly elevated concentrations (>1.0 μ g/kg) at station 1 of Matanzas Lake. This organic is not listed in the classification table.

SUMMARY

This report includes all data collected in 1995 for 18 sites in six Illinois lakes. The data are presented in the form of individual listings of lake assessment information for each lake (Illustration A). Each lake summary includes morphological data, watershed information, lake usages and impairments, water quality problems and causes, fish information, and lake protection management.

The report discusses results of physical and chemical assessment of in-situ observations, water samples, and sediment quality. Two lakes (Snakeden Hollow and Long Lakes) have superior water quality. Eventhough Matanzas Lake has poor water and sediment quality, it is currently being used for swimming. Any significant differences among the three sampling stations for each lake were analyzed. For each lake, the facilities in lake park area and shoreline conditions as well as macrophytes growth were surveyed and presented.

Trophic condition and lake use support were also assessed for each lake. On the basis of trophic index, the six lakes are classified as noted herein: Snakeden Hollow Lake as oligotrophic; Long Lake as mesotrophic; three lakes (Georgetown, Homer, and Walnut Point Lakes) as eutrophic; and Matanzas Lake as hypereutrophic. Lake use support for Georgetown, Homer, Long, Matanzas, Snakeden Hollow, and Walnut Point Lakes are partial/moderate, partial/minor, full, partial/minor, full, and nonsupport, respectively.

Organic compounds,	U	ni Reservoir y 20)	Home (Julv	r Lake , 19)	Long (Julv		Matanza (Julv			Hollow Lake , 12)		Point Lake lv 19)
mg/L	Station 1	Station 3	1	3	1	3	1	3	1	2	1	3
Total PCBs	10K	10K	10K	10K	10K	10K	20	9.9	10K	10K	10K	10K
Aldrin	1k	1k	1k	1k	1k	1k	1k	1k	1k	1k	1k	1k
Dieldrin	2.2	1.3	3.4	1k	1k	1k	2.0	1k	1k	1k	3.0	1.1
Total DDT	10K	10K	10K	10K	10K	10K	10K	10K	10K	10K	10K	10K
P,P'-DDE	1k	1k	1k	1k	1k	1k	1.5	1k	1k	1k	1.1	1k
P,P'-DDD	1k	1k	1k	1.1	1k	1k	1k	2K	1k	1k	1k	1k
P,P'-DDT	1k	1k	1k	1k	1k	1k	1k	1k	1k	1k	1k	1k
Chlordane												
Total	5K	5K	5K	5K	5K	5K	5K	5K	5K	5K	5K	5K
CIS isomer	2K	2K	2K	2K	2K	2K	2K	2K	2K	2K	2K	2K
S Trans isomer	2K	2K	2K	2K	2K	2K	2K	2K	2K	2K	2K	2K
Endrin	1k	1k	1k	1k	1k	1k	1k	1k	1k	1k	1k	1k
Methyoxychlor	5K	5K	5K	5K	5K	5K	5K	5K	5K	5K	5K	5K
Alpha-BHC	1k	1k	1k	1k	1k	1k	1k	1k	1.2	1k	1.3	1k
Gamma-BHC (Lindane)	1k	1k	1k	1k	1k	1k	1k	1k	1k	1k	1k	1k
Hexachlorobenzene	1k	1k	1k	1k	1k	1k	2.1	1k	1k	1k	1k	1k
Heptachlor	1k	1k	1k	1k	1k	1k	1k	1k	1k	1k	1k	1k
Heptachlor epoxide	1k	1k	1k	1k	1k	1k	1k	1k	1k	1k	1k	1k
Water depth, ft	7	5	16	5	38	12	6	4	55	10	27	16

Table 20. Organic Characteristics of Sediments in Six Illinois Lakes, 1995

Note: A K indicates values below the detection level.

REFERENCES

- American Public Health Association (APHA), American Water Works Association (AWWA), and Water Environment Federation (WEF). 1992. *Standard Methods for the Examination of Water and Wastewater*. American Public Health Association, Washington, DC.
- Burns, A. J. 1991. Lake water quality program southern Illinois lakes. Illinois EPA, Illinois EPAAVPRC/91-210, 44 p.
- Carlson, R.E. 1977. "A trophic state index for lakes," *Limnology and Oceanography*, 22(2):361-369.
- Committee on Sanitary Engineering Research. 1960. "Solubility of atmospheric oxygen in water." *American Society of Civil Engineers*, Journal of the Sanitary Engineering Division. 82(12): 1115-1130.
- Federer, W.T. 1955. *Experimental design, theory, and application*. MacMillan Co., New York, NY.
- Hudson, H.L., J.J. Clark, and R.J. Kirschner. 1990. Lake water quality assessment program northeastern Illinois lakes. Northeastern Illinois Planning Commission, Chicago, IL, 83 p.
- Hutchinson, G.E. 1967. A Treatise on Limnology, Vol. II, Introduction to Lake Biology and the Limnoplankton. John Wiley & Sons, Inc., New York, NY. 1115p.
- Illinois Environmental Protection Agency. 1978. Assessment and classification of Illinois Lakes, Vol. II. Illinois EPA, Springfield, IL, 358p.
- Illinois Environmental Protection Agency. 1987. Quality assurance and field method manual, Illinois EPA, Springfield, IL.
- Illinois Environmental Protection Agency. 1994. Illinois Water Quality Report: 1992-1993. Illinois EPA, Springfield, IL.
- Illinois Pollution Control Board. 1990. Rules and Regulations, Title 35: Environmental Protection, Subtitle C: Water Pollution, Chapter I. Illinois EPA, Springfield, IL, 195p.
- Kelly, M.H. and R.L. Hite. 1981. *Chemical Analysis of Surficial Sediments from 63 Illinois Lakes, Summer 1979.* Illinois EPA, Springfield, IL, 92p.
- Lin, S.D., and R.K. Raman. 1993. *Illinois Lake Quality Assessment 1992*. Illinois State Water Survey Contract Report 553, Champaign, IL, 78p.
- U.S. Environmental Protection Agency. 1980. *Clean lakes program guidance manual*. EPA-440/5-81-003, Washington, DC, 103p. + appendices.

Illustration A. Lake Assessment Information for Six Illinois Lakes

Abbreviations

Under Usages and Impairments:

Full:	full support
F/Th:	full/threatened
P/Mi:	partial/minor
P/Mo:	partial/moderate

(1), (2), (3), (4): from low to high level of use

- P: potential for increased use
- I: increasing trend of use
- D: decreasing trend of use

Under Water Quality and Problems, and Causes of Water Quality Problems:

- M/N: minimal/none
 - S: slight
 - M: moderate
 - H: high or substantial

Georgetown Reservoir (Little Vermilion River Reservoir)

