	* 12 122 / 200 0	
	UNIVERSII	Y OF ILLINOIS
		MAY 10 87
THIS IS TO C	ERTIFY THAT THE THES	SIS PREPARED UNDER MY SUPERVISION BY
	KENNETH WI	ILLIAM FISHBEIN
ENTITLED	EVALUATION OF QUANTITAT	
	***************************************	TIVE MODELS FOR MOLECULAR REORIENTATION
S APPROVED	IN SUPERO BY ME AS FULFILLING 1	COOLED LIQUIDS
S APPROVED DEGREE OF	IN SUPERO BY ME AS FULFILLING T BACHELOR OF SCIENCE IN	COOLED LIQUIDS
S APPROVED	IN SUPERO BY ME AS FULFILLING T BACHELOR OF SCIENCE IN	COOLED LIQUIDS THIS PART OF THE REQUIREMENTS FOR THE CHEMISTRY An Ama
S APPROVED	IN SUPERO BY ME AS FULFILLING T BACHELOR OF SCIENCE IN	COOLED LIQUIDS THIS PART OF THE REQUIREMENTS FOR THE CHEMISTRY An Instructor in Charge
S APPROVED EGREE OF APPROVED	IN SUPERO BY ME AS FULFILLING T BACHELOR OF SCIENCE IN MG. Manuel HEAD OF DEPARTMENT O	COOLED LIQUIDS THIS PART OF THE REQUIREMENTS FOR THE CHEMISTRY An An Anton Instructor in Charge
S APPROVED	IN SUPERO BY ME AS FULFILLING T BACHELOR OF SCIENCE IN MACREMENT OF HEAD OF DEPARTMENT O	COOLED LIQUIDS THIS PART OF THE REQUIREMENTS FOR THE N CHEMISTRY M CHEMISTRY Instructor in Charge

Evaluation of Quantitative Models

for

Molecular Reorientation

in

Supercooled Liquids

by Kenneth William Fishbein

Thesis

for the

Degree of Bachelor of Science

in

Chemistry

College of Liberal Arts and Sciences University of Illinois Urbana, Illinois

TABLE OF CONTENTS

Introduction 1 Elementary Stokes-Einstein Forms 4 Ahn-Basset and Modified Frenkel Models 5 Dote-Kivelson-Schwartz Model 8 Zager-Freed Isochoric Model 13 Evan. Kivelson Theory for the Zero-Viscosity Intercept 15 Conclusions 18 Bibliography 21 Table 1: Qualitative Trends in M and $\boldsymbol{\gamma}_{\mathrm{H}}$ 22 Table 2: Final Parameters for the Dote-Kivelson-Schwartz Model 24 Table 3: Empirical Parameters for the Zager-Freed Model 25 Appendix A: Isothermal Compressibilities A-1 Appendix B: Empirical Parameters for the Ahn-Basset and Modified B-1 Frenkel Models Appendix C: Constant Viscosity Data from Graphical Analysis C-1 Appendix D: Empirical Parameters for Dote-Kivelson-Schwartz D-1 Analysis

Appendix E: Isochoric Data for Zager-Freed Analysis E-1

The quantitative description of molecular reorientation in viscous fluids has long been a challenging problem in chemical physics. To investigate this phenomenon, numerous experimental studies utilizing nuclear and electron spin relaxation measurements and Raman light scattering techniques have been augmented with theoretical developments based on hydrodynamic or quasihydrodynamic principles or on the memory and correlation function formalisms of non-equilibrium statistical mechanics. As a result, there now exist a large number of mathematical models relating the reorientational correlation time 7 with shear viscosity 1, temperature, and density p. In this work, the recent deuterium NMR relaxation mesurements of Welsh¹ are analyzed with reference to several of these models. This experimental work examined reorientation under isothermal, isobaric, and isochoric conditions in a series of supercooled fluids exhibiting wide variations in shape, size, symmetry, and polarity. Furthermore, measurements on selectively deuterated species permitted the resolution of anisotropic character in the molecular motion of toluene and isopropylbenzene. Finally, thanks to supercooling and the use of high pressures, each fluid was examined over a wide range of viscosities. Thus, the ability of each model to reconcile this data will indicate that model's capacity to explain the effects of variations in molecular structure and will determine its applicability to molecular motions of very different characters. In addition, the utilization of high-viscosity data to test these models will ensure that a successful model can account for relatively unhindered,

non-viscous motions as well as the strongly cooperative molecular motions of viscous fluids.

Although not essential, it is convenient to use the Debye-Stokes-Einstein equation:

$$\gamma_{\Theta} = \frac{V_{\rm h} f C}{k T} + \gamma_{\rm H}$$
(1)

to describe the reorientation behavior of molecules in the liquid state. In this formalism, V is the molecular volume, f is a dimensionless "shape parameter" that reflects the variation of molecular shape from sphericity, and $\boldsymbol{\gamma}_{\mathrm{H}}$ is the zero-viscosity correlation time. Throughout most of this work, it will be our approach to model the behavior of the empirically determined parameter C under the assumption of $\Upsilon_{H} = 0$. The omission of a zero-viscosity intercept has been justified in the past by its identification with the free-rotor inertial correlation time²; since the experimental data studied apply to supercooled liquids in which inertial behavior is negligible, $\gamma_{\rm H}$ must also be negligible. If one makes this identification, the elimination of ${\cal T}_{\rm H}$ from (1) also seems necessary because negative intercepts varying with pressure, temperature, and density have been observed in much of the reorientational data. Yet, as Evans and Kivelson³ have emphasized, when $\gamma_{\rm H}$ is linearly extrapolated from a high viscosity regime to zero viscosity, the resulting intercept need not reflect inertial effects. Since the true nature of $\gamma_{\rm H}$ is not well understood, where feasible, calculations in this work were executed alternatively under the assumption of a variable $\gamma_{\rm H}$ or under the convention $\mathcal{T}_{H}^{\equiv 0}$; henceforth, analysis based on the latter convention will be referred to as the "zero-intercept method". The

mathematical complexities arising from the allowance of a variable zero-viscosity intercept in the application of the hydrodynamic and quasi-hydrodynamic theories, however, necessitated the use of the zero-intercept method for their evaluation. Thus, for the hydrodynamic models, any contribution to the reorientational correlation time from $\gamma_{\rm H}$ would be implicit in the zeroviscosity behavior of C. Similarly, the dependence of V on Λ , T, P, or ρ was considered to be implicitly present in C.

So that an evaluation of each model could be made with a minimum number of numerical estimates and assumptions, whenever possible, each model was arranged so that simple linear regression analysis of functions of γ_{e} , T, γ , and ρ would yield optimized slopes and intercepts that could easily be compared to the quantitative and qualitative predictions of the model.

In the course of this work, isothermal compressibilities for each compound were required as a function of temperature. To calculate these values, a simple equation⁴was applied to density data from Welsh's investigations:

$$\overline{K} = \frac{1}{\overline{\rho}} \left(\frac{\partial \rho}{\partial P} \right)_{\mathrm{T}} = \left(\frac{\partial \ln \rho}{\partial P} \right)_{\mathrm{T}}$$
(2).

Plots of ln β versus P at each temperature studied for each compound gave excellent correlation and yielded slopes that were identified with $\overline{R}(T)$ (see Appendix A). The linearity of these plots indicates that at fixed temperature, \overline{R} does not vary with pressure over the range indicated. Consequently, \overline{R} cannot vary with density under isothermal conditions.

Under these assumptions, the data on reorientation in super-

cooled fluids was compared to a series of models of generally increasing complexity.

Elementary Stokes-Einstein Forms

The simplest models for molecular reorientation in liquids assume the form of equation (1) with a constant value of C. For instance, Debye⁵ showed that a spherical molecule rotating in a continuous, viscous medium could be described by (1) with C=1 and f=1, while Perrin⁶ applied the Stokes-Einstein equation to ellipsolds using the choice of parameters C=1 and $f \ge 1$, with f increasing from unity with increases in the nonsphericity of the reorienting molecule. In either case, a plot of γ_0 versus Λ/T for a fluid obeying such a model should have a slope that is constant with pressure, temperature, and density. Consequently, isothermal, isobaric and isochoric plots should show good correlation of all such data points to a single straight line if either theory applies. Such plots can be found in Welsh's work, and these clearly show significant nonlinearity and do not exhibit collinearity of isotherms or isochores for all compounds. In this work, the inapplicability of the simple Stokes-Einstein forms was quickly demonstrated by naively calculating \texttt{kV}_{H} and \varUpsilon_{H} by linear regression using a form similar to (1):

$$\gamma_{\bullet} = \frac{\mu V_{H} \eta}{kT} + \gamma_{H}$$
(3).

where M is the McClung-Kivelson constant?, which has been used as a measure of translational-rotational coupling in the reorientation of molecules in viscous fluids.² Despite the previously mentioned nonlinearity of these plots, the correlation calculated was good, and with the exception of toluene-d₁, values of $H_{V_{\rm H}}$ exhibiting non-negligible dependence on T, P, and ρ were found (see Table 1). The corresponding values of $\gamma_{\rm H}$ are compared to theoretical models at the conclusion of this work. Similarly, a zero-intercept analysis of the reorientation data was achieved by averaging the values of γ_{0} T/ η under conditions of constant pressure, temperature, or density. Here, several compounds exhibited a constant value of $H_{\rm H}$, yet the standard deviation of γ_{0} T/ η from its average value was often so large compared to experimental uncertainties that one nevertheless could not conclude that equation (3) was applicable without a variable $H_{\rm N}_{\rm H}$. A much more thorough analysis of the relaxation data incorporating density variations in $H_{\rm N}_{\rm H}$ can be found in Welsh's thesis.

Ahn-Basset and Modified Frenkel Models

The Ahn-Basset⁸ model and the model developed by Dote, Kivelson, and Schwartz⁹ from Frenkel's theory of reorientation in liquids¹⁰ emphasize very different approaches to the problem of molecular motion in fluids, but may be evaluated with but one choice of dependent and independent variables for linear regression, so they are considered simultaneously in this work.

The Ahn-Basset model is an attempt to adjust the parameter C in (1) to account for conditions that are neither perfectly inertial or hydrodynamic in the reorientation of a spherical particle in a continuous medium. In accordance with Debye's results, the

convention f=1 was adopted, and an expression for C was proposed:

$$C = \left[1 + \frac{3\eta}{\beta(\frac{3V}{4\pi})^{\prime \beta}}\right]^{-1}$$
(4).

In this expression, β is a parameter independent of molecular size which is zero for the limit of slip conditions (inertial motion) and which approaches infinity for increasingly viscous motions under stick boundary conditions. Utilizing equations (1) and (4), we may easily derive a mathematical expression which should hold if the Ahn-Basset theory is valid:

$$\frac{1}{\gamma_0} = \frac{kT}{V\gamma} + \frac{3kT}{V\beta(\frac{3V}{4\gamma})}$$
(5).

