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Abstract

In this thesis, we consider the decentralized switched control problem where exact condi-

tions for controller synthesis are obtained via Linear Matrix Inequalities (LMIs). Using

known derivations for a centralized controller with look-ahead, we were able to extend the

decentralized problem with finite memory to include receding horizon modal information. We

then compare the performance of a switched controller with finite memory and look-ahead

horizon to that of a linear time independent (LTI) controller using a MATLAB simulation.

The decentralized controller is further tested with a real-world system comprised of two

HoTDeC hovercrafts.
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Chapter 1

Introduction

1.1 Motivation

In this thesis, we are interested in the control of decentralized nested systems with switching

dynamics. Nested systems represent a hierarchy of subsystems with a unidirectional flow of

information amongst them, such as the configuration presented in Figure 1.1. This setup can

be encountered in many real-world applications, such as economic theory, power systems,

and interconnected vehicle formations.

For the controller synthesis, we will consider the H∞-type cost criteria. This criteria is

also referred to as disturbance attenuation or root-mean square gain. The main idea behind

this performance measure is to minimize the effect of the worst-case disturbance onto the

energy of the system.

H∞ optimal control of nested systems has only recently been developed. In [1], the author

considered the decentralized control of continuous-time time-invariant systems with nested

interconnection structure. The discrete-time time-varying version of the optimal control

problem was considered in [2].

The theoretical background in this thesis mostly stems off of the results for nested

switched systems presented in [3]. The controller synthesis developed in the paper con-

siders the case of a controller with finite memory of past modes. We will then present an

extension for a controller with receding horizon modal information, as it was shown for the

centralized case in [4].
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Lastly, we are interested in seeing how the switched controller performs in a real-world

system; more specifically, a system comprised of the HoTDeC hovercrafts developed at the

University of Illinois. We would like to see how the system behaves in the scenario of a leader

vehicle with followers trailing behind both in simulation and experimentation.

Figure 1.1: Example of a nested interconnection of n-systems.

1.2 Overview

In Chapter 2, we introduce the decentralized switched problem and exact conditions for

existence of a controller with finite memory. We then present an extension for a controller

with receding horizon modal information.

In Chapter 3, we describe the testbed setup in which the controller was tested. It presents

the robots used, along with a brief description of its dynamical model.
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Chapter 4 focuses on the controller design process. We also present a simulation model

developed in Simulink and some results of the controller developed.

In Chapter 5 we implement the controller into the testbed setup described in Chapter 3.

We present some experimental results and compare them with the simulations.

Chapter 6 concludes the thesis and suggests future work.
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Chapter 2

Switching Systems

This chapter introduces the switched control problem and conditions for existence of a con-

troller. Background information and the necessary derivations for the analysis of switched

systems are provided. Then, an extension of the controller to a discrete-time linear nested

system with finite memory and look-ahead horizon is presented. In the end of the Chapter,

we discuss an example comparing the performance of controllers with different memory and

horizon lengths.

2.1 Notation

We denote the space of n-dimensional symmetric, positive-definite, and positive-semidefinite

matrices by Sn, Sn+, and S̄n+. For any matrix W , we use W⊥ to denote full column rank

matrices satisfying Im(W⊥) = ker(W ), W>
⊥W⊥ = I.

We denote `n to be the space of infinite indexed sequence of elements as

x = (x(0), x(1), x(2), . . .) with x(t) ∈ Rn for t ∈ N0. A subspace of `n is the Hilbert

space `n2 (or simply `2) which is equipped with the inner-product 〈x, y〉 :=
∑∞

t=0 x(t)>y(t)

and with norm
∑∞

t=0 |x(t)|22 <∞. We denote its norm by ‖ · ‖.

To denote the number of decentralized subsytstems in the nested setup, we use M . The
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space of block-lower triangular matrices takes the form
H11 0 . . . 0

H21 H22 0
...

. . .
...

HM1 HM2 . . . HMM


by S

(
(m1, . . . ,mM), (k1, . . . , kM)

)
so that Hij ∈ Rmi×kj and Hij = 0 for i < j. Additionally,

the notation J = {1, . . . ,M} and J̄ = {0, . . . ,M} is utilized.

2.2 Preliminaries

2.2.1 Mode Dependent Switched Systems

A switched system is defined to be a multi-model system that allows transitions among

operation models, where each mode corresponds to a distinct state-space model ([5]). The

system dynamics are given by

x(t+ 1) = Aθ(t)x(t) +Bθ(t)w(t)

z(t) = Cθ(t)x(t) +Dθ(t)w(t)
(2.1)

where the system matrices depend on the switching signal θ(t). We assume that our switching

signal takes values from a discrete and finite setN = {1, . . . , ns}, and that switching between

values in time is governed by a finite-state automata. The sequences generated by such an

automaton are referred to as admissible sequences. We denote the set of admissible sequences

of length r ∈ N0 as Ar.

For the decentralized control problem, we consider the following mode-dependent switched

5



plant

x(t+ 1) = Aθ(t)x(t) +Bw
θ(t)w(t) +Bu

θ(t)u(t)

z(t) = Cz
θ(t)x(t) +Dzw

θ(t)w(t) +Dzu
θ(t)u(t) (2.2)

y(t) = Cy
θ(t)x(t) +Dyw

θ(t)w(t)

Here w(t) ∈ Rnw is the disturbance input, z(t) ∈ Rnz is the performance output, u(t) ∈ Rnu

is the control input, and y(t) ∈ Rny is the measurement available to the controller. The

states, inputs, and outputs are partitioned as

x(t) =


x1(t)

...

xM(t)

 , u(t) =


u1(t)

...

uM(t)

 , y(t) =


y1(t)

...

yM(t)


where xi(t) ∈ Rni , ui(t) ∈ Rnui , and yi(t) ∈ Rnyi . The dimensions satisfy n =

∑M
i=1 ni,

nu =
∑M

i=1 n
u
i , and ny =

∑M
i=1 n

y
i . We also introduce the tuple n̄ = (n1, . . . , nM) and

similarly define n̄u and n̄y.