I Congral Information	
CountyVermilionMap CodeRBSLake LocationSouth of GeorgetownDeepest PointLatitude39°57'30"LongitudeLongitude87°38'42"Lake Surface Area, acres55.1Length of Shoreline, miles5.6MaximumDepth, feet10Average Depth, feet3Lake Storage Capacity, acre-feet171Watershed Drainage Area, acres17,280Hydraulic Retention Time, years0.1Lake TypeDammed StreamYear Constructed1936	OwnershipMunicipalOwner/Manager: City of GeorgetownAddress: 208 S. Walnut, Georgetown, IL 61846Telephone: 217/662-2626Inflowing StreamsLittle Vermilion RiverOutflowing StreamsLittle Vermilion RiverOther publicly owned lakes in the countyClear, Long, Vermilion, Mingo, andmany strip-mined lakes.Unique FeaturesA bubbled air facility is installed near the lakeand the dam.
II. Usages and ImpairmentsPublic AccessYesEntire lake bottom publicly owned but entire shoreline is not accessible, unlimited free access.YesVisitors per Year100,000 - 250,000Designated Uses and ImpairmentsFish and aquatic wildlifeMDomestic water supplyHNonrecreational Lake UsagePotable water supply - 4, P, I	Recreational Lake UsageFishing - (3)Camping - (1)Picnicing - (1)Recreational FacilitiesBoat ramp - 1Parks- 1Shoreline Usage, %Residential1Cropland70Woodland29Watershed Drainage Area Usage, %Cropland60Pasture or grassland30Woodland10
IL Water Quality and ProblemsProblemsAlgal bloomsSWater levelfluctuationS	Differences in Turbidity and Water Quality* In different portions of lake? No At different times of the year? Yes Fishing Good Major Types of Fish Bluegill, brown bullhead, carp, green sunfish, largemouth bass, warmouth, white crappie, spotted and white sucker

 $\ast\,$ Turbidity will change rapidly along with pH and alkalinity during heavy rain.

Georgetown Reservoir

IV. Causes of Water Quality Problems

Potential Pollution Sources

Sewage treatment plant effluent, runoff (feedlot, cropland, pasture/grassland), septic tanks, sediment in lake

Causes of Impairment	
Priority organics	S
Siltation	Μ
Sources of Impairment	
Point sources	Н
Storm sewers	Н
Feedlots	Μ

V. Lake Protection Management

Treatment Date	Type and Extent of Tre	eatment	Reason for Treatment
	Grassed waterway	55 acres	Erosion control
	Grade stabilization structure	11	Erosion control
5/1991	Field border strip	2,000 ft	Erosion control
5/1991	Permanent vegetative cover	225 acres	Erosion control
4/1991	Tree planting	100 acres	Erosion control
	Conservation cropping system	28,000 acres	
7/1992	Other (well testing)	30	Nitrate, pesticides

Cropland Tillage	%
No-till	10
Mulch till with 30% residue or more	17
Mulch till with <30% residue	10
Moldboard plow	7
Chisel or disc till >30% residue	15
Chisel or disc till <30% residue	31
Crop rotation	10

Homer Lake

I. General Information	
County Champaign Map code RBO Lake Location 2 miles NW of Homer Deepest Point Latitude 40°03'45" Longitude 87°59'07"	OwnershipChampaign CountyOwner/Manager: Cham. Co. Forest Pres. Dist.Address: 2573 South Homer Lake RoadHomer, IL61840Telephone: 217/896-2733
Lake Surface Area, acres80.8Length of Shoreline, miles5.3Maximum Depth, feet24Average Depth, feet8.1	Inflowing StreamsConkey BranchOutflowing StreamsSalt Fork River
Lake Storage Capacity, acre-feet679Watershed Drainage Area, acres9280Hydraulic Retention Time, years0.1Lake TypeDammed streamYear Constructed1969	Unique Features None
II. Usages and Impairments	Recreational Lake Usage
Public AccessYesEntire lake bottom publicly owned and entire shoreline public access; boating fee \$13.50/yr for county residents, \$21.00/yr for non-residents. Electric motors only	Fishing (4) Low power boating (4) Sailboating (2) Waterfowl observation (3) Picnicking (4) Environmental education activities (schools, YMCA, Boy & Girl Scouts) (2) Recreational Facilities
Visitors per Year <25,000 Designated Uses and Impairments	4 boat ramps, park, picnic areas, boat rental, pavilion (25'x35'), indoor toilet, hiking, camping, hunting, winter sports, concession,
Fish and aquatic wildlife S	handicapped accessShoreline Usage, %Residential10Recreation development25Pasture and grassland40Woodland25
Nonrecreational Lake Usage None	Watershed Drainage Area Usage, %23Cropland90Pasture and grassland2Woodland2Residential (2%) & recreation development4Wetland (1%) & wildlife (1%)2
III. Water Quality and Problems	
ProblemsSuspended sedimentMSediment depositionMAlgal bloomsMAquatic macrophytesHTaste/odorMWater level fluctuationSFish killsM/N	Differences in Turbidity and Water QualityIn different portions of lake?YesAt different times of the year?YesFishingGoodMajor Types of FishBrown bullhead, black crappie, bluegill, large- mouth bass, channel catfish, redear sunfish, northern pike, carpThe lake has not been treated with CuSO4 the last five years.

Homer Lake

cropland, septic tan	Pollution construct pasture/ ks, livest nk and s		llot, oodland), ns, erosion diment in	N S Q T So P	Auses of Impairmen Jutrients Siltation Organic enrichment/I Caste and odor Durces of Impairme Agriculture Pasture land Vature	OO depletion	M H M S H S S
V. Lake Pi	rotect	ion Man	agement				
Treatment	Date	Grassed Pond Field bor	ed Extent waterway der strip ttion croppin	of g syste	<i>Treatment</i> 5 acres 2 4,000 ft em 7,000 acres	Reason	for Treatment

Cropland Tillage	%
No-till	18
Mulch till with 30% residue or more	5
Mulch till with <30% residue	72
Moldboard plow	5

Long Lake

I. General Information	
CountyVermilionMap codeRBMLake Location 4 milesW of DanvilleDeepest PointLatitude40°07'52"Longitude87°44'30"Lake Surface Area, acres49.7Length of Shoreline, miles3.4Maximum Depth, feet (cliff backfill, 38') 36Average Depth, feet8.8Lake Storage Capacity, acre-feet448Watershed Drainage Area, acres99Hydraulic Retention Time, years9.1Lake TypeCoal strip-mineYear Constructed1927	Ownership Owner/Manager: State of Illinois Address: 10906 Kickapoo Park Road Oakland, IL 61858 Telephone: 217/442-4915 Inflowing Streams None Outflowing Streams Middle Fork River Unique Features The largest of 22 water ponds in the 2842 acre state park
II. Usages and Impairments	Recreational Lake Usage
Public AccessYes	Fishing (3), I Low power boating (3)
Entire lake bottom publicly owned and	Camping (3), I Waterfowl observation (3), I
entire shoreline public access, unlimited	Picnicking (3)
free access, electric motors only	Recreational Facilities
Visitors per Year >200,000	Boat ramps - 2 picnic areas - 2
Designated Uses and Impairments	Boat rental -1 concession stand - 1
Fish and aquatic wildlife M	Camping areas - 2 hunting, hiking, & running
Cold water fishery S	canoeing scuba diving, winter sports
General recreation H	Shoreline Usage, %
	Woodland 80
	Wetland 18
	Recreation development 2
	Watershed Drainage Area Usage, %
Nonrecreational Lake Usage	Residential 20
None	Cropland 20
	Pasture or grassland 12
	Woodland 28
	Wetland and wildlife 20
III. Water Quality and Problems	
	Differences in Turbidity and Water Quality
Problems	In different portions of lake? No
Algal bloomsSAquatic macrophytesS	At different times of the year? Yes Fishing Fair
Aquatic macrophytes S	Fishing Fair Major Types of Fish
	Largemouth bass, channel catfish, bluegill, redear sunfish, green sunfish, black crappie, carp, grass pike, northern pike, black bullhead, warmouth

Long Lake

IV. Causes of Water Quality Problems	Causes of Impairment	
Potential Pollution Sources	Siltation	Μ
Woodland runoff, mining spoil piles,		
septic tanks, erosion (streambank and	Sources of Impairment	
shoreline), waterfowl, roughfish, boating	Nonirrigated crop production	S
activity	Lake shoreline and stream bank erosion	S
	Highway maintenance and runoff	S
	Natural	S
	Recreation activities	S
	Waterfowl	S

Note: At high Middle Fork River levels, the river overflows into the lake. It can raise the lake level up to 5 feet and increase turbidity.

