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INTRODUCTION

A supercritical fluid 1s any substance that exists above Its critical 

temperature and critical pressure, where there Is no phase boundary between 

the gas and liquid. Supercritical fluids exhibit solvent behavior more 

representative of a liquid than of a gas due to their I1qu1d-11ke densities. 

Yet, the ma3s transfer chracterlsties of supercritical fluids exceed that of 

liquids due to their gas-11ke viscosity and d1ffus1v1ty between that of 

liquids and gases (1).

The phenomenon of enhanced solubility of compounds In supercritical 

fluids has been studied since 1879 (2), but recent Industrial applications 

have led to Increased Interest In utilizing supercritical fluids as solvents 

1n such diverse areas as chemical fuel fractionation and the food Industry.

Supercritical pentane has been used to fractionate petroleum residuum (3) 

by dissolving the component asphaltene, resin and light oils to different 

degrees. The degree to which each solute dissolves 1s controlled by varying 

the system temperature and solvent density. Supercritical solvents have also 

been used to extract high-hydrocarbons and aromatics from coal (4). Both of 

these processes require less energy than standard liquid extraction processes 

at extreme temperatures.

Supercritical carbondloxlde Is now being used to selectively extract 

caffeine from green coffee beans (5). The liquid extraction of caffeine uses 

a toxic solvent which can leave a residue on the beans. Supercritical fluids 

can extract fats and oils from potato chips without removing the proteins or 

carbohydrates or damaging the chips (6 ).
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There are two basic criteria used for choosing a compound for study. The 

sample compound should be similar 1n structure to previously studied compounds 

so that existing theory can be used to describe Its behavior. Previous 

supercritical studies have dealt with fused ring and substituted aromatic 

compounds such as naphthalene, phenanthrene, fluorene and pyrene (10). Also, 

the solid must have a melting point significantly above the critical point of 

the solvent. This criterion ensures that solid-solute and supercritical fluid 

Interactions are occurring.

Two types of compounds were studied 1n non-polar gases. Acridine, 

dlbenzofuran and 4,5-d1phenylImidazole are polar solutes used to supplement 

other supercritical solubility work done by Hansen on these compounds (12). 

Hansen chose these compounds because they are representative of some of the 

functional groups found in coal. Since the optimum future use of coal 1s as en 

organic resource that can be converted to gaseous and liquid fuels and other 

chemicals, research is needed in the area of extracting and separating the 

various constituent compounds of coal. In order to best represent polar 

compounds, these solids have dipole moments close to or larger than 1 Debeye 

(see Table I).

Carbontetrabromide and camphor were chosen to utilize partial molar 

volume data on these solids, measured by Z1ger (7). Zlger chose these solids 

because of their high volatility. Both vapor pressures are above 0.1 torr at 

room temperature (see Table I).

Carbondloxide was chosen as a solvent because 1t 1s plentiful, relatively 

cheap and Is already well documented 1n supercritical studies. Ethylene has 

also been used extensively by other researchers.

COMPOUND SELECTION
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TABLE I. SELECTED COMPOUNDS FOR SUPERCRITICAL 

SOLUBILITY STUDIES

Compound Structure Tmp (°C) u(D)

Dlbenzofuran

c 12h8°

eg
X

81-83 0.9

Acridine

w

(8)oTol
N N ' X /

107 2.13
*

4,5-D1phenyl Imidazole 

C15H12N2

( p

0 X )
232-233 4.34

Compound Structure Tmp (°C)
P25 (25°C) 

torr

Ca rbon tetra bromlde
' Br 

Br-C-Br 

Br
90-94 .713

Camphor

CH,r / v
C(CH3)2

178 .259



THEORY

Although there are numerous Industrial applications of supercritical 

extraction, the fundamental thermodynamic behavior of the supercritical phase 

1s not well understood. The major goal of present supercritical fluid 

research Is to develop an analytical semi-theoretical model to predict this 

behavior. Solubility measur. nents can then be used with various thermodynamic 

equilibria equations to obtain fundamental supercritical quantities.

