Contract Report 2005-04

Kane County Water Resources Investigations: Interim Report on Shallow Aquifer Potentiometric Surface Mapping

by

Randall A. Locke II and Scott C. Meyer

provided by Illinois Digital Environment for Act

Prepared for Kane County Development and Resource Management Department

April 2005

Illinois State Water Survey Center for Groundwater Science Champaign, Illinois

A Division of the Illinois Department of Natural Resources

Kane County Water Resources Investigations: Interim Report on Shallow Aquifer Potentiometric Surface Mapping

by Randall A. Locke II, P.G. and Scott C. Meyer, P.G.

Center for Groundwater Science Illinois State Water Survey 2204 Griffith Drive Champaign, Illinois 61820-7495

Prepared for the

Kane County Development and Resource Management Department Phillip S. Bus, Executive Director

April 2005

Contents

Page

Introduction	1
Description of Study Area	2
Previous Investigations	2
Acknowledgments	5
Tenne weaghtenis	
General Background	7
Aquifers and Confining Beds	7
Potentiometric Maps	7
Shallow Hydrostratigraphy of Kane County	8
Groundwater Recharge and Discharge	. 12
Methods	. 15
Inventory Phase	. 15
Well Selection (PICS and PWDB)	. 15
Head Measurements	. 17
Determination of Well Locations and Measuring Points	. 20
Synoptic Phase	. 20
Potentiometric Map Development	. 22
Aquifer Assignments and Data Validation	. 22
Contouring	. 26
Analysis of Potential Aquifer Connections	. 27
Results and Discussion	. 29
Interim Potentiometric Maps	. 29
Potential Aquifer Connections	. 37
Influence of Topography and Perennial Streams	. 39
Representation of Cones of Depression	. 39
Use of Maps	. 41
Characterization of Groundwater Flow	. 41
Identification of Recharge and Discharge Areas	. 41
Calibration of Groundwater Flow Models	. 43
Effects of Groundwater Withdrawals	. 43
Baseline Data for Comparison to Future Conditions	. 43
Conclusions	. 45
References	. 47
Appendix A. System of Location	. 51

	Р	lage
Appendix B.	Potentiometric Network Well Data	. 52
Appendix C.	2003 Shallow PICS Groundwater Withdrawals in Kane County	. 86

Executive Summary

Prompted by concerns for their county's water resources, Kane County officials funded a multifaceted project to be conducted by the Illinois State Water Survey (ISWS) and Illinois State Geological Survey (ISGS). The project, initiated in May 2002 and scheduled to conclude in May 2007, will provide baseline water-resources data, analyses, and tools for future analyses of water resources available to the county.

This report presents and discusses groundwater data and analyses performed as a part of the ongoing investigations in Kane County. Shallow aquifers considered include the unconsolidated sand-and-gravel aquifers and the uppermost bedrock (i.e., the shallow bedrock aquifer). Deeper bedrock aquifers, including the productive Ancell Group and Ironton-Galesville sandstones, are not within the scope of this study, but are discussed in other ISWS reports.

The study area includes Kane County and adjacent townships covering a total area of 1260 square miles. A network of 1010 private, public, industrial, and commercial wells was assembled during the inventory phase (May 2002 -August 2003). During the synoptic phase (September -October 2003), water-level measurements were collected from those wells. Water-level data were used to construct potentiometric maps for four shallow aquifers: the unnamed tongue below the Batestown Member, the Ashmore Tongue, the aggregated Glasford Formation sands, and the shallow bedrock.

Using only groundwater data to constrain the potentiometric surfaces of individual aquifers, the potentiometric surfaces still closely correlated with perennial stream configurations and land-surface topography. The Fox River and Marengo Ridge are the most influential features that determine regional groundwater flow patterns in the county. Groundwater flow west of the Fox River is predominantly to the south and east. East of the Fox River, flow is to the south and west.

The interim potentiometric maps can be used to characterize regional groundwater flow, identify areas of groundwater recharge and discharge, determine regional effects of groundwater withdrawals, and provide a baseline for comparison with future groundwater conditions. The maps will be useful in developing a conceptual model of groundwater flow and mathematical groundwater flow models for a wide range of analyses, including aquifer development scenarios.

In 2003, 46 high-capacity wells accounted for 6.3 billion gallons or 97 percent of the total reported groundwater withdrawals of 6.5 billion gallons from the shallow aquifers in Kane County. If unreported withdrawals also are estimated, total withdrawals in 2003 may have been as much as 6.9 billion gallons. Groundwater withdrawals appear to have locally influenced the head surfaces, particularly in east-central and southeastern Kane County. Areas of relatively low head in the shallow bedrock aquifer may reflect large withdrawals from the aquifer, hydraulically connected units, and/or areas of significant discharge to the Fox River.

A preliminary analysis of aquifer connections was based on potentiometric surfaces. Areas of potential aquifer connection were identified solely on similarity of measured heads. However, to refine this analysis, aquifer connections need to be evaluated further, taking into account aquifer concurrence and predicted thicknesses of intervening clay-rich geologic deposits.

Nomenclature previously used to describe the aquifers of Kane County needs to be reevaluated to address vertical and horizontal aquifer continuity. That reevaluation will require additional geological modeling to more fully characterize and differentiate hydrostratigraphic units of importance such as sands in the Tiskilwa and Glasford Formations. Interim potentiometric maps presented in this report are subject to change as the conceptual hydrostratigraphy evolves. If the interim maps require changes, final versions will be released in the final report on groundwater investigations in 2007.

Introduction

The Northeastern Illinois Planning Commission projects that the population of Kane County will increase by 30-40 percent from 2000 to 2020, but the capacity of the water resources of the county to accommodate additional demand is unknown. Furthermore, legal restrictions on the use of Lake Michigan water for Illinois render it unlikely that Lake Michigan, a water source for Chicago and other suburban areas, will ever become available to Kane County. Withdrawals from the deep bedrock aquifers in northeastern Illinois, a source of groundwater that is heavily used in Kane County, totaled 72 million gallons per day (mgd) in 1999 (Burch, 2002). That withdrawal rate may exceed the practical sustained yield of the deep bedrock aquifers, estimated as 28-180 mgd by Walker et al. (2003), and as a result, continued hydraulic head declines may occur in wells open to those aquifers. Moreover, the potential exists for water quality in the deep bedrock system to degrade as groundwater containing undesirable concentrations of dissolved constituents such as radium, barium, and chloride moves toward pumping centers. To accommodate additional demand in Kane County, water likely will be obtained from the shallow glacial and shallow bedrock aquifers and the Fox River, the most environmentally sensitive water resources available to the county. Yet, an analysis of the groundwater use to potential aquifer yield in Illinois by Wehrmann et al. (2004) identified several townships in Kane County where groundwater from shallow glacial aquifers may already be overused. These shallow and surficial sources are also likely to be more susceptible to changes in precipitation and evapotranspiration rates resulting from regional and/or global climate variations and change. Reduced water availability as a consequence of drought is aggravated by increased water demand during droughts.

Such concerns prompted Kane County officials to fund a multifaceted project, conducted by the Illinois State Water Survey (ISWS) and Illinois State Geological Survey (ISGS). The project, initiated in May 2002 and scheduled to conclude in May 2007, will provide baseline water-resources data, analyses, and tools for future analyses of water resources available to the county. This *Interim Report on Shallow Aquifer Potentiometric Surface Mapping* is one of a series of products for Kane County as part of the project. The first of these products, an *Interim Report on Geologic Investigations*, was delivered in 2004 (Dey et al., 2004a). An *Interim Report on Three-Dimensional Geological Modeling* and a *Report on Temporal Changes in Deep Bedrock Groundwater Quality* will be delivered concurrently with the present report. A *Computer Model for Surface Water Accounting and Availability* will be delivered in 2006, and a *Final Report on Geological Investigations* and a *Final Report on Groundwater Investigations* will be delivered in 2007. A series of groundwater flow models of the aquifers supplying water to Kane County, together with a database of hydrologic information that supported model development, also will be delivered in 2007.

Purpose and Scope

The purpose of this report is to present and discuss water-level data collected for ongoing water-resources investigations for Kane County. Those data were used to construct potentiometric maps, also sometimes referred to as water-level maps, for shallow aquifers in Kane County. A *potentiometric map* is a contour map of the potentiometric surface of a particular hydrogeologic unit (Fetter, 1988) and illustrates hydraulic head, or the level to which water will rise, in tightly cased wells in that hydrogeologic unit. These maps can be constructed for both confined and unconfined aquifers. Contour values often are expressed as an elevation above a datum such as feet above mean sea level. This report refers to hydraulic head simply as head, and other components of head are not considered. The maps are being used to develop a conceptual understanding of groundwater flow. The collected head data also are being used in the development of groundwater flow models, mathematical models that allow investigators to evaluate aquifer development scenarios and to conduct a wide range of analyses. Shallow aquifers considered in this report include the unconsolidated sand-and-gravel aquifers and the uppermost bedrock (i.e., the shallow bedrock aquifer). Potentiometric maps presented in this report are interim versions that likely will be revised during the next two years, with final versions to be included in the Final Report on Groundwater Investigations in 2007. Heads in deep bedrock aquifers, including the productive Ancell Group and Ironton-Galesville sandstones, are not within the scope of this study, but are discussed by Burch (2002).

Description of Study Area

Kane County (Figure 1) is located in northeastern Illinois and shares borders with several other counties: north (McHenry County), west (De Kalb County), south (Kendall County), and east (Cook and DuPage Counties). Aurora, the largest city in Kane County, also includes portions of DuPage, Kendall, and Will Counties. The Kane County portion of Aurora had a population of 100,290 in 2000; the total population of Aurora in 2000 was 142,990 (U.S. Census Bureau, 2004). About 60-70 percent of Kane County is drained by the Fox River and its tributaries (Figure 2). The Fox River, which flows southward through the eastern townships of the county, drains most of the eastern and southern parts of the county. Tributaries of the Kishwaukee River drain portions of the northwestern part of Kane County. Land-surface elevations range from less than 620 feet along the Fox River south of Aurora to about 1065 feet on Marengo Ridge, a prominent north-south trending moraine in northwestern Kane County. Elevations throughout this report are in feet (ft) above the National Geodetic Vertical Datum, commonly referred to as mean sea level.

The 1260-square-mile study area includes Kane County and adjacent townships in surrounding counties (Figure 1). Head data were collected in areas outside Kane County to help develop a more complete understanding of groundwater movement inside the county.

Figure 1. Location of study area (in gray).

Figure 2. Patterns of surface drainage and locations of major watershed boundaries in Kane County.

Previous Investigations

Previous studies of water levels in the shallow aquifers in Kane County are restricted in scope to the shallow bedrock aquifer. Potentiometric maps of the sand-and-gravel aquifers in Kane County do not appear in the published literature.

Visocky and Schulmeister (1988) mapped the 1986 potentiometric surface of the shallow bedrock aquifer in a portion of Kane County and adjacent areas of DuPage, Kendall, and Will Counties. They observed that the potentiometric surface in that region generally slopes from northwest to southeast and attributed the slope to high regional pumping from the aquifer in the eastern part of the map area and, possibly, to an eastward dip of the bedrock. Graese et al (1988) noted that Visocky and Schulmeister's (1988) mapping showed the shallow bedrock aquifer discharges, in most places, to the Fox River, and that the Fox River is a major influence on the regional slope of the potentiometric surface of the aquifer in Kane County and adjacent areas.

Potentiometric maps (Kay and Kraske, 1996) showed that heads in 1995 in the shallow bedrock aquifer in Campton Township, Kane County, generally decreased from west to east. They noted that, in some areas, the potentiometric surface of the aquifer loosely replicates bedrock topography.

Several previous studies have mapped the potentiometric surface of both the shallow bedrock aquifer and sand-and-gravel aquifers in areas of DuPage, McHenry, and Will Counties that overlap the study area for the present report. Those maps include the 1960, 1966, and 1979 potentiometric surfaces of the shallow bedrock aquifer in Du Page County (Zeizel et al., 1962; Sasman et al., 1981) and the 1990 potentiometric surface of the shallow bedrock aquifer in Will County (Roadcap et al., 1993). Meyer (1998) mapped the 1994 potentiometric surfaces of the shallow bedrock aquifer and major sand-and-gravel aquifers in McHenry County.

Acknowledgments

This study was funded by Kane County and the State of Illinois. The views expressed are those of the authors and do not necessarily reflect the views of the sponsor or the Illinois State Water Survey. Paul Schuch of the Kane County Development and Resource Management Department deserves special thanks for his encouragement, assistance, and willingness to coordinate interactions with Kane County officials and stakeholders. The authors acknowledge and thank the hundreds of well owners in the Kane County area who permitted use of their wells in this study. Numerous people at the Illinois State Water Survey contributed to the project. Mark Anliker, Brian Coulson, Eric Hritsuk, Kevin Rennels, Amy Schwarz, and Noe Velazquez all assisted tremendously in the extensive fieldwork necessary for the project: obtaining permission from well owners for use of their wells, surveying well locations, and measuring water levels. Brian Dunneback made determinations of land-surface elevations. George Roadcap, Doug Walker, and Allen Wehrmann, Director of the Center for Groundwater Science, reviewed this report and all provided encouragement and thoughtful criticism. Eva Kingston edited this report and Linda Hascall reviewed the graphics. Bill Dey and Curt Abert of the Illinois State Geological Survey provided lithostratigraphic assignments for wells, computer files for analysis of interim geology, and analyses for determination of land-surface elevations.

General Background

Aquifers and Confining Beds

Although nearly all geologic materials will transmit water, the transmission rate varies widely and is dependent on the permeability of the material and the hydraulic pressure gradient. Groundwater moves relatively rapidly through highly permeable materials and relatively slowly through those of lower permeability. An *aquifer* is a layer of saturated geologic materials that, by virtue of its comparatively high permeability, will yield useful quantities of water to a well or spring. Materials that can function as aquifers include sand and gravel, fractured and jointed carbonate rocks (limestone and dolostone), and sandstone. A *confining bed* is a layer of geologic materials having comparatively low permeability, which impedes water movement to and from adjacent aquifers. Materials that can function as confining beds include shale, silt, clay, and diamicton (a nonsorted sediment, typically of glacial origin, composed of sand-sized or larger particles dispersed through a fine-grained matrix of clay- and silt-sized particles). In general, the term *hydrostratigraphy* refers to the study of spatial relationships, both vertical and lateral, of geologic layers grouped by hydraulic characteristics (e.g., aquifers and confining beds).

Aquifers can be unconfined or confined. An *unconfined aquifer* has no overlying confining bed. The water level in a well open to an unconfined aquifer approximates the water table. The water table represents the top of an unconfined aquifer, and as it rises and falls, aquifer thickness increases and decreases, respectively. Unconfined aquifers frequently have a direct hydraulic connection to rivers, lakes, streams, or other surface-water bodies. In such situations, the water level of the surface-water body may closely approximate the water level in the adjacent unconfined aquifer. A *confined aquifer* has confining beds both above and below it.

Potentiometric Maps

A *potentiometric map* is a contour map of the potentiometric surface of a particular hydrogeologic unit (Fetter, 1988) and illustrates hydraulic head, or the level to which water will rise, in tightly cased wells in that hydrogeologic unit. These maps can be constructed for both confined and unconfined aquifers and are sometimes referred to as water-level maps or head maps. *Contour lines* or *equipotentials* connect points of equal head and represent head values. Groundwater flows from high head to low head, and directions of groundwater flow are perpendicular to equipotentials. A head map can be used to determine groundwater flow directions as well as variations in head distribution.

The potentiometric surfaces of the shallowest aquifers closely approximate land-surface topography. Nearly all topography, including small hills and valleys, is replicated in the potentiometric surface with only a minor dampening of the relief. Dampening of the relief increases in deeper aquifers, so that only large-scale topographic features are replicated in the potentiometric surfaces of deeply buried aquifers.

Heads rise and fall in response to groundwater withdrawals, recharge, evaporation and transpiration, and, in the case of confined aquifers only, aquifer loading (Freeze and Cherry, 1979). Heads typically follow a seasonal cycle that is most noticeable in shallow aquifers and at locations remote from large pumping centers, where pumping effects do not overwhelm natural cycles. Natural declines in heads usually begin in late spring and continue throughout the summer and early fall. Heads begin to rise again in late fall and peak during the spring, when groundwater recharge from rainfall and snowmelt has its greatest effect (Visocky and Schicht, 1969).

Shallow Hydrostratigraphy of Kane County

Dey et al. described the geology of the uppermost bedrock and overlying unconsolidated materials in Kane County (2004a), presented cross-sections (2004c), and mapped the lithology of the bedrock surface (2004b). Dey et al. (2004d) depicted the distribution of the St. Charles, Bloomington, Valparaiso, and Kaneville Aquifers, hydrostratigraphic units originally defined and discussed by Curry and Seaber (1990). While they can be useful in characterizing total aquifer thickness, major aquifers shown in Dey et al. (2004d) were not used as a conceptual basis for head mapping in sand-and-gravel aquifers for this report. The major aquifers are inappropriate for head mapping because they often represent total thicknesses of coarse-grained deposits across multiple lithostratigraphic units that are not necessarily hydraulically connected or even fully saturated. For this report, analyses of sand-and-gravel head data are based strictly on individual lithostratigraphic units.

This report discusses heads within the coarse-grained lithostratigraphic units (Figure 3) characterized and mapped by Dey et al. (2004a, 2004c, 2004d). It also discusses the aquifer comprised of the uppermost bedrock units immediately underlying the unconsolidated deposits. Graese et al. (1988) described bedrock stratigraphy in the study area. The main lithostratigraphic units discussed in this report are described below.

The Henry Formation is dominantly sand and gravel associated with glacial meltwater. These deposits occur throughout Kane County as kames, stream valley deposits, and alluvial fan deposits. Hansel and Johnson (1996) described the Henry Formation sands and gravels as having intertonguing relationships with the diamictons of the Wedron Group. The surficial Henry Formation and the four Henry Formation tongues occurring in Kane County are described below. With the exception of the surficial Henry Formation, sand-and-gravel aquifers described below may be confined in one area, and as a result of erosion or nondeposition, unconfined in another area.

Surficial Henry Formation. This formation consists primarily of sand and gravel with subordinate silt, clay, and diamicton not overlain by Wedron Group diamicton.

Source: Modified from Dey et al.(2004a); after Curry et al. (1999).

Notes: Fm = Formation, Mbr = Member, and T = Tongue.

Figure 3. Schematic diagram showing lateral and vertical relationships between Mason Group units and diamictons of the Wedron Group.

Beverly Tongue of the Henry Formation. The Beverly Tongue consists of sand and gravel overlain by diamicton of the Haeger Member of the Lemont Formation. In Kane County, the unit only occurs in the far northeast, where its thickness may exceed 80 ft.

Unnamed Tongue of the Henry Formation (underlying the Yorkville Member). Sand-andgravel deposits overlain directly by the Yorkville Member of the Lemont Formation form an aquifer in eastern Kane County. The thickness of that aquifer may exceed 60 ft in limited areas.

Unnamed Tongue of the Henry Formation (underlying the Batestown Member). The Batestown Member of the Lemont Formation occurs throughout all but west-central and northwestern Kane County. An unnamed tongue of sand and gravel directly underlies the Batestown Member in much of this area and is tapped as a groundwater source by a limited number of wells. Thickness of the unit may exceed 60 ft in restricted areas.

Ashmore Tongue of the Henry Formation. This formation consists of sand and gravel that directly underlies the Tiskilwa Formation, the oldest Wedron Group diamicton and the thickest diamicton unit in Kane County. Ashmore Tongue deposits are sporadic throughout most of Kane County but tend to be thinner in the southeastern part of the county. Thicknesses exceed 80 ft in some parts of northwestern Kane County.

Sand-and-gravel deposits within the Glasford Formation. This formation contains the oldest Quaternary deposits in Kane County. It is distributed throughout most of the county and contains lithologic units ranging from silty lake deposits to diamicton to sand and gravel. The Glasford is thickest in bedrock valleys. Sand-and-gravel deposits within the Glasford may yield large quantities of water, particularly in the St. Charles Bedrock valley, where they are thickest. It is possible that multiple layers of sand and gravel exist within the Glasford Formation. Unfortunately, the vertical and horizontal distribution of these comparatively deep, and therefore poorly understood, deposits is difficult to map with certainty. For this report, heads in Glasford sand-and-gravel deposits are plotted on a base map of total Glasford sand-and-gravel thickness.

Shallow Bedrock Aquifer. This aquifer consists of the upper portion of the Paleozoic bedrock immediately underlying the glacial drift. This interval of bedrock functions as an aquifer as a consequence of secondary porosity that developed from weathering of the rocks and release of confining pressure. Porosity developed when the rocks were at and near land surface prior to burial by glacial deposition. The shallow bedrock aquifer is best conceptualized as bedrock at or near the bedrock surface rather than rocks assigned to a particular lithostratigraphic unit. Nonetheless, the aquifer sometimes is referred to as the Silurian dolomite (or more accurately, dolostone) aquifer because Silurian dolostones are present at the bedrock surface in much of northeastern Illinois. It is these rocks in which the most productive secondary porosity of the shallow bedrock aquifer has developed throughout most of northeastern Illinois. In addition, the lithology and bedding

characteristics of the Silurian dolostones facilitate greater secondary porosity development than do the Ordovician Maquoketa Group, which comprise generally less productive portions of the shallow bedrock aquifer in the region. However, the Ordovician rocks still can have sufficient porosity to yield useful quantities of water to wells in Kane County.

The shallow bedrock aquifer underlies all of Kane County. Its thickness is approximately the upper 50-100 ft of bedrock where secondary porosity has developed (Bergeron, 1981; Graese et al., 1988; Visocky and Schulmeister, 1988; Kay and Kraske, 1996). Because the Ordovician and Silurian rocks comprising the uppermost bedrock gently dip eastward, this 50- to 100-ft interval contains rocks assigned to numerous Silurian and Ordovician lithostratigraphic units. The bedrock surface geologic map of Dey et al. (2004b) shows the rocks comprising the shallow bedrock aquifer in the county. In eastern and southern Kane County, dolostones of the Silurian Hunton Limestone Megagroup comprise much of the shallow bedrock aquifer, with lower parts of the aquifer possibly including shales and carbonates of the Ordovician Maquoketa Group. In most of the rest of Kane County, where erosion has removed the Silurian dolostones, Maguoketa Group rocks comprise the shallow bedrock aguifer, with the zone of secondary porosity development possibly extending into the underlying dolostone of the Galena and Platteville Groups (here referred to collectively as the Galena-Platteville Group). In extreme west-central Kane County, near Maple Park, erosion has removed both the Silurian dolostones and the Maguoketa Group, and the shallow bedrock aquifer in this area is comprised entirely of Galena-Platteville Group dolostones. In Kane County, the elevation of the top of this aquifer ranges from less than 500 ft near Big Rock in the southwest, to more than 800 ft near Burlington in the northwest.