Thus, plots of $1/\gamma_0$ versus $1/\gamma_0$ at constant temperature are expected to give slope kT/V and intercept 3kT/V β $(3V/4\pi)^{1/3}$ under the assumption that β does not vary greatly with γ under isothermal conditions. Admittedly, this assumption is crude, since the degree of inertial or frictional character of the molecular motions certainly depends upon density and thus viscosity at any fixed temperature. Nevertheless, the evaluation of this model based upon the data analyzed here is not dependent on our assumption of a constant β , and this convention greatly simplifies the statistical analysis.

An expression similar to (5) can be obtained from the modified Frenkel theory. This theory, as presented by Dote, Kivelson and Schwartz is intended to account for the effect of free spaces between molecules in the solvation shell about any given reorienting molecule. In their model, C becomes the probability of contact between a reorienting molecule and a molecule in its first solvation shell, and can be expressed as a function of temperature, isothermal compressibility, and viscosity:

$$C = \left[1 + \frac{5BkT\bar{\kappa}\eta}{\varphi V}\right]^{-1}$$
(6)

where B is the Batchinski parameter¹¹ which is independent of temperature, but may vary with the system chosen, and ϕ is a scaling factor such that ϕV is the effective rotational volume of the reorienting molecule. Thus, ϕ can be expected to vary with nonsphericity and can be approximated by f. We will assume here that ϕ is not dependent on viscosity in the range studied. After insertion of (6) into (1) and rearrangement of terms; an expression useful for evaluation of the modified Frenkel model is obtained;

$$\frac{1}{\gamma_{\theta}} = \frac{kT}{V\eta f} + \frac{5Bk^2T^2\vec{k}}{\phi V^2 f}$$
(7)

An isothermal plot of $1/\sqrt{6}$ versus $1/\sqrt{1}$ is expected to yield a slope kT/Vf and intercept $5Bk^2T^2\vec{k}/\frac{6}{7}v^2f$.

In Appendix B, the results of a linear regression analysis based on the form:

$$\frac{1}{\gamma_0} = \frac{c}{\gamma} + d \tag{8}$$

are collected. In no case is c observed to increase steadily with increasing temperature. Further, while d generally increases with temperature for all the compounds studied, both positive and negative values of d are found. For instance, all the values of d for propylene carbonate-d₃ are negative. Examining equation (5), we find no indication that either a negative intercept or a nonincreasing slope is possible under the assumption of a constant β .

Further, even if we relax the assumption that β cannot vary with 1 at constant temperature, we must assume that β is a generally increasing function of shear viscosity, since an isothermal increase in viscosity would be expected to result in a transition from slip toward stick motional conditions. Thus, as long as $\beta > 0$, the Ahn-Basset model cannot reconcile the experimental data analyzed. Similarly, the linear regression results do not support the modified Frenkel model under the previously stated assumptions regarding the behavior of B, \vec{R} , and ϕ . The inclusion $c \leq a$ scaling factor with some non-negligible viscosity dependence could make equation (7) fit the experimental data, but in the absence of a model for ϕ , no further evaluation of this model is possible.

Dote-Kivelson-Schwartz Model

In the same paper in which the modified Frenkel model was proposed, Dote, Kivelson, and Schwartz presented a generalization of the Ahn-Basset theory to the reorientational behavior of nonspherical particles. This interpolation formula, following Perrin's convention, allows for values of f obeying $f \ge 1$ and predicts a value of C that is dependent on β and γ , where β has the same interpretation as in (4) and (5):

$$C = \left[1 + \frac{3 n}{\beta \left(\frac{3V}{L_{\text{FT}}}\right)^{\frac{1}{3}} + \frac{3nC_{0}}{1+C_{0}}}\right]^{-1}$$
(9)

where C_0 is the limit of C under slip boundary conditions. With equation (1) and $\gamma_{\rm H}^{\pm 0}$, (9) becomes:

$$\frac{1}{\gamma_0} = \frac{kT}{V\eta f} \left[1 + \frac{3 h}{\beta \left(\frac{3V}{4\eta}\right)^{1/3} + \frac{3\eta C_0}{1+C_0}} \right]$$
(10).

Under the assumption that β is independent of temperature, plots of 1/ γ_0 versus T at <u>constant viscosity</u> should be linear with zero intercept and slope given by:

$$b = \frac{k}{V\eta f} \begin{bmatrix} 1 + \frac{3\eta}{\beta \left(\frac{3V}{L_{W}}\right)^{1/3} + \frac{3\eta C_{o}}{1+C_{o}}} \end{bmatrix}$$
(11).

Although the predicted dependence of b on viscosity is complicated and difficult to describe without numerical estimates of β , V, and C₀, this expression is simplified in the limits of low or high viscosity. In particular, in the low viscosity regime where

$$\eta << \frac{1 + C_o}{3C_o} \beta \left(\frac{3V}{4\pi r}\right)^{1/3}$$
, (11) approaches the limiting expression:

$$b = \frac{k}{V \eta f} + \frac{3k}{V f \beta (3V)}$$
(12),

Under these conditions, linear regression fit of b to $1/\eta$ according to the equation $b = b'/\eta + a'$ should yield b' and a' obeying:

$$\mathbf{a'} = \frac{3k}{Vf\beta} \left(\frac{3V}{4\pi}\right)^{\mu} \mathbf{b'} = \frac{k}{Vf}$$
(13)

Similarly, for $\eta \gg \frac{1 + C_0}{3C_0} \beta \left(\frac{3V}{4\pi}\right)^{th}$, equation (11) becomes.

$$b = \frac{k}{\nabla \eta f} \left[1 + \frac{1+C_o}{C_o} \right]$$
(14).

Thus, plots of b versus $1/\eta$ should have zero intercept and slope:

$$b'' = \frac{k}{Vf} \left[1 + \frac{1+C_0}{C_0} \right]$$
(15),

The actual analysis of the experimental data required a three

step graphical analysis to construct the constant viscosity data points (%, T). First, isothermal plots of A versus P were assembled using data points from both isothermal and isochoric measurements to which smooth curves were fitted manually. In a similar manner, plots of Yoversus P were assembled using Welsh's isothermal and isochoric data. Then, at regular intervals of viscosity for which data corresponding to at least three different temperatures was available, a set of three or more (P,T) data points was collected for each viscosity by measurement of the isotherms. For each (P,T), the corresponding γ_{θ} was determined from the set of γ_{θ} versus P isotherms. Thus, a set of (Yo, T) points was assigned to each viscosity selected for study. This constant viscosity data is collected in Appendix C. At each viscosity, the calculated correlation times and associated temperatures were used to calculate the best value of b, which was chosen to be the average of 1/10 T for that constant viscosity group. These average values, along with their associated standard deviations, are presented in Appendix D. In all cases, b decreased with increasing viscosity and the standard deviations were small relative to b, especially at low to moderate viscosity, suggesting that the Dote-Kivelson-Schwartz model fits the constant viscosity data well. Finally, the values of b for each compound were plotted against 1/2 using both variable-intercept and zero-intercept techniques. Accordingly, b' and a' were the least-squares optimized slope and intercept for b versus 1/n , respectively, and b" was the average of \b across each viscosity range studied. Values for 2', b', and b" are collected in Table 2.

For the variable-intercept analysis, correlation between b and 1/1 was excellent for each viscosity range specified. In this and the zero-intercept analysis, neither b' nor b" showed a strong dependence on viscosity, in accordance with equation (11) generally and its high and low viscosity limits in particular. It seems clear, however, that the low-viscosity limit is not applicable to the reorientation of isopropylbenzene-d₅, n-butylbenzene-d₅, sec-butylbenzene-d₅, propylene carbonate d₃, or dichloroethylene carbonate-d2, since all of these substances show negative values for a', which are inconsistent with the predictions of equation (13). For the remaining molecules, the values of a' and b' observed seem qualitatively explainable by reference to differences in V and f. For instance, since the molecular volume V for toluene-d1 is smaller than that for isopropylbenzened1. b' is greater for toluene-d1, while the large values for b' observed for cis-decalin could be explained by its small value of the shape parameter f relative to the other species studied; cis-decalin is the most nearly spherical of the molecules listed in Table 2. Not only does the behavior of b' for these molecules seem to obey the theoretical predictions, but the trends shown by a' also seem explainable in terms of equation (13). In particular, as one examines progressively more viscous ranges for a given compound exhibiting a'>0, one finds that a' decreases, as is expected from the inverse dependence of a' on **P**. These results suggest that the low viscosity limit might be applicable for some of the more freely reorienting molecules of Table 2. A striking ex-

ception to this conclusion is the case of chloroethylene carbonate-d3, which shows positive values of a' which first decrease, then increase with viscosity. Yet the highest viscosity range studied for this compound might well lie in the high-viscosity limit of equation (11), where the predictions of (13) break down. Examining this high-viscosity limit and the values of b" in Table 2, we find that b" varies according to f and V as predicted for cis-decalin-d10 and the substituted benzenes. As an example, n-butylbenzene has a greater volume and is less spherical than isopropylbenzene-d5, so it has a smaller value of b" than the latter compound. Despite such successful predictions, the highviscosity limit does not adequately explain the fact that secbutylbenzene has a smaller b" than n-butylbenzene, though the former has a smaller value of f and a similar molecular volume. Further, the differences in b" for the three carbonates are not accounted for by equation (15); while all three possess essentially the same shape, volume, and moment of inertia (thus C_0), their b" values are quite different and do not obey an obvious polarity order. Yet on closer inspection, one observes that the viscosity ranges compared for the three compounds do not appreciably overlap, and that there is a weak dependence of b" on viscosity. Thus, this discrepancy could be attributable to deviations from the high viscosity limit, for which the slope of b versus $1/\eta$ is predicted to be viscosity-independent. In addition, the transition between high and low viscosity limits need not take place at the same viscosity for each compound; this transition point is predicted to be dependent on β , which can vary from molecule to molecule according to as yet-unspecified structural characteristics. So, while neither the high nor the low viscosity limits of the Dote-Kivelson-Schwartz model successfully explains the experimental data for all the compounds, the linearity of 1/re versus T plots at each viscosity suggests the general validity of this model in its intermediate viscosity form.

