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A 659 base pair fragment cleaved on both ends by Pstl restric­

tion enzyme approximately 900 base pairs upstream of the parathy­

roid gene was inserted into a vector, pSVe-CAT, containing an 

SV40 promoter and the chloramphenicol acetyltransferase (CAT) 

gene. This construction was made in order to investigate a 

possible regulatory role of the 659 base pair sequence shown to 

contain Alu-like repetitive sequences (II). In addition to the 

repetitive DNA, the segment is also remarkably AT rich.

The study of the sequence's effects on expression was performed 

by transfecting CV-1 cells. The protein extract of cells 

transfected with plasmid containing the insertion in both 

orientations and also the protein extract of cells transfected 

with empty vector was used in an enzymatic assay to determine 

CAT activity. Products of the CAT catalyzed reaction were then 

separated using thin layer chromatography (TLC). The TLC 

containing various forms of carbon-14 labelled chlorampheni­

col was then exposed to X-ray film. Subsequent scintillation 

counting of the TLC yielded relative levels of CAT expression.

The investigation determined that insertion of the Pst I/Pst I



fragment containing Alu-like repetitive DNA in either orientaion 

resulted in no marked increase or decrease in the level of CAT 

expression as compared to empty vector. These results suggest 

that the 659 base pair fragment in the context of these construe 

tions does not regulate gene expression in CV—1 cells.
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INTRODUCTION

The parathyroid hormone (PTH) gene is involved in extracell­

ular calcium level regulation in the higher vertebrate. In the 

past most research dealing with the PTH gene involved structure 

of the protein and mechanisms of its action. Only recently due 

to the advent o'~ molecular biology has inquiry into the structure 

and regulation of the nucleotide sequences regulating and 

encoding the PTH gene become possible.

The structure revealed by these inquiries has shown the PTH 

encoding sequence to actually code for a larger polypeptide 

precursor, preproPTH, which is cleaved to form proPTH and finally 

to functional PTH, and 84 amino acid peptide (I). The structure 

of the PTH gene is shown in figure 1. Further studies with the 

PTH gene dealt with the flanking regions of the gene and the 

possible regulatory roles of these regions. Two regions of the 

genomic clone 1ambdaPTH2 10, a clone which contains the PTH gene 

and its 3 f and 5 f flanking regions, was shown to contain repeti­

tive sequences (2). One region was localized in a 659 base pair 

Pstl/Pstl fragment on the 5* side of the PTH gene (2). This 

region was also found to be AT rich (Fig. 2) and possess strong 

homology with a repetitive DNA found in flanking regions and 

introns of the bovine proopiome1ano cortin gene (2). Such 

repetitive sequences have for a long f.ime been considered likely 

candidates for regulatory roles.

The study of regulation in multicellular eukaryotes has for

a long time lagged behind the study of regulation in prokaryotes.
I
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This was due to difficulty in obtaining regulatory mutants, 

isolation and manipulation of genes.

The regulatory systems of prokaryotes and eukaryotes are 

very different from each other. Prokaryotes are for the most 

part free-living unicellular organisms which grow and multiply 

as long as there are appropriate environmental conditions and an 

adequate supply of nutrients. The regulatory systems of these 

organisms focus on providing the maximum growth rate under 

existing conditions. The lack of membrane surrounding the DNA 

of prokaryotes ensures the availability of DNA to receive 

signals in the cytoplasm. Control of initiation of transcription 

regulates the on-off pattern of protein synthesis(3).

Multicellular eukaryotes are known to possess different 

requirements. The requirements change in different stages of 

the life cycle for the eukaryotic organism. In a few respects 

eukaryotic cells have it easier, since during growth and division 

the environment of the cells rarely changes with time. The 

encapsulation of the nucleus in a membrane was a great step in 

evolution and allowed many significant changes in gene organiza­

tion and regulation.

The emergence of recombinant DNA technology allowed DNA 

fragments to be cloned. These clones can then be used to study 

organization and regulation.

Differences between eukaryotes and prokaryotes which possibly 

are involved in regulation of the gene include only a single 

polypeptide chain can be translated from a completed mRNA



3

molecule as opposed to the operon systems in prokaryotes, DNA of 

eukaryotes is bound to histones and also to many non-histone 

proteins, a large portion of the DNA in eukaryotes consists of a 

few base sequences that are repeated hundreds to millions of 

times occasionally in tandem, a large fraction of the base 

sequences in eukaryotic DNA is untranslated, DNA segments in 

eukaryotes possess mechanisms for rearranging DNA segments, and 

also the presence of introns in eukaryotic genes (3).

There exist techniques which allow the estimation of the 

number of genes in an organism. This result can then be compared 

to the DNA content of one cell in order to approximate the 

fraction of DNA that consists of coding sequences. Stemming 

from these results are findings which indicate that E . c o 1 i 

contains about 1500 genes. If a typical protein contains 500 

amino acids, 3000 bases are needed to encode one protein or 4.5 

million bases for 1500 proteins. Since E . c o 1i contains about 

eight million bases, half of the sequences encode proteins. 

