
a ut om a ti c c on s t r u c t i o n

or

RESTRICTION SITE MAPS BY COMPUTER

BY

NORBERT E. BAUMGARTNER

TMESIS

For The

DEGREE OF BACHELOR OF SCIENCE

IN

LIBERAL ARTS AND SCIENCES

College of Liberal Arts and Sciences
University of Illinois

Urbana* Illinois

1984

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Illinois Digital Environment for Access to Learning and Scholarship Repository

https://core.ac.uk/display/158316118?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

UNIVERSITY OF ILLINOIS

May 8, 19 84

BY

Norbert E. Baumgartner

ENTITLED.
Automatic Construction of Restriction Site Maps by Computer

DEGREE O F Bachelor of Science in Liberal Arts and Sciences

H E A D O F D E P A R T M E N T OF........... Biochemistry

01164

ACKNOWLEDGEMENTS

I would like to thank the two people without Whose help this work would

not have been possible. First of all I would like to thank Ben P. Unger for

his valuable suggestions, technical advice, and for teaching me the laboratory

methods of restriction mapping. 1 would also like to thank my project advisor,

Dr. Stephen G. Sligar, for all his helpful advice and suggestions for improv

ing the programs, and for his constant support and encouragement

TABLE OF CONTENTS

INTRODUCTION 1

General Properties of Restriction Endonucleases 1

Separation of DNA Fragments and Fragment Sise Determination • 2

Probability and Combinatorics Associated with Restriction » * . * 6

Site Happing

Existing Methods, Algorithms, and Computer Programs • • . • . • 8

MATERIALS AND METHODS ... 10

Linear DNA Restriction Site Mapping Algorithm • * • * . * * 13

Circular DNA Restriction Site Mapping Algorithm . • • . * * 20

RESULTS

ALGORITHMS 11

COMPUTER PROGRAMS 21

DISCUSSION 29

APPENDICES 31
1; f.

REFERENCES 51

INTRODUCTION«SSw8S2232«5w

Hsny laboratories are currently engaged in the analysts and manipulation
of various genetic sequence** One of the most valuable tools for wialpttiafiul
these segments of DNA la a class of enzymes known as restriction endonucleases»

and the development of a restriction enzyme cleavage map la often the first step

in the analysis and base sequencing of an isolated gene* The goal of this pro**
ject Is to develop an algorithm and a computer program that Will automatically

generate these restriction site maps from experimental data* In order to un

derstand the methods of developing restriction site maps* it would be useful to

first review some of the properties of restriction enzymes and the methods of

separating fragments of DNA*

General Properties of Restriction Endonucleases

Restriction enzymes are endodeoxyribonucleases that recognise specific

nucleotide sequences in double stranded DNA and cleave both strands of the du

plex. Restriction enzymes are found in many bacterial strains as part of a re

striction-modification system (1)« This system consists of the restriction en

donuclease and a matched modification enzyme which recognizes the same nucleo

tide sequence recognized by the restriction enzyme and modifies (usually by

methylating) the cellular DNA* This modification protects cellular DNA from de

gradation by the restriction enzyme* Unmodified DNA* such as foreign DNA that

enters the cell via viral transduction, is quickly destroyed by the restriction

enzyme* It is thought that this is the function of the enzyme in the host or

ganism.

Restriction enzyme nomenclature is based on the name of the organism from

which the enzyme is isolated (2) and the enzymes are generally separated into

two classes* Class I enzymes are non-specific in their cleavage and are there-

s I 8:18:11888 1 8:1 s:8:l8:H88881: 8888 8 ; f 8: 88 I I 11#:818188! :^81|M|il81jg888jjfe:■ §118118:81
Io n of llaited uaefuln... in molecular biology. Cl M a II etuty*.. (3) racofalii;!;.
J-;S3|iSii.I;:S;8SS^Sl'S-8v88'8 8 ■.specific a«qu.nc«. in DMA, usually 4-6 boss pairs possessing twofold roietloeit
symmetry (4), and require only Mg2* as a eofaetor. Cleavage p o s i t i o n s ■
the recognition sequence are either “blunt" or “staggered**. Staggered cleavage

results in the formation of Identical self-complementary cohesive termini* This
property is utilised to insert a DNA fragment into a vector to produce a rccot*

binant molecule. A relatively large number of restriction enzymes share a much
smaller set of recognition sequences. Enzymes which share a commor recognition

sequence are known as isoschizomers. Since these isoschlzomers yield identical

cleavage patterns for a given DNA, the most stable and easily purIfltd enzyme

can be selected for use. Other properties of restriction enzymes are reviewed

in reference (4).

Separation of DNA Fragments and Fragment Size Determination

It is often necessary to separate a heterogenous population of DMA on the

basis of size. This is especially important in some restriction aite mapping

techniques where the cleavage products must be resolved and the sizes of the

fragments determined. Probably the easiest, most inexpensive, and most accur

ate method of separation by size is gel electrophoresis using a polymerized

slab of either agarose or polyacrylamide. The methods of agarose and polyacryl

amide gel electrophoresis are described in reference (5). By varying the com

position of the gels, various separation ranges can be obtained (Table 1). In

each of these ranges (with the exception of the 20% polyacrylamide gel) there

exists a region in which the logarithm of a molecule's length is proportional

to its migration velocity (Figure 1). At either extreme of a range this rela

tionship breaks down and the length cannot be accurately determined from the mi

gration velocity. By running the unknown sample alongside standards of known

Table It Separation ranges produced by agarose and polyacrylamide gels of

various composition* Modified from (5).

Figure 1: Relationship between molecular weight and migration velocity on

agarose or polyacrylamide gels. The linear region Is indicated* Modified

from (5).

Gel_____________
0*3% agarose
0.7% agarose
1*4% agarose
4% polyacrylamide
10% polyacrylamide
20% polyacrylamide

Separation Range (base pairs)
50.000 to 1,000
20.000 to 300
6.000 to 200
1.000 to 100
500 to 25
50 to 1

t o g Molecular

Weight
l Intar

gang#

Migration Velocity

si«#, Che sites of eta# unknown (r s p M t i can be dstemiaed (using A t *fc*n<l-

jonis and the linesr relstlonshlp bctvMn else sad *i$**tion

lii If. This accuracy doas not apply over the entire rang!* of a | i m §ai« -fit

the case in which fragments differ in size ever the entire range of the gal,

this accuracy is closer to 10X. Some workers have described a eethod of re

lating molecular weight to mobility using a cubic exponential function (6).

this method allows the relative molecular weight of a fragment to he determined

to within ±1.5-2*5% without the introduction of standards* The use of compos-

Its agarose-polyacrylamide gels or linear gradient gels may permit a wider rataP̂ :
ge of sizes to be separated on a single gel and Increase the sharpness of the

bands (4),

hands of DMA separated by gel electrophoresis may be visualised by any one

of several methods. Regardless of which method la usedi it is desirable to be

able tc quantitate the DNA in each hand* This will permit detection of low

frequency partial digests and bands consisting of two or more fragments of equ

al or similar size. One frequently used method of visualising bands involves

treating the gel with either ethldium bromide, methylene blue, toluidine blue,

or other stain. Ethldium bromide is a fluorescent that is excited by short or

long wavelength ultraviolet light and is sensitive to the level of a few nano-

grams (4,5). Stained gels may he optically scanned for quantitation. Another

commonly used method for visualizing electrophoresis bands is autoradiography.

To utilize this technique, DMA must be radiolabeled and then either exposed m
a photographic emulsion, which can be quantitated by a densitometer tracing of

the exposed film, or, more accurately, the band is excised and the radioactiv

ity measured by scintillation counting, the autoradiographic technique la ale#

very sensitive to small amounts of DMA (4).

The methods of gel electrophoresis provide a rapid and convenient method

6

for separating a mixture of DNA fragments, as in a restriction enzyme digest,

and for determining the sizes of the resolved fragments and the number of frag

ments in each size class. The methods are also fairly accurate if the range of

fragment sizes are within the linear portion of the fragment size/mobility cur

ve* This also presupposes that the purine/pyrimidine ratio is fairly constant,

C+C bias alters mobility in gel electrophoresis (6) and a DNA sample with a

large G+C bias will significantly affect the size determination. The applica

tion of gel electrophoresis to restriction enzyme digests will become apparent

when the methods of restriction mapping are discussed.

Probability and Combinatorics Associated with Restriction Happing

When using restriction enzymes to cleave fragments of DNA for gene isola-

tion, base sequencing, etc. it is very useful to be able to predict approximate

ly how lari# the masalting fragments will be for a given restriction enzyme.

As previous hv described , the recognition sequence for most restriction enzymes
is either 4 >r 6 ogee pairs. These" are referred to as ,,4-cutters,, and "S-cut-
tors” respect vm*1\. Given a recognition frame of 4 base pairs, each of which

an be any one atf the 4 bas.ee (A, T, C, or G), and an essentially random dls-
trtbiitien of bases in the IMA to be cleaved, a given recognition sequence would
be expected to occur apery 4* m 2 M base pairs (bp). Thus the average f ragmen t
Uity&t far a flitter mmm® Is 256 bp. Likewise for a recognition

femme of 6 1mmas, a given recognition sequence would be expected to occur every

4s or 4096 bft, mad the. mmrage fragment length for a b-cutter mould be approx

imately 4*1 Kb* from tkig information the number of fragments produced by a di
gest can be predicted. For example, a t.2 Kb gene (perhaps encoding a protein

molecule si interest) would he cut into 9 fragments by a 4-cwtter restrict!om

enryme that cuts every 25b bp* It should be empheslzed that these approxima

tions assume a random distribution o ases in the source DNA; non-random se

quences such as poly-purine or poly-pyrimidine regions would obviously result

In either more or fewer cuts than expected, depending on the recognition se

quence.

Restriction site mapping often Involves the ordering of fragments produc

ed by complete restriction digestion of a segment of DNA. In order to apprec

iate the magnitude of the problem. It is necessary to consider the combinator

ics Involved in ordering the fragments. If v represents the number of frag

ments produced by a given restriction digest, then the number of possible or

derings of the v fragments, p, is given by

p » v!

For small values of v the number of orderings is likewise relatively small,

however this number rises rapidly with larger values of v (e.g. v-9 in the pre

vious example) commonly encountered in restriction mapping* The goal of a re*

striciiion mapping algorithm, therefore, should be to reduce the number of pos

sible orderings in some way, For example, if the number of fragments to be or

dered in a 10 fragment digest could be reduced by 1 (perhaps by end-labeling

the DNA so that a terminal fragment could be identified), the number of permu

tations would be reduced from 3.63 * 106 to 3*63 * 10s - a tenfold reduction.

Successive elimination of fragments by assignment would further reduce the num

ber of possible orderings* It is evident, therefore, that a mapping algorithm

based on a "brute force" generation of possible orderings is both time consum

ing and inefficient and that a better approach would be to somehow successive

ly eliminate fragments, thereby successively decreasing the number of possible

permutations*

8

Existing Methods, Algorithms, and Computer Programs

A number of laboratory methods, algorithms, and computer programs have

been developed to generate restriction site maps (4,6,7,8,9,10,11). One me*

thod uses single digestions of two or more different enzymes and a combined di-

gestion, hereafter referred to as an n-digest, of n (where n ̂2) different en

zymes. The fragments in the n-digest are combined in ways so as to generate

fragments consistent with the single digest data. This is often a trial and

error problem and rarely, if ever, are all the possible solutions examined for

large data sets when done by hand. It allows for the possibility that not all

solutions are found and may result in an incorrect solution, since multiple sol

utions are sometimes possible for a given set of data, and, at the very least,

it is a tedious process. In an attempt to overcome these problems, computer

programs have been developed (6) to examine all possible combinations of n-dig-

est fragments. This method assures that all solutions possible are found, how

ever it is very slow (because of the number of permutations) on all but the fast

est computers. Algorithms have been developed (7) that allow this problem to

be solved with or without the aid of a computer. One such algorithm uses a

"branch and bound" technique that examines various alternatives in ordei to min

imize the remaining alternatives. The difficulty with this algorithm is that

it is based on a large number of rules for eliminating alternatives and that it

does not completely reduce all of the alternatives. Other computer programs (8)

use a model-driven algorithm and a large set of canonical form and pruning rules

in order to eliminate incorrect classes and generate a solution by negative in

ference.

