## AUTOMATIC CONSTRUCTION

or

## RESTRICTION SITE MAPS BY COMPUTER

BY<br>\section*{NORBERT E. BAUMGARTNER}

## THESIS

For The
DEGREE OF BACHELOR OF SCIENCE
IN
LIBERAL ARTS AND SCIENCES

College of Liberal Arts and Sciences University of Illinois

Urbana, Illinois

## UNIVERSITY OF ILLINOIS

May 8, 19.
THIS IS TO CERTIFY THAT THE THESIS PREPARED UNDER MY SUPERVISION BY
Norbert E. Baumgartner

## ENTITLED. <br> Automatic Construction of Restriction Site Maps by Computer

## IS APPROVED BY ME AS FULFILLING THIS PART OF THE REQUIREMENTS FOR THE

DEGREE OF Bachelor of Science in Liberal Arts and Sciences



HEAD OF DEPARTMENT OF
Biochemistry

## ACKNOHLEDGEMENT:S

I would like to thank the two people rithout whose help this work would not have been possible. First of all I would like to thank Ben P. Unger for his valuable suggestions, technical advice, and for teaching me the laboratory methods of restriction mapping. I would also like to thank my profect advisor, Dr. Stephen G. Sligar, for all his helpful advice and suggestions for improving the programs, and for his constant support and encouragement.

## TABLE OF CONTEMTS

INTRODUCTION ..... 1
General Properties of Restriction Endonucleasea ..... 1
Separation of DNA Fragments and Fragment Sise Determination ..... 2
Probability and Combinatorics Associated with Restriction ..... 6
Site Mapping
Existing Methods, Algorithms, and Computer Programs ..... 8
MATERIALS AND METHODS ..... 10
RESULTS
ALGORI THMS ..... 11
Linear DNA Restriction Site Mapping Algorithm ..... 13
Circular DNA Restriction Site Mappin Algorithm $^{\text {A }}$ ..... 20
COMPUTER PROGRAMS ..... 21
DISCUSSION ..... 29
APPENDICES ..... 31
REFERENCES ..... 51

## IHEROYGTICS

Nany laboratorie are currentiy enguged in the analyals and anipulacloe of various genetic sequences. One of the wost valuable toole tor manpulathe these segments of DNA is a clasa of enzymes known as restriction ondonucioases, and the development of a restriction enzyme cleavage map is often the firat otep In the analyais and base sequencing of an isolated genc. The goal of thie project is to develop an algorithm and a computer program that will automatically generate these restriction site maps from experimental data. In order to understand the methods of developing restriction site maps, it would be useful to first review some of the properties of restriction enzymes and the methods of separating fragments of DNA.

## General Properties of Restriction Endonucleasea

Restriction enzymes are endodeoxyribonucleases that recognize apecific nucleotide sequences in double stranded DNA and cleave both strands of the duplex. Restriction enzymes are found in many bacterial strains as part of a re-striction-modification system (1). This system consists of the restriction endonuclease and a matched modification enzyme which recognizes the same nucleotide sequence recognized tiy the restriction enzyme and modifies (usually by methylating) the cellular DNA. This modification protects cellular DNA from degradation by the reatriction enzyme. Unmodified DNA, such as foreign DNA that enters the cell via viral transduction, is quickly destroyed by the restriction enzyme. It is thought that this is the function of the enzyme in the host organism.

Restriction enzyre nomenclature is based on the name of the organism from which the enzyme is isolated (2) and the enzymes are generally separated into two classes. Class I enzymes are non-specific in their cleavage and are there-
fore of 1 inited unefulane in molecular biology. C1ams II onsymen (3) theopelien specific sequances in DMA, unually $4-6$ bave pairs potseating twofold rotationt symetry (4), and require only $\mathrm{Mg}^{2+}$ at a cofactor. Cionvage ponitions within the recognition sequence are efther "blunt" or "staggered". Staggered cleavase results in the formation of identical self-complementary cohesive termini. This property is utilized to insert a DNA fragment into a vector to produce a recombinant nolecule. A relatively large number of restriction enzymes siare anch smaller set of recognition sequences. Enzymes which share a cownor recognition sequence are known as isoschizomers. Since these isoachizomars yield identical cleavage patterns for a given DNA, the most stable and easily purificd enzyme can be selected for use. Other properties of restriction enzymes are reviewed in reference (4).

## Separation of DNA Fragments and Fragment Size Determination

It is of ten necessary to separate a heterogenous population of DMA on the basia of size. This is especially important in some restriction site mapping techniques where the cleavage products must be reaolved and the aizes of the fragments determined. Probably the easiest, most inexpenaive, and most accurate method of separation by size is gel electrophoresis using a polymerized slab of either agarose or pilyacrylamide. The methods of agarose and polyacrylamide gel electrophoresis are deacribed in reference (5). By varying the composition of the gels, various separation ranges can be obtained (Table I). In each of these ranges (with the exception of the $20 \%$ polyacrylamide gal) there exists a region in which the logarithm of a molecule's length is proportional to its migration velocity (Figure 1). At either extrome of a range this relationship breaks down and the length cannot be accurately determined from the migration velocity. By running the unknown aample alongside atandards of known

# Table 1: Separation ranges produced by agarose and pulyacrylamide gela of various composition. Modified from (5). 

Figure 1: Relationship between molecular weight and migration velocity on agarose or polyacrylamide gels. The linear region is indicated. Modified from (5).

| Gel | Separation Range (bage palra) |
| :---: | ---: |
| $0.3 \%$ agarose | 50,000 to 1,000 |
| $0.7 \%$ agarose | 20,000 to 300 |
| $1.4 \%$ agarose | 6,000 to 200 |
| $4 \%$ polyacrylamide | 1,000 to 100 |
| $10 \%$ polyacrylamide | 500 to 25 |
| $20 \%$ polyacrylamide | 50 to 1 |




 the case in which fragments differ in Bize over the eatire range ot thetat,
 Iating molecular weight to mobility using a cubic exponontial function (6). This method allows the relative molecular weight of fregment to be getermatis

 (e) of stzes to be separated on a single gel and Increase the sharpnate of the banda (4).

Bands of DNA separated by gel electrophoresis may be visualised by any one of geverml methods. Regardleas of which method if unad, it is desirable to be ble tc quancitate the DNA in each band. This will parmit detection of low frequancy partial digeets and band conalating of two or more fragmentie of equa al or sinilar aize. One frequently used method of visualizing bande involven treating the gel with either ethidivm bromide, methylene blue, toluidine blue, or other stain. Ethiditu bromide is e fluorescent that is exciced by short or long *avelength witraviolet light and is aenaitive to the level of a fow namo grams $(4,5)$. Stained gele may be optically acaned for quantication. Another commonly used method for visualizing electrophoresis band is autoradiograminy.
 a photographic emulsion, wich can be quantitated by denoitometar tracing of the exposed $E 11 \mathrm{~m}$, or, more accurately, the band is excised and the radioactivity measured by scintillation counting. The auturadiographic techaique felate very sensitive to small amounts of DNA (4).

The methods of gel electrophoresis provide a rapid and convenient method
for separating a mixture of DNA fragments, us in a reatriction enzyme digest, and for determining the aizes of the resolved fragments and the number of fragments in each aize class. The methods are also fairly accurate if the range of fragment aizes are within the linear portion of the fragment size/mobility curve. This also presupposes that the purine/pyrimidine ratio is fairly constant. G+C bias alters mobility in gel electrophoresis (6) and a DNA sample with a large G+C bias will significantly affect the size determination. The application of gel electrophoresis to reatriction enzyme digests will become apparant when the methods of restriction mapping are discussed.

Probability and Combinatorics Associated with Restriction Mapping

When using restriction enzymes to cleave fragments of DNA for gene isolation, base sequencing, etc. it is very useful to be able to predict approximately how lar the resulting fragments will be for a given reatriction enzywe. As previoust desctibed, the recogaition sequence for most restriction enzymes is eithe: is 6 , pairs. These ane referred to as " 4 -cutterg" and " 6 -cutters" respert moly. Given a recognition frame of 4 bave pairs, each of which van be anv one tibe 4 bases ( $A, T, C$, or $G$ ), and an escentially random disTributian of auser in the DNA to be cleaved, a given recogration sequence would be empected to occur mery $4^{4}$ or 25 h bate pairs (bp). Thua the average fragment
 frame of b a a wen mecognitiom sequence would be expected to occur every $4^{5}$ or 4096 bp , and the average frmment leagth for a 6 -cutter mald be approximately 4.1 kb . Frow this information the number of frapments produced by a digest can be predicted. For exmple, a 2.2 Kb gene (perhaps encoding a protein molecule of interest) would be cut into 9 fragmemes by a 4-cutcer restrietion enryme thet cuts every 250 bp. It should be emphesized that theat approxima-
tions assume a random distribution 0 : bases in the source DNA; non-random sequences such as poly-purine or poly-pyrimidine regions would obviously reault In either more or fewer cuts than expected, depending on the recognition sequence.