Similar calculations for Drosophila m e 1anogaster suggest that it 

possesses twice as many genes as E. co 1 i and twenty times as 

much DNA, onLy five percent of DNA of D rosophila melanogaster 

consists of coding sequences. Mammalian ceils show that a 

typical cell contains six-hundred times as much DNA as E. coli 

but only twenty times as many genes, 2 percent of mammalian DNA 

consists of coding sequences. It becomes clear that a huge 

fraction of the DNA of eukaryotes is devoted to regulation or 

some other function (4). It would not, therefore, be surprising



to discover that regulatory mechanisms are very complex in this 

type of cell.

Repeating sequences are found in all eukaryotes except 

unicellular organisms. The extent to which repeated sequences 

exist is shown by C q t analysis. Use of this technique entails 

extraction of DNA from an organism followed by denaturation and 

renaturation. Kinetics of renaturation are determined. Because 

renaturation is dependent on a concentration process, repeated 

sequences renature more rapidly. Examination of a COt curve 

reveals four classes of sequences (4); unique (single copy), 

slightly repetitive ( 1-10 copies), middle repetitive (10 to 

several hundred copies), and highly repetitive (several hundred 

to several million copies). Unique sequences account for most of 

the genes. The slightly repetitive class include genes encoding 

histones and tRNA genes. Middle repetitive sequences are 

generally not coding sequences and are believed to be active in 

regulation. Highly repetitive sequences include short sequences 

in satellite DNA and also larger repeating sequences. There are 

few different highly repetitive sequences but the number of 

copies is so great that these sequences account for twenty 

percent or more of the mass of DNA.

Even though certain repetitive sequences are believed to 

function in regulation, actual experimental data has been 

lacking to uphold these beliefs. A recent publication has 

assigned a particular function to a repetitive sequence (5).

During examination of enhancer-dependent expression of the
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rat insulin gene by using a transient transfection assay to 

measure the formation of insulin through radioimmunoassay, the 

authors of the publication constructed plasmids which introduced 

the enhancer elements (SV40 or MSV) at different lengths (4.0, 

2.5, and 0.2 kilobases) from the insulin cap site. These were 

then transfected into CV — 1 cells. The extracts were examined 

forty hours later for insulin levels. Their results came out to 

be easy detection of insulin when the enhancers were located 2.5 

end 0.15 kilobases from the cap site. However, no activation of 

insulin expression was seen with the enhancer being 4.0 kilobases 

away. This suggested that a negative regulatory element might 

be located between 2.5 and 4.0 kilobases upstream from the rat 

insulin cap site which possibly could' interfere with the effect 

of the enhancer element. This negative regulatory element was 

eventually traced to a repetitive sequence DNA.

Encouraged by these results the investigators decided to do 

a second series of experiments involving constructs in which 

the sequences upstream from the rat insulin gene were introduced 

into a plasmid expressing CAT. When the rat insulin sequences 

located 2.5 to 4.0 kilobases relative to the cap site were 

positioned 3 f to the CAT gene, a significant inhibition of gene 

expression (79% chloramphenicol conversion reduced to 10% 

conversion) was observed in transient assays.

To determine whether inhibition affected gene expression at 

the transcriptional level, a separate set of plasmids was 

constructed employing the human beta-globin gene as a recorder
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sequence (beta-globin transcripts are much more stable in 

eukaryotic cells than CAT). Various sites of nucleotides from 

the 5 1 end of the rat insulin gene were positioned on either the 

5* or the 3* side of the beta-globin coding sequences and were 

then examined in the transient assay for beta-globin mRNA 

production. When the rat insulin sequences were positioned at 

the 5' end of the transcription unit in the sense or antisense 

orientation a significant decrease in transcription (by a 

factor of ten) was observed.

Similar results were seen when this fragment was inserted 

at the 3* end of the transcription unit in either the sense or 

the antisense orientation.

This experiment was followed by a demonstration . a t  the 

silencer effect of the rat insulin upstream section*, a required a 

cis orientation to the transcriptional unit.

In summary the results of their investigation yielded} silencer 

sequence must bear a cis relationship to the enhanced gene, the 

silencer functions on both the 5* and the 3* side of the 

transcribed gene, and in both orientations in either of these 

positions. The effects of gene transcription of the silencer 

appear to be opnosite to that of a classical enhancer element.

Possible mechanisms of the silencer may include alteration 

of chromatin structure, a possible polymerase exit site, promoter 

occlusion, and possible reduction in total transcriptional 

activity of a plasmid.

Another recent study (12) detected discrete high molecular
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weight RNA transcribed from the long interspersed repetitive 

element LlMd. This RNA turned out to be of the same stranded­

ness as the open reading frames. Proposals have been made that 

suggest LlMd is a retroposon with protein-encoding function.

This study showing an actual activity of a repetitive sequence

i

also gave the implication that other repetitive sequences might 

function in a similar manner. The only way to validate ■‘•.his 

possibility is to test other repetitive sequences and observe 

whether or not any such patterns emerge. A perfect candidate for 

this study seemed to be the Pst 1/Pst 1 segment on the 5 ’ end of 

the PTH gene discussed earlier in this section. Reasons for this 

sequence being the choice include previous work being performed 

on this sequence resulting in the full sequence of this segment 

being known. The homology comparisons that have also been 

performed on this gene lend further weight on this segment being 

the segment of choice. The easy availability of this gene in the 

lab where this work was to be carried out along with the Pstl 

cleaved ends presenting a means of insertion into a plasmid 

further justified the use of this repetitive sequence for the 

proposed studies.