Various laboratory methods have also been developed to generate restric

tion site maps. One technique uses end labeled DMA and partial digestion with

a single restriction enzyme (9). This method is similar in concept to that us

9

ed by Maxam and Gilbert for DNA sequencing. Another method uses a two-dimen

sional hybridization technique (10) to deduce the order of restriction sites.

DNA to be mapped is treated with one restriction enzyme and electrophoresed in

one dimension. Additional DNA is treated with a second enzyme and electrophor

esed in the other dimension. From the hybridization pattern of the two sets of

fragments, the map order of the enzymes can be determined. Finally, a cleaved

permutated linear method (11) has been developed in which a circular DNA mol

ecule is singally cleaved by one enzyme to give a complete set of permutated

linears. These permutated linears are then cleaved by a second enzyme into frag

ments from which the mapping order of the single-hitting enzyme can be determin

ed. All of these laboratory techniques have the disadvantage of being much more

difficult to carry out and much more time consuming. Because some require only

one cut by a restriction enzyme, conditions must be chosen to fulfill this re

quirement. Under the conditions that result in only single cuts, however, some

sites may not be cleaved and therefore will be missed. This represents a ser

ious problem and makes these methods far from perfect.

Clearly the present techniques and algorithms for restriction site mapping

are not adequate to meet the needs and requirements of all those engaged In re

striction mapping. What is needed is a technique that uses simple, reliable

laboratory methods and that quickly and exhaustively generates all possible sol

utions from the available data. Such a technique has been developed and is de

scribed in the following pages.

MATERIALS AND METHODS

After a review of existing restriction mapping methods and algorithms, the

method of multiple single digests and a single n-digest was selected for data

aquisition. This decision was based primarily on the simplicity of this method

relative to the other methods previously described and also its reliability. A

model of the solution space was constructed, and from this model a method of

checking the validity of the data was developed, This model, along with a con

sider tion of the data’s characteristics, allowed a recursive method of elimin

ating incorrect solutions in a top-down (l.e. more general to more specific)

fashion to be developed. From this, a pair of mapping algorithms quickly fol

lowed: one for linear DNA and one for circular (plasmid) DNA.

The algorithms were then Implemented in a computer program written in

Microsoft BASIC-80 for an Osborne Z-80 based microcomputer running under a CP/M

operating system. The program was debugged and tested using hypothetical digest

data. For reasons of accessability, the program was also translated into VAX-11

FORTRAN Version 3.0 (based on ANSI X3.9-1978 FORTRAN-77) for use on a VAX-11

timesharing computer system running under the VAX/VMS Version 3*0 operating

system. The program was also tested on several well characterised vectors (12)

and some recently analyzed molecules (Unger, B.P. unpublished data) in order to

assure that the correct solutions obtained during testing were not merely a

spurious result of the hypothetical data selected.

-10-

RESULTS

ALGORITHMS

Before presenting the algorithms, it would be useful to consider some of

the properties of the data that allowed the algorithms to be developed and some

ways of checking the validity of the data that follow from these properties. A

number of assumptions have been proposed (7) which must be satisfied by the

data generated by the single dlgest/n-digest method:

1. The DNA being digested is pure (i.e. free from contaminating species).

2. The DNA has been fully digested and contains no partial digests.

3. Each enzyme cuts the DNA at least once.

4. There are no fragments missing.

5. If there are two or more fragments of the same size, they are detected
as such.

6. The error in estimating the restriction fragment lengths is either
known or has an upper limit.

Assumption 1 is important in that a contaminating species may contribute frag**

meats that will interfere with the ordering of the desired species' fragments.

The validity of this assumption can be tested by electrophoresing undigested

DNA preparations or by quantitating the DNA in each fragment band (since a con

taminating species will most likely be present in lower concentrations than the

desired species and hence the resulting fragments from this species will also

show a lower concentration). The validity of assumption 2 can be assured by

allowing a long incubation period with the restriction enzyme (provided it is

sufficiently free of contaminating nucleases) or tested by end labeling. End

labeling should only produce one labeled fragment if the digestion is complete.

This assumption is also important because it may introduce erroneous fragment

-11-

12

sizes. Assumption 3 is easily verifiable by examining the single enzyme di

gests, and its significance is obvious in that it is useless to try to map a

restriction site that does not exist. Assumption 4 must also be true in order

to derive solutions from the data. This assumption can be tested by utilizing

properties of the data structure. For a circular DNA structure, the sum of the

number of single digest fragments, f^, equals the number of n-digest fragments,

fn
n
Z f . ■ f (where n » number of enzymes)

i-0 1 n

For a linear DNA structure, this relationship is

n
r f - f + (n-l)

i-0 1 n

Therefore, by comparing the number of single digest fragments and n-digest frag

ments, missing fragments in either the single digest or n-digest class can be

detected. If equal numbers of fragments are missing from each class, however,

these will cancel each other and go undetected by this method. This situation

will be discussed later. Assumption 5 is important in that if it is not true,

a missing fragment will result. This assumption can also be tested, and multi

ple fragments of the same length can be found, again by quantitating the DNA in

each of the electrophoresis bands. Finally, assumption 6 becomes important

when the sizes of the fragments are not known exactly, as is invariably the

case in electrophoresis techniques. This error can be determined empirically

for a given set of reaction conditions by running two different sets of stand

ards on the separation gel. Once all of these assumptions have been satisfied,

the data is in a form suitable for mapping by the algorithms that follow.

13

Linear QUA Restriction Site Mapping Algorithm

The linear restriction mapping algorithm will be discussed first because

a linear segment's property of having a defined beginning and end results in a

simpler ordering algorithm. The algorithms both use a top-down approach which

euMmeemfces the solution space by refining general hypotheses. Rather than pro

posing complete solutions and then ruling out the incorrect candidates, as is

the case in a data-driven approach, the algorithms recursively generate and

test branches and eliminate those branches of the solution space that are in

consistent with the model of the solution space. For this reason, this type of

approach is termed ''model-driven" (8). The various branches of the solution

space are joined at each level to a more general branch by "nodes". When dia

grammed, this model of the solution set resembles a tree. The single, moat gen

eral branch at the bottom of the structure is termed the "root" and the more

specific branches at the top of the structure are the branches proper.

The linear algorithm begins with the assignment of the root. Because there

are non-cleaved ends in a linear DNA segment, there are at least two fragments

(one at each end of the molecule) in the single digests that do not have any o-

ther restriction sites within them (l.e. there must be a first site and a last

site in the segment) and hence appear in both a single digest and the n-digest.

Therefore, all fragments that appear In both a single digest and the n-digest

(within the allowable error range) are potential roots until proven otherwise.

The number of tree structures that must be examined in finding a solution,

therefore, is equal to the number of potential roots generated. The node that

terminates the root can also be identified and is assigned the enzyme in whose

single digest the root fragment was found. Hence the branches of the solution

space are the n-digest fragments and the nodes are enzyme cleavage sites. Af

ter assigning a fragment to the root (and an enzyme to the first node) the num

14

ber of possible orderings of the remaining fragments has been reduced from f^!

to (f^-1)!. In general, the number of possible orderings remaining at any giv

en time is (f -£)'! where l is the node level (how high up in the "tree" a given

node is). The node level then ranges from 1 to the ntanber of n-digest fragments

(V *
The next step is the recursive generation cycle. This involves proposing

branches for every "open" node at the current level. The branches proposed at

each node are those n-digest fragments that have not already been assigned (i.e.

that do not appear in the path traced from that node back to the root). The

number of branches possible at each node is a function of the node level, £,

and is given by (f^-1). Each proposed branch is then tested by successively as

signing each enzyme to the terminating node. The fragments from that node are

summed back to the last occurance of that enzyme or the end of the OKA segment,

whichever comes first. This sum, which gives a hypothetical fragment flanked

on both sides by that enzyme, is compared to remaining single digest fragments

for that enzyme. If found in the single digest list, within the error range,

this branch and node are assigned at this node level and the remainder of the

enzymes are tested. If the sum (hypothetical single digest fragment) is not

found in the single digest list, the remainder of the enzymes are tested and if

none can be assigned, the node is considered "closed" and need not be consider

ed at subsequent node levels.

Tills process repeats itself at the next node level, successively assigning

or eliminating branches, until either all nodes in the tree terminate, in which

case there are no solutions for that tree, or until the top of the tree is reach

ed (the last remaining fragment is simply checked against the single digest lists

to verify that it is indeed an end fragment) and one or more paths, now solutions,

can be traced back to the root. This method of eliminating branches of the sol

ution set until only one or more completed solutions remain is a form of neg

ative inference and is much more efficient than a method that must generate

all possibilities and select correct solutions by positive inference.

Once a tree is completed, the solutions (if any) are collected and the

next tree is examined. Before entering into the next generation cycle, how

ever, the root fragment is compared to the last frawent in each previous sol

ution. If a match is found (within error limits) the tree is skipped because

it will only generate the reverse of a previous solution, tn space these sol

utions are equivalent (degenerate) and \\ therefore not necessary to exam

ine a tree that will not generate uvV solutions.

Hie solutions that remain AUer trees have been examined are all poa**

sible non-degenerate sole!tom the given data. An example of the linear

algorithm, showing the tvvv is given in Figure 2. This example us

es hypothetical data ivV et#rity.

Ex#ainatton vl algorithm suggests that is the best possible case (the

case in which only 0 % tree is considered, and each nod** level has only one

branch assignment as in Figure 3) the number of incomplete orderings examined,

e. Is glVen by

V 2
c - I (f -i)n

i-i ■
where f « number of n-digest fragments

and n « number of enzymes (n ̂2)

Substituting 10 for and 2 (the simplest case) for n, the value obtained for

e is 88. Compared to a previous example in which the number of permutations of

10 fragments was foaniSto be 3.63 x 106 (which does not even take into account

the permutations of cleavage sites) this represents a tremendous savings of com

putational effort.

n-digest fragments. Hypothetical map and digest data is given for ensytnes

A and B. numbers on trees are sizes of fragments, letters Inside of nodes

(0) indicate enzymes for assigned restri tion sites. Terminated nodes are

Figure 2: Example of linear 1)NA mapping algorithm using two enzymes and five

indicated by

200 i
DIGEST DATA

A B A B
l-30 i 70 | 50 | 100 |

HYPOTHETICAL SOUKCE RESTRICTION MAP
A B A+B (n-di«

30 100 30
120 150 50
300 200 70

XGQ
200

LINEAR TREE STRUCTURES

TREE #2

100 TREE #3

18

Figure 31 Ideal case for linear map. Lines indicate fragments, open circles

(Q) indicate nodes (restriction sites), and closed circles (£) indicate

"pruned" branches. Example is for five fragment n-digc^t.