Zager-Freed Isochoric Model

In the course of their ESR study of molecular reorientation in solutions of the isolable free radical PD-Tempone, Zager and Freed⁴ proposed an empirical form for the correlation time **70** under isochoric conditions and composed a physical justification for their model. Specifically, the Zager-Freed model specifies that the isochoric data obeys the equation:

 $\frac{\gamma \boldsymbol{\rho} \mathbf{T}}{\gamma \mathbf{F}} = \mathbf{c} \cdot (\boldsymbol{\rho}^* - \boldsymbol{\rho}_0^*) \tag{16}$

where c' and ρ_0^* are empirically determined parameters and $\rho^* \cdot \rho/\rho_m$, where ρ_m is the density of the fluid at its melting rule t. We have introduced the reduced density ρ^* to facilitate desparition between the various compounds under investigation. To a ply this model to our data, tables of $\gamma_0 T/\eta_0$ versus ρ^* were assemiled (see Appendix E) and linear regression was performed using these us dependent and independent variables, respective β . Sust as 2 ger and Freed observed for the reorientation of PD-Tempone in toluenedg, the correlation between $\gamma_0 T/\eta_0$ and ρ^* is very poor when all values of the dependent variable are used. However, when the

average of all YoT/nR values for each density was plotted against p, good correlation was found, also in accordance with the findings of Zager and Freed. The least squares-optimized values of c' and $\boldsymbol{\rho}_0^{\star}$ obtained this way are collected in Table 3. While no obvious trend in ρ_0^* can be found in these results, c' values for the substituted benzene/cis-decalin series do seem to fall into groups showing particular reorientational character under the experimental conditions. Recently, Artaki and Jonas² were able to classify these compounds into three categories; toluene-dg and cis-decalin-d10, which show relatively unhindered rotation, n-butylbenzene-d5, which shows intermediate behavior, and isopropylbenzene-d $_5$ and sec-butylbenzene-d $_5$, which show strongly hindered rotation in the density range investigated. Referring to Table 3, we find that the first group shows large negative values of c', n-butylbenzene has a negative c' small in absolute value, and the last group shows large positive c'. This classification, however, does not seem applicable to the carbonates; their values of c' do not follow the order of polarity and all three compounds are similar in size and shape. Accordingly, the nonmonatonic dependence of c' on dipole moment is a phenomenon that is yet to be explained.

Besides formulating equation (16), Zager and Freed proposed that c' could be expressed in terms of an "expanded volume" V_0 is fined such that, as $V \rightarrow V_0$, molecular reorientation approaches the slip limit:

$$\frac{\gamma_{o}}{\eta_{w}} = c' \left(\frac{1}{V^{*}} - \frac{1}{V^{*}_{o}} \right)$$
(17)

Clearly, this equation predicts c' > 0, while our data shows both positive and negative values for c'. Thus, while the Zager-Freed model (16) fits our data well, the theoretical interpretation of its parameters c' and p_0^* has yet to be realized.

Evans-Kivelson Theory for the Zero-Viscosity Intercept

While the significance of the intercept $\boldsymbol{\gamma}_{\mathrm{H}}$ is not universally accepted, the large magnitude of these intercepts observed experimentally suggests that they should receive some serious theoretical attention. This is especially true for linearlyextrapolated intercepts as these intercepts cannot be identified with the free rotor (inertial) correlation time $\gamma_{\rm FR} = \left(\frac{2MI}{9kT}\right)^{\prime 12}$, where I is the moment of inertia for linear or spherical molecules, so negative values of $\boldsymbol{\gamma}_{\mathrm{H}}$ are not necessarily unphysical in such cases. To date, the most detailed attempt to attach a physical significance to $\boldsymbol{\gamma}_{\mathrm{H}}$ has been the correlation function approach of Evans and Kivelson.³ In their theoretical study, these investigators were able to express γ_0 in terms of zero-frequency integral transforms of the kinetic and potential autocorrelation functions, which gave rise to the hydrodynamic term VChf/kT in (1), and cross-correlation functions, whose transforms gave rise to $\boldsymbol{\gamma}_{\mathrm{H}}.$ Applying this expression to the special case of the reorientation of linear molecules, Evans and Kivelson obtained the straightforward formula;

$$\gamma_{\bullet} = \frac{C \cdot V \eta}{6kT} + \frac{Id}{C \cdot V \eta} + r \gamma_{FR} \left(\frac{11d}{2\pi}\right)^{\eta L}$$
(18)

where C' = 6Cf in our notation, d is a constant relating the first and second order angular velocity correlation times and is always between 1 and 1.5 Here, r is a parameter which the investigators argued must be independent of viscosity. Under the assumption of Gaussian functional form for various correlation functions and the distribution of mean square intermolecular torques, Evans and Kivelson were able to estimate the third term of equation (18) for linear molecules and identified their estimate with $\gamma_{\rm H}$ by assuming that N was sufficiently great in liquid-phase experiments to neglect Id/C'VM :

$$\gamma_{\mathcal{H}} \cong \frac{-3}{10} \gamma_{\mathrm{FR}_{\mathbf{k}}^{2} \mathrm{T}^{2}} \stackrel{1}{\leq} \langle \mathrm{T} \cdot \mathrm{T} \rangle \left[1 + \frac{0.15}{\mathrm{k}^{2} \mathrm{T}^{2}} \langle \mathrm{T} \cdot \mathrm{T} \rangle \right]^{-3/2}$$
(19)

where $\langle \underline{T},\underline{T}\rangle$ is the equilibrium ensemble average of the squared intermolecular torque \underline{T} experienced by a reorienting molecule. Since $\langle \underline{T},\underline{T}\rangle$ is a positive quantity, the Evand-Kivelson theory anticipates only negative intercepts. Further, as $\langle \underline{T},\underline{T}\rangle$ varies with temperature, density, elongation¹², and dipole moment¹³, γ_{H} should have some dependence on each of these quantities. To generate actual predictions of γ_{H} , one may introduce values of $\langle \underline{T},\underline{T}\rangle$ calculated by computer simulations of idealized fluids. For instance, the work of Wegdam, Evans, and Evans¹² utilized simulations based on an ensemble of Lennard-Jones diatomics each interacting with an identical Lennard-Jones potential. These computations were performed under conditions of relatively high temperature and low density, but clearly show that $\langle \underline{T},\underline{T}\rangle$ is not a constant factor in (19). The torques calculated showed the following behavior; 1: $\langle \underline{T},\underline{T}\rangle$ first increased 8-fold then decreased 2-fold with in-

creasing number density; $2: \langle \underline{T}, \underline{T} \rangle$ increased quadratically with elongation (i.e. the distance between the atomic centers of mass); 3: $\langle \underline{T}, \underline{T} \rangle$ increased weakly with temperature - an increase of 64% with a 1.3-fold increase in temperature was noted. Thus, provided that the assumption of Gaussian behaviors and the insistnificance of Id/C'V η in equation (18) are valid, the intercepts chould be nonmonatonic in density, increasing in absolute value with elongation, and weakly decreasing with temperature. To evaluate the qualitative effects of dipole moment variations on $\boldsymbol{\gamma}_{\mathrm{H}}$, we may refer to the computer simulations of a Stockmayer fluid performed by Twu, Gray, and Gubbins¹³. At a "liquid-like" density, these simulations indicated that $\langle \underline{T} \cdot \underline{T} \rangle$ increases with μ so that a 1.2-fold increase in dipole moment results in a 2.7-fold increase in $\langle \underline{T} \cdot \underline{T} \rangle$. This would imply, under the previously stated assumptions, that ${m \gamma}_{_{
m H}}$ should decrease (increase in absolute value) as ${m \mu}$ increases. None of these behaviors are shown in our linearlyextrapolated intercept data; not all of our intercepts are negative, and they fail to show the predicted qualitative behavior. While the existence of both positive and negative intercepts could be accounted for if we do not ignore the convective second term of equation (18), the actual dependence of $\gamma_{_{
m H}}$ on density, temperature, shape, and dipole moment for the substituted benzenes, carbonates, and cis-decalin-d₁₀ will probably require a theoretical development that is legitimately applicable to symmetric and asymmetric top molecules. Further, as Evans and Kivelson noted, both the sign and qualitative behavior of their calculated $m{\gamma}_{
m H}$ could be

reconciled with the experimental data by accumine a more realistic, non-Gaussian form for the correlation and torque distribution functions antecedent to (18). Indeed, even the simulations of the Lennard-Jones fluid resulted in angular velocity, linear velocity, and orientational correlation functions that were decidedly non-Gaussian. Thus, refinements in the theoretical development of $\gamma_{\rm H}$ from the cross-correlation functions may ultimately yield better predictions of the zero-viscosity intercept for the molecules that are the subject of this study. Such refinements would provide a basis for a worthwhile research project in hor-equilibrium statistical mechanics.

<u>Conclusions</u>

Having evaluated several quantitative models for molecular reorientation in liquids, several observations can be made. First, no simple Stokes-Einstein form incorporating a <u>constant</u> dependence of γ_{θ} on Λ/T successfully accounts for the experimental data on cisdecalin, the substituted arenes, and the carbonates, either under the assumption of a negligible or non-negligible zero-viscosity intercept. While the Ahn-Basset theory makes provisions for motional conditions intermediate between the stick and slip extremes, its failure to account for nonsphericity makes it inapplicable to the experimental data. Apparently, the dynamical effects of nonsphericity cannot even be accounted for adequately by scaling the molecular volume with a shape factor ϕ ; the modified Frenkel theory does this and presumeably accounts for the discontinuity of the

environment in which a fluid molecule reorients itself, yet this theory, too, fails to fit our data. When non-sphericity is accounted for by adjustment of the Ahn-Basset theory, one obtains the Dote-Kivelson-Schwartz model, which fits our measurements quite accurately. However, the mathematical complexity of the latter model makes the calculation of its empirical parameters very difficult for a general choice of viscosity. Further, neither the high nor the low viscosity limit of this theory agrees with the data for all the molecules studied adequately, Nevertheless, the limited success of this model reinforces the conclusion that the most important factor influencing reorientational behavior in supercooled fluids is molecular shape; despite wide differences in polarity and the omission of solvent molecularity considerations, the most successful model was the one which allowed proper adjustment for deviations from spherical geometry. Turning to the Zager-Freed model, we find good correlation using the functional form proposed, but were unable to attach a definite physical significance to either the form or its empirical parameters; though the slope parameter c' showed some correlation to the reorientational classification of Artaki and Jonas, its values for the carbonates and the behavior of the intercept ρ_0^* could not be readily explained. Despite this, our calculations at least demonstrate the practical utility of the Zager-Freed model for fitting isochoric relaxation data. Finally, a review of the Evans-Kivelson theory for linearly-extrapolated zero-viscosity intercepts $\boldsymbol{\gamma}_{\mathrm{H}}$ along with a survey of the computer-simulated behavior of mean-squared inter-

molecular torques provided predictions for the sign of $\gamma_{\rm H}$ and its dependence on density, temperature, dipole moment, and elongation. While this model, developed for linear molecules with Gaussian correlation and torque-distribution functions, neither anticipated the correct signs or qualitative behaviors for the observed intercepts, its adaptation to nonlinear rotators and oscillatory correlation functions would be a worthwhile approach to finally understanding the nature of $\gamma_{\rm H}$. This endeavor along with the physical interpretation of the Zager-Freed and Dote-Kivelson-Schwartz models will provide goals for further theoretical development and comparison between models and new relaxation data.