Since we are interested in nested systems, as in Figure 1.1, we want to enforce a certain

structure to our system matrices. To this end, we make the following assumption:

Assumption 1. We assume that Aφ ∈ S(n̄, n̄), Bu
φ ∈ S(n̄, n̄u), and Cy

φ ∈ S(n̄y, n̄) for all

φ ∈ N .

2.2.2 Path Dependent Systems

Now consider the switched system

x(t+ 1) = AΩ(t)x(t) +BΩ(t)w(t)

z(t) = CΩ(t)x(t) +DΩ(t)w(t)
(2.3)

whose system matrices at time t depend on a switching path Ω(t) = (θ(t − L), . . . , θ(t)) ∈

AL+1 consisting of L+ 1 recent values of the switching parameters. We refer to these types
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Figure 2.1: Interconnection diagram of a controller with plant. Figure taken from [3].

of systems as finite-path dependent systems with memory of length L. We can modify

such systems to be mode-dependent by introducing induced automata to reflect the path

dependence. This is done by assuming the induced automata state-space to be Ñ = AL+1.

Admissible sequences of length r in the induced automata are denoted by ÃLr . It is not

difficult to verify that elements in ÃLr are equivalent to those of Ar+L for r > 0.

For a sequence Φ = (α0, . . . , αr) ∈ ÃLr+1, there exists an equivalent sequence (β0, . . . , βr+L) ∈

Ar+L+1. For r > 0 we define Φ̄,
¯
Φ ∈ Ar+L, Φ† ∈ Ñ = AL+1, and Φ? ∈ N as

Φ̄ := (β1, . . . , βr+L) ' (α1, . . . , αr),
¯
Φ := (β0, . . . , βr+L−1) ' (α0, . . . , αr−1),

Φ† := (β0, . . . , βr+L) ' αr, Φ? := βr+L.

When r = 0 these definitions reduce to

Φ̄ := (β1, . . . , βL),
¯
Φ := (β0, . . . , βL−1),

Φ† := (β0, . . . , βL), Φ? := βL.

7



2.2.3 System Analysis

We wish to have an exponentially stable system with `2 induced norm performance similar to

the LTV version for the Kalman-Yakubovich-Popov (KYP) lemma (see [6]). Since switched

systems are special cases of LTV systems, we have the following lemma for switched systems.

Lemma 1. The mode-dependent system (2.1) is exponentially stable and satisfies ‖w 7→

z‖ < 1 if and only if there exists an r ∈ N0 and a set of positive-deinite matrices {XΨ}Ψ∈Ar

satisfying X¯
Φ 0

0 I

−
AΦ? BΦ?

CΦ? DΦ?

> XΦ̄ 0

0 I

AΦ? BΦ?

CΦ? DΦ?

 � 0

for all Φ ∈ Ar+1.

The following lemma is an extension of the above lemma to path-dependent systems.

Lemma 2. The finite-path dependent system (2.3) with a memory L ∈ N0 is exponentially

stable and satisfies ‖w 7→ z < 1 if and only if there exists an r ∈ N0 and a set of positive

definite matrices {XΨ}Ψ∈Ar+L satisfying

X¯
Φ 0

0 I

−
AΦ† BΦ†

CΦ† DΦ†

> XΦ̄ 0

0 I

AΦ† BΦ†

CΦ† DΦ†

 � 0

for all Φ ∈ ÃLr+1.

Note that finite-path dependent systems with memory L1 ∈ N0 are also contained in the

set of finite-path dependent systems with memory L2 > L1. Also, suppose the system in

(2.3) with memory L1 has positive-definite scaling matrices {Xψ}Ψ∈Ar1+L1
satisfying (2) for

some r1 > 0. Then we can alternatively choose a memory L2 = L1 + r′ and r2 + r1 + r′

for some non-negative integer r′ ≤ r1 and use the same scaling matrices {Xψ}Ψ∈Ar2+L2
to

describe the same set of inequalities, hence the same stability and performance properties.

2.2.4 Switching control

For the plant (2.2), our goal is to design a finite-dimensional, finite-path dependent linear

controller with block lower triangular sparsity structure. We use the following state space
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representation for our controller

xK(t+ 1) = AKΩ(t)x
K(t) +BK

Ω(t)y(t)

u(t) = CK
Ω(t)x

K(t) +DK
Ω(t)y(t)

(2.4)

For a controller with memory L, the switching path corresponds to Ω(t) = (θ(t−L), . . . , θ(t)) ∈

AL+1. The controller state xK(t) ∈ RnK is partitioned as
[
(xK1 (t))> . . . (xKM(t))>

]
with

xKi (t) ∈ RnKi , thus satisfying nK = nK1 + . . . + nKM . That being said, the goal is to de-

sign the above controller with the following associated structured controller matrices for

every admissible sequence Ψ ∈ AL+1,

AKΨ ∈ S(n̄K , n̄K), BK
Ψ ∈ S(n̄K , n̄y)

CK
Ψ ∈ S(n̄u, n̄K), DK

Ψ ∈ S(n̄u, n̄y)
(2.5)

where n̄K = (nK1 , . . . , n
K
M). Thus, the resulting controller has a y to u mapping with a lower

triangular sparsity structure as depicted in Figure (2.1).