19

The algorithm for the mapping of circular DNA is essentially the same as

that for linear DNA with a few difference!; because of the unique topological

properties of circular DNA. First of all, because there is no beginning or end,

there is no root fragment from which to begin. Therefore an arbitrary point is

chosen from which to open the plasmid, such as a cleavage site for the first en«

zyme. If this is done hypothetically, a linear DNA molecule would be created

with one half of the same cleavage site on each end. Because no unique root

fragments can be found in the data, each n-digest fragment must be tried as a

potential root fragment for this hypothetical linear segment until a solution is

found. Tills amounts to searching for a fragment anywhere in the circular mol

ecule that is adjacent to a cleavage site for the first enzyme (enzyme #1).

The number of such fragments, t, is given by

t « 2s - a
where s * number of sites for enzyme #1

and a • number of adjacent enzyme #1 sites

If t is maximized (by selecting the enzyme with the most cuts to be enzyme #1)

the probability of finding one of these adjacent fragments is much greater and

therefore fewer trees need to be generated before a solution is found.

Once inside a tree structure, the first fragment is successively assigned

enzymes as potential nodes, just like any other open branch. However, if the

paths are traced back and no previous occurance of the enzyme is found, rather

than stopping at the end the path must "wrap-around'1 to the other end (because

it is really still a circular molecule as far as non-enzyme //I single digests

are concerned). Because the other end of the map is as yet undetermined, the

node is tentatively assigned that enzyme (for lack of evidence that could ex

clude the possibility) and the usual process continues. After the last frag

Circular DNA Restriction Site Mapping Algorithm

ment has been assigned, the fragments on either side of the opening site (wrap

around fragments) are summed until the first occurence of each enzyme, succes

sively* These sums are then compared to the single digest data for the respec

tive enzymes aid if a discrepancy is found within the error range, the path

containing that sum is rejected. If no solutions are found the next tree is

examined, otherwise all paths through the solution space that remain are all

the possible solutions for the given data. If all trees are examined and no

complete paths are found, then there are no solutions possible. An example of

the circular algorithm using hypothetical data is found in Figure 4.

The circular algorithm is not as efficient as the linear algorithm because

nodes are often assigned tentitively and may not be rejected until the wrap-ar

ound is tested. However, the number of orderings examined may still be very

small because only one tree need be examined to find all the solutions if the

first fragment tried is adjacent to an enzyme #1 site.

COMPUTER PROGRAMS

The computer programs (Appendices A and B) written to implement the algor

ithms are essentially the same, so they will be described in general first and

then specifics for each will be given.

The major problem encountered In developing the software was organization

and allocation of memory for various storage functions. Arrays of various dim

ensions were chosen to represent various structures in the construction of the

maps. The original digest data supplied to the program is stored in the two-

dimensional array, F. The first subscript (l.e. rows) corresponds to the digest

number. A digest number of 0 refers to the n-digest, while single digests are

given the numbers 1 through n (where n * number of enzymes) in the order they

n-digest fragments. Hypothetical map and digest data is given for enzymes A

and B. Numbers on tree are sizes of fragments, letters inside of nodes «§))

Indicate enzymes for assigned restriction sites. Terminated nodes are in*

dicated by ® , unassigned nodes are indicated by open circles (Q) •

Figure 4: Example of circular DNA mapping algorithm using two enzymes and five

23

24

are entered. The second subscript (i.e. columns) then references the fragment

number within each digest. Column 0 of each digest contains the number of frag

ments In that digest, so that the fragment numbers in digest x range from 1 to

Ffx,0], The list of roots for a linear DNA map is stored in the two-dimension

al array, ROOT. This array contains two columns of data: a list of root frag

ments and a list of node enzymes. Rows range from 1 to the number of potential

roots, whereas columns are referenced by a fragment/node code. A value of 1

for this code indicates that the column of fragment sizes is to be accessed,

while a value of 2 indicates chat the column of node enzymes is to be used.

The three dimensional array BLDMAP is where the maps are assembled. The first

subscript references a map (or path) number. Each unique path through the sol

ution space can therefore be accessed individually. The second subscript gives

the fragment or node number number within each path and ranges from 1 to f (the

number of fragments in the n-digest). This corresponds to the order in which

the fragments and nodes are assigned. The third subscript is the fragment/node

code as described for ROOT. For a given value of the second subscript (i.e.

node level) the value of the third subscript accesses either the fragment size

at that level or the node enzyme at that level. A new BLDMAP is generated for

each tree. MAPSOL is a list of completed solutions, copied from BLDMAP after

all fragments are ordered, and has the same organization as BLDMAP. This array

collects the solutions from all the trees. LAST is a two dimensional array that

contains a list of last node levels assigned to each enzyme. The first sub

script references a map number (as for BLDMAP) so that each path has its own

list of last nodes assigned, and the second subscript reference . the enzyme num

ber (ranging from 1 to n). A temporary copy of LAST, TMPLST, is made when creat

ing new branches for each path. STACK, like F, contains digest data, however

STACK is volatile and fragments are deleted as they are assigned to the maps.

This way it is easy to keep track of which fragments remain t signed*

STACK is a three dimensional array: the first subscript teferei he path

number, the second subscript references the digest number (as f), and the

third subscript references the fragment number within a particular digest. A

temporary copy of STACK, TMPSTK, is also created when new branches are gener

ated for a given path. All other program variables are fairly obvious and are

described in the programs.

The programs essentially consist of four parts: a control section and

three subprograms. The control program simply displays a menu and calls the

appropriate subprogram based on the user's selection. The subprograms handle

all of the data entry, map generation, and output.

The first subprogram is the data entry routine. This section solicits in

formation from the user as to source DNA topography, number of enzymes ured,

enzyme names, fragment lists for each digest, error in fragment size measure

ment, and a line of text to be displayed at output. After all fragment data

has been entered, the subroutine sorts the fragments in each digest from smal

lest to largest using a standard bubble sort. This is not absolutely necessary

but it makes the data more presentable and makes the solutions generated indep*

endant of the order in which the data is entered. Once the fragments are sort

ed, the data Is checked for missing fragments using the method described earl

ier. If data is missing, the user is alerted to this fact and asked to supply

the missing data. After the data is checked for missing fragments, the program

sums the fragments for each digest and computes an average. Each total is then

compared to this average and if a discrepancy is found outside the allowable

error range, which is chosen to be a fixed percentage of the fragment slse

(given the linear relationship between the log fragment size and the gel mobil

ity), the user is alerted to this descrepancy and is asked to supply a new er-

tot vfli»»e or re-evaluate the data. Some causes for this discrepancy night be

incomplete digestions* Impure DNA, or simply too small of an error range which

causes one or more of the digests to be too large or too small than the aver

age. Once the data has been cheeked for size Inconsistency, data entry is

complete and program control is passed back to the control section*

The data output subprogram simply prints out a summary of the data and a

list of solutions. The solutions are given as a linear list of alternating

fragment sizes and restriction sites. The fragment sizes Indicate distances

between adjacent sites. Linear maps have terminal fragments, circular maps have

terminal restriction sites. The two terminal restriction sites represent the

same site in the circular form and should be drawn as such on a circular dia

gram of the maps.

The map generator subprogram contains the actual restriction mapping al

gorithm. This routine contains both the linear and circular algorithms and by

checking the topography ships over those sections that are not reinvent for one

or the other type of MIA structure. The subprogram begins by finding all pos

sible roots if the DNA is linear. Next it sets a pointer for the final solution

array and sets up a loop for examining trees based on the topography. If the

DNA is linear, the last fragment of completed maps is compared to the root. If

a match is found, that tree is skipped. The BLDMAP array is then cleared and,

If the topography is circular, the LAST array is also cleared. Next, the digest

data is copied from F into the fragment stack, STACK. If the topography of the

DNA is circular the last node pointer for enzyme #1 is set to node level 1 (be

cause this will be the arbitrary starting point for the circular algorithm) , o-

therwise the last nude pointer for every enzyme is set to the beginning of the

linear DNA. A loop is then set up to examine node levels within the tret. The

prog rip next begins looking for open nod*.* (l.e. odes that have not yet been

assigned a branch). When such a node is found, a temporary copy cf the STACK

and LAST for the path corresponding to that node are created. Branches (sel

ected from the temporary stack of remaining fragments) are generated at that

node, unless it is the first branch in the tree (root) in which case it is im

mediately stored. For each branch, each enzyme is tested as a terminating node.

A loop sums all the fragments in the path back to the last occurance of that en

zyme (or the beginning of the linear DMA), unless it is a circular DMA molecule

with a previously unassigned node in which case it is Immediately considered a

possible solution and stored. If the sum is found in the single digest cor

responding to that enzyme that fragment and node are stored as a solution for

that level, otherwise the next enzyme is checked. If a solution (fragment +

node) is to be stored, BLDMAP is checked to see if a branch has already been as

signed to this path. If true, the path (minus the assigned branch) and LAST

are first copied into free memory (found by searching BLDMAP). Hext, a flag is

set to Indicate that a branch has been stored at the current open node, the frag

ment and node are added to the solution, the LAST pointer for the enzyme is up

dated, and the STACK is recopied from TMPSTK into free memory (if necessary).

The fragment assigned is then removed, or “popped", from the n-digest STACK,

and the sum of fragments is removed from the single digest STACK in which it

was found. Once all enzymes and branches have been tried, the flag Is tested

to see if a new branch has been assigned to the open node. If not, the BLDMAP,

LAST, and STACK for that node are erased (which amounts to terminating or prun

ing that node) so that the memory can be reclaimed. Once all open nodes have

been examined, the next node level is considered. Once all node levels have be

en considered the tree is completed. If the topography is circular, the wrap

around fragments are first checked against the single digest stacks for each

path and the path cleared if a discrepancy is found, otherwise the completed

paths are copied into MAPSOL. If the topography is linear or the topography is

circular and no solutions are found* the next tree is examined. After all trees

are examined the subprogram prints out the number of non-degenerate solutions

calculated and returns control to the main program.

Samples of the program’s execution for the linear and circular examples

previously given are found in Appendices C and D.

The only major difference between the BASIC program* RESTRC.BAS (Appendix

A), and the FORTRAN program, RESTRIC.FOR (Appendix B), is in regard to the allo

cation of memory to array variables. The BASIC program does not dimension ar

ray variables until it has obtained various parameters of the data. This al

lows for optimization of scarce memory available to the microcomputer. Before

a new set of data is entered* the variables are erased so that the memory can

be reallocated. Because FORTRAN does not allow dynamic reallocation of variab

le memory* the array variables are set to an arbitrary large size (taking ad

vantage of the much larger memory available to the VAX computer). The maximum

number of enzymes allowed was set at 20, the maximum number of fragments/digest

was set at 20* and the maximum number of paths was set at 100. These values can

be changed by simply changing the dimension statements in the program.

The algorithms have proved, in practice, to be very quick and efficient.

The time needed to solve maps of medium size (about 10 n-digest fragments, 3 en

zymes) by computer was well under 5 minutes on the slower microcomputer and less

than a second on the much faster VAX. The time needed to generate solutions

does not appear to be so much a function of size, but rather one of complexity.

Complexity involves the number of enzymes used (since each branch is tested with

each enzyme), the number of possible solutions (because each solution represents

a path through the entire structure), and a large number (>2) oi adjacent sites

for one enzyme (since these can be permutated and each permutation will result

in a different solution). Therefore, the fastest solution will be found for

those maps using only two enzymes and having only one unique solution (sizes be

ing equal).

Multiple solutions often present a problem. If certain Information not a-

vailable to the computer, such as knowing a terminal fragment, is known this

may help to eliminate some of the solutions. Other ways of eliminating multip

le solutions are to Include more enzymes so that more complex and unique data

results or to decrease the error range. If the error range is too large, frag

ments of approximately equal size become indistinquishable and if present in

different digests will result in multiple solutions. Also if some fragments

are * iller than the error range of larger fragments, these may be incorrectly

placed. Obviously a large error should be avoided. However, if the error val

ue Is too small there is a chance that correct solutions will be discarded or

that no solution will be found. Therefore, the error value should not be re

duced to eliminate solutions unless this reduction is justified by an actual re

duction in the error of the fragment measurements.

