
Contract Report 574

Illinois Lake Quality Assessment Program -1993

by Shun Dar Lin and Raman K. Raman Office of Water Quality Management

Prepared for the Lake and Watershed Unit Illinois Environmental Protection Agency

September 1994

Illinois State Water Survey Chemistry Division Champaign, Illinois

A Division of the Illinois Department of Energy and Natural Resources

Illinois Lake Quality Assessment Program -1993

by Shun Dar Lin and Raman K. Raman

Prepared for the Lake and Watershed Unit Illinois Environmental Protection Agency 2200 Churchill Road Springfield, Illinois 62794-9276

Illinois Department of Energy and Natural Resources Illinois State Water Survey Division Office of Water Quality Management P.O. Box 697 Peoria, Illinois 61652

September 1994

This report was printed on recycled and recyclable papers.

CONTENTS

Introduction			1
0		lathada	
	U	1ethods	
		agement	
	•	ement.	
		Assessment Program	
		Wowlr	
~r		Work	
Materials an	d Methods		5
Results and	Discussion		
Genera	1 Discussion		8
Th	ermal and Dis	ssolved Oxygen Profiles	
Sec	cchi Disc Trar	nsparency	
		1 Solids	
Vo	latile Suspend	ded Solids	
Nit	trogen		
	•	Nitrogen	
		ate Nitrogen	
		ahl Nitrogen	
То	•	18	
		alein Alkalinity	
		inity	
Ch		en Demand	
		ity	
		·	
References.			
Illustration A	A. Lake Asse	essment Information and Water and Sediment	
	Quality Da	ata for 23 Illinois Lakes	
Appendix A	. Water Tem	perature (° C) and Dissolved Oxygen (mg/L)	
	Data for 25	5 Illinois Lake Sites	

Page

ILLINOIS LAKE QUALITY ASSESSMENT - 1993

by Shun Dar Lin and Raman K. Raman

INTRODUCTION

Background

The state of Illinois has more than 3,000 lakes or reservoirs with surface areas of six acres or more. The origins of these water impoundments vary. Some were formed by glaciers, but most were developed by damming of streams. Over 100 of them serve as raw water-supply sources, and a few are used for industrial cooling. They are all used for recreational activities such as swimming, fishing, boating, and water-skiing, however.

Most Illinois impoundments are relatively shallow and have low capacity-inflow ratios. The impoundments in Illinois inundate fertile bottomlands and topsoils; thus they normally begin their lives with the potential for high biological productivity. Plant nutrients (nitrogen and phosphorus) and organic matter are leached from these fertile soils into the overlying waters. In addition, runoff from predominantly agricultural watersheds results in considerable input of nutrients into the lakes. Consequently, most Illinois lakes show symptoms of eutrophy characterized by hypolimnetic dissolved oxygen depletion, high levels of nitrogen and phosphorus, and varying degrees of algae and macrophyte growth. These problems become more severe over time.

Lakes are extremely complex systems. Lake conditions are a function of physical, chemical, and biological (the presence and predominance of the various plants and organisms that are found in the lake) factors.

1

Lake Management Methods

The most common lake problems are eutrophication, siltation, shoreline erosion, algal blooms, bad taste and/or odor, excessive growth of aquatic vegetation, toxic chemicals, and bacterial contamination. Eutrophication, or "aging," the process by which a lake becomes enriched with nutrients, is caused primarily by point and nonpoint pollution sources from natural and human induced activities. Because all of these problems impact aesthetic and practical uses of the lake, lake management is needed.

Lake management should cover both watershed and in-lake management. A guidance manual for lakes and reservoirs has been published by the U.S. Environmental Protection Agency (USEPA, 1990). It recommends an integrated and comprehensive approach to assessment and management of the lake watershed and water quality. Investigations of the lake watershed should include assessment of soil types, slopes, land uses and land-use practices, soil losses, point and nonpoint pollution loads, and other relevant characteristics. Because of the limited resources for abating sediment and nutrient loads emanating from the watershed, it is imperative to identify and prioritize critical areas of the watershed for proper management so that the available resources can be allocated judiciously.

Watershed Management

Benefits accrue over a long period from measures such as erosion control, changes in land-use practices, and adoption of best management practices (BMPs). These measures require the willingness and cooperation of all the landowners in the watershed. But even in a small watershed, it takes several years to implement a watershed management plan and to achieve perceptible lake water quality enhancement.

BMPs may include, but are not limited to: 1) erosion and sediment control, 2) agricultural soil conservation practices, such as crop rotation, grass waterway, no till or minimum till, etc., 3) irrigation management measures, 4) stormwater management

2

measures, 5) timber harvesting plans, 6) construction period management, and 7) porous pavement designs. The incentives for BMP applications include tax incentives, subsidies and compensation, awards and public recognition, and grants.

In-Lake Management

In-lake management techniques such as aeration/destratification, chemical control, dredging, dilution, drawdown, nutrient inactivation, shading, lake-bottom sealing, harvesting of nuisance organisms, fisheries management, and shoreline management can improve lake water quality in a time span of two to three years. Detailed limnological studies can indicate whether these measures would be beneficial for a particular lake.

Detailed limnological assessments for each lake system will include the examination of physical, chemical, and biological characteristics of the tributary to the lake; the lake water and sediments; and the development of hydraulic budgets, nutrient budgets, and bathymetric maps.

The data collected for each lake system will aid in identifying and quantifying the lake and watershed problems, and will lead to a well-planned, comprehensive, and integrated lake and watershed management plan. The benefits that can be derived from such an endeavor fall into three categories: those that can be realized soon after the implementation of management strategies, those that can be realized in one to three years, and those benefits that accrue only over a long period of time.

Lake Water Quality Assessment Program

For nearly two decades, Federal Clean Lakes Programs (CLP) have established guidelines for watershed protection and lake management. The programs have been a resounding success through the cooperative participation of federal and state environmental agencies, local organizations, and lake owners.

In Illinois, more than 500 lakes and reservoirs have been assessed by the Illinois Environmental Protection Agency (IEPA) pursuant to funding provided through the Federal Clean Water Act. To increase the number of lakes studied in Illinois, the IEPA has applied for and received funds from the U.S. Environmental Protection Agency (USEPA) Region V under Section 314 of the Federal Clean Lakes Program - Lake Water Quality Assessment (LWQA) grants. The awarded funds under the LWQA grants were used by IEPA to assess additional lakes, which had little or no lake data readily available, such as this 1993 project.

To fulfill IEPA's goal, the Office of Water Quality Management of the Illinois State Water Survey (ISWS) was contracted to collect data on 20 selected lakes throughout the state of Illinois. The Water Survey staff visited these and three additional lakes, and collected water and sediment samples, as well as lake assessment information from various sources.

This report presents all the data obtained for the 23 lakes assessed.

Acknowledgments

Partial funding for this survey was provided by the Planning Section of the IEPA's Water Pollution Control Division. Gregg Good, Jeff Mitzelfelt, and Steve Kolsto, IEPA, assisted immeasurably in carrying out this task to its successful completion. Their help is gratefully acknowledged.

Wiley Scott, Conservation Agronomist, U.S.D.A. - Soil Conservation Service (USDA-SCS), Champaign, Illinois, was instrumental in coordinating and obtaining information pertaining to watershed land-use management practices from several regional offices. The authors immensely appreciate USDA-SCS's help.

Special thanks go to the individuals associated with the 23 lakes surveyed. They were very courteous, shared their information and knowledge about the lakes and their watersheds which made data collection easier. Without their fullest cooperation, this task could not have been accomplished in a timely and orderly fashion. The authors owe a debt of gratitude to each of them.

Luke Lin, Motorola Corporation, Schaumburg, Illinois, designed the format and compiled all analytical data and lake assessment information into a two-page report for each lake. Bill Kocher, ISWS, participated in the field work. Linda Dexter typed the manuscript and the final report, and Sarah Hibbeler edited the manuscript.

SCOPE OF WORK

The ISWS assisted the IEPA in collecting basic lake assessment data, as well as water and sediment samples for 25 sites at 23 Illinois lakes. The names and locations of these lakes are given in figure 1. Their surface areas varied from 10 acres (Lake Loami) to 935 acres (East Fork Lake). Lake types included excavated lowland, strip-mine, side channel, and dammed stream.

Basic lake assessment data gathered included: lake location; morphology; hydrology; ownership/access; lake, watershed, and shoreline usages and impairments; water quality problems; source, cause, and magnitude of pollution; lake and watershed management previously undertaken; and a lake map.

MATERIALS AND METHODS

Lake water and sediment samples were collected at one or two sites on each lake (typically the deepest estimated location) by the ISWS and delivered to IEPA laboratories for analysis. Grab water samples were taken at 0.3 meters (m) (1 foot) below the surface and 0.6 m (2 feet) above the lake bottom, transported in ice, and refrigerated until analysis. Sediment samples were taken with an epoxy-coated 15-cm x 15-cm (6-inch x 6-inch) ponar dredge.

All sampling and site visits were made during a period from July 12, 1993, through August 19, 1993. Samples were collected according to the IEPA field methods guide quality assurance/quality control procedures (IEPA, 1987).

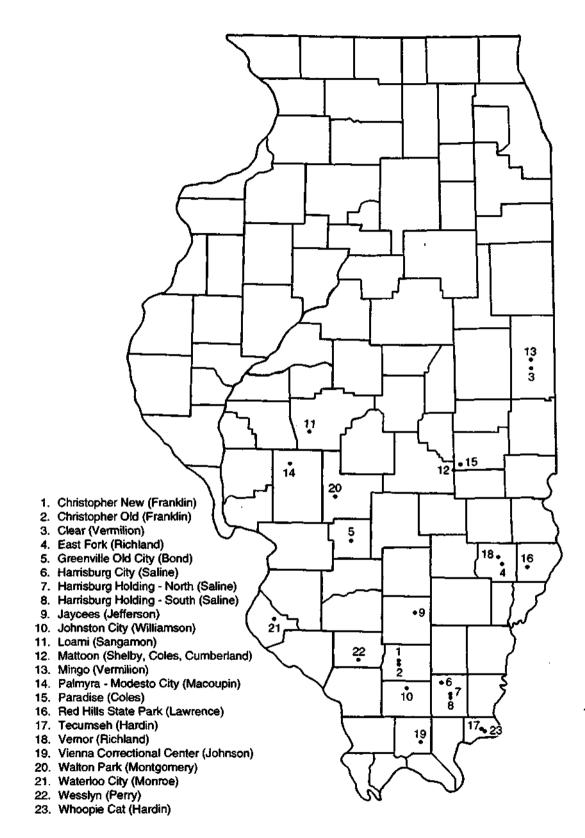


Figure 1. Locations of 23 lakes monitored

These samples were delivered to IEPA laboratories for analysis of total suspended solids (TSS), volatile suspended solids (VSS), turbidity, total phosphorus (TP), nitrite/nitrate-nitrogen (NO2/NO3-N), ammonia nitrogen (NH3-N), total kjeldahl nitrogen (TKN), chemical oxygen demand (COD), chlorophyll *a*, *b*, *c*, and pheophytine *a*. All analyses were performed using approved methods.

In-situ measurements of water temperature and dissolved oxygen (DO) were made using a 50-foot DO/temperature probe (Yellow Springs Instrument Company model 59), which was calibrated with a saturated water chamber. DO/temperature profiles were measured in the water column at each site at 1- or 2-foot intervals commencing from the surface of the lake.

Transparency was determined with an 8-inch-diameter Secchi disc with black and white quadrant markings attached to a calibrated line. The Secchi disc was lowered until it disappeared from view, and the depth of immersion of the disc was noted. The disc was lowered further and then raised slowly until it reappeared. Again the depth of immersion was recorded. The average of these two measurements was used as the secchi disc reading.

Phenolphthalein alkalinity, total alkalinity, and pH were measured in the field after sample collection.

A weighted bottle sampler and clean half-gallon bottle were used to collect a depthintegrated (surface to twice the Secchi depth) quart sample for chlorophyll at the site. This sample was placed in a foil-wrapped, quart, polyethylene bottle for chlorophyll analysis. An adequate volume of the sample was immediately filtered (with a Fisher glass fiber filter G4) with a hand vacuum pump, while in the shade. The algae-laden filter was promptly folded into quadrants, blotted with a paper towel, wrapped in aluminum foil, and placed in a small plastic bag, which was then labelled and stored in a freezer prior to shipment for lab analysis. The volume of filtrate required to saturate each filter with suspended material was recorded to facilitate calculation of chlorophyll concentrations in micrograms per liter

(µg/L).

Replicate sediment samples were collected at the deepest point of the lake using a Petite Ponar dredge. A portion of each sample was placed in a specially prepared glass bottle for organic analyses and in a plastic bottle for metal and nutrient analyses according to IEPA field methods (IEPA, 1987). All sediment samples were collected on the same dates as the lake water samples and were transported to IEPA laboratories for analysis using approved methods. Sediment samples were analyzed for phosphorus, kjeldahl-nitrogen, total and volatile solids, total organic carbon (TOC), 13 metals, and organic chemicals.

Basic lake assessment information mentioned above was gathered by the ISWS and transferred onto lake assessment forms developed by the IEPA. The completed forms were submitted to the IEPA, and data were incorporated into the Waterbody System and a Comprehensive Lake Data Management System.

RESULTS AND DISCUSSION

General Discussion

The analytical results of water and sediment quality samples collected as well as completed lake assessment summaries are individually shown in illustration A. For each of the 21 lakes with one sampling site, two pages of data are presented. For the lakes with two sampling sites (Mattoon and Paradise), three pages of data are presented. For each lake, a lake map, DO/temperature profile, and tables indicating the lake's general features, uses and impairments, water quality problems, causes of quality problems, lake protection and management, and water/sediment qualities are provided. This section describes the information included in each lake summary.

In each summary, general information includes data on the lake's morphology (form), such as surface area, maximum and average depth, lake type, watershed (drainage basin) size, and other features. These features are important in determining how a lake will respond to nutrient or other pollutant loadings. For instance, deep lakes with

comparatively small watersheds respond much more slowly to nutrient loadings than do shallow lakes with large watersheds.

Usages and impairments information includes whether public access is available, the number of visitors to the lake annually, types of recreational facilities and usages available and used, and shoreline and watershed land usage. Designated uses and impairments are also described, and warrant further discussion here.

The degree of use support identified for each designated use indicates the ability of the lake to: 1) support a variety of high quality recreational activities, such as boating, sport fishing, swimming, and aesthetic enjoyment; 2) support healthy aquatic life and sport fish populations; and 3) provide adequate, long-term quality and quantity of water for public or industrial water supply (if applicable). Determination of a lake's use support is based upon the state's water quality standards as described in Subtitle C of Title 35 of the State of Illinois Administrative Code. Each of four established use designation categories (including General Use, Public and Food Processing Water Supply, Lake Michigan, and Secondary Contact and Indigenous Aquatic Life) has a specific set of water quality standards.

The lake uses that are assessed in this report fall under General Use standards primarily the 0.05 mg/L TP standard. The TP standard has been established for the protection of aquatic life, primary contact (e.g., swimming) and secondary contact (e.g., boating) recreation, agriculture, and industrial uses. In addition, lake-use support is based in part on the amount of sediment, macrophytes, and algae in the lake and how these might impair designated lake uses. The following is a summary of the various classifications of use impairment:

Full = full support of designated uses, minimal impairment

Full/threatened = full support of designated uses, indications of declining water quality or evidence of existing use impairment problems

Partial/minor = partial support of designated uses, slight impairment

Partial/moderate = partial support of designated uses, moderate impairment **Nonsupport** = no support of designated uses, severe impairment

Full support lakes may still exhibit some impairment, or have slight to moderate amounts of sediment, macrophytes, or algae in a portion of the lake (e.g., headwaters or shoreline); however, most of the lake acreage shows minimal impairment of the aquatic community and uses. *It is important to emphasize that if a lake is rated as not fully supporting designated uses, it does not necessarily mean that the lake cannot be used for those purposes or that a health hazard exists.* Rather, it indicates that the ability of significant portions of the lake waters to support either a variety of quality recreational experiences or a balanced sport fishery is impaired. Since most Illinois lakes are multiple-use waterbodies, a lake can fully support one designated use (e.g., aquatic life) but exhibit impairment of another (e.g., swimming).

Partial support lakes have a designated use that is slightly to moderately impaired in a portion of the lake (e.g., swimming impaired by excessive aquatic macrophytes or algae, or boating impaired by sediment accumulation). Nonsupport lakes have a designated use that is severely impaired in a substantial portion of the lake (e.g., a large portion of the lake has so much sediment that boat ramps are virtually inaccessible, boating is nearly impossible, and fisheries are degraded). However, in other parts of the same nonsupport lake (e.g., near a dam), the identical use may be supported. *Nonsupport does not necessarily mean that a lake cannot support any uses, that it is a public health hazard, or that its use is prohibited.*

Use support and level of attainment were determined for aquatic life, recreation, swimming, and overall lake use using methodologies described in the IEPA's *Illinois Water Quality Report 1992-1993* (IEPA, 1994). Assessment of fish consumption use-attainment could not be done, since fish tissue samples were not collected. Additionally, although many of the 23 lakes monitored are used for drinking water supply, an assessment of

10

drinking water quality was not made, because information required by the DEPA methodologies could not be collected in a single field visit.

The primary criterion in the aquatic life use assessment is an Aquatic Life Use Impairment Index (ALI), while in the recreation use assessment the primary criterion is a Recreation Use Impairment Index (RUI). Both indices combine ratings for Trophic State Index (TSI) (Carlson, 1977) and degree of use impairment from sediment and aquatic macrophytes; however, each index is specifically designed for the assessed use. ALI and RUI relate directly to the TP standard of 0.05 mg/L. If a lake water sample is found to have a TP concentration at or below the standard, the lake is given a "full support" designation. The aquatic life use rating reflects the degree of attainment of the "fishable goal" of the Clean Water Act, whereas the recreation use rating reflects the degree to which pleasure boating, canoeing, and aesthetic enjoyment might be obtained at an individual lake.

The assessment of swimming use for primary contact recreation was based on available data using two criteria: 1) Secchi disc transparency depth data, and 2) Carlson's TSI. The swimming use rating reflects the degree of attainment of the "swimmable goal" of the Clean Water Act. If a lake is rated as nonsupport for swimming, it does not mean that the lake cannot be used or that health hazards exist. It indicates that, in comparison to other Illinois lakes, swimming may be less desirable than at those lakes assessed as fully or partially supporting swimming.

Finally, in addition to assessing individual aquatic life, recreation, and swimming uses, the overall use support of lakes was assessed. The overall use support methodology aggregates the use support attained for each of the individual lake uses assessed. Values assigned to each use support attainment category are summed and averaged, and then used to assign an overall lake-use attainment value for each lake.

Water quality problems and their causes are presented in each lake summary. The type and extent of problems (e.g., sediment deposition, algal blooms, excessive weeds, etc.)

are described, and the apparent causes and sources of pollution contributing to the problems are identified (e.g., agriculture, construction, nutrients, suspended solids, etc.). These causes and sources of pollution are identified based on knowledge of watershed land uses and activities, discussions with each lake's management personnel, and field observations made during the monitoring visit. By no means are these potential causes and sources meant to be conclusive or quantified; rather, they are meant to bring about an awareness of the particular activities in the lake and its watershed that could impair that lake.

Information concerning lake protection and management is provided for each lake, including the type and extent of best management practice (BMP) implementation in the watershed to protect the lake, and the specific reasoning for the treatment. Much of this information was gathered from local county Soil and Water Conservation Districts and USDA-SCS personnel.

Finally, each lake summary presents the water and sediment quality data generated from the samples collected during the field visit. Water quality data provided include results of nutrient, suspended solids, alkalinity, pH, COD, turbidity, and chlorophyll parameters. Site depths and sampling dates are also recorded. Although sediment metals and organics were analyzed, only sediment metals data are provided, as sediment organics analyses results were not available at the time of this writing. The TSI value and lake trophic status are also provided. However, it should be realized that TSI alone is not adequate to assess the condition of a lake, because the TSI does not account for lakes with high nonalgal turbidity (i.e., suspended inorganic sediment) nor extensive aquatic macrophyte growth. Many of the lakes assessed, as well as other Illinois lakes, are impacted by inorganic sediment runoff from their watershed or by resuspension of sediment from the lake's bottom. Some highly productive lakes may be dominated by aquatic macrophyte growth but exhibit low surface water concentrations of phosphorus and high Secchi disc transparencies. Hence, TSIs calculated for lakes exhibiting conditions of high suspended sediment or extensive macrophyte growth may indicate that the lake is less eutrophic than is actually the case.

Although it is preferable to collect limnological data periodically for one year or at least one season, lack of adequate resources limited in-situ observations and sampling to one visit per lake and restricted them to the deepest lake location. With only one dataset for each lake, it is impractical to dwell on the limnological characteristics of each. Some very general comments are included, however, with discussions of each water quality parameter determined. On the basis of these comments and lake management experiences, some conclusions can be drawn.

Thermal and Dissolved Oxygen Profiles

Deep lakes in the temperate zone (in Illinois, generally those with depths greater than 12 to 15 feet) experience thermal stratification from April to September. During thermal stratification, the upper layer (the epilimnion) is isolated from the lower layer (the hypolimnion) of the water by a temperature gradient (the thermocline or metalimnion). The most important phase of the thermal regime from the standpoint of eutrophication is the summer stratification period (June - September). The hypolimnion traps sediment materials such as decaying plants produced in the epilimnion or transported from the watershed. In a eutrophic lake, the hypolimnion becomes anoxic (devoid of oxygen) because of the increased amount of oxidizable material and its isolation from the atmosphere. Also, the oxygen demand from organic, rich bottom sediments hastens the oxygen depletion in thermally stratified lakes. With the absence of oxygen, the conditions for chemical reduction become favorable, and more nutrients are released to the overlying waters from the bottom sediment.

The amount of oxygen dissolved in water has an important impact on aquatic animals and plants. Most aquatic animals, such as fish, require oxygen in lake water to survive. The two major sources of oxygen in lake waters are diffusion from the atmosphere across the water surface and photosynthetic oxgygen production from aquatic plants such as algae and macrophytes. Important factors that affect DO in lake water include temperature, aquatic plant photosynthetic activity, wind and wave mixing, and organic contents of the water.

Excessive growth of algae (blooms) or other aquatic plants may provide very high concentrations of DO, so-called supersaturation. On the other hand, oxygen deficiencies can occur when plant respiration depletes oxygen beyond the atmospheric diffusion rate, especially during the winter ice cover period, and when intense decomposition of organic matter in the bottom sediment occurs during the summer. These oxygen deficiencies will result in fish kills.

Illustration A depicts profiles of DO and temperature for all 25 lake sites (23 lakes) studied. The observed data are presented in appendix A. Since DO and temperature were not monitored continually during this project, it is not possible to identify the onset of thermal stratification, its progression, or times of peak stratification and subsequent fall turnover.

The results obtained (illustration A and appendix A) suggest that all the lakes studied (except Lake Paradise) showed a temperature gradient. The lakes with depths >15 feet generally had temperature profiles that display classic thermal stratification (epilimnion, metalimnion, and hypolimnion). Few deep lakes (Loami, Mattoon, and Palmyra-Modesto City) showed a lesser degree of temperature deviation with depth. Two of the lakes, Palmyra-Modesto City Lake and Lake Loami, had destratifiers to circulate water, although the Lake Loami destratifier was out of commission at the time of this field investigation. Three shallow lakes (Walton Park and Harrisburg Holding Reservoir - North and South, all 11 feet deep) along with the lakes mentioned above had surface to bottom temperature gradients of about 3-5° C. Johnson City Lake had an 85° C difference between surface and bottom temperatures, while the other 16 lakes had surface and bottom temperature differences of 14-24° C.

The DO levels in lake water have a dramatic effect on the lake's ability to support life. The surface DO values for 23 lakes ranged from a low of 2.1 milligrams per liter (mg/L) in Lake Loami to a high of 15.3 mg/L in Greenville Old City Lake. An unusual situation occurred in Lake Loami, where the destratifier was out of order. Heavy organic loads and algal biomass were washed into the lake from the upper sedimentation basin due to a storm event (Raman and Lin, 1993). Of the 25 sites studied, only six (Christopher -Old, Greenville Old City, Lake Harrisburg, Johnson City, Mattoon - Site 2, and Vernor) had surface DO > 10 mg/L.

DO profiles (illustration A and appendix A) in nearly all lakes had anoxic or low DO concentrations in the bottom waters. There is a destratifier installed in Lake Paradise and in Palmyra-Modesto City Lake. Site 1 (deepest point) of Lake Paradise had low DO at 2 feet above the bottom (17-19 feet in depth). However, near the intake at site 2, DO of about 6.9 mg/L was observed from the middle to the bottom of the water column. In Palmyra-Modesto City lake, a mechanical destratifier was installed and operated continuously from the fall of 1992. DO contents in Palmyra-Modesto City Lake also were low, from 5.7 mg/L at the surface to 0.2 mg/L at the bottom, decreasing progressively with water depth.

All 23 lakes studied had depths of at least 11 feet. Excluding Lake Paradise and Palmyra-Modesto City Lake, most lakes (except Clear Lake) became anoxic between 6 and 17 feet. Clear Lake, which is 48 feet deep, exhibited anoxic conditions at depths below 36 feet.