The reason pSVe-CAT was chosen as the vector was mainly 

chosen due to its convenient Pstl site being present on the 

appropriate side of the CAT gene. Presence of the CAT promoter 

also would be a benefit in the expression studies. The accessi­

bility of eli the materials necessary for this study along with 

the feasibility of the experiment being completed in the allotted
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time proved to be an irresistible project and the subject of 

this paper.



Materials and Methods

Materials

Restriction endonucleases were obtained from Bethesda Research 

Laboratories or New England Biolabs. T4 polynucleotide kinase 

was provided by Dr. 0. Uhlenbeck. T4 DNA ligase was purchased 

from Promega Biotec. Cesium chloride for large scale plasmid 

preparations was purchased from Var Lac Oid Chem. Co. Inc. ^4C 

chloramphenicol was purchased from Du Pont. Pstl/^stl fragments 

containing the repetitive sequence were provided by Joseph 

Cioffi. pSVe-CAT vector was provided by Dr. Christine Weaver.

Bacterial Strains and Media

Plasmids we re propa ate (! i n K . col i NM 522. ) c : NM 522

was grown in 2XTY. On e L i ter o f 2 XTY consists f 16 g ms of

Bac tot ryptone , 10 gram s o f y o a s t exti act, 5 g r a s of s d i i m

chloride in a i n a 1 v o i umo o f o ne 1 it e r .

Tissue Culture t n  i n s and M ed i a

CV- 1 monkey kidney cells wore used for trails s ections . One 

litev oi media consists of 900 millil iters of H20, 1 package of

Minimum Essential Medium (CAT. No. 410-1500) purchased from
9
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Gibco Laboratories, filter sterilize, add penicillin, streptomy­

cin, and fungizone also purchased from Gibco Laboratories, and 

100 milliliters of Fetal Bovine Serum (Control No. 28k5462) 

purchased from Gibco Laboratories. This may be stored for up to 

one m o n t h .

Insertion of Pstl/Pstl Fragment into pSVe-CAT Vector

Insertion of the Pstl/Pstl fragment containing the repeti­

tive sequence was accomplished by mixing together 1 microliter 

of 10X ligation buffer, 1 microliter of ligase, 1 microliter of 

ATP, 0.5 Microliters of DTT (lOOmM), 2 microliters of BAPped 

vector (pSVe-CAT), 2 microliters of Pstl cut PTHp210 (1.25 

micrograms/micro1iter), and 2.5 microliters of sdH20. This was 

incubated for three hours at 10-20 degrees Celsius.

Transformation of Competent NM 522 Cells

The transformation of competent NM 522 cells was accomplish­

ed by addition of 5 microliters of ligation mixture to 200 

microliters of NM 522 competent cells (6 ). Let sit on ice for 

40 minutes* Heat shock at 37 degrees Celsius for 2 minutes.

Add 800 microliters of 2XTY, mix, incubate at 37 degrees Celsius 

for one hour. Place 200 microliters on each of five B-Amp 

plates and incubatfe overnight. B-amp plates are poured from 500 

milliliters of H20, 5 grams of Bactotryptone, 4 grams of NaCl,

j



and 10 grams of Bacto-Agar,

Min ipreps

Minipreps consist of growing an overnight culture of cells 

from a single colony from overnight plates of transformed NM 522 

cells. Ceils are spun in an eppendorf tube containing 1.5 mis of 

the overnight cells for 15 seconds. The supernatant is aspirated 

and the cells are set on ice.

The cells are dissolved in 175 microliters of STET buffer 

(contains 50mM Tris pH 8.0, 50mM EDTA, 5% Triton XI00, 8% 

Sucrose). 25 microliters of 10 mg/ml lysozyme (di ^solved in 

STET) are added. Boil for 45 seconds and immediately spin for 

15 minutes. The pellet is removed and the supernatant is left 

behind. 200 microliters of isopropanol are added and the 

mixture is set at -20 degrees Celsius refrigerator for 10 

minu t e s .

Spin for 5 minutes, pour off liquid, wash gently with 95% 

ethanol, spin briefly, pour off liquid, and vacuum dessicate for 

10 minutes. Dissolve the pellet in 160 micro liters of sdH20.

Add 40 microliters of a 5X salt buffer and phenol extract with 

100 microliters of phenol and 100 microliters of chloroform.

Spin for 5 minutes. Extract with 200 microliters alone.

Add 200 microliters of isopropanol to the supernatant.

Spin 5 minutes, drain liquid, wash with 95% ethanol, spin 

briefly, and vacuum dessicate for 10 minutes.
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Dissolve pellet in 15 microliters of sdH20. The DNA is 

ready for restriction at this time.

Restriction Digests

Restriction digests are performed throughout the investiga­

tion in the following manner using a Pst! digest as an example.

6 microliters of miniprep plasmid DNA is used, to this 2 

microliters of 5X HinCII buffer is added, I microliter of Pstl, 

and 1 microliter of RNAse. The mixtures are incubated at 37 

degrees Celsius for 3 to A hours.

Minigel Screenings

Colonies are screened individually for insertion of the 659 

base pair insert by performing a miniprep on each colony indivi­

dually, followed by a restriction digest as described above.