DISCUSSION

-29-

30

Incorrect amps wiII also result If very small fragments in both a single

and the n-digest run off the gel during data aquisition and are not detected

when the total digest lengths are tested. This may be prevented by using a

gel with a wide separation range that will detect both very large and very small

fragments.

The restriction site mapping method and computer programs described here

provide a rapid and accurate tool for generating cleavage maps from as many en

zymes as desired. As long as sources of error in fragment measurement are min

imized, the computer should be able to generate at least one solution. By us

ing appropriate combinations of restriction enzymes, a unique solution can be

derived for any linear or circular DNA molecule.

. m : REM
» »*«•

* * i af
• # *

A Mi f
a» a* % a

■ n t i ;
4 £■ *'*« * 'R ** e l M *

■ i 035 REM
» t *
• 4» 1 * RE!!
• * r *

V 3 s C
REM
az;i
S f M* ¥ *

• - * i
h i n

A t i l
SEN

* . V ./ *5. £ M

; ’ ; J * r mA i l i
• * * *» m* *

• i 4 *
r m

a i . . *
5 «• M* * 1 #

t e ■
M i l *
c r M

. . s . n i a l l
a a ■ * SEH
• * 3 w *» M li
« *. *. *
A * * v REM V a r i r b i
* * w '»> REM
• * * ‘ ♦ a w REM A 711 G
i 4. I I REX BRANCH
- 1 / w REM w
* it 4 0 REM e n :m
::i: REM ER
11 a v REM FLAG
* * / l REM 1 . J , K . L , M
4 •> J v REM MAPPNT
* ̂» REM MX 1TM
1 3 0 0 REM MXSTOR
i i; J REM M
4 1 6 0 REM NQDLVI
: . 3 1 REM CPNNOD
13 4 0 r. a*! POPDIG
* ; t ̂* -* » w REM POPFRG
1 3 > 0 REM SOLPNT
.3*3 REM SUM
• 030 REM T C .7 1.TI
. 3 ‘ I REM TRACE
• 4 « w REM TYPE
14*,' REM
1 4 k 0 hi A
; 4 3 : REM 2 l : m a p : i . 3 . c 3
*440 REM
l 4 3 0 REM
♦ 4 & * REM
* 4 r o REM
1 *» i V REM
1 0 a REM
.5 30 REM I £ n . b I
11:0 REM
\ r * a4 m t V REM
15 3 0 REM
*543 REM
;5*0 REM
• 5 a u REM
: r o REM
• t & * i 4 >4 REM
• * } * a e T v REM L A S T : a . til
. t 3 3 REM
« 0 a RIM
1 e 1C REM
. o 3 j REM MAP SOL * a ■ 0 . c 4
* a 4 3 REM
1 i # W REM
1 a * 0 REM
u r « REM r o o t :a c l
1 4 i w RIM« « a
. 4 * . REM
* r o c REM S T A C K : a . n . b 1
17*0 REM
* * 'J r a n
*“33 REM
1 * 4 3 R EM Ti n 1
, • t * RIM

REM < M ? t* a i «. !i *
. " ' 3 REM
a i m A Ell
* a REM TMPSTKin.03

APPENDIX A

AUTOMATIC 1ZS7RI C7* 0N SITE HAPPINS PROGRAM
Version 1 i Microsoft iAIIC-16

oy
,‘iorfcsrt £ Baumgartner

University if m i n o r s it U r b a n e - C h a m p u gr.
Capa:tman t or Biochemistry

Hitch. : > d 4

DFYJKCHT vC, P M BY NORBERT £ BAUMGARTNER
ALL RIGHTS RESERVED

P R O G R A M V A R I A B L E S

Naa« Function

Average digest length
Pointer to branches at current open notie
Program coaaanti variable
Sntyme number l - Ni
Error in fragment measurement
Flag variable
Looping variables
Pointer to map in use
Maximum number ot storage items
Maximum storage used so far
Number of restriction anzymss
Pointer to notie level in tree
Pointer to search for open noties
Digest to pop from
Fragment to pop from stack
Pointer to next open solution storage
Sum of fragments
Temporary storage variables
Pointer for tracing back in tree
Specifies source DNA type

TYPEaO Circular
?YF£«i Linear

Storage for maps untitr construction
a • map number

a • 1 to MXITM
b ■ fragment number
c • fragment/notiv cotie

c ■ i fragment length
c b 2 node tenzyme sit*/

list of digest fragments
Nets

ftn.ul b number of fragments in
digest in

n a digest number
n ■ 0 n-dt ges t ell enzymes,
n a i-N single tiiges 11 :i

• ntymes l through li
b a fragment number

Nod* »evei last assigned for each ansyma
a a map number
d a enzyme number

d a i through N
Solution storage matrix

a * map number
b • fragment number
c a f r a g ma nt /noda code

Root fragment & node for linear maps
• « root number
c • fr ag me nt /node cods

Stack of unassigned f r agmentc
a a map number
n « digest number
b « fragment number

Total digest lengths
n * tiigas t numbtr

Tsmporary list of nods levs! last
»ssignsd for sach snsyms

ti a snsyms nuabsr
Tampotiry stack of unassigntd fragments

31

* * * V
« * 1 t. >. E *!
* 0 «* u kin A »
* * * ̂ f. El; r 5
2 * 41 R Z.'l n i k d 1
* ; i ?.EN
* ? i * 5,2, • «■ .
2 * REM T i

♦ .' ? 2 n 2N
, 2 • J * r m
. •; I *•« «..
■ * * j k e;i * • * • : •1 _ j A
• ;. c RET.
■ W V’ YH I NT 2’d r. » > 21
*■'42
1*53

PR : NT
PRINT

. r> d ' .
in,-.$ u

?.£OTS I 21 .-N i.TE

: >60* *, 1 **
r a I NT
FEINT

0 i . * C ! rf f W J * ibSm t un ct i n

: '8: PRINT 1 * I i f 4 1 f r#w d*ti

n a 5 1 9 * * 1 ru»fe*r
l » t: i ^ mt n t nuao*r Answt j cfc4?*: , t *r 1st i nput F U f i * cfc i fAct#: let ou t put l i s t oi 11 § t r ; c t i or. *ji*vj6*
a » #ns r*&* nu»b*r

Ttmpot try s r i n p v 4 r i 4 b * •
T * *• * * lint x: r s 0 i u t i c n i. *

• } : ' t ; - • -• ' » n * « *

• . v J ; R . N

k . 1 .
2 0 5 C•> j t v» <s * *
4. V k
' ' <. ,1 * r

PR i» ' **■ * « 4 ■2 f lint r
f r :NT 1 s £ 1 ; t i i
F R *
INF

NT
*JTr C i*aar>

* t - * OR 2 » •* • * *r «1 C' » 1W« 4 C j 0 - . 1 . . , J , 3 # V 3i

Ca.cuiit* r«ftn
* n t « r * d 24 t a

!? i ?4C

1 on i:tc ti:«

4 . wu 1 4 t i t n t

V t - 1 w

::: 3
retT. ;■ m
h ; ; . (

£ N R V

i <. * * A » •* * 4 i m W
. 31 Ik t i’**4 4t *
. 42 FR : nt : -
1 5 w ? A I NT
112 FitINI
i 7C INPUT 7y

w a * * £f< tr

; 4* -* n* * -*

• i *

& :• ;t *pn? ef #ou?e* ONA • ** > i 4t V ■i * AR ‘ ? • 419 i j <
- =* UNIAI!

P * . i t *5 T Y P E
I f ^ V r E i CH T Y P E . . : T H E N 21 73 E l I f ? Y F E « T # F E - 1
r n I N T
* T h e n f 1. a o * 1 e l s e f t a g *3

H b «s r of nitr t u n tniysts u**s*' , N
» * * w IF Ft.A0* THEN 22
4 « 3 j ERA iE R i F
» 4> 1 2 DIM Si N T -N 20
•> «(k> V FOR 0 * i) j N
l lb j PRINT
22*3 PR I NT
*» * * tr INPUT

* - j j FRIN'
* 4 » FOP.
<* • 4> 2
2 3 32
. 1 y iNEXT f«4 . ̂W NEXT J

PS I.NT "R*t ’ r 1 -: t i ;n *nsya* * .
INPUT 31 J
INP.’T Ntmb*t of fiijatr.ti ;n d 1 $ §* t

T £r.t*r f t igatn t1 si:#*
K «. TO F ■ 0 . 0 •
r e ;nt t . k
INPUT F <2 K

. r ■* j , 0

it 2 PRINT* ft- sat*1*** n-c 19**1 *

: j n*1, *
I FOR J«l TO N

PRINT HI J , .
**0. If J.H THEN 14 23

U ; I PRINT / .
NEXT ;
R 1 i 2 » 1 n
PRINT
I N P O T N u i t t r o f it 4 9t a *r . t * o b t i ; n * d
PRINT Inttr f f i.9»*nt h i m
FOR J a 1 TO F< 0 . 0 •

PRINT t J .
INPUT f -:, t

1423 2 4 4 3
2 4 40
2450
2 4 *0
21*0
2‘.SC
; 1 n

Fifi.Oi

- . u
i «. u
I 3 3t \ ». w

j
REIt EUEEIE SORT FRA 311 ENT 2 I STS SMALLEST TO LAY0E57
F-R ; *3 TC .1r f, o •i *■ * • w F ‘1 3 -• 4

F 0 ?. K - F I j*«/ -- ̂ 1 T O 2 ST
U . .
i 1 * c » K

■ sf i h ? i

r 1 k .3 r .. r . * i
A *j .

ram**

p 1 a y

i r aga#n t lift TAB 4 3 . To ta: i tngin» Z 1 *
* c * * t-‘;hT ' E: 4«* t *. TAB •. 15 ••

* wn^ 3*3 TC N71 v ■ * V
r a * ’IT A » J • . TAB . 1
7CH Ks! 77 F- J 3

PAINT ? j
l - ' * w £ « *. ; , F ;
*• , «. NEXT X
fc *, w FA I N7‘ TAB- it' 7 .;
* * . A i. *> * w
« i w * - r * LEH TT3T FOR HI £2 . Nu

l * 5 W FOR I -; 7C N
*» <1 • w 7 :«7 i »F .; g
* ~ * ? * E .i 7 *
•• * w . F * N-* * «* * a : JJ 7 1 i F f. 0 . S > fTYFE * N - i / -• t 4 « Ir A3S 71 - I THEN ? 1• 3 * n* ̂ * V PRINT
0 J J PRINT LATA HISSING

13 4 3 PRINT
: :• s o PRINT Fr *3»#nt anal.