More domestic wells in Kane County appear to be finished in the shallow bedrock aquifer than in all of the sand-and-gravel aquifers combined. The aquifer also provides water to numerous public water systems in the county.

Where two aquifers are connected, they form a single hydrostratigraphic unit. This occurs in areas where a confining unit is absent due to erosion or nondeposition. As the confining bed thins, heads in the separate, but converging, aquifers, approach a single value.

Groundwater Recharge and Discharge

Groundwater recharge is a process by which water migrates downward through the subsurface and is added to the *saturated zone* in which all pore spaces are filled with water. Although most precipitation runs off to streams or evaporates, some of it percolates downward through the soil and unsaturated zone. A portion of the recharging water taken up by plants is returned to the atmosphere by transpiration. Water that passes through the unsaturated zone and reaches the *water table*, the surface separating the saturated zone from the overlying unsaturated zone, is added to the saturated zone. Groundwater recharge occurs most readily where the materials comprising the unsaturated zone are relatively permeable and where such factors as slope and land-use practices discourage runoff and uptake of water by plants.

Groundwater eventually discharges to surface-water bodies, including springs, wetlands, streams, rivers, and lakes. Discharge processes sustain flow from springs, maintain saturated conditions in wetlands, and provide baseflow of streams and rivers. Discharge also occurs directly to the atmosphere through evapotranspiration.

In Kane County, as in roughly the eastern half of the contiguous United States that is humid, recharge to the saturated zone occurs in all areas between streams or in areas where surface water infiltrates the subsurface. In a simplified sense, discharge from the saturated zone occurs only in streams, lakes, and wetlands together with floodplains and other areas where the saturated zone intersects the land surface.

Recharge and discharge also can be considered in terms of movement of water between aquifers. Where downward vertical hydraulic gradients exist (i.e., where heads decrease with depth within the saturated zone), groundwater moves downward from the water table or from a surficial unconfined aquifer to recharge underlying confined aquifers. Where an upward vertical hydraulic gradient exists between a confined aquifer and the land surface, groundwater moves upward from the confined aquifer towards the land surface.

In general, the discharge areas of aquifers become separated by progressively greater distances as aquifer depths increase. The shallowest groundwater, which directly underlies the water table, is part of a local flow system and discharges to very small ditches and depressions. Recharge to the water table occurs only in the relatively small areas between these local discharge features. Groundwater in more deeply buried confined aquifers is part of a regional flow system and discharges to comparatively large-scale rivers, such as the Fox River, and lakes occupying major valleys and depressions. The recharge areas for these aquifers include the broad areas between the regional discharge features.

Much of Kane County has diamicton at or near the land surface. These clay-rich materials have extremely low permeabilities that inhibit the rate at which precipitation can infiltrate the subsurface, and thus the downward migration of water into underlying aquifers. Prior to European settlement, the county contained vast areas where the water table was at or near the land surface much of the year. To develop the county for agricultural use, extensive networks of tile drains and drainage ditches were constructed. Because the permeability of sand

is much greater than that of diamicton, recharge to aquifers will be concentrated in areas with sand at or near the land surface. In some areas, diamictons can be saturated, while underlying sands are only partially saturated or dry.

Groundwater recharge occurs mainly during the spring, when rainfall is high and water losses to evaporation and transpiration are low. Recharge decreases during the summer and early fall when evaporation and transpiration divert most precipitation and infiltrating water back into the atmosphere. Likewise, during winter months surface infiltration is often negligible when soil moisture is frozen, which diverts precipitation into surface-water bodies as runoff. Recharge can occur, however, during mild winters when soil moisture is not frozen (Larson et al., 1997).

Several factors affect the rate of groundwater recharge. Among these are the hydraulic characteristics of the materials both above and below the water table; topography; land use; vegetation; soil moisture content; depth to the water table; intensity, duration, areal extent, and seasonal distribution of precipitation; type of precipitation (rain or snow); and air temperature (Walton, 1965). Hensel (1992) presented a detailed discussion of groundwater recharge processes in Illinois.

Methods

A network of wells was assembled during the inventory phase of the project, and preliminary information about the wells was collected. In a subsequent synoptic phase, all wells in the network were measured in as short a time period as was practical. Head data from the synoptic phase were compiled, reviewed, and used to construct head maps for selected lithostratigraphic units in Kane County. A more detailed discussion of field procedures, data collection and validation, and map production follows.

Inventory Phase

In May 2002, training was conducted for ISWS staff selected to inventory wells in the study area. Training covered procedures for identifying candidate wells, using field equipment (e.g., personal data assistants, global positioning system units, laser rangefinders, and steel tapes) and collecting pertinent data from those wells for which permission had been obtained. The system used to describe well locations is presented in Appendix A. Between May 2002 and September 2003, ISWS staff inventoried 1010 wells (Appendix B), including 789 private wells and 221 public, industrial, or commercial wells (Figure 4).

Well Selection (PICS and PWDB)

Copies of well completion reports on file in the ISWS Private Well Database (PWDB) as of May 2002 were used to identify candidate wells. The usefulness of completion reports was commensurate with the level of accurately recorded information. Many completion reports could not be matched to an actual field location. Where field locations could be verified, general guidelines were set for desired qualitites of completion reports and wells. For example, newer reports were favored over older ones. Also, wells less than 400 ft deep and wells with open intervals within the top 50-100 ft of bedrock were given preference over deeper wells. However, in the absence of wells with the most desired qualities, other wells were accepted to increase the horizontal density of the measurement network. The goal was to develop a network of regularly spaced wells throughout each aquifer in Kane County. The target density for the well network in the shallow bedrock aquifer was one well per two square miles. Wells in the shallow bedrock aquifer were the primary inventorying objective, but wells finished in sand-and-gravel aquifers also were considered important. While maps of major Quaternary aquifers (Curry and Seaber, 1990) initially were used to locate wells in sand-and-gravel aquifers, a broader effort was made to include as many wells as possible that tapped Quaternary aquifers greater than 5 ft thick. Unfortunately, limited records were available to locate such wells.

Figure 4. Locations of wells used in the fall 2003 synoptic measurement.

The ISWS Public-Industrial-Commercial Survey (PICS) database was consulted to identify high-capacity wells open to shallow aquifers for inclusion in the well network. Within Kane County, 88 PICS wells were identified (Figure 5) that were drawing water from the Maquoketa Group or younger materials (Appendix C). Forty-six of those wells (Figure 6) either pumped greater than 100,000 gallons per day (gpd) or 36.5 million gallons per year (mgy), thus meeting the definition of high-capacity wells established by the Illinois Water Use Act of 1983. Based on the data reported to the ISWS, the total amount of water pumped from the shallow PICS wells in Kane County was 6.5 billion gallons (bg) in 2003. High-capacity wells accounted for 6.3 bg, or 97 percent, of total reported withdrawals. The preceding two estimates are based solely on data reported to the ISWS. A related analysis where unreported withdrawals were taken into account estimated total pumping from the shallow PICS wells at 6.9 bg in 2003.

An estimated 6000 well owners and operators were contacted. Some were contacted by phone, but the majority were contacted in person. Site visits were made to verify the location and suitability of a candidate well and to request permission to use the well for head measurements. If permission was granted, data collection was facilitated with an electronic form that was completed on site. Use of the electronic form also greatly aided consistent data entry and assembly of a project database.

Head Measurements

During well inventorying, an initial head measurement was made following ISWS standard operating procedure and was recorded on electronic and paper forms. Depth to water in most domestic, commercial, and industrial wells was measured with a disinfected steel measuring tape to avoid contaminating the well. The measuring point in most cases was the top of the casing after removing the well cap. In other cases, the well cap did not need to be removed and the top of the vent tube, vent hole, or access port was used as the measuring point. The actual measuring point used was noted on the electronic field form. In most public water-supply wells, the depth to water was measured with a disinfected steel measuring tape inserted through a vent tube or access port. All head measurements made with a steel measuring tape were recorded to the nearest 0.01 ft.

It was necessary to measure the depth to water in 54 public water-supply wells (5 percent of the 1010 wells measured) with an air line, a length of tubing attached to the column pipe in the well. Measuring by the air-line method is accomplished by displacing all the water in the tube using a tire pump or compressed air source. Air pressure in the tube then is read from a gage, and the height above the bottom of the air line of an equivalent column of water is calculated based on the reading. Accuracy of air-line measurements is based primarily on the gages used. Typical gages register air pressures of up to 100, 200 or 300 pounds per square inch (psi), which equal 230, 460, or 690 ft of water, respectively. Burch (2002) reported gage accuracy within one percent in the center of their ranges (2.3-6.9 ft in 100- to 300-psi gages, respectively), and within 2 percent at full deflection (4.6-13.8 ft in 100- to 300-psi gages, respectively).

Figure 5. Locations of 88 ISWS PICS wells open to shallow bedrock and unconsolidated deposits in Kane County.

Figure 6. 2003 annual withdrawals and locations of 46 ISWS PICS high-capacity wells open to the shallow bedrock and unconsolidated deposits in Kane County.

Based on the range of gage types and water levels encountered, most air-line measurements for this project have an estimated accuracy within ± 5 ft. Head measurement with a steel tape, preferred over the air-line method, was used wherever possible, because of its greater accuracy.

Determination of Well Locations and Measuring Points

At the time water levels were measured, global positioning system (GPS) equipment was used to survey the location of each well. TrimbleTM GPS units connected to personal data assistants were used. Because of the size and relatively low relief of the study area, uncorrected, autonomous GPS locations were considered sufficient representations of well location. The maximum error of these positions is expected to be within ± 100 ft in the horizontal direction, but a more typical accuracy may be within ± 20 ft.

Vertical locations of the measuring points were determined by adding the length of well casing (i.e., stick up) above land surface to an estimated land-surface elevation. Land-surface elevations within Kane County were determined by an ISGS analysis of a 2-ft digital contour map (personal communication with Tom Nicoski, Director, Kane County GIS Technologies Department, June 2003). Those determinations are estimated to be accurate within ± 2 ft of land surface. Outside of Kane County, 1:24,000 scale digital raster graphics (DRGs) of topographic maps produced by the USGS were used for visual estimation of elevation. In those areas, it is estimated that the predicted elevation may have maximum errors within ± 20 ft, but more typically will be accurate within ± 5 ft. For a subset of wells outside of Kane County, horizontal and vertical positions were surveyed previously by high-accuracy GPS techniques during an earlier project and their locations are expected to be accurate to within ± 0.06 ft horizontally and ± 0.12 ft vertically (Meyer, 1998).

Synoptic Phase

After the well network was established, the synoptic phase was initiated. Because heads constantly change in response to variations in precipitation, pumpage, and other factors, a potentiometric map must be constructed from data collected over as short a time period as possible. Therefore, wells included in the network during the inventory phase were remeasured in the fall of 2003. Because of the size of the network, the synoptic phase lasted nearly six weeks (September 22, 2003-October 30, 2003). By collecting the data as rapidly as possible, the resulting maps represent a "snapshot" of heads during the fall of 2003.

During the synoptic phase, field personnel followed procedures to make sure they were measuring the static, or resting, head in the well. After taking a steel tape measurement, personnel waited several minutes before taking a second measurement. In most cases, the second measurement was within ± 0.02 ft of the first one and was considered an adequate validation that the head in the well was not changing significantly. However, if the second measurement was more than ± 0.10 ft, an effort was made to determine the source of variation. When variation occurred, it was often the water in the well recovering from use (i.e., rising). In those cases, the well was allowed to recover for about 15 minutes, and the measurements were not taken for wells measured by the air-line method. Any relevant remarks were noted on the field form and reviewed later as synoptic field data were entered into the project database. Appendix B lists inventoried wells; their township, range, section, and plot location; project identification number; and measured head during the synoptic phase.

In an effort to quantify the variability of heads during the synoptic phase, a subset of 59 wells was measured on September 24, 2003 and again on October 29, 2003. Differences between the paired measurements ranged from +4.6 ft (September head higher) to -3.5 ft (October head higher). Eighty-six percent (51 of 59 wells) had measurements within ± 1.0 ft of one another. This suggests that relatively small variations occurred in heads during the six-week synoptic phase.

In addition to head variability throughout the network, water-level elevations are subject to uncertainties relating to measurements or estimates used to determine elevations. Horizontal positions of wells were measured by uncorrected GPS and are accurate within ± 100 ft. Measuring point stick ups were measured with a folding ruler and recorded to the nearest tenth of a foot. Because of unevenness in the land surface at well heads, those measurements are likely to be accurate within ± 0.3 ft. Measurements of water depth made with a steel tape were recorded to the nearest hundredth of a foot, and likely are accurate within ± 0.1 ft. Measurements of water depth made by air line were recorded to the nearest foot and likely are accurate within ± 5 ft. Land-surface elevations within Kane County were determined by plotting horizontal locations determined by GPS on the Kane County 2-ft digital topographic map and likely are accurate within ± 2 ft. By combining the uncertainties of each individual measurement, the maximum level of uncertainty in Kane County for reported groundwater elevations based on steel tape measurements is expected to be within ± 2.4 ft. For reported elevations based an air-line measurements, the maximum uncertainty is expected to be within ± 7.3 ft.

Two methods of determining measuring-point elevations were compared at 72 well locations. High-quality GPS data were collected during a previous study in McHenry County during the fall of 1994. Data were reported to be accurate within ± 0.06 ft horizontally and ± 0.12 ft vertically (Meyer, 1998). Less accurate GPS data were collected during the inventory phase of the current project between spring 2002 and fall 2003. As previously stated, the horizontal accuracy of those locations is expected to have a maximum error within ± 100 ft. Land-surface estimates were made by using the horizontal GPS locations and determining elevations from published topography on 1:24,000 scale USGS DRGs. Elevations determined from DRGs then were adjusted to account for the height of the measuring points above land surface. When the adjusted elevations were subtracted from the high-quality GPS elevations, 92 percent (66 of 72 wells) were within ± 5.0 ft of the high-quality GPS elevation with a mean absolute error of 2.5 ft. Differences ranged between 6.5 and -15.2 ft. No high-quality GPS data were collected in Kane County, so this comparison was limited to the portion of the study area in T43N. While not applicable to the data collected within Kane County, this comparison illustrates the uncertainties in elevation estimates from the DRGs made for areas surrounding Kane County.

Head data were validated at several stages in the process. While in the field, synoptic head measurements were compared to historical heads (i.e., those reported on a well completion report and from the inventory phase) to determine if the measurement was consistent. Once constructed, the electronic database of well and head information was reviewed and edited to improve completeness and consistency.

Potentiometric Map Development

Potentiometric maps were constructed for selected lithostratigraphic units. Map construction relied primarily on heads measured in wells. By subtracting the depth to water in a well from the elevation of the measuring point, the head was obtained. Heads from wells open to a single lithostratigraphic unit were plotted on a base map and then contoured. A discussion of some of the main considerations that went into contouring head data follows.

Aquifer Assignments and Data Validation

Heads can differ significantly between aquifers, so care must be taken to assure that head data used to construct a potentiometric map are obtained from wells open only to that aquifer. The ISWS project database was provided to the ISGS so lithostratigraphic determinations for each well could be made. Determinations were made for 940 of 1010 wells. Determinations could not be made with the information available for 70 wells in the study area. An effort is underway to compile additional information that may allow determinations for the remaining wells. Table 1 gives well counts by lithostratigraphic unit, and Figures 7 and 8 show their distribution throughout the study area.

Table 1.	Occurrence of	of Wells	by Li	ithostra	tigrapl	hy
			•			•

Lithostratigraphic Unit(s)	No. of wells in study area	No. of wells in Kane County
Surficial Henry Formation	11	4
Beverly Tongue	20	0
Unnamed tongue below the Yorkville Member	13	5
Unnamed tongue below the Batestown Member	16	15
Sand in the Tiskilwa Formation	22	10
Ashmore Tongue	52	35
Sands in the Glasford Formation	104	60
Total unconsolidated wells	238	129
Silurian Bedrock (undifferentiated)	197	78
Silurian and Ordovician Maquoketa Bedrock	149	73
Ordovician Maquoketa Bedrock	195	95
Ordovician Maquoketa and Galena-Platteville Bedrock	29	7
Ordovician Galena-Platteville Bedrock	23	1
Ordovician Galena-Platteville and Ancell Bedrock	4	0
Silurian, Ordovician Maquoketa, and Ordovician Galena-Platteville Bedrock	4	1
Ordovician Ancell Bedrock	7	1
Total consolidated wells	608	256
Total wells with unknown lithostratigraphy or rejected measurements	164	86
Grand total	1010	471

Figure 7. Locations of wells throughout the study area by lithostratigraphic unit.

a) Tiskilwa Formation sands

b) Ashmore Tongue

d) Shallow bedrock

Figure 8. Locations of wells throughout the study area by lithostratigraphic unit.

After head data were separated by lithostratigraphy, potentiometric surfaces were interpolated using an ordinary kriging routine in the Geostatistical Analyst extension of ArcGIS[™] software version 9.0 (ESRI, 2001). Parameters of the kriging routine were the same for all head data and used spherical models and a minimum of 80 observed head values distributed among eight sectors to determine each interpolated head value. Working maps were used to explore and visually review the head data. Anomalous values were identified, and their source data were reviewed. If a measurement was suspected of being inaccurate, unrepresentative, or inconsistent, it was retained or rejected based on best professional judgment. For example, inaccurate measurements often were rejected based on field notes indicating unclear readings because of condensation or bacterial fouling. In other situations, heads may have been deemed unrepresentative or inconsistent if they were not consistent with previous measurements from the well or with measurements from adjacent wells. If the well was screened in a different lithostratigraphic unit, was too deep, or an anomalous condition was noted at the time of measurement (e.g., recent pumping), the measurement was considered invalid and was qualitatively marked in the database so that it was not included with subsequent data exports. A new working map was made and evaluated. This iterative process of validation was used until all anomalous values were identified and addressed. It was most actively used in reviewing data for the shallow bedrock aquifer. Data from 67 wells were excluded using this process.

Contouring

The process of contouring head data involves interpolating heads in areas lying between irregularly spaced head measurements. Contouring may be done manually or with computer programs using automated routines. For this report, preliminary head maps were constructed using computer methods that were effective, rapid, and systematic for the purposes of error checking, outlier identification, and general data exploration. The preliminary maps are being used to develop a conceptual model of the hydrostratigraphy, which in turn allow development of a numerical groundwater flow model. Hand contouring, while much slower than automated contouring, make it possible to consider multiple potential influences (e.g., topography, surface water connections, and aquifer connections) on the representation of the potentiometric surface. After the preliminary computer-generated head maps have been evaluated with respect to the local-scale shallow groundwater flow model for Kane County and the final three-dimensional geologic model, adjustments may be warranted. Additional details regarding head maps for individual aquifers are discussed later.

Several assumptions were made to allow contouring. Individual aquifers were assumed to be laterally continuous deposits. While this is only strictly true for the shallow bedrock aquifer, it was a starting point from which the analyses could begin. No surface-water data were used to constrain interpolations of any head surface. Areas with sand-and-gravel units at least 5 ft thick were determined by the ISWS using data from the ISGS three-dimensional Kane County geologic model (*circa* April 2004). Contour lines were generated using ordinary kriging and clipped to 5-ft aquifer isopachs. Theoretical considerations dictate that the equipotentials must form a right angle with aquifer boundaries. Five-ft isopachs were used to represent an aquifer boundary, but in reality the aquifers exist outside of those boundaries. Equipotentials for the interim potentiometric maps were not forced to intersect the represented aquifer boundaries at

right angles, although in many cases they already do. Contour lines were dashed to indicate that full analysis of head data is not yet complete. All maps and contours are subject to change until final versions of the maps are published.

Analysis of Potential Aquifer Connections

Potentiometric surfaces of aquifers in Kane County are influenced by connections between aquifers. A confining bed that separates two aquifers in one part of the county may not be present in other areas, and the aquifers may form a single hydrostratigraphic unit in the area where the confining bed is absent. As the confining bed thins, heads in the separate, but converging aquifers must themselves approach a single value.

An assessment of heads identified areas with similar measured heads in different aquifers. Potentiometric surfaces of four lithostratigraphic units were prepared in ArcMapTM. These maps were converted into files containing a grid of regularly spaced cells (i.e., a raster or grid file), each having a value of the interpolated head. Grid files were needed to make cell by cell mathematical comparisons of head values between two aquifers. When cell values of a grid file were subtracted from cell values in a second grid file, results were stored in a third grid file. By comparing all four potentiometric surfaces to one another, six difference grids were generated. Cell values for each difference grid then were reclassified into groups, and ArcGISTM tools such as aggregate and majority filter were used to generalize the areas with head differences within a specified range. This analysis is not considered to be fully diagnostic of aquifer connections, but it is one way to identify potential areas of connection.
Results and Discussion

Interim Potentiometric Maps

Interim maps are presented from the shallowest aquifer to the deepest aquifer. The first two maps (Figures 9 and 10) show only raw head data, because insufficient data were available for head contouring. No head map was constructed for the Beverly Tongue, because all wells in this unit occur outside of the county (Figure 7b).

The shallowest coarse-grained deposit with sufficient data for contouring is the unnamed tongue of the Henry Formation below the Batestown Member, which is less than 5 ft thick or absent in the northwest part of the county (Figure 11). Measured head values ranged from 657 ft in City of Aurora well 101 in T38N, R7E to 911 ft in two wells: one in T42N, R8E, another in T41N, R7E. Because of the limited data, contours only were allowed to extend into a portion of T38N. In addition, the contours in T38N, T39N, and T40N are based on only four head values. The remaining 11 head values occur in T41N and T42N in R7E and R8E, respectively. There are significant inconsistencies in this map, especially in T39N and T40N, R8E, where interpolated head values are 60 ft or more above the elevation of the Fox River. This is not an accurate representation of actual conditions and is the result of the lack of groundwater field data in those areas. Inclusion of river elevations may be necessary in subsequent versions of this map to constrain the equipotentials.

The next deeper aquifer is the aggregated Tiskilwa Formation sands. The April 2004 geologic model did not differentiate among the Tiskilwa Formation sands, and data were insufficient to determine the extent of the aquifer(s). Wells open to the Tiskilwa Formation sands were inventoried in northwestern Kane County where the Tiskilwa diamicton is very thick (Figure 8a), but insufficient data about aquifer occurrence and thickness exist for head map construction. Measured heads ranged from 730 ft (T43N, R9E) to 989 ft (T42N, R6E).

The next deeper aquifer with sufficient data for potentiometric surface mapping was the Ashmore Tongue, which is greater than 5 ft thick primarily in northern and western Kane County (Figure 12). Measured heads ranged from 668 ft in the Village of South Elgin well 6 (T41N, R8E) to 899 ft (T41N, R6E). Network wells in this aquifer are concentrated in northeastern and western Kane County.

Figure 9. Fall 2003 head elevations for the surficial Henry Formation.

Figure 10. Fall 2003 head elevations for the unnamed tongue of the Henry Formation (below the Yorkville Member).

Figure 11. Fall 2003 head map for the unnamed tongue of the Henry Formation (below the Batestown Member).