Restriction site mapping of ten involves the ordering of fragments produced by complete restriction digestion of a segment of DNA. In order to appreciate the magnitude of the problem, it is necessary to consider the combinatorics involved in ordering the fragments. If $v$ representa the number of fragments produced by a given restriction digest, then the number of poseible orderings of the $v$ fragments, $\rho$, is given by

$$
\rho=v!
$$

For small values of $v$ the number of orderings is likewise relatively small, however this number rises rapidly with larger values of $v(\mathrm{e} . \mathrm{g}, \mathrm{vm} 9$ in the previous example) comonly encountered in reatriction mapping. The goal of a restriciion mapping algorithm, therefore, should be to reduce the number of possible orderings in some way. For example, if the number of fragmenta to be ordered in a 10 fragment digest could be reduced by 1 (perhaps by end-labeling the DNA so that a terminal fragment could be identified), the number of permutations would be reduced from $3.63 \times 10^{6}$ to $3.63 \times 10^{5}$ - a tenfold reduction. Successive elimination of fragments by as⿷ignment would further reduce the num. ber of possible orderings. It is evident, therefore, that a mapping algorithm based on a "brute force" generation of possible orderings is both time consumm Ing and inefficient and that a better approach would be to somehow successively eliminate fragments, thereby successively decreasing the number of posasble permutations.

A number of laboratory methods, algorithms, and computer programs have been developed to generate restriction site maps ( $4,6,7,8,9,10,11$ ) . One method uses single digestions of two or more different enzymes and a combined digestion, hereafter referred to as an $n$-digest, of $n$ (where $n \geqslant 2$ ) different enzymes. The fragments in the $n$-digest are combined in ways so as to generate fragments consistent with the single digest data. This is often trial and error problem and rarely, if ever, are all the possible solutions examined for large data sets when done by hand. It allows for the possibility that not all solutions are found and may result in an incorrect solution, since multiple solutions are sometimes possible for a given set of data, and, at the very least, It is a tedious process. In an attempt to overcome these problems, computer Fergrams have been developed (6) to examine all posaible combinations of $n-d i g-$ est fragments. This method assures that all solutions possible are found, however it is very slow (because of the number of permutations) on all but the fastest computers. Algorithms have been developed (7) that allow this problem to be solved with or without the aid of a computer. One such algorithm uses a "branch and bound" technique that examines various alternatives in orde: to minimize the remaining alternatives. The difficuity with this algorithm is that it is based on a large number of rules for eliminating alternatives and that it does not completely reduce all of the alternatives. Other computer programs (8) use a model-driven algorithm and a large set of canonical form and pruning rules In order to eliminate incorrect classes and generate a solution by negative inference.

Various laboratory methods have also been developed to generate restriction site maps. One technique uses end labeled DNA and partial digestion with a single restriction enzyme (9). This method is similar in concept to that us-
ed by Maxam and GIlbert for DNA sequencing. Another method uses a two-dimensional hybridization technique (10) to deduce the order of restriction sites. DNA to be mapped is treated with one restriction enzyme and electrophoresed in one dimension. Additional DNA is treated with a second enzyme and electrophoresed in the other dimension. From the hybridization pattern of the two sets of fragments, the map order of the enzymes can be determined. Finaliy, a cleaved permutated linear method (11) has been developed in which a circular DNA molecule is singally cleaved by one enzyme to give a complete set of permutated 1inears. These permutated linears are then cleaved by a second enzyme into fragments from which the mapping order of the single-hitting enzyme can be determined. All of these laboratory techniques have the disadvantage of being much more difficult to carry out and much more time consuming. Because some require oniy one cut by a restriction enzyme, conditions must be chosen to fulfill this requirement. Under the condicions that result in only single cuts, however, some aites may not be cleaved and therefore will be missed. This represents a serious problem and makes these methods far from perfect.

Clearly the present techniques and algorithms for restriction site mapping are not adequate to meet the needs and requirements of all those engaged in regtriction mapping. What is needed is a technique that uses simple, reliable laboratory methods and that quickly and exhaustively generates all possible solutions from the available data. Such a technique has been developed and is described in the following pages.

After a review of existing restriction mapping methods and algorithms, the method of multiple single digest; and a single $n$-digest was selected for data aquisition. This decision was based primarily on the simplicity of this method relative to the other methods previously described and also its reliability. A model of the solution space was constructed, and from this model a method of checking the validity of the data was developed. This model, along with a consider : ion of the data's characteristics, allowed a recursive method of eliminating Incorrect solutions in a top-down (i.e. more general to more specific) fashion to be developed. From this, a pair of mapping algorithms quickly followed: one for linear DNA and one for circular (plasmid) DNA.

The algorithms were then implemented in a computer program written in Microsoft BASIC-80 for an Osborne 2-80 based microcomputer running under a $\mathrm{CP} / \mathrm{M}$ operating system. The program was debugged and tested using hypothetical digeat data. For reasons of accessability, the program was also translated into VAX-11 FORTRAN Varsion 3.0 (based on ANSI X3.9-1978 FORTRAN-77) fur use on a VAX-11 timesharing computer system running under the VAX/VMS Version 3.0 operating system. The program was alao tested on several well characterized vectors (12) and some recently analyzed molecules (Unger, B.P. unpublished data) in order to assure that the correct solutions obtained during testing were not merely a spurious result of the hypothetical data selected.

## RESULTS

## ALGORITHMS

Before presenting the algorithms, it would be useful to consider some of the propertics of the data that allowed the algorithms to be developed and some ways of checking the validity of the data that follow from these properties. A number of assumptions have been proposed (7) which must be satisfied by the data generated by the single digest/n-digest method:

1. The DNA being digeated is pure (i.e. free from contaminating apecies).
2. The DNA has been fully digested and contains no partial digests.
3. Each enzyme cuts the DNA at least once.
4. There are no fragmenta missing.
5. If there are two or more fragments of the same size, they are detected as such.
6. The error in estimating the restriction fragment lengths is either known or has an upper limit.

Assumption 1 is important in that a contaminating species may contribute fragments that will interfere with the ordering of the desired species' fragments. The validity of this assumption can be tested by electrophoresing undigested DNA preparations or by quantitating the DNA in each fragment band (aince a contaminating species will most likely be present in lower concentrations than the desired species and hence the resulting fragments from this species will also show a lower concentration). The validity of assumption 2 can be assured by allowing a long incubation period with the restriction enzyme (provided it is sufficiently free of contaminating nucleases) or tested by end labeling. End labeling should only produce one labeled fragment if the digestion is complete. This assumption is also important because it may introduce erroneous fragment
sizes. Assumption 3 is easily varifiable by examining the single enzyme digests, and its significance is obvious in that it is uselesa to try to map a restriction site that does not exist. Assumption 4 must also be true in order to derive solutions from the data. This assumption can be tested by utilizing properties of the data structure. For a circular DNA structure, the sum of the number of single digest fragments, $f_{i}$, equals the number of n-digest fragments, $f_{n}$

$$
\sum_{1=0}^{n} f_{1}=f_{n} \quad \text { (where } n=\text { number of enzyeses) }
$$

For a inear DNA structure, this relationship is

$$
\sum_{i=0}^{n} f_{i}=f_{n}+(n-1)
$$

Therefore, by comparing the number of single digest fragments and n-digest fragments, missing fragments in either the aingle digest or n-digest class can be detected. If equal numbers of fragments are misaing from each class, however, these will cancel each other and go undetected by this method. This aituation will be discussed later. Assumption 5 is important in that if it is not true, a missing fragment will result. This assumption can also be tested, and multim ple fragments of the same length can be found, again by quantitating the DNA in each of the electrophoresis bands. Finally, assumption 6 becomes important when the sizes of the fragments are not known exactly, as is invariably the case in electrophoresis techniques. This error can be detemined ampirically for a given set of reaction conditions by running two different sets of standards on the separation gel. Once all of these assumptions have been satisfied, the data is in form suitable for mapping by the algorithm that follow.