V. Lake Protection Management

Treatment Date Type and Extent of Treatment Reason for Treatment None

Matanzas Lake

I. General Information			
County Mason	Ownership Public		
Map code RDZV	Owner/Manager: Lake Association		
Lake Location 2 miles S of Havana	Address: 12928 SR 78 Havana		
Deepest Point Latitude 40°14'38"	Telephone: 309/543-0752		
Longitude 90°05'55"	Inflowing Streams Ill. R., White Oak Creek		
Lake Surface Area, acres 36.1	Outflowing Streams None (Ill. R.)		
Length of Shoreline, miles 7.0	Other publicly owned lakes in the county:		
Maximum Depth, feet 8	Chautauqua, Clear, Crane, Liverpool,		
Average Depth, feet 5	Otter, Quiver, Sangamon, and Stewart		
Lake Storage Capacity, acre-feet 1805			
Watershed Drainage Area, acres (backwater)	Unique Features		
Hydraulic Retention Time, years -	The lake is connected to Illinois River which		
Lake Type Dammed Stream (side channel)	influences the water level of the lake.		
Year Constructed 1940s	Residences are all along the east shore.		
	-		
II. Usages and Impairments	Recreational Lake Usage		
Public Access Yes	Fishing (3) High power boating (3)		
Entire lake bottom publicly owned and entire	Swimming (2) Waterfowl hunting (2)		
shoreline public access (controlled), \$30	Water skiing (3) Waterfowl observation (4)		
annual fee, unlimited access	Recreational Facilities		
Visitors per Year >200,000	Swimming beach - 1, boat ramp - 1		
Designated Uses and Impairments			
General recreation M	Shoreline Usage, %		
	Residential 40		
	Cropland 5		
	Pasture or grassland 5		
	Woodland 50		
	Watershed Drainage Area Usage, %		
Nonrecreational Lake Usage	Residential urban 0.5		
None	Cropland 95		
	Pasture/grassland 2		
	Woodland 2		
	Wetland & wildlife 0.5		
HI. Water Quality and Problems			
	Differences in Turbidity and Water Quality		
Problems	In different portions of lake? No		
Suspended sediment H	At different times of the year? Yes		
Sediment deposition H	Fishing Good		
Algal blooms M/S	Major Types of Fish		
Water level fluctuation H	Channel catfish, buffalo, crappie, smallmouth		
Fish kills M/S	bass, sauger, freshwater drum, redear sunfish, dog fish, garr		

Matanzas Lake

IV. Causes	of Water Q	Quality Prob	lems	Causes	of Impairment	
Potentia	l Pollution Sou	urces		Unkno	own toxicity	S
Runoff	(cropland,	woodland,	lawn),	Pestic	ides	S
septic	tanks	Source	es	of	Impairment	
	te is connected the high water.	to the Illinois	River	Agricu	ulture	S

V. Lake Protection Management

Treatment Date	Type and Extent of Tre	Type and Extent of Treatment		
	Field border strip	1,000 ft	-	
	Permanent vegetative cover	100 acres		
	Tree planting			
	Diversion			
	Conservation cropping system	n 10,000		
	Livestock exclusion	100		
	Cropland Tillage		%	
No-ti	11		11	
Mulc	till with 30% residue or more		63	

Mulch till with <30% residue

26

Snakeden Hollow Lake

I. General Information		
County Knox	Ownership State	
Map code UDU	Owner/Manager: Department of Nat. Resources	
Lake Location 1 mile SE of Victoria	Address: 1936 IL Hwy 167, Victoria, IL 61485	
Deepest Point Latitude 41°00'23"	Telephone: 309/879-2607	
Longitude 90°04'16"	Inflowing Streams -	
Lake Surface Area, acres 176	Outflowing Streams into other lake	
Length of Shoreline, miles 6.66	outhowing bireans into other lake	
Maximum Depth, feet 55		
Average Depth, feet28		
Lake Storage Capacity, acre-feet 4,948	Unique Features	
Watershed Drainage Area, acres 2,120	The lake is the deepest man-made lake in Illinois.	
Hydraulic Retention Time, years -	Ninety percent of the watershed is owned by	
Lake Type Dammed stream	DNR and land use is managed - conservation	
Year Constructed 1978	Canada geese.	
II Usegas and Imperiments	Recreational Lake Usage	
II. Usages and Impairments		
Public AccessYes	Fishing (4) Low power boating (4)	
Entire lake bottom publicly owned and	Picnicking (2) Waterfowl hunting (3)	
entire shoreline public access unlimited	Waterfowl observation (3), I	
free access; restricted during October to	Recreational Facilities	
January 16 when the area is for a	One boat ramp; park (this is a low recreational	
waterfowl refuge	development site - primarily for fishing and	
Visitors per Year 25,000-100,000	hunting)	
Designated Uses and Impairments		
Fish and aquatic wildlife S	Shoreline Usage, %	
General recreation S	Cropland 5	
	Pasture or grassland 70	
	Woodland 20	
	Wetland 5	
	Watershed Drainage Area Usage, %	
Nonrecreational Lake Usage	Cropland 30	
None	Pasture and woodland2Recreation development and other3	
	Wetland 5	
	Wildlife 60	
Mater Quality and Problems		
Man and Yuanty and I 100101115	Differences in Turbidity and Water Quality	
Problems	In different portions of lake? Yes	
Suspended sediment M/N	At different times of the year? Yes	
Sediment deposition M/N	Fishing Excellent	
Aquatic macrophytes S	Major Types of Fish	
Taste/Odor S	Largemouth bass, smallmouth bass, bluegill,	
Water level fluctuation M/N	black crappie, bullhead, channel catfish, muskie,	
Fish kills M/N	redear sunfish, green sunfish, brown trout,	
112/11		
	rainbow trout, and walleye	

Snakeden Hollow Lake

IV. Causes of Water Quality Problems	Causes of Impa	irment	;				
Potential Pollution Sources	Unknown toxic	ity		S			
Sewage treatment plant effluent, runoff	Suspended soli	ds		S			
(cropland, pasture/grassland, woodland),	Noxious aquati	Noxious aquatic plants					
mining, shoreline erosion, waterfowl	Organic enrich	Organic enrichment/DO depletion					
	Sources of Imp	airmen	t				
	Municipal	S	Nonpoint sources	S			
	Agriculture	S	Pasture land	S			
	Waterfowl	S	Erosion	S			