Secchi Disc Transparency

Water transparency is measured with a Secchi disc on a calibrated rope, which suggests the depth of light penetration into a body of water. From the water surface to approximately two - three times the Secchi disc depth is the region of a lake where enough sunlight penetrates to allow photosynthetic production of oxygen by algae and other aquatic plants.

Secchi disc transparency for the 23 lakes studied ranged from 12 inches near the intake in Lake Mattoon - Site 2 to 155 inches in Clear Lake (table 1). In a previous survey of 25 Illinois lakes, Lin and Raman (1993) observed the highest Secchi disc readings as 186 inches in Strode Lake. For a survey of southern Illinois lakes, Burns (1991) reported the highest Secchi transparency (240 inches) in Crystal Lake in Perry County. Seven of the 23 lakes in this study (Greenville Old City, Johnston City, Loami, Mattoon - Sites 1 and 2, Paradise - Sites 1 and 2, Red Hills State Park, and Walton Park) had a Secchi disc transparency ≤ 24 inches, which represents the level generally associated with lake impairment (IEPA, 1978). Eleven lakes had Secchi transparencies between 24 and 48 inches. Five lakes (Clear, Tecumseh, Vienna Correctional Center, Wesslyn, and Whoopie Cat) had Secchi transparencies ≥ 48 inches. Excluding Wesslyn Lake, four of those lakes had transparencies ≥ 95 inches. The minimum recommended Secchi transparency set by the Illinois Department of Public Health for bathing beaches is 48 inches. Nevertheless, a lake that does not meet the transparency criteria does not necessarily constitute a public health hazard.

Total Suspended Solids

TSS represent material residue left on a filter ≤ 2.0 micrometers (µm) normal pore size, i.e., the concentration of all inorganic and organic matter suspended in a water column. Inorganic portions of TSS originate from the erosion and weathering of soil and rocks in a lake watershed and resuspension of lake sediments. Organic portions of TSS are derived from a variety of biosolids in the lake which, for the most part, comprise algae and resuspended animal and plant materials from the lake bottom. Generally, the higher the TSS concentration, the lower the Secchi disc reading. A high TSS concentration results in decreased water transparency, which can reduce photosynthetic activities, and

			Total					
	<u>Secch</u>	i disc	Chlore	ophyll	<u>phospl</u>	horus	Mean T	'rophic*
Lake	inch	TSI	µg/L	TSI	µg/L	TSI	TSI	state
Christopher-New	34	62.2	43.39	67.3	24	50.0	59.8	E
Christopher-Old	26	66.0	78.57	73.3	207	81.0	73.4	Η
Clear	155	40.7	2.81	40.7	1	4.2	28.6	0
East Fork	36	61.5	47.17	68.3	12	40.0	56.6	E
Greenville	20	69.8	152.57	80.1	111	72.1	74.0	Η
Harrisburg	26	66.0	44.71	67.9	14	42.4	58.8	E
Harrisburg HR-N	25	66.5	9.08	52.4	9	35.8	51.6	E
Harrisburg HR-S	31	63.6	2.14	38.2	26	51.1	51.0	E
Jaycees	34	62.2	30.04	41.5	7	32.2	45.3	Μ
Johnston City	24	62.0	88.11	74.5	16	44.1	60.2	E
Loami	19	70.5 +	37.15	66.2	27	51.6	62.8	E
Mattoon - Site 1	22	68.5	99.32	75.6	30	53.2	65.8	E
Mattoon - Site 2	12	76.2	192.24	82.2	125	73.8	77.4	Н
Mingo	33	62.8	35.24	65.6	5	27.4	51.9	Е
Palmyra-Modesto	47	57.7	21.81	60.7	28	52.2	56.9	E
Paradise - Site 1	18	71.4	82.24	73.7	22	48.7	64.6	E
Paradise - Site 2	16	73.1	86.26	74.3	13	41.1	62.8	E
Red Hills	29	70.6	42.55	67.3	9	35.8	57.9	E
Tecumseh	95	47.7	3.89	43.8	8	34.1	41.9	Μ
Vernor	32	63.1	54.84	69.8	28	52.2	61.7	E
Vienna Corr.	110	45.6	28.48	63.4	6	30.0	46.3	Μ
Walton Park	20	69.8	29.13	63.6	98	70.3	67.9	Е
Waterloo	31	63.6	32.93	64.7	199	80.5	69.6	Е
Wesslyn	52	56.2	8.34	51.3	1	4.2	37.2	0
Whoopie Cat	133	42.8	8.54	51.8	1	4.2	32.9	0

Table 1. Trophic State Index (TSI) and Trophic State for Lakes Assessed in 1993

* Note: E = eutrophic; H = hypertrophic; M = mesotrophic; O = oligotrophic

+ Data gathered after an extraordinary storm event

subsequently decrease the amount of oxygen produced by algae, possibly creating anoxic conditions. Anaerobic water may limit fish habitats and potentially cause taste and odor problems by releasing noxious substances such as hydrogen sulfide, ammonia, iron, and manganese from the lake bottom sediments.

TSS in the surface water samples of the lakes studied ranged from 2 mg/L (Clear Lake, Wesslyn Lake, and Whoopie Cat Lake) to 40 mg/L (Johnson City Lake). High TSS concentrations in Johnston City Lake and Lake Mattoon - Site 2 were linked to high levels of chlorophyll *a*. TSS concentrations in the bottom water samples were between 3 mg/L (Clear Lake) and 61 mg/L (Jaycees Lake). With few exceptions (Harrisburg Holding Reservoir - South, Loami, Mattoon - Site 2, Mingo, and Red Hills Lakes), TSS concentrations in lake bottom water were higher than those in surface water. Lake Loami samples were collected after an abnormal storm event, and the combination of unusually heavy rainfall and the failure of the mechanical destratifier resulted in an algal bloom (flushed out from the upper silt basin) and DO depletion in the lake. Application of copper sulfate to the lake to control the algal bloom resulted in a fish kill (Raman and Lin, 1993).

On the basis of Illinois Lake Assessment Criteria (IEPA, 1978), TSS ≥ 25 mg/L are classified as high lake-use impairment, while TSS for moderate use impairment are between 5 and 25 mg/L. TSS ≤ 5 mg/L are considered minimal impairment. In this study, based on the surface TSS concentrations, 4 lakes/sites (Johnston City, Loami, Paradise - Site 2, and Mattoon - Site 2), 16 lakes/sites, and 7 lakes are in the categories of high, moderate, and minimal use impairments, respectively.

Volatile Suspended Solids

VSS are the portion of TSS lost to ignition at 500 \pm 50° C. VSS represent the organic portion of TSS, such as phytoplankton, zooplankton, and other suspended organic matter. VSS concentrations in surface waters for the 25 sites ranged from $\leq 1 \text{ mg/L}$

(Clear, Wesslyn, and Whoopie Cat Lakes) to 33 mg/L (Lake Loami). Excluding Lake Loami, the highest VSS level occurred at Lake Mattoon - Site 2 (14 mg/L). VSS levels for bottom water samples were between 1 mg/L (Clear Lake) and 15 mg/L (Jaycees Lake). High VSS levels are generally indicative of turbidity caused by algae and other organic debris.

The VSS/TSS ratio in surface waters for the 25 sites was in the range of 0.22 (Harrisburg Holding Reservoir - South) and 0.85 (Lake Loami) with an average of 0.52. High ratios also were observed in Jaycees Lake (0.80) and Lake Tecumseh (0.75), although both lakes have low TSS (5 and 4 mg/L, respectively) concentrations. For nonvolatile suspended solids (SS), five lakes (Johnston City, Waterloo City, Walton Park, Palmyra-Modesto City, and Greenville Old City) equaled or exceeded 12 mg/L, which is the impairment margin for overall use (USEPA, 1992). Johnston City Lake had the highest nonvolatile SS concentration, 28 mg/L, which is considered high/substantial impairment (>20 mg/L).

For bottom water samples, the VSS/TSS ratios ranged from 0.19 for Palmyra-Modesto City Lake to 1.00 for Wesslyn Lake, with an overall average of 0.49. In general, the lower the VSS/TSS ratio, the higher the nonvolatile SS fraction. Based on nonvolatile SS concentrations, three lakes (Jaycees Lake, Lake Paradise - Site 2, and Walton Park Lake) could be classified as highly/substantially impaired. Four other lakes (Palmyra-Modesto City, Greenville Old, Loami, and Vienna Correctional Center) are also classified as impaired (< 12 mg/L of nonvolatile SS).

Turbidity

Turbidity is an expression of the property of water that causes light to be scattered and absorbed by a turbidimeter, and is reported as nephelometric turbidity units (NTU). Turbidity in water is caused by dissolved substances and suspended matter, such as clay, silt, finely divided inorganic and organic matter, soluble colored organic compounds, and plankton and other microorganisms. Generally, turbidity in lakes is influenced by sediment runoff carried into a lake from its watershed, algae in the water column, or resuspension of lake bottom sediments.

Turbidity of 25 site samples from the 23 lakes assessed ranged from 0.1 NTU for surface water (Vienna Correctional Center Lake) and 0.4 NTU for bottom water (Clear Lake) to 25 NTU for surface water (Greenville Old City Lake) and 25 NTU for bottom water (Waterloo City Reservoir). Illinois Lake Assessment Criteria (IEPA, 1978) for a moderate amount of sediment set a turbidity value between 7 and 14 NTU. Turbidity > 15 NTU is indicative of substantial suspended sediment. On the basis of surface turbidity levels, only two lakes (Greenville Old City and Loami) are considered to have substantial turbidity. Three lakes (Christopher - Old, Walton Park, and Waterloo City) had moderate amounts of sediment. The other 18 lakes (20 sites) are considered to have minimal amounts of suspended sediments.

Nitrogen

Nitrogen is generally found in surface waters in the form of ammonia (NH3), nitrite (NO2), nitrate (NO3), and organic nitrogen. Organic nitrogen is determined by subtracting NH3 nitrogen from the TKN measurements. Organic nitrogen content can indicate the relative abundance of organic matter (algae and other vegetative matter) in water, but has not been shown to be directly used as a growth nutrient by planktonic algae. Nitrogen is an essential nutrient for plant and animal growth, but it can cause algal blooms in surface waters and create public health problems at high concentrations. The Illinois Pollution Control Board (IPCB) (1990) has set standards for nitrate not to exceed 10 mg/L nitrate nitrogen or 1 mg/L nitrite nitrogen for public water-supply and food processing waters.

Nitrate is readily used by algae as a nutrient to approximately the same extent as ammonia. If the sum of NO_2 and NO_3 nitrogen concentrations exceeds 0.30 mg/L, it may

stimulate algal growth. NH3 is a natural end product of decomposed organic material. It can exist in water in two forms as ionized (NH₄+ and ammonium) and un-ionized (NH3 ammonia). High levels of ammonia can be toxic to aquatic organisms, but the level of toxicity depends on water temperature and pH. The IPCB (1990) stipulates an ammonia nitrogen limitation of 15 mg/L.

Ammonia Nitrogen. The surface water ammonia nitrogen levels ranged from concentrations that were lower than detectable (0.01 mg/L) at four sites (Mattoon - Site 2, Red Hills, Tecumseh, and Whoopie Cat) to 0.67 mg/L at Walton Park Lake. With the exception of Walton Park Lake and Lake Loami, all the other 23 sites (21 lakes) had ammonia nitrogen levels < 0.2 mg/L.

Ammonia concentrations in the bottom waters can be more important in that the NH3 will rapidly be oxidized to nitrite/nitrate after lake turnover occurs. The observed bottom water NH_3 levels ranged from 0.01 mg/L at Harrisburg Holding Reservoir - South to 12.0 mg/L at Wesslyn Lake. No water sample near the lake bottom exceeded the IPCB's ammonia nitrogen limitation (15 mg/L).

Nitrite/Nitrate Nitrogen. The sum of nitrite and nitrate $(NO_2 + NO_3)$ nitrogen for 11 lakes was under the detection limit (0.01 mg/L) in both surface and bottom water samples. The highest concentrations (1.1-1.5 mg/L) were found in Lake Mingo, Palmyra-Modesto City Lake, and Lake Paradise - Sites 1 and 2. None of the NO2/NO3 levels exceeded IPCB standards.

Total Kjeldahl Nitrogen. TKN represents the sum of NH3, NH_4^+ , and organic nitrogen present in water. For the lake surface waters, TKN ranged from 0.081 mg/L (Lake Mattoon - Site 2) to 0.97 mg/L (Walton Park Lake), while TKN for bottom waters ranged from 0.22 mg/L (Lake Mattoon - Site 2) to 12.8 mg/L (Wesslyn Lake).

Total Phosphorus

TP represents all forms of phosphorus in water. Dissolved phosphorus is the soluble portion of TP. Phosphorus, an essential plant nutrient, occurs in natural waters and wastewaters almost solely as phosphates. In relatively uncontaminated lakes, the TP of lake surface waters is generally in the range of 0.01 and 0.03 mg/L (Hutchinson, 1967; APHA, AWWA, and WEF, 1992). Phosphorus is frequently the limiting nutrient in a lake ecosystem. Excessive concentrations of TP, like nitrate, can cause noxious growths of algae and other aquatic plants, and TP levels of 0.03 mg/L have been shown to cause nuisance algae/plant growth. The IPCB (1990) stipulates that "Phosphorus as P shall not exceed 0.05 mg/L in any reservoir or lake, or in any system at the point where it enters any reservoir or lake."

TP values of the 25 surface water samples collected ranged from under the detection limit of 0.001 mg/L (Wesslyn and Whoopie Cat Lakes) to 0.207 mg/L (Christopher - Old Reservoir). Four samples (Christopher - Old Reservoir, Lake Mattoon - Site 2, Walton Park Lake, and Waterloo Lake) exceeded the standard of 0.05 mg/L, while the other 21 samples were < 0.3 mg/L of TP. The TP concentrations for the bottom waters were between 0.005 mg/L (Clear Lake) and 3.05 mg/L (Wesslyn Lake, which may have been an atypical sample).

pН

The pH value is a measure of the acidity of water: values < 7.0 indicate acidic water, and values > 7.0 indicate basic (or alkaline) water. A pH of 7.0 is exactly "neutral." Although rain water in Illinois is acidic (pH about 4.4), most of the lakes can offset this acidic input by an abundance of natural buffering compounds in the lake water and the watershed. One species of carbonate, carbonic acid, usually controls pH to a great extent and is consumed by algae and other plants for growth. A rise in pH can occur due to photosynthetic uptake of carbonic acid and cause water to become more basic. Values >

8.0 in Illinois lakes are usually indicative of photosynthetic demand of carbon dioxide. Most Illinois lakes have a pH between 6.5 and 9.0. The IPCB (1990) standard of pH for general-use water quality is also in a range between 6.5 and 9.0, except for natural causes.

The pH levels at the 23 lake surface waters ranged from 7.3 (Paradise - Site 1) to 9.9 (Greenville Old City). In fact, three lakes (Christopher - Old, Greenville Old City, and Red Hills State Park) had pH > 9.0. The pH values of the surface water in 13 lakes were between 8.0 and 9.0. Photosynthetic activities occurred in almost all lakes.

Except for Red Hills State Park Lake, where both surface and bottom waters had pH levels of 9.1, all lakes showed lower pH values for bottom waters than for surface waters. Bottom water pH values were more than three units lower in Greenville Old City Lake, while in eight lakes the differences in the surface and bottom water pH values were less than 1.0. The pH levels in the 25 lake sites ranged from 6.4 (Lake Tecumseh) to 9.1 (Red Hills State Park Lake). Ten sites had bottom water samples with a pH > 7.0, and six other sites had pH values equal to 7.0.

Alkalinity

Alkalinity is a measure of water's acid-neutralizing capacity. It is expressed in terms of an equivalent amount of calcium carbonate (CaCO₃). Alkalinity is mainly the result of carbonates, bicarbonates, and hydroxide ions in water. Total alkalinity is the amount of acid required to bring water to a pH of 4.5. Phenolphthalein alkalinity is the amount of acid needed to bring water to a pH of 8.3.

Lakes with low alkalinity are or have the potential to be susceptible to acid rain damage. However, Illinois lakes usually have high alkalinity and thus are well buffered from the impacts of acid rain.

Phenolphthalein Alkalinity. Surface waters at only eleven sites had phenolphthalein alkalinity, ranging from 6 (Johnston City and Mingo Lakes) to 33 (Christopher - Old

Reservoir) mg/L as CaCO₃. It was almost nonexistent in lake bottom waters, except in Red Hills State Park Lake (18 mg/L as CaCO>3).

Total Alkalinity. Total alkalinity as CaCC>3 of 25 lake site surface waters was between 26 mg/L (Lake Tecumseh) and 169 mg/L (Clear Lake). These values are typical of Illinois lakes. With only seven exceptions, lake bottom waters had higher total alkalinity than the lake surface waters. Of the 25 sites sampled, total alkalinity as CaCO3 for bottom waters ranged from 16 mg/L (Lake Tecumseh) to 220 mg/L (Christopher - Old Reservoir).

Chemical Oxygen Demand

The COD is a measure of the oxygen requirement of the organic content of a sample that is susceptible to oxidation by a strong chemical oxidant. The COD test is less time-consuming than the biochemical oxygen demand (BOD) test and can be related empirically to BOD. BOD is related to biological processes that occur when bacteria feeding on dead animal and plant matter and animal wastes consume oxygen during the decomposition process. The COD result is typically slightly greater than that for the BOD test, because the COD test includes some materials that are not readily biologically degradable. Domestic and industrial wastewaters usually have high COD levels.

Illinois Lake Assessment Criteria (IEPA, 1978) state that COD values >30 mg/L indicate a high magnitude of organic enrichment from plant and algal material and that COD values between 20 and 30 mg/L are considered moderate organic enrichment. COD levels for surface waters at 25 lake sites ranged from 8 mg/L (Clear Lake) to 28 mg/L (Greenville Old City Lake and Lake Loami). Although high COD concentrations were found in Walton Park Lake (27 mg/L), no sample can be considered highly enriched (>30 mg/L of COD). Five lakes (Greenville Old City, Loami, Walton Park, Christopher - Old, and Harrisburg) are classified as having moderate organic enrichment. COD levels for bottom waters ranged from 11 mg/L (Paradise - Site 2 and Whoopie Cat Lakes) to 80 mg/L (Wesslyn Lake).

Chlorophyll

All green plants contain chlorophyll *a*, which constitutes approximately one to two percent of the dry weight of plankton's algae (APHA, AWWA, and WEF, 1992). Other pigments that occur in phytoplankton include chlorophyll *b* and *c*, xanthophylls, phycobilius, and carotenes. The important chlorophyll degradation products in water are the chlorophyllides, pheophorbides, and pheophytines. The concentration of photosynthetic pigments is used extensively to estimate phytoplanktonic biomass. The presence or absence of the various photosynthetic pigments is used, among other features, to identify the major algal groups present in the water body.

In the 23 lakes studied, chlorophyll *a* ranged from 2.14 μ g/L in Harrisburg Holding Reservoir - South (2.81 μ g/L in Clear Lake) to 192.24/ig/L in Lake Mattoon - Site 2. High chlorophyll *a* (152.57 μ g/L) was also observed in Greenville Old City Lake. Chlorophyll *b* ranged from 0.15 μ g/L (Clear Lake) to 27.00 μ g/L (Johnston City Lake). Three lakes (Greenvile Old City, Palmyra-Modesto City, and Vienna Correctional Center) had no chlorophyll c, and the highest concentration (11.61 μ g/L) was observed at Lake Mattoon -Site 2. Pheophytin *a* was found in seven lakes (Mingo, Palmyra-Modesto, Whoopie Cat, Tecumseh, Vernor, Walton Park, and Wesslyn), ranging from 0.27 μ g/L to 3.92 μ g/L.

Trophic State

Eutrophication is a normal process that affects every body of water from its time of formation. As a lake ages, the degree of enrichment from nutrient materials increases. In general, the lake traps a portion of the nutrients originating in the surrounding drainage basin. In addition, precipitation, dry fallout, and ground-water inflow are the other contributing sources.

A wide variety of indices of lake trophic conditions have been proposed in the literature used for this study. Indices have been based on Secchi disc transparency, nutrient concentrations, hypolimnetic oxygen depletion, and biological parameters, including chlorophyll *a*, species abundance, and diversity. The USEPA suggests in its *Clean Lakes Program Guidance Manual* (1980) the use of four parameters as trophic indicators: Secchi disc transparency, concentrations of chlorophyll *a*, phosphorus, and carbon in water.

In addition, the lake trophic state index (TSI) developed by Carlson (1977) on the basis of Secchi disc transparency (SD), chlorophyll *a* (CHL), and surface water total phosphorus (TP) can be used to evaluate a lake's trophic state. The TSI number can be calculated from SD in meters (m), CHL in micrograms per liter (μ g/L), and TP in μ g/L as follows:

on the basis of CHL,	TSI = 9.81 In (CHL) + 30.6	(2)
on the basis of TP,	TSI = 14.42 In (TP) + 4.15	(3)

The index is based on the amount of algal biomass in surface water, using a scale of 0 to 100. Each increment of ten in the TSI represents a theoretical doubling of biomass in the lake. The advantages and disadvantages of using the TSI were discussed by Hudson et al. (1990). The accuracy of Carlson's index is often diminished by water coloration or suspended solids other than algae. Applying TSI classification to lakes that are dominated by rooted aquatic plants may indicate less eutrophication than actually exists.

A TSI is derived from the average of three calculated results using formulas (1)-(3) for every monitored lake site. It is used to define the trophic state of a lake as indicated in table 2, which is modified from Carlson (1977). The values of TSI and trophic state for 25 lake sites are listed in table 1. Three lakes (Christopher - Old, Greenville Old City, and Mattoon - Site 2) are classified as hypereutrophic, and a majority of the lakes (15 lakes, 16 sites) are eutrophic. Three lakes (Jaycees, Tecumseh, and Vienna Correctional Center) are mesotrophic. The other three lakes (Clear, Wesslyn, and Whoopie Cat) can be considered oligotrophic based on the average of three TSIs. Based on SD and CHL calculations, they can be classified as either eutrophic or mesotrophic. Carlson (1977)

Trophic state	<u>transp</u>	hi disc <u>arency</u> ves) (m)	Chlorophyll a (µglL)	Total phosphorus - lake surface (µg/L)	TSI
Oligotrophic	>157	>4.0	<2.6	<12	<40
Mesotrophic	79-157	2.0-4.0	2.6-7.2	12-24	40-50
Eutrophic	20-79	0.5-2.0	7.2-55.5	24-96	50-70
Hypertrophic	<20	<0.5	>55.5	>96	>70

Table 2. Quantitative Definition of Lake Trophic State

pointed out that phosphorus and chlorophyll TSIs should match closely in lakes that are phosphorus-limited. Because none of the lakes in this study are phosphorus-limited, only winter TP concentration (instead of whole year TP concentration) should be used in trophic state classification (USEPA, 1980).

Lake Sediment Quality

Lake sediment can act both as sinks and as potential sources (such as phosphorus and metals) impacting lake water quality. Its metal and/or organic chemical toxicities can directly affect the presence of aquatic animals and plants on the lake bottom. Lake sediments, if and when dredged, should be carefully managed to prevent surface water and groundwater contamination.

While there are no regulatory agencies that promulgate sediment quality standards, sediment quality in Illinois is generally assessed using the Classification of Illinois Lake Sediments report developed by Kelly and Hite (1981). For the study they collected 273 individual sediment samples from 63 lakes across Illinois during the summer of 1979. On the basis of each parameter measured, they defined "elevated levels" as concentrations of one to two standard deviations greater than the mean value, and "highly elevated levels" as concentrations greater than two standard deviations from the mean. A statistical classification of Illinois lake sediment developed by Kelly and Hite is shown in table 3. It should be noted that in this classification lake sediment data are considered to be elevated based on a statistical comparison of levels found in 1979 and not on toxicity data. Therefore, elevated or highly elevated levels of parameters do not necessarily indicate a human health risk.

Results of surficial sediment analyses for each studied lake are listed in illustration A. An inspection of sediment results of Lake Paradise - Site 2 reveals that nutrient values and metal contents were extremely low, while concentrations of solids due to sand and

Constituent, mg/kg	Below normal	Normal	Elevated	Highly elevated
Total Kjeldahl nitrogen	<1650	1650-5775	5775-7850	>8750
Total phosphorus	<225	225-1175	1175-1650	>1650
Volatile solids (%)	<5	5-13	13-17	>17
Arsenic		<27	27-41	>41
Cadmium		<1.8	1.8-2.6	>2.6
Chromium	<14	14-30	30-38	>38
Copper		<100	100-150	>150
Iron	< 18000	18000-36000	36000-45000) >45000
Lead	<15	15-100	100-150	>150
Manganese		<3000	3000-3900	>3900
Mercury		< 0.25	0.25-0.40	>0.40
Zinc	<50	50-175	175-250	>250

Table 3. Classification of Illinois Lake Sediments

gravel were high. It was a poor sample location adjacent to the intake. Therefore this sample is not included for data analysis.