## Linear DAA Restriction Site Mapping Algorithm

The linear restriction mapping algorithm will be discussed first because a linear segment's property of having a defined beginning and end reauits in a simpler ordering algorithm. The algorithms both use a top-duwn approach which emumerates the solution space by refining general hypotheses. Rather than prom posing conplete solutions and then ruling out the incorrect candidates, as is the case in a data-driven aproach, the aigorithms recursively generate and test branches and eliminate those branches of the solution space that are in* consistent with the model of the solution space. For this reason, this type of approach is termed "model-driven" (8). The various branches of the solution space are joined at each level to a more general branch by "nodes". When diagrammed, this model of the solution set resembles a tree. The single, mont general branch at the bottom of the atructure is termed the "root" and the more specific tranches at the top of the structure are the branchea proper.

The linear algorithm begins with the assignment of the root. Because there are non-cleaved ends in a linear DNA segment, there are at least two fragumants (one at each end of the molecule) In the single digests that do not have any other restriction sites within them (l.e. there must be afirst site and a last site in the segment) and hence appear in both a aingle digest and the n-digest. Therefore, all fragments that appear in both a single digest and the $n$-digest (within the allowable error range) are putuntial roots until proven otherwise. The number of tree structures that must be examined in finding a solution, therefore, is equal to the number of potential roots generated. The node that terminates the root can also be identified and is assigned the enzyme in whos single digest the root fragment was found. Hence the branches of the solution space are the n-digest fragments and the nodes are enzyme cleavage sites. After assigning a fragment to the root (and an enzyme to the first node) the num-
ber of possible orderings of the remaining fragments has been reduced from $f_{n}$ ! to ( $f_{n}-1$ )!. In general, the number of possible orderings remaining at any given time is $\left(f_{n}-\ell\right)$ : where $\ell$ is the node level (how high up in the "tree" a given node is). The node level then ranges; frum $\mid$ to the number of n-digest fragments ( $f_{n}$ ).

The next step is the recursive generation cycle. This involvea proposing branches for every "open" node at the current level. The branches proposed at each node are those $n$-digest fragments that have not already been assigned (1.e. that do not appear in the path traced from that node back to the root). The number of branches possible at each node is a function of the node level, $l$, and is given by $\left(f_{n}-\ell\right)$. Each proposed branch is then tested by succesaively assigning each enzyme to the terminating node. The fragments from that node are summed back to the last occurance of that enzyme or the end of the DNA segment, whichever comes first. This sum, which gives a hypothetical fragment flanked on both sides by that enzyme, is compared to remaining single digest fragments for that enzyme. If found in the single digest list, within the error range, this branch and node are assigned at this node level and the remainder of the enzymes are tested. If the sum (hypothetical single digest fragment) is not found in the single digest list, the remalnder of the enzymes are teated and if none can be assigned, the node is considered "closed" and need not be considered at subsequent node levels.

This process repeats itself at the next node level, successively assigning or eliminating branches, until either all nodes in the tree terminate, in which case there are no solutions for that tree, or until the top of the tree is reached (the last remaining fragment is simply checked against the single digest lists to verify that it is indeed an end fragment) and one or more paths, now solutions, can be traced back to the root. This method of eliminating branches of the sol-
ution set until only one or more completed solutions remain is a form of negative inference and is much more efficient than a method that must generate all pos:ibilities and select correct solutions by positive inference.

Once a tree is completed, the solutions (if any) are collected and the next tree is examined. Before entering fato the next generation cycle, however, the root fragment is compared to the last fragment in each previous solution. If a match is found (within error limits) the tree is skipped becauge it will only generate the reverse of a previous solution. In space these solutions are equivalent (degenerste) and it is thenfore not necessary to examine a tree that will not generate wh shotions.

The solutions that rymain ater all tres have been examined are all pousible non-degencrate solution the the givon data. An example of the linear algorithm, showing the twe structure, is given In Figure 2. This example uses hypothetical dafa ivt farify.

Examination fin algorithm suggests that in the best pastible case (the case in which mill imitre is considered, and each node level has only one branch assimument as in figure 3) the number of incomplete orderings examined, $\varepsilon$, is yiven by

$$
\varepsilon=\sum_{i=1}^{f_{n}-2}\left(f_{n}-1\right)_{n}
$$

where $f_{n}=$ number of $n$-didest fragments and $n=$ number of enzymes ( $n \geqslant 2$ )

Subseftuting 10 for $f_{n}$ and 2 (the simplest case) for $n$, the value obthined for $\varepsilon$ is 88. Compared to a previous example in which the number of permutations of 10 fragments was $f$ omosto be $3.63 \times 10^{6}$ (which does not even take into account the permutations of cleavage sites) this represents a tremendous savings of computational effort.

Figure 2: Example of linear DNA mapping algorithm using two enzymes and five n-digest fragments. Kypothetical map and digeat data is given for enzymes A and B. Numbers on trees are sizes of fragments, letters inside of nodea (Q) Indicate enzymes for assigned restri tion sites. Terminated nodes are indicated by .


Figure 3: Ideal case for linear map. Lines indicate fragments, open circles (O) indicate nodes (restriction sites), and closed circles () indicate "pruned" branches. Example is for five fragment n-digcat.


## Circular DNA Restriction Site Mapping Algorithm

The algorithm for the mapping of circular DNA is essentially the same as that for linear DNA with a few differences because of the unique topological properties of circular DNA. First of all, because there is no beginning or end, there is no root fragmeat from which to begin. Therefore an arbitrary point is chosen from which to open the plasmid, such as a cleavage site for the first enzyme. If this is done hypothetically, a linear DNA molecule would be created with one half of the same cleavage site on each end. Because no unique root fragments can be found in the data, each $n$-digest fragment must be tried as a potential root fragment for this hypothetical linear segment until a solution is found. This amounts to searching for a fragment anywhere in the circular molecule that is adjacent to a cleavage site for the first enzyme (enzyme \#1). The number of such fragments, $t$, is given by

$$
\begin{aligned}
t & =2 s-a \\
\text { where } s & =\text { number of sites for enzyme \#1 } \\
\text { and } a & =\text { number of adjacent enzyme \#1 sites }
\end{aligned}
$$

If $t$ is maximized (by selecting the enzyme with the most cuts to be enzyme (1) the probability of finding one of these adjacent fragments is much greater and therefore fewer trees need to be generated before a solution is found.

Once inside a tree structure, the first fragment is successively assigned enzymes as potential nodes, fust like any other open branch. However, if the paths are traced back and no previous occurance of the enzyme is found, rather than stopping at the end the path must "wrap-around" to the other end (because it is really still a circuiar molecule as far as non-enzyme $\|$ single digests are concerned). Because the other end of the map is as yet undetermined, the node is tentatively assigned that enzyme (for lack of evidence that could exclude the possibility) and the usual process continues. After the last frag-
ment has been assigned, the fragments on either side of the opening site (wraparound fragments) are summed until the first occurence of each enzyme, successively. These sums are then compared to the single digest data for the respective enzymes add if a discrepancy is found within the error range, the path containing that sum is rejected. If no solutions are found the next tree is examined, otherwise all paths through the solution space that remain are all the possible solutions for the given data. If all trees are examined and no complete paths are found, then there are no solutions possible. An example of the circular algorithm using hypothetical data is found in Figure 4.

The circular algoritim is not as efficient as the linear algorithm becauge nodes are of ten assigned tentitively and may not be rejected until the wrap-around is tested. However, the number of orderings examined may gtill be very small because only one tree need be examined to find all the solutions if the first fragment tried is adjacent to an thxyme site.

COMPUTER PROGRAMS

The computer programs (Appendices A and B) written to implement the algorIthms are essentially the same, so they will be described in general first and then specifics for each will be given.

The major problem encountered in developing the software was organization and allocation of memory for various storage functions. Arrays of various dimensions were chosen to represent various structures in the construction of the maps. The original digest data supplied to the program is stored in the twodimensional array, F. The first subscript (i.e. rows) corresponds to the digest number. A digest number of 0 refers to the n-digest, while single digests are given the numbers 1 through $n$ (where $n$ number of enzymes) in the order they

Figure 4: Example of circular DNA mapping algorithm using two enzymes and five n-digest fragments. Hypothetical map and digest data is given for enzymes $A$ and B. Numbers on tree are sizes of fragments, letters inside of nodes (©) indicate enzymes for assigned restriction sites. Terminated nodes are indicated by $(\otimes$, unassigned nodes are indicated by open circles ( $O$ ).