V. Lake Protection Management

Treatment Date	Type and Extent of Tre	Reason for Treatmnt	
7/19/95	Grassed waterway	4 acres	
	Grade stabilization structure	8	
	Pond	1	Wildlife habitat
	Field border strip	30,000 ft	
	Permanent vegetation cover	2,320 acres	
	Tree planting	2 acres	
	Diversion	6,000 ft	Strip mine high walls
	Conservation cropping system	800 acres	
	Livestock exclusion	10,400 ft	
	Cropland Tillage		%

No-till	20
Mulch till with 30% residue or more	30
Mulch till with <30% residue	30
Chisel or disc till 30% residue	10
Chisel or disc till <30% residue	10

Walnut Point Lake

I. General Information	
County Dougl	
Map code RB	
Lake Location 3 miles N of Oaklan Deepest Point Latitude 39°40'2	
Deepest PointLatitude39°40'2Longitude88°02'0	▲
Longitude 88 02 0. Lake Surface Area, acres 58	
,	3
	1
Average Depth, feet 11	
Lake Storage Capacity, acre-feet 6	
Watershed Drainage Area, acres 250	
Hydraulic Retention Time, years 0.3	
Lake Type Dammed strea	
Year Constructed 19	8
II. Usages and Impairments	Recreational Lake Usage
Public Access Y	Fishing (4), I Low power boating (4)
Entire lake bottom publicly owned and	Sailboating (1) Picnicking (4)
entire shoreline public access. State	Camping (4) Water observation (3)
registered boat with electric motor only	Ice fishing Ice skating
	Recreational Facilities
Visitors per Year >200,0	0 Boat ramps - 2 picnic areas - 8
Designated Uses and Impairments	hiking trails - 2 concession stand
Fish and aquatic wildlife	S camping areas - 2 handicapped access
General recreation	S park (hunting)
	Shoreline Usage, %
	Woodland 95
	Recreation development 5
	Watershed Drainage Area Usage, %
Nonrecreational Lake Usage	Cropland 71
None	Pasture or grassland 6
	Woodland 16 Residential 4.5
	Recreation development 1.5
	Wildlife
III. Water Quality and Problem	8
	Differences in Turbidity and Water Qual $_{ity}$
Problems	In different portions of lake? No
1	M At different times of the year? No
I	M Fishing Good
e	M Major Types of Fish
Aquatic macrophytes	S Largemouth bass, bluegill, redear, sunfish,
	S black crappie, channel catfish, brown bullhead
Taste/odor	5 black chapple, chamiler cathsii, brown buillead
Water level fluctuation M	

Walnut Point Lake

IV. Causes of Water Quality Problems

Potential Pollution Sources Runoff (cropland, pasture/grassland, woodland), livestock operations, shoreline erosion, sediment in lake, geese

Causes of Impairment	
Pesticides	S
Siltation	S
Sources of Impairment	
Agriculture	S
Nonpoint sources	S

V. Lake Protection Management

Treatment Date	Type and Extent of	Treatment	Reason for Treatment
	Terrace	10,800 linear ft	
	Grassed waterway	8 acres	
	Grade stabilization structu	ire 3	
	Field border strip	1,500 ft	
	Permanent vegetative cove	er 10 acres	
	Diversion	2,000 ft	
	Conservation cropping sys	stem 920 acres	

Cropland Tillage	%
No-till	45
Mulch till with 30% residue or more	21
Mulch till with <30% residue	3
Moldboard plow	28
Chisel or disc till >30% residue	3

	Station 1							Station 2						
Parameters	4/26	6/16	7/20	8/29	10/5	Mean	4/26	6/16	7/20	8/29	10/5	Mean		
Total depth of site, ft	7	8	7	8	9	7.8	9	9	9	8	9	8.8		
Secchi transparency, inches	20	16	17	17	10	16	20	17	18	15	10	16		
Conductivity, µmho/cm	645	633	578	457	499	562	640	630	584	473	500	565		
pH	8.4	8.4	8.3	9.0	8.3	8.5	8.4	8.4	8.3	8.9	8.4	8.5		
Alkalinity, mg/L as CaCO ₃														
Phenolphthalein	4	2	0	20	0	5.2	4	2	0	20	2	5.6		
Total	249	245	237	188	208	225	245	241	233	196	213	225		
Suspended solids, mg/L														
Total	19	28	- 21	40	84	38.4	20	18	57	38	96	45.8		
Volatile	3	5	6	18	10	8.4	3	3	12	14	36	13.6		
Turbidity, NTU	7.9	2.9	5.2	3.9	2.5	4.8	8.2	2.7	5.6	2.9	2.7	4.4		
Nitrogen, mg/L														
Ammonia	0.12	0.06	0.06	.01K	0.21	0.092	0.07	0.07	0.04	.01K	0.11	0.06		
Nitrite/nitrate	10.4	11.1	4.2	0.33	0.06	5.21	10.4	11.2	4.0	0.90	0.04	5.31		
Total kjeldahl	0.11	0.88	0.60	1.5	1.4	0.90	0.32	0.71	0.42	1.3	5.6	1.67		
Phosphorus, mg/L														
Total	.031	.060	.070	.184	.137	.096	.028	.047	.077	.106	.138	.079		
Dissolved	.020	.037	.017	.022	.037	.027	.014	.023	.016	.012	.031	.019		
Pigments, µg/L														
Chlorophyll a^*	8.90	6.28	30.66	10.68	22.70	35.07	7.16	11.78	32.04	79.51	44.73	35.04		
Chlorophyll a^{**}	11.41	9.82	32.84	111.22	31.20	39.30	12.21	11.23	36.48	95.34	55.33	42.12		
Chlorophyll b	13.65	13.25	6.19	12.68	14.58	12.07	15.01	16.08	5.30	16.92	19.59	14.58		
Chlorophyll c	18.52	19.40	5.46	16.18	16.18	15.15	22.41	24.08	7.05	17.50	17.17	17.64		
Pheophytin <i>a</i>	5.64	7.46	2.57	2.54	14.69	4.13	10.16	0.86	6.09	23.50	14.02	3.99		
Sample depth, ft	3.4	2.7	3	2.8	1.7	2.7	3.4	2.9	3	3.2	1.7	2.8		

Appendix A. Water Quality Characteristics of Georgetown Reservoir, 1995

Notes:

A K indicates less than detection value.