An equation for the mole fraction of the solute 1n the fluid Is obtained 

by equating the chemical potential for the two phases. The fugaclty of the 

solid 1s:

f S
2

V, (P-P°)
(P°) exp — -------

RT
Eq. 1

The fluid phase can be described as either an "expanded" liquid or a nonideal 

gas. The fugacltles are then:

f2L - X2f«2L)P°) 2(P°iX2) exP
P v2(X2 ,P)dP

RT
Eq. 2

f v
2 a W Eq. 3

Most frequently, the gas approach 1s used. By equating Eq. 1 and Eq. 3, 

the mole fraction solute 1s:

y2 exp v2 (P-P°)
-------/d2P
RT

Eq. 4
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All parameters In this equation can be measured*#1 easily evaluated with the 

exception of the fugaclty coefflent, (<2. ^2 4 treasure °f  the nonideality
of the fluid phase and can be described with an equation of state;

In *Z "ITT 0 ^fn^T^n, '  73dP Eq‘ 5
where the derivative 1s the partial molar volume, v2. v2 Is the most 

fundamental thermodynamic property characterizing the supercritical fluid, yet 

1t 1s difficult to measure and cannot be obtained directly from y2 vs. P 

data. This Is because v2 1s a complicated function of the Isothermal 

compressibility. Z1ger (7) has measured large negative values for v2 In the 

near critical region, some as large as -2 x 10* cc/mole.

The behavior of the vapor phase has been explained using a number of 

equations of state. Many of these use van der Waal (VDW) type models such as 

the Carnahan-StarUng and Redllch-Kwong equations. The difficulty with using 

VOW theory lies 1n choosing the most physically meaningful method to obtain 

the adjustable VDW parameters.

The parameters used by Johnson and Eckert to model the fluid phase fit 

existing solid-fluid equilibrium data well (8,9,10). The advantage of both 

their Carnahan-Starling VDW and Augumented VDW models 1s that use of a 

corresponding states theory based on critical properties 1s avoided. Fluid- 

solute systems are highly asymmetric, with the large solute molecules and 

small solvent molecules having vastly different critical properties. 

Corresponding state approaches cannot describe the molecular Interactions of 

such different molecules because, for Instance, a small molecule will 

Instantaneously Interact with only part of a large molecule. So, a mixing
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rule which combines pure component critical properties of vastly different 

natures Into a mixture critical property cannot be very accurate.

The solute properties used 1n the CS-VDH and AVOW models were the 

enthalpy of vaporization and the vapor pressure. CS-VOW predicts behavior 1n 

the relatively Incompressible dense supercritical region, while the AVDW model 

Is successful down to the critical density and converges with the CS-VOW model 

at higher densities (10). The difference between the two models 1s the 

attractive parameter. The CS-VDW model under-predlcts the attractive forces 

1n the mixture.

First estimates of relative degrees of solid solubilities 1n 

supercritical studies are given by the solute vapor pressures. At low 

pressures, the solubility decreases as temperature 1s raised because the 

solvent density decreases. At high pressures, the density Is not as 

temperature dependent as at low pressures. In this region of 11qu1d-lIke 

density, the solubility will Increase with Increasing temperature due mainly 

to the Increase 1n solid vapor pressure (8). So, solubility 1s a strong 

function of density rather than pressure or temperature. Actually, the log of 

the solubility 1s linearly related to solvent density.

The most useful way to correlate the unique supercritical solubilities Is 

to compare them to Ideal solubilities. The enhancement factor 1$ a 

dimensionless correction factor which can be applied to the Ideal-gas 

expression of solute solubility as a measure of the extent that pressure 

enhances the solubility of the solid 1n the gas.

Eq. 6
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In supercritical fluids, E corresponds to non-1dea11t1e$ of 103-105 (8). 

Ideal gas solubility 1s simply the partial pressure of the solid at low 

pressure, Ideal conditions.

Prausnltz (11) defines E as:

v 5dPC r P V2
2 (p2 ) exp ps n rr  

h
Eq. 7

The

Note that the fugaclty coefficient Is needed to predict enhancement factors. 

Measurements of ^  can be used to calculate enhancement with the equation:

E Eq. 8



APPARATUS

The original solubility apparatus was built and used by Johnson (10).

The apparatus was then used and modified by Zleger (7) and Hansen (12). In 

this work, Improvements to the system were made. A switching value assembly 

was added to the sample collection section for safety reasons since previously 

studied compounds were nonpolar and less toxic. The bath temperature range 

was Increased using a glycol cooling system. There are four main sections of 

the apparatus (Figure 1): a pressurizing system, a pressure controlling 

system, a temperature controlled water bath containing the equilibrium cell 

(saturator) and the flow control and measurement system.

Pressurizing System

Using an air driven gas compressor (Haskell Model # AG-152), the solvent 

gas Is taken from a high pressure reservoir. This reservoir 1s heat treated 

stainless steel with all female fittings for 1/4" tubing. The approximate 

reservoir pressure 1s measured with a bourdon tube gauge.