## DIGEST DATA

| $A$ | $B$ | $A+B$ (n-digest) |  |
| :---: | :---: | :---: | :---: |
| 60 | 120 |  | 20 |
| 70 | 130 | 40 |  |
| 120 |  | 50 |  |
|  |  | 60 |  |
|  |  | 80 |  |

HYPOTHETICAL SOURCE RESTRICTION MAP

are entered. The second subscript (1.e. columns) then references the fragment number within each digest. Column 0 of each digest contains the number of fragments in that digest, so that the fragment numbers in digest $x$ range from 1 to $F[x, 0]$. The list of roots for a linear DNA map is scored in the two-dimensional array, ROOT. This array contains two columns of data: a list of root fragments and a list of node enzymes. Rows range from 1 to the number of potential roots, whereas columns are referenced by a fragment/node code. A value of 1 for this code indicates that the column of fragment sizes is to be accessed, while a value of 2 indicates that the column of node enzymes is to be used. The three dimensional array BLDMAP is where the maps are assembled. The first subscript references a map (or path) number. Each unique path through the solution space can therefore be accessed individually. The second subscript gives the fragment or node number number within each path and ranges from 1 to $f_{n}$ (the number of fragments fil the n-digest). This corresponds to the order in which the fragments and nodes are assigned. The third subscript is the fragment/node code as described for ROOT. For a given value of the second subscript (i.e. node level) the value of the third subscript accesses either the fragment size at that level or the node enzyme at that level. A new BLDMAP is generated for each tree. MAPSOL is a list of completed solutions, copied from BLDMAP after ail fragments are ordered, and has the same organization as BLDMAP. This array collects the solutions from all the trees. LAST is a two dimensional array that contains a list of last node levels assigned to each enzyme. The first subscript references a map number (as for BLDMAP) so that each patif has its own list of last nodes assigned, and the second subscript reference, the enzyme number (ranging from 1 to $n$ ). A tomporary copy of LAST, TMPLST, is made when creating new branches for each path. STACK, like F, contains digest data, however STACK is volatile and fragments are delet ${ }^{\text {d }}$ as they are assigned to the maps.

This way it is easy to keep track of which fragments remain $t$. signed. STACK is a three dimensional array: the first subscript referei he path number, the second subscript references the digest number (as $f$, and the third subscript references the fragment number within a particular digeat. A temporary copy of STACK, TMPSTK, is also created when new branches are generated for a given path. All other program variables are falrly obvious and are described in the programs.

The programs essentially consist of four parts: a control section and three subprograms. The control program simply displays a menu and calls the appropriate subprogram based on the user's selection. The subprograms handle all of the data entry, map generation, and output.

The first subprogram is the data entry routine. This section solicits information from the user as to source DNA topography, number of enzymes used, enzyme names, fragment lists for each digeat, error in fragment size measurement, and a line of text to be displayed at output. After all fragment data has been entered, the subrout ine sorts the fragments in each digest from amallest to largest using a standard bubble sort. This is not absolutely necesaary but it makes the data more presentable and makes the solutions generated independant of the order in which the data is entered. Once the fragments are sorted, the data is checked for missing fragments using the method described earlier. If data is missing, the user is alerted to this fact and asked to supply the missing data. After the data is checked for missing fragmenta, the program sums the fragments for each digest and computes an average. Each total is then compared to this average and if a discrepancy is found outide the allowable error range, which is chosen to be a fixed percentage of the fragment alze (given ti.e linear relationship between the $\log$ fragment size and the gel mobility), the user is alerted to this descrepancy and is asked to supply a new er-
ror val.ee or re-evaluate the data. Some causes for this discrepancy wight be incomplete digestions, impure DNA, or simply too small of an error range which causes one or more of the digests to be too large or too small than the average. Once the data has been checked for size inconsistency, data entry is complete and program control is passed back to the control section.

The data output subprogram simply prints out a summary of the data and a Hst of soiutions. The solutions are given as a linear list of alternating fragment sizes and restriction sites. The fragment sizes indicate distances between adjacent sites. Linear maps have terminal fragments, circular maps have terminal restriction sites. The two terminal restriction aites represent the same site in the circular form and should be drawn as such on a circular diagram of the maps.

The map generator subprogram contains the actual restriction mapping algorithm. This routine contains both the linear and circular algorithms and by checking the topography skips over those sections that are not relavent for one or the other type of DMA structure. The subprogram begins by finding all possible roots if the DNA is linear. Next it sets a pointer for the final solution array and sets up a loop for examining trees based on the topography. If the DNA is linear, the last fragment of completed maps is compared to the root. If a match is found, that tree is skipped. The BLDMAP array is then cleared and, 1f the topography is circular, the LAST array is also cleared. Next, the digest data is copied from $F$ into the fragment stack, STACK. If the topography of the DNA is circtilat the last node pointer for enzyme is set to node level 1 (because this will be the arbitraty atarting point for the circular algorithm), otherwise the last node pointer for query enzvae is get to the beginning of the linear IMA. A loop is then set up to examine node levels within the tree. The program next begins looking for open modew (t.e. odes that have not yet been
assigned a branch). When such a node is found, a temporary copy of the stack and LAST for the path corresponding to that node are created. Branches (selected from the temporary stack of remaining fragments) are generated at that node, unless it is the first branch in the tree (root) in which case it is immediately stored. For each branch, each enzyme is tested as a terminating node. A loop sums all the fragments in the path back to the last occurance of that enzyme (or the beginning of the linear DNA), unless it is a circular DNA molecuie with a previously unassigned node in which case it is immediately considered a possible solition and stored. If the sum is found in the single digest corresponding to that enzyme that fragment and node are stored as a solution for that level, otherwise the next enzyme is checked. If a solution (fragment + node) is to be stored, BLDMAP is checked to see if a branch has already been assigned to this path. If true, the path (minus the assigned branch) and LAST are first copied into free memory (found by searching BLDMAP). Next, a flag is set to indicate that a branch has been stored at the current open node, the fragment and node are added to the solution, the LAST pointer for the enzyme is updated, and the STACK is recopied from TMPSTK into free memory (if necessary). The fragment assigned is then removed, or "popped", from the n-digest sTACK, and the sum of fragments is removed from the single digest STACK in which it was found. Once all enzymes and branches have been tried, the flag is teated to see if a new branch has been assigned to the open node. If not, the BLDMAP, LAST, and STACK for that node are erased (which amounts to terminating or prunIng that node) so that the memory can be reclaimed. Once all open nodes have been examined, the next node level is considered. Once all node levels have been considered the tree is completed. If the topogiaply is circular, the wraparound fragments are first checked against the single digest stacks for each path and the path cleared if a discrepancy is found, otherwise the completed
paths are copied into MAPSOL. If the topography is linear or the topography is circular and no solutions are found, the next tree is examined. After all trees are examined the subprogram prints out the number of non-degenerate solutions calculated and returns control to the main program.

Samples of the program's execution for the 1 inear and circular examples previously given are found in Appendices C and D.

The only major difference between the BASIC program, RESTRC.BAS (Appendix A), and the FORTRAN program, RESTRIC.FOR (Appendix B), is in regard to the allocation of memory to array variables. The BASIC program does not dimension array variables until it has obtained various parameters of the data. This allows for optimization of scarce memory available to the microcomputer. Before a new set of data is entered, the variables are erased so that the memory can be reallocated. Because FORTRAN does not allow dynamic reallocation of variable memory, the array variables are set to an arbitrary large size (taking advantage of the much larger memory available to the VAX computer). The maximum number of enzymes allowed was set at 20 , the maximum number of fragments/digest was get at 20 , and the maximum number of paths was get at 100 . These values can be changed by simply changing the dimension statements in the program.

## DISCUSSION

The algorithms have proved, in practice, to be very quick and efficient. The time needed to solve maps of medium size (about 10 n-digest fragments, 3 enzymes) by computer was well under 5 minutes on the slower microcomputer and less than a second on the much faster VAX. The time needed to generate solutions does not appear to be so much a function of gize, but rather one of complexity. Complexity involves the number of enzymes used (since each branch is tested with each enzyme), the number of possible solutions (because each solution represents a path through the entire structure), and a large number ( $>2$ ) oi adjacent sites for one enzyme (since these can be permutated and each permutation will result In a different solution). Therefore, the fastest solution will be found for those maps using only two enzymes and having only one unique solution (sizes being equal).

Multiple solutions of ten present a problem. If certain information not available to the computer, such as knowing a terminal fragment, is known this may help to eliminate some of the solutions. Other ways of eliminating multiple solutions are to include more enzymes so that more complex and unique data results or to decrease the error range. If the error range is too large, fragments of approximately equal size become indistinquishable and if present in different digests will result in multiple solutions. Also if some fragments are ll ler than the error range of larger fragments, theae may be incorrectly placed. Obviously a large error should be avoided. However, if the arror value is too small there is a chance that correct solutions will be discarded or that no solution will be found. Therefore, the error value should not be reduced to eilminate solutions unless this reduction is justificd by an actual reduction in the error of the fragment measurements.