	Station 3											
Parameters	4/26	6/16	7/20	8/29	10/5	Mean						
Total depth of site, ft	6.3	6	5	6	5	5.7						
Secchi transparency, inches	26	17	16	15	10	17						
Conductivity, µmho/cm	646	646	587	480	500	572						
pH	8.4	8.4	8.5	8.9	8.4	8.5						
Alkalinity, mg/L as CaCO ₃												
Phenolphthalein	4	2	4	18	2	6.0						
Total	245	241	241	192	208	225						
Suspended solids, mg/L												
Total	27	20	26	48	86	41.4						
Volatile	2	3	9	14	34	12.4						
Turbidity, NTU	11	2.8	5.7	3.0	2.9	5.1						
Nitrogen, mg/L												
Ammonia	0.05	0.04	.01K	.01K	0.08	0.038						
Nitrite/nitrate	10.4	11.2	3.5	0.95	0.04	5.22						
Total kjeldahl	0.16	0.96	0.1K	1.1	1.9	0.84						
Phosphorus, mg/L												
Total	.023	.045	.122	.090	.150	.086						
Dissolved	.012	.020	.015	.012	.043	.020						
Pigments, ug/L												
Chlorophyll <i>a</i> *	6.20	11.55	63.89	114.81	50.36	49.36						
Chlorophyll a**	7.66	13.78	66.84	122.73	61.75	54.55						
Chlorophyll b	7.41	20.67	9.07	33.63	20.38	18.43						
Chlorophyll, c	10.23	30.19	8.84	15.03	20.64	16.99						
Pheophytin a	3.15	6.13	2.19	10.41	17.67	3.56						
Sample depth, ft	4.4	2.9	2.6	2.5	1.7	2.8						

Appendix A. Concluded

Notes:

A K indicates less than detection value.

*corrected value.

			Station	1. surface	•		Station 1. bottom							
Parameters	4/25	6/14	7/19	8/30	10/6	Mean	4/25	6/14	7/19	8/30	10/6	Mean		
Total depth of site, ft	16	16	16	16	15	15.8	16	16	16	16	15	15.8		
Secchi transparency, inches	27	67	34	25	24	35								
Conductivity, µmho/cm	617	547	449	369	406	477	673	470	486	525	407	512		
pН	8.5	8.4	8.7	9.0	8.4	8.6	8.2	8.0	7.6	7.8	8.1	8.0		
Alkalinity, mg/L as CaCO ₃														
Phenolphthalein	16	2	12	16	4	10	-	-	-	-	-			
Total	241	196	158	139	170	181	274	184	213	254	166	218		
Suspended solids, mg/L														
Total	11	5	7	10	8	8.2	13	-	36	31	14	23.5		
Volatile	5	2	1	6	4	3.6	4	-	24	8	5	10.3		
Turbidity, NTU	6.9	1.9	4.5	5.1	3.0	4.3	7.2	-	5.3	7.8	2.7	5.8		
Nitrogen, mg/L														
Ammonia	0.03	.01K	01K	0.06	0.14	.05	0.05	0.52	0.84	3.5	0.30	1.04		
Nitrite/nitrate	6.2	8.8	3.5	0.01	0.05	3.71	7.9	5.6	1.07	.01K	0.04	2.92		
Total kjeldahl	0.57	0.67	0.29	1.1	0.76	0.68	0.72	1.2	1.1	2.8	0.86	1.34		
Phosphorus														
Total	.026	.026	.029	.047	.060	.038	.024	.150	.083	.314	.073	.129		
Dissolved	.004	.009	.008	.006	.011	.008	.002	.083	.011	.248	.011	.071		
Pigments, µg/L														
Chlorophyll a^*	22.10	12.59	19.83	64.08	37.47	31.99								
Chlorophyll a^{**}	25.24	14.86	20.20	61.11	38.52	38.52								
Chlorophyll b	11.16	8.26	4.18	1.41	3.54	5.71								
Chlorophyll c	21.70	12.56	1.37	1.20	3.72	8.11								
Pheophytin a	5.62	4.23	0	0	0	3.27								
Sample depth, ft	4.5	11.3	5.7	4.4	4	6.0								

Appendix B. Water Quality Characteristics of Homer Lake, 1995

Notes:

A K indicates less than detection value.

*corrected value.

"""uncorrected value.

			Station	2. surfac	0				St.	tion 3			Station 2	Trik East	outary West
Parameters	4/25	6/14	<u>station</u> 7/19	<u>2. surjac</u> 8/30	<u>e</u> 10/6	Mean	4/25	6/14		<u>8/30</u>	10/6	Mean	_ bottom 4/25	East 4/25	4/25
Total depth of site, ft	12	12	11	11	11	11.2	6	5	5	5	5	5.2	12	1	1
1	12 29	67	32	26	21	35	24	21	22	18	24	5.2 22		1	24
Secchi transparency, inches	627	556	32 465	20 380	406	- 35 - 486	24 694	647	470	403			-	-	
Conductivity, µmho/cm											414	526	679	710	725
pH	8.5	8.3	8.9	9.0	8.3	8.6	8.3	8.2	8.1	8.3	8.0	8.2	8.2	8.5	8.3
Alkalinity, mg/L as CaCO ₃															
Phenolphthalein	12	0	8	16	0	7.2	-	-	-	0	-		-	12	0
Total	241	200	158	143	166	182	258	245	174	147	168	198	262	282	258
Suspended solids, mg/L															
Total	11	3	8	6	16	8.8	16	-	20	24	46	26.5	10	3	4
Volatile	6	1	3	4	7	4.2	3	-	7	7	5	5.5	3	1	1
Turbidity, NTU	7.1	1.7	5.1	8.1	2.7	4.9	6.9	-	4.9	11	2.5	6.3	7.0	6.6	6.8
ਨ੍ਹੇ Nitrogen, mg/L															
Ammonia	0.01	0.06	.01K	0.06	0.16	0.06	0.08	0.09	0.05	0.09	0.29	0.12	0.04	0.05	0.02
Nitrite/nitrate	6.4	8.8	3.1	.01K	0.05	3.67	8.5	9.5	0.77	0.02	0.06	3.77	7.9	9.7	8.9
Total kjeldahl	0.50	0.77	0.4	1.4	0.90	0.79	0.56	0.69	0.46	1.2	0.79	0.74	0.34	0.19	0.10
Phosphorus															
Total	.023	.025	.035	.061	.075	.044	.019	.035	.068	.128	.071	.064	.017	.008	.011
Dissolved	.005	.003	.002	.026	.014	.010	.004	.002	.121	.012	.019	.012	.001K	.002	.003
Pigments, $\mu g/L$													100111	.002	1005
Chlorophyll a^*	24.48	7.71	28.48	62.87	34.12	33.05	5.34	18.69	14.83	64.32	21.11	27.66			
Chlorophyll <i>a</i> **	27.61	10.00	29.48	60.89	37.26	37.26	6.52	20.78	14.03	71.72	24.57	24.57			
Chlorophyll <i>b</i>	14.08	6.89	1.99	2.18	4.88	6.00	6.86	12.44	2.80	10.21	4.25	7.31			
Chlorophyll <i>c</i>	25.93	10.35	2.40	3.32	4.88 6.52	0.00 9.70	10.72	12.44	1.55	8.53	4.2 <i>3</i> 3.67	8.60			
- ·															
Pheophytin <i>a</i>	5.90	4.33	0.18	0	3.88	3.36	2.67	4.21	0	9.59	4.97	3.40			
Sample depth, ft.	4.9	10	5.3	4.6	3.5	5.7	4	3.5	3.7	3	4	3.6			

Appendix B. Concluded

Notes:

A K indicates less than detection value.

<i>Mean</i> 34.8
1924
7.8
-
256
67
17.2
6.2
0.95
-
1.258
.0388
.0040

Appendix C. Water Quality Characteristics of Long Lake, 1995

Notes:

76

A **K** indicates less than detection value.

*corrected value.