Using a path dependent controller of memory L, with the plant (2.2), the closed-loop

system has the following dynamics:

xC(t+ 1) = ACΩ(t)x
C(t) +BC

Ω(t)w(t)

z(t) = CC
Ω(t)x

C(t) +DC
Ω(t)w(t)

(2.6)

with xC(t) =

 x(t)

xK(t)

. At any time t, the closed-loop matrices with depend on the same

switching sequence Ω(t) ∈ AL+1 as the controller (2.4). Hence, for all sequences Ψ ∈ AL+1 we

can write the closed-loop system matrices as an affine combination of the controller matrices

as

QC
Ψ :=

ACΨ BC
Ψ

CC
Ψ DC

Ψ

 =


AΨ? +Bu

Ψ?
DK

ΨC
y
Ψ?

Bu
Ψ?
CK

Ψ Bw
Ψ?

+Bu
Ψ?
DK

ΨD
yw
Ψ?

BK
ΨC

y
Ψ?

AKΨ BK
ΨD

yw

Cz
Ψ?

+Dzu
Ψ?
DK

ΨC
y
Ψ?

Dzu
Ψ?
CK

Ψ Dzw
Ψ?

+Dzu
Ψ?
DK

ΨD
yw
Ψ?
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Then the above can be written as

QC
Ψ = RΨ? + (UC

Ψ?)
>QK

ΨV
C

Ψ? (2.7)

with QK
Ψ =

AKΨ BK
Ψ

CK
Ψ DK

Ψ

 representing the unknown controller matrices, and the following

defined for φ ∈ N

RΨ? =


Aφ 0 Bw

φ

0 0 0

Cz
φ 0 Dzw

φ

 , (UC
φ )> =


0 Bu

φ

I 0

0 Dzu
φ

 , V C
φ =

 0 I 0

Cy
φ 0 Dyw

φ



Since the matrix QK
Ψ is structured, we can write it as a linear combination of unstructured

matrices as follows,

QK
Ψ =

M∑
i=1

ĒK
i−1 0

0 Ēu
i−1

QK
i,Ψ

EK
i 0

0 Ey
i

> (2.8)

where QK
i,Ψ for each i ∈ J is an unstructured matrix of dimension

(
(nKi + nui ) + . . .+ (nKM +

nuM)
)
×
(
(nK1 + ny1) + . . .+ (nKi + nyi )

)
, and matrices E•i and Ē•i are defined below for i ∈ J̄ ,

E•i =

In•1+...+n•i

0

 , Ē•i =

 0

In•i+1+...+n•M


with • denoting one of K, u, or y. Note that the row diumension of above matrices is n•,

and that they satisfy (Ē•>i )⊥ = E•i and (E•>i )⊥ = Ē•i . We can then write (2.7) as

QC
Ψ = RΨ? =

M∑
i=1

(UC
i,Ψ?)

>QK
i,ΨV

C
i,Ψ? (2.9)
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with

UC
i,φ =

 0 (ĒK
i−1)> 0

(Ēu
i−1)>(Bu

φ)> 0 (Ēu
i−1)>(Dzu

φ )>


V C
i,φ =

 0 (EK
i )> 0

(Ey
i )>Cy

φ 0 (Ey
i )>Dyw

φ


We can define further the following matrices

Ny
i,φ =

Ny,x
i,φ

Ny,w
i,φ

 =
[
(Ey

i )>Cy
φ (Ey

i )>Dyw
φ

]
⊥

Nu
i,φ =

Nu,x
i,φ

Nu,z
i,φ

 =
[
(Ēu

i )>(Bu
φ)>(Ēu

i )>(Dzu
φ )>

]
⊥

With respect to Lemma 2, the closed loop scaling matrices are denoted by XC
Ψ ∈ Sn+nK

+ ,

defined for each Ψ ∈ Ar+L and some appropriately chosen r ∈ N0. These matrices are

partitioned into plant and controller sections as

XC
Ψ =

 XΨ XGK
Ψ

(XGK
Ψ )> XK

Ψ

 , (XC
Ψ )−1 =

 YΨ Y GK
Ψ

(Y GK
Ψ )> Y K

Ψ

 (2.10)

with XΨ, YΨ ∈ Sn+, XGK
Ψ , Y GK

Ψ ∈ Rn×nK , and XK
Ψ , Y

K
Ψ ∈ SnK+ . We further define the following

for i ∈ J̄ ,

Zi,Ψ :=
{
XΨ −XGK

Ψ ĒK
i

(
(ĒK

i )>XK
Ψ Ē

K
i

)−1
(XGK

i ĒK
i )>

}−1

= YΨ − Y GK
Ψ EK

i

(
(EK

i )>Y K
Ψ EK

i

)−1
(Y GK

ψ EK
i )>

(2.11)

The following lemma is the discrete time equivalent of the Elimination Lemma presented

in [7]

Lemma 3. Given Z ∈ Sn+, Z̃ ∈ Sm+ , R ∈ Rn×m, and matrices {Ui}Mi=1 and {Vi}Mi=1 with

column dimensions n and m respectively, satisfying
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ker(U1) ⊂ ker(U2) ⊂ · · · ⊂ ker(UM)

and ker(V 1) ⊃ ker(V2) ⊃ · · · ⊃ ker(VM)

the following inequality in the unstructured variables {Qi}Mi=1

Z −

(
R +

M∑
i=1

U>i QiVi

)>
Z̃

(
R +

M∑
i=1

U>i QiVi

)
� 0 (2.12)

has a solution if and only if the following holds

Ui+1⊥ 0

0 Vi⊥

> Z̃−1 R

R> Z

Ui+1⊥ 0

0 Vi⊥

 � 0, for i ∈ J̄ . (2.13)

Now, the next lemma develops necessary conditions for existence of the controller by

using Lemmas 2 and 3

Lemma 4. Consider the system (2.2). There exists a finite path dependent controller (2.4)

structured as (2.5) which stabilizes this system and achieves performance ‖w 7→ z‖ < 1 if

and only if there exists an L ∈ N0 and positive definite {XC
Ψ}Ψ∈Ar+L such that corresponding

{Zi,Ψ}Mi=0 (defined by (2.10) and (2.11)) satisfy

Nu
Φ?