BIBLIOGRAPHY

- (1) Welsh, M., PhD Thesis, University of Illinois, 1987.
- (2) Artaki, I.; Jonas, J. J. Chem. Phys. 1985, 82, 3360.
- (3) Evans, G.T.; Kivelson, D. J. Chem. Phys. 1986, <u>84</u>, 385.
- (4) Zager, S.A.; Freed, J.H. J. Chem. Phys. 1982, 77, 3360.
- (5) Debye, P., "Polar Molecules", Dover, New York, 1929, p. 72.
- (6) Perrin, F. J. Phys. Radium. 1934, 5, 497.
- (7) McClung, R.E.; Kivelson, D. J. Chem. Phys. 1968, 49, 3380.
- (8) Ahn, M. Chem. Phys. Lett. 1977, 52, 135.
- (9) Dote, J.L.; Kivelson, D.; Schwartz, R.N. <u>J. Phys. Chem.</u> 1981, <u>85</u>, 2169.
- (10) Frenkel, J., "Kinetic Theory of Liquids", Dover, New York, 1955.
- (11) Batchinski, A.J. Z. Phys. Chem. 1913, 84, 643.
- (12) Wegdam, G.H.; Evans, G.J.; Evans, M. <u>Adv. Molec. Relax. Inter-</u> act. Processes, 1977, <u>11</u>, 295
- (13) Twu, C.H.; Gray, C.G.; Gubbins, K.E. Mol. Phys. 1974, 27, 1601.

				······································		
TOLUENE-d	vs. T 🖡 0	(V _H vs. P)	HV _H vs. p	$\boldsymbol{\gamma}_{\mathrm{H}}$ vs. $\boldsymbol{T} \boldsymbol{\gamma}$	H VS. P	$\gamma_{_{ m H}}$ vs.p
1 ^T OLUENE-d _P	0	R	-	0		-
ISOPROPYL- BENZENE-d ₁	-	0	+	+/N	R	- -/N
ISOPROPYL- BENZENE-d5	-	0	+	R	R	-/N
n-BUTYL- BENZENE-d ₅	-	0	0	R	R	-/N
sec-BUTYL- BENZENE-d ₅	-	0	+	+/N	-/N	-/N
cis-DECALIN-d1()+	-	-	-	+	+
PROPYLENE CARBONATE-d	+/0	+/0	÷	R/N	R	0
CHLOROETHYLENE CARBONATE-d	+	-	-	-/N	+	+
DICHLOROETHYL- ENE CARBONATE-d	+	+/-	-/0	-/*	+	+
ZERO-INTERCEPT:	•	V _u vs. T		. vs. P	K V	VS. A
TOLUENE-d1		+		r: -	· · H	
TOLUENE-d8		0		-		-
ISOPROPYL- BENZENE-d		0		0		0
ISOPROPYL- BENZENE-d5		0		0		0
n-BUTYL- BENZENE-d5		0		0		0
sec-BUTYL- BENZENE-d5		-		-/+		0

TABLE 1: QUALITATIVE TRENDS IN THE KIVELSON PARAMETER WAND THE ZERO-VISCOSITY INTERCEP: $\boldsymbol{\gamma}_{\mathrm{H}}$

TABLE 1- CONTINUE:

	₩V _H vo. T	₩V _H vs. P	KV _H vs.P
cis-DECALIN-d10	+	-	_
PROPYLENE CARBONATE-d 3	C	+/-	0
CHLOROETHYLENE CARBONATE-d 3	+	-	0
DICHLOROETHYL- ENE CARBONATE-d ₂	+	+	+

EXPLANATION OF SYMBOLS:

- + first quantity increases with increases in T, P, or P.
- first quantity decreases with increases in T, P, or p.
- R first quantity shows irregular behavior with T, P, or p.

N both positive and negative intercepts observed

0 first quantity is independent of second quantity

+/-first quantity first increases, then decreases with increases
in T, P, or P.

* all intercepts observed were negative

TABLE 2: FINAL PARAMETERS FOR THE FVALUATION OF THE DOTE-KIVFLOOD-SCHWARTZ MODEL

	viscosity	16,1 -1	6 1 - 1	16 1 - 1
	range, cp 10	b',K "s -	10 a',K b -	10 - b",K is i
TOLUENE-d1	(3,4.875)	9.09	63.6	11.6
TOLUENE-d8	(3,4.875)	13.3	72.7	16.2
ISOPROPYL-	(11,49 5)	6.58	2.29	7.26
1	(52.25,68 75))6.44	1.20	7.17
	(71 5,99)	6.84	1.03	7 72
ICOPROPYL-	(11,49.5)	8.46	-1.11	8.14
	(52.25,68.75)	8.61	-2.33	7.21
	(?1.5,99.0)	7.31	-0.650	6.83
n-BUTYL- BENZENE-d	(20,100)	5.57	-0.967	6.10
5	(120,220)	5-53	-0.130	6.05
	(240,600)	5.51	-0.130	6.05
sec-BUTYL- BENZENE-d5	(15,112.5)	6.36	-1.59	5.38
cis-DECALIN	1(5.27.5)	16.5	54.7	25.2
~1 0	(16.25,27.5)	19.7	37.7	27.9
PROPYLENE	(10,20)	13.1	-2.78	12.7
d ₃	(22.5,27.5)	12.3	0.781	12.5
CHLORO-	(20,80)	12.0	8.23	16.1
CARBONATE	(90,160)	15.9	5.33	22.5
~3	(170,190)	14.5	8.93	30.6
DICHLORO-	(4.5,5.5)	8.67	-33.0	7.00
CAREONATE	(6.0,13.5)	7.37	-3.71	7.01

·-			
	$10^9 c^+, K^+ cm^3, g^{-1}$	P 0 [*] ,g.cm ⁻³	
TOLUENE-d1	-8.86	1.25	
TOLUENE-d8	-6.29	1.25	
ISOPROPYLBEN2 ^d 1	ZENE -6.86	1.78	
ISOPROPYLBEN: d5	ENE 12.4	0.632	
n-BUTYLBENZEN	NE-d ₅ -1.64	4.05	
sec-BUTYLBENZ d5	EENE 16.1	0.677	
cis-DECALIN-d	1 ₁₀ -10.4	1.13	
PROPYLENE CARBONATE	4.40	0.248	
CHLOROETHYLEN CARBONATE	IE -13.8	1.20	
DICHLOROETHYI CARBONATE	JENE 12.8	0.736	

TABLE 3: EMPIRICAL PARAMETERS FOR THE ZAGER-FREED MODEL

	1	ODAEBE	cis-3	UECALI	::	sec-II	GGG-IUTYLFENZENE		
<u> </u>) , K	10 ¹⁷ H , ba	r ⁻¹ , K		,tar	1 і "К	10 ¹		
	273	3.87	317.			26.3	3.12		
	238	3.80	294	3.42		633	3.09		
	218	3.76	278	3.48		233	3.63		
						×13	3.68		
n-	BUTYL	BENZENE	IDOPRO	DPYLBE	NZED	Esto P YI	LENE CAR	(30X x	
т,	K 10	⁵ <i>R</i> , bar ⁻¹	Т,К	10 ⁵ ਜੋ,	bar ⁻¹	ľ,K	10 ⁵ 4,1)ar1	
26	3 3.	17	253	2.85		793	2,30		
25	3 3.	05	238	2.89		284	2.26		
23	3 3.	18	228	2.93		273	2.42		
22]	3 3.	54	218	2.88		263	2.50		
21	3 4.0	01	203	2.77		253	2.66		
(CHLOR	DETHYLEN	E CARBONA	ATE	DICHI	JOROETHYI	LENE CAR	HONATE	
' , K	10 ⁵ r	,bar ⁻¹ T	к 10 ⁵ я,	bar ⁻¹	T,K	10 ⁵ k , bar	-1 т,к	10 ⁵ <i>m</i> , bar ⁻¹	
93	2.41	28	5.5 2.53		313	3.65	298	4.00	
0.5	2.46	28	33 2.54		308	3.75	293	4.26	
88	2.47	2'	78 0 ch			• • •			

	TOLUENE-	d ₁		TOLUENE+0	8
Т,К	10 ⁻⁹ c, Pa	10 ⁻⁹ d, 1 ⁻¹	"∎, К	10 ⁻⁹ с, Ря	10^{-9} 1, s ⁻¹
273	1.79	40.5	273	2. 94	67.3
238	2.02	1.5.1	2 38	2.70	20.(
218	2.31	3.43	218	22. sara	6. 414
I	ЗОРКОРУЦВЕ	NZENE-d ₁	I30	PROPYLEENZ	ENE-d _y
Т : К	10 ⁻⁹ c,Pa	10 ⁻⁹ d,g ⁻¹	Ч , К	10 ⁻⁹ c,Pa	10 ⁻⁹ d, s ⁻¹
253	1.27	4.73	253	1.69	5.16
238	1.25	2.00	238	1.65	2.14
228	1.28	0.802	228	1.59	0.923
218	1.30	0.588	218	1.71	0.247
203	1.41	-0.276	203	1.70	-0.952
	n-BUTYLBEN	ZENE-d ₅	;;eC	-BUTYLBENZ	ENE-d ₅
т,к	10 ⁻⁹ c,Pa	10 ⁻⁹ d,s ⁻¹	т,К	10 ⁻⁹ c,Pa	10 ⁻⁹ d,s ⁻¹
263	1.38	1.73	263	1.37	2.02
253	1.44	0.226	253	1.50	0.159
233	1.40	0.0710	233	1.33	0.196

	n-BUTYLBEI	NZENE-d ₅	sec-BUTYLBENZENE-d5			
Т , К	10 ⁻⁹ c,Pa	10^{-9} d, s ⁻¹	Т,К	10 ⁻⁹ c,Pa	$10^{-9} d_{s} s^{-1}$	
223	1.)5	-0.0201	213	1.28	-0.866	
213	1.40	-0.310				
	cis-DECA	LIN-d ₁₀	PROF	PYLENE CARI	ONATE-d3	
Τ', Κ	10 ⁻⁹ c,Pa	10^{-9} d, s ⁻¹	Т,К	10 ⁻⁹ c,Pa	10 ⁻⁹ d,s ⁻¹	
316	4.36	17.2	293	3.88	-2.97	
294	¹ • 79	13.4	283	4.01	-4.50	
278	5.14	14.6	273	3.91	-4.10	
			263	3.83	-1.73	
			253	3.81	-1.42	
СН	LOROETHYLE	NE CARBONATE-d3	DICHLOR	OETHYLENE	CARBONATE-d	
Т,К	10 ⁻⁹ c,Pa	10^{-9} d, s ⁻¹	Т,К	10 ⁻⁹ c,Pa	10^{-9} d, s ⁻¹	
293	3.29	-1.25	313	2.55	-11.2	
90.5	3.49	0.934	308	2.63	-11.4	
288	3.40	2.33	303	2.60	-7.09	
283	3.44	3.80	298	2.64	-3.81	
278	3.22	4.48	293	2.59	-0.868	
			288	2.89	-1.57	