Table 4 presents the number and percentage of 24 monitored lake sites having elevated and highly elevated levels of specific parameters, as well as the minimum and maximum values for each parameter. Most of the sediment samples collected from the 23 lakes can be classified in the normal range for Illinois lakes. Fifty percent of samples contained TKN below normal concentrations (<1650 mg/kg). The most prevalent metals were iron, with ten lakes having elevated and highly elevated levels (41.6% of the total lakes monitored), and cadmium, with eight lakes having highly elevated levels (33.3%). In contrast, a 1989 lake assessment program (IEPA, 1991), showed copper (26 of 69 lakes assessed, 37.7%) and chromium (21 lakes, 30.4%) to be the most prevalent metals.

The data in illustration A and table 4 indicate that Wesslyn Lake has the best sediment quality, while Vernor Lake and Red Hills State Park Lake have the worst.

Table 5 presents a comparison of sediment qualities measured in 1979 and 1993 for four lakes (East Fork, Harrisburg, Mattoon, and Paradise). In general, the nutrient concentrations increased with time, but there is no general trend for changes in metals concentrations.

SUMMARY

This report is a summary of all data collected in 1993 for 25 sites in 23 lakes. The data are presented in the form of individual listings and maps for each lake (Illustration A). Each lake summary contains a lake map, morphological data, watershed information, information on lake impairments and water quality problems, analytical results of lake water and sediment qualities, and the lake trophic status. The results of physical and chemical characteristics of lake water samples and sediment quality are discussed in this report. On the basis of only one observation per lake site, it is concluded that four lakes (Clear, Whoopie Cat, Wesslyn [surface sample only], and Tecumseh) have the highest

					Number (%) of	
					Number (%) of	f lakes classi-
		<u>Minimum</u>	<u>Maximum</u>		lakes classi-	fled as highly
	value	lake	value	lake	fied as elevated	elevated
Phosphorus-P, mg/kg	319	Wesslyn	1409	Greenville	2(8.3)	0(0.0)
Kjeldahl-N, mg/kg	1.8	Tecumseh	5852	Red Hills	1(4.1)	0(0.0)
Vol. solids, %	3.5	Harrisburg HR-South	n 19.6	Vernor	1(4.1)	1(4.1)
Arsenic, mg/kg	5.4	Wesslyn	52.1	Red Hills	0(0.0)	1(4.1)
Cadmium, mg/kg	1K	16 lakes	18	Harrisburg	0(0.0)	8(33.3)
Chromium, mg/kg	12	Harrisburg HR-North	i 30	Vienna C.C	.* 0(0.0)	0(0.0)
Copper, mg/kg	12	Wesslyn	760	Vernor	1(0.0)	2(8.3)
Iron, ing/kg	1900	Harrisburg City	51000	Vernor	9(37.5)	1(4.1)
Lead, mg/kg	14	Wesslyn	60	Vernor	0(0.0)	0(0.0)
Manganese; mg/kg	250	Wesslyn	2800	Vienna C	.C.* 0(0.0)	0(0.0)
Mercury, mg/kg	0.1K	18 lakes	0.1	6 lakes	0(0.0)	0(0.0)
Zinc, mg/kg	41	Wesslyn	122	Mingo	0(0.0)	0(0.0)

Table 4. Sediment Results of 23 Lakes (24 samples) Monitored

* Note: Vienna Correctional Center

	East Fe	ork Lake	Lake	<u>Harrisburg</u>	Lake	Mattoon	Lake P	<u>aradise</u>
Parameter, mg/kg	1979	1993	1979	1993	1979	1993	1979	1993
Volatile solids, (%)	5.0	10.4	9.7	10.6	8.50	11.2	11.14	11.6
Total Phosphorus	420	666	815	1124	753	1186	850	975
Total Kjeldahl-N	1600	4052	3350	2272	2925	3630	3600	4400
Arsenic	6.4	10.6	17.0	15.3	7.9	9.4	8.3	6.9
Cadmium	0.5	1K	1.0	18	0.5	1K	1.0	1K
Chromium	13	19	24	26	24	18	30	23
Copper	13	36	27	26	23	18	28	25
Iron	21,000	37,000	47,000	45,000	30,000	27,000	35,000	31,000
Lead	25	33	50	51	40	21	40	27
Manganese	2600	2200	2900	2200	1370	1000	820	748
Mercury	0.055	0.10	0.125	0.1K	0.063	0.1K	0.100	0.10
Zinc	49	71	120	96	92	61	120	90

Table 5. Time Effect on Surficial Sediment Quality of Four Lakes

Note: Average of two samples collected at site 2 (deepest point) of each lake in 1979.

water quality. Three other lake sites, (Greenville Old City Lake, Christopher - Old Reservoir, Lake Mattoon - Site 2) have poor water quality yet serve as public water-supply sources. Four lakes (Greenville Old City, Red Hills State Park, Vernor, and Harrisburg) have poor bottom sediment quality. Further investigations of these last four lakes are recommended.

Based on the lake use support assessment, eight lakes, viz, Clear Lake, Harrisburg Holding Reservoir - North, Harrisburg Holding Reservoir - South, Lake Mingo, Lake Tecumseh, Vienna Correctional Center Lake, Wesslyn Lake, and Whoopie Cat Lake, could sustain full use overall. Seven lakes, namely, Greenville Old City Lake, Harrisburg Lake, Johnston City Lake, Lake Mattoon, Red Hills State Park Lake, Vernor Lake, and Waterloo City Reservoir, have poorer quality characteristics and are capable of providing partial support of designated uses with moderate impairment. All other lakes included in this investigation fall between these two general characterizations.

REFERENCES

- American Public Health Association (APHA), American Water Works Association (AWWA), and Water Environment Federation (WEF). 1992. Standard Methods for the Examination of Water and Wastewater. American Public Health Association, Washington, D.C.
- Burns, A.J. 1991. *Lake water quality program southern Illinois lakes*. IEPA, IEPA/WPRC/91-210, 44p.
- Carlson, R.E. 1977. "A trophic state index for lakes," *Limnology and Oceanography*, 22(2):361-369.
- Hudson, H.L., J. J. Clark, and R.J. Kirschner. 1990. Lake water quality assessment program - northeastern Illinois lakes. Northeastern Illinois Planning Commission, Chicago, IL, 83p.

- Hutchinson, G.E. 1967. A Treatise on Limnology, Vol II, Introduction to Lake Biology and the Limnoplankton. John Wiley & Sons, Inc., New York, NY. 1115p.
- Illinois Environmental Protection Agency. 1978. Assessment and classification of Illinois Lakes, Vol. II. IEPA, Springfield, IL, 358p.
- Illinois Environmental Protection Agency. 1987. *Quality assurance and field method manual*, IEPA, Springfield, IL.
- Illinois Environmental Protection Agency. 1991. *Lake Water Quality Assessment Grant*. Final Report, IEPA, Springfield, IL, 62p.
- Illinois Environmental Protection Agency. 1994. Illinois Water Quality Report: 1992-1993. IEPA, Springfield, IL.
- Illinois Pollution Control Board. 1990. *Rules and Regulations, Title 35: Environmental Protection, Subtitle C: Water Pollution,* Chapter I. IEPA, Springfield, IL, 195p.
- Kelly, M.H. and R.L. Hite. 1981. Chemical Analysis of Surficial Sediments from 63 Illinois Lakes, Summer 1979. IEPA, Springfield, IL, 92p.
- Lin, S.D., and R.K. Raman. 1993. *Illinois Lake Quality Assessment -1992*. Illinois State Water Survey Contract Report 553, Champaign, IL, 78p.
- Raman, R.K., and S.D. Lin. 1993. *Lake water quality problems and how a small utility overcame them.* Lake Waves, 22(3): 1-2.
- U.S. Environmental Protection Agency. 1980. *Clean lakes program guidance manual*. EPA-440/5-81-003, Washington, DC, 103p. + appendices.
- U.S. Environmental Protection Agency. 1990. *The lake and reservoir restoration guidance manual*. 2nd ed. USEPA, Washington, DC, 326p.

Illustration A. Lake Assessment Information and Water and Sediment Quality Data for 23 Illinois Lakes

Abbreviations

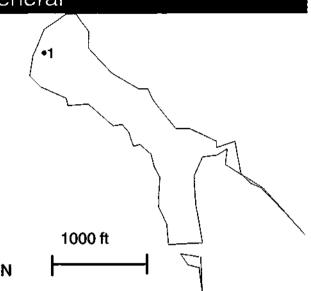
Under Usages and Impairments:

Full:	full support
F/Th:	full/threatened
P/Mi:	partial/minor
P/Mo:	partial/moderate
(1), (2), (3), (4):	from low to high level of use
P:	potential for increased use
I:	increasing trend of use
-	

D: decreasing trend of use

Under Water Quality Problems and Causes of Quality Problems:

- M/N: minimal/none
 - S: slight
 - M: moderate
 - H: high or substantial


Under other headings:

WTP:	wastewater treatment plant
IDOT:	Illinois Department of Transportation
BDOH:	Illinois Department of Health
CMS:	Central Management Services
CRP:	conservation reserve program
FSA:	Food Security Act
USD A:	United States Department of Agriculture
WRDGC:	Water Reclamation District of Greater Chicago

Note: Under *General*, the map indicates the location of one or more sampling sites for the lake in question.

Christopher New Reservoir

General

00000	000	Impairments
USAGES.	200	I DOZINIENIS -

Public Access				Yes
Entire lake bottom	publicly	owned	and	entire
shoreline public acce	ess, unlim	nited free	acce	ess

No. of Visitors per Year	<25,000
Lake Use Support	
Overall	P/Mi
Aquatic Life	Full
Swimming	P/Mi
Recreation	P/Mi

Non-recreational Lake Usage None

Water Quality Problems

Problems	
Sediment deposition	S
Algal blooms	М
Aquatic macrophytes	Н
Water level fluctuation	M/N
Fish kills	M/N

Causes of Quality Problems

Potential Pollution Sources

Cropland runoff, woodland runoff

Lake Location	2.5 miles N	W of Christopher
Deepest Point	Latitude	38°00'20"
	Longitude	89°06'08"
Lake Surface Are	a, acres	43.2
Length of Shoreli	ne, miles	2.2
Maximum Depth,	feet	23
Average Depth, fe	eet	8.2
Lake Storage Cap	oacity, acre-fee	t 354
Watershed Draina	age Area, acres	5 92
Hydraulic Retenti	on Time, years	0.555
Lake Type		Dammed stream
Year Constructed		1922,1931
Ownership		Public
Inflowing Stream	S	Unnamed
Outflowing Stream	ms	Unnamed
Unique Festures		

Unique Features

The lake served asabackupwatersupply source until 1971. Water was being pumped into Old Reservoirto supplement The treatment system has since been abandoned.

Recreational Lake Usage

Fishing - (4), P Low power boating - (4) IDOC drained the lake and stocked 7 years ago.

Recreational Facilities

One gravel boat ramp

Shoreline Usage, %	
Woodland	
Cropland	

ropland	10

90

S

Watershed Drainage Area Usage, %

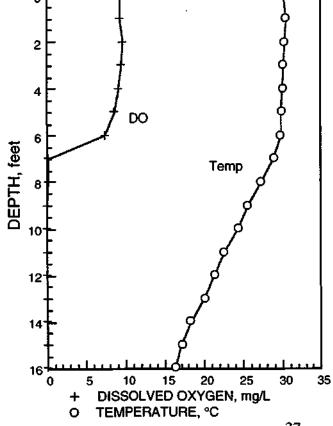
Cropland	47	Wetland	9
Woodland	25	Pasture/grassland	4
Wildlife	13	Other	2

Differences in Turbidity and Water Quality	/
In different portions of lake?	Yes
At different times of the year?	Yes
Fishing	Good
Major Types of Fish	
Bluegiil, bass, channel catfish	

Causes of Impairment Suspended solid Nutrients 400bs.ofCuSO4 applied in 1993 to control moss along shoreBna	S S
Sources of Impairment Agriculture	М

Pasture

Christopher New Reservoir


Lake Protection Management

Grassed waterway, acre7Erosion controlGrade stabilization structure1Gully erosion control	
Grade stabilization structure 1 Gully erosion control	
Ponds 3 Recreation & erosion control	
Permanent vegetative cover, acre 240 CRP& woodland	
Conservation cropping system, acre 200 Soil tilth & erosion control	
Livestock exclusion, acre 100	
<u>Tillage.</u> %	
No-till 5 Mulch till with \geq 30% residue 33	
Moldboard 4 Mulch till with < 30% residue 5	
Woodland 25 Pasture/hayland 4	
Wildlife 13 Wetland 9	
Other 2	
Water and Sediment Qualities Water Quality (K: less than detection value)	
Sampling Date 07/30/93 Depth, feet _1_	_14_
Site Number 1 Total Suspended Solids, mg/L 6	12
Water Depth of Site, feet 16 Volatile Suspended Solids, mg/L 4	6
Secchi Disc Transparency, inches 34 Turbidity, NTU 3.7	15
	0.01

Secchi Disc Transparency, inches		34
Chlorophyll a,	μg/L	43.39
Chlorophyll <i>b,</i>	μg/L	4.98
Chlorophyll c,	μg/L	0.98
Pheophytin a,	μg/L	0.00
Trophic State Index		59.8
Trophic State		Eutrophic

Water Quality (K: less than detection value)		
Depth, feet	_ <u>1_</u>	<u>_14</u> _
Total Suspended Solids, mg/L	6	12
Volatile Suspended Solids, mg/L	4	6
Turbidity, NTU	3.7	15
N0 ₂ /N0 ₃ -Nitrogen, mg/L	0.01 K	0.01
Ammonia Nitrogen, mg/L	0.12	0.29
Total Kjeldahl Nitrogen, mg/L	0.40	0.29
Total Phosphorus, mg/L	0.024	0.196
Alkalinity, mg CaCO ₃ /L		
Total	94	134
Phenolphthalein	16	0
Field pH	8.8	6.7
Chemical Oxygen Demand, mg/L	15	26

Jeuiment Quality	
(mg/kg. ppm, K: less than detection value)	
Phosphorus-P.ppm	628
Kjeldahl-N,ppm	507
Solids, % wet	30.2
Vol. solids, %	8.6
TOC, %	3.1
Arsenic, ppm	12.0
Barium, ppm	218
Cadmium, ppm	1K
Chromium, ppm	29
Copper, ppm	27
Iron, ppm	42,000
Lead, ppm	34
Manganese, ppm	955
Mercury, ppm	0.10
Nickel, ppm	26
Potassium, ppm	2100
Silver, ppm	1
Zinc, ppm	96

Christopher Old Reservoir

Franklin County Map Code: RNZQ

Latitude

Longitude

Lake Location Deepest Point

Lake Surface Area, acres

Maximum Depth, feet

Average Depth, feet

Year Constructed

Inflowing Streams

Unique Features

Outflowing Streams

Lake Type

Ownership

Length of Shoreline, miles

Lake Storage Capacity, acre-feet

Watershed Drainage Area, acres

Hydraulic Retention Time, years

1 mile NW of Christopher

37° 59'07" 89° 04'09"

19.8

1.6

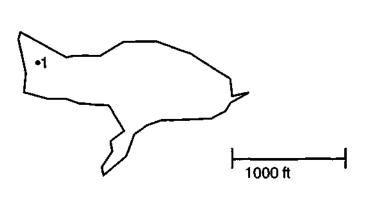
18

158

325

1900

Unnamed


Unnamed

Dammed stream

8

-

General

≜ N		The lake served as water supply sou until 1907, and the treatment syst been abandoned.	
Usages and Impairment Public Access Entire lake bottom publicly owner shoreline public access, unlimited for	Yes ed and entire	Recreational Lake Usage Fishing - (4) trolling motors only	
No. of Visitors per Year Lake Use Support	<25,000	Recreational Facilities Boat ramp (gravel), picnic area, pay wheelchair access, restroom facilitie	•
Overall Aquatic Life Swimming Recreation	P/Mi Full P/Mo P/Mo	Shoreline Usage, % Woodland	100
Non-recreational Lake Usage None		Watershed Drainage Area Usage, 9 Cropland Pasture Woodland Wetland Other	% 68 . 7 19 5 1
Water Quality Problems Problems Sediment deposition Algal blooms Aquatic macrophytes Water level fluctuation Fish kills	S S S S M/N S M/N	Differences in Turbidity and Water In different portions of lake? At different times of the year? Fishing Major Types of Fish Bluegill, crappie, bass, redear (all was stocked 10 years ago)	Yes Yes Excellent

Causes_of_Quality_Problems -

Potential Pollution Sources

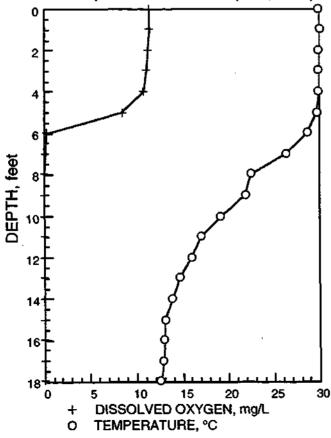
Cropland runoff, woodland runoff, sediment in lake (slight)

Causes of impairment Nutrients S Μ Siltation Thermal modification Μ Noxious aquatic plants Μ Sources of Impairment Agriculture Μ Nonirrigated crop production Μ Pasture S Herbicide/algicide applications Μ

Christopher Old Reservoir

Lake Protection Management

Treatment Date	Type and Extent of	of Treat	ment		Reason for Trea	atment	
	Grassed waterway, a	acre		5	Erosion control		
	Ponds			3	Livestock water &	& erosic	on control
	Permanent vegetati	ve cove	er, acre	125	Pasture/woodlan	d	
	Conservation croppi	ng syste	em, acre	250	Erosion control		
	Livestock exclus	sion,	acre	5			
	<u>Tillage</u> , %						
	No-till	15	Mulch	till wi	th $\ge 30\%$ residue	19	
	Moldboard plow	15	Mulch	till wi	th < 30% residue	19	
	Woodland	19	Pastu	re/hay	/land	7	
	Wetland	5	Other			1	


5 Other

Water and Sediment Qualities

Sampling Date		07/30/93
Site Number		1
Water Depth of Site, fee	et	18
Secchi Disc Transparer	ncy, inches	26
Chlorophyll a,	μg/L	78.57
Chlorophyll <i>b,</i>	μg/L	5.00
Chlorophyll <i>c,</i>	μg/L	0.67
Pheophytin a,	μg/L	0.00
Trophic State Index		73.4
Trophic State		Hyptertrophic

Water Quality (K: less than detection	n value)	
Depth, feet	_1_	<u>16</u> _
Total Suspended Solids, mg/L	11	2
Volatile Suspended Solids, mg/L	5	1K
Turbidity, NTU	11	-
NO ₂ /NO ₃ -Nitrogen, mg/L	0.01K	0.01K
Ammonia Nitrogen, mg/L	0.10	5.6
Total Kjeldahl Nitrogen, mg/L	0.58	5.6
Total Phosphorus, mg/L	0.207	2.42
Alkalinity, mg CaCO ₃ /L		
Total	106	220
Phenolphthalein	33	0
Field pH	9.4	7.0
Chemical Oxygen Demand, mg/L	23	37

DO & Temperature Profiles (Time, 09:00)

ocument Quanty	
(mg/kg ppm, K: less than detection value)	
Phosphorus-P,ppm	. 1063
Kjeldahl-N,ppm	764
Solids, % wet	. 20.3
Vol. solids, %	11.2
TOC, %	3.1
Arsenic, ppm	10.0
Barium, ppm	247
Cadmium, ppm	1K
Chromium, ppm	24
Copper, ppm	39
Iron, ppm	38,000
Lead, ppm	33
Manganese, ppm	1700
Mercury, ppm	0.1K
Nickel, ppm	24
Potassium, ppm	2000
Silver, ppm	1K
Zinc, ppm	91
,	

Clear Lake

Vermilion County

Map Code: RBR General

Illinois Department of Conservation R.R. #1, Box 374, Oakwood, IL 61858 217/442-4915

1 <u>200 t</u> t.	

Usages and Impairments

Public Access

Entire lake bottom publicly owned and entire shoreline public access, unlimited free access (state boat and fishing licenses are required)

>200,000
Full
Full
Full
Full

Non-recreational Lake Usage

None

Water Quality Problems

Problems	
Suspended sediment	M/N [·]
Sediment deposition	M/N
Algal blooms	M/N
Aquatic macrophytes	S
Water level fluctuation	S
Fish kills	M/N

Causes of Quality Problems-

Potential Pollution Sources Pasture and woodland runoffs

Lake Location	2 mile	es W of Danville
Deepest Point	Latitude	40°08'18"
	Longitude	87° 42'09"
Lake Surface Are	a, acres	38.5
Length of Shoreli	ne, miles	3.2
Maximum Depth,	feet	5.3
Average Depth, fe	eet	16.5
Lake Storage Capacity, acre-feet		635
Watershed Drainage Area, acres50		
Hydraulic Retention Time, years 16.96		
Lake Type	C	Coal strip-mining
Year Constructed		1939
Ownership		State
Inflowing Streams	6	-
Outflowing Stream	ns	-
Unique Features		

Unique Features

Yes

The lake is in a state park. Water is extremely clear. Secchi disc readings exceed 18 ft. most of the time. Trout stocking is successful.

Recreational Lake Usage

Fishing - (4),	No power boating - (4)
Canoeing and kay	yaking - (2)
Picnicking - (2)	
Waterfowl observ	ration - (2)

Recreational Facilities

Boat ramp, boat rental, bicycle trail, camping facilities, concession stand, park, picnic area, hiking, horse trails, hunting

Shoreline Usage, %	
Pasture or grassland	30
Woodland	70

Watershed Drainage Area Usage, %

Pasture or grassland	20
Woodland	70
Roads and parking lots	10

Differences in Turbidity and Water Quality		
In different portions of lake?	No	
At different times of the year?	No	
Fishing	Fair	
Major Types of Fish		
Largemouth bass, channel catfish, sunfish, walleye, rainbow trout, carp, shad, crappie (Lake is stocked yearly with catfish, bass. Trout stocking is being resumed.)		

Causes of Impairment Suspended solids

S S

Sources of Impairment

Pasture

Noxious aquatic plants

Clear Lake

Lake Protection Management

Treatment Date

Type and Extent of Treatment

Reason for Treatment

None

Comments: Clear Lake is a strip mine pond located within Kickapoo State Park. There is no agricultural drainage.

Water and Sediment Qualities

Sampling Date	08/12/93
Site Number	1
Water Depth of Site, feet	48
Secchi Disc Transparency, inches	155
Chlorophyll <i>a</i> , µg/L	2.81
Chlorophyll <i>b,</i> μg/L	0.15
Chlorophyll <i>c,</i> μ.g/L	0.34
Pheophytin <i>a,</i> μ.g/L	0.00
Trophic State Index	28.6
Trophic State	Oligotrophic

DO & Temperature Profiles (Time, 11:00)

Water Quality (K: less than detection value)		
Depth, feet	_1_	<u>46</u> _
Total Suspended Solids, mg/L	2	3
Volatile Suspended Solids, mg/L	1	1
Turbidity, NTU	0.8	0.4
NO/NOj-Nitrogen, mg/L	0.01	0.02
Ammonia Nitrogen, mg/L	0.03	0.06
Total Kjeldahl Nitrogen, mg/L	0.55	0.57
Total Phosphorus, mg/L	0.001	0.005
Alkalinity, mg CaCO ₃ /L		
Total	169	175
Phenolphthalein	0	0
Field pH	7.9	7.6
Chemical Oxygen Demand, mg/L	8	18

0 5 10 15 DO \sim DEPTH, feet 20 Temp 25 30 35 40 45 50 20 25 30 0 15 5 10 + DISSOLVED OXYGEN, mg/L

TEMPERATURE, °C

0

Seuli nen i Quality	
(mg/kg ppm, K; less than detection value)	
Phosphorus-P,ppm	488
Kjeldahl-N,ppm	1173
Solids, % wet	22.6
Vol. solids, %	9.1
TOC, %	-
Arsenic, ppm	5.5
Barium, ppm	78
Cadmium, ppm	1K
Chromium, ppm	20
Copper, ppm	20
Iron, ppm	33,000
Lead, ppm	24
Manganese, ppm	742
Mercury, ppm	0.1 K
Nickel, ppm	36
Potassium, ppm	1700
Silver, ppm	1K
Zinc, ppm	86

East Fork Lake Map Code: RCC

Richland County

General

City of Olney 300 Whittle Avenue, Olney, IL 62450 618/395-7302

(•1)		of the state	(L-3
K	Ther 3	M	les sold

Usages and Impairments

Public Access	Yes
Entire lake bottom publicly owned butentire sho	oreline
not public access	

No. of Visitors per Year	25,000 -100,000
Lake Use Support	
Overall	F/Th
Aquatic Life	Full
Swimming	P/Mi
Recreation	P/Mi

Non-recreational Lake Usage

Potable water supply - (4) Industrial water supply - (4)

Water Quality Problems

Problems	
Suspended sediment	М
Sediment deposition	М
Algal blooms	S
Aquatic macrophytes	S
Taste and/or odor	M/N
Water level fluctuation	S
Fish kills	M/N

Causes_of_Quality Problems

Potential Pollution Sources

Runoff (cropland, woodland, pasture/grassland, lawn/golf course), livestock operation, shoreline erosion, sediment in lake

Lake Location	0.5	miles N of Olney
Deepest Point	Latitude	38° 45' 46"
	Longitude	88°06'58"
Lake Surface Area	a, acres	935
Length of Shorelin	ne, miles	25
Maximum Depth,	feet	40
Average Depth, fe	et	15
Lake Storage Capacity, acre-feet 14,000		
Watershed Drainage Area, acres 9,882		
Hydraulic Retention	on Time, years	1.403
Lake Type		Dammed stream
Year Constructed		1970
Ownership		Public
Inflowing Streams	5	East Fork Creek
Outflowing Stream	ns	East Fork Creek
Unique Features		

Unique Features

The lake serves as the primary water supply source for Olney.