0

0 Ny
Φ?

>


Zi,Φ̄ 0 AΦ? Bw
Φ?

0 I Cz
Φ?

Dzw
Φ?

A>Φ? (Cz
Φ?

)> Z−1
i,Φ̄

0

(Bw
Φ?

)> (Dzw
Φ?

)> 0 I


Nu

Φ?
0

0 Ny
Φ?

 � 0 (2.14)

for all i ∈ J̄ and Φ ∈ AL+1.

The conditions above are not sufficient because for some real L, the existence of Zi,Ψ does

not directly imply the existence of a XC
Ψ for each Ψ ∈ AL.

Lemma 5. For a symmetric matrix X =

X1 X2

X>2 X3

 with invertible X1 ∈ Sm1, X2 ∈

Rm1×m2, and X3 ∈ Sm2, we can define the triple {Za, Zb, Zc} with Za ∈ Sm1, Zb ∈ Rm1×m2,

and Zc ∈ Sm2, related to X by the following bijective mapping

12



Za = X−1
1 , Zb = −X−1

1 X2, Zc = X3 −X>2 X−1
1 X2

The triple then defines the following unique factorization

X =

 I 0

−(Zb)> Zc

Za Zb

0 I

−1

(2.15)

Further X � 0 if and only if Za � 0 and Zc � 0.

Za
i,Ψ := (E>i Zi,ψEi)

−1

Zb
i,Ψ := −Za

i,ψ(E>i Zi,ψĒi)

Zc
i,Ψ := Ē>i Zi,ψĒi − (EiZi,ψĒi)

>(E>i Zi,ψEi)
−1E>i Zi,ψĒi

(2.16)

Zi,ψ = Z l
i,ψ(Zu

i,ψ)−1 = (Zu
i,ψ)−>(Z l

i,ψ)> (2.17)

with

Z l
i,ψ =

 I 0

−(Zb
i,ψ)> Zc

i,ψ

 , Zu
i,ψ =

Za
i,ψ Zb

i,ψ

0 I

 . (2.18)

Sufficient conditions for the existence of controller synthesis is given by

Lemma 6. Given positive-definite matrices {Zi,Ψ}i∈J̄ ,Ψ∈AL , we can construct positive-definite

{XC
Ψ}Ψ∈AL satisfying (2.10) and (2.11) if and only if,

Z−1
i,Ψ I

I Zi−1,Ψ

 � 0, rank

Z−1
i,Ψ I

I Zi−1,Ψ

 ≤ n+ nKi (2.19)

for all i ∈ J and Ψ ∈ AL. Further the above rank conditions are always satisfied for nKi ≥ n.

Theorem 1. Consider the mode-dependent systems (2.2) along with Assumption 1. There

exists a synthesis of a finite-path dependent controller (2.4) which

(i) is structured as (2.5)

(ii) has dimensions {nKi }Mi=1

13



(iii) achieves closed loop performance ‖w 7→ z‖ < 1

if and only if there exists an L ∈ N0 and matrices {Za
i,Ψ, Z

b
i,Ψ, Z

c
i,Ψ}i∈J̄ ,Ψ∈AL satisfying the

following

Za
i,Ψ � 0, Zc

i,Ψ � 0 for all i ∈ J̄ , Ψ ∈ AL (2.20a)

Nu
i,Φ?

0

0 Ny
i,Φ?

>


(Zu
i,Φ̄

)>Z l
i,Φ̄

0 (Zu
i,Φ̄

)>AΦ?Z
l
i,

¯
Φ (Zu

i,Φ̄
)>Bw

Φ?

0 I Cz
Φ?
Z l
i,

¯
Φ Dzw

Φ?

· · (Zu
i,

¯
Φ)>Z l

i,
¯
Φ 0

· · 0 I


Nu

i,Φ?
0

0 Ny
i,Φ?

 � 0

(2.20b)

for all i ∈ J̄ , Φ ∈ AL+1

 (Zu
i,Ψ)>Z l

i,Ψ (Z l
i,Ψ)>Zu

i−1,Ψ

(Zu
i−1,Ψ)>Z l

i,Ψ (Zu
i−1,Ψ)>Z l

i−1,Ψ

 � 0 (2.20c)

rank

 (Zu
i,Ψ)>Z l

i,Ψ (Z l
i,Ψ)>Zu

i−1,Ψ

(Zu
i−1,Ψ)>Z l

i,Ψ (Zu
i−1,Ψ)>Z l

i−1,Ψ

 ≤ n+ nKi (2.20d)

Now that we have exact conditions for existence of controller synthesis, we can use the

next theorem to construct a finite-path dependent controller with memory L and dimensions

nKi = n for i ∈ J .

Theorem 2. Given matrices {Za
i,Ψ, Z

b
i,Ψ, Z

c
i,Ψ}i∈J ,Ψ∈AL satisfying (2.20a)-(2.20c), correspond-

ing {XC
Ψ}Ψ∈AL obtained using (2.10) and (2.11) can be used to obtain the following LMI

 diag
(
(XC

Φ̄
)−1, I

) (
RΦ? +

∑M
j=i(U

C
j,Φ?

)>Q̃K
j,ΦṼ

C
j,Φ?

)
(V C

i−1,Φ?
)⊥

(V C
i−1,Φ?

)>⊥

(
RΦ? +

∑M
j=i(U

C
j,Φ?

)>Q̃K
j,ΦṼ

C
j,Φ?