TOLUENE-d ₁									
η,cp	Т , К	P,bars	Y, psec) ,cp	т,к	P,bars	Y. psec		
3.000	273	2170	9.80	4.250	273	2775	12.7		
	238	970	11.7		238	1 395	15.0		
	218	2 50	12.7		218	675	17.4		
3.625	273	2505	11.4	4.875	273	3010	14.2		
	238	1195	12.8		238	1580	16.6		
	218	475	15.2		218	825	19.4		
			TOLUEN	NE-d ₈	<u> </u>				
1 , cp	Т,К	P,bars	γ ₀ ,psec	η,cp	'Г , К	P,bars	<pre>7, psec</pre>		
3.000	273	2120	6.36	4.250	273	2725	8,70		
	238	900	8.58		238	1355	11.3		
	218	195	9.54		218	610	12.7		
3.625	273	2445	7.50	4.875	273	2975	9.60		
	238	1150	10.0		238	1545	12.6		
	218	410	11.1		218	775	14.3		

1SOPROPYLBENZENE-21								
η, cp	Т, K	r.bars	Y, pres	1 . ::p	Т,К	P,bars	Ye, psec	
5.50	218	1 58	36.5	19.25	203	593	144	
	228	550	39.5		218	1330	138	
	238	908	35.0		228	1740	119	
	253	1450	34.0		238	2273	113	
8.25	218	550	56.0		253	2885	94.0	
	228	920	54.0	22.00	203	705	1 65	
	238	1323	50.0		218	1455	157	
	253	1933	49.0		228	1880	135	
11.00	203	1 55	81.0		238	2415	127	
	218	813	77.0		253	3043	104	
	228	1200	71.0	24.75	203	798	186	
	238	1643	68.0		218	1565	174	
	253	2270	61.0		228	2000	1 51	
13.75	203	325	103		238	2540	140	
	218	1015	98.0		253	3180	115	
	228	1413	87.0	27.50	203	885	208	
	238	1895	82.0		218	1665	192	
	2 <i>5</i> 3	2520	73.0		228	2085	163	
16.50	203	470	124		238	2650	154	
	218	1188	119		253	3305	126	
	228	1 590	103	30.25	203	968	231	
	238	2105	98.0		218	1755	210	
	253	2713	83.0		228	2208	182	

C-2

ISOPROPYLBENZENE-d1								
M , cp	Т,К	P,bars	γ _e ,psec	N,cp	Т,К	P,bars	Y₀ , psec	
30.25	238	2745	167	44.00	218	2120	302	
	253	3418	136		228	2600	259	
33.00	203	1040	254		238	3155	234	
	218	1835	227		253	3 8 60	190	
	228	2300	197	46.75	203	1325	370	
	238	2838	180		218	2180	322	
	253	35 30	148		2 28	2658	273	
35 .75	203	1105	276		238	3223	248	
	218	1915	245		253	3930	201	
	228	2385	213	49.50	203	1370	395	
	238	2920	192		218	2235	342	
	253	3630	159		228	2715	288	
38.50	203	1170	302		238	3288	262	
	218	1985	262		253	39 93	212	
	228	2460	228	52.25	203	1405	413	
	238	3000	206		218	2285	362	
	253	3708	174		223	2768	304	
41.25	203	1225	324		238	3355	276	
	218	2058	283	55.00	203	1445	435	
	228	2535	244		218	2330	380	
	238	3080	221		228	2818	319	
	253	3795	180		238	3410	289	
44.00	203	1278	348	57.75	203	1475	454	

C-3

ISOPPOPYLBENZENE-d1								
η, ср	Т,К	P,bars	Ƴ₀,psec	% , cp	1° , K	P,bars	Ƴe,psec	
57-75	218	2373	401	74.25	228	3065	410	
	728	2858	333		238	3720	373	
	z38	3468	304	77.00	203	1663	590	
60. 50	203	1505	472		228	3090	421	
	218	2410	420		238	3755	384	
	228	2898	345	79.75	203	1690	615	
	238	3520	318		228	3118	434	
63.25	203	1530	490		238	3783	392	
	218	2445	439	82.50	203	1720	641	
	228	2933	358		228	3133	443	
	238	3568	330		238	3813	401	
66.00	203	1555	508	85.25	203	1748	670	
	218	2475	456		228	31 55	452	
	228	2968	370		238	3843	411	
	238	3610	342	88.00	203	1775	700	
68.75	203	1580	525		228	3175	462	
	218	2495	469		238	3873	423	
	228	3000	384	90.75	203	1800	733	
	238	3650	353		228	3195	470	
71.50	203	1608	548		238	3905	433	
	228	3030	395	93.50	203	1823	768	
	238	3688	363		228	3205	475	
74.25	203	1635	570		238	3933	445	

ISOPROPYLBENZENE-d ₁										
η, ср	Т,К	P,barp	Ye,psec	η ,cp	Т ., К	P,bars	γø,psec			
96.25	203	1845	125	99.00	203	1868	835			
	228	3225	487		228	3243	495			
	238	3968	459		238	3995	471			
		<u></u>	ISOPROPYL	BENZENE-d	5					
η, cp	Τ, Κ	P, bars	℃,psec	η,cp	Т,К	P,bars	Ƴ₀,pgec			
5.50	218	188	30.8	13.75	238	1908	67.1			
	228	61 5	33.6		253	2458	56.1			
	238	92 0	29.2	16.50	203	468	114.4			
	2 53	1460	25.3		218	1160	94.6			
8.25	218	525	42.9		228	1625	94.6			
	228	960	48.4		238	2108	79.2			
	238	1370	42.9		253	2675	67.7			
	253	1908	35.8	19.25	203	590	135.9			
11.00	203	160	71.5		218	130 5	111.7			
	218	780	59.4		228	1790	111.1			
	228	1210	61.6		238	2273	92.4			
	238	1670	55.0		253	2868	78.1			
	253	2205	45.1	22.00	203	690	156.8			
13.75	203	32 5	93.5		218	1430	129.3			
	218	985	77.0		228	1938	129.3			
	228	1433	77.6		238	2415	104.5			

ISOPROPYLBENZENE-d5									
λ,cp	Т,К	P,bars	Yø,pgec	λ,cp	Т,К	P,bars	Y₀,psec		
22.00	253	3033	88.6	35.75	218	1880	219.5		
24.75	203	ز78	177.7		228	2355	204.6		
	218	1 5 3 8	146.3		238	2925	166.7		
	228	2053	146.3		253	3605	139.2		
	238	2545	117.2	38150	203	1143	308.0		
	253	3198	101.2		218	1950	238.2		
27.50	203	883	204.6		228	2405	217.3		
	218	1633	163.4		238	3005	179.9		
	228	2148	161.2		253	3683	149.6		
	238	2658	130.4	41.25	203	1198	337.7		
	253	3303	109.5		218	2015	255.8		
30.25	203	945	224.4		228	2448	229.4		
	218	1723	182.6		2 38	30 78	193.1		
	228	2230	177.1		253	3770	160.6		
	238	2750	141.9	44.00	203	1245	399.3		
	253	3413	119.9		218	2080	276.7		
33.00	203	1018	251.4		228	2483	239.3		
	218	1805	201.3		2 38	3148	206.8		
	228	2298	191.4		253	3845	170.5		
	238	2843	154.6	46.75	203	1290	407.0		
	253	3513	129.8		218	2135	295.4		
35.75	203	1098	283.8		228	2525	252.5		

C-6

	ISOPROPYLBENZENE-d5										
η,ср	Т,К	P,bars	γ_θ, psec	λ,cp	Т,К	P,bars	Ƴ∉,psec				
46.75	238	3213	221.1	63.25	203	1523	617.7				
	253	3913	181.5		218	2395	407.0				
49.50	203	1333	443.3		228	2733	324.5				
	218	2 18 5	315.2		238	3558	335.5				
	228	2558	262.9	6 6. 00	203	1563	661.1				
	238	3278	237.6		218	2430	426.8				
	253	3980	191.4		228	2770	341.0				
52.25	203	1373	475.8		238	3608	360.3				
	218	2233	33 3. 9	68.75	203	1590	693.0				
	228	2603	277.8		218	2470	451.0				
	238	3333	251.4		228	2805	355+3				
55.00	203	1410	508.2		238	36 53	382.8				
	218	2275	350.9	71.50	203	162 0	733.2				
	228	2630	287.1		228	2835	370.2				
	238	3395	272.8		238	3695	407.0				
57 ₀75	203	1445	539.0	74.25	203	1650	770.0				
	218	2323	371.8		228	2870	387.8				
	228	2665	299.2		238	3733	423.5				
	238	34 55	292.6	77.00	203	1678	808.5				
60.50	203	1490	583.0		228	2900	401.5				
	218	2358	388.3		238	3773	444.4				
	228	2698	312.4	79.75	203	1700	836.0				
	238	3505	311.3		228	2928	415.3				

			ISOPROPYL	BENZENE-d	5		
η, cp	T,K	P,bars	Ŷø,psec	٦,cp	т,к	P,bars	Ƴe,psec
79.75	238	3808	462.0	93.50	203	1820	1061.5
82.50	203	1728	880.0		228	3068	495.0
	228	2958	431.2		238	3948	531.3
	238	3843	480.2	96.25	203	1843	1094.5
85.25	203	1745	907.5		228	3095	511.5
	228	2983	446.6		238	3970	542.3
	238	3873	496.1	99.00	203	1865	1124.8
მა .00	203	1773	962.5		228	3120	530 .8
	228	3010	460.9		238	3 978	547.3
	238	3903	507.1	101.75	203	1883	1155.0
90.75	203	1798	1017.5		228	3148	547.3
	<u>ک</u>	3040	478.5		238	4005	558.8
	∂زے	3925	520.3				
<u> </u>			n-BUTYLB	ENZENE-d5			<u></u>
Ъ.ср	T,K	P, bars	γ _θ ,psec	n,cp	т,К	P,bars	%₀, psec
20	213	534	171	4445	223	1491	285
	223	1056	156		233	2019	267
	233	1431	147		253	3174	258
	253	2466	147		263	3825	216
	263	3075	126	60	213	1269	522
40	213	97 5	336		223	1827	453

n-BUTYLBENZENE-d5										
η , cp	T,K	P,bars	Ye, psec	n,cp	т,к	P,bars	% ,psec			
60	233	2409	411	160	233	3309	1146			
	253	3588	381		253	4656	969			
	263	4290	306	180	213	21 57	1695			
80	213	1498	720		223	2754	1398			
	223	2064	621		233	3405	1272			
	233	2694	576		253	4782	1086			
	253	3891	504	200	213	2232	1869			
	263	4632	402		223	2844	1545			
100	213	1665	90 6		233	3498	1410			
	223	2247	774		253	4896	1200			
	233	2904	738	220	213	2298	2025			
	253	4143	636		223	2919	1665			
	263	4902	501		233	3582	1530			
120	213	1821	1104		253	4998	1308			
	223	2406	936	240	213	2352	2175			
	233	3066	882		223	2994	1830			
	253	4344	747		233	3666	1665			
140	213	1950	1311	260	213	2400	2301			
	223	2541	1101		223	3060	1974			
	233	3192	1014		233	3744	1806			
	253	4518	861	280	213	2442	2430			
160	213	2064	1506		223	3120	2115			
	223	2652	1245		233	3816	1935			