Figure 12. Fall 2003 head map for the Ashmore Tongue.

The next deeper potentiometric surface is that of the aggregated Glasford Formation sands, which are greater than 5 ft thick in many parts of the county (Figure 13). Measured heads ranged from 611 ft in Village of Montgomery well 11 (T38N, R8E) to 899 ft (T41N, R6E). Network wells occur throughout Kane County and some are concentrated in the southwest to northeast trending St. Charles Bedrock valley and in the southeast to northwest trending Aurora Bedrock valley. At this point in the development of the geologic model, Glasford Formation sands have not been separated. This aggregation does not permit interpretation of flow among Glasford Formation sands, but does permit presentation of data at the current very coarse scale and for general interpretation of flow among the shallow aquifers. To better determine hydraulic connection of shallow bedrock, Glasford sands, and the Ashmore Tongue, refinements are necessary to lithostratigraphic layers within the Glasford Formation in the geological model.

The deepest potentiometric surface mapped for this report is that of the shallow bedrock aquifer that is laterally continuous throughout the county (Figure 14). Measured heads ranged from 602 ft in Village of Montgomery well 13 (T38N, R8E) to 912 ft (T41N, R7E), although the 900-ft equipotential line is not visible on the map because it is hidden by a well symbol. Network wells in this aquifer are distributed throughout the county.

The Fox River is a primary influence on the configuration of the potentiometric surfaces presented. Potentiometric surfaces also are influenced by groundwater withdrawals, aquifer thickness, and aquifer hydraulic conductivity. For the shallow bedrock, computer-generated contours did not account for the presence of the Fox River in at least two areas. Those areas have less densely spaced head data and are where the 680- and 740-ft contour lines cross the river. Positions of all contour lines will be reviewed in relation to major surface-water features, and if adjustments are necessary to reflect known hydrologic conditions such as gaining or losing relationships, corrected maps will be provided in the final report.

Potentiometric maps from this study are based on measured heads from the fall of 2003 at relatively few locations. Heads in areas between these points were interpolated by computer methods from measured values. These are approximations of heads during a brief period of time, and current heads will probably differ, especially in areas where data are less dense.

Figure 13. Fall 2003 head map for the total Glasford Formation sands.

Figure 14. Fall 2003 head map for the shallow bedrock aquifer.

Hydraulic conductivity and aquifer thickness can influence potentiometric surface configuration, but these influences are less obvious than those of topography and aquifer connections. Hydraulic conductivity multiplied by aquifer thickness is equal to *transmissivity*, a property that quantifies the ability of an aquifer to transmit water. Where hydraulic conductivity and aquifer thickness are relatively high, so too is transmissivity. While it is only one of several possible explanations, low hydraulic gradients, represented on a head map by widely spaced equipotentials, can indicate high transmissivities. Variation in spacing of equipotentials can reflect corresponding variation in aquifer thickness or hydraulic conductivity. Given limited data on distribution of hydraulic conductivities in the shallow aquifers of Kane County, it is nearly impossible to link specific features of Figures 11-14 to variation in hydraulic conductivity, although subsurface mapping may permit some potentiometric surface features to be associated with variation in aquifer thickness.

Potential Aquifer Connections

From the head similarity analysis, areas were identified with head values between two aquifers within ± 1.5 ft of one another (Figure 15). As stated previously, heads approach a common value where aquifers are hydraulically connected. The 1.5-ft threshold was chosen based on a fairly small but plausible vertical hydraulic gradient of ± 0.015 within an idealized 100-ft thick aquifer. These areas could indicate aquifer connection or areas of head similarity with no aquifer connection. This analysis is not diagnostic of aquifer connection, but rather suggests locations warranting further evaluation.

Additional corroboration with geologic data is necessary to exclude areas with an intervening layer of fine-grained materials or to include areas with thin, discontinuous, or absent tills. Preliminary reviews of till thicknesses were conducted, but the interim geologic model discussed by Dey (2004a) does not adequately differentiate layers within the Glasford Formation for this analysis. To better determine hydraulic connection of shallow bedrock, Glasford sands, and the Ashmore Tongue, refinements are necessary to lithostratigraphic layers within the Glasford Formation in the geological model. Those aquifers contain the greatest densities of head data. While it is an interpretation of the three-dimensional geologic model, the shallow groundwater flow model under development also may identify potential areas of connection. It also may provide a basis for selecting different thresholds for use in other head difference analyses. As subsequent versions of the three-dimensional geologic model are developed, those analyses may need to be redone using new lithostratigraphic geometries.

Figure 15. Areas of head similarity in selected aquifers.

Influence of Topography and Perennial Streams

The potentiometric surface of an aquifer is often a subdued replica of land-surface topography. The degree of replication decreases as depth increases so that only major topographic features are reflected in head surfaces of deeply buried aquifers. The two most dominant features in Kane County that appear to influence all shallow potentiometric surfaces are the Fox River and Marengo Ridge. All of the mapped surfaces have their highest heads in the northwest in the vicinity of Marengo Ridge, particularly in or near T41N, R6E. Southerly or easterly regional groundwater flow dominates most of the county west of the Fox River. Southerly and westerly flow is more common east of the Fox River.

The potentiometric surface of the shallow bedrock aquifer correlates very closely with surface-water flow in perennial streams (Figure 16). Although no surface-water data were used to constrain interpolations of any groundwater head surface, streams are perpendicular to groundwater contours in most areas. The head data suggest that the shallow bedrock aquifer primarily discharges to the Fox River except in areas of significant pumping. Maps at the scale presented (as well as in consideration of the data density) may not be appropriate to determine localized gaining and losing relationships with smaller tributaries, but the influence of surficial flow is evident in the orientation of groundwater contours in all potentiometric surfaces presented. The boundary of the Kishwaukee River watershed is a major surface-water divide and is located at the edge of the gray shaded area (Figure 16). All unshaded areas on that map are part of the Fox River surface watershed. The area in Kane County that contributes groundwater to the Fox River, while not entirely coincident, appears in similar locations as the surface watershed. Groundwatershed and surface watershed boundaries often do not match, but groundwater highs in T40N, R7E; T41N, R7E; and T42N, R8E show they are closely coincident at those locations. Elsewhere (e.g., T42N, R6E), the groundwater highs are farther west than the surface watershed boundary. Differences in those boundaries may be at a maximum where the land surface and shallow bedrock are least hydraulically connected.

Representation of Cones of Depression

Groundwater withdrawals create cones of depression in the potentiometric surface of the source aquifer around the withdrawal point. Cones of depression may significantly affect the potentiometric surface in areas of relatively large withdrawals. Head maps may not accurately represent cones of depression due to several factors, including data density, data interpolation, and map scale. The geometry of these cones may not be accurate due to the lack of closely spaced head data in the vicinity of most high-capacity wells. Low-capacity (i.e., domestic) wells that could be used to clarify cone geometry often are not present in the vicinity of high-capacity wells because those areas typically are served by public water systems. Specific to this mapping effort, water-level measurements sometimes were not available for high-capacity wells that may be

Figure 16. Comparison of potentiometric surface in the shallow bedrock aquifer, stream locations and the Fox River watershed.

causing a cone of depression. Many automated contouring routines interpolate values between two data points by distributing the difference in values linearly over the horizontal distance between those two points. Within a cone of depression, however, head values are not distributed linearly (i.e., the hydraulic gradient increases toward the pumping well). Heads in high-capacity wells at the center of cones of depression may have been treated more like nonpumping heads on interim maps. Thus, these maps likely do not show the full extent or correct geometry of cones of depression. The 20-ft contour interval necessary for display of head surfaces at the small map scale may be too coarse to identify smaller cones. Interim digital maps and source data may be provided to the Kane County Development and Resource Management Department for their review at finer scales and contour intervals.

Use of Maps

Characterization of Groundwater Flow

Because groundwater flows from areas of high head to areas of low head, the maps presented can be used to identify groundwater flow patterns. Groundwater flow in an aquifer is perpendicular to equipotentials. Figure 17 is an example of how head contours can be used to determine groundwater flow patterns in T38N, R7E in the shallow bedrock aquifer.

Similarly by determining locations of groundwater highs, flow divides may be identified. Tracing flow divides in aquifers is not straightforward because of complex relationships between aquifer boundaries and incompletely defined aquifer connections. The most distinct regional groundwater flow divides occur near T41N, R6E and T42N, R6E in northwestern Kane County in the Ashmore Tongue (Figure 12), Glasford sands where present (Figure 13), and the shallow bedrock (Figure 14). These features roughly coincide with the surface-water drainage divide between the Fox and Kishwaukee Rivers.

Identification of Recharge and Discharge Areas

Recharge and discharge areas of the aquifers generally can be identified using the maps constructed. Discharge areas can be identified where groundwater flow lines converge and water is present at the land surface. A reasonable assumption is that recharge areas include all areas lying between discharge areas. The Fox River, its tributaries and topography have a strong influence on locations of recharge and discharge areas.

Figure 17. Illustration of groundwater flow in T38N, R7E based on 20-ft head contours.

Calibration of Groundwater Flow Models

Selected data compiled for the potentiometric mapping effort will be used in development and calibration of the local-scale shallow groundwater flow model. Observed and model predicted head values will be compared to help determine if the flow model accurately represents groundwater levels. After appropriate calibration has been obtained, the model can be used to evaluate future groundwater scenarios, including those involving increased groundwater withdrawals to meet population demands.

Effects of Groundwater Withdrawals

In 2003, wells finished in the shallow bedrock aquifer accounted for 24 percent (11 of 46) of the shallow high-capacity wells in Kane County. Wells finished in the unconsolidated deposits accounted for 76 percent (35 of 46) of the shallow high-capacity wells. Annual groundwater withdrawals from the unconsolidated deposits were 91 percent (5.9 of 6.5 bg) of the total withdrawals from shallow aquifers. In particular, the Glasford sands and Ashmore Tongue appear to be the most extensively used. The small amount of water derived from high-capacity wells in the shallow bedrock (0.6 bg) can be attributed to low transmissivity.

An area of relatively lower heads occurs in the shallow bedrock aquifer in east-central Kane County and is roughly delineated by the 680-ft contour in southeastern T40N, R8E, and northeastern T39N, R8E (Figure 14). A similar area occurs in southeastern T38N, R8E and is outlined by the 620-ft contour. These areas of lowered heads are likely the cumulative effect of withdrawals from numerous domestic, industrial, and public water-supply wells and discharges to the Fox River. Groundwater withdrawals also are evidenced by deflections of equipotentials, as seen in one case associated with the 660-ft contour in T38N, R7E.

Baseline Data for Comparison to Future Conditions

Data and maps presented in this report and digital files provided to the Kane County Water Resources Department document groundwater conditions throughout the county during the fall of 2003. These data can be compared with future groundwater data to determine if heads have increased or decreased in response to changes in shallow groundwater withdrawals, climate change, or other factors.

Conclusions

An extensive effort was undertaken to assemble a network of 1010 wells for determination of groundwater conditions in Kane County. These data also serve as a basis to develop a conceptual hydrostratigraphic model and mathematical groundwater flow model. Synoptic head measurements were collected and analyzed to produce potentiometric maps for four shallow aquifers in Kane County. Based on the resulting maps and other data collected, the following conclusions can be made:

• At least seven shallow lithostratigraphic units are used as aquifers in Kane County. The most continuous unit is the shallow bedrock, but the most productive units appear to be sand-and-gravel deposits. Additional geological modeling is necessary to differentiate and characterize the sands in the Tiskilwa and Glasford Formations.

• Head data were of sufficient density to construct potentiometric maps for four aquifers: the unnamed tongue below the Batestown Member, the Ashmore Tongue, the aggregated Glasford Formation sands, and the shallow bedrock.

• Without using any surface water or surface elevation data to constrain the potentiometric surfaces of individual aquifers, most potentiometric surfaces still correspond closely with perennial stream configurations and land-surface topography.

• The Fox River and Marengo Ridge are the most influential features that determine regional groundwater flow patterns in Kane County. Flow west of the Fox River is mostly to the south and east. East of the Fox River, flow is mostly south and west.

• A preliminary analysis of aquifer connections was made based on potentiometric surfaces. Areas of potential aquifer connection were identified solely on similarity in measured heads. Aquifer connections need to be evaluated further, taking into account aquifer concurrence and predicted thicknesses of intervening fine-grained materials. At a minimum, this will require further differentiation of diamicton and sand-and-gravel deposits within the Glasford Formation.

• In 2003, 46 high-capacity wells accounted for 6.3 billion gallons or 97 percent of the total reported groundwater withdrawals of 6.5 billion gallons from the shallow aquifers in Kane County. If unreported withdrawals are taken into account, total withdrawals in 2003 may have been as much as 6.9 billion gallons.

• Groundwater withdrawals appear to have local influence on potentiometric surfaces, particularly in southeastern Kane County. Areas of relatively low head in the shallow bedrock aquifer may reflect large withdrawals from the aquifer, hydraulically connected units, and/or significant discharge to the Fox River.

• The interim potentiometric maps have multiple uses. They can characterize regional groundwater flow, identify areas of groundwater recharge and discharge, determine regional effects of groundwater withdrawals, and act as a baseline for comparison with future groundwater conditions.

• Previous nomenclature used to describe the aquifers of Kane County needs to be reevaluated to address aquifer connections and should be consistent with the threedimensional geologic model. The interim maps are subject to change as the conceptual hydrostratigraphy is reevaluated. If the interim maps require changes, final versions will be released in the final report on groundwater investigations in 2007.

References

Bergeron, M.P. 1981. *Effect of Irrigation Pumping on the Ground-Water System in Newton and Jasper Counties, Indiana*. U.S. Geological Survey Water-Resources Investigations Report 81-38, Urbana, IL.

Burch, S.L. 2002. A Comparison of Potentiometric Surfaces for the Cambrian-Ordovician Aquifers of Northeastern Illinois, 1995 and 2000. Illinois State Water Survey Data/Case Study 2002-02, Champaign, IL.

Curry, B.B., and P.R. Seaber. 1990. *Hydrogeology of Shallow Groundwater Resources, Kane County, Illinois*. Illinois State Geological Survey Contract/Grant Report 1990-1, Champaign, IL.

Dey, W.S., A.M. Davis, B.B. Curry, and J.C. Sieving. 2004a. *Kane County Water Resources Investigations: Interim Report on Geologic Investigations*. Illinois State Geological Survey Open File Series 2004-9, Champaign, IL.

Dey, W.S., A.M. Davis, B.B. Curry, and J.C. Sieving. 2004b. *Preliminary Bedrock Geology Map, Kane County, Illinois*. Illinois State Geological Survey Illinois Preliminary Geologic Map IPGM Kane-BG, Champaign, IL.

Dey, W.S., A.M. Davis, B.B. Curry, and J.C. Sieving. 2004c. *Preliminary Geologic Crosssections, Kane County, Illinois*. Illinois State Geological Survey Illinois Preliminary Geologic Map IPGM Kane-CS, Champaign, IL.

Dey, W.S., A.M. Davis, B.B. Curry, and J.C. Sieving. 2004d. *Preliminary Map of Major Quaternary Aquifers, Kane County, Illinois*. Illinois State Geological Survey Illinois Preliminary Geologic Map IPGM Kane-QA, Champaign, IL.

Environmental Systems Research Institute, Inc. 2001. *ArcGIS Geostatistical Analyst: Statistical Tools for Data Exploration, Modeling, and Advanced Surface Generation*. ESRI white paper. ESRI. Redlands, CA (http://www.esri.com/library/whitepapers/pdfs/geostat.pdf, accessed February 2005).

Fetter, C.W. 1988. *Applied Hydrogeology* (second edition). Merrill Publishing Company, Columbus OH.

Freeze, R.A., and J.A. Cherry. 1979. Groundwater. Prentice-Hall, Inc., Englewood Cliffs, NJ.

Graese. A.M., R.A. Bauer, B.B. Curry, R.C. Vaiden, W.G. Dixon, Jr., and J.P. Kempton. 1988. *Geological-Geotechnical Studies for Siting the Superconducting Super Collider in Illinois: Regional Summary*. Illinois State Geological Survey Environmental Geology Notes 123, Champaign, IL. Hansel, A.K., and W.H. Johnson. 1996. *Wedron and Mason Groups: Lithostratigraphic Reclassification of Deposits of the Wisconsin Episode, Lake Michigan Lobe Area*. Illinois State Geological Survey Bulletin 104, Champaign, IL.

Hensel, B.R. 1992. *Natural Recharge of Groundwater in Illinois*. Illinois State Geological Survey Environmental Geology Notes 143, Champaign, IL.

Kay, R.T., and K.A. Kraske. 1996. *Ground-Water Levels in Aquifers Used for Residential Supply, Campton Township, Kane County, Illinois*. U.S. Geological Survey Water-Resources Investigations Report 96-4009, Urbana, IL.

Larson, D.R., J.P. Kempton, and S. Meyer. 1997. *Geologic, Geophysical, and Hydrologic Investigations for a Supplemental Municipal Groundwater Supply, Danville, Illinois*. Illinois State Water Survey and Illinois State Geological Survey Cooperative Groundwater Report 18, Champaign, IL.

Meyer, S.C. 1998. *Ground-Water Studies for Environmental Planning, McHenry County, Illinois.* Illinois State Water Survey Contract Report 630, Champaign, IL.

Roadcap, G.S., S.J. Cravens, and E.C. Smith. 1993. *Meeting the Growing Demand for Water: An Evaluation of the Shallow Ground-Water Resources in Will and Southern Cook Counties, Illinois.* Illinois State Water Survey Research Report 123, Champaign, IL.

Sasman, R.T., R.J. Schicht, J.P. Gibb, M. O'Hearn, C.R. Benson, and R.S. Ludwig. 1981. *Verification of the Potential Yield and Chemical Quality of the Shallow Dolomite Aquifer in DuPage County, Illinois.* Illinois State Water Survey Circular 149, Champaign, IL.

U.S. Census Bureau. 2004. GCT-PH1. Population, Housing Units, Area, and Density: 2000 (http://factfinder.census.gov/servlet/GCTTable?_bm=y&-geo_id=04000US17&-_box_head_nbr=GCT-PH1&-ds_name=DEC_2000_SF1_U&-format=ST-7, accessed February 2005).

U.S. Geological Survey (National Mapping Division), Department of the Interior. 1997. Standards for Digital Elevation Models: Part 1 - General. National Mapping Program, Technical Instructions. Reston, VA (http://rockyweb.cr.usgs.gov/nmpstds/demstds.html, accessed June 2003).

Visocky, A.P., and R.J. Schicht. 1969. *Groundwater Resources of the Buried Mahomet Bedrock Valley*. Illinois State Water Survey Report of Investigation 62, Champaign, IL.

Visocky, A.P., and M.K. Schulmeister. 1988. *Ground-Water Investigations for Siting the Superconducting Super Collider in Northeastern Illinois*. Illinois State Water Survey Circular 170, Champaign, IL.

Walker, D.D., S.C. Meyer, and D. Winstanley. 2003. Uncertainty of Estimates of Groundwater Yield for the Cambrian-Ordovician Aquifer in Northeastern Illinois. *Proceedings of Probabilistic Approaches and Groundwater Modeling*. American Society of Civil Engineers. Environmental and Water Resources Institute Symposium, Philadelphia, PA, pp. 273-283.

Walton, W.C. 1965. *Ground-Water Recharge and Runoff in Illinois*. Illinois State Water Survey Report of Investigation 48, Champaign, IL.

Wehmann, H.A., S.V. Sinclair, T.P. Bryant. 2004. *An Analysis of Groundwater Use to Potential Aquifer Yield in Illinois*. Illinois State Water Survey Contract Report 2004-11.

Zeizel, A.J., W.C. Walton, R.T. Sasman, and T.A. Prickett. 1962. *Ground-Water Resources of DuPage County, Illinois*. Illinois State Water Survey and Illinois State Geological Survey Cooperative Ground-Water Report 2, Champaign, IL.

Appendix A. System of Location

Locations are described using township, range, and section numbers as established by the Northwest Ordinance of 1785. This ordinance mandated that all federal lands be surveyed into vertical strips 6 miles wide, called ranges, and horizontal strips of townships, each 6 miles wide. Ranges are numbered east or west of a principal meridian (for example, range 11 west or, alternatively, R11W). Township strips are numbered north or south of a base line (for example, township 5 south or, alternatively, T5S). Ranges and township strips in Kane County are surveyed relative to the Third Principal Meridian and Base Line. Range and township strips intersect to form townships, which ideally are square with sides 6 miles long and an area of 36 square miles. Townships are divided into 36 sections, each section one square mile in area, or 640 acres.

Subsection locations described in this report use a coordinate system that assigns a unique number and letter to each quarter-quarter-quarter section (Figure A1). Numbers between 1-8 indicate the east–west position of the location within the section, and letters between A-H indicate the north–south position. A standard section, which is one square mile in area, contains 64 quarter-quarter-quarter sections, each 10 acres in area. These tracts are referred to as 10-acre plots, or more simply plots.

A complete description of location by this system includes designations for county, township, range, section, and subsection location. For example, the location of a well in Kane County, township 41 north, range 8 east, section 36 with the plot location as shown in the figure below could be referenced as Kane-T41N-R8E-Sec 36.4c.

Illustration of plot designation for a section.

Appendix B. Potentiometric Network Well Data

Table B1 provides information about all 1010 wells inventoried in the study area. The listing includes the lithostratigraphic unit(s) to which the well is open (BR = bedrock), the township, range, section, plot, unique ISWS project number, ISWS P number (a unique number assigned by the ISWS used to identify all non-PICS wells within Illinois), ISWS PICS number (if applicable), measuring point elevation, well depth, head elevation measured during the synoptic phase, and the measurement method used (ST = steel tape, AL = air line, or XD = transducer). The notes field indicates the following conditions: 1 = synoptic measurement was rejected, 2 = synoptic measurement was not taken, and 3 = lithostratigraphic determination still needed. Data are arranged alphabetically by lithostratigraphic unit and then ascending by township, range, section, and plot.