This is followed by adding 2 microliters of a loading dye to the 

restriction digest and loading of the sample on a 1% agarose 

minigel. The gel is run at 150 milliamps for about 2.hours in a 

buffer containing ethidium bromide to stain the DNA. A lane is 

also included containing appropriate length markers. The gel is 

then photographed under an ultraviolet light. The photograph is 

then analyzed as required. The analysis usually requires 

a standard curve based on the molecular weight markers. From 

the standard curve sample lengths can be determined.



Large Scale Preparation of Plasmid DNA

After appropriate colonies have screened and found possessing 

the desired inserts the colony is streak isolated and again 

screened to see the colonies possess the insert. Large scale 

preparation of the plasmid DNA may now be attempted.

An overnight culture is inoculated in 5 ml of L-Brol. h plus 

ampicillin (50 micrograms per milliliter). Preincubate in a 

shaker at 37 degrees Celsius a 2 liter flask containing 250 

milliliters of minimal medium M9 (M9 is 6g/liter N32HP0 4 ,

3g/liter KH2P04, 0.5g/liter NaCl, I g /1 iter NH4C1, I5mg/liter 

CaC12*2H20, 250 mg/liter MgS04*7H20, 20g/liter casamino acids 

(Difco), pH 6.85) 28ml L-Jroth, 3ml 10% glucose. Add entire 5 

milliliters of overnight culture and incubate until the Absor­

bance at 600nm reaches 0.8 to 0.9. Add 250 mis of L-Broth and 

20 ml of 10% glucose, incubate 30 minutes. Add chloramphenicol 

to a final concentration of 175 micrograms/milliliter. Incubate 

overnight in shaker (16 hours). Cool the flask in ice-water for 

5 minutes with occasional swirling taking care to keep cells on 

ice .

The cells are spun down at 9Krpm for 10 minutes and are 

resuspended in fresh tris-sucrose (tris pH 7.4 0.05M, sucrose 

25%) solution to a final volume of 10 milliliters. 1 ml of 

lysozyme solution (!0mg/ml) was added to the cell suspension, and 

it was left at 0 degrees Celsius for 5 minutes. 2 mis of 0.50M



E D T A , pH 8.2, was a d d e d , and the sample was left at 0 degrees 

eolsius for another 5 minutes with occasional gentle agitation.

An equal volume (13 mis) of 10 % Triton E D T A ( t r i s pH 7.4 0.0 5'M, 

EL)TA 0.06M, triton X-100 10%) solution is added stepwise in three

aliquots and mixed well. The lysate is c e ntrifuged at 47 K r p m 

for 60 minutes, in order to spin down most of the chromosomal 

D N A . 0 n e - ha 1 f volume of 30% PEG solution is added to the

supernatant of the centrifugation. The solution is made I .5M in 

NaCl by add i rig the proper amount of dry NaCl and mixing well. 

Plasmid I)NA is spun down at 9 K rpm for 15 minutes. 6 mis of 

tris-EDTA (tris pH 7.4 O.IM, EDTA 0.01M) is added to the pellet 

and resuspended. The overall volume is measured and exactly 

Igm/ml of optical grade cesium chloride is added and resuspended. 

0.3 rnls of e t h i d i u m  bromide is also added to this solution. This 

solution is spun for 24 hours at 45 K rpm at 15 degrees Celsius.

Two red bands could be seen at about the middle of the 

tube under UV illumination. The top layer of the tube would be? 

proteins and lipids and the pellet would be RNA. The lower band 

is collected by puncturing the side of the tube with a needle. 

After’ adding fresh cesium chloride and ethidium bromide the tube 

is centrifuged for another 24 hours.

Ethidium bromide is extracted from the DMA solution with 

one-half volume of n-butanol saturated with cesium chloride.

After mixing and centrifugation, the n-butanol solution is 

removed with a micropipet. This procedure had to be repeated at 

least 4 times to clarify the DNA solution. Then the DNA solution



was dialized against the DNA buffer for 16 to 20 hours at 4 

degrees Celsius with at least three changes of buffer, and was 

stored at 4 degrees Celsius with a few drops of CHC13 or frozen 

at -20 degrees Celsius without CHC13.

Transfection of CV-1_Cells

Upon completion of the large scale plasmid preparation, 

transfection of large scale DNA nay be attempted.

C V - I cells are grown to 8 0 % con fluency in two 73 c e n t ime t e r 

squared tissue culture flasks. The cells are trypsinized with I 

ml of IX trypsin. The loosened cells in each flask are resus­

pended with 10 ml minimal essential medium and 10% fetal calf 

serum. The cells are pooled from each flask and I ml portions 

are used for the cell count. Cells are counted in a cell 

counter. Three million cells are seeded 150 mm dishes in 40 mi 

of MEM and 10 % fetal calf serum. 20 hours after the cells were 

added to the dishes (4 hours before transfection) fresh media is 

added to the cells.

Forty micrograms of DNA are precipitated in ethanol for each 

transfection. 0.750 mis of sdH20 is added to the pellets to 

resuspend them. 0.250 mis of 1M CaC12 is added to make the 

solution 0.25 M in CaC12, mix thoroughly but gently. Place I rnl 

aliquots of 2X HBS into 15 ml falcon tubes (2XHBS is 10 mis I0X 

BSS and 2.5 mis of 1M Hepes, make up to 50 mis with H20, pH to 

7.1 with KOH and filter sterilize). Make CaC12 precipitates of 

DNA by adding dropwi.se CaC12 and DNA to the 2X HBS with simulta­
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neous vigorous shaking. After incubating CaC12 precipitates for 

30 minutes at room temperature the precipitates were resuspended 

by gentle pipetting.