Pressure Control

Pressure control within the system 1s maintained with a hand-controlled 

Tescom (series 26-1000) pressure regulator. This regulator 1s rated for a 

maximum pressure of 10,000 ps1. Since changes 1n flowrate or Inlet pressure 

can cause the regulator outlet pressure to vary, the regulator must be 

adjusted accordingly during an experimental run. Two Helse bourdon-tube 

gauges, ranges 0-2000 psl and 0-15,000 p$1, Indicate regulator outlet 

pressure. Pressure readings are accurate to ± 2 ps1 1n the lower range and ±

5 ps1 In the upper range.

8
*
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Temperature Control

Temperature control 1s achieved using a Halllkalren Thermotrol (Model # 

1053) In an Insulated stirred water bath. This heat 1s balanced 1n two 

ways. For moderate to high bath temperatures, water at about 15°C 1s 

circulated through the bath 1n copper colls. For bath temperatures below 

ambient temperature, ethylene glycol 1s cooled to below 0°C 1n a refrigeration 

unit and pumped through a second set of copper colls. For the highest bath 

temperatures, two auxiliary heaters ore used. Their output Is controlled by 

two variable voltage transformers. The bath temperature Is easily maintained 

from 12°C to 70°C and 1s accurate to ± 0.1°C. Bath temperature 1s read with a 

calibrated mercury thermometer to ± .05 C.

Flow Control and Measurement

The micrometering valve (Autoclave Engineering Model HT-A10960) situated 

between the saturator and the sample collection section reduces the high 

system pressure to atmospheric pressure. Within the valve, the pressure drop 

occurs between a shallow tempered stem and a seat with a .062" orifice. Flow 

control 1s achieved by varying the open area between the stem and seat. A 

uniquely machined stainless steel adapter, length 2 3/4", connects the 

micrometering valve to the high temperature switching valve. The switching 

valve has two outlets, accepting a sample trap and a waste trap, 

simultaneously.

To obtain smooth flow rates, solute precipitation must be prevented 

between the saturator and cold traps. Clogging due to precipitation 1s 

minimized by heating the micrometering value, connector, and switching 

valve. To melt clogged solute, 85 watt cartridge heaters are Installed 1n 

3/8" holes drilled 1n the valve housings. An aluminum block around the 

connector also holds a heater. All heaters are controlled with variable



voltage transformers.

The collection traps are constructed from 6" side-arm test-tubes. A thin 

walled copper tube enters the trap through a drilled Teflon stopper. Above 

the stopper a 90° bend leads to a coned brass end which 1s secured to the 

switching valve with a high pressure fitting. The trap 1s plugged with steel 

wool to prevent entrained solute from escaping. Stainless steel wool or glass 

wool was used for the carbontetrabromlde runs. The traps are Immersed 1n an 

Ice-water bath to enhance precipitation. This bath 1s constructed of clear 

plexiglass for visual checks of the amount of solute collected. An acetone- 

dry 1ce bath within the Ice-water bath was used for the more volatile 

compounds: carbontetrabromlde and camphor.

Gas flow 1s monitored with two gas-washers and measured with a wet test 

meter (Precision Scientific) 1n series with a soap bubble meter. The gas 

washers provide a quick check of gross gas flow rate and of which trap 1s 

collecting solute. The bubble meter can measure Instantaneous flow rates 

while the wet-test meter measures the total solvent volume.

11



PROCEDURE

Solubility measurements were performed using a modified procedure of the 

one developed by Johnston (10).

The apparatus Is prepared for an experimental run by firmly packing the 

saturator with 5 to 10 grams of finely ground solute. Each end of the 

saturator 1s plugged with a small bead of steel wool to prevent bulk movement 

of the solute from flow pressure. The saturator 1s connected to the tubing 

and left 1n the bath for at least three hours prior to a run to ensure the 

solute 1s at the bath temperature. The saturator 1s repacked when about 60X 

of the solute has been collected. The valves and connector are heated to 7S°C 

above the melting point of the solute. The feed gas 1s compressed to about 

1000 psl above the experimental pressure.