-	\mathbf{o}
U.	7

	n-BUTYLBENZENE-d 5										
ካ , cp	Τ,Κ	P,bars	%₀,psec	n,cp	T,K	P,bars	ĩ, psec				
300	213	2478	2535	440	223	3435	3045				
	223	3174	2259		233	4254	3084				
	233	3891	2106	460	213	2766	3630				
320	213	2511	2625		223	3462	3156				
	223	3216	2370		233	4287	319 5				
	233	3960	2265	480	213	2799	3810				
340	213	2544	2745		223	3495	3270				
	223	3264	2520		233	4320	3318				
	233	4020	2415	500	213	2832	4020				
360	213	2577	2871		223	3522	3375				
	223	3303	2628		233	4353	3450				
	233	4077	2556	520	213	2862	4260				
380	213	2616	3015		223	355 8	3510				
	223	3336	2730		233	4386	3585				
	233	4131	2700	540	213	2889	4530				
400	213	2649	31 50		223	3591	3630				
	223	3369	2835		233	4416	3720				
	233	4173	2829	560	213	2916	4770				
420	213	2691	3315		223	3627	3795				
	223	3402	2940		233	4446	3870				
	233	4218	2970	580	213	2946	5025				
440	213	2727	3450		223	3666	4005				

* <u> </u>	n-BUTYLBENZENE-d5										
η,cp	Т,К	P, bars	γø,psec	ካ , cp	Т,К	P, bars	n, psec				
500	233	4476	4020	600	223	3693	4200				
000	213	2976	5310		2 33	4506	4170				
			sec-BUTYI	BENZENE-d	5	<u></u>					
N,cp	т,к	P, bars	Ye, psec	٦, cp	T,K	P, bars	Ye, psec				
7.5	233	408	52.8	37.5	253	2598	256				
	253	1080	51.7		263	2979	198				
	263	1410	45.1	45.0	213	9 6 6	550				
15.0	213	228	143		233	1734	347				
	233	91 5	110		253	2622	262				
	253	1674	91.3		263	3168	241				
	263	2052	79.2	52.5	213	1062	0 82				
22.5	213	498	233		233	1854	404				
	233	1212	171		253	2916	385				
	253	2091	143		263	3336	288				
	263	2454	113	60.0	213	1158	853				
30.0	213	684	325		2 3 3	1956	451				
	233	1422	231		253	3042	457				
	253	2385	200		263	3477	338				
	263	2745	152	67.5	213	1230	996				
37.5	213	837	426		233	2046	501				
	2 3 3	1596	289		253	3144	528				

5										
η'cb	T,K	P,bars	γ _e ,psec	λ,cp	T,K	P,bars	Ƴ∎,psec			
67.5	263	3594	387	112.5	233	2396	831			
75.0	213	1290	1130		253	3546	891			
	23?	2121	556		263	4044	682			
	253	3231	594	120.0	233	2436	880			
	263	3702	438		253	3597	95 7			
82.5	213	1341	1276		263	4101	704			
	233	2190	611	127.5	233	2469	946			
	253	3306	660		253	3651	1018			
	263	3789	490		263	4146	776			
90.0	213	1386	1430	135.0	23 3	2499	1012			
	2 33	2256	666		25 3	3696	1084			
	253	3372	721		263	4194	825			
	263	3864	534	142.5	233	2529	1067			
97•5	213	1419	1557		25 3	3744	1177			
	233	2307	715		263	4239	875			
	253	3432	776	150.0	233	2556	1128			
	263	3936	589		253	3789	1276			
105.0	213	1449	1650		263	4281	913			
	233	2355	770	157.5	233	2586	1221			
	253	3489	836		253	3834	1381			
	263	3996	638		263	4320	957			
112.5	213	1476	1727	165.0	233	2607	1265			

sec-BUTYLBENZENE-d_

 λ,cp	т, к	P,bars	Ye. psec	 ח.cp	 Л.К	P. bars	Ye , 11000
165.0	253	3870	1485	180.0	253	3951	1716
	26 3	4356	1001		263	4425	1089
172.5	233	2637	1353	187.5	233	2694	1496
	253	3906	1584		253	3987	1947
	263	4389	1315		263	4458	1128
180.0	233	2664	1419				

sec-BUTYLBENZENE-d

cis-DECALIN-d10

h	01 14		_				<u>_</u>
/[.cp	т,К	P, Dars	γ _e , psec	Ղւշբ	Т,К	P, bars	Y, psec
5.00	316	1050	9.3	10.00	316	1815	15.4
	294	425	9.1		294	1090	15.6
	278	1	8.7		278	575	14.2
6.25	316	1305	11.0	11.25	316	1940	16.6
	294	635	10.9		294	1195	17.0
	278	195	10.4		278	680	15.7
7.50	316	1 500	12.5	12.50	316	2055	18.0
	294	815	12.7		294	1285	18.2
	278	340	11.7		278	770	16.9
8.75	316	1665	14.0	13.75	316	2160	19.3
	294	965	14.1		294	1370	19.5
	278	465	13.0		278	850	18.2

cis-DECALIN-d10									
λ,cp	Т,К	P,bars	Ƴ₀,psec	η''cb	Т,К	P,bars	Ye, psec		
15.00	316	2255	20.6	21.25	278	1205	24.7		
	294	1440	20.7	22.50	316	2720	28.1		
	278	925	19.5		294	1800	27.2		
16.25	316	2350	22.0		278	1250	25.6		
	294	1510	21.9	23.75	316	2785	29.2		
	278	990	20.8		294	1855	28.5		
17.50	316	2430	23.3		278	1295	26.6		
	294	1570	22.9	25.00	316	2845	30.3		
	278	1050	21.7		294	1900	29.7		
18.75	316	2510	24 5		278	1335	27.5		
	294	1635	24.0	26.25	316	2910	31.7		
	278	1105	22.8		294	1945	30.9		
20.00	316	2585	25.7		278	1375	28.6		
	294	1690	25.0	27.50	316	2970	32.9		
	278	1155	23.7		294	1985	32.3		
21.25	316	2655	26.9		278	1420	29.8		
	294	1750	26.2				,		

PROPYLENE	CARBONATE-d3
)

η,cp	T,K	P, bars	N. psec	٦, .cp	т,к	P,bars	Ye. psec
5.0	293	1040	12.8	5.0	283	730	15.5

C-14

h,cp	т , к	P,bars	γø,psec	λ,cp	T,K	P,bars	γ ₀ , psec	
5.0	273	190	13.3	17.5	273	2260	55.0	
7.5	293	1900	20.3		263	1 500	50.3	
	283	1420	21.5		253	930	52.3	
	273	975	23.0	20.0	293	3620	52.3	
	263	275	20.3		283	3050	58.7	
10.0	293	2475	27.5		273	2425	62.0	
	283	1950	29.3		263	169 0	58.7	
	273	1400	30.5		253	1090	60.7	
	263	740	28.7	22.5	283	3220	65.5	
	253	150	27.8		273	2600	70.3	
12.5	293	2880	34.7		263	1845	65.6	
	283	2320	36.2		253	1230	68.8	
	273	1730	37.9	25.0	283	3380	72.2	
	263	975	33.5		273	2730	77.0	
	253	480	36.8		263	1990	74.0	
15.0	293	3180	41.3		253	1360	77.8	
	283	2615	44.0	27.5	283	3535	78.5	
	273	2030	46.7		273	2840	83.3	
	263	1300	43.0		263	2105	80.8	
	253	740	45.2		253	1470	86.0	
17.5	293	3420	47.0	30.0	273	2940	89.3	
	283	2845	51.2		263	2230	89.3	

ROPYLENE	CARBONATEL	

C-15

PROPYLENE CARBONATE-d3								
η, ср	Т,К	P, bars	Yø,psec	n,cp	Т,К	P,bars	Ƴ€,psec	
30.0	253	1570	93.8	32.5	263	2310	95.5	
32.5	273	302 5	94.0		253	1645	101	
<u></u>		CHL	DROETHYLENE	CARBONATI	E-d ₃			
h,cp	Т,К	P,bars	î '⊕ ,psec	η,cp	Т,К	P,bars	Ŷ⊕,psec	
20	278	435	44.8	40	290.5	2185	102.2	
	283	720	44.8		293	2745	141.2	
	285.5	980	49.8	50	278	1115	80.7	
	288	1175	52.0		283	1490	85.0	
	290.5	1430	57.0		285.5	1865	104.0	
	293	1805	66.3		288	2135	110.8	
30	278	735	58.0		290.5	2430	125.2	
	283	1080	60.8		293	3015	176.0	
	285,5	1375	68.0	60	278	1245	90.4	
	288	1615	72.3		283	1640	97.2	
	290.5	1875	80.0		285.5	2025	119.8	
	293	2365	105.0		288	2305	129.0	
40	278	950	69.8		290. 5	2625	147.8	
	283	13 15	73.5		293	3225	214.0	
	285.5	1650	86.8	70	278	1355	100.0	
	288	1925	92.5		283	1775	108.8	

	CHLOROETHYLENE CARBONATE-d3								
η, ср	Т,К	P,bars	γ e, psec	n,cp	Т,К	P, bars	%₀, psec		
70	285.5	2165	135.2	110	285.5	2575	191.2		
	288	2440	146.0		288	2855	212.0		
	290.5	2780	167.8		290.5	3220	251.3		
	293	3415	256.0	120	278	1715	i37.0		
80 278 283 285.5	278	1445	108.0		283	2225	165.2		
	1885	120.0		285.5	2645	204.0			
	285.5	2280	149.6		288	2940	230.0		
	288	2560	162 .8		290 .5	3305	272.0		
	290.5	2915	188.0	1 30	278	1765	143.2		
	293	3590	296.0		283	2280	173.2		
90	278	1525	116.0		285.5	2715	216.5		
	283	1990	132.2		288	3020	247.8		
	285.5	2390	164.8		290.5	3375	290.0		
	288	2665	179.5	140	278	1810	148.8		
	290.5	3030	208.8		283	2 330	180.8		
100	278	1595	123.4		285.5	2775	229.2		
	283	2080	144.0		288	3090	265.4		
	285.5	2485	179.8		290.5	3445	308.0		
	288	2765	196.3	1 50	278	1850	155.6		
	290.5	31 30	230.0		283	2375	188.0		
110	27 8	1655	129.3		285.5	2835	240.3		
	283	2160	155.0		288	3155	282.0		