			Stat	ion 2		Station 3								Sta. 3 bottom
Parameters	4/26	6/15	7/18	8/29	10/5	Mean	4/26	6/15	7/18	8/29	10/5	Mean	bottom 4/26	4/26
Total depth of site, ft	24	20	22	23	24	22.6	12	12	12	14	14	12.8	24	12
Secchi tranparency, inches	82	134	108	96	105	105	60	98	89	72	70	78	-	-
Conductivity, µmho/cm	1873	1506	1640	1701	1733	1707	1888	1590	1630	1717	1731	1711	1884	1814
рН	8.5	8.3	8.3	8.3	8.1	8.3	8.5	8.3	8.3	8.3	8.2	8.3	8.1	8.3
Alkalinity, mg/L as CaCO ₃														
Phenolphthalein	16	0	0	0	0	3.2	16	0	0	0	5	4.2	-	-
Total	241	196	184	180	200	200	233	192	184	172	188	194	233	229
Suspended solids, mg/L														
Total	4	2	8	3	4	4.2	7	4	4	2	5	4.4	6	10
Volatile	1	1k	1	1	1	1	1	1	1	1	2	1.2	2	1
Turbidity, NTU	6.7	2.9	3.2	3.7	1.9	3.7	7.2	2.8	3.0	3.8	2.3	3.8	6.9	6.8
Nitrogen, mg/L														
Ammonia	0.04	0.01K	.01K	.01K	0.07	0.028	0.07	0.02	.01K	.01K	0.07	0.036	0.18	0.04
Nitrite/nitrate	0.01K	0.01	.01K	.01K	0.02	-	.01K	.01K	.01K	.01K	0.02	-	0.06	0.01
Total kjeldahl	0.23	0.23	0.52	0.83	0.83	0.528	0.20	0.25	0.52	0.44	0.68	0.418	0.31	0.26
Phosphorus, mg/L														
Total	.011	.005	.003	.009	.010	.0076	.014	.005	.010	.010	.012	.0102	.014	.022
Dissolved	.002	.001K	.001K	.001	.003	.0016	.004	.001K	.001K	.003	.005	.0028	.003	.005
Pigments, µg/L														
Chlorophyll a*	3.74	3.56	6.90	4.81	4.63	4.73	3.47	16.02	4.27	5.07	3.56	6.48		
Chlorophyll a**	3.57	4.25	6.87	5.68	4.88	5.05	3.74	20.83	4.50	4.70	4.00	7.55		
Chlorophyll b	0.94	3.29	0.63	6.50	1.51	2.57	1.59	12.12	0.74	2.63	1.18	3.65		
Chlorophyll c	0.85	4.90	1.49	0	1.78	1.80	1.25	16.90	0.40	0.08	1.56	4.04		
Pheophytin a	0.00	1.42	0	1.92	0.36	0.74	0.45	8.74	0.21	0	0.68	2.02		
Sample depth, ft	14	18	18	16	17	16.6	10	8.3	10	12	12	10.5		

Appendix C. Concluded

Notes:

17

A **K** indicates less than detection value.

			Station 1	. surface		Station 2						
Parameters	4/24	6/13	7/13	8/21	10/3	Mean	4/24	6/13	7/13	8/21	10/3	Mean
Total depth of site, ft	12	15	6	6.7	6.8	9.3	9.8	12	4	4	4	6.8
Secchi tranparency, inches	30	13	14	12	8	15	30	12	10	12	7	14
Conductivity, µmho/cm	593	601	423	397	380	479	585	598	415	412	405	483
pH	8.4	8.2	8.7	8.8	8.7	8.6	8.3	8.2	8.7	8.7	8.8	8.5
Alkalinity, mg/L as CaCO ₃												
Phenolphthalein	2	0	4	10	9	5.0	0	0	4	7	12	4.6
Total	161	189	139	163	154	161	168	187	131	162	159	161
Suspended solids, mg/L												
Total	12	94	27	30	76	47.8	5	48	54	32	84	44.6
Volatile	4	14	12	10	18	11.6	4	10	13	10	12	9.8
Turbidity, NTU	5.9	2.5	5.3	6.9	9.2	6.0	6.4	2.6	5.3	7.2	10	6.3
Nitrogen, mg/L												
a Ammonia	0.06	0.04	0.01K	0.01	0.08	0.04	0.05	0.03	0.01K	.01K	0.07	0.034
Nitrite/nitrate	6.2	6.4	0.04	.01K	0.04	2.54	6.2	6.4	0.01K	0.05	.01K	2.54
Total kjeldahl	0.74	0.80	2.20	1.2	0.74	1.14	0.67	0.94	1.8	1.2	0.82	1.09
Phosphorus, mg/L												
Total	.173	.192	.235	.267	.183	.210	.164	.201	.226	.278	.037	.181
Dissolved	.121	.118	.040	.135	.034	.089	.118	.118	.050	.145	.211	.128
Pigments, µg/L												
Chlorophyll <i>a</i> *	34.86	49.45	89.00	93.07	96.53	72.58	27.56	50.20	71.20	62.82	98.26	62.01
Chlorophyll a**	39.16	52.27	133.22	92.61	95.61	69.87	29.35	52.78	82.56	78.64	96.72	68.01
Chlorophyll b	19.19	32.65	39.62	15.35	10.41	23.44	13.49	30.92	13.22	14.04	10.45	16.42
Chlorophyll c	20.63	48.23	54.00	7.64	10.81	28.26	13.52	43.66	7.85	12.46	12.25	17.95
Pheophytin a	7.71	6.63	72.98	0	0	17.46	3.19	5.87	16.02	24.03	0	9.82
Sample depth, ft	5	2.2	2.3	2	1.5	2.6	5	2	1.7	2	1.3	2.4

Appendix D. Water Quality Characteristics of Matanzas Lake, 1995

Notes:

A K indicates less than detection value.

			Stat	ion 3			Stati bot	ion l, tom	Tributary
Parameters	4/24	6/13	7/13	8/21	10/3	Mean	4/24	6/13	4/24
Total depth of site, ft	8.9	12	4	4	3.8	6.5	12	15	1
Secchi tranparency, inches	21	13	10	12	8	13	-	-	-
Conductivity, µmho/cm	619	597	440	407	406	494	592	595	414
pH	8.2	8.1	8.3	8.9	8.8	8.5	8.3	8.0	8.2
Alkalinity, mg/L as CaCO ₃									
Phenolphthalein	-	-	0	17	9	5.2	-	-	-
Total	173	185	135	160	158	162	164	186	163
Suspended solids, mg/L									
Total	18	52	47	33	82	46.4	13	44	38
Volatile	4	14	9	14	16	11.4	2	6	5
Turbidity, NTU	6.4	2.0	5.3	8.0	7.6	5.9	6.1	2.7	6.7
Nitrogen, mg/L									
Ammonia	0.08	0.08	0.05	.01K	0.06	0.056	0.06	0.06	0.05
Nitrite/nitrate	6.8	6.4	0.14	.01K	0.05	2.68	6.2	6.2	0.70
Total kjeldahl	0.77	1.1	0.30	1.2	0.78	0.83	0.81	0.84	0.10
Phosphorus, mg/L									
Total	.182	.203	.171	.278	.197	.206	.169	.236	.055
Dissolved	.130	.108	.040	.163	.039	.096	.118	.115	.023
Pigments, µg/L									
Chlorophyll a*	47.84	24.48	46.73	130.69	77.13	65.37			
Chlorophyll a**	46.06	28.24	55.21	134.40	78.49	68.48			
Chlorophyll b	26.46	16.44	10.29	23.45	10.23	17.37			
Chlorophyll c	32.91	23.84	7.87	8.88	14.64	17.63			
Pheophytin a	0.00	7.19	12.46	1.12	0	4.15			
Sample depth, ft	3.5	2.2	1.7	2	1.3	2.1			

Appendix D. Concluded

Notes:

79

A K indicates less than detection value.