)>
(V C

i−1,Φ?
)>⊥diag(XC

¯
Φ , I)(V C

i−1,Φ?
)⊥

 � 0

(2.21)

in variable Q̃K
i,Φ for each Φ ∈ AL+1, and solved in the order i = M, . . . , 1.
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Remark 1. If a closed loop performance of ‖w 7→ z‖ < γ is desired, Theorem 1 can be

updated to have Cz
φ, Cy

φ, Dzw
φ , Dzu

φ , and Dyw
φ scaled by γ−1 for all φ ∈ N . The controller

obtained for this modified system using the procedure above can be used to find the desired

controller by scaling BK
Ψ and DK

Ψ with γ−1 for all Ψ.

2.3 Receding Horizon

Now we want to extend the previous result so that our nested switching system also accounts

for future modes in the model dynamics, as presented for the centralized case in [4].

We will now define Φ+,Φ− ∈ Ar+L+H , Φ† ∈ Ar+L+H , and Φ0 ∈ N as

Φ+ := (β1, . . . , βr+L+H), Φ− := (β0, . . . , βr+L+H−1),

Φ† := (β0, . . . , βr+L+H), Φ0 := βr+L.

Note that the above definitions are equivalent to the case without any look-ahead.

Now consider the switched system

x(t+ 1) = AΘ(t)x(t) +BΘ(t)w(t)

z(t) = CΘ(t)x(t) +DΘ(t)w(t)
(2.22)

For a controller with memory L and look-ahead horizon H, the above system matrices at time

t depend on a switching path given by Θ(t) =
(
θ(t− L), . . . , θ(t), . . . , θ(t+H)

)
∈ AL+H+1

We can modify Lemma 2 to include a look-ahead horizon, as it was shown in [4].

Lemma 7. The finite-path dependent system (2.22) with memory L ∈ N0 and look-ahead

horizon H ∈ N0 is exponentially stable and satisfies ‖w 7→ z‖ < 1 if and only if there exists

an r ∈ N0 and a set of positive-definite matrices {XΨ}Ψ∈Ar+L+H
satisfying

XΦ− 0

0 I

−
AΦ† BΦ†

CΦ† DΦ†

> XΦ+ 0

0 I

AΦ† BΦ†

CΦ† DΦ†

 � 0

for all Φ ∈ Ar+L+H+1.
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Now we can proceed in the same way as the previous section. Lemmas 7 and 3 will give

an only having to update the subscripts of the given equations. Retracing the steps of the

previous section with Lemmas 7 and 3, we obtain a set of LMIs that give necessary and

sufficient conditions for the existence of the path dependent controller.

Theorem 3. Consider the mode-dependent systems (2.2) along with Assumption 1. There

exists a synthesis of a finite-path dependent controller (2.4) which

(i) is structured as (2.5)

(ii) has dimensions {nKi }Mi=1

(iii) achieves closed loop performance ‖w 7→ z‖ < 1

if and only if there exists L,H ∈ N0 and matrices {Za
i,Ψ, Z

b
i,Ψ, Z

c
i,Ψ}i∈J̄ ,Ψ∈AL+H

satisfying the

following

Za
i,Ψ � 0, Zc

i,Ψ � 0 for all i ∈ J̄ , Ψ ∈ AL+H (2.23a)

Nu
i,Φ0

0

0 Ny
i,Φ0

>


(Zu
i,Φ+)>Z l

i,Φ+ 0 (Zu
i,Φ+)>AΦ0Z

l
i,Φ− (Zu

i,Φ+)>Bw
Φ0

0 I Cz
Φ0
Z l
i,Φ− Dzw

Φ0

· · (Zu
i,Φ−)>Z l

i,Φ− 0

· · 0 I


Nu

i,Φ0
0

0 Ny
i,Φ0

 � 0

(2.23b)

for all i ∈ J̄ , Φ ∈ AL+H+1

 (Zu
i,Ψ)>Z l

i,Ψ (Z l
i,Ψ)>Zu

i−1,Ψ

(Zu
i−1,Ψ)>Z l

i,Ψ (Zu
i−1,Ψ)>Z l

i−1,Ψ

 � 0 (2.23c)

rank

 (Zu
i,Ψ)>Z l

i,Ψ (Z l
i,Ψ)>Zu

i−1,Ψ

(Zu
i−1,Ψ)>Z l

i,Ψ (Zu
i−1,Ψ)>Z l

i−1,Ψ

 ≤ n+ nKi (2.23d)

It is interesting to note that Theorem 3 reduces to Theorem 1 when H = 0.
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Remark 2. If one desires to obtain decentralized controller for a linear time invariant (LTI)

plant, the results obtained above can still be used by simply setting N = {1}. That is, the

automaton only generates one admissible sequence. As a result, for any memory length L

and look-ahead horizon H, there exists only one sequence in AL+H+1. We can then drop the

subscripts in Theorem 3, and the controller synthesis will generate only one QK .

2.4 Example

Let us consider a two player example with 3-mode switching. The switching automaton is

as in Figure 2.1. The corresponding system matrices are chosen as

A1 = A2 =

1.4 0

0.2 1.4

 , A3 =

0.7 0

0.2 0.7


Bu

1 = Bu
2 =

0 0

0 1

 , Bu
3 =

1 0

0 0


Cy

1 = Cy
2 =

1 0

0 0

 , Cy
3 =

1 0

0 1


Dzu

1 = Dzu
2 =

[
0 1

]
, Dzu

3 =
[
4 0

]
and the following defined for φ ∈ {1, 2, 3}

Bw
φ =

1

1

 , Dyw
φ =

0

1

 , Cz
φ =

[
0.52

]
, Dzw

φ = 0.5

Here we have chosen dimensions n1 = n2 = nu1 = nu2 = ny1 = ny2 = nz = nw = 1.

For different memory lengths the above system was examined with nKi = 2 for i ∈ J .

The optimal bound ‖w 7→ z‖ < γ was found using a bisection algorithm, and the values for

different memory lengths are tabulated below.