Incorrect maps will also result if very small fragments in both a single and the $n$-digest run of $f$ the gel during data aquisition and are not detected when the total digest lengths are tested. This may be prevented by using a gel with a wide separation range that will detect both very large and very small fragments.

The restriction site mapping method and computer programs described here provide a rapid and accurate tool for generating cleavage maps from as many enzymes as desired. As long as sources of errot in fragment measurement are minimized, the computer should be able to generate at least one solution. By using appropriate combinations of restriction enzymes, a unique solution can be derived for any linear or circular DNA molecule.
：D：RE：
． 5 ：
！：\％＊
$\because \because$ EDK
． A ： n E
： 3
路
路
号
$\therefore \therefore=3: 4$

－
－吅：E5！
．：：5：！！
$\ldots:$ n 04
：：BEM
－． 3 云
$::$ SEM
$\therefore \therefore 8$
1：：


：S S SEM
$\therefore \mathrm{OB}$ KEM
$\therefore \because: ~ B E M$


：：\％F：
－ 36 RE：
：Jう AE：
：34 in 2 ：
：15 KEM
j30 K Fi
3 反E：
jうj REM

： $9:$ 泣M

－ 1 ？EE：1
－प4 部
1才シ RE！
－4s KEM

－a E EK
1．73 FIM
－S O REM


：TO REM
－AD REM
$\because: S$ EEM
$: 500$ AE：
：－j KE：
IE：EXM
$\therefore: \therefore$ KEM
－© A AEX
$\therefore 2: 8 E: 4$
beic 京做
：030 REM
$: \in 46$ n $E M$
：
© $0: 5$ REM
teis EEM
is is AEM
$: \because=\pi E: 1$
$\therefore$ OU तिल
：i A AE！
大EM

治－in：
SB：
सEM
KEM
え玉：
iz：1
A！1：う
$\stackrel{\rightharpoonup}{3}$
EZこM
ER
EiAG
： $4:$ ：$M$
11

5 UM
TKんに
7：85

5in．b：

シミシラッこ

gRU心んhM
EP． 8
$3 \%$




Masch．：ity
 ALL R：GHTS RESEATE

Jatiet：Nama
runction

## äallCH

：J，r．L．：$:$
AAFP：T
M×570ス
bus：ug
CFINOS
FOPS：G
POEFAC
scifit．
TC． 7. T：

E：こ！1aPia．j．：1


MAESUZ．4．3．c．

Rコご：： 6




Average digest length
Pobnter to branches at current open node
Fgogeta cosatand variable
Enzyat number ：：N）
Eftor in fitgment mesturement
Elag variablo
Gosping vatiastas
Pointet ：0 asto in ust
Haximun nugbet of stotave leame
Masisus totage used sj far
Numbet ef sestisction ingymes
paintet io node leyel in tres
Psinter to seatch tes spen nodes
oigest to pop tros
Fiadatht to pop tron tack
Fointer co next opan bolution stogage
Sum of itataents
Teaporaty itorage variables
Pointar tef tiacing back in tee
Spestiles source DNA type
EIPE＝0 CbItuiat
typE：Lines：
Stotate for migs undet construct：on
－map nusbe：
1 ： 1 to KZITM
b fistotent nuabet
－iraquentinodu code
col tiagaent lengith
ces node ionzyme sta，
inst of digest tragatenti
Hete
Etri．tis nusbet of fragentitin digest in
$n$ s difest numbet $n$ a 0 nodiqest－ell eneyaes．

ontyeses thruuyn h
$b$ fragent numbet
Hote cevel last asetphed top esch eniyme
－aty nunber
－Engyan nusder d I inrouft N
goivticn stotage mitis
$a$－Eat nuaber
$b$ ataqeant number
c atagmentincte zode
Avot iraqpent bode tor linear made
－y rost numbet
c traganntinsde code
3iaci of unastignes titgetht：
a Eap number
$n=0,0$ est $n$ unber
b＝I：Asent numbes
Toial diqest ienquth
n a Jiqust fumber
Temporazy ifst at nede ievei iast
istipned tor tationeyme
© z Anzyat number
Ierpotaty stick of Unissigned fstamunts
A:
A:
t: tyment numed
Anewat Ext:astor íst irfut
Fiusb. cksta:t: ter cutput

A a enzize numoer
O:%
O:%
Cempostijs:itng jertacie

- $\therefore$; : :

in.: $i i$

1 = ごot: R Rew data

ente:ed sata

玉.: f:cg:a

ませき,



- L LiEAn

Fa:



Eñsi Rs


- $\mathrm{J}: \mathrm{T}$ :
ORIN:
? ? : N:
:


ifilto
idEXTh
NE:C
FR:S"

FíR J. TJ II
?R:IT is j .

MEX:
A. $=n$
FRIN:

FRik: intt: trignent bises

PAI:T :
NE:

「この


f. $=1.2+\cdots$
よが

```
#:O
```



```
    F5:N%
```



```
        #: a
```




```
    !こえ二 %
```




```
    +.-
```



```
    :%二口"
```




```
    FR:NT
    FP:1%
    FK:HT
    FP!N% Frafment andl:sis ind.cales
```








```
    -F.N:
```



```
    **こ64
* K \N%
```





```
Fr:N% sefutacectuy a conma
```



```
    BNF:O EMP: %
    #N = = 涼
```



```
    ###%
```



```
    <TO 3JS多
```



```
    AES%
30Tr:5:5
        FINO AVERAGE G:GE3O LENGTH TEET FCR DICEETS
                UNGS:NE EREON GANGE
AVに:こ=: m
    ##%:こadVG:"+**:
```



```
pF:害
```




```
PA:5%
```



```
OUF \therefore-O TE N
```






```
\E%":
73:1:
```



```
    Fi&N FRiNG OATA ENTRY CCMFEETE
```



```
    \:%j
    \&EM
```







```
        EATA SummaRy .
    PaiNT
    ER:IT Sousco DNA ROPOGtaphy
    If TYPE:O THZN PNIHE CIRCULA? RLSE PRINT G:NEAA
```



```
    BUN i=i TCNH,
        EKINT A.O:',TAB:O
        f(:NT IG:.j.
        #EXTJ
        PR:NT TASi44..T:i:
    NENT
    FR;NT
```



```
    PRiN⿱一⿻口⿰丨丨⿱二小
    PXINI EHR::.0. CHRS:10
    8R:NT XEY
    PHIST
    OOR K=1 TC N
```



```
    :IEयT K
    CO i=1 TO SCLPNT--
    FBINT EHA& 10. EHES IG,
        PRIN: 80LUT:ON .,:
        PNINT
        If IYFE=: THEN OR:OZ ESSEFR:NT A
        FOR j^: it i
        \overline{R}:\,
```



```
    Na:"
```



```
    RET:垁
AEM
REM *MM MAR CENNERATON**..
MA:*MzF.2.j:44
if SCLPNT, I THEN ajgo
EKASE WAFSCL
```




```
    THPE& THEN +1:0
#EM F:NL ALL ECSSIELE ACOTS
KEM AOOT DOJBLE D:GEST
                                    AFPEARS IN SiNGiE UiGEST
IEM
FOR jet TC EMU心
    fon K=: 70 N
        fOR is: TO EMK j,
```



```
                800-1 ! th, K.i.
                800-:T0 : = X
                Tunt%+i
    N-..NEK***
```



```
NE:T
```



```
ちんに\tilde{NT.}
#E% STAR: EOAK:NL:GC :EEEE
```



```
    CEMYEzJ FrEHi 123i
```



```
    BE: EURZ:CATE SCLUTEA
```



```
\***
```






E: DilAF-J.K.1.s.
NEスTK
18 ${ }^{17}$
M品解
if TYFia: THEN 530
BEM CLEAR LAST IGOE MATRIX
TOR J. ! TJ N
taseri J J = 0
NEX"

ECA J=O TO N

S\#ACK(i,J,K) EE (J.K)
NEX雰 K
18さT
if TYFEBI THER $\$ 40$
ASM 3ET LAST NOEE POINTEA TOR ENZYAE TO NODELEVEL:
LAST(1, 1) $=1$
$=070$ if 36
REM SEE LAST M DE TOR EACN ENZYME TO BOTTOM UT TREE
EOR J=! TCN
しAStil.よ.al
NETTJ
REA SE由 PARARETERS IOR STORING ROOT
SUHanOOt TREE,
ENEMURSOT (TREE. 2
AEM START EXAMIN:NG NOOE LEVEES
TER NOOEVLEI TO \& (O.0)
ABM SEARCH FOR OPEN NOSES AT CUAREIT EEVEL
ICR OPNNOC ! TO MXSTUR