Table B1. Potentiometric Network Well Data

	Well open to	Тwp	Rge	Sec	Plot	ISWS Project No.	ISWS P No.	ISWS PICS No.	Measuring Point Elevation (ft)	Well Depth (ft)	Head Elevation (ft)	Method	Note
	Ashmore Tongue	37N	6E	8	4b	1081	77994		666.6	98	636	ST	
	Ashmore Tongue	38N	6E	16	3d	346	228688		712.2	80	695	ST	
	Ashmore Tongue	39N	6E	4	2a	127	66542		852.1	95	832	ST	
	Ashmore Tongue	39N	6E	9	3h	986	72568		842.8	91	835	ST	
	Ashmore Tongue	39N	7E	23	5d	13	311509		738.1	75	722	ST	
	Ashmore Tongue	40N	5E	12	8c	873	42518		866.8	90	838	ST	
	Ashmore Tongue	40N	5E	17	4g	886	42542		874.1	79	825	ST	
	Ashmore Tongue	40N	5E	17	5b	871	329550		890.3	102	828	ST	
	Ashmore Tongue	40N	5E	29	4f	884	304243		900.7	102	837	ST	
	Ashmore Tongue	40N	6E	4	3h	752	341958		877.2	90	858	ST	
	Ashmore Tongue	40N	6E	10	3c	165	307944		869.7	66	855	ST	
	Ashmore Tongue	40N	6E	10	5c	750	67432		873.2	73	850	ST	
53	Ashmore Tongue	40N	6E	15	2c	875	67476		871.9	51	854	ST	
	Ashmore Tongue	40N	6E	16	5d	754	314629		871.4	90	853	ST	
	Ashmore Tongue	40N	6E	17	5h	867	67486		883.3	76	851	ST	
	Ashmore Tongue	40N	6E	18	2a	865	213675		862.8	93	846	ST	
	Ashmore Tongue	40N	6E	29	6b	864	67514		870.1	98	844	ST	
	Ashmore Tongue	40N	6E	32	1a	977	67520		886.2	87	845	ST	
	Ashmore Tongue	40N	6E	32	2h	157	228568		876.2	112	844	ST	
	Ashmore Tongue	41N	6E	13	8e	913	231011		922.2	85	899	ST	
	Ashmore Tongue	41N	6E	14	5g	335	268755		923.9	87	898	ST	
	Ashmore Tongue	41N	6E	23	5c	910	306153		903.1	97	893	ST	
	Ashmore Tongue	41N	6E	32	3d	765	301372		886.4	90	859	ST	
	Ashmore Tongue	41N	6E	33	1a	615	69994		877.4	89	858	ST	
	Ashmore Tongue	41N	6E	34	5a	930	69997		875.2	55	858	ST	
	Ashmore Tongue	41N	7E	28	8g	1113	309833		943.3	178	826	ST	
	Ashmore Tongue	41N	7E	35	1g	58	215302		842.3		692	ST	1
	Ashmore Tongue	41N	8E	31	8f	489	240985		822.3	93	787	ST	
	Ashmore Tongue	41N	8E	35	3a	698		6503	3 734.4	111	668	AL	
	Ashmore Tongue	41N	9E	8	6b	672	34201		799.3	175	723	ST	
	Ashmore Tongue	42N	6E	31	5c	353	288801		908.7	105	849	ST	

	Well open to	Тwp	Rge	Sec	Plot	ISWS Project No.	ISWS P No.	ISWS PICS No.	Measuring Point Elevation (ft)	Well Depth (ft)	Head Elevation (ft)	Method	Note
	Ashmore Tongue	42N	6E	33	1b	506	228783		908.2	90	889	ST	
	Ashmore Tongue	42N	7E	24	7c	803	228889		893.1	144	809	ST	
	Ashmore Tongue	42N	8E	3	2c	2066		10241	741.5	121	707	AL	
	Ashmore Tongue	42N	8E	4	8d	685		4871	893.2	207	754	ST	
	Ashmore Tongue	42N	8E	5	3d	684		4872	913.1	235	752	ST	
	Ashmore Tongue	42N	8E	12	3h	658	276121		906.5	185	764	ST	
	Ashmore Tongue	42N	8E	13	6d	701		10010	907.2	200	759	XD	
	Ashmore Tongue	42N	8E	14	3b	663	304378		872.1	150	759	ST	
	Ashmore Tongue	42N	8E	23	6e	693		6532	831.7	128	780	AL	
	Ashmore Tongue	42N	8E	24	8h	694		5160	854.1	136	759	ST	
	Ashmore Tongue	42N	8E	34	6e	666	71834		801.0	93	728	ST	
	Ashmore Tongue	42N	9E	2	4g	820	35062	818	813.3	208	723	ST	
Ň	Ashmore Tongue	42N	9E	2	5g	455	35112		803.3	118	729	ST	
4	Ashmore Tongue	42N	9E	3	2b	686		72	739.0	100	700	ST	
	Ashmore Tongue	42N	9E	10	6e	1019	235055		823.3	145	754	ST	
	Ashmore Tongue	43N	6E	20	4c	2023	101092		980.2	200	864		
	Ashmore Tongue	43N	6E	30	4c	729	103063		876.2	96	851	ST	
	Ashmore Tongue	43N	8E	24	8f	2062	106873		737.9	40	733		
	Ashmore Tongue	43N	9E	26	3a	603	273058		825.3	193	717	ST	
	Ashmore Tongue	43N	9E	29	8f	594	99602		808.3	190	747	ST	
	Ashmore Tongue	43N	9E	30	5e	460	99618		875.6	152	764	ST	
	Ashmore Tongue	43N	9E	31	6c	462	99643		871.4	135	763	ST	
	Beverly Tongue	42N	9E	4	1d	842	314099		831.0	114	756	ST	
	Beverly Tongue	42N	9E	5	1b	361	35178		808.8	97	767	ST	
	Beverly Tongue	42N	9E	10	3f	3	245282		851.3	165	747	ST	
	Beverly Tongue	42N	9E	15	8d	822	35241		902.3	162	770	ST	
	Beverly Tongue	42N	9E	20	2f	840	190197		818.4	91	796	ST	
	Beverly Tongue	42N	9E	22	4c	1032	289278		871.7	152	755	ST	
	Beverly Tongue	42N	9E	27	3b	1018	35371		854.1	195	741	ST	
	Beverly Tongue	42N	9E	33	7e	377		10790	844.4	119	768	AL	
	Beverly Tongue	42N	9E	33	7e	376		10788	842.5	122	772	AL	

	Well open to	Тwp	Rge	Sec	Plot	ISWS Project No.	ISWS P No.	ISWS PICS No.	Measuring Point Elevation (ft)	Well Depth (ft)	Head Elevation (ft)	Method	Note
	Beverly Tongue	43N	8E	2	4f	681	106395		850.9	90	811		
	Beverly Tongue	43N	8E	6	1e	2041		3058	}	48			2
	Beverly Tongue	43N	8E	8	2f	2033	106585		899.3	58	865		
	Beverly Tongue	43N	8E	10	4b	2040	106620		894.8	90	846		
	Beverly Tongue	43N	8E	15	5e	2034	216315		891.7	82	840		
	Beverly Tongue	43N	8E	27	4g	2037	214289		890.4	96	821		
	Beverly Tongue	43N	9E	11	1a	606		6714	817.5	127	737	AL	
	Beverly Tongue	43N	9E	14	7c	845	309981		765.5	152	731	ST	
	Beverly Tongue	43N	9E	23	1f	1030	290960		787.0	106	719	ST	
	Beverly Tongue	43N	9E	30	8g	463	297394		844.5	57	805	ST	
	Beverly Tongue	43N	9E	35	1e	579		6717	820.7	148	718	AL	
	Beverly Tongue	43N	9E	36	8f	580		6719	818.3	151	722	AL	
S	BR - Galena-Platteville	37N	5E	1	5h	817	252804		712.1	280	695	ST	
01	BR - Maquoketa & Galena	37N	5E	3	4e	818	41088		727.9	215	705	ST	
	BR - Galena-Platteville	37N	5E	4	8b	816	247361		725.0	180	713	ST	
	BR - Maquoketa & Galena	37N	5E	5	5e	815	41094		738.6	170	712	ST	
	BR - Galena-Platteville & Ancell	37N	5E	10	1a	998	340004		716.7	240	688	ST	
	BR - Galena-Platteville	37N	5E	10	3f	997	301061		721.6	250	694	ST	
	BR - Galena-Platteville & Ancell	37N	5E	11	3d	1132	41108		717.1	320	684	ST	1
	BR - Galena-Platteville	37N	5E	12	5d	819	267971		708.9	260	678	ST	
	BR - Maquoketa & Galena	37N	5E	16	8g	1099	41125		732.0	165	694	ST	
	BR - Ancell	37N	5E	20	8h	1136	329715		724.4	220	697	ST	
	BR - Galena-Platteville & Ancell	37N	5E	22	2g	1098	258678		696.6	170	667	ST	
	BR - Galena-Platteville	37N	5E	23	6e	1130	195938		692.7	160	661	ST	
	BR - Galena-Platteville & Ancell	37N	5E	24	6d	1129	343156		686.4	205	650	ST	1
	BR - Ancell	37N	5E	28	3a	1128	206796		679.0	140	657	ST	
	BR - Galena-Platteville	37N	5E	30	1e	1133	41147		697.9	140	677	ST	
	BR - Ancell	37N	5E	32	7a	1134	41149		682.1	135	663	ST	
	BR - Ancell	37N	5E	34	5a	999	41153		667.1	200	636	ST	
	BR - Ancell	37N	5E	35	8a	1097	301971		669.7	160	637	ST	
	BR - Silurian & Maquoketa & Galena	37N	6E	1	4h	247	324817		673.0	260	643	ST	

	Well open to	Тwp	Rge	Sec	Plot	ISWS Project No.	ISWS P No.	ISWS PICS No.	Measuring Point Elevation (ft)	Well Depth (ft)	Head Elevation (ft)	Method	Note
	BR - Silurian	37N	6E	2	7g	245	77965		685.9	110	661	ST	
	BR - Maquoketa	37N	6E	5	1g	252	77986		712.5	280	663	ST	
	BR - Maquoketa	37N	6E	5	8g	256	77988		721.4	222	688	ST	
	BR - Galena-Platteville	37N	6E	8	4d	248	320239		694.0	320	632	ST	
	BR - Maquoketa	37N	6E	9	2d	1120	77996		668.6	160	652	ST	
	BR - Maquoketa	37N	6E	10	2h	269	300128		691.3	180	634	ST	
	BR - Maquoketa & Galena	37N	6E	10	8d	250	77999		676.3	220	606	ST	1
	BR - Maquoketa & Galena	37N	6E	14	5f	253	78042		661.9	260	597	ST	1
	BR - Maquoketa	37N	6E	14	5h	254	78040		663.0	160	612	ST	
	BR - Galena-Platteville	37N	6E	16	6g	1078	78009		669.6	180	623	ST	
	BR - Maquoketa & Galena	37N	6E	20	7b	1084	78109		659.6	165	621	ST	
	BR - Ancell	37N	6E	24	1a	1131	310797		632.9	550	498	ST	1
5	BR - Maquoketa & Galena	37N	6E	35	1d	1126	206772		575.0	120	554	ST	1
0,	BR - Silurian & Maquoketa	37N	7E	1	8a	65	230811		655.1	120	644	ST	
	BR - Maquoketa	37N	7E	3	5a	68	78297		659.9	130	648	ST	
	BR - Silurian & Maquoketa	37N	7E	5	1h	64	78301		664.5	124	643	ST	
	BR - Maquoketa	37N	7E	9	4a	67	326090		646.5	120	631	ST	
	BR - Maquoketa	37N	7E	15	3e	69	287453		643.0	120	626	ST	
	BR - Galena-Platteville	37N	7E	17	8h	1012	78477		652.4	195	630	ST	
	BR - Maquoketa & Galena	37N	7E	21	2d	249	230408		642.0	260	621	ST	
	BR - Maquoketa	37N	7E	24	1e	1002	76889		654.2	100	612	ST	
	BR - Maquoketa & Galena	37N	7E	28	4c	1017	292649		638.1	260	606	ST	
	BR - Galena-Platteville	37N	7E	29	4d	1016	76654		631.8	340	439	ST	1
	BR - Maquoketa & Galena	37N	7E	34	3g	1014	76572		584.4	100	574	ST	
	BR - Maquoketa & Galena	37N	7E	34	3g	1015	238544		583.9	120	574	ST	
	BR - Silurian & Maquoketa	37N	8E	2	1f	86	230131		696.8	140	667	ST	
	BR - Silurian & Maquoketa	37N	8E	5	8e	87	229524		654.9	140	616	ST	
	BR - Silurian & Maquoketa	37N	8E	8	5h	88	342799		622.9	120	617	ST	
	BR - Silurian & Maquoketa	37N	8E	8	6b	89	76811		771.2	255	660	ST	
	BR - Silurian	37N	8E	8	7h	1023		6666	641.7	187	611	AL	
	BR - Silurian & Maquoketa	37N	8E	8	8e	1000	310800		651.3	140	619	ST	

	Well open to	Тwp	Rge	Sec	Plot	ISWS Project No.	ISWS P No.	ISWS PICS No.	Measuring Point Elevation (ft)	Well Depth (ft)	Head Elevation (ft)	Method	Note
	BR - Silurian & Maquoketa	37N	8E	12	6g	91	238519		702.3	180	661	ST	
	BR - Silurian	37N	8E	15	5h	90	76837		669.5	105	652	ST	
	BR - Silurian	37N	8E	16	6e	92	76841		652.0	85	635	ST	
	BR - Silurian & Maquoketa	37N	8E	17	5h	1001	76854		608.5	110	567	ST	1
	BR - Silurian & Maquoketa	37N	8E	22	5a	1003	229527		682.4	140	654	ST	
	BR - Silurian & Maquoketa	37N	8E	26	1c	1005	303542		732.9	180	653	ST	
	BR - Silurian & Maquoketa	37N	8E	27	2c	1004	76940		729.7	180	657	ST	
	BR - Silurian & Maquoketa	37N	8E	29	4h	1013	244178		658.6	180	636	ST	
	BR - Silurian & Maquoketa	37N	9E	1	5a	124	312871		667.6	180	643	ST	
	BR - Silurian	37N	9E	3	1d	116	159587		684.5	100	652	ST	
	BR - Silurian	37N	9E	5	3g	114	159689		702.8	125	672	ST	
	BR - Silurian & Maquoketa	37N	9E	6	6c	118	218264		702.6	150	665	ST	
S	BR - Silurian & Maquoketa	37N	9E	8	5b	117	218267		695.8	120	660		
7	BR - Silurian & Maquoketa	37N	9E	9	2f	120	218273		693.8	170	660	ST	
	BR - Silurian & Maquoketa	37N	9E	16	8g	121	160150		687.4	120	658	ST	
	BR - Silurian & Maquoketa	37N	9E	19	4d	123	245474		699.4	145	656	ST	
	BR - Silurian & Maquoketa	37N	9E	20	1h	1027		5199	9 685.9	205	659	ST	
	BR - Silurian	37N	9E	20	6b	122	238946		686.8	110	658	ST	
	BR - Silurian & Maquoketa	37N	9E	27	7h	112	160228		644.2	200	623	ST	
	BR - Silurian & Maquoketa	37N	9E	29	4f	109	218535		665.1	140	649	ST	
	BR - Silurian	37N	9E	31	8g	115	236880		695.4	140	656	ST	
	BR - Maquoketa	37N	9E	34	6c	111	263069		614.8	140	607	ST	
	BR - Silurian & Maquoketa	37N	9E	36	2a	113	160376		621.4	145	612	ST	
	BR - Galena-Platteville	38N	5E	4	3d	263	333998		785.1	270	747	ST	
	BR - Galena-Platteville	38N	5E	6	4a	1072	41268		772.7	140	758	ST	
	BR - Silurian & Maquoketa	38N	5E	12	1b	262	41269		750.4	185	734	ST	
	BR - Galena-Platteville	38N	5E	12	4a	988	41273		753.9	240	628	ST	1
	BR - Galena-Platteville	38N	5E	12	8e	266	41274		760.5	380	669	ST	1
	BR - Maquoketa & Galena	38N	5E	13	2a	267	41301		737.7	320	617	ST	1
	BR - Galena-Platteville	38N	5E	15	5d	264	340014		740.9	200	727	ST	
	BR - Galena-Platteville	38N	5E	16	1g	992	208664		750.9	225	729	ST	

Well open to	Тwp	Rge	Sec	Plot	ISWS Project No.	ISWS P No.	ISWS PICS No.	Measuring Point Elevation (ft)	Well Depth (ft)	Head Elevation (ft)	Method	Note
BR - Maquoketa & Galena	38N	5E	27	5f	265	41306		739.9	215	713	ST	
BR - Galena-Platteville	38N	5E	32	4h	1073	41309		742.0	210	726	ST	
BR - Silurian & Maquoketa	38N	6E	3	8d	995	189440		751.0	160	722	ST	
BR - Silurian & Maquoketa	38N	6E	5	7h	1096	65377		775.0	225	760	ST	
BR - Silurian & Maquoketa	38N	6E	6	7e	52	65379		766.9	130	745	ST	
BR - Maquoketa	38N	6E	8	2f	60	189455		750.1	160	722	ST	
BR - Maquoketa & Galena	38N	6E	11	8h	51	189446		741.4	320	654	ST	1
BR - Silurian & Maquoketa	38N	6E	15	3a	344	65437		704.9	98	687	ST	
BR - Silurian & Maquoketa	38N	6E	15	4h	343	65439		718.8	160	707	ST	
BR - Maquoketa & Galena	38N	6E	16	4b	996	65456		718.2	240	636	ST	1
BR - Silurian & Maquoketa & Galena	38N	6E	20	6h	1095	189451		730.5	320	692	ST	
BR - Silurian & Maquoketa & Galena	38N	6E	21	1g	59	230389		713.2	240	674	ST	1
BR - Galena-Platteville	38N	6E	21	4a	1092	72569		707.3	370	578	ST	1
BR - Silurian	38N	6E	23	1f	61	294089		702.3	180	684	ST	
BR - Silurian	38N	6E	25	1a	62	228579		695.0	140	678	ST	
BR - Maquoketa	38N	6E	26	2f	1093	299280		678.5	160	672	ST	
BR - Silurian	38N	6E	26	8a	970	295546		679.2	100	673	ST	
BR - Maquoketa	38N	6E	27	5g	969	65711		703.6	200	684	ST	
BR - Maquoketa	38N	6E	32	7f	63	189323		713.1	240	692	ST	
BR - Maquoketa & Galena	38N	6E	33	3h	1091	189325		726.6	320	590	ST	1
BR - Silurian & Maquoketa	38N	6E	36	5h	968	287772		686.9	240	658	ST	
BR - Silurian	38N	7E	2	6c	1107	65758		694.0	140	688	ST	
BR - Silurian & Maquoketa	38N	7E	3	2c	632	246486		727.2	200	702	ST	
BR - Maquoketa & Galena	38N	7E	5	4g	1006	65785		708.3	260	644	ST	1
BR - Silurian	38N	7E	9	1d	630	189486		716.9	110	690	ST	
BR - Silurian	38N	7E	9	4a	631	65834		701.3	100	689	ST	
BR - Silurian	38N	7E	9	5d	629	306158		697.2	100	688	ST	
BR - Silurian	38N	7E	10	8g	633	295935		748.6	120	699	ST	
BR - Silurian & Maquoketa	38N	7E	12	4a	1103	65847		676.4	150	669	ST	
BR - Silurian	38N	7E	13	4e	1009	65849		681.6	160	664	ST	
BR - Silurian	38N	7E	14	1c	1106			672.5	100	659	ST	

85

Well open to	Тwp	Rge	Sec	Plot	ISWS Project	ISWS P No.	ISWS PICS No.	Measuring Point Elevation	Well Depth	Head Elevation	Method	Note
					No.			(ft)	(ft)	(ft)		
BR - Silurian	38N	7E	16	8h	1010	65866		711.2	100	691	ST	
BR - Silurian	38N	7E	17	1h	1011	65890		711.1	100	690	ST	
BR - Silurian	38N	7E	24	6a	223	254370		680.8	80	660	ST	
BR - Silurian	38N	7E	24	6a	224	230676		685.0	140	660	ST	
BR - Silurian & Maquoketa	38N	7E	24	7e	1105	250789		689.7	200	659	ST	
BR - Silurian	38N	7E	25	6e	222	65923		670.8	140	650	ST	
BR - Silurian	38N	7E	36	2a	220	65950		666.5	105	652	ST	
BR - Silurian & Maquoketa	38N	7E	36	3c	221	189521		660.4	140	650	ST	
BR - Silurian	38N	8E	1	6e	95	238379		737.4	150	677	ST	
BR - Silurian	38N	8E	2	2e	96	65974		751.9	140	681	ST	
BR - Silurian	38N	8E	5	7g	97	65985		709.9	100	688	ST	
BR - Silurian & Maquoketa	38N	8E	7	4a	303	65989		687.0	220	672	ST	
BR - Silurian	38N	8E	8	2g	98	66003		693.1	75	681	ST	
BR - Silurian	38N	8E	10	1h	99	66026		746.6	135	675	ST	
BR - Silurian	38N	8E	12	8c	100	66105		709.4	106	674	ST	
BR - Silurian & Maquoketa	38N	8E	13	2a	101	321812		710.7	160	658	ST	
BR - Silurian & Maquoketa	38N	8E	14	1c	102	189673		693.1	200	650	ST	
BR - Silurian & Maquoketa	38N	8E	24	8h	107	66198		708.4	170	646	ST	
BR - Silurian & Maquoketa	38N	8E	25	8g	308		6386	5 721.8	253	652	AL	
BR - Silurian & Maquoketa	38N	8E	26	1d	309		6389	9 709.0	147		AL	1
BR - Silurian	38N	8E	26	2d	310		6393	3 710.5	180		AL	2
BR - Silurian & Maquoketa	38N	8E	26	3a	311	309590	6387	7 720.5	210	653	AL	
BR - Silurian & Maquoketa	38N	8E	26	3a	312	309591	6388	3 701.7	208	657	AL	
BR - Silurian	38N	8E	29	3f	105	66266		667.5	148	641	ST	
BR - Silurian	38N	8E	29	4e	300	66277		656.5	115	642	ST	
BR - Silurian	38N	8E	30	3b	108	66343		661.0	60	646	ST	
BR - Silurian	38N	8E	30	5g	299	66380		677.4	120	647	ST	
BR - Silurian	38N	8E	30	5h	104	241461		682.7	100	653	ST	
BR - Silurian & Maquoketa	38N	8E	31	4e	1022	301331	2002	2 668.2	176		AL	2
BR - Silurian & Maquoketa	38N	8E	31	4f	1021	66391	2003	670.9	178	616	AL	
BR - Maquoketa	38N	8E	32	4f	314	308805	10029	9 646.7	190	616	ST	