DNA precipitates were added dropwise in concentric rings.

Swirl each plate gently before incubating in C02 incubator at 37 

degrees Celsius. Between 8 to 12 hours after transfection the 

medium was changed.

45 hours after transfection the medium was decanted and the 

cells were washed once with versene, followed by i wash with 

5mls of TEN buffer and then I ml of TEN was first added to each 

plate and cells were scraped off with a rubber policeman, and 

transferred to an eppendorf tube, followed by a 0.5 ml TEN wash 

to remove all the cells into the tube.

The cells were spun down at 4 degrees Celsius for 10 minutes in 

a microfuge. Resultant pellets were resuspended in 0.2 mis of 

0.25 M tris pH 7.8. The cells were thereupon sonicated at 30 X 

duty cycle and microtip setting of 3 with 6-7 2 second bursts.

The sonicated suspensions were microfuged for 15 minutes at 4 

degrees Celsius and the supernatant collected into fresh tubes.

Supernatants were incubated in a 60 degreee Celsius water 

block (optional for C V - 1 cells but was done since it increases 

CAT activity by a factor of 2 by denaturing thermolabile deacety- 

l.ise) for 7-8 minutes and again centrifuged for !5 minutes, 

supernatants were collected and stored at -20 degrees Celsius.

Protein Assay



To use the same amount of protein in each CAT assay; the 

total protein in each extract is determined by Biorad protein 

as say (7 ) .

Preparation of 0.2X Biorad dye (reagent) requires the dilution 

of I part Biorad reagent with 4 parts H20. Filter through 

Whatman //l, reagent is stable for 2 weeks at 4 degrees Celsius.

A standard curve must be made using ovalbumin (stock is 10 

mg/ml) in 230mM Tris, pK 7.8 (same solvent as solvent for 

protein extracts). The standard curve consists concentrations 

having the following values: 20C micrograms /20 microliters, 75 

micrograms/20 microliters, 25 micrograms/20 microliters, 10 

micrograms/20 microliters, 5 micrograms/20 microliters, and 2 

micrograms /20 microliters.

The assay itseif consists of mixing 20 microliter samples 

with 2 milliliters of 0.2X Biorad reagent and vortexing.

Readings at an O.D. of 595nm may be taken after 5 minutes but 

before 1 hour.

CAT Assay

The CAT assay consists of using 25 to 100 micrograms of 

protein from each extract (8 ). 100 microliters of 0.25M tris 

(pH 7.5) is added to ea.ch sample. H20 is added to bring the 

total volume to 150 microliters. 5 microliters of Carbon 14 

labelled chloramphenicol is then added. The mixture is then
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incubated for 10 minutes at 37 degrees Celsius, the incubation is 

followed with addition of 30 microliters of lOmM Acetyl CoA.

This is again followed by a 37 degree celsius incubation for 2 

h o u r s .

1 milliliter of chilled ethyl acetate is added and the organic 

phase is collected. The organic phase is dried in a speed vac. 

Resuspend the sample in 15 microliters of ethyl acetate and load 

on TLC. The TLC is run in a 95:5 mixture of chloroform:methanol 

solvent. X-ray film is then exposed to the unwrapped TLC at room 

temperature. After a number of days the film is developed and 

results of the analysis are visualized.

The quantitation of the results entails cutting out the 

spots which correspond to acetylated chloramphenicol and counting 

on a scintillation counter.

t o b n *



RESULTS

The series of experiments involving the influence of the Pst 

I/Pst I repetitive sequence upon regulation of the CAT gene was 

initiated with insertion of the 659 base pair Pstl segment into 

an appropriate vector, pSVe-CAT (Fig. 3).

The Pstl segment containing the repetitive sequence was 

inserted into the Pstl site of the pSVe-CAT vector. Prior to 

ligation with the Pstl insert the vector was digested with Pstl 

in order for the insert to have an available site for integration 

into the plasmid. Upon successful digest (examined by agarose 

gel electrophoresis for linearization by Pstl cleavage) a 

ligation was performed in order to integrate the insert into the 

vector .

The ligation was followed by transformation of NM522 cells 

with the newly constructed plasmid. Vector without insert was 

the main component found in the ligation mixture.

The transformed cells were thereupon plated on media incorpo­

rating ampicillin to select for cells containing plasmid.

All surviving cells at this point contained plasmid, but only a 

small minority of these contained plasmid with insert. It now 

became necessary to screen these colonies for those which 

contained plasmid with the Pstl insert. This screening was 

performed by subjecting a colony to growth in media, mini prep

19
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plasmid extraction, Pstl digestion and agarose gel electrophores­

is to determine whether the correct 659 base pair insert was 

present .

Upon analysis of 48 colonies an observation was arrived at 

that the Pst! insert was not phosphorylated. The above procedure 

was repeated with kinasing of the insert performed prior to 

ligation. The 24th colony screened revealed the insert (fig. 4) . 

The new plasmid was assigned the designation of p S V e ~ C A T // 2 4 .

A decision was made to use this newly constructed plasmid, 

pSVe-CAT//24 along with vector pSVe-CAT without any insert for 

analysis of CAT expression.