C-17

		CHI	LOROETHYLEN	E CARBONA	TE-d ₃		
η,cp	Т,К	P, bars	Yø, psec	'n,cp	Ф , К	P,barg	Ƴ∉,psec
1 50	290. 5	3510	323.8	170	285.5	2930	264.4
160	278	18 8 9	160.3	180	278	1955	172.0
	283	2405	192.8		283	2465	204.0
	285.5	2885	253.8		285.5	2970	275.2
	288	3215	298.0	190	278	197 5	175.2
	290. 5	3575	340.0		28 3	2485	208.0
170	278	1920	166.0		285.5	3000	286.0
	283	2440	199.3				
		DICH	ILOROETHYLE	NE CARBONA	ATE-d ₂		·····
l,cp	Т,К	P, bars	70, psec	η,cp	т,К	P,bars	≁, psec
3.5	313	817	17.2	4.5	298	325	18.6
	308	550	16.4		293	20	17.3
	303	195	14.8	5.0	313	1605	27.9
4.0	313	1125	20.9		308	1335	26.7
	308	870	20.2		3 03	915	24.2
	303	490	18.3		2 98	530	21.5
	298	90	15.7		293	185	19.7

308

303

1520

1100

30.0

27.2

308 1130 23.6

21.3

715

C-18

η°cb	T , K	P,bars	$\gamma_{m{e}}$, psec	Λ,cp	Τ , K	P, bars	≁,psec
5•5	298	695	24.1	7.5	303	1650	39-3
	293	335	22.1		298	1185	33.9
5.0	313	199 5	36 15		293	78 5	31.0
	308	1685	33.3		288	440	27.7
	303	1250	30.2	0.8	313	2510	49.2
	298	840	26.7		308	2185	46.4
	293	470	24.5		303	175 5	42.3
	288	110	21.5		298	1280	36.3
6.5	313	2145	39.2		2 93	875	32.7
	308	1830	36.6		288	530	29.5
	303	1400	33.4	8.5	313	2610	52.6
	2 98	970	29.2		308	2285	49.4
	293	585	26.6		303	1850	45.2
	288	230	23.7		298	1375	38.7
7.0	313	2280	42.9		293	950	34.7
	308	1955	39.6		288	615	31.4
	303	1535	36.4	9.0	313	2710	56.1
	298	1080	31.5		308	2375	52.4
	293	690	28.7		303	1935	47.8
	288	335	25.6		298	1450	40.9
7.5	313	2400	46.2		293	1020	36.5
	308	1955	39.6		288	695	33.3

C-19

DICHLOROETHYLENE CARBONATE-d2								
 ∘p	T,K	P,bars	Ύ•,psec	λ,cp	Т,К	P,bars	γ _⊎ ,psec	
9.5	313	2795	59.5	11.0	293	1260	43.5	
	308	2465	56.1		288	950	40.4	
	303	2020	51.0	11.5	313	3120	75.7	
	298	1530	43.3		308	2755	69.4	
	2 93	1085	38.1		30 3	2285	62.6	
	288	765	35.1		29 8	1790	52.7	
10.0	3 13	2885	63.6		293	1310	45.2	
	308	2545	59.6		288	1005	42.1	
	303	2090	53.7	12.0	313	3 18 5	79.3	
	298	1600	45.5		308	2825	73.0	
	293	1145	39.8		30 3	2350	65.2	
	288	830	36.8		298	18 45	54.6	
10.5	313	2965	67.2		293	1365	47.2	
	30 8	2620	64.7		288	1055	44.0	
	303	2160	56.5	12.5	31.3	3245	82.7	
	298	1675	48.0		308	2885	76.5	
	293	1205	41.7		303	2415	68.3	
	288	895	38 .8		298	1895	57.0	
11.0	313	3045	71.7		293	1420	49.3	
	308	2690	66.2		288	1100	45.9	
	303	2225	59.2	13.0	31 3	3300	86.0	
	298	1735	50.4		308	2945	80.2	

~	$2 \wedge$
-U-	20
-	-

DICHLOROETHYLENE CARBONATE-d2							
η.cp	T,K	P,bars	γ _{e,} psec	λ,cp	Т ., К	P,bars	γ.,psec
13.0	303	2465	71.2	13.5	308	2990	82.4
	298	1940	59.0		30 3	2520	74.3
	293	1470	51.8		298	1980	61.0
	288	1140	47.5		293	1525	53.6
13.5	313	3345	88.6		288	1180	49.3

	ANA	LYSIS					
	TOLUENE	-d ₁	TOLUENE-d8				
η,cp	10 ⁶ b	10 ⁶ <i>o</i>	૫, cp	10 ⁶ b	10 ⁶ σ		
3.000	365	6.48	3.000	515	42.9		
3.625	317	11.2	3.625	441	33.9		
4.250	277	10.3	4.250	385	26.1		
4.875	249	9.21	4.875	345	26,2		
150	PROPYLBE	NZENE-d ₁	ISO	PROPYLBE	NZENE-d5		
η,cp	10 ⁶ b	10 ⁶ σ	Դ , ср	10 ⁶ ъ	10 ⁶ 0		
5.50	118	5,35	5.50	145	9.38		
8.25	82.0	1.28	8.25	101	7.74		
11.00	61.7	1.73	11.00	76.3	6.48		
13.75	50.1	2.60	13.75	60.4	6.02		
16.50	42.3	3.14	16,50	49.9	5.35		
19.25	36.7	3.07	19.25	42.6	5.00		
22.00	32.5	3.11	22.00	37.1	4.71		
24.75	29.3	2.93	24.75	32.8	4.11		
27.50	26.6	2.80	27.50	29.5	4.19		
30.25	24.3	2.77	30.25	26.9	3.91		
33.00	22.4	2.58	33.00	24.6	3.80		
35.75	20.8	2.48	35.75	22.7	3.80		

APPENDIX D: EMPIRICAL PARAMETERS FOR DOTE-KIVELSON-SCHWARTZ ANALYSIS

ISC	PROPYLBE	NZENE-d ₁	ISO	PROPYLBE	NZENE-d ₅
η,cp	10 ⁶ b	10 ⁶ ه	λ'cb	10 ⁶ b	10 ⁶ <i>o</i>
38.50	19.2	2.24	38.50	21.0	3.57
41.25	18.1	2.35	41.25	19.6	3.40
' 14.00	17.0	2.31	44.00	18.1	3.64
46.75	16.0	2.22	46.75	17.2	3.26
49.50	15.2	2.15	49.50	16.1	3.19
52.25	13.6	1.32	52,25	14.1	2.44
55.00	12.9	1.28	55.00	13.4	2.31
57.75	12.3	1.22	57.75	12.6	2.20
60.50	11.8	1.17	60.50	11.9	2.18
63.25	11.4	1.14	63.25	11.3	2.09
66.00	11.0	1.11	66.00	10.7	2.01
68.75	10.6	1.06	68.75	10.2	1.92
71.50	10.6	1,12	71.50	9.63	2.15
74.25	10.2	1.13	74.25	9.21	2.07
77.00	9.90	1.12	77.00	8.82	2.02
79.75	9.61	1.16	79.75	8.52	1.95
82.50	9.35	1.20	82.50	8.17	1.91
85.25	9.09	1.25	85.25	7.91	1.84
88.00	8.82	1.27	88.00	7.64	1.85
90.75	8.59	1.33	90.75	7.36	1.84
93.50	8.36	1.38	93.50	7.14	1.81
96.25	8.12	1.36	96.25	6.94	1.76
99.00	7.89	1.41	99.00	6.77	1.71

-

.

n– BU	TYLBENZE	NE-d ₅	Sec	-BUTYLBE	NZENE-d5
η,cp	10 ⁶ b	10 ⁶ ه	cb، کر	10 ⁶ b	10 ⁶ 6
20	28 - 5	1.19	7.5	80.7	3.24
40	15.7	1.17	15.0	40.8	5 • 59
60	10.4	1.13	22.5	26.6	4.86
80	7.70	0.979	30.0	20.8	2.47
100	6.12	0.806	37.5	15.1	2.90
120	4.80	0.369	45.0	11.7	3.51
140	4.12	0.363	52.5	10.2	2.25
160	3.64	0.346	60.0	8.73	2.08
180	3.25	0.316	67.5	7.65	1.89
200	2.94	0.283	75.0	6.80	1.69
220	2.71	0.255	82.5	6.11	1.54
240	2.40	0.175	90.0	5.58	1.45
260	2.23	0.140	97.5	5.14	1.32
280	2.09	0.119	105.0	4.78	1.20
300	1.96	0.0782	112.5	4.47	1.09
320	1.86	0.0495			
340	1.76	0.0321			
360	1.67	0.0293			
380	1.60	0.0352			
400	1.53	0.0384			
420	1.46	0.0461			
440	1.41	0.0472			

.

n-BUTYLBENZENE-d5							
Դ ,cp	10 ⁶ b	10 ⁶ σ	cp ، د	10 ⁶ b	-10 ⁶ ح		
460	1.35	0.0525	540	1.14	0.0817		
480	1.30	0.0569	560	1.09	0.081		
500	1.25	0.0657	580	1.04	0.0781		
520	1.19	0.0717	600	0.994	0.0790		
		cis-D	ECALIN-d10				
η,cp	10 ⁶ ь	10 ⁶ 0-	η, cp	10 ⁶ b	10 ⁶ σ		
5.00	376	29.9	17.50	1 50	12.3		
6.25	315	23.9	18.75	143	11.9		
7.50	276	22.9	20.00	137	11.7		
8.75	248	21.2	21.25	1 31	11.5		
10.00	226	20.2	22. 50	126	11.4		
11.25	207	16.4	23.75	121	11.0		
12.50	192	15.5	25.00	117	10.9		
13.75	179	14.1	26.25	112	10.7		
15.00	167	12.8	27.50	107	10.1		
16.25	157	12.0					
***	<u></u>	PROPYLENE	CARBONATE-d3				
n,cp	10 ⁶ b	10 ⁶ •	૫,cp	10 ⁶ b	10 ⁶ σ		
5.0	257	20.6	7.5	170	10.6		

.