For zero memory length and no look-ahead horizon, the system is not stabilizable, re-

sulting in infinite norms. As one would intuitively expect, having a preview of future modes

gives much better H∞ bounds than just relying on previous modes.
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Table 2.1: Optimal performance bound for the controller.

L/H 0 1 2
0 ∞ 5.467 3.000
1 5.468 3.160
2 3.663
3 3.606
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Chapter 3

Hardware

In this chapter we present the testbed setup used in this thesis. The main hardware consists of

the HoTDeC (Hovercraft Testbed for Decentralized Control) vehicle, which was developed at

the University of Illinois at Urbana-Champaign, and the Vision system. Detailed information

about the HoTDeC and ealier versions of the system can be found in the dissertation [8]

and the article [9]. The Vision system is a network of cameras set up in the lab to keep

track of the position of the robots. Further details of the individual system components are

presented herein.

3.1 HoTDeC

3.1.1 Body

As shown in 3.1, there are two different types of HoTDeC bodies: 3D printed and precision

machined. The 3D printed body is made out of ABS-M30 and weights 565g, while the

machined body is made out of dense Styrofoam and weights 325g. Both bodies have a

diameter of 355mm.

Each vehicle has five thrusters: one is used to generate lift, and the other four are used to

generate forces in the x- and y-direction, as seen in Figure 3.2. We can also use a combination

of them to generate a moment and rotate the hovercraft body. For example, if we turn on

motors 3 and 4, it generates a thrust force in the positive Uy direction. Turning on motors
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Figure 3.1: Different hovercraft bodies used: Precision machined Styrofoam on the left and
3D printed ABS on the right.

Figure 3.2: Thruster Configuration.

1 and 4 would generate a moment in the positive Ut direction.

3.1.2 Electronics

The HoTDeC consists of four different electronic boards: the Powerboard, the SBC Board,

the Isolator Board, and the Motor Board. The Powerboard controls the power distribution

to the rest of the hovercraft. The motors are powered by four 3S 2100mAh 25C Lithium

Polymer batteries. The SBC board is powered by a single 3S 1320mAh 13 Lithium Polymer

battery. The power board handles the step-down to 5V to power the SBC and Isolator
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boards, and will shut itself off if the batteries fall below a certain voltage.

Figure 3.3: SBC Board.

The Single-Board-Computer (SBC) board is in charge of the integration of peripherals

such the Gumstix and the Digital Signal Processor (DSP). The Gumstix is the main processor

of each vehicle, and it supports fully featured real-time embedded Linux operating system

called Linaro. For this thesis, the Gumstix is only used to receive commands from the

computer and send them to the DSP board via serial connection. However, it could be

running its own individual feedback controller loop. The DSP used is a Texas Instruments

TMS320F28335, and it’s interface contains an input-output pairs for each thruster. It is

necessary in the system because the thrusters can reach speeds up to 16,000 RPM. Five of

them are currently used to get the Hall effect sensor input and output a PWM signal.

Figure 3.4: Isolator Board.

The Isolator board is designed to isolate the digital circuit from noise. Signals from the

DSP are separated from each thruster by this board.

Each motor board includes a hall effect sensor, used to measure the thruster angular

velocity, and an H-bridge. The motor blades have two magnets attached, which allows the

hall effect sensor to account for each rotation twice.
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Figure 3.5: Motor Board.

3.2 Dynamical Model

The dynamic model of the HoTDeC is defined by

ẋ(t) = Ax(t) +Bu(t) +Gw(t)

y(t) = Cx(t) +Dv(t)
(3.1)

where the x(t) states are the positions and velocities in Cartesian coordinates, with the

following matrices:

A =



0 1 0 0 0 0

0 −βx
m

0 0 0 0

0 0 0 1 0 0

0 0 0 −βy
m

0 0

0 0 0 0 0 1

0 0 0 0 0 −βθ
m


, B = G =



0 0 0

1
m

0 0

0 0 0

0 1
m

0

0 0 0

0 0 1
J


,

C =


1 0 0 0 0 0

0 0 1 0 0 0

0 0 0 0 0 1

 , V =


1 0 0

0 1 0

0 0 1

 .

(3.2)

Where βtrans = 3.5 × 10−3N · s/m is the coefficient of translational friction, and βθ =

2.63× 10−4N ·m · s/rad is the coefficient of rotational friction. Detailed information about
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the actuator disturbance, w(t), and the measurement noise, v(t), are presented in [9].

Table 3.1: Mechanical parameters of the HoTDeC.

Mass, m (kg) Moment of Inertia, J (kg ·m2)
Styrofoam Body 2.312 0.037
3D Printed Body 2.642 0.043

3.2.1 Motor Dynamics

Each thruster in the hovercraft is controlled via the TI F28335 ControlCARD. The DSP

board runs 5 independent proportional integral (PI) loops to control the speed of each

motor.

We assume that the relationship between force F and thruster angular velocity ω is

ω2 = 2560000× F . The thruster is then modeled as

ẋ = −8.6x+ u

w2 = 20868760x
(3.3)

with

F =

 8.1518x− 0.02 if x > 0.00246

0 otherwise
(3.4)

Each motor can generate up to 1.2N of thrust force. The PI loop that controls the voltage

supplied to each motor is

u = kP e+ kI

t∑
i=0

e ·∆h, kP = 0.0003, kI = 0.00015 (3.5)

where e = desired speed−current speed, and ∆h is the time between samples. A detailed

explanation regarding the dynamic model and the controller is presented in [10].
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3.3 Network

3.3.1 Vision System

To determine the position of the hovercrafts, the HoTDeC lab has a setup of six cameras

covering a total area of approximately 3m by 2m, as shown by Figure 3.6. A computer

processes the information from each of the six cameras, and another computer merges the

information to remove any duplicate data from the overlapping areas and broadcasts the

data to a network in the lab.