PAINT ABS 7 ; i 11 is m• 5 * * TRI NT i r a t F j ,
~ & c • A IN7 in
*• . V •• * I w 7H £N rR * j;" n
- W W r r. I N 7

7HEN 3 1 s 3

Missing ir . g .n «r, •
<?*«: EL 3„ PH .

f - •: ecu* s
s * ng i * tntym# digest

F I

* u J y

‘'vpi‘I L ̂ U b l? 50 c*rr#ct sussing :ujiint . .uw i . i or N m ,AI
: r A$ « Y THEN 2 H 0
I * A > H THEN l'* 13
r F.: NT
{ ? ib * ‘ * ^ s y H i c i # n t da 1a - tin a d i t t j c e n t m u #5 C <« W
PRINT
?- ;Ki r°r **ch c* th« if*gm#fUs enter the

^ P * l / 4 i a V * n , I m§ f t i S* ‘ * r ct i q t s t s or* S i , u f^r n - d i g * s t > and t h t t u i i n a t r a gaen t s u » s ^tparatec cv * coatti?n IN'
3 f r : n

7 w » -1 n . * i i y A c S •
- «c ** w FAINT '# .:
33 « W INPUT 7NP-: 7

FOR .' s 3‘ TO N
I 3 It ft ; j
. . NEXT J
. 1w w PA I NT Vnr # c
3 .* a GOTO 3050
I I 3 0 «R J 0 » * F >, J • 3 ■ ♦ 1
3 . j U F J 3 1 *T l
- 1 4 3
■ ■ r '

NEXT
30TC
A £11

L53D
FIND AVERAGE DIGEST LEND

■ * «*
111.
; * 5 3
’. * t

IT T M «T w n i I ** fi. W v A dIDE ERROR RANGE
A V 0; I 3
re a i

A V

£ J
* - TO N
DIGiAVDI * . m ■ • , a# * v *)

* <• «r W

:: 3;
y .* i V ' * * K J * -J M
J « ft *f-**■*>** * #U3 5
. :so

A / * 0 » A V J 4 0 < , N ♦ i >
?r:h?

«r ror in fragnent fig# fteaguremen

juftim; ,4'*‘ 1,n?' ; •»
■ Si G£3Tf OUTFIDI ERROR HANOIr Jl i it i

' . ; 3 FOR 7(3 h
;■ j;: if r ;
■ j J >■ rn, NT

* A v D I 0 * . * i1 Ft ? n * i „/ I A v ';■
*'341 FAINT; r •■ * . - • - L * n g t n w .• h i » i ; j» f t i
:; ’! ; # rtc r rang* S « * I ■: raw § r r
: f I r. . c-r-graft u4d r # t»i .» H I i a

HEN
•u»ii $»

;OJ
■4:c

s
3433
3*42
: nz
: i c 0
- i v
■ n 3 3
. i * ,

» t *
«. » * »
*, f * -

3 5 4 3
5 5 5 3
» 5 6 (j
3 5 7 0
3 ! 8 0
35 90

*«#«

IKFUT Tit*# lint t o r drsplftv* 1 Tl
r R INT
PRINT DATA ENTRY C O M P L E T E 1
R 2 7 JRN
*1 EM
~>t'A «*** O U T P U T 2 £ C T I j 1A.11
?R * NT CHS 5 . 1 3 , ̂ CHR I ■ : 3 . 3HR 3 15 CHR » : > >
i ? f ;fc *w “ L * •*ft I v . . w w * n g if t 4 . . p ■:• * # i c , • restriction
if* * “ i s * ! * m i p i : r :* t,0# g , «n d * i * 1st 4 * r s
5 n * * ‘2, i n o i c a i ♦ r m n c t * or. fit## , i * # KEY • nut-
*.“ *'* * z * t % i ft 4 1 4 4 t # d t f t 4 r. c * b # t *## • n s i 11 •
*' R . H 7
PRINT DATA SUMMARY ’*
PRINT
PRINT Spare# ONA t op s#r #phv *
P R ! N T ?E,fi ™ H n i m CI* CU -A ** FLS* PRINT LINEAR

FAINT 0 1 f #f t ' , TAl < I * ■ . f r tgatn t * it t TAB (4 5 .FOR 1*0 TO H

34

0 1*1 #«91 h
2*00 PRINT , TAB II\>.
3 s * 3 FOR J#; TO ? < I . 0 /
3:23 PRINT P (I .J
3:30 NEXT J
3440 PRINT TAA< 4 4. .7<l>
3 & E 0 NEXT I
2 6 6 3 PRINT
1 *?3 PRINT Error in it *a * # n t
it 30 PRINT CHR S . ,0 ,CHR ; < i. y /
3 i I 0 ? R i NT * A B v 5 3 - L £N ■> 7 % / 3
:-5 0 PRINT CHR iv* 0; CHR % \ i 0
3 7 13 PAINT KEY ‘
2723 PRINT3 7 33 FOR K*i 7C N
i" 4 3 PR I NT CHR S > 64 *%. . •
0?!C NEXT K
37#0 FOR I.i TO S C l P N T - 1
0 7 7 0 PAINT CHRl 10 * CHR S Iw >
i 7 2 0 FAINT ‘SOLUTION # ’
3 7*0 PR I NT
3103 If TYFE*I THEN PRINT
‘ill! FOR J * i FC t 3 3.
OSLO f - MAPI W L V

** j at , 3> TH SN
♦ l 1 * r R .NT C H R 1 > # 4 * HA P ;

%A T .

: ; : - :r ’r m . : THEM f r ;% f m .9 « NT

: 3 :•:
$#*»««# *

RETURN
! H O REM

REM * ■ *« ft A i
' * » A E lf

* y I 0 MX I TM*,7 ■ 3 . 3 3 *4

£R * 100 N

A S v K

ELSE FRINT A

, 1

e l s e p r i n t a

g e n e r a t o

3*33 IF SCLPN7 . I THEN 3* 5 0
3 H 0 ERASE NAFSCL

i * 6 5 .970
3 H u
if >0
4 0 00
4C l 3
4 0 2 0
4C5 0
40 40
4050
4 0 # 0
43?2
4 C 0 0

Pi2 5}:,E!l*?:|?X‘™ : f ' % 1 ‘ •> 7**TtMJt ITM • .lUkFIOKHISTM.F.O.O, .1,
„ ilTACK;!11f 1 0 0 ' TMFI.IT iN; • TM7STK <N F - 0 . 6 >)it I i r U J i H » n 4 l .5 y

REM FIHD Ail POSSIBLE ROOTS
RIM SOOT . BO’J I U D: GIST FRAGMENT THAT AUGj ‘ K AFFEAHI IK SINGLE GiGEST
TO* i
FOR J * i TO F * 0.0 ,

F O R K * * T O N
FOR L*i TO ?(K 0)

I F F (0 . J J v V * X . I > - f < K - L) « E R > O R f •: C .ROOT * TO. i >*FvK. L/
HOOT w 0 ,*iiK

1 f iX.L/*F'K.L/*ER; THEN 4090

4 5 9 5 NEXT L
4; OC NEXT K
4113 NEXT ;
4 13 5 RtM_ SET POINTER
4 i 3 & S u L E N T * *
4 14 5 SEM START CXAHINIl
4.53 FOR TF.EE*. TO ABS
H * 6 0 : F "YFE i3 THEN
n * ̂W n t.•* «H £. t.K i*A di
lie v R£K ̂ d u p u c a t ;
1 » v Fo R v * l TO S O L ?!

*■ T Y ? E * 1 j * F v 0 . C ,,^TYr£*0

7 a J V ___1? MAPiCL J,F 3 w .1 -ROOT»TREE.1/ THEN 541,4' * Pla.; •it * * J4 213 REM CLEAR TEMP SOLUTION MATRIX4L y. FOR J-i TO MXITM4*4 3 IF Sl-MAF i J i 1 . 1 *g THEN 42 43i *■ # r i * «» FUR K»1 TO F • 0 31 * «■ » ILDMAP-J.K,li>3u " 2 NEXT X4232 NEXT J«:>: MISTOR-I4 2* w IF TYPE*! THIN 43#0421 w REM CLEAR LAST NODE MATRIX4323 FOR 0«i TO U•I S 3.5 LASTv1 J)-G43 4 0 NEXT J435 0 REM COPY DIGEST FRAGMENTS INTO FRAGMENT STACK43«0 FOR JaO TO N4375 FOR K»l TO F*U,0>4235 STACK <1*U*K>aF\J«X)43 >0 NEXT K4 4 35 NEXT 04 4 t 2 :r TYFE.l THEN 44404425 8ZM 317 LAST NOSE POINTER FOR ENZYME I TO NODElEVEi .44 2 3 LAST< i.1;■1• *, i *111V GOTO 45304453 REM SIT LAST N OE FOR EACH ENZYME 70 BOTTOM OF TRIE4 4 a 0 FOR J«i TO N4473 LAST!t.J-* 14 4 40 NEXT J4470 RIM SET PARAMETERS FOR STORING ROOT4500 SUH«ROG?(TR EE*I *4512 EN2M«ROOT(TREE 2/4 5 2 j REM START EXAMINING NODE LEVELSi 5 2 3 FOR NODLVLal TO F<G.0>4*40 REM SEARCH FOR OPEN NODES AT CURRENT LEVEL45!0 FOR OPNNOD•i TO MXSTOR4 5 13 IF NOOLVL. 1 AND MLDHAP<OPNNOD,I - 1)-9 OR BLDMAP <OPHIiOD45 7 0 FLAG*3i54 3 REM CREATE TEMPORARY STACK AND LAST FOK THIS NODE*5 73 FOR 0-0 TO N4a 30 FOR Xai TO F v J. 0 >411: TMPSTK(0.X)•STACK(OPNNOD.J.K)412 3 NEXT X4*33 NEXT Oit 4 3 FOR J-i TO Ni a 0 • TMPLSTi J * aLASTiOPNNOC,J)

NCDl VI

< t t i4 * 7 0 4 i $ G 4 c 3 G 4 7 0 0 47*0 4 7 2 3 4 7 3 0 4 7 4 9 4 750 4 7 4 0 4 7 7 0 47 4 3 4 7 7 0 4 1 w 0 44 * 0 4 1 2 0 4 1 3 0 4 1 4 0 4 4 5 0 4 8 * 3 4 4 7 0 4 3 0 0 4 0 3 0 4 7 0 04 3 ; 04 1 2 04 3 J 04*434 U G
i ? i 0
4 3 7 0
43 2 0
4330

JJEXT UREM C R E A T E B RANCHES AT C U R R E N T OP EM NODE FOR B R A N C H * 1 TO FI0.0/IF I M P B T X v0 . B R A N C H > a 0 T H E N 5 3 40 IF N O D L V L H T H E N 47 50 IF T Y P E * ! T H I N 4730IF TNPSTKt 0 ■ B R ANCH)«f < 9,T R E E) T H E N 4750 ELSE COTG IF T H P S T X v 0 , B R A N C H > « R O O T < T R E E ,U T H EN 4170 ELSE CCTC 53*0 RCH C O N S I D E R EACH ENZYME AS S O L U T I O N FOR £N2M«1 TO NR E N SUN B R A N C H E S BACK TO LAST NODE FOR EACH ENZYME S U M . T M P S T X U - B R A N C H ; ir TYPE-1 T H E N 4B00 IF TMPLSTt E N Z M) *0 T H E N 4110 FOR T R A C E a N O D L V L * 1 TO T H P L S T <EN2M* 3TIP -1 S U M - S U M ^ B L D M A P G P N N O w . T R A C E 1,N E X T TRAC ER E N CHECK S U N A G A I N S T SINGLE D I G E S T STACK FOR J.l TO P d N X M . I)T l - T N P S T K i E N I N ,0 >IF S U H < < T l - T1 * E R) OR S U N ; (T J t T I * I R) T H EM 5340 R E N STORE S O L U T I O N 4 POP OFF S T AC K S IF S L D M A F i O P N N O D .N O D L V L .I > > 0 TH IN 4*2 0 M A P P N T - O P N N O D GOTO 5120R I N RECOPY C U R R E N T PATH INTO FREE MEMORY FOR NAFPNTai TO N X IT NIF B L D M A F (H A P P N T , 1 . 1 • »0 THEN 50 2 0 N E X T H APP N TPRINT MEMO R Y O V E R F L O W ERRORP R INT Curt*nt ■••or? 4iloc a t i on a'.KXlTMINPUT ‘Chin?# iliocition t o 1 .KIITMPRINT R i t r y c n o with n#w a l lo c a t i onERASE 8 L O H A P .LAST R O O T .STACK *T M P L S T .TNPSTK