Recreational Lake Usage

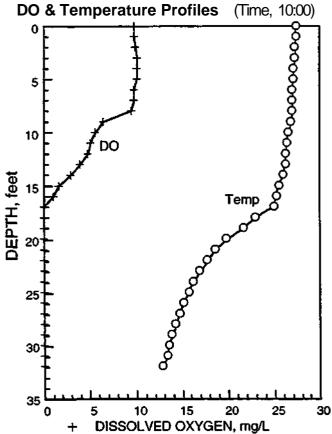
Recreationa		te usage	
Fishing-(4)		High power boating-(4)	
Swimming - (2)	1	Water sknng - (4)	
Saiiboating-(3)	1	Waterfowl hunting-(3)	
Camping - (4)		Waterfowl observation - (3)	
Picnicking - (4)			
Recreational	l Fac	cilities	
Boat ramps	s (2),	boat rental, camping facilitie	es (2),
parks (2),	picn	ic area (recreational facilitie	s are
		residents and visitors)	
Shoreline Us		,	
Cropland	45	Residential/lawns	15
Woodland	28	Pasture or grassland	5
Wetland	2	Recreational development	5
Watershed D	Drair	nage Area Usage, %	
Cropland			70
Pasture or	aras	sland	10
Woodland	3		10
Other			10

y
Yes
Yes
Good
oluegill,

Causes of impairment

000303 01	mpann		
Pesticides	S	Organic/DO depletion	M
Nutrients	M	Thermal modification	M
Siltation	M	Oil and grease	S
Pathogens	S	Suspended solids	M
Taste/odor	S	Noxious aquatic plants	S
Sources o	of Impairr	nent	
Agriculture	- M	Nonpoint sources	S
Pasture	S	Petroleum activities	S
Construction	S	Herbicide/algicide appl.	S

East Fork Lake


Lake Protection Management

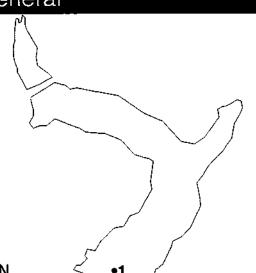
Treatment Date	Type and Extent of	Treatn	nent	Reason for Treatment	
1985-1986	Terrace, linear ft		7,000	Water quality	
	Grassed waterway, ad	cre	10	Water quality	
	Grade stabilization str	ucture	2	Water quality	
	Held border str	rip, ft	t. 5,000	Water quality	
	Permanent vegetative	cover, a	acre 60	Erosion control	
	Tree planting, acre		10	Erosion control	
	Tillage. %				
	No-till	30	Mulch till w	ith <30% residue	5
	Crop rotation	15	Chisel or di	sc till with <30% residue	20
	Woodland	10	Pasture/ha	yland	10
	Other	10		-	

Water and Sediment Qualities

Sampling Date	08/11/93
Site Number	1
Water Depth of Site, feet	32
Secchi Disc Transparency, inches	36
Chlorophyll <i>a</i> , μg/L	47.17
Chlorophyll <i>b,</i> µg/L	2.10
Chlorophyll c, µg/L	0.66
Pheophytin <i>a,</i> μg/L	0.00
Trophic State Index	56.6
Trophic State	Eutrophic
Pheophytin <i>a,</i> μg/L Trophic State Index	0.00 56.6

Water Quality (K: less than detection	n value)	
<u>D</u> epth, feet	_1_	_30_
Total Suspended Solids, mg/L	8	13
Volatile Suspended Solids, mg/L	3	7
Turbidity, NTU	0.4	1.9
N0 ₂ /N0 ₃ -Nitrogen, mg/L	0.01K	0.01K
Ammonia Nitrogen, mg/L	0.02	1.9
Total Kjeldahl Nitrogen, mg/L	0.68	1.9
Total Phosphorus, mg/L	0.012	0.599
Alkalinity, mg CaCO ₃ /L		
Total	59	116
Phenolphthalein	8	0
Field pH	8.7	7.0
Chemical Oxygen Demand, mg/L	13	16

TEMPERATURE, °C


0

Seument Quanty	
(mg/kg: ppm, K: less than detection value)	
Phosphorus-P,ppm	666
Kjeldahl-N,ppm	4052
Solids, % wet	27.2
Vol. solids, %	10.4
TOC, %	-
Arsenic, ppm	10.6
Barium, ppm	231
Cadmium, ppm	1K
Chromium, ppm	19
Copper, ppm	36
Iron, ppm	37,000
Lead, ppm	33
Manganese, ppm	2200
Mercury, ppm	0.10
Nickel, ppm	25
Potassium, ppm	1600
Silver, ppm	1K
Zinc, ppm	71
·	

Greenville Old City (Patriot's) Lake **Kingsbury Park District** L 62246 Map Code: ROY Bond County 64-4449

ike	Box 462,	Greenville,	I
		618/	le

General

Isades	and	Impairments

Public Access Entire lake bottom publicly shoreline public access	owned	Yes and entire
No. of Visitors per Year Lake Use Support		< 25,000
Overall		P/Mi

Overall	P/IVII
Aquatic Life	Full
Swimming	P/Mo
Recreation	P/Mo

Non-recreational Lake Usage None

Water Quality Problems

Problems

Suspended sediment	М
Sediment deposition	Μ
Algal blooms	Н
Aquatic macrophytes	M/N
Water level fluctuation	M/N
Major fish kill, summer 1988	

Causes of-Quality Problems-

Potential Pollution Sources

Runoff (cropland, pasture/grassland, woodland), livestock operations

Lake Location	1 mile	e W of Greenville
Deepest Point	Latitude	38° 53'31"
	Longitude	89°24'49"
Lake Surface Area	a, acres	25.1
Length of Shorelin	ne, miles	1.5
Maximum Depth,	feet	17
Average Depth, fe	et	7.4
Lake Storage Cap	acity, acre-feet	186
Watershed Draina	ge Area, acres	880
Hydraulic Retention	on Time, years	0.364
Lake Type		Dammed stream
Year Constructed		1930s
Ownership		Public
Inflowing Streams	5	Unnamed
Outflowing Stream	ns	Unnamed

Unique Features

More than 50 percent of the lake surface in the deep end was covered with duckweed and bluegreen algal scum.

Recreational Lake Usage

Fishing - (1) No power boating - (1)

- Picnicking (3)
- (Swimming abandoned since 1977)

Recreational Facilities

Boat rental, park, picnic area, and four shelters. Hiking and picnicking are the major recreational uses.

- -

Shoreline Usage, %

Woodland	90
Recreational development	10

Watershed Drainage Area Usage, %

Cropland	30	Pasture or grassland	25
Woodland	14	Recreational development	11
Wetland	4	Wildlife	12
Other	4		

Differences in Turbidity and Water Quality	
In different portions of lake?	Yes
At different times of the year?	Yes
Fishing	Poor
Major Types of Fish	

Major Types of Fish

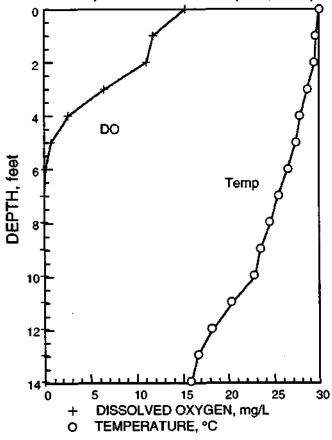
Catfish, bluegill, redearsunfish, green sunfish, black and yellow bullhead. Catfish is stocked on an annual basis. The trout stocking program was resumed in 1993 on an annual basis.

Causes of impairment

Nutrients	Η	Organic/DO depletion	Н
Siltation	Μ	Thermal modification	Н
Noxious aqu	uatic p	lants	Н
Sources of li	npair	ment	
Agriculture	-		Μ
Pasture			Μ
Range land			S

Greenville Old City Lake

Lake Protection Management


Treatment Date	Type and Extent	of Treat	ment Reason for Treatment		
1986	Terrace		Erosion control		
	Grassed waterway		Erosion control		
	Pond		Erosion/water quality		
1987	Livestock exclusior	ו	CRP water quality		
1986	Permanent vegeta	tive cove	er Erosion control		
	Tillage. %				
	No-till	10	Mulch till with >30% residue	7	
	Moldboard plow	3	Mulch till with <30% residue	10	
	Woodland	14	Pasture/hayland	25	
	Park	11	Wetland	4	
	Wildlife	12	Others (roads, farmsteads, waterway)	4	

Water and Sediment Qualities

Sampling Date	08/18/93
Site Number	1
Water Depth of Site, feet	14
Secchi Disc Transparency, inches	20
Chlorophyll a, µg/L	152.57
Chlorophyll <i>b,</i> μg/L	7.78
Chlorophyll <i>c,</i> μg/L	0.00
Pheophytin a, µg/L	0.00
Trophic State Index	74.0
Trophic State	Hypertrophic

Water Quality (K: less than detection	on value)	
<u>D</u> epth, feet	_1_	<u>_12</u> _
Total Suspended Solids, mg/L	17	27
Volatile Suspended Solids, mg/L	9	14
Turbidity, NTU	25	20
N0 ₂ /N0 ₃ -Nitrogen, mg/L	0.02	0.01 K
Ammonia Nitrogen, mg/L	0.07	3.9
Total Kjeldahl Nitrogen, mg/L	0.60	-
Total Phosphorus, mg/L	0.111	1.65
Alkalinity, mg CaCO₃/L		
Total	104	142
Phenolphthalein	28	0
Field pH	9.9	6.8
Chemical Oxygen Demand, mg/L	28	28

DO & Temperature Profiles (Time, 10:00)

ocument quanty	
(mg/kg ppm, K; less than detection value)	
Phosphorus-P,ppm	1409
Kjeldahl-N,ppm	2286
Solids, % wet	28.0
Vol. solids, %	12.1
TOC, %	-
Arsenic, ppm	8.1
Barium, ppm	284
Cadmium, ppm	1K
Chromium, ppm	25
Copper, ppm	38
Iron, ppm	29,000
Lead, ppm	31
Manganese, ppm	1000
Mercury, ppm	0.10
Nickel, ppm	21
Potassium, ppm	2100
Silver, ppm	1K
Zinc, ppm	98

Lake Harrisburg

Saline County Map Code: RAI

City of Harrisburg 110 East Locust, Harrisburg, IL 62946 618/252-6344

N Vestor Usages and Impairments Public Access Yes Entire lake bottom publicly owned and entire shoreline public access, unlimited free access No. of Visitors per Year < 25,000 Lake Use Support < 25,000 Overall P/Mi Aquatic Life Full Swimming P/Mi Recreation P/Mi Recreation P/Mi Mustrial water supply (Kerr-McGree Coal Co. pumps water from the lake for coal washing) Vater Quality Problems Suspended sediment M Sediment deposition M Aquatic macrophytes S	General	
Public Access Yes Entire lake bottom publicly owned and entire shoreline public access, unlimited free access No. of Visitors per Year < 25,000 Lake Use Support P/Mi Overall P/Mi Aquatic Life Full Swimming P/Mi Recreation P/Mi Non-recreational Lake Usage Industrial water supply (Kerr-McGree Coal Co. pumps water from the lake for coal washing) Water Quality Problems Suspended sediment M Sediment deposition M	N Lit	
Entire lake bottom publicly owned and entire shoreline public access, unlimited free access No. of Visitors per Year < 25,000 Lake Use Support Overall P/Mi Aquatic Life Full Swimming P/Mi Recreation P/Mi Non-recreational Lake Usage Industrial water supply (Kerr-McGree Coal Co. pumps water from the lake for coal washing) Water Quality Problems Suspended sediment M Sediment deposition M	Usages and Impairments	
Lake Use Support P/Mi Overall P/Mi Aquatic Life Full Swimming P/Mi Recreation P/Mi Non-recreational Lake Usage P/Mi Industrial water supply (Kerr-McGree Coal Co. pumps water from the lake for coal washing) Co. pumps water from the lake for coal washing) Water Quality Problems Suspended sediment M Sediment deposition	Entire lake bottom publicly owned and e	entire
Water Quality Problems Problems Suspended sediment M Sediment deposition M	Lake Use Support Overall Aquatic Life Swimming Recreation Non-recreational Lake Usage Industrial water supply (Kerr-McGree Coal	P/Mi Full P/Mi P/Mi
ProblemsSuspended sedimentMSediment depositionM		
Sediment deposition M	Problems	

Lake Location	8 miles l	NW of Harrisburg
Deepest Point La	atitude	37° 50' 12"
Lo	ongitude	88" 38' 05"
Lake Surface Area, acres		209
Length of Shoreline,	miles	6.5
Maximum Depth, feet	t	30
Average Depth, feet		10
Lake Storage Capacit	ty, acre-fee	t 2,090
Watershed Drainage	Area, acres	3 ,456
Hydraulic Retention	Time, years	0.694
Lake Type		Dammed stream
Year Constructed		1 949
Ownership		Public
Inflowing Streams		Unnamed
Outflowing Streams		Unnamed
Unique Festures		

Unique Features

The lake served as a water supply source until 1982. City is currently using Saline Valley Conservancy District.

Recreational Lake Usage

Fishing - (4)
Low power (<5 Hp) boating - (3)
Camping - (3)
Picnicking - (3)
Recreational Facilities

One boat ramp, camping facilities, park, picnic area

Shoreline Usage, %	
Woodland	99+
Residential	<1
About 40 to SO summer cottages along the west shore, very few along shore. East shore is steep (erosion exists).	the east
Watershed Drainage Area Usage, %	
Cropland	66
Residential/lawns	5
Woodland	14
Pasture or grassland	8
Wetland	7
Differences in Turbidity and Water Quality	
In different portions of lake?	Yes
At different times of the year?	Yes
Fishing	Good
Major Types of Fish	
Bass, catfish, crappie, bluegill, shad	

Causes of Quality-Problems

Potential Pollution Sources

Water level fluctuation

Fish kills

Runoff (cropland, woodland), septic tanks, sediment in lake

Causes of Impairment	
Nutrients	Μ
Siltation	Μ
Thermal modification	Μ
Sources of Impairment	
Nonpoint sources	Μ
Agriculture	Μ
Timber harvesting	S
Petroleum activities	S

S

M/N

Lake Harrisburg

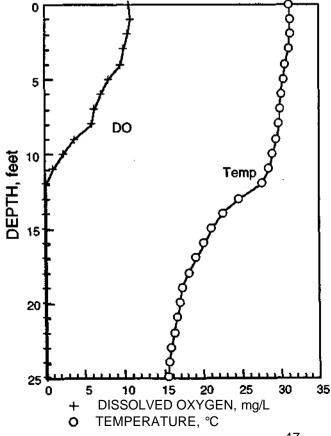
ake Protection Management

Treatment Date

```
Type and Extent of Treatment
```

Reason for Treatment

None


<u>Tillage</u> , %			
No-till	13	Mulch till with $\ge 30\%$ residue	50
Woodland	14	Mulch till with <30% residue	3
Wetland	7	Pasture/hayland	8
Other - urban	5		

Water and Sediment Qualities

Sampling Date	07/13/93
Site Number	1
Water Depth of Site, feet	25
Secchi Disc Transparency, inches	26
Chlorophyll a, µ.g/L	44.71
Chlorophyll <i>b,</i> μg/L	4.42
Chlorophyll c, µg/L	1.72
Pheophytin a, μ.g/L	0.00
Trophic State Index	58.8
Trophic State	Eutrophic

Water Quality (K: less than detection	n value)	
Depth, feet	<u>1</u>	<u>23</u> _
Total Suspended Solids, mg/L	8	11
Volatile Suspended Solids, mg/L	4	4
Turbidity, NTU	2.8	1.8
NO ₂ /NO ₃ -Nitrogen, mg/L	0.01	0.01 K
Ammonia Nitrogen, mg/L	0.02	1.0
Total Kjeldahl Nitrogen, mg/L	0.81	1.6
Total Phosphorus, mg/L	0.014	0.691
Alkalinity, mg CaCO ₃ /L		
Total	104	138
Phenolphthalein	29	0
Field pH	8.9	6.9
Chemical Oxygen Demand, mg/L	21	21

DO & Temperature Profiles (Time, 09:00)

ocument quanty	
(mg/kg: ppm, K: less than detection value)	
Phosphorus-P,ppm	1124
Kjeldahl-N,ppm	2272
Solids, % wet	26.3
Vol. solids, %	10.6
TOC, %	2.2
Arsenic, ppm	15.3
Barium, ppm	274
Cadmium, ppm	18
Chromium, ppm	26
Copper, ppm	26
Iron, ppm	45,000
Lead, ppm	51
Manganese, ppm	2200
Mercury, ppm	0.1 K
Nickel, ppm	32
Potassium, ppm	1 900
Silver, ppm	1K
Zinc, ppm	96

City of Harrisburg Hanisburg Holding Reservoir - North 110 East Locust, Hanisburg, IL 62946

Saline County Map Code: RAG-N 618/252-6344

General	•1	Lake Location1 mile N of HarrisburgDeepest PointLatitude37° 45' 46"Longitude88° 31' 36"Lake Surface Area, acres31Length of Shoreline, miles1.6Maximum Depth, feet22.5Average Depth, feet1.6Lake Storage Capacity, acre-feet403Watershed Drainage Area, acres0Hydraulic Retention Time, years-Lake TypeSide channelYear Constructed1915-20OwnershipPublicInflowing StreamsNoneOutflowing StreamsSaline Middle Fork CreekUnique FeaturesWater is pumped from Saline Middle Fork Creek into which Harrisburg WWTP effluent is discharged.
Usages and Impairme Public Access Entire lake bottom publicly ov shoreline public access, unlimite	Yes wned and entire	Recreational Lake Usage Fishing - (4) Low power (electric only) boating - (4)
No. of Visitors per Year	< 25,000	Recreational Facilities None
Lake Use Support	, -	
Overall	Full	Shoreline Usage, %
Aquatic Life	Full	Leveed shoreline (partly rip-rapped) 100
Świmming	Full	
Recreation	Full	

Non-recreational Lake Usage

Wastewater flow augmentation - (2)

Water Quality Problems

Problems	
Suspended sediment	
Sediment deposition	

Differences in Turbidity and Water Qu	uality
In different portions of lake?	No
At different times of the year?	No
Fishing	Good
Major Types of Fish	
Bass, catfish, crappie, bluegill, shad, (ne	ever stocked)

Watershed Drainage Area Usage, %

Side channel impoundment

Causes of-Quality Problems

Potential Pollution Sources

Sediment in lake

(Pumps automatically pump water from the creek when the reservoir level falls below a pre-set level. Water quality is tied to the quality of Saline Creek)

Causes of Impairment Suspended solids

Μ

Sources of Impairment

Nonpoint sources	Μ
Agriculture	Μ
Source unknown	М

Μ Μ

Harrisburg Holding Reservoir - North

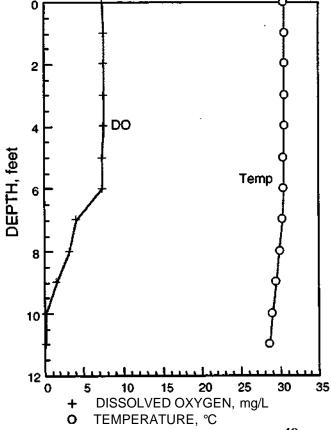
Lake Protection Management

Treatment Date

Type and Extent of Treatment

Reason for Treatment

Not applicable


Comment Reservoir is totally leveed. There is no drainage area.

Water and Sediment Qualities

Sampling Date	07/13/93
Site Number	1
Water Depth of Site, feet	11
Secchi Disc Transparency, inches	25
Chlorophyll a, µg/L	9.08
Chlorophyll <i>b,</i> μg/L	1.43
Chlorophyll <i>c,</i> µg/L	0.27
Pheophytin a, µg/L	0.00
Trophic State Index	51.6
Trophic State	Eutrophic

Water Quality (K: less than detection	n value)	
Depth, feet	1	9
Total Suspended Solids, mg/L	8	15
Volatile Suspended Solids, mg/L	4	4
Turbidity, NTU	2.9	3.9
NO ₂ NO ₃ Nitrogen, mg/L	0.01	0.01
Ammonia Nitrogen, mg/L	0.02	0.02
Total Kjeldahl Nitrogen, mg/L	0.70	0.54
Total Phosphorus, mg/L	0.009	0.008
Alkalinity, mg CaCO ₃ /L		
Total	94	87
Phenolphthalein	0	0
Field pH	8.2	7.4
Chemical Oxygen Demand, mg/L	11	12

DO & Temperature Profiles (Time, 10:00)

ocument quality	
(mg/kg ppm, K: less than detection value)	
Phosphorus-P,ppm	320
Kjeldahl-N,ppm	680
Solids, % wet	54.7
Vol. solids, %	6.3
TOC,%	1.6
Arsenic, ppm	8.4
Barium, ppm	123
Cadmium, ppm	8
Chromium, ppm	12
Copper, ppm	82
Iron, ppm	19,000
Lead, ppm	22
Manganese, ppm	773
Mercury, ppm	0.1K
Nickel, ppm	19
Potassium, ppm	1000K
Silver, ppm	1K
Zinc, ppm	73

Harrisburg Holding Reservoir - South 11 City of Harrisburg SalineCounty

Lake Location

Deepest Point

Lake Type

Ownership

Lake Surface Area, acres

Maximum Depth, feet

Average Depth, feet

Year Constructed

Inflowing Streams

Outflowing Streams

Length of Shoreline, miles

Lake Storage Capacity, acre-feet

Watershed Drainage Area, acres

Hydraulic Retention Time, years

MapCode: RAG-S

		amobuly
10 East Locust,	Harrisburg,	IL 62946
	618/	252-6344

Latitude

Longitude

1 mile N of Harrisburg

37° 45' 29" 88° 31'48"

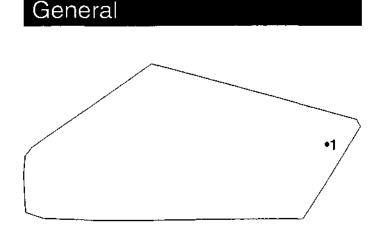
Side Channel

Saline Middle Fork Creek

1915-20 Public

None

36


1.5

13

0

468

22.5

	N
--	---

N		Unique Features Thelake is corriected to Hanisburg advert These two reservoirs are pu augmentation to Middle Fork Creek	Imped storage reservo	
sages and Impairme	nts	Recreational Lake Usage		
Public Access Entire lake bottom publicly ow shoreline public access, unlimited				
		Recreational Facilities None		
No. of Visitors per Year Lake Use Support	< 25,000			
Overall Aquatic Life Swimming Recreation	Full Full Full Full	Shoreline Usage, % Leveed shoreline (partly	rip-rapped)	100
Non-recreational Lake Usage Wastewater flow augmentation -	(2)	Watershed Drainage Area Side channel impoundmen		

Water Quality Problems

Problems		At di
Suspended sediment	М	Fishin
Sediment deposition	Μ	Major

Differences in Turbidity and Water Quali	ty
In different portions of lake?	No
At different times of the year?	No
Fishing	Good
Major Types of Fish	
Bass, catfish, crappie, bluegill, shad, (never	stocked)

Causes of Quality Problems

Potential Pollution Sources Sediment in lake

Causes of Impairment Suspended solids

S

Sources of Impairment

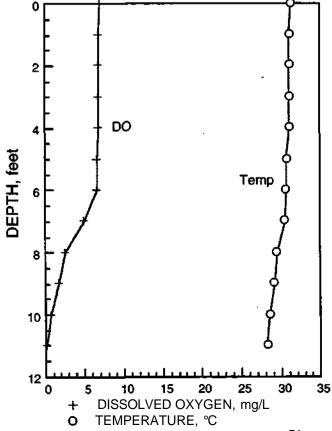
Nonpoint sources	Μ
Agriculture	Μ
Source unknown	M

Harrisburg Holding Reservoir - South

Lake Protection Management

Treatment Pate

Type and Extent of Treatment Not applicable **Reason for Treatment**


Comment Reservoir is totally leveed. There is no drainage area.