ELACO
REM GREATE TEMPCRARY 3ZACK AND LAST TOK TH:S NODE
rOT J=0 TO N
ICAK=1 TO I! J, O,
THISK(J.K) STACX (OPNMOL.J.K)
NEXT $X$
NEXi $J$
FOA Jn! TO N
THPLSEiJ, LABTiOBNAOE, J;

REM GNSATE GAAMGHES AT CURRENT OPEN NOEE
ESA GHANCH: TO FiO.O,
IT FMBSTX, O. ©RANCN, $\quad$ THEN 336
If NODLVE: 1 THEN 1754
IF TYPED THEN 4730


HEM CSNE:DER EACH ENZYME AS 3OLUT;ON
TOR ENZHAT TO N
NEH SUK ERANCHES GACK TO LABT NODE POR EAEK ENEYHE
GUR TMPSTX (G.BAAXGX)
IF TYPEOI THEN IAOO

FOR TAAGEANODLVL-I TO FMPLSI (ENZM, 3ZEP - 1
SUMasUM+ LDMA
NEYT TRACE
ABM CHEGK SUA AGAINST BINGLE DIGEST STACK



HEH STORE BOLUTION 4 POR OET STACKS

MAPPNTAOPNNOS
coto 5120
AEN HBCORY CURBENT PATH INTO EAEE MEYERI
FOR MAFPNTE 70 MIITM
IE ELSMAP M MAPPNT.I.I. 0 THEN $50: 0$
NEZT MAPPNT
7月INT "MEMORY OVEASIGU EAMOR
PRiNT "Euttent menory aliocation =. Ma: TM
iNPUS Change alioctiton to?. MIITM
PRINT GREtYing with new lidecition
ERASE LLDMAB, LAST ADOT. STACK.TMPL8世, TMEST:

```
    6070 3%30
    TOR i=1 EC 2
        8CQ Mm& TO NOGLVL-1
                        GLONAP(MAPPNT,M.L)EDLOMAPGOPNNOL.M.L!
                        MEXT n
GEXT:
TWA bal TO N
                        LAST:MAPPNT, i)ETMF:ST(G)
NEXT
If MAPPATinNESTOR THEN $126
MXSTOR aMABPNT
MEM STORE G UPOATE
Flacol
ILDMAR (MAPPNT,NODL'NL,1)ETMPSTK(0.,MANCH)
GLDMAPIMAP&NT, NODLVL, L, EENZM
If NODLVL=F(0.0) THEN 5330
LAST(MAPPNT, EN2M; sNODLVL+1
TOR Xed to N
                            ron f=1 TO EiX.O)
                            8TACX,NAPPNT,K, L)=3MP8TX(X,G,
            NEXT &
NEXTK
ASM POP H-DIGEST PRAGHENT
POPDIG=0
FOPFRG= TME STX(O, BAANCH)
cosus 5950
If TYPE=1 THEN $290
If TMFLST(ENZM)=0 THEN 33SO
REM POP gINGLE DIGEST PRAGMENT
POPDIGEENZM
POPFRGESUM
cosug 5930
If NODLVLEI THEN S$$0
GOTO $350
HEXT
    NEXT ENZM
    NEXT EMANCH
    REM IF NEU BMANCH ASsiGNED, LEA:E NODE OPEN
    AEM ELSE CLEAR FATK AND 3TALNS TOR CUARENT NODE
    IF FLAGal THEN $530
    ion jel TO 2
        fCR k:I TO NODLVL
            8LDMAP(OPNHOD.K,j)EO
            NEXT K
        3EXT J
        TOR J=1 TC N
            LABTIOPNNOD,J):O
    NEXT J
    TOA J.j TO N
        fon K=1 TO FiJ.0)
            3TAEX(OPNNOD.J,X)=0
        NEXT K
    NEXT
    IEXT OPHINOO
NEZ- NODLVE
1f CYPE:1 THEN 5770
KLM EMEEK WAAP-AKOUNS FAAGMENTS ACAINST SINGLE D:GEST STACXS
FOR Jal TO MXITM
    if BLDMAF{J,1,1,at THEN 5750
    fon 2NZHs: TO N
        3UH40
        TON K=1 TC F(0,0)
            SUM-SUM+BLDMAP(J,K.1)
            if ILOMAP(J,K,Z)|BN2M THEN 3050
        NEXT K
        FOA K=F(0.0) TO I ETEP -1
            gUMasUM,SLOMAP(J.K.j)
            IF ILDMAP(J.K-1.S)OENEM THEN 5GIO
        METT 
        FOR LEI TO F:ENER.O)
            TI=STACX(J.EN2M,L
            if gUM; TS*il-EN, ANS SUM,aTI*,I+EA, THEN 5740
        NEYT
        midmapiJ.i.ll=0
    NEXT ENZM
NEZT J
MEM GJPY COMPLEEED MAPS INTO IINAL 3OLUTION 8ET
TOR Jal TO MXITM
    IE ELDMAP{J,1.1;-0 THEN seSo
    TOR X=S TO 2
```

NEIT TREEN%I TMEN 3IOJ
8%
\$00 FAINT SOLPNT-1, CHPABOt
%is ERASt ILDMAP.LAST, NOOT. 8TACX,TMPLgT.THESTK
5%0 RITUNN
5935 REM
SUEROUTINES
;40 MEM FCF fRAGMENT OFF 8TACX
350 EOR Jul TO F(POFOLG.0:
IT POPERGS:STACK(MAPPNT.POPDIG.N) THEH S%90
3TACX(MAPPINT, POPDIG.N):A
cOTO .060
HEXT
RETURN
ATM
AEM
AEM
ERINT CHR\&(IO)."OSNE"

```
norer. 6
    jRANGH
ENEM
    ER
    flas
    J.K.i...
    MAPENT
    10175
    MX:TOR
    H
    NutLVL
    OENNGE
    ECTS:C
    PCFER
    SOLSNT
    SUM
    动 T1 \(\because:\)
    InASE
        FRUGRAM
        Vasable Name

        Jepartment of siochersisty
        Apti: 1784
        GSPYAGGT iC) 19 :
        ALL R:GHTS RESERVED
        REZTRIE AUTOMATIG AESTRICTION JIEE MAPPIHC 2HOẼAA

                            by
                            Notber: E. Bunctimer

        VAM1ABEES
        runction
    Average digest langth
    Fojnter tobranches at current open node
    frofian comand vitiable
    Ensyat atyeber
    Eifor in titgaent meacut ment
    Flat patable
    Looping vatiadel
    Pointer to eap in use
    Masimus number of gtorage finge
    Mastmun itorape uecd to lar
    Nuabet of restisction onsymes
    pointer to node devel in tiee
    Fointar in search tor open nodes
    Digese to DOp fion
    Erspaent to pop tron tack
    fointer to nest cpen soivtion elosede
    Sus of tragments
    Temperafy sterage vartablea
    pointor dot tiacing bick in trea
    3pectities source DNA type
        TYPE=0 Gitcular
    TYPEA Lineas
    abjuAF: © b.b.6)
    storage ior adps under constrution
    - map number

    b ffagaent nuxber
    c I Isimensinote code
        cal liageent lengin
        cal hode leniyme bltel
I:r.bj
    List of digest itagents
    Note
        Ifn.0j E numer of fraquents in
                digest on
        n - dqest nuaber
            \(n\) n 0 n-digest iall omeyges,
            \(n\) = I-N singio digasts of
                                    ensyan ithrough \(N\)
    b frageent autbor
:ASTIa. 6
Mapsoina, b.cj
    solution etorige attiz
    - Eap number
    - oniyae nueber
        - 1 threugh \(N\)
    - Eap núber
    - Etapient nunbet
    c fraglentinode code
RUOT(0.6) Root itagentinode foritioap mapa
    - - toot number
    \(c\) = ifagmentingie code
3TACKTa, n. Dj
Stack of unassigned fragents
    - Bap auaber
    n Gigest aumbet
    n ifigment nusber
: a :
-M\& \& ETCd
otal didest lengthe
    a - digest number
Tesporsty list of aode level last
assignet fos atch ontive

```

FRGGMAM NESTAIC
CEMMOR ER,MX:TM.N.SELFNT. TYPE.EiO 20.0.20), MAPSOL(100.20.2). TiO 20 )R IT
1HTEEER C.MIITH, R, JOLFNT, TYPE
SJAL* 4 ER. BAPSOL,T
CHARACEER RTO :0:10
GHAMACTER*72 TL
MXITM=100
FAIN: 2040
fommat (/itij. RESTRICTION aite mapfing program',