/ *

35

; T H E N 5130

**• «
<• «.
% %*!
 u»

tm
 *j

* *j
»-c
* lA
iff
t« %
« tf

fu «
u» «.
* v«
 ** 1

« d*
 **•
«_«• 4
.* a*
-

* * \ * * * M * GOTO 3730
* * • * « w * u FOX L»1 TG 2I 01 D FOX M«i TO HODLVL* 1
S D DO Bl DMA P C MAP P N T ,M .1) •B L DM A P iOPNNGD
so^; NEXT nstsc HE XT L
53*3 FOR L.l TO N
■IS ■ fi LAS T vM A P P N T .1 >«TNFLSTili
5233 NEXT L
SO VO. IF MAfPNT<«HX$TOR THIN Si 22
5; 2 5 MXSTOR*MAPPNTSi * 0 REM STORE 4 UPDATE* * * * i • * 4 FLAG«1u s e BLOHAP(MAPPNT.NODIVL.1 >«TMPSTX< $.B R A NCH >* I 4 3 SLDMAPiM A P P N T ,NODLVL » 2 s•iN2H
5: S3 IF MODlVl.PiO.O; THEN 5530
5 U 2 LAST(M A P P N T .EN2 M /«NODLVL♦ iSi 70 FOR X*0 TO N
St S3 FOR L»l TO FsX.0>
5 . K STACK vMAPPNT.K .L >.7MPSTX<X .L *5 a w w NEXT L* * » » 5 * A w NEXT X
* * •• •<# • * «w REM POP N*D!GtST FRAGMENT* » # « . c 3 POPDiC.O
3243 FOFFRG«TMFSTK(0 .BRANCH)
5252 COSUB 5750
52*3 IF T Y P E.1 THEN 5270
527C IF T M P U T (E N I M) - 0 THEN S 350s:so REM POP SINGLE DIGEST FRAGMENT
52)3 POPDIC.ENEM
T2 00 POPFRC.SUM
S 3 1 0 GOSUB 5750
5 3 2 0 IT NODIVL«l THEN 3540
5 23 0 g o t o 5350! 243 NEXT J
5 35 2 NEXT ENIM
5 3 * 3 NEXT BRANCH
5 3 7 C REM IF NEW BRANCH ASS IGNE D, LEAVE NODE OPEN
5333 REM ELSE CLEAR FATH AND STACKS FOR CURRENT NODE
5 3 H I? FLAG.! THEN 5530
5 4 3 3 FOR J.l TO 25iiC FOR K.l TO HODLVL
5 4 2 3 BLDMAF (O P N N O O . X , J > «0
5 4 3 2 NEXT X
5445 NEXT J
5 452 FOR J«i TO N
54*2 LAST < OFNNCD /J t «0
54?C NEXT J
5430 FOR J«3 TO N
54 >3 FOR K«1 TO F(J.O)
5503 S TA CK(OFN N O D .J , K;«0* * *w 4 * ** NEXT X
5 5 2 5 NEXT U
5530 NEXT OPIiNOD
5 54 3 NEXT HODLVL
5513 If TYPt.l THEM ST TO55i 3 Rtf! CHECK WRAP-AROUND FRAGMENTS AGAINST SINGLE DIGEST STACKS5573 FOX J»i TO MXITM
558 3 IF BLDHAF(J , 1 , i,.0 THEM 57 50
5535 FOX ENIM.i TO N
5*33 SUfUftS * U TOR K.l TO F < 6 . 0 >:»:o SUMuSVM.llDMAPIJ,K 1)• JO IF B I D M A K J.K ,;>.ENZM THIN 5*50M 0 n e x t k• SO FOR K « F <0.0) TO \ STEP -ItdO SUM«SUH*S10NAP<J,K.I>

• ? ; I F S L D H A P < J , K - I ,2>«EN2M THIN 5 * 7 0
•SO NEXT X
*7 8 FOR L . l TO F \ S N 2 H . 0)7 0: T 1•STACKi J ,IN Z H .L /
710 * F S V M / » T i * U - S R) AND S V H v * T i • » W I R > THEN 0740
720 NEXT L
7S0 ILDM AP i U , I , 1 - . 0
740 NEXT EN2M •

NEXT J
7 i 0 HEM COPY COMPLETED NAPS INTO F IN A L 30LUT2GN S E T
f * 0 FOX J « 1 TO MX1TM7S0 iF BLDHAPtJ,i. 1,.0 THEN St SO710 FOX X«1 TO 2

5 1 0 0 5 3 2 0
m o5 8 3 05 1 4 0
535058&03 8 ? 05 1 8 0383337035 M 3
5 7305 1 3 0534053505 H 3
5373; M 05 M 3a 0 3 0* 0 * 3
e0334 0 3 06 3 4 0

FOR U i TO r < 9 , d >

f E ? ML F S 0 1 (* 0 L ? N T ' 1 ' * >- S L S M A P (J . I . K .
ME 3CX X... SOtfMT«30LPNT* I

H EX ? J;r :y ? e . i t h e n sits
T"“ “ ’J

SSI!? i S u m ! ; : ! " ” ! ! ! . " 1 ■
RETURN**^*** ‘ U # T *°0 T 'm c * ' W H I T .TKF5TK
**N SUBROUTINE!REH FCF FRAGMENT OFF STACK FOR J»1 TO rtFOFOIC.Oi

........SOTO 1000 MEET J RETURN REN
5IJJ ■'** (» 0 F R O C R A M
FRINT C H R K 13) . 'DONE"

3 7

APPENDIX B
38

: A S S T R IC AUTOMATIC R E S T R I C T I O N - S IT E MAPPING PROGRAM
: V o m o n 1 a V A X - l i FORTRA N -?? VAX/VMS

: by
C N o r b o r t ! l i ui u t r t ni rC uniter n i y of i l i m o i i at U r b e n a - C h a n g t i g nC O e p a r tnont of B i oc h e m i s t r y
C April. 1 M 4-.
c c o p y r i g h t ecu i i m 1 1 H O M f i t i i a v h c a i t k u
: A L L R IG H T S RESERV ED

w
v
c

P R O G R A M V A R I A B L E S
Variable Memo Function

C A VO 1C
C BRANCH
C C
C INCH
C ER
C FLAG
C I . J . K , L - H
C HAPENT C HXITM
C MXSTCR
; n
C NOCLVL
; OPNNGt
C FCPOIC
C PGFFRG
C 30LFNT
C SUM
c T i - T i . v :
C TRACE C TYPE
v
C SLCilA? ; 4 , b • C3

C FI n . b 2

w
w
V

W
C L A S T U . d i
<*
mwmWC MAPSOLi 4, b . c3
mw
C
w
m R O O T ! a .c 3
zW*ve STACK!a . n , b jC
c*w*w * _ *
w«**wc T M H S T U J
c :

Average digest lengthPointer to brtnchoe it current opon nodeProgram command variableEnsyne nnaborSirot in fragment neasureaontFlag variableLooping variaoiooPoint*! to nog in uioM a n nun nunbor of storage it on*Maximum storage u*td to tor Nunbor of roitriction eniymeo P o m t o r to nodt level in trot Pointor to search tor optn nod**Digest to gog Iron Fragment to pog from stack Pointor to nott ogon solution otorogo Sun of frognonto Temporary otorogo variables Pointor for tracing back in trot Spoctfioo oourco DNA tygo TYPE-0 Circular TYPE-1 LinearStorage for nags under construction • • nag nunbora « 1 to H I i 7M b « fragnont nunbor c • fragnont/nod* codec«i fragnont length c «I node itniyae site)List of digest frognonto Note FCn.OJ • nunbor of frognonto in digtot on n « digest nunbor.n m o n-diooot iall onsynee# n • l-N iingle digests of•niynoe 1 through H b • fragnont nunborNode level loot aooignod tor oach oniyn* a • nag nunbor d « ontyno nunbor d - 1 through N Solution gtorago n a t m a • nag nunbor b • fragnont nunbor c • fragnont/node code Root fragnont k node for,linear napi o • loot nunbor c * tragnont/node code Stack of unafoignod frognonto a ■ nag nunbor n • digoot nunbor b • fragnont nunbor Total d.geot iongtho n • digoot nunbor Tongorary H o t of node level loot aooignod tor oach ontyno d • ontyno nunbor

*•
>»•

»
11

t*
*»

*•
t•

* *#
 ■

i
r*

, «
 »«
*€ i
 nf

to
ii
«•

r T M P S 7 X U &

AP
A141
TM?

T t n p n s r y stick of unessipned irioments n • digest number b • Irt gnen tnumb er Answer chirtcter lor input Piurel chtrscter lor output List el rsitriition ins?*# nines d • onsyne number Temporer? sir ins vet M i l e Tit:# line let solution d i s p U y
**** f A o c U H CO X T A 0 l *•*•

FROGRAM R E S TR2 C

COMMON E R . M X 1 T M . N . S C l f N T T Y P E , F< 0 20 . 0 2 0 > .MAPSOLt 2 3 0 . 2 0 , 2 > ,
l T< 0 2 0) . R , 7 L

IN TEGER C . M 2 IT M .M .G O L F N T . T Y P E
R C A L M E R . F . M A P S O L , t
CHARACTER R<0 2 0 > M0
C H A R A C TER *72 TL

043
sso

143241

U3
u;
2 4 2
U 3

17.0 27 2

n o

*373
Slid
2 3 9 C

ME ITM » l0 0PRINT 2040FORMAT U / T 1 3 .PRINTPRINTPRINTFRUITPRINTPRINTPRINT 2141

R E S T R I C T I O N SITE H A P P I N G P R O G R A M ‘ t * Select p r o g r t m function1 » C r es t e n o w Usts2 • C s l t u i s t o r e st r i c t io n site mops irone ntered Site3 * Print results of e s l c u l i t i o n s ‘4 » Csit p r oyrem
FORMAT 1/'tCommend* '>ACCEPT * iC
IF < C IT I OR C GT 4) GOTO 2140 GOTO < 2 1 4 0 , 2 1 4 * . 2 2 4 2 , 2 1 4 3) . C CALL OATEN?GOTO 2240 CALL MAPCEN GOTO 2240
CALL DATOUT GOTO 2140 PRINT *. DONE'
STOPEND

'*** D A T A E N T R Y «**»
SUBROUTINE DATEUT
COMMON E R .M2ITM.N.3GLFNT,TYFE,Ft 0 20.0 20 / .MAPSOLv10C 20 . 2 i , T\ 0 23) ,R,TL INTEGER I.U *X .N.TYPE R E A L M AVDIG.ER.Tt ,F ,T CHARACTER * 1 A,P CHARACTER lift.10>*1 0 .TNf* 10 CHARACTER*72 TL P R I N T * •PRINT *> Topefrophy el source DNA PRINT * 1 • CIRCULAR (P U s n i d rPRINT *. 2 - LINEAR *PRINT 2271FORMAT C I S s U c t I or 2 > .ACCEPT * TYPEIP (TYPE IT I OR TYPE GT 2> THEN GOTO 2270 ELSETYPE*TYFE-2 END IF PRINT 2320FORMAT w ’ tNumber el r i i t r u t u n enxvmes used* ’ >ACCEPT *.N
DO J'l.NPRINT 2370 JFORMAT </'iftestrict<on ensyme e ‘.22, 1)ACCEPT 2210 .1 > Ji rORHAT * A >PRINT 2373FORMAT tiN umbs r of frigmonts in digest? *j