Figure 3.6: Schematic of the Vision system from [9]. On the left is a depiction of the camera
coverage and on the right is a picture of one of the cameras used.

The Vision system differentiates between different hovercrafts by using the patterns on

their tops, as seen in Figure 3.7. Not only is the pattern used to detect which hovercraft is

present, but also to determine which direction the hovercraft is pointing.

3.3.2 Communication System

We use a messaging system called ZeroMQ (ZMQ) to communicate with the vehicles. This

system uses two different basic message patterns in the communication layer. One is a

Publish-Subscribe structure in which the publisher is constantly broadcasting messages to

the network and the subscribers can listen to them at any point in time. The other is

a Request-Reply structure in which the requester sends a message and the replier has to
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Figure 3.7: Different patterns.

respond back. We use the Publish-Subscribe structure for the Vision system messages and

the Request-Reply structure for communicating between the computer and the hovercrafts.

(a) Request-Reply structure. (b) Publisher-Subscriber structure.

Figure 3.8: Two examples of the basic message patterns in ZeroMQ.
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Chapter 4

Controller Design

In this chapter the design procedure of the decentralized switched controller controller pre-

sented in Chapter 2 is detailed. We also include a MATLAB simulation of the decentralized

controller.

4.1 Controller

Our goal is to have the hovercrafts follow each other in a platoon of vehicles, as with the

system depicted by Figure 1.1. Each vehicle will try to keep a set distance from the one in

front of it, with the first vehicle being told to follow a user defined path. First, to set up

our controller, we have to generate the state space system which describes the nested loop,

following the form of Equation 2.2.

We implemented a Kalman Filter to reduce the noise from the camera data. With this

in mind, the nested plant description assumes that full state information is being provided

to the controller. More information on the Kalman Filter will be discussed further on this

Chapter.

Using the model dynamics presented in Section 3.2, and the assumption that we have

full state feedback, let εi ∈ Rni be the measured position vector of the i-th robot that is

available to its followers. Then, if we desire that each hovercraft stays a certain distance

ri ∈ Rni away from its leader, we can choose the performance output ei = yi− εi−1− ri. The

performance output of the first hovercraft will simply be e1 = y1 − r1.

26



Synthesis of the decentralized switching controller will be based on the un-weighted gen-

eralized plant of the nested structure


ze

zu

y

 =


A Bw Bu

Cz Dzw Dzu

Cy Dyw 0


d
u

 (4.1)

where ze =
[
e1, . . . , eM

]>
is the position performance output, zu =

[
u1, . . . , uM

]>
is the con-

troller performance output, y =
[
y1, . . . , yM

]>
is the measurement output, d =

[
r1, . . . , rM

]>
is the disturbance input, and u =

[
u1, . . . , uM

]>
is the controller input. The hovercraft dy-

namical model was discretized with a sampling time of Ts = 0.1 seconds.

Figure 4.1: Automaton.

For our experiment, the hovercraft will operate near obstacles in either the x- or y-

direction. To avoid any collisions with the environment the performance output switches

between three modes given by

z1 =
[
4x 2ẋ 4y 2ẏ 5θ 2θ̇ 0.5ux 0.5uy 0.6uθ

]
z2 =

[
6x 2ẋ 3y 2ẏ 5θ 2θ̇ 0.5ux 0.5uy 0.6uθ

]
z3 =

[
3x 2ẋ 6y 2ẏ 5θ 2θ̇ 0.5ux 0.5uy 0.6uθ

] (4.2)

where mode 1 represents unobstructed operation, while modes 2 and 3 represented operation

near an obstacle in the x- or y-direction respectively. All admissible sequences in our system

can be generated by the automaton in Figure 4.1. Note that the weighting vectors above are

for a single hovercraft. For the nested system of multiple hovercrafts, these vectors will be
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expanded accordingly, with all hovercrafts subjected to the same weights.

CVX, a MATLAB-based toolbox for convex optimization ([11]), was used to solve the

LMIs in Theorem 3.

4.1.1 Estimator

To deal with the noisy input from the Vision system, we have added a Kalman Filter using

the dynamics from Section 3.2. To generate the filter gain we used the covariance matrices,

Q = E
[
wnw

>
n

]
=


σ2
F 0 0

0 σ2
F 0

0 0 σ2
τ

 , R = E
[
vnv

>
n

]
=


σ2
x 0 0

0 σ2
y 0

0 0 σ2
θ

 (4.3)

with

σx = 2.5mm, σF = 0.0234N

σy = 2.23mm, στ = 0.0237N

σθ = 0.0206 rad

The Kalman filter runs at 10Hz, the same rate as the controller.

4.2 Simulation

In order to quickly test different controller weightings before deploying the code to the

hovercrafts, we have created a Simulink simulation where we modeled the HoTDeC dynamics

and the Vision system as described in the previous chapter. Here, a nested structure of four

vehicles was considered.

The simulation accounted for not only the dynamics of the hovercrafts but also the

dynamics of the thrusters themselves. Figure 4.2 depicts the Simulink schematic for the

simulation. Each block named “Hovercraft Simulator #” includes a sub-block that takes in

the information from the controller output and simulates the response from the thrusters,

as mentioned in Section 3.2.1. Here we also have accounted for motor saturation. This
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Figure 4.2: Top overview of Simulink model.
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sub-block runs the same code that is used on the DSP boards to control the motor speed

at the same rate. The information from the motor sub-block is fed into a continuous-time

state-space model of the hovercraft dynamics.

The block labeled “Sensor Delay+Noise” simulates the Vision system. It gets new data

from the hovercraft box 30 times per second, simulating the refresh rate of the cameras. The

Vision system latency is modeled as Gaussian: mean 33.3ms, standard deviation 0.063ms,

and the wireless network latency is modeled as Gaussian: mean 2.76ms, standard deviation

0.33ms.

Finally, the “H infinity” block contains the Kalman Filter and the decentralized controller.