*corrected value.

		. bottom	Station 1.										
10/3 Med	10/3	8/21	7/12	6/12	4/24	Mean	10/3	8/21	7/12	6/12	4/24	Parameters	
53 56	53	58	58	58	58	56.8	53	58	58	58	58	Total depth of site, ft	
-	-	-	-	-	-	214	285	210	146	160	270	Secchi tranparency, inches	
1473 14	1473	1498	1482	1476	1512	1329	1330	1305	1301	1322	1387	Conductivity, µµmho/cm	
7.9 7	7.9	7.8	8.0	7.6	7.6	8.4	8.5	8.4	8.5	8.4	8.2	pH	
												Alkalinity, mg/L as CaCO ₃	
-	-	-	-	-	-	1.4	3	1	2	1	0	Phenolphthalein	
178 1′	178	186	192	145	155	133	107	101	108	119	131	Total	
												Suspended solids, mg/L	
19 51	19	31	45	21	142	2.6	2	3	4	2	2	Total	
5	5	4	5	4	12	1	1k	1	1	1	1k	Volatile	
7.7 6	7.7	7.1	5.7	4.1	6.5	3.8	1.4	3.3	5.5	2.3	6.6	Turbidity, NTU	
												Nitrogen, mg/L	
0.86 0.69	0.86	0.97	1.10	0.18	0.37	0.092	0.31	.01K	.01K	0.03	0.10	Ammonia	
01K .15	01K	0.04	0.04	0.33	0.34	.104	.01K	.01K	.07	0.27	0.16	Nitrite/nitrate	
0.84 1.3	0.84	1.3	3.60	0.46	0.50	.43	0.14	0.66	0.65	0.44	0.27	Total kjeldahl	
												Phosphorus, mg/L	
.093 .171	.093	.268	.380	.016	.099	.0048	.006	.005	.003	.009	.001	Total	
058 .129	.058	.227	.322	.010	.028	.0016	.003	.001	.001K	.002	.001	Dissolved	
												Pigments, µg/L	
						3.24	8.19	2.99	1.96	2.29	1.69	Chlorophyll <i>a</i> *	
						3.74	8.34	3.42	2.05	2.71	2.18	Chlorophyll a**	
						1.14	0.99	0.49	0.04	2.37	1.79	Chlorophyll <i>b</i>	
						1.79	2.30	0.60	0.27	3.43	2.33	Chlorophyll <i>c</i>	
						1.33	0	0.60	0.04	0.92	0.97	Pheophytin a	
						34.4	37	35	28	27	45		
((4 7.1 0.97 0.04 1.3 .268	5 5.7 1.10 0.04 3.60 .380	4 4.1 0.18 0.33 0.46 .016	12 6.5 0.37 0.34 0.50 .099	$ \begin{array}{c} 1\\ 3.8\\ 0.092\\ .104\\ .43\\ .0048\\ .0016\\ 3.24\\ 3.74\\ 1.14\\ 1.79\\ 1.33\\ \end{array} $	1k 1.4 0.31 .01K 0.14 .006 .003 8.19 8.34 0.99 2.30 0	1 3.3 .01K 0.1K 0.66 .005 .001 2.99 3.42 0.49 0.60 0.60	1 5.5 .01K .07 0.65 .003 .001K 1.96 2.05 0.04 0.27 0.04	1 2.3 0.03 0.27 0.44 .009 .002 2.29 2.71 2.37 3.43 0.92	1k 6.6 0.10 0.16 0.27 .001 .001 1.69 2.18 1.79 2.33 0.97	Volatile Turbidity, NTU Nitrogen, mg/L Ammonia Nitrite/nitrate Total kjeldahl Phosphorus, mg/L Total Dissolved Pigments, µg/L Chlorophyll <i>a</i> ** Chlorophyll <i>b</i> Chlorophyll <i>c</i>	

Appendix E. Water Quality Characteristics of Snakeden Hollow Lake, 1995

Notes:

80

A K indicates less than detection value.

			~ .										Station 3
			Stati							3. surface		<u> </u>	bottom
Parameters	4/24	6/12	7/12	8/21	10/3	Mean	4/24	6/12	7/12	8/21	10/3	Mean	4/24
Total depth of site, ft	10	10	10	13	11	11	25	24	24.5	24.6	24	24.3	25
Secchi tranparency, inches	114	87	99	147	120	113	198	94	51	117	133	119	-
Conductivity, µmho/cm	1416	1329	1303	1311	1367	1345	1397	1251	1251	1275	1307	1296	1414
pН	8.1	8.4	8.31	8.33	8.4	8.3	8.2	8.3	8.4	8.2	8.5	8.3	7.8
Alkalinity, mg/L as CaCO ₃													
Phenolphthalein	0	1	3	1	1	1.2	0	0	1	-	2	0.6	-
Total	133	121	105	104	108	114	130	123	109	97	96	111	139
Suspended solids, mg/L						••							
Total	2	3	2	2	2	2.2	2	5	4	4	2	3.4	2
Volatile	1k	1	1	1	1	1	1	3	2	1	1k	1.6	1
Turbidity, NTU	6.5	2.6	7.0	5.9	1.3	4.7	6.1	2.2	5.2	6.6	1.2	4.3	5.5
Nitrogen, mg/L													
Ammonia	0.06	.01K	.01K	.01K	0.12	0.042	0.07	.01K	01K	.01K	0.09	0.038	0.35
Nitrite/nitrate	0.17	0.30	0.05	.01K	.01K	.108	0.11	0.12	.01K	0.01	.01K	.052	0.08
Total kjeldahl	0.17	0.29	0.58	0.56	0.20	0.36	0.22	0.41	0.63	0.49	.01K	0.35	0.41
Phosphorus, mg/L													
Total	.002	.010	.009	.004	.008	.0066	.005	.016	.013	.006	.009	.0098	.016
Dissolved	.001	.001K	.003	.002	.007	.0028	.001K	.001K	.001K	.001K	.003	.0014	.004
Pigments, µg/L													
Chlorophyll a*	1.59	2.94	3.20	4.52	3.74	3.20	2.85	4.01	6.94	39.46	5.72	11.80	
Chlorophyll a**	1.86	4.17	3.23	4.85	4.23	3.67	3.36	4.95	6.88	37.63	6.55	11.87	
Chlorophyll <i>b</i>	1.27	4.12	0.46	0.75	1.05	1.53	2.38	4.30	0.86	9.79	2.58	3.95	
Chlorophyll c	1.40	6.48	0.84	0.88	1.70	2.26	2.87	6.87	1.48	2.56	1.46	3.05	
Pheophytin a	0.53	2.48	0	0.37	0.75	0.83	1.01	1.98	0	0	1.35	0.87	
Sample depth, ft	8	8	16.5	24.5	9	13.2	2.3	16	8.5	19.5	22	17.8	

Appendix E. Concluded

Notes:

81

A K indicates less than detection value.