40ACCEPT * ,r%J •0 *
FRUIT *, E n u r Irto»*nt
DC K m . F ^ . O ,

. . PRINT 2 423,X
*4** FORMAT i it #U , i

AC CE PT *,F J.K,
END EC

INC 00
FAINT E 4 ’’C

: 4 t : f c r m a ? . /
d s J « : ,n

. M I N T 24*0,R<J>*4 #0 FCRM A T < ♦ .A . $ *
IF <J EG N> GOTO 2523

• I S M

PRINT 15132 110 rORMAT ♦ / ' . »2522 END DOR ' 9 • ' nPRINT 155j2 5 ? : FORMAT </ INombtrA C CE P T * , F \ 3 » 0 t M l ITMa4 4 f * 0 , 3)
«f t r tgatnt i M U i n t d *

PRINT V E n t t r itifitnt lists DO Jvl.fiO.O)
P R IN T 2 4 2 0 . 0
A C C E PT * , P < 0 , j)END DO

)

C Bt’IBLE SORT FRAGMENT LISTS - SMALLEST TO LARGEST
2 * 2 3

2**0

DO I *0 . N
CO ; > i . F i l . O M

CO K»F v I , 0 i - 1 , J , - 1
I F < F v I , JC > LE f i l . X M)) GOTO 24 fQ
T l a p U , X)F U .K).FU , i u n F vI,K t 1 ,aTt

I NC 00
END CO

END DO

C S'JH DIGESTS
43

;k g

2 3 0 1
2 1 2 0

FAINT 2?40
FORMAT i /* Di| #*t*.T 2 1 . ’Fri9»tnlUu Jag ,ft7 1 J 0a 0PRINT 2??0,R;0#FORMAT i I . A , ! i DO Kil.flJ.O)PRINT 2 ? * 0 , F < J , X)FORMAT ♦ .N.l.I.l,TiJ>*7<J/*F<J,X>END CO

CO I « l . S 4 « i F i J . 0 i * |)
P R IN T 2100
FORMAT 4 ’ ♦ ’,»)

END DO
P R IN T 2101
FORMAT (♦ a 1 . i i
P R IN T 2120 ,7kJ i
FORMAT v ♦ . F a 2#>

END DO

l i f t , 7 4 5 , ‘ T o t a l l e n g t h ,

C TEST FOR MISSING FRAGMENTS
T 1 a 0DO I a l ,N

T l a T U F - I . O ;END DO
IF vTl EG <F\0,0>♦TYPE*<N-1>)) GOTO 3210 T U F (0.0) +TYPE* »N- 1 i -Ti IF <A S S < T 2) GT 1; THEN Pa »
ELSEP.
END IFPRINT *. DATA MISSING l a A B S t T l >PRINT 2150. I

2P5C FORMAT tragatnt anal’/tit i n d i c a t t t , l l . a u n n j ,
p r i n t i m , ? j

I ' l l FORMAT * f ragatnt A Kitiinf frafmtnt A , occur* ■
IT :7i .17 -&-r THIN M I N T - *. in n-digtat ILilPRINT • m u n f i t tnaymo digoat
t m IT

3;;) p r i n t n u . tK : i FORMAT ' Data m i U b U to ccrroct m u t i n g fragment ,k*
p r i n t i m

H' . l FORMAT H V or N H ;ACCEPT m s . Am s f o r m a t <a ,
i t ih i o * r > GOTO ISIS if U HI ‘H i GOTO 3019PRINT *, Unablt it c o n t m u t duo to insuffittont Cots STOP3362 PRINT 1 . Fo: tied of tho misting fragments, tnttr t h o 1PRINT *. tUgoat nama tontyma nama for ainglv digtttt of “n PRINT *. for n-dtct*t) end tho listing (ragman! tilt PRINT *.*•ap a t a t ad by t o i i i 00 til -A B 3 (T l / m s PRINT 1420.;ACCEPT SiiO.TMP.T2 3 U S FORMAT <A,FI 3>EG J-O.Nif R.J> 2Q TMP * GOTO 3220END 00PRINT 4 Unracognisod eigott nama. rtsnttrGOTO 3 i SO3*13 F'J0i*F iJ,0i *iF(J.FvJ.O/;.T2 END 00 GOTO 2420

: FIND AVERAGE 0ICE37 LENGTH. TEST FOR DIGESTS OUTSIDES OF ERROR RANGE
3 m AVDIC.O DO U O 14AVDIG«AV0IC*7<I>END 00AVDIG.AVDIG/ < N M J3 3 40 PRINT ‘ ,’rttUiivi trior in tragmant t u t maasuramant*PRINT 33 e 23 U C FORMAT (total tragmant l a n g t h U •ACCEPT *.ER SA-ER/IOOPRINT *. Ltngth of sourcs DNA will bt aituitd to bt PR INT 34 t 2,A V D IC.E R •AVDIG 3410 FORMAT <F3 2. ♦ /. •.FI 2>00 J«C,NIF <7;G) CE A V D I C ' M - E R a n d . T(j. Li A V O I G M U I R U : GOTO 3 4KFRINT 3410,R.J)34!0 FORMAT < Ltngth of .A. digttt ft outtidt orror rang#PRINT *. Stioct t now trror viiuo of stop program and PRINT * rooviiuatt data GOTO 3340 3 4 H END DOPRINT 35133513 FORMAT t / ' l T f U a lino for display* >ACCEPT 3520.TL 3520 TORMAT <A>PRINT * * 'PRINT •, DATA ENTRY COMPLETERETURNEND
: <#•* O U T P U T S E C T I O N

SUBROUTINE DATOUT
COMMON EB .NXITM.N. SOLFNT.TYPE, F< 0 20, 0 20 i M A P B C K 1 00.20 < 2 > .

1 Tv 0 20 i ,R ,TLINTEGER I,U.R.N.SOLPN7.TYPE R E A L M E R , F - MAPSOL , t CHARACTER R < 9 2C / U 0 CHARACTER a 72 TL

4 2
PRINT 3 5 80

l l l § FORMA? ih*-* NOTE TRi f e l i e w i A f iff til posaitla itatriction
i <

FRINT •. »i •,t mtpa Ir am tha 91* tn d * u L t t t t r tPRINT • , i n d i c t t t r t a t n c t i o n t i l t s (• • • KEY) ng»-PRINT * . ‘ b t r * i n d i c * t a d u t t f u t b t t w t t n t i t t tPRINT 3•403*10 FORMAT U DATA SUMMARY n
p r i n t m o34*0 FORMAT (liourct DMA topography « >If (TYPE SO 03 THEN PRINT •. CIRCULAR ELSEPRINT ». LINEAR END IF PRINT 3730m i P O R M A T U Digtst .T 2 ; . frtgatnl iiat • ,Ti3 , Tdiil Itngth) DO I •0 , N

P R IN T 3 7 3 I . R U
3 7 0 i FORMAT (I * , A . X>

DO J » t , F U . 0 >PRIN T 3 7 0 1 . ? U ,-Ji3702 FORMAT i ' ♦ ,f8 l . t , 13END DODO K « i , 5 i - (F U . 0 > M i PRINT 37033?33 FORMAT (*♦ .13END DO PRINT 37043704 FORMAT (♦ • . ! >PRINT 3730.T i l :3750 FORMAT < *♦’ ,F8 2 >END DOPRINT 3710.ER*1 003780 FORMAT •/’ Error in fragment m*«surtmtnt ■ , FI l , % i n >Du 1 m l , (S0-LENiTl>/2i PRINT 37103770 FORMAT (♦ .13END DOFRINT 3100,TL 3333 FORMAT t •♦* .A;PRINT 38105 U 3 FORMAT \ r KEY * n DO X i U 1 • • 4 *KPRINT 3130.C H A R . U .R (K ,3153 FORMAT (’ .A ♦' * A)END OOCO I • 1,30LPNT-1 PRINT 3110.!3183 FORMAT »/r’ SOLUTION $.I 2, />IF (TYPE SO i) THEN PRINT 3710 S M O FORMAT i •ELSEPRINT Itt;3 ti l FORMAT U I A ’ >END IF *DO J-i.FvO.O)PRINT 3t30.M A P 3 G L < I , J . t .If 35 FORMAT (.FI 3. • , 11IF <J EG F i O . O U GOTO 3 U 0 K«MAP30l<I J.2>*44 PRINT 3t $ 0 .C H A R (K)3f3 w FORMAT < ‘ ’ . A , I;3 ttS END DCIF iTYPE £0 U THEN PRINT 3ftl3t11 FORMAT (*♦!’>ELSEPRINT 3fi2 I N I PORMATEND IF END DO RETURN END
» » * * M A P O E M E A A 7 0 R • * * *

f*
r»

S U B S G U T IN E M APCEIi

COMMON E * ,MX I T H .N ,SGLPN7.TfPi ,f U 20,0.20 >,M A P S G I {i00,20,2, ,I Ti S , *#>♦»,?i
1 MTSCSX BRANCH. ENZM, I, KARIM?,NXITH, NXSTOft. It, MOSUL IMTSGIS OPNNOD,SOLENT,TRACE,TYfI,LAST,THILST
REALM ERSUM.TO.T1.T2.BLDMAI.r.HAISOL.ROOT.STACK.THIITK
l o g i c a l * ! f l a g

DIMENSION LAST-: 100.20 i . T H f l S T U O > , ILDHAF U 00.20,2 i DIMENSION ROO T\2 0 , 2) .STACK<100.0 20.10/,TMPST*<0 20.201
IF *TYPE EG Si GOTO 4240

FINS ALL lOSi*RLE R O O T S . ROOT • OOUILE DIGEST FRAGMENT THAT ALIO APPEARS IN SINGLE S I G H T
t o*:
sc i.r i o.o >SO K*t ,N

SO L « 1 . r < K . 0 >*1 <f(0,4* IT i F tK. L M t l*|Ri * OS f(0,4) CT.I M U i I n) SOTO 4200SO O T (T O .1> *F i K ,1*SOOT (TO , 2 > *K T0*t0*l 4200 IMS SOEND DO2 MS DO
C 1ST POINTER FOR FINAL SOLUTION SET
4240 SGLPNT-I
C START EXAMINING TRIES

SO TREE*! ,AI*(<T0-l > M T Y F I SO U * f < 0 , 0 , M T Y P i EQ 0)II (TYPE 14 0 i GOTO 4140
CHICK LAST FRAGMENT Of COMPLETED NAPS FOS DUPLICATE SOLUTION

IQ ROOT*TREE,I> / GOTO Iff0
DO 4*1,SOLPNT-iIF (M A P S O K J . f («.§),1)

CHAR TEMPORARY SOLUTION NATSIX

4240

42 H

SO 4*1.KEITH
IF (8L0MAP<4,1,1) IQ 01 GOTO 4210
SO Kt2,f(l,0>

l l 0NAP<4, K, n*OA ill DC
*M phistor*i
I f i f f l t . 10. 1> GOTO 44tS

C CLEAR LAST NOSE HATSIS

00 4*i,N
LASTU ,4>*0

END 00

COPY D*GIST FRAGMENTS INTO FRAGMENT STAGE
44*2 DO 4*0.N

00 X**.1(4,01
STACK 1«4* K «f < 4, K)

END 00
END 00
If (fTPS EC. II GOTO 4110

S 4IT U4T W|t ro:)iT|« to* IHIMI *t TO NMt UVU t
« w :M
tt.Uat

Hi
... .
<• ’ . * . I \ l *

sissits

«,AiT i i . J < • END ti
i Z t rtitiiiTiu ro*

START «*«: n :nc W H Vl'-'tis
DC NQDtVt* t . F i 0 * ■

ilARCK f«* D « N M M * lit OVftttNt l|#tV.
SO O M t » 0 . ! « x m *

i a i H

1

tn'.i.
. I> i

; CREATE TEMPORARY §TACX A*L LAST F0i Hill NODE
10 J»u N.00 K t U i J . i i7HPSTKIJ,K /«ST ACK<C P N N O D , 0 , K *END DO END 00 DO 3*1.NrHFi$T< 0) .LAST< O P N N O 0 .0 *END DO