Water and Sediment Qualities

Sampling Date	07/13/93
Site Number	1
Water Depth of Site, feet	14
Secchi Disc Transparency, inches	31
Chlorophyll <i>a</i> , µ.g/L	2.14
Chlorophyll <i>b,</i> µ.g/L	0.28
Chlorophyll <i>c</i> , µg/L	0.16
Pheophytin <i>a</i> , μg/L	0.00
Trophic State Index	51.0
Trophic State	Eutrophic

Water Quality (K: less than detection	on value)	
Depth, feet	_1_	<u>12</u>
Total Suspended Solids, mg/L	9	6
Volatile Suspended Solids, mg/L	2	2
Turbidity, NTU	3.6	4.2
NO ₂ /NO ₃ yNitrogen, mg/L	0.03	0.03
Ammonia Nitrogen, mg/L	0.01	0.01
Total Kjeldahl Nitrogen, mg/L	0.58	0.63
Total Phosphorus, mg/L	0.026	0.026
Alkalinity, mg CaCO ₃ /L		
Total	96	102
Phenolphthalein	0	0
Field pH	7.9	7.3
Chemical Oxygen Demand, mg/L	[·] 10	13

(mg/kg: ppm, K: less than detection value)	
Phosphorus-P,ppm	498
Kjeldahl-N,ppm	1395
Solids, % wet	38.2
Vol. solids, %	8.3
TOC, %	4.1
Arsenic, ppm	6.1
Barium, ppm	189
Cadmium, ppm	12
Chromium, ppm	26
Copper, ppm	95
Iron, ppm	32,000
Lead, ppm	35
Manganese, ppm	867
Mercury, ppm	0.1 K
Nickel, ppm	38
Potassium, ppm	2000
Silver, ppm	1K
Zinc, ppm	101
· • •	

Jaycees Lake (Lake Jaycee) Jefferson County Map Code: RNU

Genera

41	
Ċ	•1

Lake Location	2.5 miles N	of Mt. Vernon		
Deepest Point	Latitude	38°22'11"		
	Longitude	88° 53'55"		
Lake Surface Are	a, acres	92		
Length of Shoreli	ne, miles	3.6		
Maximum Depth,	feet	40		
Average Depth, feet 20				
Lake Storage Capacity, acre-feet 1840				
Watershed Drainage Area, acres 1670				
Hydraulic Retenti	on Time, years	0.649		
Lake Type	Da	mmed stream		
Year Constructed	1909 (192	2 dam raised)		
Ownership		Public		
Inflowing Streams	6	Unnamed		
Outflowing Stream	ns	Unnamed		
Unique Features				

Jsages and Impairments

Public Access Y	es
Entire lake bottom publicly owned and enti	re
shoreline public access, unlimited free access	

400 ft

No. of Visitors per Year	< 25,000
Lake Use Support	
Overall	F/Th
Aquatic Life	Full
Swimming	P/Mi
Recreation	P/Mi

Non-recreational Lake Usage

Potable water supply - (4) Industrial water supply - (3) Cooling water - (2)

Water Quality Problems

Problems

Suspended sediment	Μ
Sediment deposition	Μ
Algal blooms	S
Aquatic macrophytes	Μ
Water level fluctuation	S
Fish kills	S

Causes of Quality-Problems-

Potential Pollution Sources

.

Runoff (cropland, pasture/grassland, woodland), septic tanks, sediment in lake, old and active oil wells.

Recreational Lake Usage

Fishing- (2) Waterskiing - (2)

Recreational Facilities

One boat ramp, park and picnic area are closed. Recreational facilities are declining due to vandalism.

> 40 15 25

Shoreline Usage, % Residential/lawns	
Pasture or grassland	
Woodland	
Watershed Drainage Area Usage, %	
Cropland	

Cropland	50
Woodland	25
Pasture or grassland	25

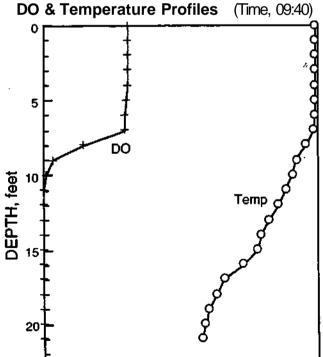
Differences in Turbidity and Water Quality	•	
In different portions of lake?	Yes	
At different times of the year?		
Fishing		
Major Types of Fish		
Largemouth bass, bluegill, crappie, carp, s	shad,	
sunfish, (not stocked)		

Causes of Impairment

M	Organic/DO depletion	Μ		
Μ	Thermal modification	М		
S	Suspended solids	Μ		
S				
mpai	irment			
Ň	Nonpoint sources	Μ		
S	Pasture	М		
	м м S S mpa	M Organic/DO depletion M Thermal modification S Suspended solids S mpairment M Nonpoint sources		

Jaycees Lake (Lake Jaycee)

Lake Protection Management


Treatment Date	Type and Extent of Treatment	Reason for Trea	Reason for Treatment	
	Grassed waterway, acre Ponds Conservation cropping system, acre	Erosion control Erosion control/wa 24 Erosion control	ater quality	

<u>Tillage.</u> %			
Crop rotation	25	Mulch till with \geq 30% residue	20
Moldboard plow	5	Pasture/hayland	25
Woodland	25		

Water and Sediment Qualities

Sampling Date		07/14/93
Site Number		1
Water Depth of Site, fee	21	
Secchi Disc Transpare	ncy, inches	34
Chlorophyll <i>a</i> ,	μg/L	30.04
Chlorophyll b,	μg/L	2.31
Chlorophyll <i>c,</i>	μg/L	1.77
Pheophytin <i>a</i> ,	µg/L	0.00
Trophic State Index		45.3
Trophic State		Mesotrophic

Water Quality (K: less than detection	n value)	
Depth, feet	_1_	<u>19</u>
Total Suspended Solids, mg/L	5	61
Volatile Suspended Solids, mg/L	4	15
Turbidity, NTU	5.3	16
NO ₂ /NO ₃ -Nitrogen, mg/L	-	0.03
Ammonia Nitrogen, mg/L	-	0.77
Total Kjeldahl Nitrogen, mg/L	0.57	1.6
Total Phosphorus, mg/L	0.007	0.018
Alkalinity, mg CaCO ₃ /L		
Total	37	96
Phenolphthalein	0	0
Field pH	7.6	6.8
Chemical Oxygen Demand, mg/L	17	20

Sediment Quality

Seuline il Quality	
(mg/kg: ppm, K: less than detection value)	
Phosphorus-P,ppm	741
Kjeldahl-N,ppm	1840
Solids, % wet	30.0
Vol. solids, %	11.1
TOC,%	1.6
Arsenic, ppm	7.5
Barium, ppm	203
Cadmium, ppm	16
Chromium, ppm	22
Copper, ppm	24
Iron, ppm	40,000
Lead, ppm	51
Manganese, ppm	960
Mercury, ppm	0.1K
Nickel, ppm	32
Potassium, ppm	1200
Silver, ppm	1K
Zinc, ppm	84

10

25 0

5

÷

Ο

DISSOLVED OXYGEN, mg/L TEMPERATURE, ℃

15

20

30

25

Johnston City Reservoir

Williamson County

Conoral

/ Map Code: RNZE

500 Washington Ave., Johnston City, IL 62951 618/983-5223

	7
	$\langle -$
▲ N 1000 ft 1 •)

Usages and Impairments

Public Access Entire lake bottom publicly ow shoreline public access, no spec other than IDOC permit.	
No. of Visitors per Year Lake Use Support	about 600
Overall	P/Mo
Aquatic Life	P/Mi
Swimming	P/Mi
Recreation	P/Mo

Non-recreational Lake Usage None

Water Quality Problems

Problems	
Suspended sediment	Н
Algal blooms	S
Aquatic macrophytes	M/N
Fish kills	M/N

Lake Location 3.5 miles E of Johnston City **Deepest Point** 37° 48'06" Latitude Longitude 88° 51'59" Lake Surface Area, acres 64 Length of Shoreline, miles 1.8 Maximum Depth, feet 13 Average Depth, feet 6 Lake Storage Capacity, acre-feet 384 Watershed Drainage Area, acres 2464 Hydraulic Retention Time, years 0.137 Lake Type Dammed strean Year Constructed 1921 **Ownership** Public **Inflowing Streams** Lake Creek **Outflowing Streams** Lake Creek

Unique Features

The lake was abandoned as a water supply source. Dam collapsed in about 1979. Dam was reconstructed and lake was refilled 8 years ago. The gob pile (Freeman Coal Co.) spilled into the lake about 7 years ago and is still in the lake.

Recreational Lake Usage

Fishing - (3) P.I.
No power boating - (2)
Size and number limits are imposed for fishing

Recreational Facilities

One boat ramp, picnic area. Lake is used only for fishing.

Shoreline Usage, %	
Woodland	100

Watershed Drainage Area Usage, % Cropland 35 33 Woodland Pasture or grassland 25 Wetland/wildlife 4 3 Other **Differences in Turbidity and Water Quality** In different portions of lake? Yes At different times of the year? Yes Fishing Good Major Types of Fish Catfish, crappie, bass, bluegill, stripers

Causes-of Quality Problems

Potential Pollution Sources

Mining, shoreline erosion, sediment in lake

Causes of Impairment

Nutrients	Μ	Siltation	Μ
Thermal modification	М	Gob pile	Μ

Sources of Impairment

Agriculture	Μ
Resource extraction	Н
Mine tailings	Н

Johnston City Reservoir

Lake Protection Management

Treatment Date

Type and Extent of Treatment

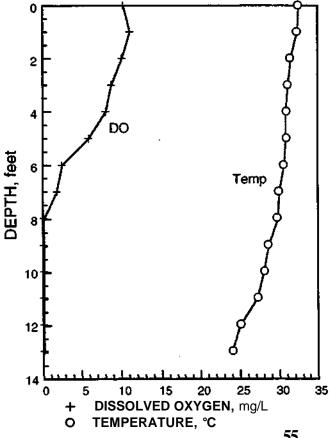
Reason for Treatment

5 12

25 2

3

None


<u>Tillage.</u> %		
No-till	10	Mulch till with > 30% residue
Moldboard plow	3	Chisel or disc till with<30% residue
Crop rotation	5	Pasture/hayland
Woodland	33	Wetland
Wildlife	2	Other

Water and Sediment Qualities

Sampling Date	07/12/93
Site Number	1
Water Depth of Site, feet	13
Secchi Disc Transparency, inches	24
Chlorophyll <i>a</i> , μg/L	88.1 1
Chlorophyll <i>b,</i> μg/L	27.00
Chlorophyll <i>c</i> , μg/L	2.14
Pheophytin <i>a</i> , μg/L	0.00
Trophic State Index	60.0
Trophic State	Eutrophic

Depth, feet _1		<u>11</u>
Total Suspended Solids, mg/L	40	. 19
Volatile Suspended Solids, mg/L	12	10
Turbidity, NTU	3.9	4.5
NO ₂ /NO ₃ -Nrtrogen, mg/L	0.01 K	0.03
Ammonia Nitrogen, mg/L	0.04	0.23
Total Kjeldahl Nitrogen, mg/L	0.54	0.23
Total Phosphorus, mg/L	0.016	0.028
Alkalinity, mg CaCQ₃/L		
Total	83	106
Phenolphthalein	6	0
Field pH	8.5	7.0
Chemical Oxygen Demand, mg/L	17	19

DO & Temperature Profiles (Time, 13:30)

Seament Quality	
(mg/kg: ppm, K; less than detection value)	
Phosphorus-P,ppm	692
Kjeldahl-N,ppm	2430
Solids, % wet	22.3
Vol. solids, %	11.7
TOC,%	1.8
Arsenic, ppm	13.1
Barium, ppm	197
Cadmium, ppm	17
Chromium, ppm	28
Copper, ppm	38
Iron, ppm	41,000
Lead, ppm	47
Manganese, ppm	555
Mercury, ppm	0.1K
Nickel, ppm	31
Potassium, ppm	1700
Silver, ppm	1K
Zinc, ppm	104
· · ·	

Lake Loami

Village of Loami Box 74, Loami, IL 62661 217/624-3111

Sangamon County

General

≜ N	•1

Map Code: REY

Usages and Impairments

Public Access	Yes
Entire lake bottom publicly owned and	entire
shoreline public access, unlimited access	

No. of Visitors per Year	< 25,000
Lake Use Support	
Overall	F/Th
Aquatic Life	Full
Swimming	P/Mi
Recreation	P/Mi

Non-recreational Lake Usage

Potable water supply - (4)

Water Quality Problems

Proble	ems
--------	-----

Suspended sediment	S
Sediment deposition	S
Algal blooms	Н
Aquatic macrophytes	S
Taste and/or odor	Μ
Water level fluctuation	М
Fish kills	<u>S</u>

Causes of Quality Problems

Potential Pollution Sources

Cropland runoff, pasture/grassland runoff

Lake Location		SW edge of Loami
Deepest Point	Latitude	39° 40' 17"
	Longitude	89° 53' 38"
Lake Surface Are	a, acres	10
Length of Shoreli	ne, miles	0.51
Maximum Depth,	feet	16 .
Average Depth, fe	eet	7.1
Lake Storage Cap	oacity, acre-fe	eet 71
Watershed Draina	age Area, acr	es 53
Hydraulic Retenti	on Time, yea	rs -
Lake Type		Side channel
Year Constructed		1957-58
Ownership		Public
Inflowing Streams	s Pump	ed from Lick Creek
Outflowing Stream	ns	Lick Creek

Unique Features

This is a side channel impoundment off of Lick Creek. The lake serves as a water supply source currently and will be abandoned soon. It received 750 lbs. of CuS0₄ each application fourtimes during the summers of 1979 to 1983 to control taste and odor in finished waters. Since 1984, CuSO, application has been reduced significantly. Destratifier was not functioning during this monitoring.

Recreational Lake Usage

Fishing- (2) No power boating - (1)

Recreational Facilities

Boat ramp (gravel). Residents use the lake occasionally for bank fishing.

Shoreline Usage, %

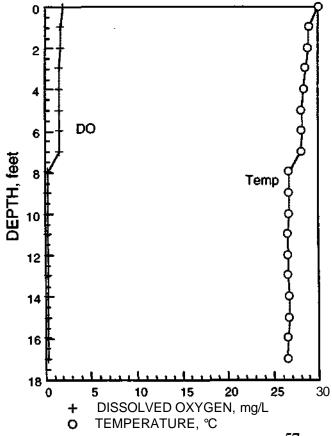
Pasture or grassland	60
Road and unused land	30
Recreational development	10
Watershed Drainage Area Usage, %	
Cropland	77
Wetland	16
Wildlife	6
Pasture or grassland	1

Differences in Turbidity and Water Quality	
In different portions of lake?	No
At different times of the year?	Yes
Fishing	Poor
Major Types of Fish	
Catfish, bluegill, largemouth bass, crappie, c	arp

Causes of ImpairmentNutrientsHOrganic enrichment/DO depletionHThermal modificationMSources of ImpairmentMAgricultureMHerbicide/algicide applicationM

Lake Loami

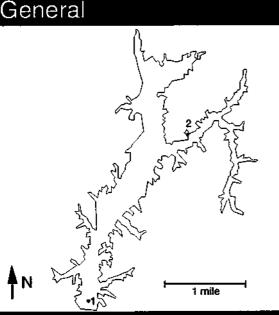
Lake Protection Management


Treatment Date	Type and Extent o	of Treat	ment	Reason for Trea	atment
	Terrace, linearft		1200	Sediment retenti	on _
	Permanent vegetativ	e cove	er, acre 1	Erosion control	
1985	Conservation croppin	ng syste	em, acre 12.5	Erosion control	
1990	Conservation reserve	progran	n, acre 4	Wildlife/erosion of	control
	<u>Tillage.</u> % Park Crop rotation Wetland (lake)	33 18 16		th $> 30\%$ residue th <30% residue /land	16 10 1
	Wildlife (CRP)	6			

Water and Sediment Qualities

Sampling Date	08/19/93
Site Number	1
Water Depth of Site, feet	17
Secchi Disc Transparency, inches	19
Chlorophyll <i>a</i> , μ.g/L	37.15
Chlorophyll <i>b,</i> μ.g/L	6.28
Chlorophyll <i>c,</i> ug/L	2.43
Pheophytin <i>a</i> , μg/L	0.00
Trophic State index	62.8
Trophic State	Eutrophic

Water Quality (K: less than detection	n value)	
Depth, feet	<u> </u>	<u>15</u>
Total Suspended Solids, mg/L	33	24
Volatile Suspended Solids, mg/L	28	12
Turbidity, NTU	23	11
N0 ₂ /N0 ₃ -Nitrogen, mg/L	0.01K	0.01
Ammonia Nitrogen, mg/L	0.23	0.26
Total Kjeldahl Nitrogen, mg/L	0.59	0.51
Total Phosphorus, mg/L	0.027	0.048
Alkalinity, mg CaCO ₃ /L		
Total	98	114
Phenoiphthalein	0	0
Field pH	7.7	7.2
Chemical Oxygen Demand, mg/L	28	29


DO & Temperature Profiles (Time, 11:30)

ocument quanty	
(mg/kg ppm, K: less than detection value)	
Phosphorus-P,ppm	537
Kjeldahl-N,ppm	1090
Solids, % wet	43.7
Vol. solids, %	6.6
TOC, %	-
Arsenic, ppm	7.1
Barium, ppm	18.9
Cadmium, ppm	1K
Chromium, ppm	25
Copper, ppm	73
Iron, ppm	27,000
Lead, ppm	24
Manganese, ppm	529
Mercury, ppm	0.1K
Nickel, ppm	24
Potassium, ppm	1300
Silver, ppm	1K
Zinc, ppm	71

Lake Mattoon

Shelby-Coles-Cumberland Counties

sages and Impairments

Yes Entire lake bottom publicly owned and entire shoreline public access, unlimited free access; yearly boat pass (\$10/up to 12 hp, \$12/up to 19 hp, \$15/up to 49 hp, \$40/up to 100 hp, \$45/>100 hp).

No. of Visitors per Year	25,000 -100,000
Lake Use Support	
Overall	P/Mi
Aquatic Life	Full
Swimming	P/Mo
Recreation	P/Mi

Non-recreational Lake Usage

Potable water supply - (4)

Water Quality Problems

Problems

Suspended sediment	М
Sediment deposition	Μ
Algal blooms	Μ
Taste and/or odor	Μ
Water level fluctuation	Μ
Fish kills	M/N

Causes of Quality Problems

Potential Pollution Sources

Urban storm drainage, runoff cropland, pasture/ grassland, woodland, lawn/golf course, septic tanks, streambankerosion, sediment in lake, waterfowl, oil wells

Lake Location	11 m	niles S of Mattoon
Deepest Point	Latitude	39°20'00°
	Longitude	88° ,28' 50°
Lake Surface Area	a, acres	765
Length of Shoreli	ne, miles	45
Maximum Depth,	feet	35
Average Depth, fe	et	10.5
Lake Storage Cap	acity, acre-fee	t 8037
Watershed Draina	ige Area, acres	s 25,650
Hydraulic Retention	on Time, years	0.376
Lake Type		Dammed stream
Year Constructed		1959
Ownership		Public
Inflowing Streams	5	Little Wabash
Outflowing Stream	ns	Little Wabash
The family of the states of the		

Unique Features

The lake serves as a secondary water supply source to the City of Mattoon. The lake is downstream of Lake Paradise on Little Wabash River. The lake also serves as a water supply source for Neoga

Recreational Lake Usage

Ligh nower besting (4)
High power boating - (4)
Water skiing - (4)
Waterfowl hunting - (2)
(No jet skis allowed)

Recreational Facilities

One boat ramp, camping facilities, marina. Annual events are basstoumament, sailboat regatta.

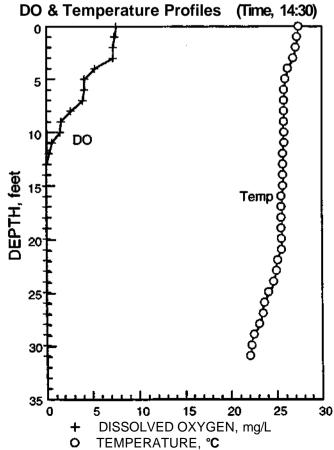
Shoreline Usage, %

	ugu , /0		
Cropland	9	Residential/lawns	75
Woodland	10	Pasture or grassland	5
Wetland	1	-	
Watershed	Drainage	e Area Usage, %	
Cropland			99
Other			1

Differences in Turbidity and Water Quality In different portions of lake? Yes At different times of the year? Yes Fishing Good Major Types of Fish Crappie, bass, bluegill, muskie, catfish, stocked 10 years ago.

Causes of Impairment

Nutrients	M	Organic/DO depletion	М	
Siltation	S	Thermal modification	М	
Pathogens	S	Suspended solids	М	
Taste & odor	Μ	Noxious aquatic plants	S	
Sources of Impairment				
Storm sewers	s	Nonpoint sources	S	
Pasture	S	Nonimigated crop production	Μ	
Feedlots	S	Petroleum activities	S	
Recreation	S			


Lake Protection Management

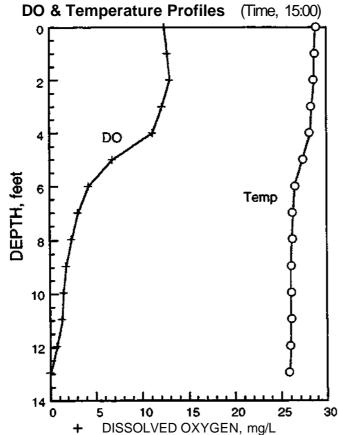
Treatment Date	Type and Extent of Treatment		Reason for Treatment		
1984	Terrace, linear	ft	80,000	All: for reduction	of sedimentation and
	Grassed waterway, a	acre	125	erosion control	
	Grade stabilization st	ructure	34		
to	Water & sediment co	ntrol basir	ns 306		
	Conservation tillage,	acre	5,800		
	Contour forming	, acre	e 900		
1993	Critical area planting,	acre	25		
	Tillage. %				
	No-till	12	Mulch till v	with $\geq 30\%$ residue	38
	Moldboard plow	4.5	Mulch till v	vith <30% residue	45
	Ridge-till	0.5			

Water and Sediment Qualities

Sampling Date	· •	08/10/93
Site Number		1
Water Depth of Site, fee	et	31
Secchi Disc Transpare	ncy, inches	22
Chlorophyll <i>a</i> ,	μg/L	99.32
Chlorophyll <i>b,</i>	μ.g/L	6.33
Chlorophyll <i>c,</i>	µg/L	4.67
Pheopnytin <i>a,</i>	µ.g/L	0.00
Trophic State Index		6.58
Trophic State		Eutrophic

Water Quality (K: less than detection	on value)	
Depth, feet	_1_	_29_
Total Suspended Solids, mg/L	15	15
Volatile Suspended Solids, mg/L	9	12
Turbidity, NTU	0.8	3.3
NO ₂ /NO ₃ -Nitrogen, mg/L	0.01 K	0.01 K
Ammonia Nitrogen, mg/L	0.02	2.6
Total Kjeldahl Nitrogen, mg/L	0.68	2.6
Total Phosphorus, mg/L	0.030	0.499
Alkalinity, mg CaCO ₃ /L		
Total	116	149
Phenolphthalein	0	0
Field pH	8.1	7.0
Chemical Oxygen Demand, mg/L	12	14

ocument quanty	
(mg/kg: ppm, K: less than detection value)	
Phosphorus-P,ppm	946
Kjeldahl-N,ppm	3750
Solids, % wet	28.9
Vol. solids, %	10.4
TOC, %	-
Arsenic, ppm	9.4
Barium, ppm	216
Cadmium, ppm	1K
Chromium, ppm	18
Copper, ppm	18
Iron, ppm	27,000
Lead, ppm	21
Manganese, ppm	1000
Mercury, ppm	0.1K
Nickel, ppm	18
Potassium, ppm	1400
Silver, ppm	1K
Zinc, ppm	61
· • •	


Lake Protection Management

Treatment Date	Type and Extent of	Treatm	ent	Reason for Trea	atment
1984	Terrace, linear	ft	80,000	All: for reduction	of sedimentation and
	Grassed waterway, ac	re	125	erosion control	
	Grade stabilization stru	ucture	34		
to	Water & sediment con	trol basir	ns 306		
	Conservation tillage, a	cre	5,800		
	Contour forming,	acre	e 900		
1993	Critical area planting, a	acre	25		
	<u>Tillage. %</u>				
	No-till	12	Mulch till w	ith \geq 30% residue	38
	Moldboard plow	4.5	Mulch till w	ith <30% residue	45
	Ridge-till	0.5			

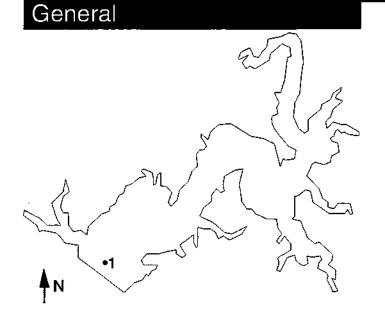
Water and Sediment Qualities

Sampling Date	08/10/93	
Site Number		2
Water Depth of Site, fee	13	
Secchi Disc Transparen	cy, inches	12
Chlorophyll <i>a</i> ,	µg/L	192.24
Chlorophyll <i>b,</i>	μg/L	12.49
Chlorophyll <i>c</i> ,	µg/L	11.61
Pheophytin <i>a</i> ,	μg/L	0.00
Trophic State Index		77.4
Trophic State		Hypertrophic

Water Quality (K: less than detection	on value)	
Depth, feet	_1_	<u>11</u>
Total Suspended Solids, mg/L	25	21
Volatile Suspended Solids, mg/L	14	11
Turbidity, NTU	2.9	1.1
N0 ₂ /N0 ₃ -Nitrogen, mg/L	0.01	0.03
Ammonia Nitrogen, mg/L	0.01 K	0.22
Total Kjeldahl Nitrogen, mg/L	0.081	0.22
Total Phosphorus, mg/L	0.125	0.098
Alkalinity, mg CaCO ₃ /L		
Total	26	124
Phenolphthalein	18	0
Field pH	9.0	7.3
Chemical Oxygen Demand, mg/L	16	14

TEMPERATURE, °C

+ 0


(mg/kg: ppm, K: less than detection value)	
Phosphorus-P,ppm	1186
Kjeldahl-N,ppm	3630
Solids, % wet	33.4
Vol. solids, %	11.2
TOC, %	-
Arsenic, ppm	6.4
Barium, ppm	· 207
Cadmium, ppm	1K
Chromium, ppm	23
Copper, ppm	23
Iron, ppm	32,000
Lead, ppm	22
Manganese, ppm	909
Mercury, ppm	0.1 K
Nickel, ppm	22
Potassium, ppm	1 900
Silver, ppm	1K
Zinc, ppm	86

Lake Mingo

Vermilion County

Map Code: RBN

Vermilion County Conservation District R.R. 1, Box 217, Danville, IL 61832 217/442-1691

Usages and Impairments

Public Access

Entire lake bottom publicly owned and entire shoreline public access, unlimited access during the park hours, fee assessed as per the schedule: daily fee (\$5/in county, \$10/out of county), season pass (regular \$50/in county, \$75/out of county; senior citizen & disabled - \$30)

No. of Visitors per Year	100,000 - 200,000
Lake Use Support	
Overall	Full
Aquatic Life	Full
Swimming	Full
Recreation	Full

Non-recreational Lake Usage

None

Fish kills

Water Quality Problems

Problems	
Suspended sediment	
Sediment deposition	
Algal blooms	
Aquatic macrophytes	
Water level fluctuation	

Causes_of Quality Problems

Potential Pollution Sources

Runoff (cropland, pasture/grassland, woodland), livestock operations, streambank erosion, rough fish (gizzard shad, under control)

Lake Location	5	miles N of Mingo
Deepest Point	Latitude	40° 12'27"
-	Longitude	87° 43' 59"
Lake Surface Are	a, acres	170
Length of Shorel	ine, miles	7.8
Maximum Depth,	feet	35
Average Depth, f	eet	13.5
Lake Storage Ca	pacity, acre-fee	et 2,295
Watershed Draina	age Area, acre	s 11,430
Hydraulic Retenti	ion Time, years	s -
Lake Type		Dammed stream
Year Constructed	l	1981
Ownership		Public
Inflowing Stream	s	Windfall Creek
Outflowing Strea	ms	Windfall Creek
Unique Features		
N/ 11 0 /		D

Vermilion County Conservation District is one of five in the state, but similar to Forest Preserve District of Chicago.