Transfections require 40 Micrograms of UNA. Acquisition of 

such an amount of UNA necessitated large scale preparation of 

pSVe-CAT and pSVe-CAT024 (Table I).

Table 1 Results of Large Scale Plasm î d Preparat ion

Plasmid Concentration (mg/ml)

pSVe-CAT 0.45

pSVe-CAT# 24 0.76

This plasmid DNA was then used for transfection of CV— I 

cells. Forty Micrograms of protein extract from these cells 

was used for the CAT assays. CAT assay revealed very similar



levels of CAT activity for pSVe-CAT and pSVe-CAT// 24 (Fig. 5).

This series of experiments revealed that the techniques 

were working properly and that the next phase of the investigati­

on may begin. This next phase was to determine whether orienta­

tion played any part on the expression of the CAT gene. The 

acquisition of both orientations now became necessary.

Seventy-two colonies were screened from the previous ligation. 

Six clones were found with insert (pSVe-CAT/M, pSVe-CAT//12, 

pSVe-CAT/M5, pSVe-CAT//4 1 , pS Ve-C AT //6 8 , and pS Ve-CAT//7 2 ) in 

addition to pS Ve-C AT//24 . Distinguishing one orientation from the 

other was done by restriction enzyme analysis of mini prep 

plasmids. A restriction map was obtained of the 659 base pair 

insert (Fig. 6 ). From this data Ncol was chosen to perform the 

cleaving. This decision was made on the basis that Ncol is a six 

cutter (implies that there would be very few sites which could be 

cut by this enzyme). More importantly Ncol cut only once in this 

insert and this cut was an off-center cut (yielding a 280 base 

pair fragment and an 379 base pair fragment). The vector itself, 

pSVe-CAT, turned out to have only two sites. The off center cut 

of NcoJ would provide a different pattern of banding after an 

Ncol digest was subjected to agarose gel electrophoresis for each 

orientation (Fig. 7).

Actual analysis of such an experiment yielded the predicted 

results (Fig. 8 ). Five of the seven plasmids with insert had 

the insert in the same orientation t reference to the CAT gene 

as in the PTH gene (pSVe-CATlJ, pSVe-CAT#12, pSVe-CATlM5,
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pSVe-CAT# 24, and pSVe-CAT//72 ) and two in the opposite orientation 

(p$Ve-CAT//4 1 , and pSVe -CAT// 6 8 ). One of each orientation 

(pSVe-CAT//24 , and pSVe-CAT//6 8) was chosen for anaLysis for 

effects on regulation of expression on the CAT gene.

This analysis again required the large scale preparation of 

plasmid D N A . The large scale preparation had the results listed 

in Table 2.

Table 2 Results of Large 

Plasmid 

pSVe-CAT 

pSVe-CAT# 24 

pSVe-CAT//68

Scale Plasm!d Preparation 

Concentration (mg/ml) 

0.39 

0.34 

0.20

CV-1 cells were able to be transfected with this plasmid 

DNA. Results which were obtained from the CAT assay of the 

protein extract were quantified by cutting out pertinent spots 

(Fig. 9) of the TIC and counting in a scintillation counter 

(Table 3).

Table 3 Results of Scintillation Count

Plasmid Counts Relative Values

pSVe-CAT 1323 1.00

pSVe-CAT# 24 4420 3.34

pSVe-CAT#68 15362 11.61
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The data presented here shows some very dramatic results.

In order to avoid making hasty proposals based on just one set 

of data a decision was made to perform another set of transfec­

tions and observe whether the results are reproducible. This 

repetition of the experiment also had the purpose of removing 

the possibility that experimental error was involved. More than 

one transfection of each orientation will also be performed.

The D N A from the last large scale plasmid preparation was 

used for the next series of transfections of which two were 

performed on each orientation and also on vector without insert. 

In order to decrease the exposure time of the film to the TLC 

the amount of protein used in the CAT assay was changed from 40 

micrograms to 100 micrograms. This change cut about 4-5 days 

out of the usual 8-10 day wait on exposure. Scintillation 

counting of the TLC spots (Fig. 10) was performed as in the 

previous experiment (Table 4).

Table 4 Results of CAT Assays

Plasmid Counts Mean count of Re 1 at ive
each plasmid Values

pSVe-CAT 7567 5250 1 .00
pSVe-CAT 2956

pSVe-CAT# 24 2399 3445 0. 66
pSVe-CAT# .24 4492

pSVe CAT#68 9907 9200 1 .75
pSVe-CAT//68 8520
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The results from Table 4 show very different results upon 

comparison with results from Table 3. The results in Table 4 

are believed to possess greater reliability due to the greater 

proficiency in performing the critical techniques necessary in 

such analysis gained by the experimenter between the two experi­

ments .

Checking on variance within an experiment was accomplished 

by performing a second series of CAT assays on the protein 

extracts from the last series of transfections. CAT assays were 

performed utilizing 100 micrograms of DNA (Fig. II), the same 

amount which was used in the previous CAT assay. Results are 

1 isted in Table 5.