PRINT, 'select piogian function
PRINT :, 1 E Cieate new data

Fhill •. entered dati
FRINT, $\quad 3$ EFint testits of calculations.
Filint *, EAll pfofras
FRINT 2:4!
féhmat il icomand! ',
ACCEPT A.C

3070 (2160.216i.2162.2163), C
CAL: DATENT
cOTO 2110
CAL6 MAPCEN
coto 2140
call datolt
$-3 T 02140$
PRINT *, DONE
3708
EHL

siseroutini eatelit
 Tio 23), R, Th
INTEGR I.J.K.N.TYPE
REALAA AVDiG.IR,TI.r.E
thamactertl a, p
CHARAGTEA ROO 20 :1 10. TMP 10
CHARAETEA: 92 TL
PAINT
phint e, Topogetphy of cource GNA
PRINT $\quad 1$ GIRCULAR (PIAstad)
Phint , $2-L$ INEAR
PRINT 2: : 1
format fiselect 1 or 2,1
AGCEPT M.TYEE
IF (TYPE LT 1 On TYPE GT i) THEN coto 22:0
1185
TYpEnTYFi-!
3ND is
PRINT 2316

ACGEPT •N
ご Jul.N
PR1NT 2393. J
format flinestitition ensyme n, d2, ? ')
hCEERT isidin, J,
format id.
Pa:MT 3350



JE k=1.ENJ.心.
2\#:14T 24%2.K
ENS LC
ENL DS
FM1N: 24"
:\iJ finmityilon-gives:a
\#j Ja:N
EAINT 2450.R(J)
EERMAT (. A.B,
IF id EG N: E0%O 2520
FRINT 2S:2
FOMmAT *,'.b,
ENO DO
R:1.n
PRINT 25S5

```

```

    ACEEPT * F,O.j,
    MX:TM=\#(10,3)
    2R:NT *,Enter frageent Elzes
    DO J.1.F(0.0)
        PRINT 2120.%
        AEETPT *.F:O.j
    END DO
    E EUEELE SORT FRAGMENT LISTS - 3MALLEST TO LARGEST
:0is jo i.0.N
co jo1.f(1.0.-1

```

```

                    T:&R(i,K!
                    F(I,K)=F,I, X*1,
                            Fil. X+1,0T1
                            END DO
    IND SO
    : SJM 0.CESTS

```

```

        "tj,00
        PaINT 2790.A:N,
    :i:S FORMAT : A,X,
j0 Xe:.j(J,i)
PAIKT 67!0.P(J,K)
ECRMAT,'* II 2.X.B,
T\J)={(J)*F(J,K)
ENC DO
C0 l=1.54-if:J,S,\#\#)
FANT 1100
conmat (:...)
ENO DO
FR:NT 2:01
FOMMAT ( * * , !)
PRINT 2020.T.ji
EORMAT, * ,iz 2;
cino co

* TE8: EOR MISSING FRAGMENTS
71:0
50 I=1,N
::=f1+F::0
ENO DO
IF I%: E0. (f,0.0) TYPE*(N-1,)) COTO 3290
Ti=F(0,0)+TYPE:iN-1)-T1
If (AES(Ti) Oू \&, THEN
L%8
P0
cND IF
PRIMT *. JATA M1ssi:IC
coAES(TI
pRint giso.t

```

    ##iH% i*56.%.j
```



```
    :T %* i* * THEN
```



```
        &゙36
        Fail:T * in Eingle enzyad diquet
    秋 15
3:% EK:N4.3611.8
```



```
    PR:NT iJI:
```



```
    AGCEPT 30:0.A
    :こ:% fornat (d.
        if (A LC '%', GJ70 3010
        PhiNT '. Urable to continut due to insuificiont ciata
        3TOP
#jsj FK:NT N, Fo: tach st the masting irageents, enter the
```



```
    PKiNT :.te: f-digest) ind the aissing iragment sist
    ghint ".cepatated by comea
    OO lal.AESTT1,
        PRINT 2420.:
jbos cocEPT Jioi,TMP,T2
    [* Jeu.N
        IF.R.jr zO TMF, COMO j:2J
        ENE 5O
        EgiNT N Unrecognized digest name. remter
        *5%0 31$0
```



```
            FiJ.5(J.0,1)T2
        END 0J
        CTE 6626
# z:AL AvCRAGE DiUE3m LENG:H. TEST FOR DIGE3TS OUT3:DE
3::% AVD:G-0
    20 ias id
        AVDIG=AJD:E+T\I,
    ENE 00
    AVO:GeAVLIG,(N+1)
```



```
    FR:N- j3:*
```



```
    ACEEFT •ER
    #H-Eni:OJ
    FN!NT E. Lenyth of sougce DHA will bo seguned to be
    TAINT 341%,AVSIG.ER*AVDIG
34:0 FCEMAT (FS 2., 10,.FS 2.
```



```
        if (%(i) CE AVDIG*II-ER, AHDD. T(J) LE AVOIG*(IFER,)
    : 60T0 34%:
        FR:NT 3&:0.R(J)
```



```
        3AINT ",gelect a new ertot value or stop proggam and
        FRINT * ceevaluais data
        CCTC 3340
340
    EHE}2
    8i:NT 3:10
j:1s folmar (i,ititle line for dispiay
    ACCEP= 3920.TL
39:0 fonmat (A,
    PFINT * ·
    PR:NT ','gATA ENTRY COMPLETE
    AETJAN
    ENU
```



```
    3UBABUTINE JATOUT
```



```
    :
        TiO.20j,A,Ti
    iNTEEER I,J,K,N. 301P!T%.TYFE
    AEAL"4 E|, F,MAP8OL.?
    chamacten mio 2ci4io
    CHARA=%EAN7: %%
```

```
    7R:N4 35:0
joli foniat i, data summARY /,
3&& FORMAT ; ISOuRE ONA topogiaphy E;
    if TTYPE EOCNOMVHEH
    if iTYPE EOCIOHCUHEH
    4L8%
        OMINT * . LiNEAR
    ENO If
    ORINT 3Tjo
g"g* fonMat if Digest.,Tzi, Ftagment flst'.jes,Total length;
    DO I=O.N
        PRINT 3:J1.R(!
301 fonmyry,A,A,x)
        D0 Ja1. (1.0)
        MRINT 370: Fif.j.y,y
```



```
        ENU DO
        DO K=1.56-if(:)0)*&,
            PHINT 370j
            fCRMAF i+. '.';
        ENU DO
        ER:NT 2704
j004 FORMAT (. . . N
        PNINT J750.5:%
        Bonmat ; i, % 
    IND }2
    7AINE 3780.EAM!60
```



```
    OL i=1,:30-LEN:TL;/2,
        PNINT 3:10
        FORMA= (. . 1)
    END DO
    FAINT 3830.T:
:525 FOMMAT (:, , , ,
    9R1NT 3810
:%:J FORMAT :/ KEO. 1,
    20 K=1.:N
    i=s年x
    #RINT 3%SO.CHAR.!..RIX.
    E.jMmAT; ;.A.':.A)
    ENE 0O
    EO let.SOLPNT-1
    PR:NOMABN:!
    COMMAM,i,SOLUT:ON S'.iz., 1,
    FOMMA"#'/'gCIUT:ON B'.i2.' 1,
        PNINF 3910
        cigamat (:')
    8:88
            FRINT 351:
            gCRMAE ('A',
        810 it
        [0 J.1,F,O.0)
            paiNT 3;3S.MAP30l:I.S.1.
            FCAMAT (%-.j&:%)
            If (J co EiO,01, GOTO 3000
            Komap30L(i.j.i)+44
            PAINE 3OSO.CHAR(K)
            Format (`..A,B
        IND DC
    IF ITYFE EO 1, THEN
        MN:NG 1901,
        MN:NG 1901:(%)
    4&S
            PR:NT 2%:2
            fonmat;'-A:
        END if
    END DO
    ENO
    CNO
    FomMAT il: NOTE. The tollowing tre all possible testriction
    i
            FRIN:.. st:e atps irgm the diten data bettefs
            PaiNT *. ta|icate testzicsion fites (see KEy). num-
    Fn:NT:
    bega indicite distathce between gites.
    PRINT 3040
    7AINIT 3400
```

```
            EvgROUTIME MAPGEH
```



```
            |
                        Ti3.24).2.56
```



```
            INTESED OPNNDD,SOLENT, TMAEL,TYPE, LAST,THELST
```



```
            LOF:CA:+1 E:AG
            DIMEMSIJN LAST(100.20), TMPLST(20). SLDMAF(100.20, 2)
```



```
            IF TYPE EO. 0, co%0 4240
E FiND ALL POSSIBLE ROOTS ROGT * DOUDLE DIGEBT FMAGMENT TMAT
                        ALBO APPEARE IN BINGLS OIGEST
            T0.:
            OC Jal.F(0.0)
                OO K=1.N
```



```
            1 *(l-EN)|) GOTO $100
                    MeOT(T0.1.0F(X,b)
                    R00%(T0, %)ak
                    TA=T0&1
1230
                END DO
            IND LO
            2:00 DO
# 3S% POINTEA POR F:NAL IOLUTION IET
:2to s0l%HTa:
: gTant E#AMININC TNEES
```



```
                            If ITYPE 30. O, GOTO $343
* EHEEK LAST PAAGMBNT OF GOHELETED MAPS POR DUFLIGATE EOLUTION
            DO j.1.s0LFNT-1
                if (MAPSOL(J.It0.0).1) EO. NOOT(TIESE.j), GOTO its0
            END 00
: CLEAN TEAPORARY sOLUTION HATEIX
434
            30 Je\,MyITH
                I% isL0mAP(d.1.1).50. of coro 4390
        00 Kef, (1),5)
            ItgMP{S,K,i)we
                                5% %
1515
            新 E%
            n,stotel
            If it+1, . %0. 17 coto 1470
C cilan bust mose withis
    00.Jad.N
        qNBT(i,j)=0
            EAD 00
: COFY Digset fmagnENTS INTO FAMGNENT STAGE
44:3 00 J=0.M
        00 K=1, (3.0)
            sTACX(I,J,X;aP(J,X)
        Bap 00
            10 0
```





```
N+N4/
```

```
        Eno iAgT,i,J,01
```




```
                    0) 08WMOS:1 mxaton
```




```
                DO Jau.M, Eiv.0.
                            THPSTK(J,K:ESTACX(OPNDNOD,J,K)
                                END DO
                    CND DO
                DO J=I,N
                                mplst(J)-LAET(OPMNOD.J)
            INE SO
E ergate manches at current ofen nods
            co BRANCHa!.f(0.0)
```



```
                            if NODLVE iT HECCTO 41%O
                            IF ITYPE s0. 1, EOTO 1850
                            if (TMPSTX(0, MRANCK) IG f(0,TALE), THEN
                    6070 1670
    Li32
                            60T0 5430
                            END It
```



```
                            COTO $010
        Tlst
        so70 5488
        END II
    6 CENSILEA IACH ENZYRt AS A sOLUTION
    H:3 DO ENER-I,N
    c. SN amamenzs mack to fatt modz
    suneTyemTR(0, mancy)
                            If ityPE .Ea. I) 0070 4910
```





```
    smo do
G EmECX sUM against single digist stack
    DO J.1.t(EN2M.0)
                            T1=TMPETX(8N2M,J)
                            if (IUM .LT. Ti#(i-EA)) OR (SUK gT
    1 T:M(1.5R):1 coto 5460
G ehicx if curnent path alamady assignEd at this mode bevil