From .1 to .2 ft3 of gas Is passed through the saturator and Into the 

waste trap to ensure equilibrium conditions. When equilibrium 1s attained, 

the flow 1s switched to the sample trap and a run Is begun. Previously, traps 

were connected directly to the single outlet micrometering valve. When the 

sample trap was substituted for the waste trap, either flow was reduced and 

equilibrium lost or dangerous nitrogen, oxygen, and sulfer substituted 

aromatic compounds entered the room 1n vapor form. The switching valve 

eliminates these problems.

At the start of a run, the flow meter reading Is recorded. Flowrates, 

bath temperature and system pressure are checked every few minutes during a 

run. 6as flowrate Is typically held between 10 and 30 seconds per .01 ft3 

gas. This flowrate can vary 20% without, affecting results (10). The more 

soluble compounds are run at the slower flowrates for easier collection. When

12
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an estimated sample weight of at least .1 gram has been collected, the flow 1s 

switched back to the waste trap and the final flow meter reading Is 

recorded. The time required for a sample run depends on the solute 

solubility. Under the most Insoluble conditions, such as acridine 1n ethylene 

at low pressures and temperatures, runs can take two hours. For very soluble 

conditions such as dlbenzofuran at high temperatures, runs can take less than 

two minutes.

Collected solute weights were determined by weighing the traps before and 

after each run. An analytical balance was used to measure weight to ten 

thousands of a gram, accurate to * .0004 g. The trapptwere re-used for runs of 

the same solute. Sample traps were gassed with nitrogen before each time they 

were weighed. This procedure eliminated weighing errors due to differences 

between the solvent densities and air density. An exception to this procedure 

was used with carbontetrabromlde due to Its high volatility. Traps used for 

this solid were pregassed with carbondloxlde for Initial weighings of runs 

with fluid carbon dioxide and were not gassed before final weighings. When 

carbontetrabromlde was run 1n supercritical ethylene, the traps were not 

gassed with nitrogen before either weighing. Also, traps used for this solid 

were never reused.



CHEMICALS

The gases used were supplied by Linde Specialty Gases and Air Products. 

The ethylene was 99.8X pure and the carbondloxlde was 99.99X pure. 

Dlbenzofuran 98X m1n purity and acridine 97X purity were supplied by 

Aldrich. The acridine was further purified to 98X m1n purity by a hot 

ethanol, water recrystalUzatlon. Carbontetrabromlde at 98X m1n purity was 

supplied by Alpha Products.

14



EXPERIMENTAL

Solubility versus pressure data were measured for dlbenzofuran, acridine, 

and carbontetrabromlde 1n ethylene and for carbontetrabromlde 1n 

carbondloxide. For each experimental run, the system temperature and 

pressure, total volume of gas that flowed through the collection trap, and the 

weight of the solid collected were measured. Gas density was calculated from 

measurements of the wet-test meter temperature and pressure and atmospheric 

pressure using the Ideal gas law with a residual temperature function (see 

Appendix III). The data 1s presented as mole fraction solute versus pressure 

and versus supercritical fluid density for each Isotherm (see Tables II, II,

IV and V).

Because the system Is dilute, the fluid density 1s approximated by the 

pure solvent density at system conditions. Pure solvent densities are 

obtained from IUPAC monographs for carbondloxlde (13) and ethylene (14).

Above the critical point these densities are accurate to i 0.2X, but close to 

the critical point accuracy Is probably not as good, since the fluids are 

highly compressible.

The mole fraction versus pressure for these four systems are plotted In 

Figures 2, 3, 4 and 5.

At low pressures, the carbontetrabromlde 1s more than twice as soluble as 

dlbenzofuran 1n ethylene. But, at higher pressures, the carbontetrabromlde 1s 

only about 1.3 times more soluble as the dlbenzofuran. Carbontetrabromlde 1s 

about 30 times as soluble as acridine 1n ethylene. Carbontetrabromlde 1s 

three times more soluble 1n ethylene than In carbondloxlde. The 35°C Isotherm 

of carbontetrabromlde 1n carbondloxlde shows some leveling off of solubility

15



TABLE II. SOLUBILITY DATA FOR

Pressure
(loSpa) 10^

T = 5 0 ^  483.6
483.6
414.6
414.6
345.7
345.7
311.2
276.8
276.8
242.3
207.8
207.8
173.3
138.9
138.9
138.9
104.4
69.9
69.9

T = 35°C 483.6
483.6
414.7
414.7
414.7
380.2
380.2
380.2
345.7
311.2
276.8

4.79300
4.28464
4.40294
3.61056
2.83255
3.00449
2.51380
2.08689
2.19914
1.56995
1.38424
1.11209
0.86502
0.40686
0.63849
0.40444
0.17589
0.01345
0.01173
1.35709
1.44202
1.09234
1.49843
1.10534
1.34305
1.24221
1.1447
1.27455
1.08707
1.37442