Table 5 Results of CAT Assays

Plasmid Count s Mean count of Relative
each plasmid Values

pSVe-CAT 58 10 3880 1 .00
pSVe-CAT 1950

pSVe-CAT# 24 3875 4 298 1 . 10
pSVe-CAT#24 472 1

pSV«-CAT#68 4783 4016 1 .04
pSVe-CAT#6$ 3250

The results of Table 5 clearly show high correlation with 

the results in Table 4. Such reproducibility was desired since 

this investigation would have been invalidated had CAT assays 

fluctuated within an experiment.
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Having shown the reliability or rather the consistency of the 

CAT assays it becomes desirable to confirm the results of the 

last series of transfections. The accomplishment of this 

goal is to be performed by performing 3 more transfections on 

each of the orientations and also on vector alone. Cat assays 

of these transfections will also be done in duplicate to reaffirm 

the reliability of the CAT assays.

Prior to the transfections laxge scale plasmid preparations 

had to be performed to obtain the large quantities of DNA 

necessary for so many transfections (Table 6 ).

Table 6 Results of Large Scale Plasmid Preparation

Plasmid 

pSVe-CAT 

pSVe-CAT# 24 

pSVe-CAT// 68

Concentration (mg/ml)

0.45

0.36

0.39

Transfections were now performed utilizing this plasmid 

DNA. Results of the CAT assays were obtained (Fig. 12 and Fig. 

13) and quantitated on a scinti1 lation counter.
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Table 7 Results of Scintillation Cn.,n.

Plasmid Counts Mean counts Relative

pSVe-CAT 449 432
values
1 .00pSVe-CAT 247

pSVe-CAT 6 18
pSVe-CAT 566
pSVe-CAT 243
pSVe-CAT 4 73

pSVe-CAT# 24 293 230 0.53pSVe-CAT#24 2 10
pSVe-CAT# 24 2 14
pSVe-CAT//24 I 6 3

pSVe-CAT#68 169 380 0.88pS Ve-CAT# 6 8 127
pSVe-CAT#68 125 1
pSVe-CAT# 68 409
pSVe-CAT#68 14 5
pSVe-CAT#68 149



D ISCUSSION

Consistent results as determined by CAT analysis were 

consistently arrived at throughout the investigation except for . 

the second series of transfections (Fig. 7 and Table 3). The 

rebellious results of this series of transfections can probably 

be attributed to the the techniques being unperfected at the 

time, experimental error and and possibly even being within 

statistical error. This second series also contained only a 

small fraction of the total transfections done in this investiga­

tion. Excluding this small minority of transfections it can be 

seen that the great majority of the transfections arrive at the 

conclusion that upon insertion of the Pstl/Pstl segment into 

the pSVe-CAT vector no noticeable increase or decrease of 

the level >f expression over pSVe-CA*T alone is observed.

This repetitive sequence may not have shown regulatory activity 

for a number of reasons. One of these being the lack of a bovine 

PTH secreting cell line. A cell which secretes PTH might possess 

other factors or sequences which might themselves regulate the 

proposed regulatory activity of the repetitive sequence.

Evidence of such sequence regulation has been found (9) in the 

chromosome of R6K. The chromosome of R6K possesses multiple 

origins of replication. One of the origins) gamma, is 

infrequently used in the plasmid and remains silent in certain 

plasmid derivatives. The inactivation of of the origin is 

accomplished by a natural origin silencer located right next to
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the ori gamma sequence. The silencer can only function in the 

cis orientation and can only function if downstream of ori gamma.

It appears that the silencer initiates an RNA segment that 

invades ori gamma and turns it off by either disrupting the ori 

gamma structure or by competing with a primer RNA. Removal 

of the silencer blocks the synthesis of silencer RNA and depres­

ses the origin. It is possible that similar mechanisms are 

acting on the repetitive sequence of the PTH gene.

Another possibility for the regulatory sequence not being 

observed is that in addition to other factors from a PTH secre­

ting cell needing to be present, extracellular signals might 

also be needed to express the regulatory activity of this cell.

Such signals might be regulatory hormones, proteins, peptides, 

or even certain ions*

Yet another possibility of why this sequence might not be 

showing regulatory activity in this type of experiment is 

lack of enhancer being present. In the original paper (5) in 

which this type of experiment was performed enhancer was present.

One of the proposed mechanisms for this silencing was that the 

repetitive sequence (with silencing activity) somehow functions 

by its presence in between an enhancer and its gene. Utilizing 

the silencing segment of the rat insulin gene in a vector 

lacking enhancer would either disprove the proposed mechanism or 

lend further weight to the mechanism. In order to exclude this 

mechanism operating in the repetitive sequence of the PTH gene 

it would be desireable to perform the expression analysis in
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the future utilizing a vector with enhancer present in an 

appropriate location.

Variation in expression might also be occuring between the 

three plasmids at such a level which is not detectable due to 

the high noise level. Such low level expression may turn out to 

be the way in which fine tuning of expression is performed.

This will only be shown upon development of highly sensitive 

techniques.

One of the problems in using the CAT assay in conjunction 

with the TLC analysis is that the exposure time of the autoradio­

gram is often quite lengthy. A recent develop went (10) introdu­

ces a technique which does not require chromatography, HPLC, or 

autoradiography. The basis of the assay rests on the use of an 

inexpensive substrate, tritiated acetate, instead of the usual 

carbon 14 labelled chloramphenicol. The new technique allows 

quite dramatic savings of time.