۰.

D-4

		PROPYLEN	E CARBONATE-d3		
η,cp	10 ⁶ b	10 ⁶ σ	λ,cp	10 ⁶ ъ	10 ⁶ 0
10.0	128	8.41	22.5	55.4	2.44
12.5	103	6.64	25.0	49.7	1.51
15.0	84.3	4.02	27.5	45.5	1.14
17.5	71.9	3,58	30.0	41.9	0.657
20.0	62.9	2.68	32.5	39.3	0.366
	<u> </u>	CHLOROETHYI	JENE CARBONATE-	^d 3	
η,ср	10 ⁶ b	10 ⁶ 0	ን ,cp	10 ⁶ ъ	10 ⁶ 5
20	68.0	10.1	110	19.8	4.99
30	49.2	9.72	120	18.5	4.82
40	36.8	7.87	130	17.5	4.73
50	33.0	8.43	140	16.7	4.68
60	28.6	7.93	150	15.9	4.54
70	25.3	7.46	160	15.3	4.53
80	22.9	7.12	170	17.5	3.44
90	23.0	5.23	180	17.0	3.35
100	21.2	5.07	190	16.6	3.39
•••• <u></u>	<u></u>	DICHLOROETHY	LENE CARBONATE-	·d ₂	
η, cp	10 ⁶ b	10 ⁶ •	N, cp	10 ⁶ b	10 ⁶ -
3.5	202	15.5	4.0	177	23.5

DICHLOROETHYLENE CARBONATE-d2							
η,cp	10 ⁶ b	10 ⁶ σ	η,cp	10 ⁶ b	10 ⁶ •	••	
4.5	160	25.3	9.5	73.7	16.5		
5.0	140	21.7	10.0	70.0	16.1		
5.5	125	19.8	10.5	66.5	15.4		
6.0	120	25.2	11.0	63.4	15.1		
6.5	110	22.7	11.5	60.6	14.7		
7.0	101	21.3	12.0	58.0	14.2		
7.5	93.9	19.6	12.5	55.5	13.6		
8.0	87.9	18.8	13.0	52.3	12.4		
8.5	82.5	17.8	13.5	51.5	12.6		
9.0	78.0	17.0					

APPENDIX E: ISOCHORIC DATA FOR ZAGER-FREED ANALYSIS

		ΨO	LUENE-d1		
P/P m	Т,К	10 ⁹ 70%/ηπ, K	P / P m	Т , К	10 ⁹ 70 T/n . K
.980	218	2.23	0.995	273	2.42
	238	2.41	1.000	218	2.27
	273	2.62		238	2.22
•985	218	2.32		273	2.36
	238	2.36	1.005	218	2.25
	273	2.56		238	2.18
•990	218	2.30		273	2.28
	238	2.31	1.010	218	2.23
	273	2.49		238	2.13
• 99 5	218	2.29		27 3	2.21
	238	2.26			
	<u> </u>	TOI	LUENE-d8		
ዮ/₽ m	Т,К	109 ~ T/n.K	<i>Р/Р</i> т	T,K	10 ⁹ 701/17, K
•980	218	1.77	0.98 5	273	1.62
	238	1.77	0.990	218	1.73
	273	1.66		238	1.72
985	218	1.74		273	1.59
	238	1.74	0.995	218	1.70

	TOLUENE-d8								
P/P m	Т,K	10 ⁹ үөт/ү н. к	P/P m	T,K	10 ⁹ 7•Т/ŋн.к				
0.995	238	1.68	1.005	238	1.60				
	273	1.54		273	1.47				
1.000	218	1.68	1.010	218	1.63				
	238	1.64		238	1.56				
	273	1.51		273	1.43				
1.00 5	218	1.66							

ISOPROPYLBENZENE-d1

P /p m	T , K	10 ⁹ то Т/ц н. К	p/p m	т,К	10970 T/7 R.K
0.980	203	5.11	0.990	228	5.34
	218	5.27		238	5.68
	228	5.47		253	5.68
	238	5.88	0.995	203	5.43
	253	5.78		218	5.36
0-985	203	5.21		228	5.28
	218	5.30		238	5 •59
	228	5.40		253	5.39
	238	5•79	1.000	203	5.53
	253	5.66		218	5 .38
0.990	203	5.29		228	5.21
	218	5.31		238	5.46

ISOPROPYLBENZENE-d1						
₽∕₽ m	Т,К	109 % T/yF.K	<i>P/P</i> m	Т,К	10 ⁹ γ•τ/ηκ.κ	
1.000	253	5.25	1.010	203	5.74	
1.005	203	5.64		218	43. ر	
	218	5.43		2 2 8	5.06	
	228	5 .13		238	5.24	
	238	5.33		253	4.98	
	253	5.22				

ISOPROPYLBENZENE-d5

-						
	0.980	203	4.25	0.990	238	4.36
		218	4.23		253	4.43
		228	4.40	0.995	203	5.00
		238	4.40		218	4.60
		253	4.46		228	4.47
	0.985	203	4.58		238	4.35
		218	4.14		253	4.24
		228	4.43	1.000	203	5.22
		238	4.39		218	4.67
		253	4.37		228	4.51
	0.990	203	4.77		238	4.32
		218	4.50		253	4.10
		228	4.45	1.005	203	5.52

ISOPROPYLBENZENE-d5						
P/P m	т,к	10 ⁹ το Τ/ηκ, κ	<i>P/P</i> m	т,к	10 ⁹ γ ₀ τ/ηκ,κ	
1.005	218	4.90	1.010	218	4.97	
	228	4.52		228	4.56	
	238	4.30		238	4.29	
	253	4.15		253	4.00	
1.010	203	5.74				
		n-BUTYLI	BENZENE-d	5		
۴/۲ _m	T,K	10 ⁹ 7∎T/ŋ₩,K	P/P m	T,K	10 ⁹ 7 т/ун.к	
0.980	213	4.23	0.990	252		
				~))	5.65	
	223	4.68		263	5.65 5.46	
	223 233	4.68	0.995	263 213	5.65 5.46 4.28	
	223 233 253	4.68 5.07 5.71	0.995	263 213 223	5.65 5.46 4.28 4.71	
	223 233 253 263	4.68 5.07 5.71 5.57	0.995	263 213 223 233	5.65 5.46 4.28 4.71 5.11	
0.985	223 233 253 263 213	4.68 5.07 5.71 5.57 4.24	0.995	263 213 223 233 253	5.65 5.46 4.28 4.71 5.11 5.63	
0.985	223 233 253 263 213 223	4.68 5.07 5.71 5.57 4.24 4.68	0.995	263 213 223 233 253 263	5.65 5.46 4.28 4.71 5.11 5.63 5.38	
0.985	223 233 253 263 213 223 233	4.68 5.07 5.71 5.57 4.24 4.68 5.08	0.995	263 213 223 233 253 263 213	5.65 5.46 4.28 4.71 5.11 5.63 5.38 4.30	

233

253

263

213

1.005

5.11

5.57

5.34

4.34

263

213

223

233

0.990

è

5.51

4.26

4.68

5.09

n-BUTYLBENZENE-d5						
<i>P/P</i> m	Т,К	1097 T/nw.K	P/P m	т,К	10 ⁹ Y T/Ŋ ĸ, K	
L.005	223	4.73	1.010	223	4.73	
	233	5.09		233	5.15	
	253	5.56		253	5.54	
	263	5.29		263	5.24	
.010	213	4.35				

sec-BUTYLBENZENE-d5

?/? m	т,К	10 ⁹ 7•Т/ун, к	P/P m	T,K	10 ⁹ (;) T/nF, K
0.980	233	4.47	1.000	213	5.50
	253	5.01		233	5.05
	263	5.19		253	5.16
0.985	233	4.53		263	5.12
	253	5.05	1.005	213	5.73
	263	5.17		233	5.06
0.990	213	5.21		253	5.20
	233	4.71		263	5.10
	253	5.06	1.010	213	5.92
	263	5.16		233	5.17
0.995	213	5.36		253	5.25
	233	4.88		263	5.07
	253	5.12			
	263	5.14			

P/P m	Т,К	10 ⁹ 70T/1R,K	<i>P/p</i> m	T,K	10 ⁹ 7.т/ця, к
0.980	278	1.25	0.995	316	1.69
	294	1.51	1.000	278	1.05
	316	1.84		294	1.31
0 .98 5	278	1.21		316	1.64
	294	1.46	1.005	278	0.998
	316	1.80		294	1.26
0.990	278	1.16		316	1.59
	294	1.40	1.010	278	0.947
	316	1.75		294	1.19
0.995	278	1.11		316	1.52
	294	1.36			

cis-DECALIN-d₁₀

PROPYLENE CARBONATE-d3

<i>የ/p</i> m	. Т . К	1097. Т/ЦК.К	۴/ Р _m	T,K	109 ToT/NIK
0 .990	293	3.56	0.995	263	3.03
	283	3.60		253	2.82
	273	3.38	1.000	293	3.57
	263	3.00		283	3.66
	253	2.77		273	3.32
0.995	293	3.58		263	3.05
	283	3.63		253	2.87
	273	3.46	1.005	293	3.54

PROPYLENE CARBONATE-d 3						
<i>P/p</i> m	T,K	10 ⁹ 76Т/ли, К	<u>۶</u> /۹ m	T,K	10 ⁹ ° т/л к. к	
.005	283	3.67	1.010	283	3.68	
	273	3.51		273	3.51	
	263	3.07		263	3.07	
	253	2.91		253	2.96	
.010	293	3.52				

CHLOROETHYLENE CARBONATE-d3

₽ <i>′</i> ₽ _m	T,K	10 ⁹ 70T/n.K	P/P m	T,K	1097. T/nF.K
0.990	293	3+95	1.000	293	4.03
	290.5	3.28		290.5	3.22
	288	2.98		288	2.85
	285.5	2.79		285.5	2.59
	283	2.39		283	2.13
	278	1.98		278	1.73
0.995	293	3.99	1.005	293	4.07
	290.5	3.26		290.5	3.18
	288	2.92		288	2.77
	285.5	2.69		285.5	2.53
	283	2.25		283	2.02
	278	1.82		278	1.67

andar Alexandra Maria Alexandra Alexandra

p/p m	T,K	10 ⁹ το Τ/ηπ, Κ	P/P m	T,K	10 ⁹ ~ т/лн, к
0.990	313	4.12	1.000	313	4.33
	308	3.85		308	4.08
	303	3.42		303	3.57
	298	3.05		298	3.14
	293	2.72		293	2.76
	288	2.32		288	2.36
.995	313	4.26	1.005	313	4.46
	308	3.97		308	4.18
	303	3.51		303	3.66
	298	3.11		298	3.19
	293	2.74		293	2.78
	288	2.34		288	2.38

-

..... _ .