DIBEKZOFURAN AND ETHYLENE SYSTEM

Estimated
Density (g /cc) Run #

.486016 697 

.486016 698 

.475461 694 

.475465 695 

.463260 687 

.463260 689 

.456280 490 

.448339 665 

.448335 693 

.439660 683 

.429569 662 

.429569 664 

.417065 684 

.401658 656 

.401658 657 

.401658 658 

.381605 685 
•345828 660 
.345828 661 
.486017 721 
.486017 723 
.475462 718 
.475462 719 
.475462 720 
.469556 733 
.469556 737 
.469556 73Q 
.463262 713 
.456208 725 
.448337 709



TABLE II. Continued

276.8 1.26774
276.8 0.93018
242.3 0.97589
207.8 0.77490
207.8 0.83360
173.3 0.56050
138.9 0.41827
138.9 0.29901
138.9 0.22415
104.4 0.21565
69.9 0.01383

448337 7io 
448337 7i i  
439660 726 
429566 707 
429566 708 
417066 727 
401652 703 
401652 704 
401652 705 
381606 728 
345813 702



TABLE III. SOLUBILITY DATA FOR ACRIDINE AND ETHYLENE SYSTEM

Pressure
(105Pa) Estimated

Density (g/cc) Run #

T = 35°C 483.6
483.6
483.6
483.6
414.7
414.7
414.7
380.2
345.7
345.7
345.7
311.2
276.8
276.8
276.8
276.8
276.8
242.3
207.8
207.8
207.8
207.8
207.8
173.3
138.9
138.9
138.9
104.4
69.9
69.9

.10631

.10690

.07733

.10445

.07157

.09055

.15880
0.7921
.07149
.08133
.08362
.06143
.07607
.04635
.07035
.09919
.07044
.05286
.06774
v04973
.08210
.06855
.07427
.02814
.02454
.03928
.04975
.02367
.00178
.00064

.4599

.4599

.4599

.4599

.4472

.4472

.4472

.4400

.4322

.4322

.4322

.4232

.4129

.4129

.4129

.4129

.4129

.4012

.3870

.3870

.3870

.3870

.3870

.3674

.3387

.3387

.3387

.2938

.1534

.1534

645
646
647
648
641
642 
644
649 
621
639
640
650
630
631
632
633 
638
651
623
624
627
628 
635
652 
620
634 
637
653 
618 
626



TABLE IV. SOLUBILITY DATA FOR CARBONTETRABROMIDE IN ETHYLENE SYSTEM

Pressure
(105pa}

Estimated 
Density (g /cc) Run #

T = 12°C 414.7
414.7
345.7
345.7
345.7
311.2
276.8
276.8
276.8
276.8
207.8
207.8
207.8
173.3
138.9
138.9
104.4
69.9

T = 25°C 69.9
69.9
59.6
59.6
59.6
53.4
53.4
53.4

7.00837
6.82747
6.52929
6.50780
6.48550
5.33597
5.35662
4.74906
4.70200
5.54576
4.17318
4.14173
4.10382
3.41949
3.29788
3.32235

.70991
1.13699
.91586
.92292
.09814
.09044.10101
.07238
.06594
.06658

.4732

.4732

.4608

.4508

.4608

.4536

.4455

.4455

.4455

.4455

.4263

.4263

.4263

.4133

.3972

.3972

.3759

.3351

.2258

.2258

.338

.1338

.1338

.1030

.1030

.1030

854
855
851
852
853
857
848
849
850
858
845
846
847 
860
842
843 
861 
841
809 
818
815
816 
817
810 
811 
812



TABLE V. SOLUBILITY DATA FOR CARBONTETRABROMIDE IN CARBONDIOXIDE

Pressure
(105Pa) 2 Estimated

10 y Density (g /cc) Run #

T = 35°C 207.8 2.08161
207.8 1.88322
207.8 2.16374
138.9 1.52613
138.9 1.73613
118.2 1.69219
107.9 1.34068
107.9 1.52026
97-5 1.35122
97.5 1.57066
87.2  1.03320

.8717

.8717

.8717

.7912

.7912

.7469

.7247

.7247

.6957

.6957

.5989

797
798
799
800 
801 
807 
802 
806 
802
804
805
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Figure 2. Solubility versus pressure Isotherms for dlbenzofuran in

ethylene.
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Figure 4. Solubility versus pressure IsotheuiiH for carbontetrabromlde

In ethylene.
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above 100 (.1 MPa) while the 12°C Isotherm 1n ethylene does not. For both 

dlbenzofuran and acridine, the 35°C Isotherm exhibits leveling off while the 

50°C Isotherm does not.