```

\$.34
DC L:i.%
00 Mal mathes-土

```

```

    man DC
    70
D0 Lai,N
LAST(MMEPN:,L,\#TMPEST :
4y0

```


```

2:45
ILAG* TRUE

```

```

HLSmap (MAPPNT NODLUL, %) ENAEH
if MNODLVL EO FiO.Di; GOTO 5450

```

```

mir %maid

```


```

Dme
E FUF M-DIGKSF FMACNM
10.:; G0T0 5100
Sivi
!30:
00 1.1.t16.1!

```

```

    3TACK{RAPPNT , 0.1)=0
    coto 3S11
    ID}8

```

```

G POP slNGLE OlCPst placmaxt

```



``` If yevis so. Taue. cose ints
```




$8: i 3$
$\operatorname{SND} D=$
$D O$
$D O F$
$=10,0), 1,-1$
उUMasUM, ii OMAP $\left(\checkmark, K_{1}: \%\right.$

gi; j
END DO

Figstacx © íNAM.b

- 6070

5850
END DO
$33^{50}$

$$
\text { do } 80
$$

© COFY :OHFLEFED MAPS INTO E:NAL SOLUTION SET
5380
00
if istomar (v.1.i) so 0) coto $\$ 7.0$
DO Keh. 2
DC Lat. P(0.0)
MAPSOL(SOLPNT,L,KiaBLDKAP(J, L, K)
IND DO
11000
BOLPNT=8OLPNT *:
$\$ 900$
END DO

500
0000
EHD 00
PR:NT 6001.30LPNT-:
5001
fonmat (/' Numbet of non-degenetate solutions calculated , , 12 )
EHTVRN
$E$
j
: BUM nE3:R:6

```
            RE3TR:CTISN 5ITE MAPPING PROGMAM
Eaiect fitutan tunction
    I Crette new dits
        - Calcuiato fastidction fite gaps tros
            entered data
        } Fifini tefulis of caleulations
        4 Exit ptogram
Eom年踾1
Topography of source DNA
    i Cinculan (PIGsRts,
    * LinEar
soiect l or 2 , 3
Number of cestifction enzymea used' 2
hestrititon ensyme (1)3A
Nutber of ifigments in digest' 3
#mief tsaquent ilses.
-1 130
-2:120
```

Matifiction ensyat 2 ?
Nrabat of fisiments in diecel!
Entit ifagtent ifief.

- 1180
- 3180
- 3.800

Numb: of itsgathts obtaigedy

- 1
- 2180
- 3.10
- 1108
- 8200

| 0itest | 10.00 | Figngent | 1ity | 10480 | 808.80 | Totat |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\lambda$ | 30.10 | 120.00 | 100.00 |  |  | * |
| 8 | 100.00 | 180.03 | 880.00 |  |  |  |


it total itsomant loseta)

Fitte line fer dispiay? Liteat DNA fest Deta
math mint contlife
comenty 8

Gsentad? $g$


EATA gUMMAITY.
Sous: ONA topography
GINEAR


Eftut in tiagaent measutament 1004
dinast DNA Test Data
$x: i$
$A$
$\boldsymbol{a} \cdot \lambda$

3OLUTION 1
$\therefore \quad 3030-10 \quad 70.00-8-\quad 3000-1=10000-5-200.00-1$
-ontand 1
DONS
Onfinan stop

```
; aUN RESTA!:
```

AE3TAICT:ON S:TE MAPPING PAOGMAM


Contatid!
TOpOgiAphy of gourct ONA
! CIACULAR (Blashid) : binean
select 1 or 211
iNuter of testiciton ensyens used' 2
festiletion ensyat 1 i $A$
tinmber of fisamente in dicesty
Enter istyent EIEs
-1. 40

- 770
- 3120
(testiction ensye s (


- 1120
-2 1 130
n-difest $=1$
fugbet of fisgments obtainef! g
later trafment bises.
-1 36
- 18

1188

- 1 ) 8

| atatet | 20.00 | $\begin{aligned} & \text { leageant } \\ & 4 f 00 \end{aligned}$ | $\text { ilgt. } 80$ | -3. 00 | 18. 60 | Tota | Ienth |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\lambda$ | -6.08 | 7010 | 180.40 |  |  |  | 180.03 |
| 者 | 130.00 | 118.00 |  |  |  |  | 188.08 |


Comant


EATA zUPMARY


Gactulat Din Test Data

KIi
$\lambda=A$

SOLUT:ON 1

Esamand
© 514
ESRTRAS ETOF

## REFRRENCES

1. Arber, W. (1974) Pro\%. Mucl. Acide Res. Mol. Biol. 14, 1
2. Swith, H.O. and Nathana, D. (1973) J. Mol. Bio1. 81, 419
3. Royer, H.W. (1971) Ann. Rev. Microbiol. 25, 153
4. Nathans, D. and Smith, H.O. (1975) Ann. Rev. Biochem, 44, 273-293
5. Schleif, R.F, and Wensink, D.C. (1981) Practical Methods in Molecular Biology 114-127, Springer-Verlag, New York
6. Pearson, W.R. (1982) Nuc. Acids Res. 10, 217-227
7. Fitch, W.M., saith, T.F., and Ralph, W.W. (1983) Gene 22, 19-29
8. Stafik, M. (1978) Artificial Inteliletence 11, 85-114
9. Smith, H.O. and Birnatie1, M.L. (1976) Huc. Actide Zee. 3, 2387-2398
10. Sato, S.8., Hutchinecn, C.A., and Marsis, J.J. (1977) Proc. Math. pech. Bci. 74, 542-546
11. Parker, R.C., Watson, R.M., and Vinograd, J. (1977) Proc. Natl. Aced. 8ct. 74, 851-855
12. Sutcliffre, G. (1978) Nuc. Acide Rees. 5, 2721-2728