Recreational Lake Usage

Fishing- (4)	Swimming (seasonal) - (2)
Sailboatjng- (1)	Low power (<10hp) boating- (3)
Picnicking - (3)	Waterfowl hunting - (2)

Recreational Facilities

Yes

S

S

Μ

S

M/N

M/N

Swimming beach, one boat ramp, boat rental, concession stand, park, picnic area, marina (small), hiking, during Vermilion County hunting and fishing days: lumberjack show, biathalon, and triathalon (swimming, bicycling, running).

Shoreline Usage, %	•	•	
Woodland			100

Watershed Drainage Area Usage, % Cropland 78 Park 15 Pasture 2 Wetland and water 2 Woodland 3 **Differences in Turbidity and Water Quality** In different portions of lake? Yes At different times of the year? Yes Fishing Good Major Types of Fish Largemouth bass (6/day, >15"), walleye (6/d, >14"), bluegill and redear sunfish (25/d), channel catfish (6/d), crappie, yellow bass, gizzard shad, Walleye and channel catfish are stocked annually. Walleye fishing is not very successful.

Causes of Impairment	
Nutrients	Μ
Siltation	S
Thermal modification	Μ
Sources of Impairment	
Nonpoint sources	М
Pasture	S
Aquathol-K and CuSO, are used to control duckweed and filamentou beach and dock areas.	is algae in the

Lake Mingo

Lake Protection Management

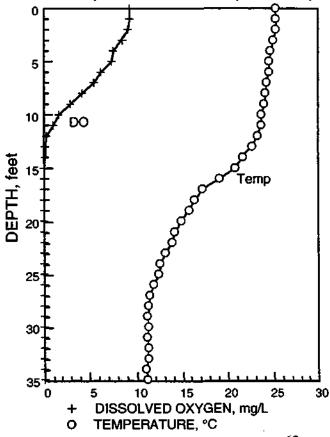
Treatment Date

```
Type and Extent of Treatment
```

Reason for Treatment

None

<u>Tillage. %</u>	
<u>N</u> o-till	
Moldboard plow	
Woodland	
Park	
Other - water	

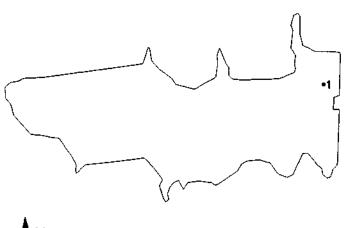

15	Mulch till with ≥30% residue	18
10	Mulch till with <30% residue	35
3	Pasture/hayland	2
15	Wetland	1
1		

Water and Sediment Qualities

Sampling Date	08/12/93
Site Number	1
Water Depth of Site, feet	35
Secchi Disc Transparency, inches	33
Chlorophyll <i>a</i> , µg/L	35.24
Chlorophyll <i>b,</i> μg/L	3.42
Chlorophyll <i>c</i> , µg/L	3.09
Pheophytin <i>a</i> , μg/L	0.27
Trophic State Index	51.9
Trophic State	Eutrophic

Water Quality (K: less than detection	n value)	
Depth, feet	1 value)	33
Total Suspended Solids, mg/L	11	9
Volatile Suspended Solids, mg/L	6	4
Turbidity, NTU	2.6	2.3
NO ₂ NO ₃ -Nitrogen, mg/L	1.5	0.1K
Ammonia Nitrogen, mg/L	0.02	1.9
Total Kjeldahl Nitrogen, mg/L	0.61	1.9
Total Phosphorus, mg/L	0.005	0.100
Alkalinity, mg CaCO ₃ yL		
Total	104	163
Phenolphthalein	6	0
Field pH	8.4	7.0
Chemical Oxygen Demand, mg/L	18	26

DO & Temperature Profiles (Time, 09:30)


ocument guanty	
(mg/kg: ppm, K: less than detection value)	
Phosphorus-P,ppm	818
Kjeldahl-N,ppm	3684
Solids, % wet	30.0
Vol. solids, %	12.2
TOC, %	-
Arsenic, ppm	7.1
Barium, ppm	169
Cadmium, ppm	1K
Chromium, ppm	28
Copper, ppm	27
Iron, ppm	38,000
Lead, ppm	19
Manganese, ppm	876
Mercury, ppm	0.1K
Nickel, ppm	33
Potassium, ppm	3200
Silver, ppm	1K
Zinc, ppm	122

Palmyra - Modesto City Lake Macoupin County

Paimyra-Modesto Water Commission R.R. 1, Box 28AA, Palmyra, IL 62674 217/436-2426

Map Code: RDZP

General

Jsages and Impairments

Public A	cces	S				Yes
Entire	lake	bottom	publicly	owned	and	entire
shoreline public access - free						

No. of Visitors per Year	<25,000
Lake Use Support	
Overall	P/Mi
Aquatic Life	Full
Swimming	P/Mi
Recreation	Full

Non-recreational Lake Usage

Potable water supply - (4) Agricultural water supply - (2)

Water Quality Problems

and a second procession	
Problems	
Suspended sediment	S
Sediment deposition	S
Algal blooms	S
Aquatic macrophytes	M/N
Taste and/or odor	S
Water level fluctuation	S
Fish kills	M/N

Causes of-Quality Problems

Potential Pollution Sources

Runoff (cropland, pasture/grassland, woodland, lawn/golf course)

Lake Location	1	.5 miles	E of Palmyra
Deepest Point	Latitude	39°	26' 45"
	Longitude)	89° 59'07"
Lake Surface Area	a, acres		35
Length of Shorelin	ne, miles		1.1
Maximum Depth,	feet		26
Average Depth, fe	et		15
Lake Storage Capacity, acre-feet 525			
Watershed Draina	ge Área, a	cres	1 760
Hydraulic Retention	on Time, y	ears	0.412
Lake Type	-	Dan	nmed stream
Year Constructed			1964
Ownership			Public
Inflowing Streams	5		None
Outflowing Stream	ns		Nasa Creek
Unique Eestures			

Unique Features

The lake is the primary water supply source to the cities of Palmyra and Modesto. Terry Lake (6 acres) acts as a sediment basin for the lake. A mechanical destratifier has been successfully operated for several years.

Recreational Lake Usage

Fishing- (2) Low power boating - (3)

Recreational Facilities

One boat ramp

Shoreline Usage, %	
Cropland	60
Woodland	30
Pasture or grassland	10
Watershed Drainage Area Usage, %	
Cropland	80
Residential/lawns	2
Park	8
Woodland	3
Pasture or grassland	2
Wetland/wildlife	5

Differences in Turbidity and Water Quality In different portions of lake? Yes At different times of the year? Yes Fishing Good **Major Types of Fish** Catfish, bass, crappie, carp, bluegill, (stocked annually with catfish)

Causes of Impairment Pesticides S Organic/DO depletion S Thermal modification Siltation S Taste/odor Suspended solids Sources of Impairment Agriculture Pasture

Μ

S

S

Palmyra - Modesto City Lake

Lake Protection Management

Treatment Date		Extent of Treatme	ent Reason for Treatment		
5/89,6/90	Terrace,	linear ft	3200 Erosion control		
(Planned 1993)	Terrace,	linear ft	(1400) Water quality		
8/86	Grassed	waterway, acr			
8/86	Field bord	•			
8/90		11 07	acre 20 Erosion control/water quality	/	
	 ''' o/				
	<u>Tillage. %</u> Moldboord		Chisel or disc till with $> 30\%$ residue	20	
	Moldboard Park	plow 8 8	Chisel or disc till with <30% residue	20 52	
	Woodland	3	Pasture/hayland	2	
	Wetland (la		Wildlife	1	
	•	ential, roads) 2			
Water and Sedi	ment C	ualities	Water Ouelity (K) less then detection		Market
			Water Quality (K: less than detection Depth, feet	i value)	<u>25 </u>
Sampling Date Site Number		08/19/93 1	Total Suspended Solids, mg/L	_ <u>-</u>	21
Water Depth of Site, fe	aat	27	Volatile Suspended Solids, mg/L	2	4
Secchi Disc Transpare			Turbidity, NTU	· 6	9.3
Chlorophyll <i>a</i> ,	μg/L	21.81	NO/NOg-Nitrogen, mg/L	1.4	1.5
Chlorophyll <i>b</i> ,	μg/L	8.32	Ammonia Nitrogen, mg/L	0.04	0.23
Chlorophyll <i>c</i> ,	μg/L	0.00	Total Kjeldahl Nitrogen, mg/L	0.63	0.53
Pheophytin <i>a</i> ,	μg/L	0.31	Total Phosphorus, mg/L	0.028	0.057
Trophic State Index		56.9	Alkalinity, mg CaCO/L		
Trophic State		Eutrophic	Total Discussion in the late	77	75
			Phenolphthalein	0	0
DO & Temperature	Profiles	(Time, 09:00)	Field pH Chemical Oxygen Demand, mg/L	7.4 12	6.9 13
. i	FIUNES		Chemical Oxygen Demand, mg/L	12	15
°F F		∮			
t I		. XI	Sediment Quality		
E F		00000000000000000000000000000000000000	(mg/kg: ppm, K: less than detection value)	
5⊢ 1		<u> </u>	Phosphorus-P,ppm)	544
Į Į		τŤ	Kjeldahl-N,ppm		1022
► †		⊈ [Solids, % wet		34.2
nt Inc		81	Vol. solids, %		7.8
10 - T DO		δ	тос, %		-
t i t		E S	Arsenic, ppm		7.6
DEPTH, feet		Tama	Barium, ppm		242
<u>,</u> 15 ⊢ +			Cadmium, ppm		1K 26
		ا کل	Chromium, ppm Copper, ppm		20 72
₩ F F		. ⊈ I	Iron, ppm		31,000
- F Ŧ		۲ ۲	Lead, ppm		31
²⁰		φĻ	Manganese, ppm		904
F 7		₽ I	Mercury, ppm		0.1 K
t <i>∓</i>		Temp C C C C C C C C C C C C C C C C C C C	Nickel, ppm		27
25		∮_	Potassium, ppm		1900
<u> </u>		8	Silver, ppm		1K
L L		Ť	Zinc, ppm		86
		<u> </u>			
30 <u>11111111111111</u> 0 5 10	15 2	20 25 30			
	ED OXYGEN				

O TEMPERATURE, ℃

+ DISSOLVED OXYGEN, mg/L

Lake Paradise

Coles County Map Code: RCG

	City of Mattoon
208 N. 19th St., I	Mattoon, IL 61938
	217/235-5634

uch		
		$\langle \langle \rangle$
		$\langle \rangle$
	B	
ÅN	20	<u>500 ft</u>

Usages and Impairments

Public Access

Entire lake bottom publicly owned but entire shoreline not public owned, unlimited access; no jet skis allowed, 10 hp limit, fee charged (\$10/yearly pass, \$3/d weekend)

No. of Visitors per Year	<25,000
Lake Use Support	
Overall	F/Th
Aquatic Life	Full
Swimming	P/Mi
Recreation	P/Mi

Non-recreational Lake Usage

Potable water supply - (4), Industrial Water Supply - (4)

Water Quality Problems

Problems

Suspended sediment	Μ
Sediment deposition	М
Algal blooms	S
Aquatic macrophytes	S
Taste and/or odor	Μ
Water level fluctuation	S
Fish kills	M/N

Causes of Quality Problems

Potential Pollution Sources

Urban storm drainage runoff (cropland, pasture/ grassland, woodland, lawn/golf course), septictanks, streambankerosion, sediment in lake, waterfowl, oil wells

Lake Location		W of Mattoon
Deepest Point	Latitude	39°24'48"
	Longitude	88° 25'38"
Lake Surface Are	a, acres	176
Length of Shoreli	ne, miles	4.1
Maximum Depth,	feet	19
Average Depth, fe	eet	7.5
Lake Storage Cap	oacity, acre-feet	1,320
Watershed Draina	age Area, acres	11,580
Hydraulic Retenti	on Time, years	0.137
Lake Type	Dar	nmed stream
Year Constructed		
Ownership		
Inflowing Streams	s Little V	Vabash River
Outflowing Stream		Vabash River
Unique Features		

The lake serves as the primary water supply source for Mattoon. The stream was dammed 3 times at the same location making the impoundment bigger each time. A mechanical destratifier was installed near the intake at 15 ft depth during November 1992.

Recreational Lake Usage

Fishing - (3)

Yes

Low power boating - (1) Picnicking- (2)

Recreational Facilities

One boat ramp, park, picnic area

Shoreline Usage, %	
Residential and developed	60
Pasture or grassland	20
Woodland	20
Watershed Drainage Area Usage, %	
Cropland	85
Woodland	4
Pasture or grassland	5
Wetland	5
Residential	1

Differences in Turbidity and Water QualityIn different portions of lake?YesAt different times of the year?YesFishingGoodMajor Types of Fish
Crappie, largemouth bass, bluegill, muskie, catfish,

(stocked 10 years ago)

Causes of Impairment

Nitrate	's	Organic/DO Depletion	м
Nutrients	м	Thermal modification	м
Siltation	s	Suspended solids	м
Pathogens	S	Taste and odor	м
Oil/grease	S	Noxious aquatic plants	S
Sources of In	npai	irment	
Storm sewer	s	Nonpoint sources	S
Pasture	s	Nonirrigated crop prod.	М
Urban runoff	s	Petroleum activities	S
Dam construction	s		

Lake Paradise - Site 1

Lake Protection Management

Treatment Date

1984-1993 1984-1993 1984-1993

1986-1992

1984-1993 1984-1993

Type and Extent of Treatment

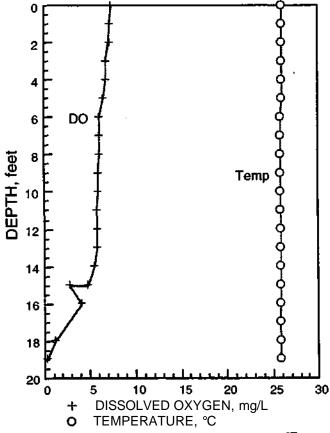
system

-		
	Terrace	
	Grassed waterway	
•	Grade stabilization	structure
	Permanent vegetati	ve cover
	Diversion	•
	Conservation cropp	ing syste
	<u>Tillage. %</u>	
	No-till	9
	Moldboard plow	2
	Woodland	4

Pasture

Reason for Treatment

P.L. 566 & Conservation compliance
P.L. 566 & Conservation compliance
P.L. 566 & Conservation compliance
CRP project
P.L. 566 & Conservation compliance
P.L. 566 & Conservation compliance


9	Mulch till with \geq 30% residue	25
2	Mulch till with <30% residue	49
4	Wetland	5
5	Residential	1

Water and Sediment Qualities

Sampling Date		08/10/93
Site Number		1
Water Depth of Site, fe	et	19
Secchi Disc Transpare	ency, inches	18
Chlorophyll <i>a</i> ,	µg/L	82.24
Chlorophyll b,	µg/L	11 .21
Chlorophyll <i>c</i> ,	μg/L	2.34
Pheophytin <i>a</i> ,	μg/L	0.00
Trophic State Index		64.9
Trophic State		Eutrophic

Water Quality (K: less than detection value)				
Depth, feet	<u>1</u>	<u>17</u>		
Total Suspended Solids, mg/L	10	18		
Volatile Suspended Solids, mg/L	6	7		
Turbidity, NTU	1.7	1.7		
NO ₂ /NO ₃ -Nitrogen, mg/L	1.3	1.3		
Ammonia Nitrogen, mg/L	0.05	0.09		
Total Kjeldahl Nitrogen, mg/L	0.58	0.57		
Total Phosphorus, mg/L	0.022	0.014		
Alkalinity, mg CaCO₃/L				
Total	130	134		
Phenolphthalein	0	0		
Field pH	7.3	7.2		
Chemical Oxygen Demand, mg/L	10	12		

DO & Temperature Profiles (Time, 11:00)

Ocument equality	
(mg/kg: ppm, K: less than detection value)	
Phosphorus-P,ppm	975
Kjeldahl-N,ppm	4400
Solids, % wet	31.5
Vol. solids, %	11.6
TOC, %	•
Arsenic, ppm	6.9
Barium, ppm	208
Cadmium, ppm	1K
Chromium, ppm	23
Copper, ppm	25
Iron, ppm	31,000
Lead, ppm	27
Manganese, ppm	748
Mercury, ppm	0.10
Nickel, ppm	23
Potassium, ppm	2100
Silver, ppm	1K
Zinc, ppm	90

Lake Paradise - Site 2

Lake Protection Management

Treatment Date 1984-1993

1984-1993

1984-1993

1986-1992

1984-1993

1984-1993

Type and Extent of Treatment

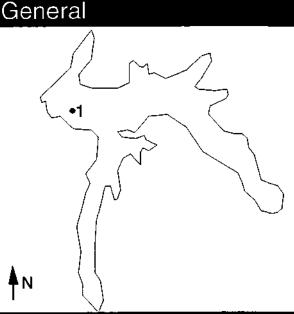

Terrace		P.L. 566 & Conservation com	pliance
Grassed waterway		P.L. 566 & Conservation com	pliance
Grade stabilization s	structure	P.L. 566 & Conservation com	pliance
Permanent vegetativ	/e cover	CRP project	
Diversion		P.L. 566 & Conservation com	pliance
Conservation croppi	ng syste		•
Tillage. %			
No-till	9	Mulch till with \geq 30% residue 25	
Moldboard plow	2	Mulch till with <30% residue 49	
Woodland	4	Wetland 5	
Pasture	5	Residential 1	

Water and Sediment Qualities

Sampling Date		08/10/93
Site Number		2
Water Depth of Site, feet		15
Secchi Disc Transparency, inches		16
Chlorophyll a,	µg/L	86.26
Chlorophyll <i>b,</i>	μg/L	13.62
Chlorophyll <i>c</i> ,	μg/L	2.27
Pheophytin <i>a</i> ,	μg/L	0.00
Trophic State Index		62.8
Trophic State		Eutrophic

Water Quality (K: less than detection	n value)	
Depth, feet	_1_	<u>13</u>
Total Suspended Solids, mg/L	27	37
Volatile Suspended Solids, mg/L	13	14
Turbidity, NTU	0.5	2.8
NO ₂ /NO ₃ -Nitrogen, mg/L	1.1	1.1
Ammonia Nitrogen, mg/L	0.07	0.14
Total Kjeldahl Nitrogen, mg/L	0.73	0.79
Total Phosphorus, mg/L	0.013	0.020
Alkalinity, mg CaCO ₃ /L		
Total	132	128
Phenolphthalein	0	0
Field pH	8.2	7.5
Chemical Oxygen Demand, mg/L	10	11

DO & Temperature Profiles (Time, 11:45)


Sediment Quality

Jeuiment Quality	
(mg/kg ppm, K: less than detection value)	
Phosphorus-P,ppm	- 85
Kjeldahl-N,ppm	159
Solids, % wet	73.2
Vol. solids, %	1.0
TOC, %	-
Arsenic, ppm	2.5
Barium, ppm	15
Cadmium, ppm	1K
Chromium, ppm	5
Copper, ppm	5
Iron, ppm	6300
Lead, ppm	10K
Manganese, ppm	148
Mercury, ppm	0.1 K
Nickel, ppm	5K
Potassium, ppm	1000K
Silver, ppm	1K
Zinc, ppm	15

Reason for Treatment

Red Hills State Park Lake Lawrence County Map Code: RBB

Illinois Department of Conservation Rt. 2, Box 252A, Sumner, IL 62466 618/936-2469

sages and impairm	ents
Public Access Entire lake bottom publicly of shoreline public access, unlimite trolling motor allowed	
No. of Visitors per Year Lake Use Support	> 200,000
Overall	P/Mi
Aquatic Life	Full
Swimming	P/Mi
Recreation	P/Mi

Non-recreational Lake Usage None

Water Quality Problems

Problems	
Suspended sediment	S
Sediment deposition	S
Algal blooms	Μ
Aquatic macrophytes	S
Water level fluctuation	S
Fish kills	M/N

Causes_of_Quality_Problems

Potential Pollution Sources

Campground wastewatertreatment plant effluent is discharged into the lake, woodland runoff, oil wells

Lake Location	2 miles	NE of Sumner
Deepest Point	Latitude	38° 43'40"
	Longitude	87° 47'05"
Lake Surface Area	, acres	40
Length of Shorelin	ne, miles	2.4
Maximum Depth, f	eet	27
Average Depth, fe	et	8
Lake Storage Capacity, acre-feet 320		
Watershed Drainag	ge Area, acres	980
Hydraulic Retentio	on Time, years	0.326
Lake Type	C	ammed stream
Year Constructed		1954
Ownership		State
Inflowing Streams	MuddyCre	ek _(tributary to Embarras)
Outflowing Stream		Muddy Creek

Unique Features

It is a spring fed lake. All the watershed area is undisturbed. Most of it is owned by IDOC. Private lands are in CRP. There is alleged to be a one-room cave, the entrance to which is under water

Recreational Lake Usage

```
Fishing - (4)
                No power boating - (4)
Sailboating - (1) Picnicking - (4)
Camping - (4) Waterfowl observation - (1)
```

Recreational Facilities

Boat ramp; boat rental, camping facilities (class A & D), concession stand, park, picnic area, horse trail, hunting, hiking, Gold Settlers Day: weekend in late April

Shoreline Usage, %	
Woodland	100

Watershed Drainage Area Usage, $\%$	
Woodland	61
Conservation Reserve Program	30
Water	6
Pasture or grassland	3

Differences in Turbidity and Water Quality	
In different portions of lake?	Yes
At different times of the year?	Yes
Fishing	Good
Major Types of Fish	
Largemouth bass, redear, bluegill, crappie, ca	atfish,

(stocked annually with 1000 channel catfish)

Causes of Impairment

Nutrients	S	Oil and grease	S
Siltation	S	Noxious aquatic plants	S

Sources of Impairment

S
S

Red Hills State Park Lake

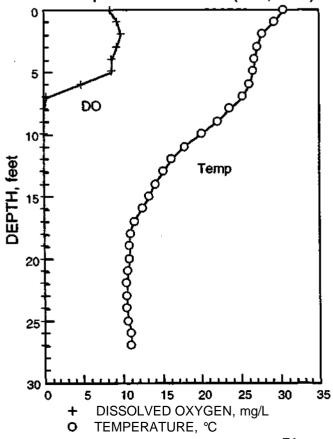
Lake Protection Management

Treatment Date

Type and Extent of Treatment

Reason for Treatment

None


Tillage. <u>%</u>	
Woodland	61
Pasture/hayland	3
CRP	30
Water	6

Water and Sediment Qualities

Sampling Date		08/11/93
Site Number		1
Water Depth of Site, f	eet	27.5
Secchi Disc Transparency, inches		19
Chlorophyll <i>a</i> ,	µg/L	42.55
Chlorophyll b,	µ.g/L	1.42
Chlorophyll c,	μ.g/L	0.53
Pheophytin <i>a</i> ,	μ.g/L	0.00
Trophic State Index		57.9
Trophic State		Eutrophic