Well open to	Тwp	Rge	Sec	Plot	ISWS Project	ISWS P No.	ISWS PICS No.	Measuring Point Elevation	Well Depth	Head Elevation	Method	Note
					No.			(ft)	(ft)	(ft)		
BR - Maquoketa	38N	8E	33	4h	317	308806	10030	639.1	183	602	ST	
BR - Maquoketa	38N	8E	34	4e	103	323169		663.6	160	650	ST	
BR - Silurian	38N	8E	34	4e	313	308845	6409	670.5	80	648	ST	
BR - Silurian	38N	8E	35	1d	106	66508		685.4	80	658	ST	
BR - Maquoketa	38N	8E	35	5h	318			700.3	280	656	ST	
BR - Silurian & Maquoketa	38N	9E	1	5a	399		2754	729.8	223	680	AL	
BR - Silurian	38N	9E	2	6g	282	181754		690.7	135	677	ST	
BR - Silurian & Maquoketa	38N	9E	2	5f	827		2765	691.8	300	667	AL	
BR - Silurian & Maquoketa	38N	9E	5	4a	284	181775		734.1	240	675	ST	
BR - Silurian & Maquoketa	38N	9E	8	1a	400		2798	712.4	310	678	AL	
BR - Silurian & Maquoketa	38N	9E	9	6d	283	181786		707.2	280	677	ST	
BR - Silurian & Maquoketa	38N	9E	13	4b	292	267363		683.7	278	663	ST	
BR - Silurian	38N	9E	14	5f	281	176153		678.3	105	677	ST	
BR - Silurian & Maquoketa	38N	9E	17	7e	285	181811		717.4	220	678	ST	
BR - Silurian	38N	9E	19	6d	286	181825		714.7	120	659	ST	
BR - Silurian	38N	9E	24	7d	287	288296		706.9	85	681	ST	
BR - Silurian & Maquoketa	38N	9E	31	4e	288	181870		700.1	200	663	ST	
BR - Silurian & Maquoketa	38N	9E	34	3c	293	181893		687.9	240	676	ST	
BR - Silurian	38N	9E	34	6h	289	181887		701.6	105	685	ST	
BR - Silurian	38N	9E	34	6h	289	181887		701.6	105	685	ST	
BR - Maquoketa & Galena	39N	5E	4	1b	261	304506		897.1	300	824	ST	
BR - Maquoketa	39N	5E	12	2a	255	223993		846.4	200	800	ST	
BR - Maquoketa & Galena	39N	5E	16	3h	354	285022		811.9	370	717	ST	1
BR - Galena-Platteville	39N	5E	21	1h	257	41729		801.0	260	677	ST	1
BR - Galena-Platteville	39N	5E	24	1h	259	308426		806.4	300	716	ST	1
BR - Galena-Platteville	39N	5E	25	8f	342	41731		795.2	266	740	ST	1
BR - Galena-Platteville	39N	5E	26	8c	258	266047		792.8	300	721	ST	1
BR - Galena-Platteville	39N	5E	34	5h	268	301131		783.4	340	758	ST	
BR - Silurian & Maquoketa	39N	6E	1	3h	125	289662		848.3	220	801	ST	
BR - Maquoketa	39N	6E	2	3a	93	66539		842.4	205		ST	2
BR - Maquoketa	39N	6E	2	5a	985	237340		854.2	225	810	ST	

	Well open to	Тwp	Rge	Sec	Plot	ISWS Project No.	ISWS P No.	ISWS PICS No.	Measuring Point Elevation (ft)	Well Depth (ft)	Head Elevation (ft)	Method	Note
	BR - Silurian & Maquoketa	39N	6E	4	2c	892	319577		857.1	180	834	ST	
	BR - Silurian	39N	6E	4	2d	128	66545		865.7	120	830	ST	
	BR - Maquoketa & Galena	39N	6E	6	2a	129	326963		855.1	400	719	ST	1
	BR - Silurian	39N	6E	9	1h	130	66574		846.6	130	830	ST	
	BR - Silurian	39N	6E	9	4e	131	212576		836.3	95	829	ST	
	BR - Silurian & Maquoketa	39N	6E	12	4e	900	294448		817.9	145	810	ST	
	BR - Silurian	39N	6E	13	3c	132	66600		796.6	140	763	ST	
	BR - Silurian & Maquoketa	39N	6E	22	1d	133	262522		803.4	180	782	ST	
	BR - Silurian & Maquoketa	39N	6E	24	1c	979	66616		809.9	205		ST	2
	BR - Silurian & Maquoketa	39N	6E	26	6e	134	240818		781.8	142	754	ST	
	BR - Silurian & Maquoketa	39N	6E	26	7f	135	72343		780.9	160	752	ST	
	BR - Maquoketa	39N	6E	27	3g	982	250714		789.9	180	763	ST	
6]	BR - Silurian & Maquoketa	39N	6E	30	5h	1074	66639		792.9	188	780	ST	
_	BR - Silurian & Maquoketa	39N	6E	32	3a	137	308368		767.9	220	750	ST	
	BR - Maquoketa & Galena	39N	6E	35	8a	896	250682		760.4	320	611	ST	1
	BR - Silurian	39N	7E	1	5h	78	66652		767.7	125	738	ST	
	BR - Silurian	39N	7E	2	3a	74	297912		807.5	120	759	ST	
	BR - Silurian	39N	7E	3	8a	77	213172		837.3	200	764	ST	
	BR - Silurian	39N	7E	3	8b	83	326535		838.8	147	762	ST	
	BR - Silurian	39N	7E	13	2f	211	213187		768.9	200	702	ST	
	BR - Silurian	39N	7E	13	3e	210	213188		769.5	200	702	ST	
	BR - Maquoketa	39N	7E	16	6b	716	228716		779.9	250	740	ST	
	BR - Silurian & Maquoketa	39N	7E	16	7b	209	240809		778.8	250	740	ST	
	BR - Silurian & Maquoketa	39N	7E	17	4h	207	329955		790.1	200	750	ST	
	BR - Silurian & Maquoketa	39N	7E	19	6d	147	228900		813.2	200	747	ST	
	BR - Silurian	39N	7E	20	6a	10	268759		774.8	140	737	ST	
	BR - Silurian	39N	7E	22	6c	12	331376		763.4	200	732	ST	
	BR - Silurian	39N	7E	25	7c	19	229662		704.4	122	690	ST	
	BR - Silurian	39N	7E	26	8c	23	66936		734.9	160	707	ST	
	BR - Silurian & Maquoketa	39N	7E	29	8d	11	299281		730.8	60	718	ST	
	BR - Silurian & Maquoketa	39N	7E	31	4h	22	326946		739.0	200	711	ST	

	Well open to	Тwp	Rge	Sec	Plot	ISWS Project No.	ISWS P No.	ISWS PICS No.	Measuring Point Elevation (ft)	Well Depth (ft)	Head Elevation (ft)	Method	Note
	BR - Silurian & Maquoketa	39N	7E	33	6g	20	67023		731.1	250	708	ST	
	BR - Silurian	39N	7E	35	1d	18	213253		701.8	60	688	ST	
	BR - Silurian & Maquoketa	39N	8E	1	5b	149	339671		788.3	220	690	ST	
	BR - Maquoketa	39N	8E	7	3g	153	67065		733.2	200	708	ST	
	BR - Silurian	39N	8E	11	1g	216	228868		763.7	170	665	ST	
	BR - Silurian	39N	8E	12	8g	217	283049		752.9	160	658	ST	
	BR - Silurian & Maquoketa	39N	8E	12	5g	150	304638		779.2	240	662	ST	
	BR - Silurian & Maquoketa	39N	8E	15	8f	152	313063		721.4	180	695	ST	
	BR - Silurian	39N	8E	17	5a	159	67136		737.5	130	696	ST	
	BR - Silurian & Maquoketa	39N	8E	27	1g	151	230980		729.7	160	695	ST	
	BR - Silurian	39N	8E	27	6a	302	67289		700.4	107	682	ST	
	BR - Maquoketa	39N	8E	27	6e	143	67288		692.4	140	662	ST	
6	BR - Silurian & Maquoketa	39N	8E	29	2a	138	298832		722.9	140	706	ST	
l)	BR - Silurian	39N	8E	29	4a	139	228625		728.2	100	700	ST	
	BR - Silurian & Maquoketa	39N	8E	30	4h	140	228789		727.8	180	694	ST	
	BR - Maquoketa & Galena	39N	8E	30	5c	141	228465		727.2	200	695	ST	
	BR - Silurian & Maquoketa	39N	8E	31	5c	142	240892		717.2	200	692	ST	
	BR - Silurian & Maquoketa	39N	8E	32	6f	148	263904		730.8	180	695	ST	
	BR - Silurian & Maquoketa	39N	8E	33	1f	301	299434		683.1	160	648	ST	1
	BR - Silurian	39N	8E	33	4e	146	67375		714.9	118	674	ST	
	BR - Silurian	39N	8E	33	6c	144	67373		718.1	110	678	ST	
	BR - Silurian	39N	8E	35	2h	145	213525		771.0	180	683	ST	
	BR - Silurian	39N	9E	1	1e	558	243505		752.8	180	710	ST	
	BR - Silurian & Maquoketa	39N	9E	1	3g	298	32831		736.3	225	706	ST	
	BR - Silurian	39N	9E	2	1g	655	184361		739.6	145	713	ST	
	BR - Silurian & Maquoketa	39N	9E	2	8e	559	251910		782.7	300	695	ST	
	BR - Silurian	39N	9E	3	2a	562	261102		779.7	145	707	ST	
	BR - Silurian	39N	9E	3	3f	561	184404		769.4	140	711	ST	
	BR - Silurian	39N	9E	5	2f	563	311551		753.7	120	711	ST	1
	BR - Silurian & Maquoketa	39N	9E	5	5d	825		4251	753.8	325	658	AL	
	BR - Silurian & Maquoketa	39N	9E	7	4h	838		4542	2	285		AL	2

Well open to	Тwp	Rge	Sec	Plot	ISWS Project No.	ISWS P No.	ISWS PICS No.	Measuring Point Elevation (ft)	Well Depth (ft)	Head Elevation (ft)	Method	Note
BR - Silurian	39N	9E	7	8a	656	277054		769.9	180	687	ST	
BR - Silurian & Maquoketa	39N	9E	8	3d	826		9876	750.4	350	666	AL	
BR - Silurian	39N	9E	10	3a	564	184618		762.6	140	705	ST	
BR - Silurian	39N	9E	11	4f	566	186616		747.5	160	703	ST	
BR - Silurian	39N	9E	11	5b	565	186716		723.3	80	703	ST	
BR - Silurian	39N	9E	13	8c	569	186776		781.8	200	704	ST	
BR - Silurian	39N	9E	14	6d	568	186811		763.3	160	700	ST	
BR - Silurian	39N	9E	15	3d	567	186935		711.0	120	693	ST	
BR - Silurian	39N	9E	22	8h	643	243389		713.1	180	697	ST	
BR - Silurian	39N	9E	22	1a	570	172131		715.0	115	699	ST	
BR - Silurian & Maquoketa	39N	9E	22	5a	294		4962	711.6	220	694	ST	
BR - Silurian	39N	9E	23	4h	654	172015		750.3	160	698	ST	
BR - Silurian	39N	9E	23	6f	636	171997		748.5	100	703	ST	
BR - Silurian	39N	9E	23	4b	637	172020		736.6	110	708	ST	
BR - Silurian	39N	9E	24	7b	639	172163		748.3	150	700	ST	
BR - Silurian	39N	9E	24	1a	640	172156		749.3	97	702	ST	
BR - Silurian	39N	9E	24	3f	425		4697	737.0	180	706	ST	
BR - Silurian & Maquoketa	39N	9E	24	3g	424	172157	1396	772.2	325	730	AL	
BR - Silurian	39N	9E	24	8h	638	339795		774.6	180	704	ST	
BR - Silurian	39N	9E	25	1h	435	305939		766.9	231	730	AL	
BR - Silurian & Maquoketa	39N	9E	25	2f	641	288505		720.1	200	702	ST	
BR - Silurian	39N	9E	25	4c	642	268705		760.0	180	700	ST	
BR - Silurian	39N	9E	26	2f	296	314338		742.9	200	704	ST	
BR - Silurian & Maquoketa	39N	9E	26	7b	295		4960	704.1	190	690	ST	
BR - Silurian	39N	9E	27	2c	645	172332		699.4	120	689	ST	
BR - Silurian	39N	9E	27	2g	644	172335		706.6	120	694	ST	
BR - Silurian & Maquoketa	39N	9E	27	6c	829		4318	732.0	335	683	ST	
BR - Silurian	39N	9E	27	8e	653	172344		732.5	130	674	ST	
BR - Silurian & Maquoketa	39N	9E	31	3b	646	308804		753.3	280	675	ST	
BR - Silurian	39N	9E	33	3c	290	172374		723.5	110	682	ST	
BR - Silurian	39N	9E	34	1g	652	172371		706.2	118	688	ST	

	Well open to	Тwp	Rge	Sec	Plot	ISWS Project No.	ISWS P No.	ISWS PICS No.	Measuring Point Elevation (ft)	Well Depth (ft)	Head Elevation (ft)	Method	Note
	BR - Silurian	39N	9E	34	2b	648	172417		701.2	120	675	ST	
	BR - Silurian & Maquoketa & Galena	39N	9E	34	5h	828		4339	713.3	365	695	ST	
	BR - Silurian	39N	9E	34	7d	647	296971		716.6	120	678	ST	
	BR - Silurian	39N	9E	35	4a	649	172437		694.4	115	681	ST	
	BR - Silurian	39N	9E	36	2f	651	172477		772.9	220	688	ST	
	BR - Silurian	39N	9E	36	5c	650	180714		740.0	150	681	ST	
	BR - Maquoketa	40N	5E	1	4a	869	42489		871.0	215	831	ST	
	BR - Maquoketa	40N	5E	1	5c	904	343431		872.7	225	831	ST	
	BR - Maquoketa	40N	5E	1	6f	976	42490		890.2	222	827	ST	
	BR - Maquoketa	40N	5E	2	4f	868	42493		874.0	203	828	ST	
	BR - Silurian & Maquoketa	40N	5E	2	7a	870	42495		851.4	200	828	ST	
	BR - Maquoketa	40N	5E	9	7h	903	42506		856.3	175	810	ST	
6	BR - Maquoketa	40N	5E	10	7g	874	42508		840.4	160	814	ST	
-	BR - Galena-Platteville	40N	5E	13	8a	879	252799		850.9	220	834	ST	
	BR - Maquoketa	40N	5E	13	6h	876	28597		856.5	175	833	ST	
	BR - Galena-Platteville	40N	5E	14	4h	1083	223997		858.4	205	832	ST	
	BR - Galena-Platteville	40N	5E	14	5b	987	42525		846.5	190	828	ST	
	BR - Silurian & Maquoketa	40N	5E	16	2h	872	329538		882.0	160	827	ST	
	BR - Silurian	40N	5E	21	5f	991	42562		876.7	106	833	ST	
	BR - Silurian	40N	5E	22	5a	878	343437		859.5	105	844	ST	
	BR - Silurian & Maquoketa	40N	5E	27	8b	978	42579		867.3	125	848	ST	
	BR - Silurian & Maquoketa	40N	5E	28	3b	902	301162		882.6	121	851	ST	
	BR - Silurian & Maquoketa	40N	5E	35	1e	260	41703		868.4	150	847	ST	
	BR - Galena-Platteville	40N	5E	36	1f	908	223989		852.8	265	819	ST	
	BR - Maquoketa	40N	6E	1	3h	753	67390		944.9	230	765	ST	1
	BR - Galena-Platteville	40N	6E	3	1a	164	250802		871.9	370	749	ST	1
	BR - Silurian & Maquoketa	40N	6E	3	2a	746	213534		871.5	200	854	ST	
	BR - Maquoketa	40N	6E	5	4d	748	67400		869.2	185	854	ST	
	BR - Maquoketa & Galena	40N	6E	6	4g	163	213536		893.0	340	816	ST	1
	BR - Maquoketa	40N	6E	6	4h	749			905.7	250	842	ST	
	BR - Maquoketa	40N	6E	6	6d	745	67402		885.2	208	851	ST	
	Well open to	Тwp	Rge	Sec	Plot	ISWS Project No.	ISWS P No.	ISWS PICS No.	Measuring Point Elevation (ft)	Well Depth (ft)	Head Elevation (ft)	Method	Note
----	------------------------------------	-----	-----	-----	------	------------------------	---------------	------------------	--------------------------------------	-----------------------	---------------------------	--------	------
	BR - Maquoketa & Galena	40N	6E	7	1e	747	250708		873.4	260	854	ST	
	BR - Maquoketa	40N	6E	13	6a	866	292869		876.6	200	826	ST	
	BR - Maquoketa	40N	6E	17	3e	162	213599		889.1	248	853	ST	
	BR - Maquoketa & Galena	40N	6E	18	6b	161	213677		860.1	200	841	ST	
	BR - Galena-Platteville	40N	6E	21	4d	883	213678		867.0	295	849	ST	
	BR - Maquoketa	40N	6E	25	7b	156	213683		870.8	240	845	ST	
	BR - Maquoketa	40N	6E	25	7g	155	321818		873.7	205	843	ST	
	BR - Silurian & Maquoketa	40N	6E	27	5h	166	291604		876.4	180	851	ST	
	BR - Maquoketa & Galena	40N	6E	29	8h	755	67516		863.7	317	731	ST	1
	BR - Silurian	40N	6E	32	2h	160	254382		869.3	200	844	ST	
	BR - Silurian	40N	6E	35	2e	895	267121		895.4	140	847	ST	
	BR - Silurian & Maquoketa	40N	7E	1	2b	185	215123		823.1	200	769	ST	
6	BR - Silurian & Maquoketa	40N	7E	1	2g	184	72542		821.3	240	779	ST	
91	BR - Silurian & Maquoketa	40N	7E	4	1g	187	215212		932.8	240	852	ST	
	BR - Maquoketa	40N	7E	4	4d	189	231199		938.5	240		ST	2
	BR - Ancell	40N	7E	9	2e	188	67622		918.6	300	796	ST	
	BR - Galena-Platteville	40N	7E	10	1b	602	215240		863.2	635			2
	BR - Maquoketa	40N	7E	11	1f	199	67746		819.0	260	723	ST	1
	BR - Maquoketa	40N	7E	11	2e	190	67745		842.9	265	765	ST	
	BR - Maquoketa	40N	7E	11	5f	191	282964		891.6	250	805	ST	
	BR - Silurian & Maquoketa	40N	7E	12	8e	192	67799		853.6	295	666	ST	1
	BR - Galena-Platteville	40N	7E	13	3a	194	67848		807.5	450	735	ST	1
	BR - Maquoketa	40N	7E	13	7h	198	67882		791.6	166	757	ST	
	BR - Maquoketa	40N	7E	14	6c	193	67954		831.9	225	764	ST	
	BR - Maquoketa	40N	7E	16	1b	196	230999		898.0	238	796	ST	
	BR - Silurian & Maquoketa	40N	7E	20	7f	231	68267		953.5	300	861	ST	
	BR - Maquoketa	40N	7E	21	5h	230	68395		905.1	310	790	ST	
	BR - Maquoketa & Galena	40N	7E	21	6f	232	215924		899.7	480	839	ST	
	BR - Maquoketa	40N	7E	22	5b	233	240763		918.4	360	777	ST	
	BR - Silurian & Maquoketa	40N	7E	24	4f	41	68546		849.1	250	769	ST	
	BR - Silurian & Maquoketa & Galena	40N	7E	25	2e	40	250710		844.8	445	679	ST	1

	Well open to	Тwp	Rge	Sec	Plot	ISWS Project No.	ISWS P No.	ISWS PICS No.	Measuring Point Elevation (ft)	Well Depth (ft)	Head Elevation (ft)	Method	Note
	BR - Silurian	40N	7E	26	8g	37	213971		835.0	170	767	ST	
	BR - Silurian & Maquoketa	40N	7E	28	2c	38	214049		941.1	280	778	ST	
	BR - Maquoketa	40N	7E	31	1c	26	238387		922.6	280	765	ST	
	BR - Silurian & Maquoketa	40N	7E	33	1f	17	261107		854.3	300	784	ST	
	BR - Silurian & Maquoketa	40N	7E	33	4e	16	268749		856.1	260	773	ST	
	BR - Silurian	40N	7E	35	5a	39	214096		783.4	160	759	ST	
	BR - Silurian	40N	8E	1	1c	76	68814		772.7	115	721	ST	
	BR - Silurian	40N	8E	1	3c	218	308364		756.3	120	725	ST	
	BR - Maquoketa	40N	8E	2	2a	204	68838		756.3	200	684	ST	
	BR - Maquoketa & Galena	40N	8E	2	3c	219	70595		701.0	365	684	ST	
	BR - Silurian	40N	8E	2	6h	212	68832		764.9	130	686	ST	
	BR - Silurian & Maquoketa	40N	8E	3	6a	80	68877		729.8	92	675	ST	
6	BR - Silurian & Maquoketa	40N	8E	6	7h	75	68970		823.9	190	778	ST	
01	BR - Silurian & Maquoketa	40N	8E	7	2g	228	303340		794.3	100	767	ST	
	BR - Silurian	40N	8E	7	5d	200	69039		800.0	90	767	ST	
	BR - Silurian & Maquoketa	40N	8E	7	8c	201	69065		775.0	145	761	ST	
	BR - Silurian & Maquoketa	40N	8E	9	1e	203	283055		765.0	160	729	ST	
	BR - Silurian & Maquoketa	40N	8E	9	4d	202	72228		808.6	145	734	ST	
	BR - Maquoketa	40N	8E	10	5f	169	329336		747.0	180	681	ST	
	BR - Silurian & Maquoketa	40N	8E	12	1b	171	72537		771.1	160	718	ST	
	BR - Maquoketa	40N	8E	17	3c	174	238357		801.0	210	677	ST	1
	BR - Maquoketa	40N	8E	17	5a	179	250481		785.4	240	715	ST	
	BR - Maquoketa	40N	8E	18	2e	182	308908		776.8	260	739	ST	
	BR - Silurian	40N	8E	20	5d	183	69561		759.9	120	719	ST	
	BR - Maquoketa & Galena	40N	8E	21	6f	177	305377		740.3	240	659	ST	1
	BR - Maquoketa & Galena	40N	8E	22	3d	830	341841	1968	3 772.3	385	735	AL	1
	BR - Silurian & Maguoketa	40N	8E	23	5h	180	72380		763.1	175	673	ST	
	BR - Silurian	40N	8E	24	1f	176	69654		800.9	175	706	ST	
	BR - Maguoketa	40N	8E	28	4f	168	69672		744.1	230	690	ST	
	BR - Silurian & Maquoketa	40N	8E	29	2e	197	69690		792.1	180	696	ST	
	BR - Silurian & Maquoketa	40N	8E	29	2e	167	228586		781.5	170	697	ST	