Even though this investigation did not reveal any increase 

or decrease in expression due to the insertion of the repetitive 

sequence, this study was important in that it did investigate 

the possibility of the repetitive sequence possessing regulatory 

activity. The formation of databases based on these types of 

experiments which either confirm or rule out regulatory functions 

of non-coding sequences allows generalizations to be made 

about regulation based on actual data rather than speculations 

without any experimental basis. This tour de force approach 

to understanding regulation may seem long and cumbersome but
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when combined with conformation. studies of the sequences may 

turn out to be the method by which regulation will eventually be 

unde r s t o o d .

In conclusion, this investigation accomplished the insertion 

of Pst 1 /Pst I segment into the Pstl site of pSVe~CAT vector in 

two possible orientations. This was followed by the transfec­

tion of CV-! cells. CAT analysis of the protein extract of 

these cells revealed no marked increase or decrease in the level 

CAT being expressed in these cells when compared to cells 

transfected with only vector.



Cienad Sons

F i S « r t  I .  A p a r t i a l  r e s t r i c t i o n  asp o f  the c lo n e d  b ov in e  PTH 
tone  showing r e s t r i c t i o n  ensyme c le a v a g e  s i t e s  r e l a t i v e  to the 
l o c a t i o n  o f  the o o n s  ( s o l i d  b la c k  b o x e s ) ,  i n t r o n s ,  and f l a n k i n g
re g io n s  ( r e p r i n t e d  w i th  the p e rm is s io n  o f  Byron  Kem p er ) .
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Figure 2. Region* of the Fetl/Petl eegaent that are A-T rich
are indicated by (----). Theae regiona were at leaat 751 A-T
uaing a eliding window of 9 nucleotidea (reprinted with peraie- 
aion froa Joeeph Cioffi).
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F ig u r e  3. R e s t r i c t i o n  asp  o f  pSVe-CAT v e c t o r . Numbers i n d i c a t e
a p p ro x ia a t e  i n t e r v e n i n g  beae p a i r s  between r e s t r i c t i o n  s i t e s .



Figure 4. Results of ainigel electrophoresis. Left lens is e 
Pst I digest of e plasaid preparation containing the 659 base 
pair repetitive DMA insertion. The right lane consists of Phil 
174/Bee Cut MW Berber (froa top to bottoa nuaber of base pairs 
representeds 1353, 1078, 872, *03, 310).
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Fitur* 5. Autoradiogram of CAT aaaay raaulta 
repraaenta empty vector, aiddla lane eonaiata 
baaa pair repetitive DMA aaquanca inaertion. 
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F ig u r e  6 . R e s t r i c t i o n  enzyme s i t e s  f o r  the  659 base p a i r  
r e p e t i t i v e  DNA i n s e r t  (u s e  w i t h  p e rm is s io n  o f  Jo se p h  C i o f f i ) .

R e s t r i c t i o n  Enzyme L o c a t i o n S iz e

Aha I I I  TTTAAA 71 139
98 27

591 693

A lu  I  AGCT 390 520
397 7
529 132

Ava I I  6GA/TCC 205 659

Bbv I  GCAGC 650 659

B s t  MI CCA/TGG 476 646
489 13

Dde I  CT-AG 353 397
526 173
561 35
615 54

Fnu4 H I GC-GC 6 15
391 385
650 259

H in t  I  GA-TC 243 389
413 170
463 50
480 17
5 13 33

Mbo I I  OAAGA/TCTTC 416 609
466 50

Mnl 1 CCTC/GACG 256 514
401 145

Mco I  CCATGG 379 659

Fat I  CTGCAG 7 18
648 641

14* I 0TAC 109 659

8*u 3A I OATC 165 659

V
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Sau96 I GG-CC 

Serf I CC-GG

( F i g u r e  6 c o n t in u e d )

205

476
489

659

646
13
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Figure 7. Vector alone end with 659 bsae pair repetitive DMA 
sequence in both orientations. Also included is predicted 
eletropho'resis pattern of the two orientations.



F i g u r « 8 .  A c tu a l  a i n i g e l  c l a c t r o p h o r t s i s  p a t t e r n  o f  ( f ro m  l i f t  
to  r i g h t )  a a p t y  v e c t o r ,  v e c t o r  w i t h  i n s e r t  in  the  aaae o r i e n t a ­
t i o n  as i t  appea rs  in  the  upstream  re g io n  o f  the  FTH gene ,  and 
in  i t s  o p p o s i t e  o r i e n t a t i o n .
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Fi|ur« 9. Autoradiograa of aecond aerie* of tranafectiona (froa 
ltft to right( negative control, without inaart, tana orientation
as tragatnt appaara in PTB gana, oppoaite orientation, poaitive 
control.
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Figure 12. First series of CAT assays on fourth series of 
transfections (from left to right; negative control, pSVe-CAT, 
pSVe-CAT, pSVe-CAT , pSVe-CAT024, pSVe-CAT#24, pSVe-CAT** 68 , 
pSVe-CATi6 8 , pSVe-CAT#6 8 , positive control).
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Figure 13. Second series of CAT assays on fourth series of 
transfections (from left to right; negative control, pSVe-CAT, 
pSVe-CAT, pSVe-CAT, pSVe-CAT//2A , pS Ve-C AT// 2 A , pS Ve - C AT//6 8 , 
pSVe-CAT//6 8 , pSVe-CAT// 6 8, positive control).
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