Both were constructed as described earlier in this chapter. The input to the left of this box

is simply the reference signal. The position output from the simulated hovercrafts is saved

for later processing.

4.2.1 Results

We tested how well our hovercrafts followed a circular trajectory under different controller

memory and horizon lengths. In all test cases the leader was following a 0.6m wide circular

path at a 0.3 Hz frequency. A LTI case was generated using only the first set of controller

weights in Equation 4.2. All controllers were generated at their optimal bounds.
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Decentralized controller with no switching

Figure 4.3: Simulated paths of four hovercrafts using the LTI decentralized controller.

In Figure 4.3, we can see that while the first robot (far right, red dashed line) does a

good job of following the reference signal (far right, blue solid line), small deviations quickly

increase as they propagate down the platoon. In the controller with memory length 1 and

look-ahead horizon 1, the trailing robots do a better job at following the one in front (Figures
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Figure 4.4: Simulated paths of four hovercrafts using the decentralized controller with mem-
ory length L=1 and horizon length H=1.

4.4-4.5). As can be seen by Figure 4.6, it is also interesting to note that the hovercrafts do a

much better job at keeping their headings facing forward despite the weights for the θ error

staying the same.
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(a) LTI Controller.
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(b) L=1, H=1 Controller.

Figure 4.5: Comparison of the simulated y-position.
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(a) LTI Controller.
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(b) L=1, H=1 Controller.

Figure 4.6: Comparison of the simulated angle.
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Chapter 5

Hardware Implementation

This chapter presents the testing setup of the hovercraft vehicles and the results from the

implementation of an controller with memory length 1 and horizon length 1.

5.1 Setup

Figure 5.1: Experimental setup of the hovercrafts. The white vehicle is following a circular
trajectory while the black vehicle is trying to follow it.

We tested the controller using two hovercrafts. The leader was told to move in a circle

of radius 0.3m, with its follower being told to trail behind at a distance of 1m in its x-

coordinate position. The reference values for the trajectory were generated via sinusoidal

functions with frequency of 0.3 Hz. We have tested a controller with memory L = 1 and

look-ahead horizon H = 1, using the same setup as described in the previous Chapter.
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To simplify the process of testing the vehicles and collecting data, the Simulink Desktop

Real-Time toolbox was used. As the name suggests, with this toolbox we can run Simulink

files in real-time, so the same “H infinity” block used in Section 4.2 can be used to control

the hovercrafts in the lab. This simulink model is shown below.

Figure 5.2: Simulink model used in the experiment.

The “get vision” block receives the hovercrafts’ position from the Vision Server, while

the “send commands” block talks with each HoTDeC vehicle. Both blocks were written in C

and compiled with MEX so they could be used inside Simulink. The “terminal flag” switch

on the bottom left enable us to start and stop sending commands to the hovercrafts, while

the “mode” switch allows us to select between different reference trajectories.

5.2 Results

Main results from the hovercraft experiment are presented in the plots below. It should be

noted that in Figures 5.3 and 5.4, the hovercrafts power on at the 4 second mark. They
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immediately follow a circular path, and the reference signal stops at 30 seconds. In both

figures, the x- and y-positions are the estimated output from the Kalman Filter.
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Figure 5.3: Estimated x position of both hovercrafts with a decentralized controller L=1,
H=1. The blue line indicates the reference signal.
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Figure 5.4: Estimated y position of both hovercrafts with a decentralized controller L=1,
H=1. The blue line indicates the reference signal.

We can see that while the leader did not follow the reference signal as well as the simula-
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tions would indicate, the follower did a very good job at keeping a constant distance behind

the leader. Although the Vision System lost track of the follower at approximately the 20

second mark, the hovercraft quickly recovered to the desired distance.
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Chapter 6

Conclusion

In this thesis, we have presented the decentralized switched control problem and exact con-

ditions for synthesis of a controller with finite memory. We then developed an extension of

the synthesis condition for the case of a controller with receding horizon modal information.

The derived controller was tested using a system of hovercrafts: first with a simulation,

and then with a real-system experiment. MATLAB and the Simulink package were used

to simulate a platoon of four hovercrafts traveling in a user defined path. This platoon

consisted of a leader vehicle, which was told which path to follow, and three followers. Each

of the followers would try to keep a set distance away from the vehicle in front of it. For

this thesis, a circular reference path was chosen. Comparing the general LTI case with that

of the switched controller with memory L = 1 and look-ahead horizon H = 1, we can see

a significant improvement. With the LTI case, small deviations in movement were seen to

worsen with each following vehicle. However, with the L=1, H=1 controller, errors were more

consistent across the whole platoon. Additionally, the hovercrafts using the decentralized,

look-ahead controller were seen to do a better job of keeping their headings forward, and not

twisting as much as with the LTI.

Testing the system experimentally with two HoTDeC hovercrafts resulted in errors less

promising than the simulated system. However, this does not mean that the controller was

unsuccessful. Just as in the MATLAB simulation, these leader hovercraft was told to travel

in a circle with its follower trailing behind. There were many outside factors contributing to

the discrepancy between the reference path and the vehicle path, such as noise and spotty
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coverage of the Vision system. Still, the follower is seen to approach the motion of its leader

with the L=1, H=1 controller.

Overall, the results of this thesis have proven that a discrete-time linear nested system

controller with finite memory and look-ahead horizon can be a useful tool. The MATLAB

simulations presented show how error can be reduced using this controller in comparison to a

simply LTI system. The real hovercraft system experiment shows that the controller is func-

tional, although there is much room for improvement in the experimental setup to improve

the continuity between the experimental and simulation results. For example, the Vision

system could be improved to better track the vehicles and certain communication compo-

nents in the hovercrafts can be updated. For future works, the real-system implementation

can be further expanded to include more vehicles.
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