Well open to	Тwp	Rge	Sec	Plot	ISWS Project No.	ISWS P No.	ISWS PICS No.	Measuring Point Elevation (ft)	Well Depth (ft)	Head Elevation (ft)	Method	Note
BR - Silurian & Maquoketa	40N	8E	29	2f	178	69694		793.3	190	696	ST	
BR - Maquoketa	40N	8E	29	5b	172	69697		777.3			ST	2
BR - Silurian	40N	8E	30	3c	831	69783		772.4	140	716	ST	
BR - Silurian	40N	8E	30	4e	173	69808		845.9	190	753	ST	
BR - Silurian	40N	8E	36	1c	181	69844		760.2	175	673	ST	
BR - Silurian & Maquoketa	40N	9E	3	5b	390		5403	822.6	392	775	AL	
BR - Silurian	40N	9E	4	2h	530	172509		829.8	220	760	ST	
	40N	9E	4	3b	529	172504		806.3	200	755	ST	
BR - Maquoketa	40N	9E	7	8a	712	172520		761.8	220	712	ST	
BR - Silurian & Maquoketa	40N	9E	12	3b	711	172539		811.1	200	743	ST	
BR - Silurian & Maquoketa	40N	9E	14	5c	533	172551		773.4	166	727	ST	
BR - Silurian	40N	9E	14	8a	560	172554		742.8	76	730	ST	
BR - Silurian	40N	9E	15	5g	535	172565		809.0	160	758	ST	
BR - Silurian	40N	9E	15	7a	534	172624		767.6	135	703	ST	1
BR - Silurian	40N	9E	16	5b	536	172626		797.7	138	757	ST	
BR - Silurian	40N	9E	17	3c	537	260682		779.4	175	744	ST	
BR - Silurian	40N	9E	18	3d	531	299799		749.1	140	726	ST	
BR - Silurian & Maquoketa	40N	9E	18	7e	538	288322		750.9	79	718	ST	
BR - Silurian & Maquoketa & Galena	40N	9E	19	4a	823		5363	759.0	350	675		
BR - Silurian	40N	9E	19	7g	532	187310		770.2	120	697	ST	
BR - Silurian	40N	9E	20	2d	539	187319		770.1	140	727	ST	
BR - Silurian & Maquoketa	40N	9E	20	7g	540	187341		762.5	145	739	ST	
BR - Silurian	40N	9E	21	7f	541	288321		792.0	115	738	ST	
BR - Silurian	40N	9E	22	3f	542	220218		767.3	160	733	ST	
BR - Silurian	40N	9E	22	8d	557	220237		768.5	175	737	ST	
BR - Silurian	40N	9E	23	2b	543	220722		761.8	100	730	ST	
BR - Silurian & Maquoketa	40N	9E	25	5b	544	221902		799.1	220	728	ST	
BR - Silurian & Maquoketa	40N	9E	26	1a	546	221989		753.3	113	718	ST	
BR - Silurian	40N	9E	26	6e	545	222017		761.5	98	725	ST	
BR - Silurian	40N	9E	27	3f	547	284566		770.5	110	712	ST	
BR - Silurian	40N	9E	27	8c	549	314228		793.5	180	709	ST	

Well open to	Тwp	Rge	Sec	Plot	ISWS Project No.	ISWS P No.	ISWS PICS No.	Measuring Point Elevation (ft)	Well Depth (ft)	Head Elevation (ft)	Method	Note
BR - Silurian & Maquoketa	40N	9E	28	2f	431	233911		797.5	329		ST	2
BR - Silurian & Maquoketa	40N	9E	29	1a	551	269531		761.7	175	683	ST	
BR - Silurian & Maquoketa	40N	9E	33	5a	824		5469	772.0	350	660		
BR - Silurian	40N	9E	34	5e	553	269608		763.8	105	716	ST	
BR - Silurian	40N	9E	35	3e	554	251883		743.7	100	718	ST	
BR - Silurian	40N	9E	35	6a	555	269643		744.0	155	705	ST	
BR - Silurian	40N	9E	36	1b	556	269688		743.5	95	715	ST	
BR - Silurian & Maquoketa	40N	9E	36	3d	297	243409		748.3	200	716	ST	
BR - Maquoketa	41N	5E	2	5g	794	42879		883.0	177	852	ST	
BR - Maquoketa	41N	5E	4	5d	625	235153		913.9	220	851	ST	
BR - Maquoketa	41N	5E	5	1g	799	235144		862.4	140	816	ST	
BR - Maquoketa & Galena	41N	5E	6	2h	795	195940		832.9	180	792	ST	
BR - Maquoketa & Galena	41N	5E	7	3f	624	306344		842.0	385	648	ST	1
BR - Maquoketa & Galena	41N	5E	7	4a	797	42948		840.2	165	801	ST	
BR - Maquoketa	41N	5E	8	2f	623	230525		865.5	199	846	ST	
BR - Maquoketa	41N	5E	10	7b	801	42975		919.6	205	852	ST	
BR - Maquoketa	41N	5E	12	2a	935	42984		885.6	195	854	ST	
BR - Maquoketa	41N	5E	12	8c	929	308082		891.4	180	849	ST	
BR - Maquoketa	41N	5E	13	4c	934	42985		892.1	181	854	ST	
BR - Maquoketa	41N	5E	14	4e	936	290476		911.2	155	853	ST	
BR - Maquoketa	41N	5E	15	2e	937	343466		933.7	205	852	ST	
BR - Maquoketa & Galena	41N	5E	15	8a	938	266041		878.3	300	842	ST	
BR - Maquoketa	41N	5E	18	4c	798	223870		862.1	120	815	ST	
BR - Maquoketa & Galena	41N	5E	21	8f	928	333966		851.8	220	801	ST	
BR - Maquoketa	41N	5E	25	5f	926	206233		902.9	200	850	ST	
BR - Maquoketa	41N	5E	26	1c	925	308429		914.0	220	835	ST	
BR - Maquoketa & Galena	41N	5E	27	3a	796	43049		893.5	355	827	ST	
BR - Maquoketa	41N	5E	28	1b	933	333946		872.5	200	817	ST	
BR - Maquoketa	41N	5E	28	4b	994	247370		870.5	185	823	ST	
BR - Maquoketa	41N	5E	28	6f	939	329705		849.0	160	827	ST	
BR - Maquoketa & Galena	41N	5E	30	5g	800	301129		833.4	190	813	ST	

Well open to	Тwp	Rge	Sec	Plot	ISWS Project	ISWS P No.	ISWS PICS No.	Measuring Point Elevation	Well Depth (ft)	Head Elevation (ft)	Method	Note
	4451		0.4	0	700	40400			(14)	(14)	o 	
BR - Maquoketa & Galena	41N	5E	31	3g	/93	43136		836.4	205	817	SI	
BR - Galena-Platteville	41N	5E	33	2c	927	43138		834.2	225	819	SI	
BR - Maquoketa & Galena	41N	5E	36	3a	932	43147		911.2	285	840	SI	
BR - Maquoketa	41N	6E	2	1d	336	311520		936.5	128	899	SI	
BR - Maquoketa	41N	6E	3	7d	338	214871		909.7	245	878	ST	
BR - Maquoketa	41N	6E	4	4h	332	69878		919.9	190	876	ST	
BR - Maquoketa	41N	6E	5	4a	330	214873		914.4	205	854	ST	
BR - Maquoketa	41N	6E	5	8f	329	69890		908.9	225	847	ST	
BR - Maquoketa	41N	6E	7	6e	931	69894		902.9	246	853	ST	
BR - Silurian & Maquoketa	41N	6E	8	3a	756	238222		903.0	205	873	ST	
BR - Maquoketa	41N	6E	8	6d	940	238221		895.1	185	855	ST	
BR - Maquoketa	41N	6E	9	4a	337	69900		947.7	320	858	ST	1
BR - Maquoketa	41N	6E	9	4e	768	321813		946.4	240	885	ST	
BR - Maquoketa & Galena	41N	6E	10	7f	334	305621		918.4	320	849	ST	1
BR - Maquoketa	41N	6E	12	2e	757	69908		980.1	320	895	ST	
BR - Maquoketa	41N	6E	12	8f	328	69912		951.4	220	895	ST	
BR - Maquoketa	41N	6E	15	3b	339	238364		916.5	240	855	ST	
BR - Maquoketa	41N	6E	15	3c	911	69931		927.1	155	895	ST	
BR - Maquoketa	41N	6E	16	2c	613	309020		954.9	225	891	ST	
BR - Maquoketa	41N	6E	16	2f	612	69933		962.9	245	896	ST	
BR - Maquoketa	41N	6E	16	7b	924	69940		926.9	110	885	ST	
BR - Maquoketa	41N	6E	19	3b	758	286088		895.9	205	858	ST	
BR - Maquoketa	41N	6E	20	3a	759	331588		915.3	225	861	ST	
BR - Maquoketa	41N	6E	21	1d	762	228435		905.9	225	854	ST	
BR - Maquoketa	41N	6E	21	1g	761	69950		916.8	280	855	ST	
BR - Maquoketa	41N	6E	24	2c	54	69957		974.9	260	857	ST	
BR - Maquoketa	41N	6E	24	2f	760	301364		1000.0	300	864	ST	
BR - Maquoketa & Galena	41N	6E	25	6b	764	308376		931.6	380	857	ST	
BR - Maquoketa	41N	6E	26	2d	767	69968		916.2	180	871	ST	
BR - Maguoketa	41N	6E	26	4h	763	293429		907.4	160	884	ST	
BR - Maquoketa	41N	6E	27	3d	921	69980		890.4	235	847	ST	

Well open to	Тwp	Rge	Sec	Plot	ISWS Project No.	ISWS P No.	ISWS PICS No.	Measuring Point Elevation (ft)	Well Depth (ft)	Head Elevation (ft)	Method	Note
BR - Maquoketa	41N	6E	27	3e	922	69981		891.8	225	855	ST	
BR - Maquoketa & Galena	41N	6E	28	7a	766	339665		878.9	300	847	ST	1
BR - Maquoketa	41N	6E	29	2c	920	228871		891.7	220	854	ST	
BR - Maquoketa & Galena	41N	6E	31	2a	610	310293		892.8	260	843	ST	
BR - Maquoketa	41N	6E	31	4d	614	69988		900.5	225	844	ST	
BR - Maquoketa	41N	6E	32	2f	919	69990		891.4	205	856	ST	
BR - Maquoketa	41N	6E	36	8a	769	296681		924.9	305	840	ST	
BR - Silurian	41N	7E	1	1d	42	70017		931.0	215	787	ST	
BR - Maquoketa	41N	7E	1	1e	45	230691		947.3	360		ST	2
BR - Maquoketa	41N	7E	3	7d	46	285740		925.0	320	737	ST	1
BR - Maquoketa	41N	7E	6	4b	47	293569		997.4	260	896	ST	
BR - Maquoketa	41N	7E	8	4h	1055	282843		949.0	195	912	ST	
BR - Maquoketa	41N	7E	9	7g	1054	301862		945.2	340	750	ST	1
BR - Silurian	41N	7E	11	5h	1057	254371		910.2	280	817	ST	
BR - Silurian & Maquoketa	41N	7E	14	1a	50	228459		890.4	265	801	ST	
BR - Silurian	41N	7E	14	6b	611	337472		897.1	170	840	ST	
BR - Silurian	41N	7E	15	4c	49	215255		934.1	245	852	ST	
BR - Maquoketa	41N	7E	18	5a	1238	215257		1061.4	325	972	ST	1
BR - Maquoketa	41N	7E	18	6h	714	174108		1004.1	340	797	ST	1
BR - Maquoketa	41N	7E	20	6b	48	215258		988.6	340	798	ST	1
BR - Silurian	41N	7E	22	3e	1060	70302		929.7	184	848	ST	
BR - Silurian	41N	7E	22	6h	1058	319566		925.0	172	860	ST	
BR - Maquoketa	41N	7E	25	6f	713	301857		875.6	300	794	ST	
BR - Silurian & Maquoketa	41N	7E	27	2a	55	70473		897.2	260	810	ST	
BR - Silurian	41N	7E	28	8g	1112	312795		938.2	210	826	ST	
BR - Silurian & Maquoketa	41N	7E	34	1h	1111	70548		890.2	240	810	ST	
BR - Silurian & Maquoketa	41N	8E	6	5e	213	70606		932.5	420	782	ST	
BR - Maquoketa	41N	8E	8	6a	571	216081		853.0	260	771	ST	
BR - Silurian & Maquoketa	41N	8E	8	3d	360	290883		876.8	340	729	ST	
BR - Maquoketa	41N	8E	16	5c	366	254417		819.9	225	771	ST	
BR - Maquoketa	41N	8E	20	7d	363	305165		842.8	240	788	ST	

Well open to	Тwp	Rge	Sec	Plot	ISWS Project No.	ISWS P No.	ISWS PICS No.	Measuring Point Elevation (ft)	Well Depth (ft)	Head Elevation (ft)	Method	Note
BR - Silurian & Maquoketa	41N	8E	28	8d	488	216111		801.4	220	778	ST	
BR - Maquoketa	41N	8E	30	4g	341	351520		835.2	240	790	ST	
BR - Silurian & Maquoketa	41N	8E	31	4f	494	250701		802.4	260	727	ST	1
BR - Silurian & Maquoketa	41N	8E	31	5a	490	329077		814.0	260	760	ST	
BR - Silurian	41N	8E	32	1g	502	324514		803.0	140	766	ST	
BR - Silurian & Maquoketa	41N	8E	32	6f	501	319533		781.6	120	771	ST	
BR - Maquoketa & Galena	41N	8E	36	4d	572		11051	740.6	392		ST	2
BR - Maquoketa	41N	8E	36	6g	496	321686		759.0	200	675	ST	1
BR - Silurian	41N	9E	7	7a	671	34198			150		ST	2
BR - Silurian & Maquoketa	41N	9E	10	4c	677	34208		797.7	180	758	ST	
BR - Silurian	41N	9E	17	4g	590	302713		810.9	180	749	ST	
BR - Silurian & Maquoketa	41N	9E	17	5d	589	267988		803.7	200	732	ST	
BR - Silurian & Maquoketa	41N	9E	20	1a	676	302960		805.5	220	752	ST	
BR - Silurian	41N	9E	20	Зf	588	34284		795.2	178	757	ST	
BR - Silurian	41N	9E	21	2a	673	34290		821.3	205	763	ST	
BR - Silurian & Maquoketa	41N	9E	21	6d	669	34302		831.4	220	762	ST	
BR - Silurian	41N	9E	21	8b	674	308022		834.1	220	755	ST	
BR - Silurian & Maquoketa	41N	9E	22	2h	587	34309		831.9	237		ST	2
BR - Silurian & Maquoketa	41N	9E	27	5c	670	331121		846.8	260	766	ST	
BR - Silurian	41N	9E	28	5f	586	34324		838.2	200	768	ST	
BR - Silurian & Maquoketa	41N	9E	29	5a	584	340526		773.9	260	725	ST	
BR - Silurian & Maquoketa	41N	9E	32	1e	585	292780		779.4	180	756	ST	
BR - Silurian	41N	9E	33	4b	582	34354		839.3	240	762	ST	
BR - Silurian	41N	9E	34	1b	389		10671	805.6	199	752	AL	
BR - Silurian	41N	9E	36	5d	583	189883		821.9	210	756	ST	
BR - Maquoketa	42N	5E	2	5c	521	191006		836.2	80	822	ST	
BR - Maquoketa	42N	5E	3	8e	526	42408		851.5	191	837	ST	
BR - Maquoketa	42N	5E	7	5a	518	333960		854.0	58	844	ST	
BR - Maquoketa	42N	5E	8	4e	519	333948		862.4	160	842	ST	
BR - Maquoketa	42N	5E	9	4h	524	285038		855.9	180	845	ST	
BR - Maquoketa	42N	5E	10	5a	522	42417		841.0	50	825	ST	

Well open to	Тwp	Rge	Sec	Plot	ISWS Project No.	ISWS P No.	ISWS PICS No.	Measuring Point Elevation (ft)	Well Depth (ft)	Head Elevation (ft)	Method	Note
BR - Maquoketa	42N	5E	12	2h	523	42419		836.4	110	825	ST	
BR - Maquoketa	42N	5E	12	6c	618	42420		829.4	145	817	ST	
BR - Maquoketa & Galena	42N	5E	14	8b	525	224117		830.4	220	819	ST	
BR - Maquoketa	42N	5E	16	1d	527	42422		836.0	50	821	ST	
BR - Maquoketa	42N	5E	18	5b	620	234990		824.1	105	791	ST	
BR - Maquoketa	42N	5E	22	2a	528	306596		862.2	200	823	ST	
BR - Maquoketa	42N	5E	24	6b	619	230514		844.9	140	836	ST	
BR - Maquoketa	42N	5E	28	3a	622	247283		870.3	185	844	ST	
BR - Maquoketa	42N	5E	30	3a	616	42463		849.6	155	795	ST	
BR - Maquoketa & Galena	42N	5E	32	6a	617	343448		873.5	220		ST	2
BR - Maquoketa	42N	5E	35	6c	621	42478		874.4	165	848	ST	
BR - Maquoketa	42N	6E	4	1a	509	71116		920.6	270	859	ST	
BR - Maquoketa	42N	6E	7	8g	508	71144		836.6	160	825	ST	
BR - Maquoketa	42N	6E	15	2d	327	283051		906.8	175	864	ST	
BR - Maquoketa	42N	6E	15	7b	326	71197		891.3	235	862	ST	
BR - Maquoketa	42N	6E	16	3d	510	267036		876.4	155	857	ST	
BR - Maquoketa	42N	6E	21	6f	626	71217		872.9	141	859	ST	
BR - Maquoketa	42N	6E	22	2d	627	71219		908.6	242	859	ST	
BR - Maquoketa	42N	6E	23	8g	349	71222		926.7	295	858	ST	
BR - Maquoketa	42N	6E	29	8d	351	228762		879.0	235	857	ST	
BR - Maquoketa	42N	6E	31	5g	505	312211		884.3	300	850	ST	
BR - Maquoketa	42N	6E	32	4a	331	69882		918.4	250	866	ST	
BR - Maquoketa	42N	6E	35	1d	628	71271		991.9	377	849	ST	
BR - Silurian & Maquoketa	42N	7E	2	5h	513	217238		899.6	240	837	ST	
BR - Maquoketa	42N	7E	9	2f	244	331641		930.9	260	845	ST	
BR - Maquoketa	42N	7E	10	5a	273	296033		930.3	258	814	ST	
BR - Maquoketa	42N	7E	12	8c	807	297119		899.1	300	814	ST	
BR - Silurian & Maquoketa	42N	7E	13	1c	272	217246		911.2	240	825	ST	
BR - Maquoketa & Galena	42N	7E	13	1f	809	71312		916.7	450	761	ST	1
BR - Maquoketa	42N	7E	21	3g	812	71354		919.8	265	831	ST	
BR - Maquoketa	42N	7E	21	5h	813	71355		906.3	335		ST	2

Well open to	Тwp	Rge	Sec	Plot	ISWS Project No.	ISWS P No.	ISWS PICS No.	Measuring Point Elevation (ft)	Well Depth (ft)	Head Elevation (ft)	Method	Note
BR - Maquoketa	42N	7E	23	1h	274	217294		903.8	280	777	ST	1
BR - Maquoketa	42N	7E	23	3c	340			898.9	270	820	ST	
BR - Silurian	42N	7E	24	5c	804	229159		893.8	200	810	ST	
BR - Silurian & Maquoketa	42N	7E	24	8f	806	230988		905.2	225		ST	2
BR - Maquoketa	42N	7E	26	4b	270	71432		903.3	295	706	ST	1
BR - Maquoketa	42N	7E	27	4a	271	320034		914.3	300	782	ST	
BR - Maquoketa	42N	7E	28	6d	517	322794		915.3	260	800	ST	
BR - Maquoketa	42N	7E	30	4b	808	71466		951.4	285		ST	2
BR - Maquoketa	42N	7E	31	1h	805	261106		927.8	420	825	ST	
BR - Silurian & Maquoketa & Galena	42N	7E	36	2b	214	70605		885.8	410	731	ST	1
BR - Maquoketa	42N	8E	1	2f	1108	217168		813.8	246	745	ST	
BR - Maquoketa	42N	8E	4	2d	661	319518		863.6	260	721	ST	
BR - Maquoketa	42N	8E	8	2f	1244	71648		934.2	278	865	ST	
BR - Maquoketa	42N	8E	9	6h	280	71666		901.8	232	837	ST	1
BR - Maquoketa	42N	8E	15	1h	215	241458		727.9	100	723	ST	
BR - Maquoketa	42N	8E	16	8b	277	276243		909.0	300	780	ST	
BR - Silurian	42N	8E	19	2f	276	287605		924.1	200	841	ST	
BR - Silurian	42N	8E	21	5a	717	289692		747.4	42	740	ST	
BR - Maquoketa	42N	8E	23	5e	278	231535		787.4	160	740	ST	
BR - Silurian	42N	8E	24	7d	664	306016		858.0	250	769	ST	
BR - Silurian & Maquoketa	42N	8E	28	4f	279	72391		804.9	205	738		
BR - Silurian	42N	8E	29	6a	718	71777		891.9	220	726	ST	1
BR - Silurian	42N	8E	32	3h	635	71818		865.6	200	744	ST	
BR - Maquoketa	42N	8E	34	8f	667	71833		776.9	240	658	ST	1
BR - Maquoketa	42N	8E	36	7g	668	230385		833.2	338	654	ST	1
BR - Silurian & Maquoketa	42N	9E	1	7h	578		10787	7 828.7	305	720	ST	
BR - Silurian	42N	9E	4	2b	706	303972		831.1	200	757	ST	
BR - Silurian	42N	9E	6	7f	469	35156		791.2	153	764	ST	
BR - Silurian	42N	9E	6	3h	467	35150		804.7	165	768	ST	
BR - Silurian	42N	9E	12	5h	451	35203		862.0	260	726	ST	
BR - Silurian	42N	9E	16	1b	355	35042		893.5	280	772	ST	

Well open to	Тwp	Rge	Sec	Plot	ISWS Project No.	ISWS P No.	ISWS PICS No.	Measuring Point Elevation (ft)	Well Depth (ft)	Head Elevation (ft)	Method	Note
BR - Maquoketa	42N	9E	18	7e	683	190274		886.0	402	760	ST	
BR - Maquoketa	42N	9E	21	6e	454	245280		837.7	215	776	ST	
BR - Silurian & Maquoketa	42N	9E	23	6a	847	290561		871.4	280	729	ST	
BR - Maquoketa	42N	9E	34	1h	453	35441		842.8	255	741	ST	
BR - Maquoketa	42N	9E	36	3h	1031	326797		850.3	235	739	ST	
BR - Maquoketa	43N	5E	2	2b	855	285528		921.2	290	787	ST	
BR - Maquoketa & Galena	43N	5E	3	7d	719	188663		803.1	210	770	ST	
BR - Galena-Platteville	43N	5E	7	5d	853	99015		793.0	140	765	ST	
BR - Galena-Platteville	43N	5E	8	4d	2029	99018		795.1	225	778		
BR - Maquoketa	43N	5E	11	5a	723	99036		846.6	125	797	ST	
BR - Maquoketa & Galena	43N	5E	11	6e	2008	188739		862.4	280	791	ST	
BR - Maquoketa	43N	5E	12	1c	738	320291		986.4	350	831	ST	
BR - Maquoketa	43N	5E	13	2d	731	99068		864.9	151	847	ST	
BR - Maquoketa	43N	5E	14	5e	732	217249		834.9	90	818	ST	
BR - Maquoketa	43N	5E	15	4a	2028	188753		808.0	80	796		
BR - Maquoketa	43N	5E	16	5b	739	290022		802.2	100	786	ST	
BR - Maquoketa	43N	5E	18	7d	740	341905		797.6	97	792	ST	
BR - Maquoketa	43N	5E	20	1h	741	299777		807.0	100	789	ST	
BR - Galena-Platteville	43N	5E	22	2f	734	99120		810.8	405	687	ST	1
BR - Maquoketa	43N	5E	22	4a	854	292891		813.5	80	801	ST	
BR - Maquoketa	43N	5E	23	4d	2013	99125		832.9	80	817		
BR - Silurian & Maquoketa	43N	5E	25	2f	724	99140		845.4	113	833	ST	
BR - Maquoketa	43N	5E	26	6f	2012	100971		820.4	105	810		
BR - Maquoketa	43N	5E	36	3b	730	100984		827.3	126	819	ST	
BR - Maquoketa	43N	6E	2	8h	742	189463		841.1	160	832	ST	
BR - Maquoketa	43N	6E	3	1a	2011	100991		840.9	195	829		
BR - Maquoketa	43N	6E	4	2e	2009	227704		836.7	180	760		1
BR - Maquoketa	43N	6E	5	4f	726	241823		829.9	160	814	ST	
BR - Maquoketa	43N	6E	7	5b	744	28645		931.8	340	855	ST	
BR - Maquoketa	43N	6E	8	5e	2003	101028		902.0	220	852		
BR - Maquoketa	43N	6E	9	3d	2000	101039		875.0	200	820		