Water Quality (K: less than detection value)		
Depth, feet	_1_	_25_
Total Suspended Solids, mg/L	11	10
Volatile Suspended Solids, mg/L	6	5
Turbidity, NTU	1.9	1.3
NO ₂ /NO ₃ -Nitrogen, mg/L	0.01 K	0.01 K
Ammonia Nitrogen, mg/L	0.01 K	0.09
Total Kjeldahl Nitrogen, mg/L	0.66	0.62
Total Phosphorus, mg/L	0.009	0.015
Alkalinity, mg CaCO₃/L		
Total	55	57
Phenolphthalein	20	18
Field pH	9.1	9.1
Chemical Oxygen Demand, mg/L	16	17

DO & Temperature Profiles (Time, 13:13)

(mg/kg: ppm, K: less than detection value)	
Phosphorus-P,ppm	612
Kjeldahl-N,ppm	15852
Solids, % wet	18.5
Vol. solids, %	14.5
TOC, %	-
Arsenic, ppm	52.1
Barium, ppm	263
Cadmium, ppm	1K
Chromium, ppm	18
Copper, ppm	21
Iron, ppm	39,000
Lead, ppm	33
Manganese, ppm	1600
Mercury, ppm	0.1 K
Nickel, ppm	25
Potassium, ppm	1300
Silver, ppm	1K
Zinc, ppm	88

Lake Tecumseh

Hardin County Map Code: RZ-Z99Z

General

U.S. Forest Service 910 S. Commercial, Harrisburg, IL 618/253-7114

•1
N

Lake Location	3 miles NE of	Elizabethtown
Deepest Point	Latitude	37°28'56"
	Longitude	88° 19' 49"
Lake Surface Are	ea, acres	13
Length of Shorel	ine, miles	0.49
Maximum Depth,	feet	12
Average Depth, f	eet	4.1
Lake Storage Ca	pacity, acre-feet	53
Watershed Drain	age Area, acres	90
Hydraulic Retent	ion Time, years	-
Lake Type	Da	ammed stream
Year Constructed	k	1970
Ownership		Public
Inflowing Stream	S	Unnamed
Outflowing Strea	ms	Unnamed
Unique Features		

Isages and Impairments	Recreational Lake Usage
Public Access Yes Entire lake bottom publicly owned and entire shoreline public access, unlimited free access	no power boaling (electric) - (1)
No. of Visitors per Year Lake Use Support	Recreational Facilities Boat ramp (earth ramp). Road to the lake is very rough
OverallFulAquatic LifeFulSwimmingFulRecreationFul	Il Woodland 100
Non-recreational Lake Usage None	Watershed Drainage Area Usage, %Woodland and roads100

Water Quality Problems

Problems	
Suspended sediment	M/N
Sediment deposition	M/N
Algal blooms	S
Aquatic macrophytes	Μ

Differences in Turbidity and Water Quality		
In different portions of lake?	No	
At different times of the year?	Yes	
Fishing	Fair	
Major Types of Fish		
Largemouth bass, sunfish, catfish, crappie, bluegill		

Causes of Quality Problems

Potential Pollution Sources Woodland runoff

Causes of Impairment Nutrients

S

Sources of Impairment Surface runoff

S

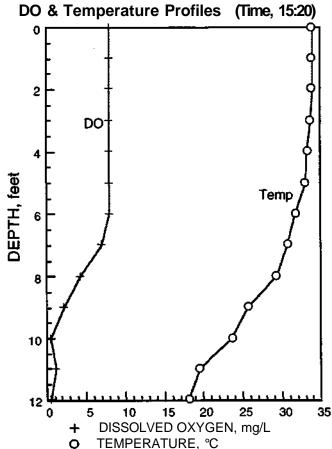
Lake Tecumseh

Lake Protection Management

Treatment Date

Type and Extent of Treatment

Reason for Treatment

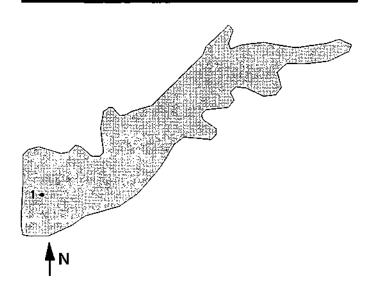

None

Comments: The lake is located in the U.S. forest preserve area (100% woodland).

Water and Sediment Qualities

Sampling Date		07/13/93
Site Number		1
Water Depth of Site, fee	et	12
Secchi Disc Transparency, inches		95
Chlorophyll <i>a</i> ,	μg/L	3.89
Chlorophyll <i>b</i> ,	μg/L	1.41
Chlorophyll <i>c</i> ,	μg/L	1.49
Pheophytin <i>a</i> ,	µg/L	0.78
Trophic State Index		41.9
Trophic State		Mesotrophic

Water Quality (K: less than detection	on value)	
Depth, feet	1	<u>10</u>
Total Suspended Solids, mg/L	4	17
Volatile Suspended Solids, mg/L	3	11
Turbidity, NTU	1.5	2
NO ₂ /NO ₃ -Nitrogen, mg/L	0.02	0.01 K
Ammonia Nitrogen, mg/L	0.01 K	0.03
Total Kjeldahl Nitrogen, mg/L	0.76	0.67
Total Phosphorus, mg/L	0.008	0.008
Alkalinity, mg CaCC ₃ /L		
Total	26	16
Phenolphthalein	0	0
Field pH	7.7	6.4
Chemical Oxygen Demand, mg/L	18	18



Ocument Quality	
(mg/kg ppm, K: less than detection value)	
Phosphorus-P,ppm	422
Kjeldahl-N,ppm	1.8
Solids, % wet	36.3
Vol. solids, %	6.0
TOC, %	2.0
Arsenic, ppm	11.5
Barium, ppm	167
Cadmium, ppm	13
Chromium, ppm	20
Copper, ppm	22
Iron, ppm	32,000
Lead, ppm	33
Manganese, ppm	765
Mercury, ppm	0.1 K
Nickel, ppm	23
Potassium, ppm	1000K
Silver, ppm	1K
Zinc, ppm	72

Vernor Lake (Olney Old Reservoir) 300 Whittle Ave., Olney, IL 62450 Map Code: RCA

Richland County

General

Lake Location Deepest Point	Latitude Longitude	2 miles N of Olney 38° 45' 46" 88° 06' 09"
Lake Surface Area	, acres	36
Length of Shorelin	ne, miles	2.4
Maximum Depth, f	eet	29
Average Depth, feet 15		
Lake Storage Capacity, acre-feet 540		
Watershed Drainage Area, acres300		
Hydraulic Retention	on Time, ye	ars 1.802
Lake Type		Dammed stream
Year Constructed		1 905
Ownership		Public
Inflowing Streams		Unnamed
Outflowing Stream Unique Features None	is Unnamed t	tributary to Fox Creek

Usages and Impairments

Public	Access
--------	--------

Entire lake bottom publicly owned but entire shoreline not public access, unlimited access - free charged, 9.9 hp limit

No. of Visitors per Year	<25,000
Lake Use Support	
Overall	P/Mi
Aquatic Life	F/Th
Swimming	P/Mi
Recreation	P/Mi

Non-recreational Lake Usage

Potable water supply - (4)

Water Quality Problems

Μ
М
M/N

Recreational Lake Usage

Fishing - (3) year round Low power boating - (3) Picnicking - (2)

Yes

Recreational Facilities

One boat ramp, picnic area. Facilities are marginal because of the other two larger lakes owned by the city.

Shoreline Usage, %	
Residential (except the dam) developed	99

Watershed Drainage Area Usage, %

Cropland	50
Residential	10
Pasture or grassland	20
Woodland	10
Recreation development (golf course)	<u>10</u>
Differences in Turbidity and Water Quality	
In different portions of lake?	Yes
At different times of the year?	Yes
Fishing	Fair
Major Types of Fish	
Largemouth bass, catfish, bluegill, crappie, (and release is advised)	catch

Causes of-Quality-Problems-

Potential Pollution Sources

Urban storm drainage, runoff (cropland, pasture/ grassland, woodland, lawn/golf course), septic tank, sediment in lake, oil wells

Causes of Impairment

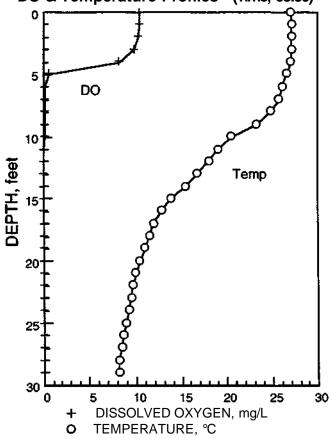
M M			
Sources of Impairment			
М			
S			
S			

Vernor Lake (Olney Old Reservoir)

Lake Protection Management

Treatment Date

Type and Extent of Treatment


Reason for Treatment

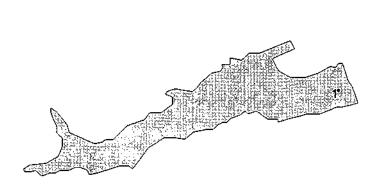
None

Water and Sediment Qualities

Sampling Date		08/1 1 /93
Site Number		1
Water Depth of Site, feet		29
Secchi Disc Transpare	ency, inches	32
Chlorophyll <i>a</i> ,	μ.g/L	54.84
Chlorophyll b,	µ.g/L	6.05
Chlorophyll <i>c,</i>	µ.g/L	0.81
Pheophytin <i>a</i> ,	µ.g/L	2.74
Trophic State Index		61 .7
Trophic State		Eutrophic

DO & Temperature Profiles (Time, 08:30)

Water Quality (K: less than detection	on value)	
Depth, feet	<u>1</u>	<u>27</u> _
Total Suspended Solids, mg/L	11	15
Volatile Suspended Solids, mg/L	6	12
Turbidity, NTU	0.2	5
NO ₂ /NO ₃ -Nitrogen, mg/L	0.02	•
Ammonia Nitrogen, mg/L	0.07	7.2
Total Kjeldahl Nitrogen, mg/L	0.78	7.2
Total Phosphorus, mg/L	0.028	1.72
Alkalinity, mg CaCO₃/L		
Total	75	167
Phenolphthalein	12	0
Field pH	9.0	6.8
Chemical Oxygen Demand, mg/L	17	30


Counter quanty	
(mg/kg: ppm, K: less than detection value)	
Phosphorus-P,ppm	960
Kjeldahl-N,ppm	1010
Solids, % wet	13.7
Vol. solids, %	19.6
TOC, %	•
Arsenic, ppm	16.8
Barium, ppm	332
Cadmium, ppm	1K
Chromium, ppm	16
Copper, ppm	760
Iron, ppm	37,000
Lead, ppm	60
Manganese, ppm	1300
Mercury, ppm	0.1 0
Nickel, ppm	22
Potassium, ppm	1300
Silver, ppm	1K
Zinc, ppm	115
· • •	

Vienna Correctional Center Lake Map Code: RAT

Johnson County

General

Illinois Department of Corrections Box 200, Vienna, IL 62995 618/658-8371

Lake Location		7 miles E of	Vienna
Deepest Point	Latitude	37°	24' 45"
	Longitude	88°	45' 37"
Lake Surface Area	i, acres		70
Length of Shorelin	ne, miles		2.5
Maximum Depth, f	eet		22
Average Depth, feet 11			11
Lake Storage Capacity, acre-feet 770			
Watershed Drainage Area, acres500			
Hydraulic Retention Time, years			
Lake Type		Dammed	stream
Year Constructed			1964
Ownership			state
Inflowing Streams			None
Outflowing Stream	ns Ti	ributary of Ba	y Creek
Unique Features		-	

The lake serves as a water supply source to the Vienna Correctional Center.

Usages and Impairments

Public Access	No
Entire lake bottom publicly owned bu	It shoreline is
not easily accessible. Access to the	e lake and its
surrounding areas are strictly controlle	ed for security
reasons.	
No. of Visitors per Year	<25.000

	~20,000
Lake Use Support	
Overall	Full
Aquatic Life	Full
Swimming	Full
Recreation	Full

Non-recreational Lake Usage

None

Water Quality Problems

Problems	
Suspended sediment	М
Sediment deposition	Н
Algal blooms	Н
Aquatic macrophytes	S
Taste and/or odor	Μ
Water level fluctuation	Н
<u>Fish kills</u>	M/N

Causes of Quality Problems

Potential Pollution Sources

Industrial effluent, storm drainage, runoff (feedlot, pasture/grassland) livestock operations, sediment in lake

Recreational Lake Usage

Fishing - (3) No power boating - (1)

Recreational Facilities

One boat ramp, picnic area

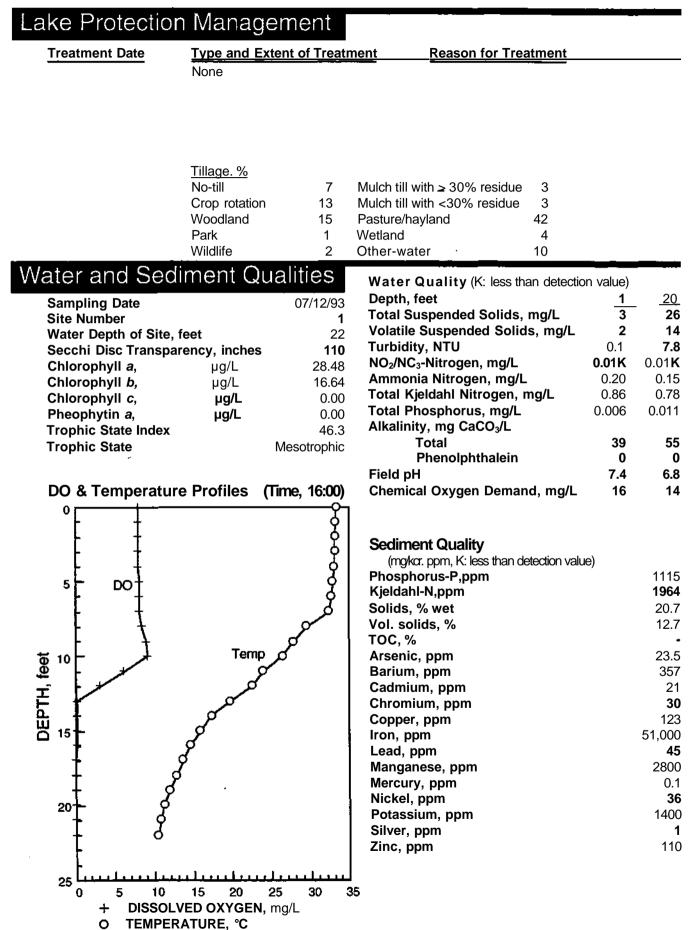
Shoreline Usage, %

	·	, o	
Industrial	5	Pasture or grassland	55
Woodland	35	Wetland	5

Watershed Drainage Area Usage, %

Cropland	26
Pasture or grassland	42
Woodland	15
Water and park	11
Wetland and wildlife	6

Differences in Turbidity and Water Quality In different portions of lake? Yes At different times of the year? Yes Fishing Good **Major Types of Fish** Bass, bluegill, crappie


Causes of Impairment

S

Construction

Nutrients	·н	Organic/DO depletion	н
Siltation	н	Suspended solids	M
Pathogens	Μ	Noxious aquatic plants	н
Taste/odor	Н		
Sources of Ir	npai	irment	
Point source	н	Nonpoint sources	н
Storm sewers	Н	Pasture	н
Feedlots	Н	Animal holding area	н

Vienna Correctional Center Lake

Walton Park Lake

Montgomery County Map Code: ROU

Lake Location	0.75 miles	S of Litchfield		
Deepest Point	Latitude	39°09'26"		
-	Longitude	89° 35'33°		
Lake Surface Area	a, acres	25		
Length of Shorelir	ne, miles	2.3		
Maximum Depth, f	feet	11		
Average Depth, fe	et	6		
Lake Storage Capacity, acre-feet 1				
Watershed Draina	ge Area, acres	1302		
Hydraulic Retention	on Time, years	0.154		
Lake Type	Da	ammed stream		
Year Constructed		Late 1800s		
Ownership		Public		
Inflowing Streams	;	Long Branch		
Outflowing Stream	is Long Branch, i	nto Shoal Creek		
Unique Features				

The lake originally served as a water supply source. Ice blocks were harvested and stored in ice houses for subsequent sale.

Recreational Lake Usage

Fishing - (4)	No power boating - (1)
Picnicking - (4)	Low power boating - (4)
Waterfowl observation	- (2)

Recreational Facilities

Boat ramp (gravel), park, picnic area, baseball diamonds, pavilions, shelters, horseshoe posts, volleyball nets, basketball courts, childrens playground, handicap fishing dock

Shoreline Usage, %

D		·	-
Residentia	125	Industrial/commercial	5
Woodland	15	Recreation development	54
Pasture	1		
Watershed	Drair	nage Area Usage, %	
Cropland	80	Pasture or grassland	5

		J	-
Park	2	Urban/residential	8
Woodland	3	Wetland	2

Differences in Turbidity and Water Quality	
In different portions of lake?	Yes
At different times of the year?	Yes
Fishing	Good
Major Types of Fish	
Catfish largemouth bass crannie redear	hybrid

Cattish, largemouth bass, crappie, redear, hybrid bluegill, carp, stocked annually with channel catfish by IDOC.

Causes of Impairment

Siltation	Μ	Organic/DO depletion	Μ
Taste/odor	Μ	Thermal modification	Μ
Suspended s	solids	6	М
Sources of Im	pair	ment	
Irrigated crop	pro	duction	S
Lake shoreli	në er	osion	S

Jsages and Impairments

Public Access				Yes
Entire lake bottom	pubilcly	owned	and	entire
shoreline public acce	ess, unlimi	ited free	acces	s, only
trolling motors allow	ed.			

No. of Visitors per Year Lake Use Support	>200,000
Overall	P/Mi
Aquatic Life	P/Mi
Swimming	P/Mi
Recreation	P/Mi

Non-recreational Lake Usage

Agricultural water supply, irrgation - (2) Stormwater detention - (1)

Water Quality Problems

Problems	
Suspended sediment	М
Sediment deposition	Н
Algal blooms	S
Aquatic macrophytes	M/N
Water level fluctuation	М
Fish kills	M/N

Causes of Quality Problems

Potential Pollution Sources

Industrial (oil and fuel), runoff (cropland, pasture/ grassland, woodland, lawn), septic tanks, streambank erosion, sediment in lake, rough fish (carp)

Walton Park Lake

Lake Protection Management

Treatment Date	Type and Extent of	Treat	ment	Reason for Treatment	
	Grassed waterway,	acre	20	Erosion control	
	Grade stabilization s	tructur	es 5	Erosion control	
	Pond		· 1	Livestock water	
	Diversions		20	Water quality	
	Livestock exclusions		7		
	Tillage. %				
	No-till	10	Mulch till w	/ith → 30% residue	20
	Moldboard plow	11	Mulch till w	/ith <30% residue	13
	Crop rotation	12	Chisel or d	isc till with ≥30% residue	14
	Park	2	Pasture/ha	yland	5
	Woodland	3	Wetland	-	2

Water and Sediment Qualities

Sampling Date	08/18/93
Site Number	1
Water Depth of Site, feet	11
Secchi Disc Transparency, inches	20
Chlorophyll <i>a</i> , µg/L	29.13
Chlorophyll <i>b,</i> μg/L	3.89
Chlorophyll <i>c</i> , μg/L	0.28
Pheophytin <i>a</i> , μg/L	3.50
Trophic State Index	67.9
Trophic State	Eutrophic

DO & Temperature Profiles

Water Quality (K: less than detection	on value)	
Depth, feet	<u>1</u>	_9_
Total Suspended Solids, mg/L	22	32
Volatile Suspended Solids, mg/L	7	9
Turbidity, NTU	12	10
N0 ₂ /N0 ₃ -Nitrogen, mg/L	0.01 K	0.01 K
Ammonia Nitrogen, mg/L	0.67	0.12
Total Kjeldahl Nitrogen, mg/L	0.97	0.81
Total Phosphorus, mg/L	0.098	0.146
Alkalinity, mg CaCO ₃ /L		
Total	104	98
Phenolphthalein	0	0
Field pH	8.2	6.7

Chemical Oxygen Demand, mg/L 27 31

Sediment Quality

Ocument Quanty	
(mg/kg ppm, K; less than detection value)	
Phosphorus-P,ppm	754
Kjeldahl-N,ppm	1110
Solids, % wet	38.0
Vol. solids, %	10.5
TOC, %	-
Arsenic, ppm	7.5
Barium, ppm	297
Cadmium, ppm	1K
Chromium, ppm	27
Copper, ppm	32
Iron, ppm	27,000
Lead, ppm	37
Manganese, ppm	480
Mercury, ppm	0.1 K
Nickel, ppm	23
Potassium, ppm	1800
Silver, ppm	1K
Zinc, ppm	106

(Time, 14:30)

Waterloo City Reservoir

Monroe County Map Code: RJH

General

City of Waterloo 104 W. 4th St., Waterloo, IL 62298 618/939-8661

General	
	•1
≜ N ∖	

·	
Jsages and Impairments	
Public Access Y Entire lake bottom publicly owned and ent shoreline public access, unlimited free access.	es ire

No. of Visitors per Year	<25,000
Lake Use Support	
Overall	P/Mi
Aquatic Life	Full
Swimming	P/Mo
Recreation	P/Mo

Non-recreational Lake Usage

Potable water supply - (4), P, I (500,000 gpd)

Water Quality Problems

Problems	
Suspended sediment	S
Sediment deposition	S
Algal blooms	S
Aquatic macrophytes	S
Water level fluctuation	S
Fish kills	M/N

Causes of Quality_Problems_

Potential Pollution Sources

Urban storm drainage, runoff (cropland, pasture/ grassland, woodland, lawn), sediment in lake, rough fish

Lake Location	2 miles	SW of Waterloo
Deepest Point	Latitude	38° 48'52"
-	Longitude	90°09'36"
Lake Surface Area	a, acres	29
Length of Shoreli	ne, miles	1.0
Maximum Depth,	feet	23
Average Depth, fe	et	14
Lake Storage Cap	acity, acre-feet	406
Watershed Draina	ige Área, acres	530
Hydraulic Retentie	on Time, years	0.919
Lake Type	- [Dammed stream
Year Constructed		1962
Ownership		Public
Inflowing Streams	5	Unnamed
Outflowing Stream	ns	Unnamed
Unique Features		

Unique Features

The lake serves as one of three water supply sources. Water is pumped from Fountain Creek. Water can also be pumped into either Korte Lake or Schorr Lake.

Recreational Lake Usage

Fishing - (4)

Recreational Facilities

Boat ramp (gravel), bank and boat fishing (electric trawlers only)

Shoreline Usage, %	
Cropland	40
Pasture or grassland	35
Woodland	25
Watershed Drainage Area Usage, %	
Cropland	75
Woodland	10
Recreation development	5
Water/wetland	9
Residential	1
Differences in Turkidity and Water Quality	

Differences in Turbidity and water Quality	
In different portions of lake?	No
At different times of the year?	Yes
Fishing	Fair
Major Types of Fish	
Channel catfish, crappie, bluegill, bass, carp (lake	

has not been stocked in 10 years)

Causes of Impairment

eaucee er mip			
Nutrients	S	Organic/DO depletion	S
Siltation	S	Thermal modificiation	Μ
		Suspended solids	Μ
Sources of Impairment			
Agriculture	М	Nonpoint sources	Μ
Pasture	Μ	Land development	S
Surface runoff	S	Algicide application	Μ

Waterloo City Reservoir

Lake Protection Management

Treatment Date	
4/89	
1969	

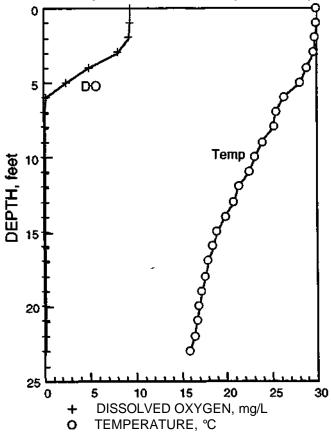
Type and Extent of Treatment	
Terrace, linear ft.	1800

Permanent vegetative cover, acre 21

Reason for Treatment

Erosion control Erosion control & park in urban subdivisions

<u>Tillage. %</u>		
No-till	15	Ch
Woodland	10	Ch
Park	5	Wi
Other-water	8	Re


15	Chisel or disc till with ≥30% residue	20
0	Chisel or disc till with <30% residue	40
5	Wildlife	2
8	Residential	1

Water and Sediment Qualities

Sampling Date	07/29/93
Site Number	1
Water Depth of Site, feet	23
Secchi Disc Transparency, inches	31
Chlorophyll <i>a</i> , μg/L	32.93
Chlorophyll <i>b,</i> μg/L	9.75
Chlorophyll <i>c</i> , μg/L	1.23
Pheophytin <i>a</i> , µg/L	0.00
Trophic State Index	69.6
Trophic State	Eutrophic

Water Quality (K: less than detection value)			
Depth, feet	_1_	<u>21_</u>	
Total Suspended Solids, mg/L	23	28	
Volatile Suspended Solids, mg/L	6	18	
Turbidity, NTU	14	26	
NO ₂ /NO ₃ -Nitrogen, mg/L	0.01 K	0.01 K	
Ammonia Nitrogen, mg/L	0.18	1.3	
Total Kjeldahl Nitrogen, mg/L	0.30	1.3	
Total Phosphorus, mg/L	0.199	0.739	
Alkalinity, mg CaCO ₃ /L			
Total	71	171	
Phenolphthalein	12	0	
Field pH	8.8	7.0	
Chemical Oxygen Demand, mg/L	12	14	

DO & Temperature Profiles (Time, 11:30)

(mg/kg: ppm, K: less than detection value)	
Phosphorus-P,ppm	633
Kjeldahl-N,ppm	452
Solids, % wet	39.4
Vol. solids, %	6.1
TOC, %	3.0
Arsenic, ppm	10.0
Barium, ppm	251
Cadmium, ppm	1K
Chromium, ppm	22
Copper, ppm	225
Iron, ppm	32,000
Lead, ppm	25
Manganese, ppm	1300
Mercury, ppm	0.1 K
Nickel, ppm	26
Potassium, ppm	2300
Silver, ppm	1K
Zinc, ppm	80
• •	

Wesslyn Lake

Perry County Map Code: RNZA

Latitude

Longitude

4 miles S of Pinkneyville

38° 01'50"

89° 24'29"

Coal strip - mine

24.2

3.3

4.4

22

532

120

1950

State

None

None

General

•1)
----	---

ages and Impairments	Recreational Lake Usag
Public Access Entire lake bottom publicly owned and en shoreline public access, unlimited free access.	
Aquatic Life Swimming	Recreational Facilities One boat ramp, camp 000 horseback riding, huntin wild quails, dove, much Full Full
Non-recreational Lake Usage None	Watershed Drainage Ard Cropland Woodland Wetland/wildlife Park/water

Water Quality Problems

Problems	
Suspended sediment	M/N
Sediment deposition	M/N
Algal blooms	М
Aquatic macrophytes	М
Water level fluctuation	М
Fish kills	M/N

Causes_of Quality Problems

Potential Pollution Sources Cropland runoff

Recreational Lake Usage

Lake Location

Deepest Point

Lake Type

Ownership

Lake Surface Area, acres

Maximum Depth, feet

Average Depth, feet

Year Constructed

Inflowing Streams

Unique Features

and deep lake.