*corrected value.

			Station .	l, surface					Station 1	l. bottom		
Parameters	4/25	6/15	7/19	8/28	10/4	Mean	4/25	6/15	7/19	8/28	10/4	Mean
Total depth of site, ft	32	28	27	27	28	27.5	32	28	27	27	28	27.5
Secchi tranparency, inches	198	13	18	19	24	54.4	-	-	-		-	
Conductivity, µmho/cm	381	353	318	301	336	338	440	484	663	531	631	552
pH	8.4	8.4	9.4	9.6	9.0	9.0	7.6	7.5	7.1	7.3	6.9	7.3
Alkalinity, mg/L as CaCO ₃												
Phenolphthalein	8	2	20	25	16	14.2	-	-	-	-	-	
Total	151	135	119	115	147	133	200	225	306	266	307	261
Suspended solids, mg/L												
Total	2	28	15	10	15	14.0	3	32	80	20	20	31.0
Volatile	1k	18	2	6	11	7.6	2	18	24	8	15	13.4
Turbidity, NTU	5.1	2.1	4.3	12	6.9	6.1	4.8	2.2	4.1	15	11	7.4
Nitrogen, mg/L												
Ammonia	0.27	0.02	.01K	.01K	0.07	0.076	1.9	4.4	17	9.1	17.0	9.88
Nitrite/nitrate	0.77	0.90	.01K	.01K	.01K	0.340	0.01K	0.01K	0.01	0.02	.01K	0.012
Total kjeldahl	0.71	2.3	0.82	1.8	0.98	1.32	2.1	6.2	11.4	1.6	13.8	7.02
Phosphorus, mg/L												
Total	.060	.084	.061	.088	.089	.076	.262	.958	2.88	1.48	2.38	1.592
Dissolved	.041	.010	.009	.011	.029	.020	.214	.845	2.45	1.44	2.12	1.414
Pigments, µg/L												
Chlorophyll a^*	5.34	301.92	68.89	88.11	110.01	114.85						
Chlorophyll a^{**}	5.85	260.74	68.91	88.47	113.79	107.55						
Chlorophyll b	3.37	10.59	1.25	6.59	7.24	5.81						
Chlorophyll c	4.36	0	2.88	1.48	17.46	5.24						
Pheophytin a	1.02	0	0	0	0.64	0.33						
Sample depth, ft	30	2.2	3	3.2	4	8.5						

Appendix F. Water Quality Characteristics of Walnut Point Lake, 1995

Notes:

82

A K indicates less than detection value.

		Station	2, surface					Station	13, surface		
4/25	6/15	7/19	8/28	10/4	Mean	4/25	6/15	7/19	8/28	10/4	Mean
24	21	21	22	22	21.5	16	17	16	15	15	15.8
162	14	19	18	27	48	156	16	19	17	28	47
385	390	332	307	360	355	396	355	334	302	358	349
8.4	9.3	9.7	9.7	8.9	9.2	7.6	9.3	9.4	9.7	8.9	9.0
4	20	20	29	16	17.8	-	20	20	29	16	17.0
147	131	119	115	144	131	176	131	119	115	144	137
1	34	11	40	13	19.8	1	18	9	34	12	14.8
1k	12	6	26	10	11.0	1	16	6	20	9	10.4
4.9	3.0	3.8	19	4.7	7.1	5.1	2.9	3.8	13	4.6	5.9
0.28	0.06	.01K	0.03	0.09	0.094	0.28	0.03	.01K	.01K	0.07	0.080
0.87	0.92	.01K	.01K	.01K	0.364	1.09	0.93	.01K	.01K	.01K	0.410
0.59	3.0	0.78	1.9	1.1	1.47	0.65	2.7	0.78	0.98	1.2	1.26
.060	.070	.069	.096	.104	.080	.062	.067	.064	.104	.116	.083
.046	.019	.016	.017	.026	.025	.046	.021	.021	.015	.025	.026
4.01	187.97	66.75	107.69	105.28	94.34	1.60	193.31	69.95	109.30	115.46	97.92
4.27	170.40	63.04	103.92	112.18	90.76	2.16	171.35	67.25	107.23	115.11	92.62
3.08	9.32	1.75	8.18	6.19	5.70	2.43	8.78	0.63	5.63	7.10	4.91
4.97	2.46	2.80	3.01	11.67	4.98	4.01	3.30	1.90	1.23	13.62	4.81
0.67	0.00	0	0	5.80	1.29	1.20	0	0	0	0	0.24
22	2.3	3.2	3	4.5	7.0	14	2.7	3.2	2.8	4.7	5.5
	24 162 385 8.4 4 147 1 1k 4.9 0.28 0.87 0.59 0.60 .046 4.01 4.27 3.08 4.97 0.67	$\begin{array}{cccccc} 24 & 21 \\ 162 & 14 \\ 385 & 390 \\ 8.4 & 9.3 \\ \\ 4 & 20 \\ 147 & 131 \\ \\ 1 & 34 \\ 1k & 12 \\ 4.9 & 3.0 \\ \\ 0.28 & 0.06 \\ 0.87 & 0.92 \\ 0.59 & 3.0 \\ \\ 0.60 & .070 \\ .046 & .019 \\ \\ 4.01 & 187.97 \\ 4.27 & 170.40 \\ 3.08 & 9.32 \\ 4.97 & 2.46 \\ 0.67 & 0.00 \\ \end{array}$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$

Appendix F. Continued

Notes:

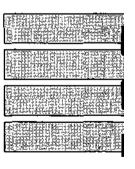
83

A **K** indicates less than detection value.

*corrected value.

Appendix F. Concluded

		Station 2,	Station 3,	Trib	outary
		bottom	bottom	east	west
	Parameters	4/25	4/25	4/25	4/25
	Total depth of site, ft	24	16	1.5	1
	Secchi tranparency, inches	-	-	-	
	Conductivity, µmho/cm	438	446	609	601
	PH	7.7	8.0	7.8	8.1
	Alkalinity, mg/L as CaCO ₃				
	Phenolphthalein	-	-	-	-
	Total	205	188	225	249
	Suspended solids, mg/L				
	Total	8	11	4	2
	Volatile	5	7	1	1k
	Turbidity, NTU	5.0	5.3	9.1	6.6
20	Nitrogen, mg/L				
-	Ammonia	1.7	0.72	0.03	0.09
	Nitrite/nitrate	0.01	1.94	8.0	5.2
	Total kjeldahl	1.8	0.90	0.1K	0.21
	Phosphorus, mg/L				
	Total	.291	.160	.016	.028
	Dissolved	.250	.113	.014	.017
	Pigments, $\mu g/L$				
	Chlorophyll a^*				
	Chlorophyll a^{**}				
	Chlorophyll b				
	Chlorophyll <i>c</i>				
	1 2				


Pheophytin *a*

Sample depth, ft

Notes:

A K indicates less than detection value.

*corrected value.