Well open to	Тwp	Rge	Sec	Plot	ISWS Project No.	ISWS P No.	ISWS PICS No.	Measuring Point Elevation (ft)	Well Depth (ft)	Head Elevation (ft)	Method	Note
BR - Maquoketa	43N	6E	10	2b	852	101047		865.7	190	819	ST	
BR - Maquoketa	43N	6E	10	6h	849	338880		846.2	140	837	ST	
BR - Maquoketa	43N	6E	14	7d	743	322523		873.0	180	854	ST	
BR - Maquoketa & Galena	43N	6E	16	8f	2005	189495		885.9	440	735		1
BR - Maquoketa	43N	6E	20	8f	2015	101093		969.7	257	858		
BR - Maquoketa	43N	6E	23	5f	2001	101143		895.0	220			2
BR - Maquoketa	43N	6E	24	8e	1034	102988		901.8	230	846	ST	
BR - Maquoketa	43N	6E	26	8d	2007	102998		928.4	301	879		
BR - Maquoketa	43N	6E	28	2b	856	325011		952.9	280	863	ST	
BR - Maquoketa	43N	6E	30	2d	728	103058		892.9	210	853	ST	
BR - Maquoketa	43N	6E	31	6h	1237	189552		851.0	200	843	ST	
BR - Maquoketa & Galena	43N	6E	32	4h	857	103069		894.3	285	850	ST	
BR - Maquoketa	43N	6E	33	3e	2002	103074		924.6	320	863		
BR - Maquoketa	43N	6E	35	7f	1038	189550		902.6	220	870	ST	
BR - Maquoketa	43N	6E	35	8g	858	189569		909.7	280	877	ST	
BR - Maquoketa	43N	6E	36	5c	2060	103106		910.1	211	869		
BR - Silurian	43N	7E	1	2b	863	325673		893.7	208	879	ST	1
BR - Silurian	43N	7E	3	2g	1061	106188		925.4	222	849	ST	
BR - Maquoketa	43N	7E	4	5d	2049	189893		911.6	246	820		1
BR - Maquoketa	43N	7E	5	4g	862	106241		907.7	238	842	ST	
BR - Silurian	43N	7E	7	8f	2057	217210		852.8	150	841		
BR - Maquoketa	43N	7E	8	6e	1039	106253		861.2	240	838	ST	
BR - Silurian	43N	7E	12	5g	1062	106268		905.0	240	827	ST	
BR - Maquoketa	43N	7E	13	5g	2045	106293		888.8	310	760	ST	1
BR - Maquoketa	43N	7E	15	3h	861	307643		880.8	230	833	ST	
BR - Maquoketa	43N	7E	16	6d	859	213933		861.7	182	852	ST	
BR - Maquoketa	43N	7E	19	1h	2031	106307		903.6	59	850		
BR - Maquoketa	43N	7E	20	3g	860	106313		890.5	195	855	ST	
BR - Silurian & Maquoketa	43N	7E	23	1e	2053	217282		883.4	300	766		1
BR - Silurian	43N	7E	23	3b	2006	106318		897.2	184	848		
BR - Maquoketa	43N	7E	28	1h	2039	106327		885.7	280	844		

Well open to	Тwp	Rge	Sec	Plot	ISWS Project No.	ISWS P No.	ISWS PICS No.	Measuring Point Elevation (ft)	Well Depth (ft)	Head Elevation (ft)	Method	Note
BR - Maquoketa	43N	7E	30	1c	1063	290049		871.8	218	868	ST	
BR - Silurian	43N	7E	33	4e	1037	21399		894.2	215	860	ST	
BR - Silurian	43N	8E	1	3f	971	106387		829.9	192	801	ST	
BR - Silurian	43N	8E	3	1g	974	297735		888.9	260	819	ST	
BR - Silurian & Maquoketa	43N	8E	3	3e	972	106415		902.3	395	818		
BR - Silurian	43N	8E	8	1c	2063		7396	900.4	250	750	AL	
BR - Silurian	43N	8E	11	6h	1044	106645		855.1	239	815	ST	
BR - Silurian	43N	8E	12	1a	1036	264524		832.2	190	772	ST	
BR - Silurian	43N	8E	12	2f	1042	291457		845.5	220	749	ST	
BR - Silurian	43N	8E	14	2b	2064	216313		891.3	260	767		
BR - Silurian	43N	8E	15	5b	973	290395		899.7	221	786	ST	
BR - Silurian	43N	8E	16	3c	975	312600		860.4	192	801	ST	
BR - Silurian	43N	8E	16	8h	2032	106603		884.9	260	760		
BR - Silurian	43N	8E	17	1f	1043	327965		885.9	212	760	ST	
BR - Silurian	43N	8E	21	4e	2016	216327		843.1	218	804		
BR - Silurian	43N	8E	23	2c	2019	106758		739.8	85	729		
BR - Silurian	43N	8E	24	7d	1048	106793		738.2	120	734	ST	
BR - Silurian	43N	8E	27	1b	1047	307654		771.8	160	713	ST	
BR - Silurian	43N	8E	27	1e	2069		3078	5	165			2
BR - Silurian	43N	8E	28	5f	2014		7361	786.2	105	795		
BR - Silurian	43N	8E	30	1e	1041	382183		887.7	210	799	ST	
BR - Maquoketa	43N	8E	33	7b	2020	99182		876.5	200	747		
BR - Silurian	43N	8E	34	1a	2067		3085	816.9	155	703	AL	
BR - Silurian	43N	8E	34	2a	2068		3084	792.4	131	692	AL	
BR - Silurian & Maquoketa	43N	8E	35	3a	2024	214309		865.1	245	755		
BR - Silurian	43N	8E	36	3a	464	292890		870.3	220	764	ST	
BR - Silurian	43N	9E	2	2f	592	291857		750.2	180	725	ST	
BR - Silurian	43N	9E	2	5c	598		6707	792.5	186	726	ST	
BR - Silurian & Maquoketa	43N	9E	3	1e	599		5173	759.7	280	727	ST	
BR - Silurian	43N	9E	5	7d	1050	99295		800.8	184	738	ST	
BR - Silurian & Maquoketa	43N	9E	6	2b	1045	298622		846.3	250	779	ST	

Well open to	Тwp	Rge	Sec	Plot	ISWS Project	ISWS P No.	ISWS PICS No.	Measuring Point Elevation	Well Depth	Head Elevation (ft)	Method	Note
	401	05	0	0	1050	00047		(11)	100	700	от	
BR - Silurian	43N	9E	8 10	Zn	1052	99347	0714	773.0	100	730	51	2
BR - Silurian	43N	9E	10	41 7-	405	070040	6714	· //2.1	170	745	51	2
BR - Maquoketa	43N	9E	11	/e	5/3	272042		/69.1	287	715	51	
BR - Maquoketa	43N	9E	12	ъg	5/4	304089		811.7	240	731	51	
BR - Silurian	43N	9E	12	/n	493	2/2153		813.1	258	732	SI	
BR - Maquoketa	43N	9E	13	4a	358	335804		811.8	235	731	SI	
BR - Silurian	43N	9E	13	6C	5/5	286956		812.2	218	731	SI	
BR - Silurian & Maquoketa	43N	9E	15	/n	821	318493		754.8	158	/36	SI	
BR - Silurian	43N	9E	16	5b	682	228921		/92.9	170	739	SI	
BR - Silurian & Maquoketa	43N	9E	16	1b	604	312155		801.0	200	/3/	SI	
BR - Silurian	43N	9E	1/	/d	689		5091	/41.1	140	/34	SI	
BR - Silurian & Maquoketa	43N	9E	1/	/d	690		101	/40.0	1/5	/3/	SI	
BR - Silurian	43N	9E	18	3a	2043		/368	/41.3	120	/30	AL	
BR - Silurian & Maquoketa	43N	9E	18	3a	2044		/369	/24./	140	/23	AL	
BR - Maquoketa	43N	9E	23	3e	576	242586		802.4	194	736	ST	
BR - Maquoketa	43N	9E	24	2c	607	306204		840.4	236	716	ST	
BR - Silurian	43N	9E	24	5b	581	270818		842.3	234	720	ST	
BR - Silurian & Maquoketa	43N	9E	25	5d	595		6715	868.5	276	721	ST	
BR - Silurian	43N	9E	28	8f	1046	299567		825.9	184	763	ST	
BR - Silurian	43N	9E	31	8b	456	213926		882.2	220	766	ST	
Glasford sand (undiff.)	37N	6E	3	7a	1079	78014		678.2	100	657	ST	
Glasford sand (undiff.)	37N	6E	4	2h	246	77980		699.7	119	675	ST	
Glasford sand (undiff.)	37N	6E	5	6h	1122	238605		714.8	159	687	ST	
Glasford sand (undiff.)	37N	6E	6	3c	251	245379		716.9	200	688	ST	
Glasford sand (undiff.)	37N	6E	9	2e	1123	78006		668.6	143	646	ST	
Glasford sand (undiff.)	37N	6E	14	4a	1082	312724		651.0	84	604	ST	
Glasford sand (undiff.)	37N	6E	14	5e	1124	78038		658.4	80	615	ST	
Glasford sand (undiff.)	37N	6E	16	6g	1077	77998		669.2	68	643	ST	
Glasford sand (undiff.)	37N	6E	18	2h	1121	78105		687.2	62	642	ST	
Glasford sand (undiff.)	37N	6E	23	8c	1024		6653	611.2	41	589	ST	
Glasford sand (undiff.)	37N	6E	23	8c	1026		6655	611.1	37	590	ST	

	Well open to	Тwp	Rge	Sec	Plot	ISWS Project No.	ISWS P No.	ISWS PICS No.	Measuring Point Elevation (ft)	Well Depth (ft)	Head Elevation (ft)	Method	Note
	Glasford sand (undiff.)	37N	6E	23	8c	1025		6657	612.1	40	591	ST	
	Glasford sand (undiff.)	37N	6E	26	4c	1138	229627		635.7	56	596	ST	
	Glasford sand (undiff.)	37N	6E	29	7a	1125	306986		639.2	95	609	ST	
	Glasford sand (undiff.)	37N	6E	35	6g	1137	292655		642.1	107	577	ST	
	Glasford sand (undiff.)	37N	7E	7	8e	66	78304		673.5	98	634	ST	
	Glasford sand (undiff.)	38N	5E	15	6d	989	301148		741.9	190	729	ST	
	Glasford sand (undiff.)	38N	5E	31	2d	993	285025		735.2	84	720	ST	
	Glasford sand (undiff.)	38N	7E	5	2d	634	290980		710.9	135	701	ST	
	Glasford sand (undiff.)	38N	7E	6	1h	1008	250788		734.1	260	708	ST	
	Glasford sand (undiff.)	38N	7E	22	6d	225	250681		709.9	92	672	ST	
	Glasford sand (undiff.)	38N	7E	29	6e	226	228897		709.0	96	681	ST	
	Glasford sand (undiff.)	38N	8E	18	7b	306		9884	677.0	125	660	ST	
7	Glasford sand (undiff.)	38N	8E	18	8a	321	309766		679.0	129	665	ST	
$\mathbf{\omega}$	Glasford sand (undiff.)	38N	8E	18	8b	324	309768		681.0	130		ST	2
	Glasford sand (undiff.)	38N	8E	19	5e	307		9949	691.8	130	667	ST	
	Glasford sand (undiff.)	38N	8E	20	6a	320			691.8	149	643	ST	
	Glasford sand (undiff.)	38N	8E	33	4h	316	302175	6404	639.7	82	612	ST	
	Glasford sand (undiff.)	38N	8E	33	5h	315	309360	6403	623.2	59	611	ST	
	Glasford sand (undiff.)	39N	5E	9	3h	1075	41717		841.1	110	820	ST	
	Glasford sand (undiff.)	39N	6E	3	3b	984	313002		845.9	139	828	ST	
	Glasford sand (undiff.)	39N	6E	3	5h	906	309854		857.7	120	832	ST	
	Glasford sand (undiff.)	39N	6E	20	3d	899	310294		791.4	100	782	ST	
	Glasford sand (undiff.)	39N	6E	25	3f	841		4537	788.1	125	747	ST	
	Glasford sand (undiff.)	39N	6E	25	8a	136	279726		779.4	94	749	ST	
	Glasford sand (undiff.)	39N	6E	30	7b	901			777.7	240	675	ST	
	Glasford sand (undiff.)	39N	6E	34	8a	983	238179		756.6	55	744	ST	
	Glasford sand (undiff.)	39N	7E	3	7a	73	213124		833.2	135	762	ST	
	Glasford sand (undiff.)	39N	7E	8	2a	206	320027		813.1	135	761	ST	
	Glasford sand (undiff.)	39N	7E	9	1a	94	319391		788.1	77	753	ST	
	Glasford sand (undiff.)	39N	7E	17	2g	208	311518		779.9	165	745	ST	
	Glasford sand (undiff.)	39N	7E	17	2h	72	292565		808.4	195	746	ST	

Well open to	Тwp	Rge	Sec	Plot	ISWS Project No.	ISWS P No.	ISWS PICS No.	Measuring Point Elevation (ft)	Well Depth (ft)	Head Elevation (ft)	Method	Note
Glasford sand (undiff.)	39N	7E	19	4b	1239	308381		766.4	140		ST	2
Glasford sand (undiff.)	39N	7E	26	7f	1242	66930		736.6	104		ST	2
Glasford sand (undiff.)	39N	7E	31	7d	15	304373		767.0	106	719	ST	
Glasford sand (undiff.)	39N	7E	32	6d	1241	67019		738.8	110		ST	2
Glasford sand (undiff.)	39N	7E	33	3h	21	319396		722.7	130	702	ST	
Glasford sand (undiff.)	39N	8E	5	7c	832		4894	771.5	179	704	ST	
Glasford sand (undiff.)	39N	8E	5	8a	833		6428	773.1	153	710	ST	
Glasford sand (undiff.)	39N	8E	6	2a	834		10006	734.1	153	670	AL	
Glasford sand (undiff.)	39N	8E	6	4a	158	213467		727.3	110	707	ST	
Glasford sand (undiff.)	39N	8E	18	3f	154	310858		701.4	115	692	ST	
Glasford sand (undiff.)	39N	8E	18	5d	837		10181	706.7	118	689	ST	
Glasford sand (undiff.)	39N	8E	18	5g	836		10180	727.0	157	705	ST	
Glasford sand (undiff.)	39N	8E	19	8h	835		10182	727.8	153	695	ST	
Glasford sand (undiff.)	39N	9E	35	5e	291	172450		723.4	160	682	ST	
Glasford sand (undiff.)	40N	5E	13	1h	898	42519		867.1	154	841	ST	
Glasford sand (undiff.)	40N	5E	22	3f	877	308065		874.2	80	834	ST	
Glasford sand (undiff.)	40N	5E	24	2c	889	42565		861.7	185	830	ST	
Glasford sand (undiff.)	40N	5E	28	7c	905	42581		888.0	107	846	ST	
Glasford sand (undiff.)	40N	6E	7	1a	885	331671		881.2	123	849	ST	
Glasford sand (undiff.)	40N	7E	3	2a	186	67572		877.1	200	784	ST	
Glasford sand (undiff.)	40N	7E	10	4b	195	72050		868.3	210	797	ST	
Glasford sand (undiff.)	40N	7E	18	6e	227	68114		939.2	215	849	ST	
Glasford sand (undiff.)	40N	7E	24	2b	43	228707		800.1	165	767	ST	
Glasford sand (undiff.)	40N	7E	33	4b	36	68746		835.5	122	769	ST	
Glasford sand (undiff.)	40N	8E	2	3f	497	216133		713.7	107	678	ST	
Glasford sand (undiff.)	40N	8E	2	3h	229	267061		704.1	120	677	ST	
Glasford sand (undiff.)	40N	8E	11	5e	170	331659		797.5	153	684	ST	
Glasford sand (undiff.)	40N	8E	11	8a	704	325427	66	777.9	157	682	ST	
Glasford sand (undiff.)	40N	8E	15	1c	708		9889	708.3	130	685	AL	
Glasford sand (undiff.)	40N	8E	15	2a	707		6453	709.6	86	676	AL	
Glasford sand (undiff.)	40N	8E	28	8a	709		6461	768.3	173	701	AL	

Well open to	Тwp	Rge	Sec	Plot	ISWS Project No.	ISWS P No.	ISWS PICS No. I	Measuring Point Elevation (ft)	Well Depth (ft)	Head Elevation (ft)	Method	Note
Glasford sand (undiff.)	40N	8E	32	3h	710		67	792.4	152	702	AL	
Glasford sand (undiff.)	41N	6E	12	3h	912	69910		970.6	180	899	ST	
Glasford sand (undiff.)	41N	6E	17	8a	923	327120		892.5	125	859	ST	
Glasford sand (undiff.)	41N	6E	19	2e	770	214879		894.9	150	859	ST	
Glasford sand (undiff.)	41N	6E	24	1f	917	228807		1007.3	220	874	ST	
Glasford sand (undiff.)	41N	7E	21	1a	1059	338654		925.2	220	860	ST	
Glasford sand (undiff.)	41N	8E	18	5h	715	254413		904.8	187	794	ST	
Glasford sand (undiff.)	41N	8E	34	1g	495		1977	756.3	155	695	ST	
Glasford sand (undiff.)	41N	8E	35	1c	699		68	753.9	162	669	ST	
Glasford sand (undiff.)	41N	9E	4	6a	675	34193		882.1	310	721	ST	
Glasford sand (undiff.)	41N	9E	23	5g	371		10658	829.8	146	760	AL	
Glasford sand (undiff.)	41N	9E	23	8c	370		10663	783.8	136	763	AL	
Glasford sand (undiff.)	41N	9E	35	3d	369		10673	801.9	115	751	AL	
Glasford sand (undiff.)	42N	5E	1	8a	520	334581		823.2	49	811	ST	
Glasford sand (undiff.)	42N	5E	30	7g	802		5155	795.0	106	762	AL	
Glasford sand (undiff.)	42N	6E	10	1c	504	71148		943.7	237	864	ST	
Glasford sand (undiff.)	42N	6E	10	7h	515	216005		919.2	225	859	ST	
Glasford sand (undiff.)	42N	6E	27	8b	352	216036		919.1	212	862	ST	
Glasford sand (undiff.)	42N	6E	30	3d	350	71243		878.9	136	848	ST	
Glasford sand (undiff.)	42N	7E	4	6c	512	71289		923.6	216	859	ST	
Glasford sand (undiff.)	42N	8E	9	6d	657	290337		884.1	195	754	ST	
Glasford sand (undiff.)	42N	9E	1	3a	593			861.9	237	717	ST	
Glasford sand (undiff.)	42N	9E	3	7b	1029	245244		840.6	176	760	ST	
Glasford sand (undiff.)	42N	9E	12	7g	450	297047		861.2	223	725	ST	
Glasford sand (undiff.)	42N	9E	26	2e	839	35353		862.0	231	734	ST	
Glasford sand (undiff.)	42N	9E	26	6c	1028	218708		838.1	197	741	ST	
Glasford sand (undiff.)	42N	9E	27	4d	705	173114		883.8	241	745	ST	
Glasford sand (undiff.)	43N	5E	3	7d	2027	188665		809.7	82	794		
Glasford sand (undiff.)	43N	5E	4	5g	722	99004		793.0	40	784	ST	
Glasford sand (undiff.)	43N	5E	9	5g	737	264535		795.2	50	785	ST	
Glasford sand (undiff.)	43N	5E	23	8f	721	99150		823.6	70	808	ST	

	Well open to	Тwp	Rge	Sec	Plot	ISWS Project No.	ISWS P No.	ISWS PICS No.	Measuring Point Elevation (ft)	Well Depth (ft)	Head Elevation (ft)	Method	Note
	Glasford sand (undiff.)	43N	5E	24	5d	735	325697		847.0	47	830	ST	
	Glasford sand (undiff.)	43N	6E	10	2b	733	101046		866.2	100	837	ST	
	Glasford sand (undiff.)	43N	9E	24	8c	491	229302		840.9	250	719	ST	
	Glasford sand (undiff.)	43N	9E	25	8d	492	273043		849.1	230	727	ST	
	Surficial Henry	37N	6E	24	1a	1119			636.1	152	558	ST	1
	Surficial Henry	37N	6E	24	4a	1135	305739		649.1	70	615	ST	
	Surficial Henry	40N	6E	22	2c	881	67499		871.6	54	854	ST	
	Surficial Henry	40N	6E	22	7b	907	67502		867.3	48	852	ST	
	Surficial Henry	41N	8E	21	3g	364	335278		821.9	54	800	ST	
	Surficial Henry	42N	8E	26	7e	665	254363		728.0	50	709	ST	
	Surficial Henry	43N	5E	4	6h	2026	99005		796.9	70	788		
	Surficial Henry	43N	6E	3	8d	2010	100992		838.8	42	828		
∞	Surficial Henry	43N	6E	5	5g	727	101003		828.7	57	817	ST	
—	Surficial Henry	43N	7E	7	5e	2065	106252		855.8	60	844		
	Surficial Henry	43N	8E	3	3e	2035	244310		886.4	175	849		
	Surficial Henry	43N	8E	27	4f	2018	214288		884.3	86	820		
	Tiskilwa sand (undiff.)	40N	5E	20	6b	882	42593		900.3	90	832	ST	
	Tiskilwa sand (undiff.)	40N	6E	9	5c	981	67421		870.3	60	853	ST	
	Tiskilwa sand (undiff.)	41N	6E	2	1a	333	69866		937.7	87	899	ST	
	Tiskilwa sand (undiff.)	41N	6E	12	8f	916	69914		952.2	78	910	ST	
	Tiskilwa sand (undiff.)	41N	6E	13	6a	914	69917		951.6	92	899	ST	
	Tiskilwa sand (undiff.)	41N	6E	26	3g	918	69982		905.7	55	893	ST	
	Tiskilwa sand (undiff.)	41N	7E	22	8b	1110	295542		924.7	56	915	ST	
	Tiskilwa sand (undiff.)	42N	6E	4	4a	507	342462		889.7	45	859	ST	
	Tiskilwa sand (undiff.)	42N	6E	25	8e	347	246429		1011.6	64	989	ST	
	Tiskilwa sand (undiff.)	42N	7E	2	4h	514	291598		900.6	90	874	ST	
	Tiskilwa sand (undiff.)	42N	7E	9	2a	516	339675		912.8	55	897	ST	
	Tiskilwa sand (undiff.)	43N	6E	24	8e	1035	322347		902.4	67		ST	2
	Tiskilwa sand (undiff.)	43N	6E	34	2e	725	103086		923.0	84	876	ST	
	Tiskilwa sand (undiff.)	43N	7E	2	1e	2059	189362		901.7	115	880		
	Tiskilwa sand (undiff.)	43N	7E	10	7b	1040	106257			78			2