Since the mole fraction Is a stronger function of density than of 

pressure, plots of mole fraction versus density represent the data better (see 

Figures 6, 7, 8 and 9). The log mole fraction versus density plots show that 

this relationship 1s relatively linear (see Figures 10, II, 12 and 13).

As discussed earlier, the non-idealities of the solid-fluid system are 

Included In the enhancement factor. To calculate enhancement factors, the 

vapor pressures of the solutes are required. Vapor pressure valves for 

acridine are tabulated from 8°C to 50°C (15). Dlbenzofuran vapor pressures 

were extrapolated from vapor pressures of the liquid (12,16). 

Carbontetrabromlde vapor pressures were calculated using the Antoine equation 

and constants from literature (17).

The log enhancement factor versus density 1s linear for every system (see 

Figures 14, 15, 16 and 17).

The uncertainty 1n the solubility data corresponds directly to the 

uncertainty 1n the collected solute weights. This uncertainty was estimated 

by Johnston (10) to be about 2-5X. Uncertainties 1n temperature, pressure, 

and gas flow are negligible except very near the solvent critical point. Near 

the critical point small deviations 1n pressure can cause 2% uncertainty 1n 
solubility. The relative error for the solubility data Is calculated using 

the sums of squares methods (12).

Measurement of anthracene solubility 1n ethylene at 70°C agreed well with 

data reported by Johnston (10) (see Appendix I).
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Figure 9
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Figure 12.

0 .

1 .

ETHYLENE ~ CARBONTETRABROMIDE 
A - 25.0 C 
O- 12.0 C

-2. A

— 3.

0 .
. 1

.2
.3

DENSITY<G/CC>

. 4
.8

Log solubility versus density Isotherms for carbontetrabromlde 

In ethylene.



?*
*-
*c
:r
-o
<A
 

z
o
m

o
>

^
t

i
 

ni
r~

0 
2
 

o
o
r

33

e.

-.5
CARBON DIOXIDE 

CARBONTETRABROMIDE 

O- 3s.e c

- i .

-I .5

— 2. o
--------------,--------------- h

.4
2 .6 

DEN$I?V<0/CC>

e

Figure 13. Log solubility versus deoilty Isotherms for carbontetra 

bromide 1n carbondloxide.



34

DENSITYC6/CO

Figure 14. Log enhancement factor versus density for dlbenzofuran In

ethylene.
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CONCLUSION

This study has enlarged the solid-fluid equilibrium data base with 

compounds representative of coal-constituents and also with highly volatile 

compounds.

1. The most meaningful representation of the non-idealities of the solid- 

fluid system 1s the enhancement factor.

2. The log enhancement factor 1s roughly linear with density over several 

orders of magnitude.
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APPENDIX I

COMPARISON OF ANTRACENE IN ETHYLENE OATA
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APPENDIX II

OTHER SYSTEMS

The compound 4,5-d1phenylImidazole was run 1n ethylene at a system 

temperature of 50°C and a pressure of 3000 ps1. Six trials of this system 

were run. Although as much as 5.1 ft^ of fluid was passed through the 

saturator, negligible solid was collected. It was decided that 4,5- 

dlphenylImidazole was too Insoluble to be studied further.

The opposite problem occurred with camphor 1n ethylene. Even at the low 

system temperature of 12°C and low pressure of 800 ps1, the compound was 

extremely soluble. Some trials at this low pressure yielded mole fractions of 

3.3% or greater. This high solubility was Impossible to measure accurately or 

with small scatter because the saturator would empty of solute before positive 

flow equilibrium could be achieved. Another problem was that clogging 

occurred In the mlcrometerlng valve regardless of valve temperature.
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APPENDIX IV

NOMENCLATURE

Symbols

p density

p pressure

T temperature

h mole fraction solute

E enhancement factor

PS vapor pressure

0 fugaclty coefficient

V volume

R gas constant

f fugaclty

V partial molar volume

Pa pascal

Subscrlpts

1 component 1

1 solvent

2 solute

mp melting point

Superscripts

s saturation

Prefixes

m mini (10‘3)

M mega (106)
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