C CREATE IRANCHES AT CURRENT OPEN NODI
DO IRA KCHt l, F < 0 ,3)IF <TMPSTX (D , BRANCHi EC, 0/ 0070 $410 tr .NODLVL 07 U 0070 40*0 IF (TYPE 10 U 0070 4450 IF (T M P STX<0 .IRANCM> EG F(0 .TREE). THEN 0070 4170 EL 310070 1410 END IF40 $.0 IF (7HISTK i 0. EftANCH> SO ROC Tt T R S I . 1) / THIN0070 SOtS I U I0070 $400 END IF

€ CONSIDEE EACH SNEYJtS Of A SOLUTION
4**0 DO ENSlUi.M

4t*6
AUM*7MP STK i 0 , fRANCH)IP TYPE EG H GOTO 4**0 If <TKHi7<INlK> tO 0) GOTO $000 DO TlACE-NODLVL.i.TNPL»T(ENEH>.-i OUH-IUM+IIDHAF<OPNNCO.TRACE,U END DO

CHECK SUM AGAINST SINGLE DIGEST STACK
DO J.l , m N Z H . Q >TltTMPSTK(EN2M *4)

I t 1 (SDN ,17 T I M U I R m I T l M U E R) ; * GOTO $440 OS < SUN 67

CHICK IF CURRENT PATH ALREADY ASSIGNED AT TN1S NODI LEVEL
$000
1010 . Wtofcfl. i > «T t> 60T0 it 41

t w t O r "
« * * » i t « * * * * ? W t » T W O till I K T O H

m i^ . w r

0 /-V:-, >;VvV..sii; IW4

$.33 DO D i .2£0 if* I
.m ? <*»4j h w <opjinod.h (uMUJ DC

SUB »DC l.l.MU 1 T C M O W H H M . .* *THP lST u ;MID DO
i f i m f t m t t . m i T o n i goto m o n m o a . H A m r r

*ra« a * atMTS
m e f l a g * THUSS U M P 4 MAF P N 7 , NGId-VL . I * «THPSTK (0 , M M) S U M P < HAP P U T , NOfLUa . 2 > -EN2H

IT tHDODVL m F t 0 . 0 > > GOTO $150U-iET : m P P * T U « 3 L Vi.* 1
m .1 * 1 ,T-m g.

1-. M K 3 K * <*

C rO? tt-DIGUT FJUGHBKT

1 fi. ;> * GOTO 5 300
DC U 1 .1(0.0)

IF iTHFSTK^O IAANCH M STUCK4

STACK<HAPPUT.0.I> » 0GOTO 5 SO 1$$3w IP s013 0 1 Tr <fVPS so >IF (fm i n i m m)
c. POP 01NGU DlCSiT fDGMKT
Oil 0 10 I-

n
w c (-Mi Ht1 it«*ft >)) OMNI DIO Mtiwiisr,KlOtit

M

5310$311

, 1*«0

*0 ifc H W * "OMi

? $ ‘

!]t ^ ^
£ M w t«ui) e o n i% i*

• X . J) «♦

TJ

K J.i.

•?:j do x«r<o.o>,i.*t
3UHa«VN«ILOMAf(J.*,;»
ir i&lBIUlMJ.X-J ,1, EG ur n* 0070 5115

END 00
00 »f\INZM,0)

Ti-STACKU
II (<IVM 01 Tl*U-I*>> AND iSUH LI Tt*<

1 SOTO 5150
END CO
UDMAFvJ, 1 .1 >•«

r|jj INC CO
,8*0 END CC
. COPY COMPLETED NAM INTO FINAL AOIUTION SETw
5»»° DO Jal,SMITHIF iltDMAF (J, 1.1) IQ 0) SOTO 5P*0 DO K . 1,2DO Lai,Pi 0,0 >MAPIOLIIGLPMT,L , X > alLDKAFlJ .I ,X)

INC DO
INC DO
S0LFNT*80LPNT«I

END 00
ir (T m to t> 0070 m o
I t (lOlINT .07 a goto *ooo

e « f 0 END 00
4d03 IftlKT 4001 .30LPNT-.
: 30 I FORMA* </’ Nuabsr c(non-dsgtntr•lt solutions
«c;o RETURN

END

c *t«« E N D F R 0 C A A M *•••

M l)

I M i i

: SUN R I 3 T R : C
i

r c s t r *c t i on i i t i happi ng program

3*;*u otofrta function
1 • Giotto now Goto
a a C t U u U i o l o t t r l e t ton o t t o a t o o f r o a

o n t o r o d d i t *
3 a f t i n t r t o o l to of c t i e u l t t tono * a Cut pr^ria

C o a a t n d * i

T o M f r t p f t f of tout to DMA
1 a CIRCULAR (P U m ^
a a L IN EAR

Soloet 1 or 2 »

Nuabor of rootr tot ion onsyaoo uood* 2
R o i t n e t i o n o n x y a o * i > A
Noabor o f f t i f a o n t o in d i o o i t > 3
I f t t o t f t t f a o n t 11too ,
• I * 30
• 3 1 130
• 3 * 300

R o o t i l e t i o n ontyao t i l l
N i t k i t of f i t f a o n t t t» diooot* 3
(ntos f r t «aont o i t o o .
» 1 f if!
f 3 3 180
» 3 3 200

n - d i y t t t • A /I
Huabo- of f r t f a o n t o o b t t i n o d f S
Sntoi f t t y a o n t o i t o o
• t » 30
• 2 ? 30
• I » 10
1 0 * i l l
• 0 3 201

Diyoot
A 30 00 " s r i s * H i 1 ! ! 100 00 200.00

T o l l !
•

A 30 00 u o t t 300.00 «
1 100 00 »*» #» 200 00 a

noth ill II
010 00
111 00

R o u t i t i t t t o r m i i t f a o f i t oico aooouroaont
i% l o t i i f t t o a o n t i o a f t t m i

00*100 0MA w i n bo loouaod to bo
015 00 + i * 0,50

T i t i o l i n o f or d i i f i t f * Linear DNA Toot Dote

IA?A IMTRY COMPUTE

Co m o r o I 3
H llM t of ft on *0o f t nor t t o ool ut ionx c t l c u U t o d a

C»aatnd> i

H t f ' ' t f c f f t l l f t i t f i # f o i l f p o f o i b i o t o o t n o i i o a

fSsSlISM iSiSlSMiMi

l i t * t i ps iron thi givtn t i t u . l i t t i r *
i n S u i t t r u t r tet ion s i t u i • •« KEY/, nun-
b t n mOi ci t o Onl i n e * botwttn i t t i t

SATA JVmtAtfY.

Sour fit DMA t opoor iphy •
LINEAR

D if to t f r*o»int 1 t i tn 30 00 SO 00 70 00 100 00 200 00A 00 00 120 00 300 00i 100 00 ISO 00 200.00
Erisr tn lr«9»tnt m n u r t m n t • 1 00%

l i m i t DMA Tt»; Dl l*
KEY
A » A
S » I

SOLUTION I I
'* 30 00-A- 7 0 . 0 0- 8 - SO 00-A- 100 00*8* 200 0 0 - i
DONEFORTRAN ITOf

Tot*] U n i t h• 4SO 00• 4S0 00• 4S0 00

' ■ .̂.Vvi -_'C. s:

m m m , *

*
I rsstri:

R E S T R I C T I O N S I T E RAPPING PROGRAM
SftUtt pr t f r aa lit fiction

I • C r t i t t now data
- * Calcolato r e s t r i c t i o n • i t t h m iron

ontorad data3 * Print result! of cilculit t o m4 » Exit program
C o a a a n d ? !

Tepogrrphr of lourco ONA I • CIRCULAR (Plaaatd): • LINEAR Stiect I or 2 1 I
Noafcer of r o t t r i c t ton m i f i i r used* 2

R o t t r u t i o n m i f i i • I f A
N aaler of f r a g ae n t a in d i g e s t * 2
Enttr i r agaant s i t e s• I * 40
• 2 * 7$
• I * 120
Root r u n on eniyae l 2 * 8
N s a ltr of f t s g a t a t s in d i s t a l * 2
Entot f r e g a i n t n t o i
• i i u s
• 2 * 120
ftotfifOOt • A /|

Nuabot of f r e g a e n t i e l t s i n e d * I
Into? f rogaont t u t s
• i 7 88# 2 ? 40• I 7 ||* 4 I 40

Dlgoat Pregnant t u t
n 20 00 40 00 *0 00 *0.00 10 00
A t l 00 70 00 1)0 00

I 120 00 120.00

R s i a t i t o or t ot in t ragaent a l s o a s s is te a e n t
' * t o u t t r o f a o a t l o n f t n n t
^ f l f t R of lotiroo SNA w i n It i i m a t i to it 810.00 ♦/* 2.10
T i t U l i n o f o r d i s p l a y ? C i r c u l a r 8NA T o o t Dot a
DATA 8KTIY COHKETt
Ce a a a n d * 2
H t a l o r o f n o n « O i f t n o r a t o s o i s U e a s c a i c u U t o d • i
D o a * s a d ? |

NOT* * t t t i l o t t s t k i t t i i u u t i n
' ' Ui tM#f Otto.'.W ̂"iâgiiagsiiig SWSIlll<:8« p'gSmsfi

m t f u t t * m t f i i u e n u t t i i t * Kiv^. nu»- I t i i i n d i c i t • tftsiAAC* bitwttn i n n
DATA 8VHMAR?
Sfcirti SKA topofriphy »
: : rcuur

fr tamtnt I m* 2d 00 4G 00 SO 00 40 00 00 00
a 00 00 7000120 00
i U 0 00 1 30 00
Irrer ;n (n g n » n t a*«tur«m*nt « 1 00%

Ci r c ui t ! DNA T i l t D m

Ui
A » A
I . 8

8 0 1 V ? : O H I 1
A- 20 00- 8- SO 00-A- 10 00-8- 00 00-A- *0 00-A

tout
F0RTRAM STOP

T o U l itnath
• 250 00
• 250 00
■ 250.00

REFERENCES
V

1. Arber, W. 0974) Prog. Nucl. Acid* Res. Mol. Biol. 14. 1
2. Smith, H.O. and Nathans, D. (1973) J. Mol. Biol. 61, 419
3. Boyar, H.W. (1971) Ann, Rav. Microbiol. 23. 153
4. Nathans, D. and Smith, H.O. (1975) Ann. Rav. Blocham. 44, 273—293
5. Schlaif, R.F. and Wenaink, O.C. (1981) Practical Mathode In Molacular

Biology 114-127, SprInger-Verlag, Now York
i t . Paarson, W.R. (1982) Hue. Acids Raa, 10, 217-227
7. Fitch, W.M., Smith, T.F., and Ralph, W.W. (1983) Cana 22, 19-29
8. Steflk, M. (1978) Artificial Intalllaanca 11. 85-114
9. Smith, H.O. and Rirnetlal, H.L. (1976) Hue. AcIda Raa. 3, 2387-2398
10. Sato, S.S., Hutchinson, C.A., and Harris, J.J. (1977) Proc. Natl. Acad.

Sci. 74. 542-546
11. Parker, R.C., Watson, R.M., and Vinograd, J. (1977) Proc. Natl. Acad. Set.

74,851-855 ~ ”
12. Sutcliffre, G. • Aclda Raa. 5,