	Well open to	Тwp	Rge	Sec	Plot	ISWS Project No.	ISWS P No.	ISWS PICS No.	Measuring Point Elevation (ft)	Well Depth (ft)	Head Elevation (ft)	Method	Note
	Tiskilwa sand (undiff.)	43N	7E	10	7h	2055	106258		865.3	68	855		
	Tiskilwa sand (undiff.)	43N	7E	12	6f	688		5200	913.2	137	876	ST	
	Tiskilwa sand (undiff.)	43N	7E	12	7c	2058	106255		906.0	93	878		
	Tiskilwa sand (undiff.)	43N	7E	24	7c	2056		10202	886.4	108	861	AL	
	Tiskilwa sand (undiff.)	43N	7E	26	5g	2050		4998	896.0	127	858		
	Tiskilwa sand (undiff.)	43N	7E	28	7g	2052	106343		889.2	73	866		
	Tiskilwa sand (undiff.)	43N	7E	31	2h	2047	106349		877.6	50	860	ST	
	Tiskilwa sand (undiff.)	43N	7E	31	6g	2051	106350		899.6	120	863		
	Tiskilwa sand (undiff.)	43N	9E	22	2d	846	314595		770.3	122	730	ST	
	unnamed tongue (sub-Batestown)	38N	6E	17	4a	345	189448		725.7	70	699	ST	
	unnamed tongue (sub-Batestown)	38N	7E	24	6h	304		6350	676.0	118	657	AL	
	unnamed tongue (sub-Batestown)	39N	6E	4	2c	891	72572		854.9	56	836	ST	
8	unnamed tongue (sub-Batestown)	40N	7E	10	1b	601			862.9	71	850	ST	
	unnamed tongue (sub-Batestown)	41N	7E	23	5g	1064	332768		905.2	42	894	ST	
	unnamed tongue (sub-Batestown)	41N	7E	27	7d	1109	330415		923.3	50	911	ST	
	unnamed tongue (sub-Batestown)	41N	8E	11	4g	362	246362		750.0	84	714	ST	
	unnamed tongue (sub-Batestown)	41N	8E	15	6h	503	72177		792.7	71	793	ST	
	unnamed tongue (sub-Batestown)	41N	8E	17	8f	500	308369		908.1	38	875	ST	
	unnamed tongue (sub-Batestown)	42N	7E	1	4d	511	250712		908.9	95	882	ST	
	unnamed tongue (sub-Batestown)	42N	7E	13	4g	243	72525		908.5	60	891	ST	
	unnamed tongue (sub-Batestown)	42N	8E	7	4d	662	228628		914.9	56	898	ST	
	unnamed tongue (sub-Batestown)	42N	8E	8	2f	1243	230994		935.5	43	911	ST	
	unnamed tongue (sub-Batestown)	42N	8E	18	1c	275	305737		927.4	90	893	ST	
	unnamed tongue (sub-Batestown)	42N	8E	18	8g	659	270572		932.5	100	894	ST	
	unnamed tongue (sub-Batestown)	43N	8E	21	3e	2017	216326		835.7	42	824		
	unnamed tongue (sub-Yorkville)	37N	9E	10	2g	1033	159770		676.3	60	648	ST	
	unnamed tongue (sub-Yorkville)	40N	9E	11	6h	391		5425	772.5	61	764	AL	
	unnamed tongue (sub-Yorkville)	41N	8E	15	6h	499	72178		790.9	84	789	ST	
	unnamed tongue (sub-Yorkville)	41N	8E	34	1h	695		6500	776.5	109	700	AL	
	unnamed tongue (sub-Yorkville)	42N	8E	14	2g	703		6517	882.4	179	758	XD	
	unnamed tongue (sub-Yorkville)	42N	8E	14	2h	702		6520	879.9	183	759	ST	

Well open to	Тwp	Rge	Sec	Plot	ISWS Project No.	ISWS P No.	ISWS PICS No.	Measuring Point Elevation (ft)	Well Depth (ft)	Head Elevation (ft)	Method	Note
unnamed tongue (sub-Yorkville)	42N	8E	23	3h	660	174325		839.4	60	796	ST	
unnamed tongue (sub-Yorkville)	43N	8E	2	7f	679	216183		910.9	141	825		
unnamed tongue (sub-Yorkville)	43N	8E	10	3a	2036	106616		894.3	135	832		
unnamed tongue (sub-Yorkville)	43N	8E	14	4c	691		10380	883.7	163	808	ST	
unnamed tongue (sub-Yorkville)	43N	8E	14	6a	2048		3072	913.2	194	824	AL	
unnamed tongue (sub-Yorkville)	43N	8E	14	6h	2038		5487	862.3	127	816	AL	
unnamed tongue (sub-Yorkville)	43N	8E	21	7g	678	106718		833.4	75	818		
undetermined	37N	5E	22	5e	1100	289816		692.2	125	670	ST	3
undetermined	37N	6E	16	2d	1118	78062		650.0	100	600	ST	3
undetermined	37N	9E	11	8g	110	159794		664.1	100	651	ST	3
undetermined	37N	9E	15	5f	119	294528		661.8	240	633	ST	3
undetermined	38N	5E	16	5h	990	294098		748.1	150	728	ST	3
undetermined	38N	5E	20	8a	1071	285035		750.1	305	733	ST	3
undetermined	38N	6E	18	7e	53	286057		738.2	360	638	ST	3
undetermined	38N	6E	22	8g	1094	282851		713.1	200	669	ST	3
undetermined	38N	7E	6	2h	1007	65812		747.2	87	709	ST	3
undetermined	38N	7E	23	1a	1104			708.8	115	671	ST	3
undetermined	38N	7E	24	6h	305			672.8	40	664	ST	3
undetermined	38N	7E	25	5b	325	302194		667.4	34	658	ST	3
undetermined	38N	8E	18	8b	323	309769		679.6	128	665	ST	3
undetermined	38N	8E	18	8b	322	309767		680.2	126			2, 3
undetermined	38N	8E	31	3f	1020	301332	2001	671.1	171	631	AL	3
undetermined	38N	8E	34	7g	319			651.8	81	640	ST	3
undetermined	39N	6E	27	8d	909	66634		788.3	200	759	ST	3
undetermined	39N	6E	33	6a	2046			766.4		745	ST	3
undetermined	39N	7E	9	2a	85			775.2		759	ST	3
undetermined	40N	5E	11	5a	980			857.2	40	830	ST	3
undetermined	40N	5E	31	7d	880	42607		897.1	400	805	ST	3
undetermined	40N	6E	14	1b	888	213548		869.8	160	843	ST	3
undetermined	40N	7E	8	3d	205			937.8	450	820	ST	3
undetermined	40N	8E	2	3f	498		4559	713.9	260	679	ST	3

Well open to	Тwp	Rge	Sec	Plot	ISWS Project No.	ISWS P No.	ISWS PICS No.	Measuring Point Elevation (ft)	Well Depth (ft)	Head Elevation (ft)	Method	Note
undetermined	40N	8E	6	2h	79			792.1	160	766	ST	3
undetermined	40N	8E	15	8b	175	69358		734.0	210	684	ST	3
undetermined	40N	9E	27	7e	432	269450	4719	781.2	350	699	AL	3
undetermined	40N	9E	28	2f	430	269486	4718	797.7	194	770	AL	3
undetermined	40N	9E	28	6f	550	269511		768.7	93	716	ST	3
undetermined	40N	9E	30	1e	552	251882		755.5	73	699	ST	3
undetermined	41N	6E	10	5e	915	69903		916.0	167	887	ST	3
undetermined	41N	7E	1	2e	44	70014		924.8	40	916	ST	3
undetermined	41N	7E	11	5h	1056			911.6	300	818	ST	3
undetermined	41N	7E	28	1a	56			939.9	100	915	ST	3
undetermined	41N	7E	32	1c	57	263926		964.3	190	801	ST	3
undetermined	41N	8E	26	3e	696		6498	708.3	68	701	AL	3
undetermined	41N	8E	35	3c	697		6506	734.5	112	678	AL	3
undetermined	42N	6E	33	6g	348	282826		905.6	240	862	ST	3
undetermined	42N	7E	10	5h	810		6512	901.2	80	881	ST	3
undetermined	42N	7E	31	7d	811	217306		959.7	270	819	ST	3
undetermined	42N	8E	14	4e	700		11383	864.7	186	756	ST	3
undetermined	42N	8E	23	7d	692		6530	774.1	69	738	AL	3
undetermined	42N	9E	1	7h	577		10786	827.8	210	719	ST	3
undetermined	42N	9E	24	6a	452	217660		860.6	231	732	ST	3
undetermined	43N	10E	6	8f	359	262652		852.0	272	745	ST	3
undetermined	43N	10E	30	7h	844	324935		859.9	270		ST	2, 3
undetermined	43N	5E	1	6a	2025	99061		959.3	399		ST	2, 3
undetermined	43N	5E	35	4b	736	296767		820.2	60	812	ST	3
undetermined	43N	6E	2	4c	850			858.2	161	825	ST	3
undetermined	43N	6E	2	4c	851	100987		851.7	78	830	ST	3
undetermined	43N	6E	12	6d	2061	101057		851.6	175	839		3
undetermined	43N	6E	16	5d	2004	101063		890.1	446	830	ST	3
undetermined	43N	6E	34	4f	2030	103085		922.4	91	873		3
undetermined	43N	7E	19	1b	2054	106309		875.8	118	859		3
undetermined	43N	8E	6	3a	687		7339	891.9	205	768	ST	3

Table B1. Concluded

	Well open to	Тwp	Rge	Sec	Plot	ISWS Project No.	ISWS P No.	ISWS PICS No.	Measuring Point Elevation (ft)	Well Depth (ft)	Head Elevation (ft)	Method	Note
	undetermined	43N	8E	8	2c	2021		7395	898.4	250	746	ST	3
	undetermined	43N	9E	2	1a	597		6711	787.5	275			2, 3
	undetermined	43N	9E	4	8a	1049			772.9	70	729	ST	3
	undetermined	43N	9E	5	4d	1051			761.7	153	732	ST	3
	undetermined	43N	9E	10	3b	466			762.8	64	732	ST	3
	undetermined	43N	9E	11	2a	605		6713	8 813.4	160	728	AL	3
	undetermined	43N	9E	14	5c	843	293546		803.2	205	731	ST	3
	undetermined	43N	9E	20	4c	468	252057		798.0	160	752	ST	3
	undetermined	43N	9E	21	4g	356	284583		793.7	169	752	ST	3
	undetermined	43N	9E	31	8c	357	99648		870.5	240	763	ST	3
	undetermined	43N	9E	36	8d	596		6718	8 826.0	325	723	ST	3
	undetermined	44N	5E	33	3e	1236			795.9	200	784	ST	3
8	undetermined	44N	5E	33	3e	2022	349574		794.8	48	786	ST	3
U.	undetermined	44N	5E	35	7a	720	99873		850.7	260	792	ST	3
	undetermined	44N	6E	32	4d	848	100297		824.5	126	812	ST	3
	undetermined	44N	8E	23	4b	1127	214673		765.0	92	758	ST	3
	undetermined	44N	8E	33	4a	2042	219049		928.5	277	788		3
	undetermined	44N	8E	35	6a	680	101596		881.5	226	827		3

Notes:

Abbreviations used: BR = bedrock, ST = steel tape, AL = air line, and XD = transducer. The notes field indicates the following conditions: 1 = synoptic measurement was rejected, 2 = synoptic measurement was not taken, and 3 = lithostratigraphic determination still needed.

Appendix C. 2003 Shallow PICS Groundwater Withdrawals in Kane County

Table C1 provides a summary of groundwater withdrawal information reported to the ISWS for the Public, Industrial, and Commercial Survey (PICS) for 2003. The source of the pumpage data used and listed in this appendix are annual reports submitted by water operators throughout the state to the Illinois Water Inventory Program. Annual withdrawals are shown in billions of gallons (bg). A high-capacity well was considered to be one that reportedly pumps greater than 100,000 gallons per day or 36.5 millions gallons (mg) annually. Shallow bedrock withdrawals presented are only for bedrock units above the Galena Group.

Table C2 provides more detailed information about the wells used in the summary table including the owner's name, local well number, depth in feet, township, range, section, plot, maximum reported daily withdrawal in mg, total reported annual withdrawal in mg, the unique ISWS PICS number, and the ISWS Aquifer Code (an indication of source aquifer). This listing includes all shallow public wells in Kane County reported in active service during 2003. It also does not generally include wells that are reported on standby, emergency, or unused status. Commercial and industrial wells also are omitted. A value of NR indicates the value was not reported.

Table C1. 2003 Summary of Annual Shallow PICS GroundwaterWithdrawals in Kane County

Withdrawal type	Withdrawals (bg)	Total wells	Total high- capacity wells
Unconsolidated withdrawals			i olio
Industrial, commercial and noncommunity public wells	0.194	5	4
Community public wells	5.653	42	31
Tot	al 5.847	47	35
Shallow bedrock withdrawals			
Industrial, commercial and noncommunity public wells	0.466	17	5
Community public wells	0.143	24	6
Tot	al 0.609	41	11
Combined Tot	al 6.457	88	46

	Name	Well	Depth	Тwp	Rge	Sec	Plot	Withdra	wals	ISWS	ISWS
		No.	(ft)				-	Daily Maximum (mg)	Annual Total (mg)	- PICS No.	Aquifer Code
	ALGONQUIN	7	121	42N	08E	03	1C	1.96	361.03	10241	0101
	ALGONQUIN	8	207	42N	08E	04	8D	1.20	85.71	4871	0101
	ALGONQUIN	9	235	42N	08E	05	3D	1.64	310.42	4872	0101
	ALGONQUIN	11	100	42N	08E	03	1F	1.76	52.89	72	0101
	AURORA	101	116	38N	07E	24	6H	0.79	105.27	6350	0101
	AURORA	103	125	38N	08E	18	7B	0.36	49.40	9884	0101
	AURORA	119	130	38N	08E	19	5E	0.39	20.19	9949	0101
	AURORA COMMUNITY WATER ASSOCIATION	2	253	38N	08E	25	8G	0.06	2.58	6386	5656
	AURORA COMMUNITY WATER ASSOCIATION	3	250	38N	08E	25	8G	0.06	2.66	56	5656
	AURORA COUNTRY CLUB	2	785	38N	08E	29	5F	0.36	15.00	1994	5666
8	AURORA COUNTRY CLUB	5	117	38N	08E	29	7F	0.00	0.17	4556	5656
7	BATAVIA	6	158	39N	08E	18	5G	NR	203.20	10180	0101
	BATAVIA	7	118	39N	08E	18	5D	NR	203.20	10181	0101
	BATAVIA	8	150	39N	08E	19	8H	NR	203.20	10182	0101
	BROADVIEW ACADEMY	1	1335	39N	07E	10	4F	NR	3.99	6420	6087
	BURLINGTON	4	106	41N	06E	09	1G	0.08	8.13	9921	0101
	CARPENTERSVILLE	5	183	42N	08E	14	2H	2.82	269.06	6520	0101
	CARPENTERSVILLE	6	179	42N	08E	14	2G	3.49	544.14	6517	0101
	CARPENTERSVILLE	7	200	42N	08E	13	6D	1.69	374.15	10010	0101
	CENTRAL SCHOOL DISTRICT #301	4	805	41N	07E	22	6H	NR	0.38	10977	5065
	EAST DUNDEE	2	69	42N	08E	23	7D	0.29	26.65	6530	0101
	EAST DUNDEE	3	128	42N	08E	23	6E	1.30	89.16	6532	0101
	EAST DUNDEE	4	136	42N	08E	24	8H	0.69	64.88	5160	0101
	ELGIN COUNTRY CLUB	2	205	41N	08E	17	3B	0.00	1.00	1936	5656
	ELGIN COUNTRY CLUB	3	300	41N	08E	20	2E	0.12	7.00	1937	5661
	ELGIN COUNTRY CLUB	4	297	41N	08E	20	3E	0.02	0.00	1938	5661
	FERMI NATIONAL ACCELERATOR LAB	1	220	39N	08E	25	1E	0.20	11.41	9760	5661
	FERMI NATIONAL ACCELERATOR LAB	29	130	39N	08E	24	5D	0.00	0.13	9767	5656
	FERMI NATIONAL ACCELERATOR LAB	30	240	39N	08E	24	5D	0.00	0.15	11485	5050

Table C2. 2003 Annual Shallow PICS Groundwater Withdrawals in Kane County

Table C2. Continued

	Name	Well	Depth	Тwp	Rge	Sec	Plot	Withdra	wals	ISWS	ISWS
		No.	(ft)				-	Daily Maximum (mg)	Annual Total (mg)	- PICS No.	Aquifer Code
	FOX RIVER WATER RECLAMATION DIST - SKYLINE	1	131	40N	08E	11	7B	0.08	13.34	6450	0101
	FOX RIVER WATER RECLAMATION DIST - SKYLINE	2	135	40N	08E	11	7B	0.08	13.34	6451	0101
	FOX RIVER WATER RECLAMATION DIST - SKYLINE	3	157	40N	08E	11	8A	0.29	8.64	66	0101
	GENEVA	8	150	39N	08E	05	8A	NR	198.02	6428	0101
	GENEVA	9	153	39N	08E	06	3A	NR	198.02	10006	0101
	GENEVA	10	179	39N	08E	05	7C	NR	198.02	4894	0101
	GLENWOOD SCHOOL FOR BOYS	2	780	40N	08E	03	3G	0.01	2.74	62	6060
	HIGHLAND SUBD	1	152	40N	08E	15	4A	0.00	1.10	6454	5661
	HIGHLANDS OF ELGIN	1	250	41N	08E	21		0.57	25.18	1943	5661
	HIGHLANDS OF ELGIN	2	283	41N	08E	21	3B	0.21	13.44	1945	5661
8	ILLINOIS AMERICAN RIVER GRANGE DIVISION	1	180	40N	08E	09	1C	0.02	2.24	6449	5661
$\mathbf{\omega}$	ILLINOIS AMERICAN ROLLINS SWR & WTR DIV	1	300	41N	08E	28	1E	0.04	7.87	6499	5661
	MARGARET'S HI-ACRE MHP	1	700	38N	08E	14	3B	0.04	6.73	6362	5666
	MARGARET'S PARK VIEW EST MHP	1	208	38N	08E	26	3A	0.11	0.19	6387	5661
	MARGARET'S PARK VIEW EST MHP	2	210	38N	08E	26	3A	0.10	8.57	6388	5661
	OAK HILL GARDENS	2	40	42N	08E	18	3E	NR	0.05	4754	0101
	OAK HILL GARDENS	3	72	42N	08E	18	3E	NR	0.01	4755	0101
	OAK HILL GARDENS	4	40	42N	08E	18	3E	NR	0.15	5197	0101
	OGDEN GARDENS SUBD	1	185	38N	08E	24	5C	NR	2.30	6383	5656
	OGDEN GARDENS SUBD	2	176	38N	08E	24	5E	NR	14.61	6381	5656
	PARK VIEW WATER CORP	1	250	38N	08E	35	2G	0.01	2.22	6415	5661
	PATTERSON MHP	1	80	38N	08E	34	4E	0.00	0.43	6409	5656
	RANDALL OAKS COUNTRY CLUB	1	65	42N	08E	18	3D	NR	0.55	4756	0101
	RANDALL OAKS COUNTRY CLUB	2	69	42N	08E	18	4C	NR	10.00	4757	0101
	SOUTH ELGIN	3	112	41N	08E	35	3C	0.35	64.44	6506	0101
	SOUTH ELGIN	4	109	41N	08E	34	1H	0.97	178.69	6500	0101
	SOUTH ELGIN	5	68	41N	08E	26	3E	0.24	56.53	6498	0101
	SOUTH ELGIN	6	111	41N	08E	35	3A	0.28	56.52	6503	0101
	SOUTH ELGIN	10	165	41N	08E	35	1C	0.56	89.61	68	0101

Table C2. Concluded

	Name	Well No.	Depth (ft)	Тwp	Rge	Sec	Plot _	Withdrawals		ISWS	ISWS
								Daily Maximum (mg)	Annual Total (mg)	- PICS No.	Aquifer Code
	ST CHARLES	7	173	40N	08E	28	8A	1.20	150.16	6461	0101
	ST CHARLES	9	86	40N	08E	15	2A	3.09	572.80	6453	0101
	ST CHARLES	11	130	40N	08E	15	1C	2.76	569.89	9889	0101
	ST CHARLES	13	152	40N	08E	32	3H	2.21	91.00	67	0101
	ST CHARLES COMM SCH DIST #303	1	333	40N	08E	07	2A	0.01	1.10	1970	5656
	ST CHARLES COMM SCH DIST #303	2	130	40N	08E	10	3D	0.00	0.04	51	0101
	SUGAR GROVE	2	107	38N	07E	21	5E	0.51	54.19	6348	0101
	SUGAR GROVE	5	200	38N	07E	10	2B	0.53	30.39	6342	6161
	SUGAR GROVE	7	100	38N	07E	21	5G	1.04	155.78	9971	0101
68	UTILITIES INC - LAKE MARIAN WATER CORP	1	270	42N	08E	14	5H	NR	14.12	6516	6161
	UTILITIES INC - LAKE MARIAN WATER CORP	2	265	42N	08E	11	6D	NR	4.85	6514	6161
	UTILITIES INC - LAKE MARIAN WATER CORP	3	75	42N	08E	14	7G	NR	2.53	6518	0101
	WAUBONSEE COMMUNITY COLLEGE	3	135	38N	07E	05	2D	NR	0.07	5457	0101

Notes:

mg = million gallons

Equal opportunity to participate in programs of the Illinois Department of Natural Resources (IDNR) and those funded by the U.S. Fish and Wildlife Service and other agencies is available to all individuals regardless of race, sex, national origin, disability, age, religion, or other non-merit factors. If you believe you have been discriminated against, contact the funding source's civil rights office and/or the Equal Employment Opportunity Officer, IDNR, One Natural Resources Way, Springfield, IL 62702-1271;217/785-0067;TTY 217/782-9175.