Outflowing Streams

Length of Shoreline, miles

Lake Storage Capacity, acre-feet

Watershed Drainage Area, acres

Hydraulic Retention Time, years

Fishing - (4), P, I	Low power boating - (3)
Camping - (3)	Waterfowl observation - (1)
Picnicking - (3)	

Named after a nearby farmer. It is a long, narrow,

ping facilities, picnic area, ing (deer, rabbits, squirrels, hroom)

Shoreline Usage, %	
Woodland	100

rea Usage, % 51 42

Differences in Turbidity and Water Quality		
In different portions of lake?	No	
At different times of the year?	Yes	
Fishing	Good	
Major Types of Fish		
Largemouth bass, bluegill, redear, crappie, catfish		

Causes of Impairment Nutrients

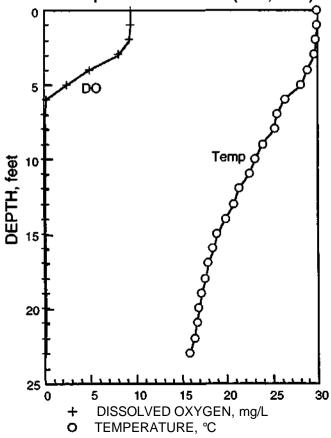
S

5 2

Sources of Impairment Nonpoint source

Wesslyn Lake

Lake Protection Management


Treatment Date	Type and Extent of	Treatn	nent	Reason for Trea	atment
1970	Pond		1		
1984	Grassed waterway, ac	re	3	Erosion control	
1984	Field border strip, ft.		2,600		
1984	Conservation cropping	system	500		
1989	Critical area planting,	acre	15		
1989	Grade stabilization stru	ucture	1	Erosion control	
	Tillage. %				
	No-till	13	Mulch till w	ith <i>-</i> >30% residue	31
	Woodland	42	Mulch till w	ith <30% residue	1
	Park	1	Chisel or di	sc till →30% residue	5
	Wetland	2.5	Chisel or di	sc till <30% residue	1
	Wildlife	2.5	Other-wate	er	1
Comments: 10% (500) acres) of all cropland is in	a crop ro	otation. All w	oodland is in a park.	

Water and Sediment Qualities

Sampling Date		07/29/93
Site Number		1
Water Depth of Site, fee	et	35
Secchi Disc Transparer	ncy, inches	52
Chlorophyll <i>a</i> ,	μg/L	8.34
Chlorophyll b,	μg/L	10.88
Chlorophyll <i>c</i> ,	μg/L	1 .79
Pheophytin <i>a</i> ,	μg/L	3.92
Trophic State Index		37.2
Trophic State		Oligotrophic

Water Quality (K: less than detection value)			
Depth, feet	_1_	<u>23_</u>	
Total Suspended Solids, mg/L	2	8	
Volatile Suspended Solids, mg/L	1K	8	
Turbidity, NTU	1.4	-	
NO ₂ /NO ₃ -Nitrogen, mg/L	0.01	0.04	
Ammonia Nitrogen, mg/L	0.13	12	
Total Kjeldahl Nitrogen, mg/L	0.37	12.8	
Total Phosphorus, mg/L	0.001K	3.05	
Alkalinity, mg CaCO ₃ /L			
Total	85	157	
Phenolphthalein	10	0	
Field pH	8.6	7.0	
Chemical Oxygen Demand, mg/L	14	80	

DO & Temperature Profiles (Time, 15:30)

(mg/kg: ppm, K: less than detection value)	
Phosphorus-P,ppm	. 319
Kjeldahl-N,ppm	557
Solids, % wet	56.0
Vol. solids, %	3.8
TOC,%	1.6
Arsenic, ppm	5.4
Barium, ppm	175
Cadmium, ppm	1K
Chromium, ppm	17
Copper, ppm	12
Iron, ppm	19,000
Lead, ppm	14
Manganese, ppm	250
Mercury, ppm	0.1 K
Nickel, ppm	15
Potassium, ppm	1000K
Silver, ppm	1K
Zinc, ppm	41

Whoopie Cat Lake

Hardin County Map Code: RAZM

U.S. Forest Service 901 S. Commercial St., Harrisburg, IL 618/253-7114

Latitude

Longitude

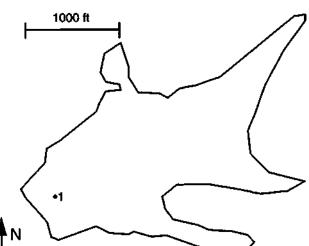
3 miles NE of Elizabethtown

37° 28' 30"

88' 19' 57"

26.5

1.6


33

12

338

360

General

/	,	Materenea Brannage / nea, a	
		Hydraulic Retention Time, ye	ears -
	{	Lake Type	Dammed stream
	Į	Year Constructed	1 977
)		Ownership	U.S. Forest Service
	_ >	Inflowing Streams	Unnamed
		Outflowing Streams	Unnamed
		Unique Features	
		The lake was buitt by Job Corps. The	
		stratified rock. Trees died. Root syste Bentonite grouting was done twice, in	, 0
		Bentonite grouting was done twice, in	i 1991 anu 1992.
sages and Impairme	ente	Recreational Lake Usage	بسبار المسير معاريب مي الم
sayes and impairing			ctric only) - (2)
Public Access	Yes	Tes Swimming-(1) Picnicking - (2)	
Entire lake bottom publicly ov	lake bottom publicly owned and entire Camping - (2) Waterfowl observation - (3)		
shoreline public access, unlimite	d free access		(-)
		Recreational Facilities	
		Boat ramp, picnic area (primi	tive). Lake was used
No. of Visitors per Year	<25,000	heavily for fishing (stocked or	,
Lake Use Support			
Overall	Full	Shoreline Usage, %	
Aquatic Life	Full	Woodland	100
Swimming	Full		
Recreation	Full		
		Watershed Drainage Area Us	sage, %
Non rearrantianal Laka Haara			

Woodland

Lake Location

Deepest Point

Lake Surface Area, acres

Maximum Depth, feet

Average Depth, feet

Length of Shoreline, miles

Lake Storage Capacity, acre-feet

Watershed Drainage Area, acres

Non-recreational Lake Usage

None

Jsages and **Public Access**

Water Quality Problems

Problems	
Suspended sediment	M/N
Sediment deposition	M/N
Algal blooms	S
Aquatic macrophytes	Μ
Water level fluctuation	Μ
Fish kills	M/N

Causes_of_Quality Problems

Potential Pollution Sources

Woodland runoff, shoreline erosion

uality
No
Yes
Good
ppie, bluegill,

Causes of Impairment Siltation

S

100

Sources of Impairment

Surface runoff

S

Whoopie Cat Lake

Lake Protection Management

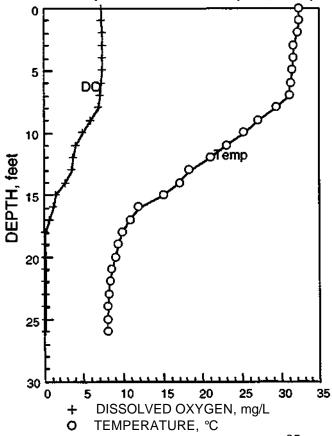
Treatment Date

Type and Extent of Treatment

Reason for Treatment

None

one


Comments: The lake is located in the U.S. forest preserve area (100% woodland)

Water and Sediment Qualities

Sampling Date		07/13/93
Site Number		1
Water Depth of Site, fe	et	26
Secchi Disc Transpare	ncy, inches	1 33
Chlorophyll a,	μg/L	8.54
Chlorophyll b,	µ.g/L	1.80
Chlorophyll <i>c</i> ,	μg/L	1.63
Pheophytin <i>a</i> ,	µg/L	0.43
Trophic State Index		32.9
Trophic State		Oligotrophic

Water Quality (K: less than detection value)				
Depth, feet	<u> 1 </u>	<u>24</u> _		
Total Suspended Solids, mg/L	2	19		
Volatile Suspended Solids, mg/L	1	9		
Turbidity, NTU	1.2	1.4		
N0 ₂ /N0 ₃ -Nitrogen, mg/L	0.01 K	0.01 K		
Ammonia Nitrogen, mg/L	0.01 K	0.10		
Total Kjeldahl Nitrogen, mg/L	0.63	0.70		
Total Phosphorus, mg/L	0.001 K	0.014		
Alkalinity, mg CaCO ₃ /L				
Total	79	89		
Phenolphthalein	0	0		
Field pH	7.7	6.8		
Chemical Oxygen Demand, mg/L	16	11		

DO & Temperature Profiles (Time, 14:30)

oounnone quanty	
(mg/kg: ppm, K: less than detection value)	
Phosphorus-P.ppm	585
Kjeldahl-N,ppm	1593
Solids, % wet	28.2
Vol. solids, %	10.3
TOC,%	1.8
Arsenic, ppm	9.3
Barium, ppm	219
Cadmium, ppm	17
Chromium, ppm	26
Copper, ppm	22
Iron, ppm	43,000
Lead, ppm	47
Manganese, ppm	1200
Mercury, ppm	1K
Nickel, ppm	34
Potassium, ppm	. 2400
Silver, ppm	1K
Zinc, ppm	79

Depth	Christopher New 7/30/93		7/30/93		Cle 8/12/9	93	East 8/11	/93	8/18	Greenville 8/18/93		
(feet)	Temp	DO	Temp	DO	Temp	DO	Temp	DO	Temp	DO		
0	30.2	9.4	29.9	11.5	25.5	6.7	27.4	9.8	30.0	15.3		
1	30.5	9.4	30.0	11.5	25.8	6.5	27.4	9.9	29.6	11.9		
2	30.3	9.7	29.9	11.3	25.8	6.5	27.3	10.0	29.5	11.1		
3	30.2	9.5	29.9	11.1	25.8	6.5	27.3	10.1	28.7	6.6		
4	30.1	9.2	29.9	10.9	25.8	6.4	27.2	10.1	27.9	2.6		
5	29.9	8.6	29.7	8.5	25.7	6.4	27.1	10.1	27.4	0.8		
6	29.8	7.4	28.7	0.4	25.6	6.2	27.0	9.8	26.5	0.2		
7	28.9	0.3	26.4	0.2	25.4	6.1	27.0	9.8	25.5	0.1		
8	27.3	0.2	22.5	0.1	25.4	5.9	27.0	9.6	24.6	0.1		
9	25.6	0.1	21.9	0.1	25.3	5.7	26.9	6.5	23.5	0.1		
10	24.4	$\begin{array}{c} 0.1 \\ 0.1 \end{array}$	19.2	0.1	25.1 24.9	5.6 5.5	26.6	5.7 5.1	22.8	0.1		
11 12	22.6 21.3	0.1	17.0 16.0	$\begin{array}{c} 0.1 \\ 0.1 \end{array}$	24.9	5.5 5.5	26.4 26.3	4.8	20.4 18.2	$\begin{array}{c} 0.1 \\ 0.1 \end{array}$		
12	21.3	0.1	10.0	0.1	24.7	5.5 5.4	26.2	4.0	16.7	0.1		
13 14	18.2	0.1	14.7	0.1	24.3	5.1	26.0	2.9	15.9	0.1		
15	17.1	0.1	13.1	0.1	21.2	5.0	25.5	1.7	15.7	0.1		
16	16.3	0.1	13.0	0.1	20.0	4.9	25.2	1.0				
17	10.5	0.1	12.9	0.1	18.8	4.8	23.2	0.1				
18			12.6	0.1	17.4	4.6	23.0	0.1				
19					16.0	4.3	21.7	0.1				
20					14.6	4.0	19.8	0.1				
21					14.0	3.9	18.6	0.1				
22					13.1	3.8	17.8	0.1				
23					12.2	3.7	16.9	0.1				
24					11.4	3.4	16.1	0.1				
25					10.1	3.0	15.7	0.1				
26					9.8	2.6	15.1	0.1				
27					9.1	2.3	14.7	0.1				
28					8.6	2.0	14.3	0.1				
29					8.3	1.5	13.9	0.1				
30					8.1	1.1	13.5	0.1				
31					7.9	0.9	13.4	0.1				
32					7.7	0.8	12.9	0.1				
33					7.4	0.7						
34					7.3	0.6						
35					7.3	0.4						
36 37					7.2 7.2	0.3 0.2						
37					7.2	0.2						
39					7.1	0.1						
40					7.1	0.1						
42					6.9	0.1						
44					6.7	0.1						
46					6.6	0.1						
48					6.5	0.1						

Appendix A. Water Temperature (° C) and Dissolved Oxygen (mg/L) Data for 25 Illinois Lake Sites

Appendix A. Continued

			Harrisburg		Harrisbu					
	Harris	burg	Holding-North		Holding-	Holding-South		es	Johnston City	
Depth	7/13	/93	7/13/93		7/13/9	7/13/93		/93	7/12/93	
(feet)	Temp	DO	Temp	DO	Temp	DO	Temp	DO	Temp	DO
0	31.2	10.7	30.5	7.5	31.3	6.9	29.6	9.1	32.5	10.4
1	31.3	10.8	30.6	7.6	31.1	6.8	29.6	9.2	32.4	11.1
2	31.3	10.5	30.6	7.6	31.1	6.8	29.6	9.2	31.5	10.2
3	31.1	10.0	30.6	7.6	31.1	6.8	29.6	9.1	31.2	8.9
4	30.7	9.7	30.6	7.6	31.1	6.8	29.6	9.1	30.9	8.1
5	30.4	8.2	30.5	7.5	30.8	6.7	29.6	9.0	30.9	6.0
6	30.1	7.2	30.5	7.4	30.7	6.7	29.6	8.9	30.7	2.6
7	29.9	6.3	30.3	4.1	30.5	4.9	29.5	8.8	30.0	1.9
8	29.8	5.9	29.9	3.2	29.5	2.6	28.6	4.4	29.8	0.3
9	29.5	3.8	29.5	1.5	29.2	1.7	27.5	1.0	28.7	0.2
10	29.0	2.5	29.0	0.3	28.6	0.7	27.1	0.3	28.1	0.2
11	28.5	1.1	28.7	0.2	28.2	0.3	26.4	0.1	27.2	0.2
12	27.6	0.2					25.6	0.1	25.0	0.2
13	24.6	0.2					24.6	0.1	24.0	0.2
14	22.5	0.2					23.7	0.1		
15	21.1	0.2					23.3	0.1		
16	20.1	0.2					21.7	0.1		
17	19.1	0.2					19.6	0.1		
18	18.1	0.2					18.8	0.1		
19	17.3	0.2					17.9	0.1		
20	17.0	0.2					17.5	0.1		
21	16.6	0.2					17.1	0.1		
22	16.3	0.2								
23	15.9	0.2								
24	15.6	0.2								
25	15.5	0.2								

Appendix A. Continued

Depth	Loar 8/19/9		Mattoon 8/10/9			Mattoon-Site 2 8/10/93		1g0 193	Palmyra-M 8/19/	
(feet)	Temp	DO	Temp	DO	Temp	DO	Temp	DO		DO
0	30.0	2.1	27.4	7.5	28.8	12.5	25.2	9.3	27.9	5.7
1	29.0	1.8	27.3	7.4	28.7	12.7	25.3	9.3		5.5
2	28.9	1.8	27.2	.7.3	28.6	13.0	25.3	9.2	28.0	5.6
3	28.6	1.7	26.9	7.3	28.3	12.2	25.0	8.5	28.0	5.5
4	28.4	1.6	26.3	5.2	28.2	11.2	24.7	7.6	27.9	4.5
5	28.2	1.6	26.0	4.1	27.4	6.8	24.6	7.4	27.9	3.3
6	28.2	1.6	25.9	4.1	26.5	4.2	24.5	6.3	27.9	3.2
7	28.1	1.7	25.9	3.9	26.3	3.1	24.3	5.6		3.3
8	26.7	0.4	25.9	2.7	26.2	2.4	24.1	4.2		3.2
9	26.7	0.3	25.8	1.7	26.1	1.8	24.0	2.9		3.2
10	26.7	0.3	25.8	1.5	26.1	1.5	23.7	1.7		3.1
11	26.6	0.3	25.8	0.6	26.1	1.4	23.6	1.0		3.0
12	26.6	0.3	25.7	0.3	26.0	0.8	23.3	0.4		2.9
13	26.6	0.3	25.7	0.1	25.9	0.1	22.6	0.2		2.9
14	26.7	0.3	25.7	0.1			21.6	0.2		2.9
15	26.7	0.3	25.7	0.1			20.8	0.1		2.8
16	26.6	0.3	25.6	0.1			19.1	0.1		2.8
17	26.5	0.3	25.6	0.1			17.2	0.1		2.7
18			25.6 25.6	0.1			16.3	0.1		2.6
19 20			25.6 25.6	0.1			15.7	0.1		2.5
20 21			25.6 25.5	0.1 0.1			14.8 14.2	0.1 0.1		2.4 2.3
21			23.3 25.1	0.1			14.2	0.1		2.3
22			23.1 24.9	0.1			13.8	0.1		2.3
23 24			24.9 24.7	0.1			13.1	0.1		2.1 1.6
24 25			24.7	0.1			12.0	0.1		1.0
25 26			23.6	0.1			11.8	0.1		0.3
20 27			23.5	0.1			11.0	0.1		0.2
28			23.1	0.1			11.3	0.1		0.2
29			22.5	0.1			11.1	0.1		
30			22.2	0.1			11.2	0.1		
31			22.1	0.1			11.1	0.1		
32				-			11.2	0.1		
33							11.2	0.1		
34							11.0	0.1		
35							11.1	0.1	-	

Appendix A. Continued

Depth	Paradise 8/10/9		Paradise-Site 2 8/10/93		Red-Hill 8/11/93		Tecun 7/13/		Vernor 8/11/93	
(feet)	Temp	DO	Temp	DO	Temp	DO	Temp	DO	Temp	DO
0	26.0	7.4	26.8	9.8	30.5	8.4	33.9	7.9	27.0	10.4
1	26.0	7.3	26.7	9.9	29.3	9.4	33.9	7.9	27.1	10.5
2	26.0	7.2	26.4	8.8	27.7	9.8	33.9	8.0	27.1	10.3
3	26.0	6.8	26.1	7.8	27.1	9.3	33.7	8.0	27.1	9.8
4	26.0	6.8	26.0	7.6	26.8	8.7	33.3	8.0	27.0	8.3
5	26.0	6.5	26.0	7.4	26.6	8.7	33.0	8.0	26.5	0.6
6	25.9	6.1	26.0	7.1	26.1	4.7	31.8	8.0	26.1	0.2
7	25.9	6.1	26.0	7.0	25.3	0.4	30.8	6.9	25.7	0.2
8	25.9	6.1	26.0	7.0	23.6	0.1	29.3	4.3	24.8	0.2
9	25.9	6.0	25.9	6.9	22.1	0.1	25.7	2.2	23.3	0.2
10	25.9	6.0	25.9	6.9	20.0	0.1	23.7	0.6	20.5	0.2
11	25.9	5.9	25.9	6.9	17.8	0.1	19.6	1.2	19.0	0.1
12	25.9	5.9	25.9	6.9	16.2	0.1	18.1	0.5	18.0	0.1
13	25.9	5.8	25.9	6.9	15.2	0.1			16.7	0.1
14	25.9	5.6	25.9	6.9	14.1	0.1			15.5	0.1
15	25.9	4.8	25.9	6.9	13.3	0.1			13.8	0.1
16	25.9	4.1			12.4	0.1			12.8	0.1
17	25.8	2.8			11.4	0.1			11.9	0.1
18	25.9	<u> </u>	12		10.9	0.1			11.5	0.1
19	25.8	0.4			10.8	0.1			11.0	0.1
20					10.8	0.1			10.4	0.1
21					10.6	0.1			10.0	0.1
22					10.5	0.1			9.6	0.1
23					10.5	0.1			9.5	0.1
24					10.5	0.1			9.2	0.1
25					10.6	0.1			9.0	0.1
26					11.0	0.1			8.6	0.1
27					11.0	0.1			8.5	0.1
28 20									8.2	0.1
29									8.2	0.1

Appendix A. Concluded

Depth	Vienna 7/12	Corr. Ctr. /93		Walton Park 8/18/93		Waterloo City 7/29/93		Wesslyn 7/29/93		Whoopie Cat 7/13/93	
(feet)	Temp	DO	Temp	DO	Temp	DO	Temp	DO	Temp	DO	
0	33.3	7.9	29.5	5.6	29.9	9.5	32.1	9.6	32.3	7.3	
1	33.2	7.9	29.4	4.8	29.9	9.5	32.2	9.7	32.4	7.3	
2	33.1	8.0	29.3	3.4	29.8	9.3	32.2	9.7	32.1	7.4	
3	33.1	8.0	29.1	2.4	29.6	8.1	32.1	9.8	31.7	7.5	
4	33.0	8.0	28.8	1.2	28.8	5.0	31.9	10.0	31.6	7.5	
5	32.9	8.1	28.5	0.5	28.2	2.5	31.6	10.0	31.5	7.4	
6	32.7	8.2	28.1	0.2	26.4	0.3	31.1	9.9	31.3	7.3	
7	32.4	8.2	28.0	0.1	25.5	0.2	30.5	10.2	31.1	7.2	
8	29.5	8.5	26.9	0.1	25.2	0.2	29.2	8.1	29.4	6.9	
9	27.8	9.0	26.1	0.1	23.9	0.2	28.2	6.8	27.1	6.0	
10	26.4	9.2	25.5	0.1	23.1	0.2	26.3	2.6	25.3	4.9	
11	23.9	6.1	25.4	0.1	22.5	0.2	23.5	0.6	23.0	4.1	
12	22.5	3.1			21.3	0.2	21.8	0.1	21.1	3.7	
13	19.7	0.2			20.8	0.2	19.9	0.1	18.4	3.6	
14	17.3	0.2			19.9	0.2	18.1	0.1	17.1	2.8	
15	15.9	0.2			18.9	0.2	16.2	0.1	15.2	1.6	
16	14.6	0.2			18.5	0.2	14.8	0.1	12.0	1.3	
17	13.7	0.1			17.9	0.2	13.9	0.1	10.9	0.7	
18	12.8	0.1			17.6	0.2	12.1	0.1	9.9	0.3	
19	12.0	0.1			17.2	0.2	11.2	0.1	9.5	0.2	
20	11.2	0.1			16.9	0.2	11.0	0.1	9.0	0.2	
21	10.8	0.1			16.7	0.2	10.7	0.1	8.6	0.2	
22	10.5	0.1			16.4	0.2	10.0	0.1	8.4	0.2	
23					15.9	0.2	9.7	0.1	8.2	0.2	
24 25							9.6	0.1	8.1	0.2	
25 26							9.4	0.1	8.0	0.2	
26 27							9.0	0.1	8.0	0.2	
27							9.0	0.1			
28							8.8	0.1			
30							8.6	0.1			
31							8.7 8.6	0.1			
32							8.6 8.7	0.1			
33 34							8.7 8.8	0.1 0.1			
34 35							8.8 8.9				
33							8.9	0.1			